WO2016147573A1 - Hydrophilic lens - Google Patents

Hydrophilic lens Download PDF

Info

Publication number
WO2016147573A1
WO2016147573A1 PCT/JP2016/000995 JP2016000995W WO2016147573A1 WO 2016147573 A1 WO2016147573 A1 WO 2016147573A1 JP 2016000995 W JP2016000995 W JP 2016000995W WO 2016147573 A1 WO2016147573 A1 WO 2016147573A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrophilic
layer
hydrophilic layer
lens
fine particles
Prior art date
Application number
PCT/JP2016/000995
Other languages
French (fr)
Japanese (ja)
Inventor
千春 前田
小林 信幸
亨 難波
晃暢 宮崎
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2016147573A1 publication Critical patent/WO2016147573A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/30Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/42Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating of an organic material and at least one non-metal coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses

Definitions

  • the technology disclosed here relates to a hydrophilic lens for a photographing device such as a camera and a video mainly used outdoors.
  • ⁇ Shooting devices such as cameras and video are installed outdoors, so they are exposed to wind and rain and exhaust gas, and raindrops and dirt adhere to the lens.
  • a hydrophilic lens in which a hydrophilic coat is formed on a glass substrate of the lens is known.
  • the hydrophilic coat contains a photocatalyst that exhibits hydrophilicity upon exposure to ultraviolet rays, and imparts a self-cleaning action to the lens.
  • Patent Document 1 describes a technique for forming a hydrophilic antifogging layer by sputtering titanium oxide on the surface of a glass substrate in order to impart antifogging properties to the inner surface side of a watch cover glass.
  • the thickness of the antifogging layer is set to 5 nm or less.
  • an antireflection layer of an inorganic multilayer film in which high refractive index layers and low refractive index layers are alternately laminated is formed on the inner surface of the cover glass, and an antifogging layer is formed thereon.
  • Patent Document 2 describes a technique for forming a surface layer containing a photocatalyst such as titania and a compound such as silica capable of adsorbing a hydroxyl group on the surface of a substrate such as a tile.
  • a photocatalyst such as titania
  • a compound such as silica capable of adsorbing a hydroxyl group on the surface of a substrate such as a tile.
  • the surface roughness (Ra) is set to 0.15 to 1 ⁇ m.
  • Patent Document 3 describes a pattern forming body having a photocatalyst-containing layer on a substrate containing a substance whose wettability is changed by the action of a photocatalyst by exposure of the pattern.
  • Anatase-type titanium oxide or the like is used as the photocatalyst, and the photocatalytic reaction occurs efficiently.
  • JP 2011-149712 A Japanese Patent Laid-Open No. 10-237416 JP 2002-274077 A
  • a coating using a silicate composition in which fine particles 4 having photocatalytic activity such as titanium oxide are dispersed in a network 3 of a silicate material is generally known.
  • Such a coat is also applied as a hydrophilic coat formed on the surface of the lens glass substrate in order to remove raindrops and dirt adhering to the lens.
  • the fine particles 4 having photocatalytic activity dispersed in the hydrophilic coat are photocatalysts that exhibit a catalytic action when irradiated with light.
  • Titanium oxide is often used as the photocatalyst. Titanium oxide generates OH radicals on the surface by absorbing ultraviolet rays. Reaction of moisture in the air with the generated OH radicals generates OH groups on the surface. Super-hydrophilicity can be imparted to the surface of the hydrophilic coat by OH groups generated by light irradiation. Thereby, the hydrophilic coat exhibits a self-cleaning action.
  • the overall reflectance can be reduced by forming a multilayer antireflection layer in which a high refractive index layer and a low refractive index layer are alternately formed on a lens substrate, and forming a hydrophilic coat thereon. It can. However, if the reflectance of the outermost hydrophilic coat is too high, the overall reflectance cannot be sufficiently reduced. Therefore, even when the antireflection layer is formed, it is necessary to reduce the reflectance of the hydrophilic coat itself.
  • the commercial product A has high hydrophilicity but low hardness and good visibility at the beginning of use, but there is a problem that the hydrophilicity decreases due to scratches.
  • the hardness is increased in order to improve the durability like the commercial product B, there is a problem that the hydrophilicity is lowered.
  • the commercial product C that balances hydrophilicity and durability, both hydrophilicity and durability are not satisfactory levels (FIG. 3).
  • hydrophilic lens in which a hydrophilic layer (hydrophilic coat) formed by dispersing fine particles 4 having photocatalytic activity in a network 3 of a silicate material is formed on the surface of a glass substrate, reflection is performed by controlling the thickness of the hydrophilic layer. It has been found that the rate can be reduced. Furthermore, it has been found that the hydrophilicity and hardness can be simultaneously increased by simultaneously controlling the average particle diameter of the fine particles 4 having photocatalytic activity dispersed in the hydrophilic layer, and the film thickness and surface roughness of the hydrophilic layer.
  • a silicate material for a hydrophilic coat according to the technique disclosed herein is a composition having a three-dimensional network structure including a bond (siloxane bond) of silicon (Si) and oxygen (O), and includes methyl silicate, ethyl silicate, methyl
  • silicate polymers such as ethyl silicate.
  • fine particles 4 having photocatalytic activity dispersed in the hydrophilic coat by the technique disclosed herein are exemplified by fine particles such as titanium oxide.
  • the technology disclosed herein provides a hydrophilic lens having a glass substrate and a hydrophilic layer formed on the glass substrate.
  • the hydrophilic layer includes a silicate material in which fine particles 4 having photocatalytic activity are dispersed.
  • the film thickness of the hydrophilic layer is 30 nm or less, and the average particle size of the fine particles having photocatalytic activity is 30 nm or less.
  • the hydrophilic layer may be formed to have a film thickness of 10 to 30 nm and an arithmetic average roughness Ra of the surface of 0.7 to 1.9 nm.
  • the film thickness of the hydrophilic layer is reduced to 30 nm or less, preferably 10 to 30 nm, whereby the reflectance can be reduced to the same level as the reflectance of the glass substrate itself. it can. If an antireflection layer is formed on a glass substrate and the hydrophilic layer is formed thereon, a reflectance sufficiently lower than the reflectance of the glass substrate itself can be achieved.
  • the average particle diameter of the photocatalyst fine particles to 30 nm or less, the film thickness of the hydrophilic layer to 10 to 30 nm, and the arithmetic average roughness Ra of the surface to 0.7 to 1.9 nm.
  • the hydrophilicity and hardness of the hydrophilic layer can be compatible at a high level.
  • hydrophilic lens having low reflectivity and having both high hydrophilicity and high hardness at the same time.
  • FIG. 1 is a diagram showing an automobile provided with a vehicle-mounted rear view and side view camera.
  • FIG. 2 is a schematic diagram showing the structure of a silicate resin composition for hydrophilic coating in which fine particles having photocatalytic activity are dispersed in a network of silicate materials.
  • FIG. 3 is a conceptual diagram comparing a commercial product and a developed product with respect to hydrophilicity and durability.
  • FIG. 4 is a schematic diagram for explaining the contact angle.
  • FIG. 5 is a schematic cross-sectional view of a hydrophilic lens in which a hydrophilic layer is directly formed on a glass substrate.
  • FIG. 6 is a schematic cross-sectional view of a hydrophilic lens in which a hydrophilic layer is formed on an antireflection layer formed on a glass substrate.
  • FIG. 7 is a diagram showing the relationship between the thickness of the hydrophilic layer and the reflectance.
  • FIG. 8 is a diagram showing the relationship between the thickness of the hydrophilic layer and the reflectance.
  • FIG. 9A is a diagram showing a photograph taken by a camera equipped with a lens having a low reflectance on the surface.
  • FIG. 9B is a diagram showing a photograph taken with a camera equipped with a lens having a high reflectance on the surface.
  • FIG. 10A is a view showing a photograph taken with mist droplets attached to the lens surface after the hydrophilic coating treatment.
  • FIG. 10B is a view showing a photograph taken with mist droplets attached to the lens surface before the hydrophilic coating treatment.
  • FIG. 11A is a diagram illustrating a photomicrograph of the surface after a rubbing test of a hydrophilic lens according to an example of the present disclosure.
  • FIG. 11B is a diagram showing a photomicrograph of the surface after the rubbing test of the hydrophilic lens shown in the comparative example.
  • Preparation of silicate resin composition for hydrophilic coating Preparation Example 1 Water and methanol are added as solvents to methyl silicate, titanium oxide sol having an average particle diameter of 4 nm, and an organometallic compound as a silicate curing catalyst to obtain a silicate composition A for hydrophilic coating.
  • Methyl silicate and titanium oxide sol are based on the total weight of silica equivalent weight (weight when converted to silica) and titanium oxide equivalent weight (weight when converted to titanium oxide) after hydrolysis / dehydration condensation polymerization reaction. It is added so that the titanium oxide equivalent weight is 60 to 80%. At that time, the concentration is adjusted so that the solid content concentration in the solution is 1.0 to 10.0% by weight.
  • the prepared hydrophilic silicate composition A is spin-coated on a glass disc having a diameter of 30.0 mm at 2000 to 5000 rpm, and further baked at 300 ° C., thereby forming a desired hydrophilic layer. .
  • Preparation Example 2 Water and methanol are added as solvents to methyl silicate, titanium oxide sol having an average particle diameter of 30 nm, and an organometallic compound as a silicate curing catalyst to obtain silicate composition B for hydrophilic coating.
  • the methyl silicate and titanium oxide sol are added so that the titanium oxide equivalent weight is 60 to 80% with respect to the total weight of the silica equivalent weight and the titanium oxide equivalent weight after the hydrolysis / dehydration condensation polymerization reaction. At that time, the concentration is adjusted so that the solid content concentration in the solution is 1.0 to 10.0% by weight.
  • the prepared hydrophilic coating silicate composition B is spin-coated on a glass disc having a diameter of 30.0 mm at 2000 to 5000 rpm, and further baked at 300 ° C. to form a desired hydrophilic layer. .
  • Preparation Example 3 Water and methanol are added as solvents to methyl silicate, titanium oxide sol having an average particle size of 43 nm, and an organometallic compound as a silicate curing catalyst to obtain silicate composition C for hydrophilic coating.
  • Methyl silicate and titanium oxide sol are added so that the titanium oxide equivalent weight is 60% with respect to the total weight of the silica equivalent weight and the titanium oxide equivalent weight after the hydrolysis / dehydration condensation polymerization reaction. At that time, the solid content concentration in the solution is adjusted to 10.0% by weight.
  • the prepared silicate composition C for hydrophilic coating was spin-coated on a glass disk having a diameter of 30.0 mm at 2000 to 5000 rpm, and further baked at 300 ° C. to form a desired hydrophilic layer.
  • a silicate composition for hydrophilic coating may be obtained using zinc oxide sol, tin oxide sol, or tungsten oxide sol instead of titanium oxide sol.
  • fine particles 4 having photocatalytic activity zinc oxide, tin oxide, tungsten oxide or the like may be used instead of titanium oxide, and plural kinds of fine particles may be present in the hydrophilic layer.
  • [Measuring means] Film thickness measurement (1) Spectral ellipsometer The thickness of the hydrophilic layer is measured using a spectroscopic ellipsometer (UVISEL: manufactured by Horiba, Ltd.). Using a Xe lamp, light in the spectral range of 210 to 880 nm is incident on the hydrophilic layer to be measured, and the change in polarization of incident light and reflected light is measured to determine the film thickness.
  • UVISEL spectroscopic ellipsometer
  • Step meter The thickness of the hydrophilic layer is measured using a step meter (DEKTAK 6M STYLUS PROFILER: manufactured by Veeco). The film thickness is obtained by measuring the level difference between the hydrophilic layer to be measured and the substrate using a stylus.
  • Particle size measurement (1) Particle size distribution meter The particle size distribution of the photocatalyst fine particles 4 is measured using a particle size distribution meter (Nanotrac wave UT151: manufactured by Microtrac).
  • Reflectance The reflectance of the hydrophilic layer is measured using a reflectometer (USPM-RU III: manufactured by Olympus Corporation). The reflectance is obtained by irradiating light having a wavelength of 550 nm.
  • the reflectance is preferably 10% or less.
  • the hydrophilicity of the hydrophilic layer surface is evaluated by a static contact angle ⁇ formed by water droplets on the surface of the hydrophilic layer to be measured, using an automatic contact angle meter (MD300, manufactured by Kyowa Interface Chemical Co., Ltd.).
  • the contact angle ⁇ means an angle formed between a sample surface and a tangent line where a water droplet contacts the sample surface (FIG. 4).
  • ⁇ S means the surface tension of the hydrophilic layer
  • ⁇ L means the surface tension of water
  • ⁇ SL means the interfacial tension of the hydrophilic layer and water.
  • a sample is defined as being hydrophilic if the contact angle ⁇ is 30 ° or less, and super-hydrophilic if it is 10 ° or less. Practically, it is preferably 5 ° or less.
  • the durability of the hydrophilic layer surface is evaluated by the pencil hardness determined by the pencil hardness test method (JIS K5600-5-4).
  • the pencil hardness means the hardest pencil density at which the surface is scratched with a lead having a different pencil density and no flaw is generated.
  • the pencil density is 6B, 5B, 4B, 3B, 2B, B, HB, F, H, 2H, 3H, 4H, 5H, 6H from the soft side to the hard side.
  • the measurement object is set so that the surface is horizontal, the angle of the pencil is 45 ⁇ 1 ° with respect to the surface, and a load of 750 ⁇ 10 g is applied for measurement.
  • the pencil hardness is 5H or more in order to show practically sufficient durability.
  • the silicate composition A was directly applied on the glass substrate 110 to form the hydrophilic layer 120 with various film thicknesses (FIG. 5). Further, an antireflection layer (AR layer) 230 in which a high refractive index (TaO 5 ) layer and a low refractive index layer (SiO 2 ) are alternately laminated is first formed on the glass substrate 210, and a silicate composition is formed thereon. Object A was applied to form hydrophilic layer 220 with various film thicknesses (FIG. 6). The film thickness of less than 30 nm was measured by spectroscopic ellipsometry, and the film thickness of 30 nm or more was measured by a step gauge.
  • the hydrophilic lens 100 in which the hydrophilic layer 120 is directly formed on the glass substrate 110, when the thickness of the hydrophilic layer 120 is reduced to 30 nm or less, it is reflected to the same degree as the reflectance (4%) of the glass substrate 110 itself. The rate could be reduced (FIG. 7).
  • the hydrophilic lens 200 in which the antireflection layer 230 is formed on the glass substrate 210 and the hydrophilic layer 220 is formed thereon, when the thickness of the hydrophilic layer 220 is reduced to 30 nm or less, the glass substrate 210 itself It was possible to achieve a reflectance lower than that of 4% (FIG. 8).
  • the thickness of the hydrophilic layer is 30 nm or less, the reflectance with respect to incident light with a wavelength of 550 nm is low, and when photographing through a lens, the incident light is reflected on the lens surface and a ghost like a ring of light does not occur (see FIG. 9A). Thereby, sufficiently good visibility can be obtained. However, when the thickness of the hydrophilic layer was 70 nm, the reflectance could not be sufficiently reduced even by the antireflection layer 230, and ghost was generated (FIG. 9B).
  • the lens after the hydrophilic coating treatment was less affected by the adhering mist and had good visibility. On the other hand, the visibility of the lens before the hydrophilic coating treatment was greatly deteriorated due to adhesion of mist droplets.
  • a high refractive index (TaO 5 ) layer and a low refractive index layer (SiO 2 ) are alternately laminated on a glass substrate.
  • the antireflection layer (AR layer) thus formed was formed, and silicate-based compositions A, B, and C were applied thereon to form hydrophilic layers with various film thicknesses.
  • the film thickness of less than 30 nm was measured by spectroscopic ellipsometry, and the film thickness of 30 nm or more was measured by a step gauge.
  • the average particle size of the fine particles is 30 nm or less
  • the thickness of the hydrophilic layer is 10 to 30 nm
  • the arithmetic average surface roughness Ra of the hydrophilic layer surface is 0.7 to
  • the hydrophilic layer exhibits a high pencil hardness (5H or more) and a low contact angle (30 ° or less) even after the rubbing test.
  • there were no scratches on the surfaces of the hydrophilic layers of Examples 3 to 5 (FIG. 11A), and scratches were confirmed on the surfaces of the hydrophilic layers of Comparative Examples 3 and 4 (FIG. 11B).
  • the hydrophilic lens of the technology disclosed herein has low reflectance, and has high hydrophilicity and high hardness at the same time, so it is mounted on the outside of an automobile such as a camera and video, particularly an automobile. This is useful for cameras that monitor rear view and side view.

Abstract

Provided is a hydrophilic lens in which a hydrophilic layer formed by dispersing fine particles having photocatalytic activity in a network of a silicate material is formed on the surface of a glass base, wherein a hydrophilic coating having a low reflectance and simultaneously having a high hydrophilicity and a high hardness is formed on the surface thereof. The fine particles of the photocatalyst have an average particle size of 30 nm or less. The hydrophilic layer is controlled so that the thickness thereof is 10-30 nm and the surface thereof has an arithmetic mean roughness within the range of 0.7-1.9 nm.

Description

親水レンズHydrophilic lens
 ここに開示する技術は、主に屋外で使用するカメラおよびビデオ等の撮影機器用の親水レンズに関する。 The technology disclosed here relates to a hydrophilic lens for a photographing device such as a camera and a video mainly used outdoors.
 近年、より安心に、安全に駐車を行えるように、リアビューやサイドビューをモニターするためのカメラが自動車の外部に搭載されている(図1)。また、防犯対策として監視カメラが市街地のみならず個人宅にも多く設置されている。 In recent years, cameras for monitoring rear view and side view have been installed outside the car so that parking can be performed more safely and securely (Fig. 1). Moreover, many surveillance cameras are installed not only in urban areas but also in private houses as a security measure.
 このようなカメラおよびビデオ等の撮影機器は屋外に設置されるため、風雨や排気ガスに曝され、レンズに雨滴や汚れが付着する。レンズに付着した雨滴や汚れを除去するために、レンズのガラス基材の上に親水コートを形成した、親水レンズが知られている。親水コートは、紫外線の暴露により親水性を発揮する光触媒を含有し、レンズに対して自浄作用を付与する。 ¡Shooting devices such as cameras and video are installed outdoors, so they are exposed to wind and rain and exhaust gas, and raindrops and dirt adhere to the lens. In order to remove raindrops and dirt adhering to the lens, a hydrophilic lens in which a hydrophilic coat is formed on a glass substrate of the lens is known. The hydrophilic coat contains a photocatalyst that exhibits hydrophilicity upon exposure to ultraviolet rays, and imparts a self-cleaning action to the lens.
 特許文献1には、時計用カバーガラスの内面側に防曇性を付与するために、ガラス基材表面に酸化チタンをスパッタリングして親水の防曇層を形成する技術が記載されている。視感反射率を小さくするために、防曇層の厚みを5nm以下としている。また、カバーガラスの内面には高屈折率層と低屈折率層とが交互に積層されてなる無機多層膜の反射防止層が形成され、その上に防曇層が形成されている。 Patent Document 1 describes a technique for forming a hydrophilic antifogging layer by sputtering titanium oxide on the surface of a glass substrate in order to impart antifogging properties to the inner surface side of a watch cover glass. In order to reduce the luminous reflectance, the thickness of the antifogging layer is set to 5 nm or less. Further, an antireflection layer of an inorganic multilayer film in which high refractive index layers and low refractive index layers are alternately laminated is formed on the inner surface of the cover glass, and an antifogging layer is formed thereon.
 特許文献2には、タイル等の基材表面に、チタニア等の光触媒と、水酸基の吸着が可能なシリカ等の化合物とを含有する表面層を形成する技術が記載されている。物理的な接触角低減効果を奏するために、表面粗さ(Ra)を0.15~1μmとしている。 Patent Document 2 describes a technique for forming a surface layer containing a photocatalyst such as titania and a compound such as silica capable of adsorbing a hydroxyl group on the surface of a substrate such as a tile. In order to obtain a physical contact angle reduction effect, the surface roughness (Ra) is set to 0.15 to 1 μm.
 特許文献3には、パターンの露光によって光触媒の作用により濡れ性が変化する物質を含有する光触媒含有層を基材上に有するパターン形成体が記載されている。光触媒としてアナターゼ型酸化チタンなどが用いられ、光触媒反応が効率的に起きるので、平均粒径が50nm以下のものが好ましいとしている。 Patent Document 3 describes a pattern forming body having a photocatalyst-containing layer on a substrate containing a substance whose wettability is changed by the action of a photocatalyst by exposure of the pattern. Anatase-type titanium oxide or the like is used as the photocatalyst, and the photocatalytic reaction occurs efficiently.
特開2011-149712号公報JP 2011-149712 A 特開平10-237416号公報Japanese Patent Laid-Open No. 10-237416 特開2002-274077号公報JP 2002-274077 A
 シリケート材料のネットワーク3に酸化チタンなどの光触媒活性を有する微粒子4を分散させたシリケート系組成物(図2)を用いたコートは一般的に知られている。このようなコートは、レンズに付着した雨滴や汚れを除去するためにレンズのガラス基材の表面に形成する親水コートとしても応用されている。 A coating using a silicate composition (FIG. 2) in which fine particles 4 having photocatalytic activity such as titanium oxide are dispersed in a network 3 of a silicate material is generally known. Such a coat is also applied as a hydrophilic coat formed on the surface of the lens glass substrate in order to remove raindrops and dirt adhering to the lens.
 親水コートに分散させる光触媒活性を有する微粒子4は、光を照射することにより触媒作用を発揮する光触媒である。光触媒としては、酸化チタンがよく用いられる。酸化チタンは、紫外線の吸収により表面にOHラジカルを発生させる。空気中の水分と発生したOHラジカルが反応することにより、表面にOH基が発生する。光照射により発生したOH基により、親水コートの表面に超親水性を付与することができる。これにより、親水コートは自浄作用を発揮する。 The fine particles 4 having photocatalytic activity dispersed in the hydrophilic coat are photocatalysts that exhibit a catalytic action when irradiated with light. Titanium oxide is often used as the photocatalyst. Titanium oxide generates OH radicals on the surface by absorbing ultraviolet rays. Reaction of moisture in the air with the generated OH radicals generates OH groups on the surface. Super-hydrophilicity can be imparted to the surface of the hydrophilic coat by OH groups generated by light irradiation. Thereby, the hydrophilic coat exhibits a self-cleaning action.
 その一方、酸化チタンなどの光触媒は本質的に高屈折材料であるため、親水コートの反射率を高めてしまう。反射率が高くなると、レンズ表面での入射光の反射によりゴーストが発生し、視認性が悪くなる。反射率を低減するために、親水コートの光触媒の含有量を少なくすると、親水性を付与する効果が低下し、超親水性が得られなくなる。 On the other hand, since photocatalysts such as titanium oxide are essentially high refractive materials, the reflectance of the hydrophilic coat is increased. When the reflectance is high, a ghost is generated due to the reflection of incident light on the lens surface, and visibility is deteriorated. If the content of the photocatalyst in the hydrophilic coat is decreased in order to reduce the reflectance, the effect of imparting hydrophilicity is reduced and superhydrophilicity cannot be obtained.
 レンズ基材上に、高屈折率層と低屈折率層が交互に形成された多層の反射防止層を形成し、その上に親水コートを形成することにより、全体の反射率を低減することができる。しかし、最表面の親水コートの反射率が高すぎると、全体の反射率を十分に低下させることができない。したがって、反射防止層を形成する場合においても、親水コート自体の反射率を低減する必要がある。 The overall reflectance can be reduced by forming a multilayer antireflection layer in which a high refractive index layer and a low refractive index layer are alternately formed on a lens substrate, and forming a hydrophilic coat thereon. it can. However, if the reflectance of the outermost hydrophilic coat is too high, the overall reflectance cannot be sufficiently reduced. Therefore, even when the antireflection layer is formed, it is necessary to reduce the reflectance of the hydrophilic coat itself.
 屋外に設置されるカメラおよびビデオ等の撮影機器、特に、自動車の外部に搭載されるリアビューやサイドビューをモニターできるカメラ(図1に示されるリアビューカメラ1やサイドビューカメラ2)のレンズは、走行中の砂塵の擦過により擦り傷が生じ易い。親水コートに擦り傷が生じて表面が粗くなると親水性が低下し、視認性が悪くなる。親水コートに擦り傷が生じることを防止するには、親水コートの硬度を高めることが有効である。 Cameras installed outdoors and video-taking equipment such as video, in particular, the cameras (rear view camera 1 and side view camera 2 shown in FIG. 1) that can monitor the rear view and side view mounted outside the automobile are traveling. Scratches are likely to occur due to rubbing of dust inside. If the hydrophilic coat is scratched and the surface becomes rough, the hydrophilicity decreases and the visibility deteriorates. In order to prevent the hydrophilic coat from being scratched, it is effective to increase the hardness of the hydrophilic coat.
 例えば、市販品Aは親水性が高いが硬度が低く、使用初期の視認性はいいが、擦り傷により親水性が低下してしまう問題点がある。一方、市販品Bのように耐久性を向上するために硬度を高くすると親水性が低下してしまう問題点がある。また、親水性と耐久性とのバランスをとった市販品Cについては、親水性および耐久性の双方とも満足のいくレベルではない(図3)。 For example, the commercial product A has high hydrophilicity but low hardness and good visibility at the beginning of use, but there is a problem that the hydrophilicity decreases due to scratches. On the other hand, when the hardness is increased in order to improve the durability like the commercial product B, there is a problem that the hydrophilicity is lowered. In addition, regarding the commercial product C that balances hydrophilicity and durability, both hydrophilicity and durability are not satisfactory levels (FIG. 3).
 このように、従来の技術では、高い親水性と高い耐久性とを同時に付与することができないため、高い親水性と高い耐久性を同時に有する親水コートの開発が必要である。 As described above, since the conventional technique cannot provide high hydrophilicity and high durability at the same time, it is necessary to develop a hydrophilic coat having high hydrophilicity and high durability at the same time.
 すなわち、反射率が低く、かつ、高い親水性と高い耐久性とを同時に有する親水コートが強く求められている。 That is, there is a strong demand for a hydrophilic coat having low reflectivity and having both high hydrophilicity and high durability.
 シリケート材料のネットワーク3に光触媒活性を有する微粒子4を分散させて形成された親水層(親水コート)がガラス基材の表面に形成された親水レンズにおいて、親水層の膜厚を制御することによって反射率を低減できることが見出された。さらに、親水層に分散させる光触媒活性を有する微粒子4の平均粒径ならびに、親水層の膜厚およびその表面粗さを同時に制御することによって親水性および硬度を同時に高められることが見出された。 In a hydrophilic lens in which a hydrophilic layer (hydrophilic coat) formed by dispersing fine particles 4 having photocatalytic activity in a network 3 of a silicate material is formed on the surface of a glass substrate, reflection is performed by controlling the thickness of the hydrophilic layer. It has been found that the rate can be reduced. Furthermore, it has been found that the hydrophilicity and hardness can be simultaneously increased by simultaneously controlling the average particle diameter of the fine particles 4 having photocatalytic activity dispersed in the hydrophilic layer, and the film thickness and surface roughness of the hydrophilic layer.
 ここに開示する技術による親水コート用のシリケート材料は、ケイ素(Si)と酸素(O)の結合(シロキサン結合)を含む三次元のネットワーク構造を有する組成物であり、メチルシリケート、エチルシリケート、メチルエチルシリケートなどのシリケートのポリマーが例示される。一般的に、シリケート材料を加水分解することによりシラノールを形成した後、シラノールを加熱して脱水縮重合することにより、シロキサン結合を含む三次元のネットワーク構造のコーティングが形成される。 A silicate material for a hydrophilic coat according to the technique disclosed herein is a composition having a three-dimensional network structure including a bond (siloxane bond) of silicon (Si) and oxygen (O), and includes methyl silicate, ethyl silicate, methyl Illustrative are silicate polymers such as ethyl silicate. In general, after silanol is formed by hydrolyzing a silicate material, silanol is heated and subjected to dehydration condensation polymerization to form a coating having a three-dimensional network structure including siloxane bonds.
 ここに開示する技術による親水コートに分散させる光触媒活性を有する微粒子4は、酸化チタンなどの微粒子が例示される。 The fine particles 4 having photocatalytic activity dispersed in the hydrophilic coat by the technique disclosed herein are exemplified by fine particles such as titanium oxide.
 ここに開示する技術は、ガラス基材およびガラス基材上に形成された親水層を備えた親水レンズを提供する。親水層は光触媒活性を有する微粒子4が分散したシリケート材料を含む。親水層の膜厚は30nm以下であり、光触媒活性を有する微粒子の平均粒径が30nm以下である。また、親水層の膜厚を10~30nmとし、その表面の算術平均粗さRaが0.7~1.9nmとなるように形成してもよい。 The technology disclosed herein provides a hydrophilic lens having a glass substrate and a hydrophilic layer formed on the glass substrate. The hydrophilic layer includes a silicate material in which fine particles 4 having photocatalytic activity are dispersed. The film thickness of the hydrophilic layer is 30 nm or less, and the average particle size of the fine particles having photocatalytic activity is 30 nm or less. Alternatively, the hydrophilic layer may be formed to have a film thickness of 10 to 30 nm and an arithmetic average roughness Ra of the surface of 0.7 to 1.9 nm.
 ここに開示する技術によれば、親水層の膜厚を30nm以下まで、好ましくは、10~30nmに薄膜化することによって、反射率をガラス基材自体の反射率と同程度まで低減することができる。ガラス基材に反射防止層を形成し、その上に上記親水層を形成すれば、ガラス基材自体の反射率よりも十分に低い反射率を達成することができる。 According to the technique disclosed herein, the film thickness of the hydrophilic layer is reduced to 30 nm or less, preferably 10 to 30 nm, whereby the reflectance can be reduced to the same level as the reflectance of the glass substrate itself. it can. If an antireflection layer is formed on a glass substrate and the hydrophilic layer is formed thereon, a reflectance sufficiently lower than the reflectance of the glass substrate itself can be achieved.
 また、光触媒の微粒子の平均粒径を30nm以下とし、かつ、上記親水層の膜厚を10~30nm、その表面の算術平均粗さRaを0.7~1.9nmの範囲に制御することによって親水層の親水性と硬度とを高いレベルで両立することができる。 Further, by controlling the average particle diameter of the photocatalyst fine particles to 30 nm or less, the film thickness of the hydrophilic layer to 10 to 30 nm, and the arithmetic average roughness Ra of the surface to 0.7 to 1.9 nm. The hydrophilicity and hardness of the hydrophilic layer can be compatible at a high level.
 ここに開示する技術によれば、反射率が低く、また、高い親水性と高い硬度とを同時に有する親水レンズを提供することができる。 According to the technology disclosed herein, it is possible to provide a hydrophilic lens having low reflectivity and having both high hydrophilicity and high hardness at the same time.
図1は、車載用リアビューおよびサイドビューカメラを設置した自動車を示す図である。FIG. 1 is a diagram showing an automobile provided with a vehicle-mounted rear view and side view camera. 図2は、シリケート材料のネットワークに光触媒活性を有する微粒子を分散させた親水コート用シリケート樹脂組成物の構造を示す模式図である。FIG. 2 is a schematic diagram showing the structure of a silicate resin composition for hydrophilic coating in which fine particles having photocatalytic activity are dispersed in a network of silicate materials. 図3は、親水性および耐久性に関する市販品と開発品とを比較する概念図である。FIG. 3 is a conceptual diagram comparing a commercial product and a developed product with respect to hydrophilicity and durability. 図4は、接触角を説明する概略図である。FIG. 4 is a schematic diagram for explaining the contact angle. 図5は、ガラス基材上に直接親水層が形成された親水レンズの概略断面図である。FIG. 5 is a schematic cross-sectional view of a hydrophilic lens in which a hydrophilic layer is directly formed on a glass substrate. 図6は、ガラス基材上に形成された反射防止層の上に親水層が形成された親水レンズの概略断面図である。FIG. 6 is a schematic cross-sectional view of a hydrophilic lens in which a hydrophilic layer is formed on an antireflection layer formed on a glass substrate. 図7は、親水層の膜厚と反射率の関係を示す図である。FIG. 7 is a diagram showing the relationship between the thickness of the hydrophilic layer and the reflectance. 図8は、親水層の膜厚と反射率の関係を示す図である。FIG. 8 is a diagram showing the relationship between the thickness of the hydrophilic layer and the reflectance. 図9Aは、表面における反射率が低いレンズを装着したカメラで撮影した写真を示す図である。FIG. 9A is a diagram showing a photograph taken by a camera equipped with a lens having a low reflectance on the surface. 図9Bは、表面における反射率が高いレンズを装着したカメラで撮影した写真を示す図である。FIG. 9B is a diagram showing a photograph taken with a camera equipped with a lens having a high reflectance on the surface. 図10Aは、親水コート処理後のレンズ表面に霧滴が付着した状態で撮影した写真を示す図である。FIG. 10A is a view showing a photograph taken with mist droplets attached to the lens surface after the hydrophilic coating treatment. 図10Bは、親水コート処理前のレンズ表面に霧滴が付着した状態で撮影した写真を示す図である。FIG. 10B is a view showing a photograph taken with mist droplets attached to the lens surface before the hydrophilic coating treatment. 図11Aは、本開示の実施例に係る親水レンズの擦り試験後の表面を撮影した顕微鏡写真を示す図である。FIG. 11A is a diagram illustrating a photomicrograph of the surface after a rubbing test of a hydrophilic lens according to an example of the present disclosure. 図11Bは、比較例に示した親水レンズの擦り試験後の表面を撮影した顕微鏡写真を示す図である。FIG. 11B is a diagram showing a photomicrograph of the surface after the rubbing test of the hydrophilic lens shown in the comparative example.
 [親水コート用シリケート樹脂組成物の調製]
 調製例1
 メチルシリケート、平均粒径4nmの酸化チタンゾルおよびシリケートの硬化触媒である有機金属化合物に、溶媒として水とメタノールを加えて、親水性コート用シリケート系組成物Aを得る。
[Preparation of silicate resin composition for hydrophilic coating]
Preparation Example 1
Water and methanol are added as solvents to methyl silicate, titanium oxide sol having an average particle diameter of 4 nm, and an organometallic compound as a silicate curing catalyst to obtain a silicate composition A for hydrophilic coating.
 メチルシリケートおよび酸化チタンゾルは、加水分解・脱水縮重合反応後のシリカ換算重量(シリカに換算したときの重量)および酸化チタン換算重量(酸化チタンに換算したときの重量)の総重量に対して、酸化チタン換算重量が60~80%になるように添加する。また、その際、溶液中の固形分濃度が1.0~10.0重量%になるように濃度を調整する。 Methyl silicate and titanium oxide sol are based on the total weight of silica equivalent weight (weight when converted to silica) and titanium oxide equivalent weight (weight when converted to titanium oxide) after hydrolysis / dehydration condensation polymerization reaction. It is added so that the titanium oxide equivalent weight is 60 to 80%. At that time, the concentration is adjusted so that the solid content concentration in the solution is 1.0 to 10.0% by weight.
 そして、調製された親水性コート用シリケート系組成物Aを、直径30.0mmのガラス円板に2000~5000rpmでスピンコートし、さらに300℃で焼成することにより、所望の親水層が形成される。 The prepared hydrophilic silicate composition A is spin-coated on a glass disc having a diameter of 30.0 mm at 2000 to 5000 rpm, and further baked at 300 ° C., thereby forming a desired hydrophilic layer. .
 調製例2
 メチルシリケート、平均粒径30nmの酸化チタンゾルおよびシリケートの硬化触媒である有機金属化合物に、溶媒として水とメタノールを加えて、親水性コート用シリケート系組成物Bを得る。
Preparation Example 2
Water and methanol are added as solvents to methyl silicate, titanium oxide sol having an average particle diameter of 30 nm, and an organometallic compound as a silicate curing catalyst to obtain silicate composition B for hydrophilic coating.
 メチルシリケートおよび酸化チタンゾルは、加水分解・脱水縮重合反応後のシリカ換算重量および酸化チタン換算重量の総重量に対して酸化チタン換算重量が60~80%になるように添加する。また、その際、溶液中の固形分濃度が1.0~10.0重量%になるように濃度を調整する。 The methyl silicate and titanium oxide sol are added so that the titanium oxide equivalent weight is 60 to 80% with respect to the total weight of the silica equivalent weight and the titanium oxide equivalent weight after the hydrolysis / dehydration condensation polymerization reaction. At that time, the concentration is adjusted so that the solid content concentration in the solution is 1.0 to 10.0% by weight.
 そして、調製された親水性コート用シリケート系組成物Bを、直径30.0mmのガラス円板に2000~5000rpmでスピンコートし、さらに300℃で焼成することにより、所望の親水層が形成される。 Then, the prepared hydrophilic coating silicate composition B is spin-coated on a glass disc having a diameter of 30.0 mm at 2000 to 5000 rpm, and further baked at 300 ° C. to form a desired hydrophilic layer. .
 調製例3
 メチルシリケート、平均粒径43nmの酸化チタンゾルおよびシリケートの硬化触媒である有機金属化合物に、溶媒として水とメタノールを加えて、親水性コート用シリケート系組成物Cを得る。
Preparation Example 3
Water and methanol are added as solvents to methyl silicate, titanium oxide sol having an average particle size of 43 nm, and an organometallic compound as a silicate curing catalyst to obtain silicate composition C for hydrophilic coating.
 メチルシリケートおよび酸化チタンゾルは、加水分解・脱水縮重合反応後のシリカ換算重量および酸化チタン換算重量の総重量に対して酸化チタン換算重量が60%になるように添加する。また、その際、溶液中の固形分濃度が10.0重量%になるように調整する。 Methyl silicate and titanium oxide sol are added so that the titanium oxide equivalent weight is 60% with respect to the total weight of the silica equivalent weight and the titanium oxide equivalent weight after the hydrolysis / dehydration condensation polymerization reaction. At that time, the solid content concentration in the solution is adjusted to 10.0% by weight.
 そして、調製された親水性コート用シリケート系組成物Cを、直径30.0mmのガラス円板に2000~5000rpmでスピンコートし、さらに300℃で焼成することにより、所望の親水層を形成した。 Then, the prepared silicate composition C for hydrophilic coating was spin-coated on a glass disk having a diameter of 30.0 mm at 2000 to 5000 rpm, and further baked at 300 ° C. to form a desired hydrophilic layer.
 なお、調製例としては上記3つを例に挙げたが、酸化チタンゾルの代わりに、酸化亜鉛ゾル、酸化スズゾル、酸化タングステンゾルを用いて親水性コート用シリケート系組成物を得てもよい。また、酸化チタンゾルの代わりに、酸化チタンゾル、酸化亜鉛ゾル、酸化スズゾル、酸化タングステンゾルのうち2つ以上を混合したものを用いて親水性コート用シリケート系組成物を得てもよい。 Although the above three examples are given as preparation examples, a silicate composition for hydrophilic coating may be obtained using zinc oxide sol, tin oxide sol, or tungsten oxide sol instead of titanium oxide sol. Moreover, you may obtain the silicate type composition for hydrophilic coatings using what mixed 2 or more of titanium oxide sol, zinc oxide sol, tin oxide sol, and tungsten oxide sol instead of titanium oxide sol.
 つまり、光触媒活性を有する微粒子4としては、酸化チタンの代わりに酸化亜鉛、酸化スズ、酸化タングステン等でもよく、親水層に複数種類の微粒子が存在してもよい。 That is, as the fine particles 4 having photocatalytic activity, zinc oxide, tin oxide, tungsten oxide or the like may be used instead of titanium oxide, and plural kinds of fine particles may be present in the hydrophilic layer.
 次に、調製例で得られた組成物を用いて形成された親水層(親水コート)の特性を測定した結果を示す。 Next, the results of measuring the properties of the hydrophilic layer (hydrophilic coat) formed using the composition obtained in the Preparation Example are shown.
 [測定手段]
 1.膜厚測定
 (1)分光エリプソメータ
 分光エリプソメトメータ(UVISEL: 株式会社堀場製作所製)を用いて、親水層の膜厚を測定する。Xeランプを用いて210~880nmのスペクトル域の光を測定対象の親水層に入射し、入射光と反射光の偏光の変化を測定して膜厚を求める。
[Measuring means]
1. Film thickness measurement (1) Spectral ellipsometer The thickness of the hydrophilic layer is measured using a spectroscopic ellipsometer (UVISEL: manufactured by Horiba, Ltd.). Using a Xe lamp, light in the spectral range of 210 to 880 nm is incident on the hydrophilic layer to be measured, and the change in polarization of incident light and reflected light is measured to determine the film thickness.
 (2)段差計
 段差計(DEKTAK 6M STYLUS PROFILER: Veeco社製)を用いて、親水層の膜厚を測定する。触針により測定対象の親水層と基材との段差を測定して膜厚を求める。
(2) Step meter The thickness of the hydrophilic layer is measured using a step meter (DEKTAK 6M STYLUS PROFILER: manufactured by Veeco). The film thickness is obtained by measuring the level difference between the hydrophilic layer to be measured and the substrate using a stylus.
 2.粒径測定
 (1)粒度分布計
 粒度分布計(Nanotrac wave UT151: Microtrac社製)を用いて、光触媒微粒子4の粒度分布を測定する。
2. Particle size measurement (1) Particle size distribution meter The particle size distribution of the photocatalyst fine particles 4 is measured using a particle size distribution meter (Nanotrac wave UT151: manufactured by Microtrac).
 (2)電子顕微鏡
 電子顕微鏡(S-4800 Scanning Electron Microscope: 株式会社日立ハイテクノロジーズ製)を用いて測定対象の光触媒微粒子4を撮像し、得られた画像を画像処理して粒径を算出する。
(2) Electron Microscope The photocatalyst fine particles 4 to be measured are imaged using an electron microscope (S-4800 Scanning Electron Microscope: manufactured by Hitachi High-Technologies Corporation), and the obtained image is image-processed to calculate the particle size.
 3.表面粗さ測定
 表面粗さ計(New View 6K: ZYGO社製)を用いて、測定対象の親水層表面の粗さ曲線を記録し、その算術平均粗さRaを測定する。
3. Surface Roughness Measurement Using a surface roughness meter (New View 6K: manufactured by ZYGO), the roughness curve of the surface of the hydrophilic layer to be measured is recorded, and its arithmetic average roughness Ra is measured.
 4.反射率
 反射計(USPM-RU III: オリンパス株式会社製)を用いて、親水層の反射率を測定する。波長550nmの光を照射して反射率を求める。
4). Reflectance The reflectance of the hydrophilic layer is measured using a reflectometer (USPM-RU III: manufactured by Olympus Corporation). The reflectance is obtained by irradiating light having a wavelength of 550 nm.
 ここに開示する技術においては、反射率は10%以下であることが好ましい。 In the technique disclosed herein, the reflectance is preferably 10% or less.
 5.接触角測定
 親水層表面の親水性は、自動接触角計(MD300: 協和界面化学製)を用いて、測定対象の親水層の表面上の水滴が形成する静的な接触角θにより評価する。接触角θとは、試料表面と水滴が試料表面と接する箇所の接線とのなす角度を意味する(図4)。図中、γは親水層の表面張力、γは水の表面張力、γSLは親水層と水の界面張力を意味する。
5. Contact angle measurement The hydrophilicity of the hydrophilic layer surface is evaluated by a static contact angle θ formed by water droplets on the surface of the hydrophilic layer to be measured, using an automatic contact angle meter (MD300, manufactured by Kyowa Interface Chemical Co., Ltd.). The contact angle θ means an angle formed between a sample surface and a tangent line where a water droplet contacts the sample surface (FIG. 4). In the figure, γ S means the surface tension of the hydrophilic layer, γ L means the surface tension of water, and γ SL means the interfacial tension of the hydrophilic layer and water.
 ここに開示する技術においては、接触角θが30°以下であればその試料は親水性であり、10°以下であれば超親水性であると定義する。実用上、5°以下であることが好ましい。 In the technique disclosed herein, a sample is defined as being hydrophilic if the contact angle θ is 30 ° or less, and super-hydrophilic if it is 10 ° or less. Practically, it is preferably 5 ° or less.
 6.硬度測定
 親水層表面の耐久性は、鉛筆硬度試験法(JIS K5600-5-4)により求めた鉛筆硬度で評価する。鉛筆硬度とは、異なる鉛筆濃度の芯で表面を引っ掻き、傷が生じない最も硬い鉛筆濃度を意味する。鉛筆濃度は、柔らかい側から硬い側に向かって、6B、5B、4B、3B、2B、B、HB、F、H、2H、3H、4H、5H、6Hである。鉛筆の芯を5~6mm露出させ、円柱状になるように研磨紙で先端を平らにする。表面が水平になるように測定対象を設置し、表面に対して鉛筆の角度を45±1°とし、750±10gの荷重をかけて測定する。
6). Hardness measurement The durability of the hydrophilic layer surface is evaluated by the pencil hardness determined by the pencil hardness test method (JIS K5600-5-4). The pencil hardness means the hardest pencil density at which the surface is scratched with a lead having a different pencil density and no flaw is generated. The pencil density is 6B, 5B, 4B, 3B, 2B, B, HB, F, H, 2H, 3H, 4H, 5H, 6H from the soft side to the hard side. Expose the pencil core 5-6 mm, and flatten the tip with abrasive paper so that it is cylindrical. The measurement object is set so that the surface is horizontal, the angle of the pencil is 45 ± 1 ° with respect to the surface, and a load of 750 ± 10 g is applied for measurement.
 ここに開示する技術においては、実用上、十分な耐久性を示すためには、鉛筆硬度が5Hまたはそれ以上であることが好ましい。 In the technology disclosed herein, it is preferable that the pencil hardness is 5H or more in order to show practically sufficient durability.
 7.耐擦傷性測定
 親水層表面の耐久性は、擦り試験により観察された耐擦傷性でも評価する。パーム(やしの繊維)製のたわしに500gの荷重を負荷して親水層表面を100往復こすったあと、擦り傷の発生を顕微鏡で観察する。
7). Scratch resistance measurement The durability of the hydrophilic layer surface is also evaluated by the scratch resistance observed in the rubbing test. A 500 g load is applied to a palm (palm fiber) scourer and the surface of the hydrophilic layer is rubbed 100 times, and then the generation of scratches is observed with a microscope.
 以下、ここに開示する技術を実施例および比較例に基づき説明するが、これらの実施例は例示であり、ここに開示する技術を限定するものではない。 Hereinafter, the technology disclosed herein will be described based on examples and comparative examples, but these examples are illustrative and do not limit the technology disclosed herein.
 1.親水層の反射率に対する膜厚の影響
 ガラス基材110上に直接シリケート系組成物Aを塗布し、種々の膜厚で親水層120を形成した(図5)。また、ガラス基材210上にまず高屈折率(TaO)層と低屈折率層(SiO)が交互に積層された反射防止層(AR層)230を形成し、その上にシリケート系組成物Aを塗布し、種々の膜厚で親水層220を形成した(図6)。30nm未満の膜厚は分光エリプソメトリーにより測定し、30nm以上の膜厚は段差計により測定した。
1. Effect of film thickness on the reflectance of the hydrophilic layer The silicate composition A was directly applied on the glass substrate 110 to form the hydrophilic layer 120 with various film thicknesses (FIG. 5). Further, an antireflection layer (AR layer) 230 in which a high refractive index (TaO 5 ) layer and a low refractive index layer (SiO 2 ) are alternately laminated is first formed on the glass substrate 210, and a silicate composition is formed thereon. Object A was applied to form hydrophilic layer 220 with various film thicknesses (FIG. 6). The film thickness of less than 30 nm was measured by spectroscopic ellipsometry, and the film thickness of 30 nm or more was measured by a step gauge.
 各親水層表面の算術平均粗さRa、水滴の接触角および反射率を測定した。測定結果を表1に示す。 The arithmetic average roughness Ra, the contact angle of water droplets and the reflectance were measured on the surface of each hydrophilic layer. The measurement results are shown in Table 1.
 ガラス基材110上に親水層120を直接形成した親水レンズ100の場合、親水層120の膜厚を30nm以下まで薄膜化すると、ガラス基材110自体の反射率(4%)と同程度まで反射率を低減できた(図7)。 In the case of the hydrophilic lens 100 in which the hydrophilic layer 120 is directly formed on the glass substrate 110, when the thickness of the hydrophilic layer 120 is reduced to 30 nm or less, it is reflected to the same degree as the reflectance (4%) of the glass substrate 110 itself. The rate could be reduced (FIG. 7).
 さらに、ガラス基材210上に反射防止層230を形成し、その上に親水層220を形成した親水レンズ200の場合、親水層220の膜厚を30nm以下まで薄膜化すると、ガラス基材210自体の反射率(4%)よりも低い反射率を達成することができた(図8)。 Furthermore, in the case of the hydrophilic lens 200 in which the antireflection layer 230 is formed on the glass substrate 210 and the hydrophilic layer 220 is formed thereon, when the thickness of the hydrophilic layer 220 is reduced to 30 nm or less, the glass substrate 210 itself It was possible to achieve a reflectance lower than that of 4% (FIG. 8).
 親水層の膜厚が30nm以下であれば、波長550nmの入射光に対する反射率が低く、レンズを通して撮影したときにレンズ表面で入射光が反射して光の輪のようなゴーストが発生しない(図9A)。これにより、十分に良好な視認性を得ることができる。しかし、親水層の膜厚が70nmのとき、反射防止層230によっても反射率を十分に低減させることはできず、ゴーストが発生した(図9B)。 If the thickness of the hydrophilic layer is 30 nm or less, the reflectance with respect to incident light with a wavelength of 550 nm is low, and when photographing through a lens, the incident light is reflected on the lens surface and a ghost like a ring of light does not occur (see FIG. 9A). Thereby, sufficiently good visibility can be obtained. However, when the thickness of the hydrophilic layer was 70 nm, the reflectance could not be sufficiently reduced even by the antireflection layer 230, and ghost was generated (FIG. 9B).
 組成物Aを用いて親水層を形成する親水コート処理後(図10A)および処理前(図10B)で、レンズ表面に霧吹きで水を噴霧して、霧滴の付着状況を確認した。 After the hydrophilic coat treatment for forming a hydrophilic layer using the composition A (FIG. 10A) and before the treatment (FIG. 10B), water was sprayed on the lens surface with a spray to confirm the state of mist droplet adhesion.
 親水コート処理後のレンズは、霧滴の付着による影響は小さく、視認性は良好であった。一方で、親水コート処理前のレンズは、霧滴の付着により、視認性が大きく劣化した。 The lens after the hydrophilic coating treatment was less affected by the adhering mist and had good visibility. On the other hand, the visibility of the lens before the hydrophilic coating treatment was greatly deteriorated due to adhesion of mist droplets.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 2.親水層の親水性および硬度に対する光触媒微粒子4の粒径および親水層の表面粗さの影響
 ガラス基材上にまず高屈折率(TaO)層と低屈折率層(SiO)が交互に積層された反射防止層(AR層)を形成し、その上にシリケート系組成物A、B、Cをそれぞれ塗布し、種々の膜厚で親水層を形成した。30nm未満の膜厚は分光エリプソメトリーにより測定し、30nm以上の膜厚は段差計により測定した。
2. Influence of particle diameter of photocatalyst fine particles 4 and surface roughness of hydrophilic layer on hydrophilicity and hardness of hydrophilic layer First, a high refractive index (TaO 5 ) layer and a low refractive index layer (SiO 2 ) are alternately laminated on a glass substrate. The antireflection layer (AR layer) thus formed was formed, and silicate-based compositions A, B, and C were applied thereon to form hydrophilic layers with various film thicknesses. The film thickness of less than 30 nm was measured by spectroscopic ellipsometry, and the film thickness of 30 nm or more was measured by a step gauge.
 各親水層表面の算術平均粗さRa、鉛筆硬度および擦り試験前後での水滴の接触角を測定した。測定結果を表2に示す。 The arithmetic average roughness Ra, pencil hardness, and contact angle of water droplets before and after the rubbing test were measured on the surface of each hydrophilic layer. The measurement results are shown in Table 2.
 表2に示された測定結果から、微粒子の平均粒径が30nm以下であり、親水層の膜厚が10~30nmであり、かつ、親水層表面の算術平均表面粗さRaが0.7~1.7nmである場合、親水層が高い鉛筆硬度(5H以上)および擦り試験後でも低い接触角(30°以下)を示すことがわかる。擦り試験後、実施例3~5の親水層の表面には擦傷がなく(図11A)、比較例3および4の親水層の表面には擦傷が確認された(図11B)。 From the measurement results shown in Table 2, the average particle size of the fine particles is 30 nm or less, the thickness of the hydrophilic layer is 10 to 30 nm, and the arithmetic average surface roughness Ra of the hydrophilic layer surface is 0.7 to When the thickness is 1.7 nm, it can be seen that the hydrophilic layer exhibits a high pencil hardness (5H or more) and a low contact angle (30 ° or less) even after the rubbing test. After the rubbing test, there were no scratches on the surfaces of the hydrophilic layers of Examples 3 to 5 (FIG. 11A), and scratches were confirmed on the surfaces of the hydrophilic layers of Comparative Examples 3 and 4 (FIG. 11B).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 ここに開示する技術の親水レンズは、反射率が低く、また、高い親水性と高い硬度とを同時に有するので、屋外に設置されるカメラおよびビデオ等の撮影機器、特に、自動車の外部に搭載されるリアビューやサイドビューをモニターするカメラに使用するのに有用である。 The hydrophilic lens of the technology disclosed herein has low reflectance, and has high hydrophilicity and high hardness at the same time, so it is mounted on the outside of an automobile such as a camera and video, particularly an automobile. This is useful for cameras that monitor rear view and side view.
1   リアビューカメラ
2   サイドビューカメラ
3   シリケート材料のネットワーク
4   光触媒微粒子
100 親水レンズ
110 ガラス基材
120 親水層
200 親水レンズ
210 ガラス基材
220 親水層
230 反射防止層
DESCRIPTION OF SYMBOLS 1 Rear view camera 2 Side view camera 3 Network of silicate material 4 Photocatalyst microparticle 100 Hydrophilic lens 110 Glass base material 120 Hydrophilic layer 200 Hydrophilic lens 210 Glass base material 220 Hydrophilic layer 230 Antireflection layer

Claims (4)

  1.  ガラス基材および前記ガラス基材の表面に形成された親水層を備えた親水レンズであって、前記親水層は光触媒活性を有する微粒子が分散したシリケート材料を含み、前記親水層の膜厚は30nm以下であり、前記微粒子の平均粒径が30nm以下であり、かつ、前記親水層表面の算術平均粗さが0.7~1.9nmである親水レンズ。 A hydrophilic lens comprising a glass substrate and a hydrophilic layer formed on the surface of the glass substrate, wherein the hydrophilic layer includes a silicate material in which fine particles having photocatalytic activity are dispersed, and the thickness of the hydrophilic layer is 30 nm. A hydrophilic lens, wherein the average particle size of the fine particles is 30 nm or less, and the arithmetic average roughness of the surface of the hydrophilic layer is 0.7 to 1.9 nm.
  2.  前記親水層の膜厚が10~30nmである、請求項1に記載の親水レンズ。 The hydrophilic lens according to claim 1, wherein the hydrophilic layer has a thickness of 10 to 30 nm.
  3.  前記微粒子に酸化チタンを含む、請求項1または2に記載の親水レンズ。 The hydrophilic lens according to claim 1 or 2, wherein the fine particles contain titanium oxide.
  4.  前記ガラス基材と前記親水層との間に、さらに、反射防止層が形成されている、請求項1~3のいずれかに記載の親水レンズ。 The hydrophilic lens according to any one of claims 1 to 3, wherein an antireflection layer is further formed between the glass substrate and the hydrophilic layer.
PCT/JP2016/000995 2015-03-19 2016-02-25 Hydrophilic lens WO2016147573A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015056824A JP2018077260A (en) 2015-03-19 2015-03-19 Hydrophilic lens
JP2015-056824 2015-03-19

Publications (1)

Publication Number Publication Date
WO2016147573A1 true WO2016147573A1 (en) 2016-09-22

Family

ID=56919941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000995 WO2016147573A1 (en) 2015-03-19 2016-02-25 Hydrophilic lens

Country Status (2)

Country Link
JP (1) JP2018077260A (en)
WO (1) WO2016147573A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018180264A (en) * 2017-04-12 2018-11-15 マクセル株式会社 Wide-angle lens unit and vehicle-mounted camera
WO2019064771A1 (en) * 2017-09-29 2019-04-04 日本電産株式会社 Lens, lens unit and imaging device
JP2020116897A (en) * 2019-01-28 2020-08-06 株式会社日立製作所 Hydrophilic member and lens, onboard camera, resin film and window including the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10146251A (en) * 1995-03-20 1998-06-02 Toto Ltd Composite material having photocatalytic hydrophilic surface
JP2000135755A (en) * 1998-07-17 2000-05-16 Toto Ltd Hydrophilic composite material
JP2003170516A (en) * 2001-09-28 2003-06-17 Matsushita Electric Works Ltd Anti-staining film formed product
JP2003206472A (en) * 2002-01-16 2003-07-22 Fuji Photo Film Co Ltd Stain-resisting material and anti-reflection material using the same
JP2006145709A (en) * 2004-11-18 2006-06-08 Hitachi Ltd Antireflecting membrane, optical component using antireflecting membrane, image forming apparatus using antireflecting membrane
JP2013227206A (en) * 2012-03-27 2013-11-07 Mitsubishi Chemicals Corp Porous silica film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10146251A (en) * 1995-03-20 1998-06-02 Toto Ltd Composite material having photocatalytic hydrophilic surface
JP2000135755A (en) * 1998-07-17 2000-05-16 Toto Ltd Hydrophilic composite material
JP2003170516A (en) * 2001-09-28 2003-06-17 Matsushita Electric Works Ltd Anti-staining film formed product
JP2003206472A (en) * 2002-01-16 2003-07-22 Fuji Photo Film Co Ltd Stain-resisting material and anti-reflection material using the same
JP2006145709A (en) * 2004-11-18 2006-06-08 Hitachi Ltd Antireflecting membrane, optical component using antireflecting membrane, image forming apparatus using antireflecting membrane
JP2013227206A (en) * 2012-03-27 2013-11-07 Mitsubishi Chemicals Corp Porous silica film

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018180264A (en) * 2017-04-12 2018-11-15 マクセル株式会社 Wide-angle lens unit and vehicle-mounted camera
WO2019064771A1 (en) * 2017-09-29 2019-04-04 日本電産株式会社 Lens, lens unit and imaging device
CN111033319A (en) * 2017-09-29 2020-04-17 日本电产株式会社 Lens, lens unit, and image pickup apparatus
CN111033319B (en) * 2017-09-29 2022-03-04 日本电产株式会社 Lens, lens unit, and image pickup apparatus
JP2020116897A (en) * 2019-01-28 2020-08-06 株式会社日立製作所 Hydrophilic member and lens, onboard camera, resin film and window including the same
WO2020158030A1 (en) * 2019-01-28 2020-08-06 株式会社日立製作所 Hydrophilic member, lens in which same is used, on-board camera, resin film, and window
EP3919270A4 (en) * 2019-01-28 2022-11-16 Hitachi, Ltd. Hydrophilic member, lens in which same is used, on-board camera, resin film, and window
JP7376239B2 (en) 2019-01-28 2023-11-08 株式会社日立製作所 Hydrophilic members, lenses using the same, in-vehicle cameras, resin films, and windows

Also Published As

Publication number Publication date
JP2018077260A (en) 2018-05-17

Similar Documents

Publication Publication Date Title
JP6305462B2 (en) Sulfonate functional coatings and methods
CN107924003B (en) Light-transmitting structure
US8048511B2 (en) Titanium oxide coating agent and titanium oxide film forming method
JP6118012B2 (en) Antifogging film coated article
JP4995428B2 (en) Titanium oxide coating formation method
US6783845B2 (en) Anti-fogging coating material, anti-fogging coating, and anti-fogging optical member
JP6598750B2 (en) Optical member and optical member manufacturing method
JP4527272B2 (en) Low reflection glass article
WO2012014877A1 (en) Photocatalyst coated body and photocatalyst coating liquid
WO2011070714A1 (en) Cover glass for photoelectric converter and process for producing same
WO2011040405A1 (en) Photocatalyst-coated object and photocatalyst coating liquid therefor
WO2014020836A1 (en) Cover glass for photoelectric conversion device
JP4048912B2 (en) Surface antifouling composite resin film, surface antifouling article, decorative board
WO2016147573A1 (en) Hydrophilic lens
WO2003101904A1 (en) Hydrophilic, anti-fogging, and anti-staining thin film and method for preparation thereof
JP2012017394A (en) Anti-fog article
JP2007063477A (en) Inorganic coating composition, hydrophilic coating film, and agricultural film
JP2020122809A (en) Coating liquid for forming visible light scattering film, and base material for forming visible light scattering film
WO2016204003A1 (en) Glass article and method for producing same
WO2016121404A1 (en) Glass plate provided with low-reflection coating, method for manufacturing substrate provided with low-reflection coating, and coating liquid for forming low-reflection coating for substrate provided with low-reflection coating
WO2011090156A1 (en) Anti-fog article
JP2004083307A (en) Silica fine particle, coating material for low refractive index film formation, low refractive index film and method for manufacturing the same, and antireflection film
JP2017154899A (en) Antifouling article and method for producing the same
JP4501562B2 (en) SUBSTRATE WITH LAMINATED FILM AND METHOD FOR PRODUCING THE SAME
WO2007081025A1 (en) Glass plate with film for vehicle and process for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764406

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16764406

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP