WO2019240040A1 - Method for producing optical element and optical element - Google Patents

Method for producing optical element and optical element Download PDF

Info

Publication number
WO2019240040A1
WO2019240040A1 PCT/JP2019/022740 JP2019022740W WO2019240040A1 WO 2019240040 A1 WO2019240040 A1 WO 2019240040A1 JP 2019022740 W JP2019022740 W JP 2019022740W WO 2019240040 A1 WO2019240040 A1 WO 2019240040A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
optical element
uppermost layer
refractive index
metal mask
Prior art date
Application number
PCT/JP2019/022740
Other languages
French (fr)
Japanese (ja)
Inventor
多田一成
粕谷仁一
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2020525526A priority Critical patent/JP7335556B2/en
Publication of WO2019240040A1 publication Critical patent/WO2019240040A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers

Definitions

  • the present invention relates to an optical element manufacturing method in which a multilayer film is formed and an optical element manufactured by the method.
  • in-vehicle cameras are mounted on vehicles for driving support of vehicles. More specifically, a camera that captures the back and sides of the vehicle is mounted on the body of the automobile, and the image captured by the camera is displayed at a position where the driver can visually recognize it. Contributes to safe driving.
  • Patent Document 1 discloses an antireflection article having antireflection properties in which a film having reduced reflectance and having self-cleaning properties is formed without impairing the photocatalytic performance of the photocatalytic particles.
  • the antireflection article of Patent Document 1 includes a fine uneven layer made of resin, an inorganic layer made of SiO 2 , and a photocatalyst layer made of TiO 2 on one surface of a transparent substrate, and the surface of the photocatalyst layer is fine. It has irregularities.
  • an imaging lens or the like mounted on a vehicle-mounted camera is used in a harsh environment, sufficient environmental resistance is required. More specifically, there is a possibility that the exposed optical surface of the imaging lens may be damaged or eroded by impacts, wind pressure, and sand dust splashed by traveling. Furthermore, there is a risk of surface deterioration or alteration due to chemicals such as detergents and waxes used in salt water, acid rain, car washing, etc. contained in the sea breeze.
  • the antireflective article of Patent Document 1 achieves all of the photocatalytic effect, saltwater resistance, hydrophilicity, low reflection characteristics, and scratch resistance functions required for a lens for an in-vehicle camera as described above.
  • the TiO 2 layer is provided on the top and has a photocatalytic effect.
  • the TiO 2 layer has a moth-eye structure to reduce the reflectance.
  • salt water resistance and hydrophilicity are weak.
  • the antireflection article of Patent Document 1 may be broken in structure by rubbing and has low scratch resistance.
  • An object of the present invention is to provide a method for producing an optical element that can achieve both superhydrophilicity and a photocatalytic effect and also has saltwater resistance, and an optical element produced by the method.
  • an optical element manufacturing method reflecting one aspect of the present invention is an optical element manufacturing method in which two or more multilayer films are formed on a light-transmitting substrate.
  • the multilayer film has at least one low-refractive index layer and at least one high-refractive index layer, and has low salt spray resistance and super hydrophilicity as the uppermost layer farthest from the substrate.
  • the low refractive index layer means a layer having a refractive index of 1.7 or less.
  • the high refractive index layer means a layer having a refractive index of 1.9 or more.
  • having salt water tolerance means that the film thickness reduction value is 20 nm or less after the salt water spray test described later.
  • having super hydrophilicity means that the contact angle of 10 ⁇ l of water droplets on the optical element is 15 ° or less.
  • an optical element reflecting one aspect of the present invention is manufactured by the above-described optical element manufacturing method, and has an island-shaped through hole structure in the uppermost layer.
  • FIG. 2A is a diagram schematically showing a cross section of an optical element manufactured by forming a particulate metal mask
  • FIG. 2B is a schematic cross section of an optical element manufactured by forming an island metal mask
  • 2C is a SEM image of the surface of the uppermost layer in FIG. 2B
  • FIG. 2D is a diagram schematically showing a cross section of an optical element formed by forming a porous metal mask.
  • 4A to 4C are conceptual diagrams for explaining a process of forming a through-hole by forming a particulate metal mask in an optical element manufacturing method
  • FIG. 1 is a diagram schematically showing a cross section of an optical element manufactured by forming a particulate metal mask
  • FIG. 2B is a schematic cross section of an optical element manufactured by forming an island metal mask
  • 2C is a SEM image of the surface of the uppermost layer in FIG. 2B
  • FIG. 2D is a diagram schematically showing a cross section of an optical element formed by forming a
  • FIG. 4D is an example in which an island-shaped metal mask is formed.
  • FIG. 4E is a conceptual diagram illustrating an example in which a porous metal mask is formed.
  • FIG. 5A is an SEM image of a sample on which a particulate metal mask is formed
  • FIG. 5B is an SEM image showing a state where through holes are formed by etching the sample of FIG. 5A
  • FIG. 5C is an island shape
  • FIG. 5D is an SEM image of a sample on which a porous metal mask is formed.
  • 6A to 6C are views in which the SEM images of the optical element whose uppermost layer is processed into an island shape are enlarged step by step.
  • FIG. 1 is a diagram schematically showing a cross section of an optical element according to the present embodiment.
  • An optical element 100 shown in FIG. 1 is a multilayer film MC having a structure in which low refractive index layers L and high refractive index layers H are alternately laminated on a glass substrate (glass substrate) GL which is a substrate having light transmittance. It is what has.
  • the low refractive index layer L means a layer having a refractive index of 1.7 or less.
  • the high refractive index layer H means a layer having a refractive index of 1.9 or more.
  • the glass substrate GL is not limited to a flat plate and may include a lens.
  • the high refractive index layer H may be in contact with the glass substrate GL.
  • Such an optical element 100 can be used as an in-vehicle lens or a communication lens.
  • the layer located between the glass substrate GL and the functional layer 20 may be replaced with an equivalent film of an intermediate refractive index layer instead of a high refractive index layer or a low refractive index layer.
  • the uppermost layer 10 farthest from the glass substrate GL is a low refractive index layer L, and a high refractive index layer H provided below the uppermost layer 10, which is adjacent to the uppermost layer 10 in this embodiment.
  • the high refractive index layer H is a metal oxide functional layer 20 having a photocatalytic function.
  • the functional layer 20 exhibits a photocatalytic function using active oxygen excited by UV light through or through the uppermost layer 10, the functional layer 20 is preferably placed as close as possible to the uppermost layer 10. By providing the functional layer 20 adjacent to the uppermost layer 10, for example, a photocatalytic function can be effectively exhibited.
  • the functional layer 20 by using a metal oxide having a photocatalytic effect and a photoactive effect as the functional layer 20, surface organic substances can be removed and the super hydrophilicity of the uppermost layer 10 can be maintained.
  • the functional layer 20 for example, TiO 2 or the like is used.
  • IAD Ion Assisted Deposition
  • Photocatalytic function refers to the strong oxidizing power generated by the incidence of sunlight or artificial light, which effectively removes toxic substances such as organic compounds and bacteria that come in contact, It refers to a self-cleaning function such as preventing the oil from staying on the surface and washing with water or the like without fixing oily stains, such as titanium dioxide.
  • adjacent to the uppermost layer means that the function is not hindered between the uppermost layer 10 and the functional layer 20 in addition to the case where the uppermost layer 10 and the functional layer 20 are in close contact with each other. This includes the case where a layer (for example, a layer of 20 nm or less) is provided.
  • the low refractive index layer L of the uppermost layer 10 has a plurality of through holes 30 for causing the functional layer 20 to be the adjacent high refractive index layer H to exhibit a photocatalytic function.
  • the through hole 30 is formed by dry etching.
  • the ratio of the total cross-sectional area of the plurality of through holes 30 to the surface area of the low refractive index layer L of the uppermost layer 10 (the total area of the through holes 30 when the optical element 100 is viewed from above) hereinafter referred to as the through hole density or
  • the film drop-off rate is about 50%.
  • the cross section of the through-hole 30 has a random shape.
  • the optical element 100 of the present embodiment desirably satisfies the following conditional expression. 10 nm ⁇ TL ⁇ 350 nm (1) 50 nm ⁇ Tcat ⁇ 700 nm (2) here, TL: film thickness of uppermost layer 10 Tcat: film thickness of high refractive index layer H or functional layer 20 adjacent to uppermost layer 10
  • conditional expression (1) When the value of conditional expression (1) is not more than the upper limit, the photocatalytic effect can be exhibited by exchanging active oxygen excited by UV light through the plurality of through holes 30 provided in the uppermost layer 10. On the other hand, if the value of conditional expression (1) is equal to or greater than the lower limit, the superhydrophilic function of the uppermost layer 10 can be easily maintained and a strong uppermost film can be formed, so that sufficient scratch resistance can be secured.
  • the optical element 100 preferably satisfies the following formula. 50 nm ⁇ TL ⁇ 250 nm (1 ′)
  • conditional expression (1 ′) If within the range of conditional expression (1 '), it is easy to keep the reflectance within 2%. Further, when the value of the conditional expression (1 ′) is less than or equal to the upper limit, the photocatalytic function of the functional layer 20 is easily expressed on the outermost surface of the functional layer 20.
  • conditional expression (2) When the value of conditional expression (2) is equal to or greater than the lower limit, the film thickness of the functional layer 20 can be ensured, so that a sufficient photocatalytic effect can be expected. On the other hand, as the thickness of the functional layer 20 increases, the photocatalytic effect can be expected. However, since it becomes difficult to obtain desired spectral characteristics required for the multilayer film, the value of the conditional expression (2) is less than the upper limit. It is desirable to do.
  • the optical element 100 preferably satisfies the following formula. 50 nm ⁇ Tcat ⁇ 600 nm (2 ′)
  • the high refractive index layer H or the functional layer 20 adjacent to the uppermost layer 10 is formed of an oxide (for example, TiO 2 ) whose main component is Ti.
  • Ti oxides such as TiO 2 have a very high photocatalytic effect.
  • anatase TiO 2 is desirable as a material for the functional layer 20 because of its high photocatalytic effect.
  • the uppermost layer 10 is a layer having salt spray resistance and super hydrophilicity, and is mainly formed of, for example, SiO 2 .
  • Having salt spray resistance means that the film thickness reduction value is 20 nm or less after the salt spray test described below.
  • having super hydrophilicity means that the contact angle of 10 ⁇ l of water droplets on the optical element 100 is 15 ° or less.
  • the uppermost layer 10 preferably contains 90% or more of SiO 2 . UV light is hard to be incident at night or outdoors, and the hydrophilic effect is reduced with an oxide mainly composed of Ti, but even in such a case, the superhydrophilic effect can be exhibited by forming the top layer 10 from SiO 2.
  • the scratch resistance is further improved.
  • the uppermost layer 10 may be formed of a mixture of SiO 2 and Al 2 O 3 (however, the composition ratio of SiO 2 is 90% by weight or more). Thereby, a hydrophilic effect can be exhibited even at night or outdoors, and scratch resistance is further enhanced by using a mixture of SiO 2 and Al 2 O 3 .
  • scratch resistance is improved by performing a heat treatment at 200 ° C. or higher for 2 hours after film formation. It is preferable to use the IAD method when a part or all of the uppermost layer 10 is formed. Thereby, the scratch resistance is improved.
  • Each layer of the multilayer film MC is formed by an evaporation method, and any one of the layers is preferably formed by an IAD method. Scratch resistance can be further improved by film formation by the IAD method.
  • the uppermost layer 10 is formed by an IAD method, a chemical vapor deposition (CVD) method, a sputtering method, or the like.
  • the film density of the low refractive index layer L which is the uppermost layer 10 is 98% or more.
  • the film density means the space filling density.
  • the optical element 100 preferably satisfies the following conditional expression. 1.35 ⁇ NL ⁇ 1.55 (3) here, NL: Refractive index at the d-line of the material of the low refractive index layer L
  • the d line means light having a wavelength of 587.56 nm.
  • SiO 2 having a refractive index of 1.48 at d-line or MgF 2 having a refractive index of 1.385 at d-line can be used.
  • the optical element 100 preferably satisfies the following conditional expression. 1.6 ⁇ Ns ⁇ 2.2 (4) here, Ns: Refractive index at d line of glass substrate GL
  • conditional expression (4) as the refractive index at the d-line of the glass substrate GL, the optical performance of the optical element 100 can be enhanced after having a compact configuration.
  • the multilayer film MC of the present embodiment on the glass substrate GL satisfying the conditional expression (4), it can be used for a lens exposed to the outside world, and has excellent environmental resistance and optical performance. It can be compatible.
  • the low refractive index layer L and the high refractive index layer H as the multilayer film MC are alternately laminated on the glass substrate (glass substrate) GL (multilayer film forming step: step S11).
  • step S11 a layer excluding the uppermost layer 10 and the functional layer 20 is formed in the multilayer film MC. That is, the layers up to the low refractive index layer L adjacent to the lower side of the functional layer 20 are formed.
  • the multilayer film MC is formed using various vapor deposition methods, IAD methods, sputtering methods, and the like. Depending on the configuration of the optical element 100, the formation of the multilayer film MC in step S11 may be omitted.
  • the high refractive index layer H to be the functional layer 20 is formed on the multilayer film formed in step S11 (functional layer forming step: step S12).
  • the high refractive index layer H as the functional layer 20 is formed using various vapor deposition methods, IAD methods, sputtering methods, and the like.
  • the high refractive index layer H as the functional layer 20 is formed of a material mainly containing a metal oxide having a photocatalytic function (specifically, an oxide mainly containing Ti such as TiO 2 ). When obtaining anatase-type TiO 2 having a strong photocatalytic effect, it is desirable to form a film at a temperature of 200 ° C. or higher by using an IAD method or a sputtering method.
  • the low refractive index layer L to be the uppermost layer 10 is formed on the functional layer 20 (uppermost layer forming step: step S13).
  • the low refractive index layer L as the uppermost layer 10 is formed using any one of the IAD method, the CVD method, and the sputtering method.
  • the low refractive index layer L as the uppermost layer 10 is formed of SiO 2 or a mixture of SiO 2 and Al 2 O 3 .
  • the functional layer 20 is formed under the condition that the film density is 98% or more.
  • the intermediate body 40 (the thing in which the through-hole 30 is not formed in the uppermost layer 10) which formed multilayer film MC on the glass base material GL is formed.
  • a metal mask 50 is formed on the surface 10a of the uppermost layer 10 (mask forming step: step S14). As shown in FIGS. 4A and 5A, the metal mask 50 is formed in a particle shape on the surface 10 a of the uppermost layer 10. Thereby, a nano-sized metal mask 50 can be formed on the uppermost layer 10. As shown in FIGS. 4D and 5C, the metal mask 50 may be formed in an island shape. Further, as shown in FIGS. 4E and 5D, the metal mask 50 may be formed in a porous shape. The metal mask 50 includes a metal part 50a and an exposed part 50b. The film thickness of the metal mask 50 is 1 nm or more and 30 nm or less.
  • the metal mask 50 is formed so as to have a film thickness of 2 nm by using an evaporation method, the metal mask 50 is likely to be in the form of particles. Further, when the metal mask 50 is formed to have a film thickness of 12 nm to 15 nm by using, for example, a vapor deposition method, the metal mask 50 tends to have an island shape. Furthermore, if the film thickness is 10 nm using, for example, a sputtering method, the metal mask 50 tends to be porous. By forming the metal thinly in the above-mentioned range, the optimum metal mask 50 in the form of particles, islands, or porous can be easily formed.
  • the metal mask 50 is made of, for example, Ag or Al.
  • a plurality of through holes 30 are formed in the low refractive index layer L of the uppermost layer 10 (through hole forming step: step S15).
  • dry etching using an etching apparatus (not shown) is used for etching.
  • a film forming apparatus used for forming the multilayer film MC or the metal mask 50 may be used.
  • a plurality of through holes are formed using the material of the uppermost layer 10, specifically, a gas that reacts with SiO 2 . In this case, SiO 2 of the uppermost layer 10 can be removed without damaging the metal mask 50.
  • the etching gas for example, CHF 3 , CF 4 , SF 6 or the like is used.
  • a plurality of through holes 30 exposing the surface of the functional layer 20 in the uppermost layer 10 are formed. That is, the uppermost layer 10 corresponding to the exposed portion 50b of the metal mask 50 is etched to form the through holes 30, and the surface of the functional layer 20 is partially exposed.
  • the metal mask 50 is removed (mask removing process: step S16). Specifically, the metal mask 50 is removed by wet etching using acetic acid or the like. Further, the metal mask 50 may be removed by dry etching using Ar or O 2 as an etching gas, for example. If the etching of the metal mask 50 is performed using dry etching, a series of steps from the formation of the multilayer film MC to the etching of the metal mask 50 can be performed in the same film forming apparatus.
  • the optical element 100 having the plurality of through holes 30 in the uppermost layer 10 can be obtained.
  • both super hydrophilicity and the photocatalytic function are achieved. be able to.
  • the through hole 30 is of a size that allows the functional layer 20 to exhibit a photocatalytic function, is not visually recognized by the user, and has resistance to salt water.
  • the functional layer 20 exhibits a photocatalytic function, since it is the high refractive index layer H, in order to maintain the antireflection characteristics of the optical element 100, the uppermost layer 10 that is the low refractive index layer L on the functional layer 20. It is necessary to provide. Therefore, when the density of the uppermost layer 10 is high, there is a problem that the photocatalytic function of the functional layer 20 is not expressed. On the other hand, when the film density of the uppermost layer 10 is lowered, there is a problem that the salt water resistance and scratch resistance of the uppermost layer 10 are lowered.
  • the photocatalytic function of the functional layer 20 is exhibited while maintaining antireflection properties, super hydrophilicity, and scratch resistance. be able to.
  • the optical element 100 has a multilayer film having anti-reflection properties and excellent salt water resistance and scratch resistance, and can exhibit super hydrophilicity and a photocatalytic effect. Or it is used suitably for building materials.
  • Example 1 Conditions for forming the uppermost layer through-hole and evaluation of the optical element Specific examples of the optical element 100 according to this embodiment will be described below.
  • a film forming apparatus BES-1300 (manufactured by Syncron Co., Ltd.) was used, and NIS-175 was used as an IAD ion source.
  • a nine-layer multilayer film was formed on a glass substrate by heating at 370 ° C. by vapor deposition or IAD to prepare a sample. More specifically, as shown in Table 1, on a glass substrate TAFD5G (manufactured by HOYA Co., Ltd .: refractive index 1.835), a low refractive index layer using SiO 2 , OA600 (manufactured by Canon Optron Co., Ltd.). A high refractive index layer using a material and a functional layer using TiO 2 were stacked in the order shown in Table 1 to form a film. As the uppermost layer, SiO 2 , MgF 2 , or L5 (manufactured by Merck Ltd.) was used.
  • Table 1 shows the film formation recipe and film configuration of each layer (the layer in contact with the glass substrate (glass substrate) is the first layer).
  • each film thickness (d (nm)) was made constant, and the film formation rate RATE ( ⁇ / SEC) of each film was also made constant.
  • OA 600 in Table 1 is a mixture of Ta 2 O 5 , TiO and Ti 2 O 5 , and the specific composition thereof is mainly composed of tantalum oxide as shown in Table 2.
  • L5 in Table 1 is a mixture of SiO 2 and Al 2 O 3 , and the specific composition is as shown in Table 3.
  • the refractive index in Table 1 is calculated by depositing each layer of the multilayer film MC as a single layer and performing reflectance measurement by a method used for evaluation of antireflection characteristics described later. Using a thin film calculation software (Essential ⁇ Macleod) (Sigma Koki Co., Ltd.), the refractive index of the film obtained by adjusting the refractive index so as to fit the measured reflectance data is specified.
  • the film formation prescription is as shown in Table 1, but the formation conditions of the through holes in the uppermost layer were changed, and Examples 1 to 11 (Samples 1 to 11) and Comparative Examples 1 to 3 (Samples 12 to 14) Samples were prepared and subjected to the following tests.
  • the film density of the uppermost layer was set to 98% or more in order to provide salt spray resistance.
  • an uppermost layer was not provided and the entire functional layer was exposed.
  • the heating temperature was 370 ° C. and the starting vacuum was 3.00E-03 Pa (3.00 ⁇ 10 ⁇ 3 Pa).
  • API means that the partial pressure is adjusted by an abbreviation of “Auto Pressure Control”
  • SCCM is an abbreviation of “standard cc / min”, which is 1 atm (atmospheric pressure 1013 hPa) and 1 at 0 ° C. This is a unit indicating how many cc per minute.
  • Table 4 below shows the evaluation results of samples 1 to 13 having different formation conditions for the uppermost layer through-holes (including “scrubbing” (scratch resistance evaluation) including sample 14).
  • a sample colored with a pen was irradiated with 20 J in total with UV irradiation in an environment of 20 ° C. and 80%, and the color change of the pen was evaluated stepwise.
  • the visualiser manufactured by inkintelligent
  • the evaluation is indicated with a sign “O”
  • the evaluation was represented by a symbol ⁇ , and the evaluation with a symbol “x” was regarded as having no photocatalytic effect if the color change degree was minimal (or the color did not disappear).
  • the “salt water resistance” was evaluated by performing a salt spray test using a salt dry / wet combined cycle tester (CYP-90) (manufactured by Suga Test Instruments Co., Ltd.). In the test, the following steps (a) to (c) were made one cycle, and eight cycles were performed.
  • B After spraying, the sample is left for 22 hours in an environment of 40 ° C. ⁇ 2 ° C. and 95% RH.
  • Steps (a) and (b) are repeated four times, and then the sample is left for 72 hours in an environment of normal temperature (20 ° C. ⁇ 15 ° C.) and normal humidity (45% RH to 85% RH).
  • the evaluation is a sign ⁇
  • the evaluation is a sign ⁇
  • the reflectance change is In the case of 4% or more, the evaluation was made as x.
  • a contact angle measuring device (G-1) (manufactured by Elma Co., Ltd.) was used to drop 10 ⁇ l of water droplets on the sample, and the contact angle was measured. If the contact angle is 15 ° or less, it can be evaluated as having super hydrophilicity.
  • the reflectance of the sample was evaluated with a maximum reflectance in a wavelength range of 420 nm to 670 nm using a reflectance measuring device (USPM-RUIII) (manufactured by Olympus Corporation).
  • USPM-RUIII reflectance measuring device
  • FIGS. 6A to 6C show SEM images of the optical element. 6B is an enlarged view of the image of FIG. 6A, and FIG. 6C is an enlarged view of the image of FIG. 6B.
  • the metal mask was formed of Ag using a sputtering method.
  • the thickness of the TiO 2 layer was 282.2 nm
  • the thickness of the SiO 2 layer was 87.2 nm
  • the thickness of the Ag layer was 10 nm.
  • the uppermost SiO 2 was dry-etched for 90 seconds. CHF 3 was used as an etching gas.
  • a mask removing step was performed.
  • a deep hole was formed in the uppermost layer by the through hole forming step, and the area of the hole also increased. Further, as in the above-described example, as a result of evaluating the photocatalytic function, the photocatalytic function of this sample was maintained. That is, it can be said that the through-hole reaches the surface of the functional layer, the surface of the functional layer is exposed, and the photocatalytic function is exhibited.
  • the metal mask 50 is formed of Ag or Al, but may be formed of other metals as long as it can form a particulate, island, or porous thin film.
  • the film thicknesses of the uppermost layer 10 and the functional layer 20 are not limited to the ranges of the conditional expressions (1) and (2), but can be appropriately changed according to the optical design such as antireflection.
  • the multilayer film MC may include a metal film or a dielectric multilayer film that reflects one or more of visible light and near-infrared light.
  • the optical element has reflection characteristics.
  • “reflection characteristics” means that the reflectance of light in the visible region or near infrared region is 70% or more, and desirably 85% or more.
  • any one of Ag, Au, Cr, Al, Cu, and Ni is a main component. By using these appropriately, the usable area and the reflectance can be arbitrarily adjusted.
  • “Main component” means that the content of the element is 51% by weight or more, preferably 70% by weight or more, more preferably 90% by weight, and still more preferably 100% by weight.
  • At least one of the high refractive index layers H may be formed of a specific material mainly containing any one of Ti, Ta, Hf, Zr, and Nb.
  • substances that are effective in improving acid resistance include Ti, Ta, Hf, Zr, and Nb oxides.
  • “Main component” means that the content of the element is 51% by weight or more, preferably 70% by weight or more, more preferably 90% by weight, and still more preferably 100% by weight. Since the multilayer film has sufficient acid resistance by using a material mainly composed of Ta, Hf, Zr, and Nb and having an appropriate film thickness, the multilayer film can also be provided on the glass substrate GL that is weak against acid.

Abstract

Provided are a method for producing an optical element capable of achieving both superhydrophilicity and a photocatalytic effect and also having saltwater resistance, and an optical element produced by the method. A method for producing an optical element 100 in which two or more multilayer films MC are formed on a glass substrate GL which is a light-transmitting substrate, the multilayer film MC including at least one low-refractive-index layer L and at least one high-refractive-index layer H, the method comprising: an uppermost layer formation step of forming a low-refractive-index layer L having salt water spray resistance and superhydrophilicity as an uppermost layer 10 farthest from the glass substrate GL; a functional layer formation step of forming a high-refractive-index layer H mainly composed of a metal oxide having a photocatalytic function as a functional layer 20 under the uppermost layer 10; a mask formation step of forming a metal mask 50 on a surface 10a of the uppermost layer 10 after the uppermost layer formation step; and a through hole formation step of forming a plurality of through holes 30 for exposing the surface of the functional layer 20 in the uppermost layer 10 by etching.

Description

光学素子の製造方法及び光学素子Optical element manufacturing method and optical element
 本発明は、多層膜を成膜した光学素子の製造方法及び当該方法で製造した光学素子に関する。 The present invention relates to an optical element manufacturing method in which a multilayer film is formed and an optical element manufactured by the method.
 例えば車両の運転支援のため、車両に車載カメラを搭載することが行われている。より具体的には、車両の後方や側方を撮像するカメラを自動車の車体に搭載し、このカメラによって撮像された映像を運転者が視認可能な位置に表示することによって死角を減らし、これにより安全運転に貢献できる。 For example, in-vehicle cameras are mounted on vehicles for driving support of vehicles. More specifically, a camera that captures the back and sides of the vehicle is mounted on the body of the automobile, and the image captured by the camera is displayed at a position where the driver can visually recognize it. Contributes to safe driving.
 ところで、車載カメラは車外に取り付けられる場合が多く、そのレンズ上に水滴や泥等の汚れがしばしば付着する。レンズに付着した水滴や汚れの度合によっては、カメラで撮像された画像が不鮮明となるおそれがある。そこで、レンズの物体側面に光触媒物質を塗布することで、紫外線の照射により表面に付着した有機物質を洗浄する技術が開発されている。例えば車載カメラに搭載される撮像レンズの物体側面に、光触媒効果を有するTiナノ粒子を塗布することが考えられる。 By the way, in-vehicle cameras are often mounted outside the vehicle, and dirt such as water droplets or mud often adheres on the lens. Depending on the degree of water drops and dirt adhering to the lens, the image captured by the camera may become unclear. In view of this, a technique has been developed in which a photocatalytic substance is applied to the object side surface of a lens to clean organic substances adhering to the surface by ultraviolet irradiation. For example, it is conceivable to apply Ti nanoparticles having a photocatalytic effect on the object side surface of an imaging lens mounted on a vehicle-mounted camera.
 特許文献1では、光触媒性粒子の光触媒性能を損なうことなく、セルフクリーニング性を有する反射率を低減した膜を形成した反射防止性を有する反射防止物品が開示されている。特許文献1の反射防止物品は、透明基材の一方の面に、樹脂からなる微細凹凸層と、SiOからなる無機層と、TiOからなる光触媒層とを備え、光触媒層の表面が微細凹凸を有している。 Patent Document 1 discloses an antireflection article having antireflection properties in which a film having reduced reflectance and having self-cleaning properties is formed without impairing the photocatalytic performance of the photocatalytic particles. The antireflection article of Patent Document 1 includes a fine uneven layer made of resin, an inorganic layer made of SiO 2 , and a photocatalyst layer made of TiO 2 on one surface of a transparent substrate, and the surface of the photocatalyst layer is fine. It has irregularities.
 ところで、車載カメラに搭載される撮像レンズ等においては、過酷な環境下で使用されるため、十分な耐環境性能が要求される。より具体的には、車両の走行に伴う衝撃や風圧、走行により跳ね上げられた砂塵により、露出した撮像レンズの光学面が傷損や浸食を受ける可能性がある。さらには、潮風に含まれる塩水、酸性雨、洗車等の際に使用される洗剤やワックス等の薬剤等により表面劣化や変質を生ずるおそれがある。 By the way, since an imaging lens or the like mounted on a vehicle-mounted camera is used in a harsh environment, sufficient environmental resistance is required. More specifically, there is a possibility that the exposed optical surface of the imaging lens may be damaged or eroded by impacts, wind pressure, and sand dust splashed by traveling. Furthermore, there is a risk of surface deterioration or alteration due to chemicals such as detergents and waxes used in salt water, acid rain, car washing, etc. contained in the sea breeze.
 しかしながら、特許文献1の反射防止物品では、上述のように車載カメラ用のレンズにおいて要求されている光触媒効果、塩水耐性、親水性、低反射特性、及び耐傷性の機能をすべて達成するものとなっていない。具体的には、特許文献1の反射防止物品では、TiO層が一番上に設けられており、光触媒効果を有し、このTiO層をモスアイ構造とすることで反射率を低下させているものの、耐塩水性や親水性が弱いものとなっている。また、特許文献1の反射防止物品は、擦りによってその構造が崩れるおそれがあり、耐傷性も低い。 However, the antireflective article of Patent Document 1 achieves all of the photocatalytic effect, saltwater resistance, hydrophilicity, low reflection characteristics, and scratch resistance functions required for a lens for an in-vehicle camera as described above. Not. Specifically, in the antireflective article of Patent Document 1, the TiO 2 layer is provided on the top and has a photocatalytic effect. The TiO 2 layer has a moth-eye structure to reduce the reflectance. However, salt water resistance and hydrophilicity are weak. Further, the antireflection article of Patent Document 1 may be broken in structure by rubbing and has low scratch resistance.
特開2014-71323号公報JP 2014-71323 A
 本発明は、超親水性及び光触媒効果を両立でき、かつ塩水耐性も有する光学素子の製造方法及び当該方法で製造された光学素子を提供することを目的とする。 An object of the present invention is to provide a method for producing an optical element that can achieve both superhydrophilicity and a photocatalytic effect and also has saltwater resistance, and an optical element produced by the method.
 上述した目的のうち少なくとも一つを実現するために、本発明の一側面を反映した光学素子の製造方法は、光透過性を有する基板に2層以上の多層膜を成膜した光学素子の製造方法であって、多層膜は、少なくとも1層の低屈折率層と、少なくとも1層の高屈折率層とを有し、基板から最も遠い最上層として塩水噴霧耐性と超親水性とを有する低屈折率層を形成する最上層形成工程と、最上層の下に、機能層として光触媒機能を有する金属酸化物を主成分とする高屈折率層を形成する機能層形成工程と、最上層形成工程後、最上層の表面に金属マスクを成膜するマスク形成工程と、最上層において機能層の表面を露出させる複数の通孔をエッチングによって形成する通孔形成工程と、を備える。ここで、低屈折率層とは、屈折率が1.7以下である層を意味する。高屈折率層とは、屈折率が1.9以上である層を意味する。また、塩水噴霧耐性を有するとは、後述する塩水噴霧試験後、膜厚減少値が20nm以下であることを意味する。また、超親水性を有するとは、光学素子上の水滴10μlの接触角が15°以下になることを意味する。なお、上記において、説明の都合上、最上層形成工程、機能層形成工程の順に記載しているが、実際には、機能層形成工程の後に最上層形成工程が行われる。 In order to achieve at least one of the objects described above, an optical element manufacturing method reflecting one aspect of the present invention is an optical element manufacturing method in which two or more multilayer films are formed on a light-transmitting substrate. The multilayer film has at least one low-refractive index layer and at least one high-refractive index layer, and has low salt spray resistance and super hydrophilicity as the uppermost layer farthest from the substrate. The uppermost layer forming step for forming the refractive index layer, the functional layer forming step for forming a high refractive index layer mainly composed of a metal oxide having a photocatalytic function as a functional layer under the uppermost layer, and the uppermost layer forming step Thereafter, a mask forming step of forming a metal mask on the surface of the uppermost layer and a through hole forming step of forming a plurality of through holes that expose the surface of the functional layer in the uppermost layer by etching are provided. Here, the low refractive index layer means a layer having a refractive index of 1.7 or less. The high refractive index layer means a layer having a refractive index of 1.9 or more. Moreover, having salt water tolerance means that the film thickness reduction value is 20 nm or less after the salt water spray test described later. Also, having super hydrophilicity means that the contact angle of 10 μl of water droplets on the optical element is 15 ° or less. In the above, for convenience of explanation, the uppermost layer forming step and the functional layer forming step are described in this order, but actually, the uppermost layer forming step is performed after the functional layer forming step.
 上述した目的のうち少なくとも一つを実現するために、本発明の一側面を反映した光学素子は、上述の光学素子の製造方法で製造され、最上層に島状通孔構造を有する。 In order to realize at least one of the above objects, an optical element reflecting one aspect of the present invention is manufactured by the above-described optical element manufacturing method, and has an island-shaped through hole structure in the uppermost layer.
本実施形態にかかる光学素子の断面を模式的に示す図である。It is a figure which shows typically the cross section of the optical element concerning this embodiment. 図2Aは、粒子状の金属マスクを形成して作製した光学素子の断面を模式的に示す図であり、図2Bは、島状の金属マスクを形成して作製した光学素子の断面を模式的に示す図であり、図2Cは、図2Bの最上層の表面のSEM画像であり、図2Dは、ポーラス状の金属マスクを形成して作製した光学素子の断面を模式的に示す図である。FIG. 2A is a diagram schematically showing a cross section of an optical element manufactured by forming a particulate metal mask, and FIG. 2B is a schematic cross section of an optical element manufactured by forming an island metal mask. 2C is a SEM image of the surface of the uppermost layer in FIG. 2B, and FIG. 2D is a diagram schematically showing a cross section of an optical element formed by forming a porous metal mask. . 光学素子の製造方法を説明する図である。It is a figure explaining the manufacturing method of an optical element. 図4A~4Cは、光学素子の製造方法のうち粒子状の金属マスクを形成して通孔を形成する工程を説明する概念図であり、図4Dは、島状の金属マスクを形成した例を説明する概念図であり、図4Eは、ポーラス状の金属マスクを形成した例を説明する概念図である。4A to 4C are conceptual diagrams for explaining a process of forming a through-hole by forming a particulate metal mask in an optical element manufacturing method, and FIG. 4D is an example in which an island-shaped metal mask is formed. FIG. 4E is a conceptual diagram illustrating an example in which a porous metal mask is formed. 図5Aは、粒子状の金属マスクを形成した試料のSEM画像であり、図5Bは、図5Aの試料をエッチングして通孔を形成した状態を示すSEM画像であり、図5Cは、島状の金属マスクを形成した試料のSEM画像であり、図5Dは、ポーラス状の金属マスクを形成した試料のSEM画像である。FIG. 5A is an SEM image of a sample on which a particulate metal mask is formed, FIG. 5B is an SEM image showing a state where through holes are formed by etching the sample of FIG. 5A, and FIG. 5C is an island shape FIG. 5D is an SEM image of a sample on which a porous metal mask is formed. 図6A~6Cは、最上層が島状に加工された光学素子のSEM画像を段階的に拡大した図である。6A to 6C are views in which the SEM images of the optical element whose uppermost layer is processed into an island shape are enlarged step by step.
 以下、本発明の実施形態を、図面を参照して説明する。図1は、本実施形態にかかる光学素子の断面を模式的に示す図である。図1に示す光学素子100は、光透過性を有する基板であるガラス基材(ガラス基板)GL上に低屈折率層Lと高屈折率層Hとが交互に積層された構造の多層膜MCを有するものである。低屈折率層Lとは、屈折率が1.7以下である層を意味する。高屈折率層Hとは、屈折率が1.9以上である層を意味する。ガラス基材GLは、平板に限らず、レンズを含むものとすることができる。ただし、ガラス基材GLに高屈折率層Hが接していてもよい。このような光学素子100は、車載用レンズや通信用レンズとして用いることができる。また、図1において、ガラス基材GLと機能層20との間に位置する層を、高屈折率層や低屈折率層の代わりに、中間屈折率層の等価膜として置換してもよい。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram schematically showing a cross section of an optical element according to the present embodiment. An optical element 100 shown in FIG. 1 is a multilayer film MC having a structure in which low refractive index layers L and high refractive index layers H are alternately laminated on a glass substrate (glass substrate) GL which is a substrate having light transmittance. It is what has. The low refractive index layer L means a layer having a refractive index of 1.7 or less. The high refractive index layer H means a layer having a refractive index of 1.9 or more. The glass substrate GL is not limited to a flat plate and may include a lens. However, the high refractive index layer H may be in contact with the glass substrate GL. Such an optical element 100 can be used as an in-vehicle lens or a communication lens. In FIG. 1, the layer located between the glass substrate GL and the functional layer 20 may be replaced with an equivalent film of an intermediate refractive index layer instead of a high refractive index layer or a low refractive index layer.
 図1において、ガラス基材GLから最も遠い最上層10が低屈折率層Lであり、最上層10の下に設けられた高屈折率層H、本実施形態の場合、最上層10に隣接した高屈折率層Hが光触媒機能を有する金属酸化物の機能層20である。比較的強度が高い低屈折率層Lを最上層10とすることで、耐傷性を向上できる。また、機能層20は、最上層10を通じて又は介してUV光で励起した活性酸素を用いて光触媒機能を発揮するため、最上層10にできるだけ近い位置に置くことが好ましい。最上層10に隣接して機能層20を設けることで、例えば光触媒機能を有効に発揮できる。また、機能層20として、光触媒効果、光活性効果を持つ金属酸化物を用いることで、表面有機物を除去し最上層10の超親水性を維持できる。機能層20には、例えば、TiO等を用いる。TiOを用いた機能層20は、IAD(イオンアシストデポジション(Ion Assisted Deposition)(以下、IADという))を用いて成膜すると光触媒効果が高まる。 In FIG. 1, the uppermost layer 10 farthest from the glass substrate GL is a low refractive index layer L, and a high refractive index layer H provided below the uppermost layer 10, which is adjacent to the uppermost layer 10 in this embodiment. The high refractive index layer H is a metal oxide functional layer 20 having a photocatalytic function. By using the low refractive index layer L having a relatively high strength as the uppermost layer 10, scratch resistance can be improved. Moreover, since the functional layer 20 exhibits a photocatalytic function using active oxygen excited by UV light through or through the uppermost layer 10, the functional layer 20 is preferably placed as close as possible to the uppermost layer 10. By providing the functional layer 20 adjacent to the uppermost layer 10, for example, a photocatalytic function can be effectively exhibited. In addition, by using a metal oxide having a photocatalytic effect and a photoactive effect as the functional layer 20, surface organic substances can be removed and the super hydrophilicity of the uppermost layer 10 can be maintained. For the functional layer 20, for example, TiO 2 or the like is used. When the functional layer 20 using TiO 2 is formed using IAD (Ion Assisted Deposition (hereinafter referred to as IAD)), the photocatalytic effect is enhanced.
 「光触媒機能」とは、太陽光や人工光が入射することにより強力な酸化力が生じ、接触してくる有機化合物や細菌等の有害物質を有効に除去することや、親水作用により、水滴が表面にとどまることを防ぎ、また、油性等の汚れが定着せずに水等で洗浄されること等のセルフクリーニング機能をいい、例えば二酸化チタンが持つ機能である。なお、「最上層に隣接する」とは、最上層10と機能層20とが密着している場合の他、最上層10と機能層20との間に、その機能の発現を妨げないとみなせる層(例えば20nm以下の層)を設ける場合も含む。 “Photocatalytic function” refers to the strong oxidizing power generated by the incidence of sunlight or artificial light, which effectively removes toxic substances such as organic compounds and bacteria that come in contact, It refers to a self-cleaning function such as preventing the oil from staying on the surface and washing with water or the like without fixing oily stains, such as titanium dioxide. Note that “adjacent to the uppermost layer” means that the function is not hindered between the uppermost layer 10 and the functional layer 20 in addition to the case where the uppermost layer 10 and the functional layer 20 are in close contact with each other. This includes the case where a layer (for example, a layer of 20 nm or less) is provided.
 図2A~2Dに示すように、最上層10の低屈折率層Lは、隣接する高屈折率層Hとなる機能層20に光触媒機能を発現させるための複数の通孔30を有している。詳細は後述するが、通孔30は、ドライエッチングで形成される。最上層10の低屈折率層Lの表面積に対する複数の通孔30の横断面の総面積(光学素子100を上から見たときの通孔30の総面積)の割合(以下、通孔密度又は膜抜け落ち率という)は、例えば後述する島状の金属マスク50を用いて通孔30を形成した場合、膜抜け落ち率は50%程度となる。また、通孔30の横断面は、ランダムな形状を有している。 As shown in FIGS. 2A to 2D, the low refractive index layer L of the uppermost layer 10 has a plurality of through holes 30 for causing the functional layer 20 to be the adjacent high refractive index layer H to exhibit a photocatalytic function. . Although details will be described later, the through hole 30 is formed by dry etching. The ratio of the total cross-sectional area of the plurality of through holes 30 to the surface area of the low refractive index layer L of the uppermost layer 10 (the total area of the through holes 30 when the optical element 100 is viewed from above) (hereinafter referred to as the through hole density or For example, when the through hole 30 is formed using an island-shaped metal mask 50 described later, the film drop-off rate is about 50%. Moreover, the cross section of the through-hole 30 has a random shape.
 また、本実施形態の光学素子100は望ましくは以下の条件式を満たす。
 10nm≦TL≦350nm … (1)
 50nm≦Tcat≦700nm … (2)
ここで、
TL:最上層10の膜厚
Tcat:最上層10に隣接した高屈折率層H又は機能層20の膜厚
In addition, the optical element 100 of the present embodiment desirably satisfies the following conditional expression.
10 nm ≦ TL ≦ 350 nm (1)
50 nm ≦ Tcat ≦ 700 nm (2)
here,
TL: film thickness of uppermost layer 10 Tcat: film thickness of high refractive index layer H or functional layer 20 adjacent to uppermost layer 10
 条件式(1)の値が上限以下であると、最上層10に設けた複数の通孔30を通じてUV光で励起した活性酸素をやり取りすることにより光触媒効果を発揮できる。一方、条件式(1)の値が下限以上であると、最上層10の超親水機能を保持しやすく、かつ強固な最上膜を形成できるため十分な耐傷性を確保できる。なお、光学素子100は、以下の式を満たすことが好ましい。
 50nm≦TL≦250nm … (1’)
When the value of conditional expression (1) is not more than the upper limit, the photocatalytic effect can be exhibited by exchanging active oxygen excited by UV light through the plurality of through holes 30 provided in the uppermost layer 10. On the other hand, if the value of conditional expression (1) is equal to or greater than the lower limit, the superhydrophilic function of the uppermost layer 10 can be easily maintained and a strong uppermost film can be formed, so that sufficient scratch resistance can be secured. The optical element 100 preferably satisfies the following formula.
50 nm ≦ TL ≦ 250 nm (1 ′)
 条件式(1’)の範囲であれば、反射率を2%以内に抑えやすい。また、条件式(1’)の値が上限以下であると、機能層20の光触媒機能を機能層20の最表面に発現しやすくなる。 If within the range of conditional expression (1 '), it is easy to keep the reflectance within 2%. Further, when the value of the conditional expression (1 ′) is less than or equal to the upper limit, the photocatalytic function of the functional layer 20 is easily expressed on the outermost surface of the functional layer 20.
 条件式(2)の値が下限以上であると、機能層20の膜厚を確保できるため十分な光触媒効果を期待できる。一方、機能層20の厚さが増大すればするほど光触媒効果を期待できるが、その代わり多層膜に要求される所望の分光特性を得にくくなるため、条件式(2)の値は上限以下とすることが望ましい。なお、光学素子100は、以下の式を満たすことが好ましい。
 50nm≦Tcat≦600nm … (2’)
When the value of conditional expression (2) is equal to or greater than the lower limit, the film thickness of the functional layer 20 can be ensured, so that a sufficient photocatalytic effect can be expected. On the other hand, as the thickness of the functional layer 20 increases, the photocatalytic effect can be expected. However, since it becomes difficult to obtain desired spectral characteristics required for the multilayer film, the value of the conditional expression (2) is less than the upper limit. It is desirable to do. The optical element 100 preferably satisfies the following formula.
50 nm ≦ Tcat ≦ 600 nm (2 ′)
 最上層10に隣接した高屈折率層H又は機能層20は、Tiを主成分とする酸化物(例えばTiO)から形成されている。TiO等のTi酸化物は光触媒効果が非常に高いものとなっている。特に、アナターゼ型のTiOは、光触媒効果が高いため機能層20の材料として望ましい。 The high refractive index layer H or the functional layer 20 adjacent to the uppermost layer 10 is formed of an oxide (for example, TiO 2 ) whose main component is Ti. Ti oxides such as TiO 2 have a very high photocatalytic effect. In particular, anatase TiO 2 is desirable as a material for the functional layer 20 because of its high photocatalytic effect.
 最上層10は塩水噴霧耐性及び超親水性を有する層であり、例えば主にSiOから形成されている。塩水噴霧耐性を有するとは、後述する塩水噴霧試験後、膜厚減少値が20nm以下であることを意味する。また、超親水性を有するとは、光学素子100上の水滴10μlの接触角が15°以下になることを意味する。なお、最上層10において、SiOは90%以上含有されていることが好ましい。夜間や屋外等ではUV光が入射しにくく、Tiを主成分とする酸化物では親水効果が低下するが、かかる場合でも最上層10をSiOから形成することで超親水効果を発揮でき、また、耐傷性もより高められる。最上層10にSiOを用いる場合、成膜後に500℃で2時間の加熱処理を施すことで、耐傷性が向上する。 The uppermost layer 10 is a layer having salt spray resistance and super hydrophilicity, and is mainly formed of, for example, SiO 2 . Having salt spray resistance means that the film thickness reduction value is 20 nm or less after the salt spray test described below. Moreover, having super hydrophilicity means that the contact angle of 10 μl of water droplets on the optical element 100 is 15 ° or less. The uppermost layer 10 preferably contains 90% or more of SiO 2 . UV light is hard to be incident at night or outdoors, and the hydrophilic effect is reduced with an oxide mainly composed of Ti, but even in such a case, the superhydrophilic effect can be exhibited by forming the top layer 10 from SiO 2. In addition, the scratch resistance is further improved. When SiO 2 is used for the uppermost layer 10, scratch resistance is improved by performing a heat treatment at 500 ° C. for 2 hours after film formation.
 なお、最上層10はSiOとAlとの混合物(ただし、SiOの組成比が90重量%以上)から形成されてもよい。これにより夜間や屋外等でも親水効果を発揮でき、また、SiOとAlとの混合物とすることで耐傷性もより高められる。最上層10にSiOとAlとの混合物を用いる場合、成膜後に200℃以上で2時間の加熱処理を施すことで、耐傷性が向上する。なお、最上層10の一部又は全部を成膜する際にIAD法を用いると好ましい。これにより、耐傷性が向上する。 The uppermost layer 10 may be formed of a mixture of SiO 2 and Al 2 O 3 (however, the composition ratio of SiO 2 is 90% by weight or more). Thereby, a hydrophilic effect can be exhibited even at night or outdoors, and scratch resistance is further enhanced by using a mixture of SiO 2 and Al 2 O 3 . When a mixture of SiO 2 and Al 2 O 3 is used for the uppermost layer 10, scratch resistance is improved by performing a heat treatment at 200 ° C. or higher for 2 hours after film formation. It is preferable to use the IAD method when a part or all of the uppermost layer 10 is formed. Thereby, the scratch resistance is improved.
 多層膜MCの各層は蒸着法で成膜されており、各層のうちいずれかの層はIAD法で成膜されていると好ましい。IAD法による成膜で耐傷性をより向上できる。 Each layer of the multilayer film MC is formed by an evaporation method, and any one of the layers is preferably formed by an IAD method. Scratch resistance can be further improved by film formation by the IAD method.
 特に、最上層10は、IAD法、化学気相成長(CVD)法、スパッター法等で成膜される。 In particular, the uppermost layer 10 is formed by an IAD method, a chemical vapor deposition (CVD) method, a sputtering method, or the like.
 最上層10である低屈折率層Lの膜密度は、98%以上となっている。ここで、膜密度は、空間充填密度を意味する。最上層10の低屈折率層Lの膜密度を98%以上とすることで、塩水に対する耐性(つまり、塩水噴霧耐性)をより向上させることができる。 The film density of the low refractive index layer L which is the uppermost layer 10 is 98% or more. Here, the film density means the space filling density. By setting the film density of the low refractive index layer L of the uppermost layer 10 to 98% or more, resistance to salt water (that is, salt spray resistance) can be further improved.
 光学素子100は以下の条件式を満たすと好ましい。
 1.35≦NL≦1.55 … (3)
ここで、
NL:低屈折率層Lの材料のd線での屈折率
The optical element 100 preferably satisfies the following conditional expression.
1.35 ≦ NL ≦ 1.55 (3)
here,
NL: Refractive index at the d-line of the material of the low refractive index layer L
 条件式(3)を満たすことで、所望の光学特性を有する光学素子100を得ることができる。ここで、d線とは波長587.56nmの波長の光をいう。低屈折率層Lの素材として、d線での屈折率が1.48であるSiOや、d線での屈折率が1.385であるMgFを用いることができる。 By satisfying conditional expression (3), an optical element 100 having desired optical characteristics can be obtained. Here, the d line means light having a wavelength of 587.56 nm. As a material for the low refractive index layer L, SiO 2 having a refractive index of 1.48 at d-line or MgF 2 having a refractive index of 1.385 at d-line can be used.
 光学素子100は以下の条件式を満たすと好ましい。
 1.6≦Ns≦2.2 … (4)
ここで、
Ns:ガラス基材GLのd線での屈折率
The optical element 100 preferably satisfies the following conditional expression.
1.6 ≦ Ns ≦ 2.2 (4)
here,
Ns: Refractive index at d line of glass substrate GL
 光学設計上、ガラス基材GLのd線での屈折率として条件式(4)を満たすことで、コンパクトな構成とした上で光学素子100の光学性能を高めることができる。条件式(4)を満たすガラス基材GLに本実施形態の多層膜MCを成膜することで、外界に対して露出するレンズ等に用いることができ、優れた耐環境性能と光学性能とを両立することができる。 In optical design, by satisfying conditional expression (4) as the refractive index at the d-line of the glass substrate GL, the optical performance of the optical element 100 can be enhanced after having a compact configuration. By forming the multilayer film MC of the present embodiment on the glass substrate GL satisfying the conditional expression (4), it can be used for a lens exposed to the outside world, and has excellent environmental resistance and optical performance. It can be compatible.
 以下、図3等を参照しつつ、光学素子100の製造方法について説明する。まず、ガラス基材(ガラス基板)GL上に多層膜MCとしての低屈折率層Lと高屈折率層Hとを交互に積層する(多層膜形成工程:ステップS11)。ただし、ステップS11においては、多層膜MCのうち最上層10と機能層20とを除いた層を形成する。つまり、機能層20の下側に隣接する低屈折率層Lまで形成する。多層膜MCは、各種の蒸着法、IAD法、スパッター法等を用いて形成する。なお、光学素子100の構成に応じて、ステップS11での多層膜MCの形成を省略してもよい。 Hereinafter, a method for manufacturing the optical element 100 will be described with reference to FIG. First, the low refractive index layer L and the high refractive index layer H as the multilayer film MC are alternately laminated on the glass substrate (glass substrate) GL (multilayer film forming step: step S11). However, in step S11, a layer excluding the uppermost layer 10 and the functional layer 20 is formed in the multilayer film MC. That is, the layers up to the low refractive index layer L adjacent to the lower side of the functional layer 20 are formed. The multilayer film MC is formed using various vapor deposition methods, IAD methods, sputtering methods, and the like. Depending on the configuration of the optical element 100, the formation of the multilayer film MC in step S11 may be omitted.
 次に、ステップS11で形成した多層膜上に、機能層20となる高屈折率層Hを形成する(機能層形成工程:ステップS12)。機能層20としての高屈折率層Hは、各種の蒸着法、IAD法、スパッター法等を用いて形成する。機能層20としての高屈折率層Hは、光触媒機能を有する金属酸化物を主成分とする材料(具体的には、TiO等のTiを主成分とする酸化物)で形成する。光触媒効果が強いアナターゼ型のTiOを得る場合、IAD法又はスパッター法を用いて、200℃以上の温度で成膜することが望ましい。 Next, the high refractive index layer H to be the functional layer 20 is formed on the multilayer film formed in step S11 (functional layer forming step: step S12). The high refractive index layer H as the functional layer 20 is formed using various vapor deposition methods, IAD methods, sputtering methods, and the like. The high refractive index layer H as the functional layer 20 is formed of a material mainly containing a metal oxide having a photocatalytic function (specifically, an oxide mainly containing Ti such as TiO 2 ). When obtaining anatase-type TiO 2 having a strong photocatalytic effect, it is desirable to form a film at a temperature of 200 ° C. or higher by using an IAD method or a sputtering method.
 次に、機能層20上に最上層10となる低屈折率層Lを形成する(最上層形成工程:ステップS13)。最上層10としての低屈折率層Lは、IAD法、CVD法、スパッター法のいずれかを用いて形成する。最上層10としての低屈折率層Lは、SiOや、SiOとAlとの混合物等で形成する。塩水噴霧耐性を強化するため、機能層20は、膜密度が98%以上となる条件で形成される。膜密度98%以上の最上層10を得るために、IAD法又はスパッター法を用いて、200℃以上の温度で成膜することが望ましい。以上により、ガラス基材GL上に多層膜MCを形成した中間体(最上層10に通孔30が形成されていないもの)40が形成される。 Next, the low refractive index layer L to be the uppermost layer 10 is formed on the functional layer 20 (uppermost layer forming step: step S13). The low refractive index layer L as the uppermost layer 10 is formed using any one of the IAD method, the CVD method, and the sputtering method. The low refractive index layer L as the uppermost layer 10 is formed of SiO 2 or a mixture of SiO 2 and Al 2 O 3 . In order to enhance the salt spray resistance, the functional layer 20 is formed under the condition that the film density is 98% or more. In order to obtain the uppermost layer 10 having a film density of 98% or more, it is desirable to form a film at a temperature of 200 ° C. or more by using an IAD method or a sputtering method. By the above, the intermediate body 40 (the thing in which the through-hole 30 is not formed in the uppermost layer 10) which formed multilayer film MC on the glass base material GL is formed.
 最上層形成工程後、最上層10の表面10aに金属マスク50を成膜する(マスク形成工程:ステップS14)。図4A及び図5Aに示すように、金属マスク50は、最上層10の表面10aに粒子状に形成される。これにより、最上層10にナノサイズの金属マスク50を形成することができる。なお、図4D及び図5Cに示すように、金属マスク50を島状に形成してもよい。また、図4E及び図5Dに示すように、金属マスク50をポーラス状に形成してもよい。金属マスク50は、金属部50aと、露出部50bとで構成される。金属マスク50の膜厚は、1nm以上30nm以下となっている。成膜条件にもよるが、例えば蒸着法を用いて膜厚を2nmとなるように金属マスク50を成膜すると、金属マスク50は粒子状になりやすい。また、例えば蒸着法を用いて膜厚を12nm~15nmとなるように金属マスク50を成膜すると、金属マスク50は島状になりやすい。さらに、例えばスパッター法を用いて膜厚を10nmとなるように成膜すると、金属マスク50はポーラス状になりやすい。金属を上記範囲の厚さに薄く成膜することで、粒子状、島状、又はポーラス状の最適な金属マスク50を容易に形成することができる。金属マスク50は、例えばAgやAl等で形成される。 After the uppermost layer forming step, a metal mask 50 is formed on the surface 10a of the uppermost layer 10 (mask forming step: step S14). As shown in FIGS. 4A and 5A, the metal mask 50 is formed in a particle shape on the surface 10 a of the uppermost layer 10. Thereby, a nano-sized metal mask 50 can be formed on the uppermost layer 10. As shown in FIGS. 4D and 5C, the metal mask 50 may be formed in an island shape. Further, as shown in FIGS. 4E and 5D, the metal mask 50 may be formed in a porous shape. The metal mask 50 includes a metal part 50a and an exposed part 50b. The film thickness of the metal mask 50 is 1 nm or more and 30 nm or less. Although it depends on the film forming conditions, for example, when the metal mask 50 is formed so as to have a film thickness of 2 nm by using an evaporation method, the metal mask 50 is likely to be in the form of particles. Further, when the metal mask 50 is formed to have a film thickness of 12 nm to 15 nm by using, for example, a vapor deposition method, the metal mask 50 tends to have an island shape. Furthermore, if the film thickness is 10 nm using, for example, a sputtering method, the metal mask 50 tends to be porous. By forming the metal thinly in the above-mentioned range, the optimum metal mask 50 in the form of particles, islands, or porous can be easily formed. The metal mask 50 is made of, for example, Ag or Al.
 次に、最上層10の低屈折率層Lに複数の通孔30を形成する(通孔形成工程:ステップS15)。図4B及び図5Bに示すように、エッチングには、不図示のエッチング装置を用いたドライエッチングを用いる。また、上述の多層膜MCの成膜や金属マスク50の成膜に用いた成膜装置を用いてもよい。通孔形成工程において、最上層10の材料、具体的にはSiOと反応するガスを用いて複数の通孔を形成する。この場合、金属マスク50に損傷を与えず、最上層10のSiOを削ることができる。エッチングガスとしては、例えばCHF、CF、SF等を用いる。これにより、最上層10において機能層20の表面を露出させる複数の通孔30が形成される。つまり、金属マスク50の露出部50bに対応する最上層10がエッチングされて通孔30が形成され、部分的に機能層20の表面が露出した状態となる。 Next, a plurality of through holes 30 are formed in the low refractive index layer L of the uppermost layer 10 (through hole forming step: step S15). As shown in FIGS. 4B and 5B, dry etching using an etching apparatus (not shown) is used for etching. Alternatively, a film forming apparatus used for forming the multilayer film MC or the metal mask 50 may be used. In the through hole forming step, a plurality of through holes are formed using the material of the uppermost layer 10, specifically, a gas that reacts with SiO 2 . In this case, SiO 2 of the uppermost layer 10 can be removed without damaging the metal mask 50. As the etching gas, for example, CHF 3 , CF 4 , SF 6 or the like is used. As a result, a plurality of through holes 30 exposing the surface of the functional layer 20 in the uppermost layer 10 are formed. That is, the uppermost layer 10 corresponding to the exposed portion 50b of the metal mask 50 is etched to form the through holes 30, and the surface of the functional layer 20 is partially exposed.
 通孔形成工程後、図4Cに示すように、金属マスク50を除去する(マスク除去工程:ステップS16)。具体的には、金属マスク50は、酢酸等を用いたウェットエッチングによって除去される。また、金属マスク50は、例えばArやOをエッチングガスとして用いたドライエッチングによって除去してもよい。金属マスク50のエッチングをドライエッチングを用いて行えば、多層膜MCの形成から金属マスク50のエッチングまでの一連の工程を同じ成膜装置内で行うことができる。 After the through hole forming process, as shown in FIG. 4C, the metal mask 50 is removed (mask removing process: step S16). Specifically, the metal mask 50 is removed by wet etching using acetic acid or the like. Further, the metal mask 50 may be removed by dry etching using Ar or O 2 as an etching gas, for example. If the etching of the metal mask 50 is performed using dry etching, a series of steps from the formation of the multilayer film MC to the etching of the metal mask 50 can be performed in the same film forming apparatus.
 以上の工程により、最上層10に複数の通孔30を有する光学素子100を得ることができる。 Through the above steps, the optical element 100 having the plurality of through holes 30 in the uppermost layer 10 can be obtained.
 上記光学素子の製造方法によれば、最上層10を成膜後、機能層20に光触媒機能を発現させるための複数の通孔30を形成することにより、超親水性と光触媒機能とを両立させることができる。通孔30は、機能層20に光触媒機能を発現させる程度の大きさであり、ユーザーに視認されることがなく、かつ塩水に対する耐性も有する。 According to the method for manufacturing an optical element described above, after forming the uppermost layer 10, by forming the plurality of through holes 30 for expressing the photocatalytic function in the functional layer 20, both super hydrophilicity and the photocatalytic function are achieved. be able to. The through hole 30 is of a size that allows the functional layer 20 to exhibit a photocatalytic function, is not visually recognized by the user, and has resistance to salt water.
 機能層20は光触媒機能を発現するが、高屈折率層Hであるため、光学素子100の反射防止特性を維持するためには、機能層20の上に低屈折率層Lである最上層10を設ける必要がある。そのため、最上層10の密度が高い場合、機能層20の光触媒機能が発現されなくなるという問題がある。一方、最上層10の膜密度を低くすると、最上層10の耐塩水性や耐傷性が低くなるという問題がある。本実施形態にかかる光学素子100のように、最上層10に複数の通孔30を設けることにより、反射防止特性、超親水性、及び耐傷性を保ちつつ、機能層20の光触媒機能を発現させることができる。 Although the functional layer 20 exhibits a photocatalytic function, since it is the high refractive index layer H, in order to maintain the antireflection characteristics of the optical element 100, the uppermost layer 10 that is the low refractive index layer L on the functional layer 20. It is necessary to provide. Therefore, when the density of the uppermost layer 10 is high, there is a problem that the photocatalytic function of the functional layer 20 is not expressed. On the other hand, when the film density of the uppermost layer 10 is lowered, there is a problem that the salt water resistance and scratch resistance of the uppermost layer 10 are lowered. Like the optical element 100 according to the present embodiment, by providing a plurality of through holes 30 in the uppermost layer 10, the photocatalytic function of the functional layer 20 is exhibited while maintaining antireflection properties, super hydrophilicity, and scratch resistance. be able to.
 このように、光学素子100は、反射防止特性を有する耐塩水性及び対傷性に優れた多層膜を有し、超親水性及び光触媒効果を発揮することができ、車載用レンズや通信用レンズ、或いは建材に好適に用いられる。 As described above, the optical element 100 has a multilayer film having anti-reflection properties and excellent salt water resistance and scratch resistance, and can exhibit super hydrophilicity and a photocatalytic effect. Or it is used suitably for building materials.
(実施例)
(1)最上層の通孔の形成条件と光学素子の評価
 以下、本実施形態に係る光学素子100の具体的な実施例について説明する。以下の実施例及び比較例の多層膜を形成するうえで、成膜装置(BES-1300)(株式会社シンクロン製)を用い、IADのイオン源としてNIS-175を用いた。
(Example)
(1) Conditions for forming the uppermost layer through-hole and evaluation of the optical element Specific examples of the optical element 100 according to this embodiment will be described below. In forming the multilayer films of the following examples and comparative examples, a film forming apparatus (BES-1300) (manufactured by Syncron Co., Ltd.) was used, and NIS-175 was used as an IAD ion source.
 ガラス基材上に、蒸着法又はIAD法にて9層の多層膜を370℃加熱で形成して試料を作製した。より具体的には、表1に示すように、ガラス基材TAFD5G(HOYA株式会社製:屈折率1.835)上に、SiOを用いた低屈折率層、OA600(キヤノンオプトロン株式会社製の素材)を用いた高屈折率層、TiOを用いた機能層を表1に示す順序で積層して成膜した。最上層としてはSiO、MgF、又はL5(メルク株式会社製)を用いた。表1に、各層の成膜処方及び膜構成(ガラス基材(ガラス基板)に接する層を1層目とする)を示す。ここでは各膜厚(d(nm))を一定とし、各膜の成膜速度RATE(Å/SEC)も一定とした。 A nine-layer multilayer film was formed on a glass substrate by heating at 370 ° C. by vapor deposition or IAD to prepare a sample. More specifically, as shown in Table 1, on a glass substrate TAFD5G (manufactured by HOYA Co., Ltd .: refractive index 1.835), a low refractive index layer using SiO 2 , OA600 (manufactured by Canon Optron Co., Ltd.). A high refractive index layer using a material and a functional layer using TiO 2 were stacked in the order shown in Table 1 to form a film. As the uppermost layer, SiO 2 , MgF 2 , or L5 (manufactured by Merck Ltd.) was used. Table 1 shows the film formation recipe and film configuration of each layer (the layer in contact with the glass substrate (glass substrate) is the first layer). Here, each film thickness (d (nm)) was made constant, and the film formation rate RATE (Å / SEC) of each film was also made constant.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1中のOA600は、Ta、TiO、Tiの混合物であり、その具体的な組成は表2に示す通り、酸化タンタルを主成分とする。
Figure JPOXMLDOC01-appb-T000002
OA 600 in Table 1 is a mixture of Ta 2 O 5 , TiO and Ti 2 O 5 , and the specific composition thereof is mainly composed of tantalum oxide as shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
 表1中のL5は、SiO、Alの混合物であり、その具体的な組成は表3に示す通りである。
Figure JPOXMLDOC01-appb-T000003
L5 in Table 1 is a mixture of SiO 2 and Al 2 O 3 , and the specific composition is as shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
 表1の屈折率は、多層膜MCの各層を単層で成膜し、後述する反射防止特性評価の際に用いる手法で反射率測定を行うことで算出している。薄膜計算ソフト(Essential Macleod)(シグマ光機株式会社)を用いて、実測した反射率データに対してフィットするように屈折率を調整することで得られた膜の屈折率を特定している。 The refractive index in Table 1 is calculated by depositing each layer of the multilayer film MC as a single layer and performing reflectance measurement by a method used for evaluation of antireflection characteristics described later. Using a thin film calculation software (Essential 率 Macleod) (Sigma Koki Co., Ltd.), the refractive index of the film obtained by adjusting the refractive index so as to fit the measured reflectance data is specified.
 成膜処方は表1に示す通りであるが、最上層の通孔の形成条件を変更して、実施例1~11(試料1~11)及び比較例1~3(試料12~14)の試料を作製し、以下の試験に供した。最上層の膜密度は、塩水噴霧耐性を持たせるため、98%以上とした。なお、比較例3の試料14については、最上層を設けず、機能層全体が露出したものを作製した。それぞれ加熱温度は370℃、開始真空度は3.00E-03Pa(3.00×10-3Pa)とした。 The film formation prescription is as shown in Table 1, but the formation conditions of the through holes in the uppermost layer were changed, and Examples 1 to 11 (Samples 1 to 11) and Comparative Examples 1 to 3 (Samples 12 to 14) Samples were prepared and subjected to the following tests. The film density of the uppermost layer was set to 98% or more in order to provide salt spray resistance. For Sample 14 of Comparative Example 3, an uppermost layer was not provided and the entire functional layer was exposed. The heating temperature was 370 ° C. and the starting vacuum was 3.00E-03 Pa (3.00 × 10 −3 Pa).
 ここで、「APC」は、Auto Pressure Controlの略で分圧を調整したことを意味し、「SCCM」は、standard cc/minの略であり、1気圧(大気圧1013hPa)、0℃で1分間あたりに何cc流れたかを示す単位である。 Here, “APC” means that the partial pressure is adjusted by an abbreviation of “Auto Pressure Control”, and “SCCM” is an abbreviation of “standard cc / min”, which is 1 atm (atmospheric pressure 1013 hPa) and 1 at 0 ° C. This is a unit indicating how many cc per minute.
 以下、表4に最上層の通孔の形成条件が異なる試料1~13の評価結果(「たわし擦り」(耐傷性評価)については試料14も含む)を示す。
Figure JPOXMLDOC01-appb-T000004
Table 4 below shows the evaluation results of samples 1 to 13 having different formation conditions for the uppermost layer through-holes (including “scrubbing” (scratch resistance evaluation) including sample 14).
Figure JPOXMLDOC01-appb-T000004
 「光触媒効果」については、20℃80%の環境下において、ペンで色づけした試料に対してUV照射で積算20J照射し、ペンの色変化を段階的に評価した。具体的には、ペンとしてThe visualiser(inkintelligent社製)を用いた。ここで、色変化度が大のもの(又は色が消える)は光触媒効果が十分にあるとして評価を符号○とし、色変化度が中のもの(又は色が薄くなる)は光触媒効果が残っているとして評価を符号△とし、色変化度が極小のもの(又は色が消えない)は光触媒効果がないとして評価を符号×とした。 Regarding the “photocatalytic effect”, a sample colored with a pen was irradiated with 20 J in total with UV irradiation in an environment of 20 ° C. and 80%, and the color change of the pen was evaluated stepwise. Specifically, The visualiser (manufactured by inkintelligent) was used as a pen. Here, when the color change degree is large (or the color disappears), the photocatalytic effect is sufficient, and the evaluation is indicated with a sign “O”, and when the color change degree is medium (or the color becomes light), the photocatalytic effect remains. As a result, the evaluation was represented by a symbol Δ, and the evaluation with a symbol “x” was regarded as having no photocatalytic effect if the color change degree was minimal (or the color did not disappear).
 「塩水耐性」については、塩乾湿複合サイクル試験機(CYP-90)(スガ試験機株式会社製)を用いて、塩水噴霧試験を行って評価した。試験は、以下の工程(a)~(c)を1サイクルとし、8サイクル実施した。
(a)35℃±2℃の噴霧層内温度にて、25±2℃の塩水濃度5%の溶剤(NaCl、MgCl、CaCl、濃度(重量比)5%±1%)を試料に2時間噴霧する。
(b)噴霧終了後、40℃±2℃、95%RHの環境下に試料を22時間放置する。
(c)工程(a)及び(b)を4回繰り返した後、常温(20℃±15℃)及び常湿(45%RH~85%RH)の環境下に試料を72時間放置する。
 上記試験後、試料の分光特性に変化がない(反射率変化が2%未満)場合、評価を符号○とし、反射率変化が4%未満である場合、評価を符号△とし、反射率変化が4%以上である場合、評価を符号×とした。 
The “salt water resistance” was evaluated by performing a salt spray test using a salt dry / wet combined cycle tester (CYP-90) (manufactured by Suga Test Instruments Co., Ltd.). In the test, the following steps (a) to (c) were made one cycle, and eight cycles were performed.
(A) A sample having a salt water concentration of 5% at 25 ± 2 ° C. (NaCl, MgCl 2 , CaCl 2 , concentration (weight ratio) 5% ± 1%) at a spray layer temperature of 35 ° C. ± 2 ° C. Spray for 2 hours.
(B) After spraying, the sample is left for 22 hours in an environment of 40 ° C. ± 2 ° C. and 95% RH.
(C) Steps (a) and (b) are repeated four times, and then the sample is left for 72 hours in an environment of normal temperature (20 ° C. ± 15 ° C.) and normal humidity (45% RH to 85% RH).
After the above test, if the spectral characteristics of the sample are not changed (reflectance change is less than 2%), the evaluation is a sign ◯, and if the reflectance change is less than 4%, the evaluation is a sign Δ, and the reflectance change is In the case of 4% or more, the evaluation was made as x.
 「接触角」(超親水性評価)については、接触角測定器(G-1)(エルマ株式会社製)を用いて、試料に水滴を10μl滴下し、その接触角を測定した。接触角が15°以下であれば超親水性を有すると評価できる。 For the “contact angle” (superhydrophilicity evaluation), a contact angle measuring device (G-1) (manufactured by Elma Co., Ltd.) was used to drop 10 μl of water droplets on the sample, and the contact angle was measured. If the contact angle is 15 ° or less, it can be evaluated as having super hydrophilicity.
 「反射率」(反射防止特性評価)については、反射率測定機(USPM-RUIII)(オリンパス株式会社製)を用いて、波長域420nm~670nmの最大反射率で試料の反射率を評価した。ここで、反射率が5%以下である場合、反射防止特性を有すると判断し、反射率が5%超過である場合、反射防止特性を有さないと判断した。 For “reflectance” (antireflection characteristic evaluation), the reflectance of the sample was evaluated with a maximum reflectance in a wavelength range of 420 nm to 670 nm using a reflectance measuring device (USPM-RUIII) (manufactured by Olympus Corporation). Here, when the reflectance was 5% or less, it was determined that the film had antireflection characteristics, and when the reflectance was over 5%, it was determined that the film had no antireflection characteristics.
 「たわし擦り」(耐傷性評価)については、亀の子たわしを用いて、2Kgの荷重で250回往復擦り試験を行った。ここで、試料の反射率変化が2%未満である場合、評価を符号○とし、反射率変化が2%以上である場合、評価を符号×とした。 For “scouring rub” (scratch resistance evaluation), a reciprocating rub test was performed 250 times with a load of 2 kg using a turtle scourer. Here, when the reflectance change of the sample is less than 2%, the evaluation is indicated by a symbol ◯, and when the reflectance change is 2% or more, the evaluation is indicated by a symbol ×.
 表4に示すように、金属マスクの厚みを1nm以上30nm以下とすることにより、光触媒効果、塩水耐性、超親水性、反射防止特性、及び耐傷性の評価が良好となった。また、光学素子に最上層を設けることにより、たわし擦り試験の結果が良好であり、光学素子が耐傷性を有することがわかる。なお、比較例1において、金属マスクの厚みを31nmとすると、通孔が機能層の表面まで到達せず光触媒機能が十分に発揮されないため、光触媒効果の評価が不良となった。また、比較例2において、金属マスクの厚みが薄く、金属マスクの露出部が多くなり、最上層の通孔密度が高くなりすぎるため、超親水性と反射率の評価が不良となった。 As shown in Table 4, when the thickness of the metal mask was 1 nm or more and 30 nm or less, evaluation of the photocatalytic effect, salt water resistance, super hydrophilicity, antireflection property, and scratch resistance was improved. In addition, by providing the uppermost layer on the optical element, it can be seen that the result of the scratching test is good and the optical element has scratch resistance. In Comparative Example 1, when the thickness of the metal mask was 31 nm, the through hole did not reach the surface of the functional layer and the photocatalytic function was not sufficiently exhibited, so that the evaluation of the photocatalytic effect was poor. In Comparative Example 2, the thickness of the metal mask was thin, the exposed portion of the metal mask was increased, and the through hole density of the uppermost layer was too high, resulting in poor evaluation of super hydrophilicity and reflectance.
(2)光学素子のSEM画像
 図6A~6Cに、光学素子のSEM画像を示す。図6Bは、図6Aの画像を拡大した図であり、図6Cは、図6Bの画像をさらに拡大した図である。
(2) SEM Image of Optical Element FIGS. 6A to 6C show SEM images of the optical element. 6B is an enlarged view of the image of FIG. 6A, and FIG. 6C is an enlarged view of the image of FIG. 6B.
 本実施例において、金属マスクは、スパッター法を用いてAgで形成した。本試料において、TiO層の厚みを282.2nmとし、SiO層の厚みを87.2nmとし、Ag層の厚みを10nmとした。通孔形成工程において、最上層のSiOを90秒ドライエッチングした。エッチングガスには、CHFを用いた。通孔形成工程後、マスク除去工程を行った。 In this example, the metal mask was formed of Ag using a sputtering method. In this sample, the thickness of the TiO 2 layer was 282.2 nm, the thickness of the SiO 2 layer was 87.2 nm, and the thickness of the Ag layer was 10 nm. In the through hole forming step, the uppermost SiO 2 was dry-etched for 90 seconds. CHF 3 was used as an etching gas. After the through hole forming step, a mask removing step was performed.
 図6C等に示すように、通孔形成工程により、最上層に深い孔が形成され、孔の面積も増加した。また、上述の実施例と同様に、光触媒機能の評価を行った結果、本試料の光触媒機能は維持されていた。つまり、通孔が機能層の表面まで到達して機能層の表面が露出しており、光触媒機能を発揮しているといえる。 As shown in FIG. 6C and the like, a deep hole was formed in the uppermost layer by the through hole forming step, and the area of the hole also increased. Further, as in the above-described example, as a result of evaluating the photocatalytic function, the photocatalytic function of this sample was maintained. That is, it can be said that the through-hole reaches the surface of the functional layer, the surface of the functional layer is exposed, and the photocatalytic function is exhibited.
 以上では、具体的な実施形態としての光学素子及びその製造方法について説明したが、本発明に係る光学素子の製造方法等は、上記のものには限られない。例えば、上記実施形態において、金属マスク50をAgやAlで形成したが、粒子状、島状、又はポーラス状の薄膜を形成できるものであれば、他の金属で形成してもよい。 The optical element and the manufacturing method thereof as specific embodiments have been described above, but the manufacturing method of the optical element according to the present invention is not limited to the above. For example, in the above embodiment, the metal mask 50 is formed of Ag or Al, but may be formed of other metals as long as it can form a particulate, island, or porous thin film.
 また、上記実施形態において、最上層10や機能層20の膜厚は、条件式(1)及び(2)の範囲に限らず、反射防止等の光学設計に応じて適宜変更することができる。 In the above embodiment, the film thicknesses of the uppermost layer 10 and the functional layer 20 are not limited to the ranges of the conditional expressions (1) and (2), but can be appropriately changed according to the optical design such as antireflection.
 また、上記実施形態において、多層膜MCは、可視域の光、近赤外域の光のいずれか1つ以上を反射する金属膜又は誘電体多層膜を有してもよい。この場合、光学素子は、反射特性を有するものとなる。ここでの「反射特性」とは、可視域又は近赤外域において光の反射率が70%以上であり、望ましくは85%以上であることをいう。金属膜を用いる場合、Ag、Au、Cr、Al、Cu、及びNiのいずれかを主成分とすると好ましい。これらを適宜用いることで、使用可能域や反射率を任意に調整できる。「主成分とする」とは、当該元素の含有量が51重量%以上、好ましくは70重量%以上、より好ましくは90重量%、さらに好ましくは100重量%であることを意味する。 In the above embodiment, the multilayer film MC may include a metal film or a dielectric multilayer film that reflects one or more of visible light and near-infrared light. In this case, the optical element has reflection characteristics. Here, “reflection characteristics” means that the reflectance of light in the visible region or near infrared region is 70% or more, and desirably 85% or more. When a metal film is used, it is preferable that any one of Ag, Au, Cr, Al, Cu, and Ni is a main component. By using these appropriately, the usable area and the reflectance can be arbitrarily adjusted. “Main component” means that the content of the element is 51% by weight or more, preferably 70% by weight or more, more preferably 90% by weight, and still more preferably 100% by weight.
 また、上記実施形態において、高屈折率層Hのうち少なくとも1層は、Ti,Ta、Hf、Zr、及びNbのいずれかを主成分とする特定材料から形成されてもよい。耐酸性向上に効果のある物質として、特にTi,Ta、Hf、Zr、及びNbの酸化物がある。「主成分とする」とは、当該元素の含有量が51重量%以上、好ましくは70重量%以上、より好ましくは90重量%、さらに好ましくは100重量%であることを意味する。多層膜にTa、Hf、Zr、及びNbを主成分とする素材を用い適切な膜厚を設けることで十分な耐酸性を有するため、酸に弱いガラス基材GLにも設けることができる。 In the above embodiment, at least one of the high refractive index layers H may be formed of a specific material mainly containing any one of Ti, Ta, Hf, Zr, and Nb. Examples of substances that are effective in improving acid resistance include Ti, Ta, Hf, Zr, and Nb oxides. “Main component” means that the content of the element is 51% by weight or more, preferably 70% by weight or more, more preferably 90% by weight, and still more preferably 100% by weight. Since the multilayer film has sufficient acid resistance by using a material mainly composed of Ta, Hf, Zr, and Nb and having an appropriate film thickness, the multilayer film can also be provided on the glass substrate GL that is weak against acid.

Claims (9)

  1.  光透過性を有する基板に2層以上の多層膜を成膜した光学素子の製造方法であって、
     前記多層膜は、少なくとも1層の低屈折率層と、少なくとも1層の高屈折率層とを有し、
     前記基板から最も遠い最上層として塩水噴霧耐性と超親水性とを有する前記低屈折率層を形成する最上層形成工程と、
     前記最上層の下に、機能層として光触媒機能を有する金属酸化物を主成分とする前記高屈折率層を形成する機能層形成工程と、
     前記最上層形成工程後、前記最上層の表面に金属マスクを成膜するマスク形成工程と、
     前記最上層において前記機能層の表面を露出させる複数の通孔をエッチングによって形成する通孔形成工程と、
    を備える光学素子の製造方法。
    A method of manufacturing an optical element in which a multilayer film having two or more layers is formed on a substrate having optical transparency,
    The multilayer film has at least one low refractive index layer and at least one high refractive index layer,
    A top layer forming step of forming the low refractive index layer having salt spray resistance and super hydrophilicity as the top layer farthest from the substrate;
    A functional layer forming step for forming the high refractive index layer mainly composed of a metal oxide having a photocatalytic function as a functional layer under the uppermost layer;
    After the uppermost layer forming step, a mask forming step of forming a metal mask on the surface of the uppermost layer;
    A through hole forming step of forming a plurality of through holes exposing the surface of the functional layer in the uppermost layer by etching;
    An optical element manufacturing method comprising:
  2.  前記金属マスクは、前記最上層の表面に粒子状、島状、及びポーラス状のいずれかに形成される、請求項1に記載の光学素子の製造方法。 The method of manufacturing an optical element according to claim 1, wherein the metal mask is formed on the surface of the uppermost layer in one of a particle shape, an island shape, and a porous shape.
  3.  前記金属マスクの膜厚は、1nm以上30nm以下である、請求項1及び請求項2のいずれか一項に記載の光学素子の製造方法。 The method of manufacturing an optical element according to any one of claims 1 and 2, wherein the thickness of the metal mask is 1 nm or more and 30 nm or less.
  4.  前記最上層形成工程で形成される前記最上層としての前記低屈折率層の膜密度は、98%以上である、請求項1から請求項3までのいずれか一項に記載の光学素子の製造方法。 The optical element manufacturing according to any one of claims 1 to 3, wherein a film density of the low refractive index layer as the uppermost layer formed in the uppermost layer forming step is 98% or more. Method.
  5.  前記最上層は、主にSiOで形成される、請求項1から請求項4までのいずれか一項に記載の光学素子の製造方法。 The top layer is mainly formed by SiO 2, method of manufacturing an optical element according to any one of claims 1 to 4.
  6.  前記通孔形成工程において、SiOと反応するガスを用いて前記複数の通孔を形成する、請求項5に記載の光学素子の製造方法。 The method for manufacturing an optical element according to claim 5, wherein, in the through hole forming step, the plurality of through holes are formed using a gas that reacts with SiO 2 .
  7.  前記通孔形成工程後、前記金属マスクを除去するマスク除去工程をさらに備える、請求項1から請求項6までのいずれか一項に記載の光学素子の製造方法。 The method for manufacturing an optical element according to any one of claims 1 to 6, further comprising a mask removing step of removing the metal mask after the through hole forming step.
  8.  前記金属マスクは、Agで形成される、請求項1から請求項7までのいずれか一項に記載の光学素子の製造方法。 The method of manufacturing an optical element according to any one of claims 1 to 7, wherein the metal mask is made of Ag.
  9.  請求項1から請求項8までのいずれか一項に記載の光学素子の製造方法で製造され、
     前記最上層に島状通孔構造を有する光学素子。
    Manufactured by the method for producing an optical element according to any one of claims 1 to 8,
    An optical element having an island-shaped through hole structure in the uppermost layer.
PCT/JP2019/022740 2018-06-14 2019-06-07 Method for producing optical element and optical element WO2019240040A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020525526A JP7335556B2 (en) 2018-06-14 2019-06-07 OPTICAL ELEMENT MANUFACTURING METHOD AND OPTICAL ELEMENT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018114007 2018-06-14
JP2018-114007 2018-06-14

Publications (1)

Publication Number Publication Date
WO2019240040A1 true WO2019240040A1 (en) 2019-12-19

Family

ID=68841853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022740 WO2019240040A1 (en) 2018-06-14 2019-06-07 Method for producing optical element and optical element

Country Status (2)

Country Link
JP (1) JP7335556B2 (en)
WO (1) WO2019240040A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021261225A1 (en) * 2020-06-23 2021-12-30 コニカミノルタ株式会社 Hydrophilic film manufacturing method, hydrophilic film, and optical member

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1036144A (en) * 1996-07-26 1998-02-10 Murakami Corp Antifogging element
WO2001071394A1 (en) * 2000-03-21 2001-09-27 Asahi Glass Company, Limited Antireflection product and production method therefor
JP2001286754A (en) * 2000-04-06 2001-10-16 Nippon Sheet Glass Co Ltd Board with photocatalyst film and its manufacturing method
JP2003287601A (en) * 2002-03-27 2003-10-10 Murakami Corp Composite material
KR100718597B1 (en) * 2006-01-23 2007-05-16 인터테크 주식회사 A method of making hydrophilic thin film
WO2013137209A1 (en) * 2012-03-13 2013-09-19 株式会社 東芝 Single particle analyzer and analysis method
JP2015227904A (en) * 2014-05-30 2015-12-17 旭硝子株式会社 Anti-reflection structure and manufacturing method therefor
WO2017056598A1 (en) * 2015-09-29 2017-04-06 富士フイルム株式会社 Hydrophilic multilayer film and method for manufacturing same, and imaging system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1036144A (en) * 1996-07-26 1998-02-10 Murakami Corp Antifogging element
WO2001071394A1 (en) * 2000-03-21 2001-09-27 Asahi Glass Company, Limited Antireflection product and production method therefor
JP2001286754A (en) * 2000-04-06 2001-10-16 Nippon Sheet Glass Co Ltd Board with photocatalyst film and its manufacturing method
JP2003287601A (en) * 2002-03-27 2003-10-10 Murakami Corp Composite material
KR100718597B1 (en) * 2006-01-23 2007-05-16 인터테크 주식회사 A method of making hydrophilic thin film
WO2013137209A1 (en) * 2012-03-13 2013-09-19 株式会社 東芝 Single particle analyzer and analysis method
JP2015227904A (en) * 2014-05-30 2015-12-17 旭硝子株式会社 Anti-reflection structure and manufacturing method therefor
WO2017056598A1 (en) * 2015-09-29 2017-04-06 富士フイルム株式会社 Hydrophilic multilayer film and method for manufacturing same, and imaging system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021261225A1 (en) * 2020-06-23 2021-12-30 コニカミノルタ株式会社 Hydrophilic film manufacturing method, hydrophilic film, and optical member

Also Published As

Publication number Publication date
JPWO2019240040A1 (en) 2021-07-08
JP7335556B2 (en) 2023-08-30

Similar Documents

Publication Publication Date Title
KR101091851B1 (en) A coating composition endowing transparent substrate with anti-reflection effect and a preparing method for transparent substrate with anti-reflection effect using the composition
JP6255541B2 (en) Hydrophilic multilayer film, method for producing the same, and imaging system
TWI301799B (en)
US20130202866A1 (en) Mechanically stable nanoparticle thin film coatings and methods of producing the same
WO2018110018A1 (en) Optical element
JP6445129B2 (en) Antireflection film and optical member
WO2019240040A1 (en) Method for producing optical element and optical element
CN113167928A (en) Dielectric multilayer film, method for producing same, and optical member using same
TW201348758A (en) Infrared filter and lens module
JP2010066704A (en) Optical element, optical system, and optical apparatus
CN110476088A (en) The manufacturing method of optical thin film, optical element, optical system and optical thin film
JP2016224113A (en) Antifogging, antireflective film, cover base substrate with antifogging, antireflective film, and method of manufacturing antifogging, antireflective film
JP2020024237A (en) Optical product
WO2016147573A1 (en) Hydrophilic lens
JP2011149712A (en) Timepiece cover glass and timepiece
JP2007241177A (en) Antireflection structure and structure
JP7385178B2 (en) Optical element and method for manufacturing optical element
JP7415949B2 (en) Dielectric film, its manufacturing method, and optical components using the same
JP2008070459A (en) Antireflection film, optical member, and display device
JP2020122912A (en) Lens with film, lens unit and camera module
CN219574409U (en) Anti-fog optical lens
JP7468624B2 (en) Optical Components
JP2009276447A (en) Polarizer and liquid crystal projector
CN112136063A (en) Method for forming surface microstructure and article having surface microstructure
US20230146688A1 (en) Functional film and production method of functional film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19820037

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2020525526

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19820037

Country of ref document: EP

Kind code of ref document: A1