WO2007081025A1 - Glass plate with film for vehicle and process for producing the same - Google Patents

Glass plate with film for vehicle and process for producing the same Download PDF

Info

Publication number
WO2007081025A1
WO2007081025A1 PCT/JP2007/050515 JP2007050515W WO2007081025A1 WO 2007081025 A1 WO2007081025 A1 WO 2007081025A1 JP 2007050515 W JP2007050515 W JP 2007050515W WO 2007081025 A1 WO2007081025 A1 WO 2007081025A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
infrared cut
coating
vehicle
glass plate
Prior art date
Application number
PCT/JP2007/050515
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Muromachi
Hisashi Ogawa
Mamoru Yoshida
Nobuki Iwai
Original Assignee
Nippon Sheet Glass Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co., Ltd. filed Critical Nippon Sheet Glass Co., Ltd.
Priority to JP2007553984A priority Critical patent/JP5156393B2/en
Publication of WO2007081025A1 publication Critical patent/WO2007081025A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/42Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating of an organic material and at least one non-metal coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/44Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the composition of the continuous phase
    • C03C2217/45Inorganic continuous phases
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • C03C2217/476Tin oxide or doped tin oxide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/76Hydrophobic and oleophobic coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/365Coating different sides of a glass substrate

Definitions

  • the present invention relates to a glass plate for vehicles provided with a water-repellent coating and an infrared cut coating, and a method for producing the same.
  • an automotive glass plate in which a water-repellent coating containing silica as a main component and containing fluorine is formed on the surface of an automotive glass.
  • a water-repellent coating containing silica as a main component and containing fluorine is formed on the surface of an automotive glass.
  • an automotive glass plate in which an infrared cut film containing silica as a main component and containing infrared cut fine particles such as ITO (indium-doped tin oxide) and ATO (antimony tin oxide) is formed on the surface of an automotive glass.
  • ITO indium-doped tin oxide
  • ATO antimony tin oxide
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-010337
  • Patent Document 2 Pamphlet of International Publication No. 2004Z011381
  • Patent Document 3 International Publication No. 2005Z095298 Pamphlet
  • a vehicle glass plate comprising a coating having a water repellent coating and an infrared cut coating formed on the main surface of the glass substrate,
  • the water-repellent coating is formed on the main surface of the glass substrate that becomes the outside of the vehicle when attached to a vehicle, and the infrared cut coating is formed on the main surface of the glass substrate that becomes the inside of the vehicle when attached to the vehicle.
  • a glass plate for a vehicle comprising the coating film according to (1),
  • the water-repellent film is a film containing a fluoroalkyl group and Z or an alkyl group
  • the infrared cut film is a film containing silica as a main component and containing infrared cut fine particles.
  • the film thickness of the water-repellent film is 0.1 to 300 nm, and the film thickness of the infrared cut film is 300 to 3000 nm.
  • a glass plate for a vehicle comprising the film described above,
  • the glass substrate is a soda lime silica glass plate containing tin on one surface and substantially free of tin on the other surface, and the infrared cut film substantially contains tin.
  • An automotive vehicle comprising the coating according to (7) above, wherein the glass substrate substantially does not contain tin, and the refractive index difference at a wavelength of 550 nm between the surface and the infrared cut coating is less than 0.04.
  • a method for producing a glass plate for a vehicle comprising: a step of applying a water-repellent coating-forming coating solution to the main surface cleaned in the second cleaning step, and forming a water-repellent coating
  • a method for producing a glass plate for a vehicle comprising: a step of applying a water-repellent coating-forming coating solution on the infrared cut coating-forming surface and forming the water-repellent coating on the infrared cut coating-forming surface;
  • an automotive glass plate provided with a coating film having both functions of water repellency and infrared ray cutting.
  • FIG. 1 is a cross-sectional view of a glass plate for vehicles provided with a coating film of the present invention.
  • FIG. 2 is a cross-sectional view of a vehicle glass plate provided with the coating film of the present invention, showing an example in which a base film is formed between the water-repellent coating film and the vehicle glass plate.
  • FIG. 3 is a cross-sectional view of another embodiment of a vehicle glass plate provided with the coating of the present invention.
  • FIG. 4 is a diagram showing the results of measuring the light transmittance at wavelengths of 300 to 2500 nm in Examples 1 and 2.
  • FIG. 5 is a diagram showing the results of measuring the reflectance of light having a wavelength of 370 to 780 nm.
  • FIG. 6 shows the atomic concentrations of indium (In), tin (Sn), and silicon (Si) in Example 1.
  • a glass plate for vehicles provided with the coating of the present invention is characterized in that a water-repellent coating and an infrared cut coating are formed on the main surface of a glass substrate.
  • FIG. 1 is a cross-sectional view showing one embodiment of a glass plate for vehicles provided with the coating of the present invention.
  • the vehicle glass plate 1 having the coating shown in FIG. 1 includes a water-repellent coating 3 formed on the main surface 2a of the glass substrate 2 that becomes the outside of the vehicle when attached to the vehicle, and the inside of the vehicle when attached to the vehicle.
  • An infrared cut film 4 formed on the main surface 2b of the glass substrate 2 is provided.
  • the infrared cut film is formed on the main surface of the glass substrate that is the inside of the vehicle when attached to the vehicle. Therefore, the infrared cut film can be prevented from being deteriorated.
  • the glass substrate 2 constituting the present invention is not particularly limited as long as it is a glass plate used for vehicles, but soda lime silica glass generally used for vehicles is preferred. Soda lime silica glass includes colorless glass, colored glass such as green, gray, and bunole, and Sarasako is a glass that has the function of cutting ultraviolet rays, and visible light transmittance to maintain privacy. And the like, and these are suitable as the glass substrate of the vehicle glass plate of the present invention.
  • a glass plate manufactured by a float process can be used as the glass substrate 2.
  • the glass plate produced by the float process has a glass plate surface (bottom surface) containing tin and a glass plate surface (top surface) substantially free of tin.
  • the infrared cut film is provided on the surface of the glass plate, since the infrared cut film is relatively thick, the reflection color of the glass plate surface on which the film is formed due to the difference in refractive index between the infrared cut film and the glass plate surface. Varies depending on the angle with respect to the glass plate, or the glass plate Even if the angle with respect to is the same, if the infrared cut film formed on the surface of the glass plate has a difference in film thickness, there may be a problem that the reflected color changes. On the other hand, these problems can be reduced by providing the infrared cut film on the glass plate surface (top surface) substantially free of tin.
  • the refractive index at the top surface wavelength of 550 nm is 1.50 to L 52
  • the refractive index at the bottom surface wavelength of 550 nm is 1 53 ⁇ : L 55.
  • Fig. 5 (A) to Fig. 5 (D) show the surface of the glass plate on which the coating was formed when different coatings with different refractive indices between the infrared cut coating and the glass plate were formed on the surface of the glass plate.
  • the reflectance was measured in the wavelength range of 370 m to 780 nm.
  • Fig. 5 (A) shows the case where the thickness of the infrared cut film is about 500 nm
  • Fig. 5 (B) shows the film thickness of the infrared cut film.
  • Fig. 5 (C) shows the case where the film thickness of the infrared cut film is about lOOOnm
  • Fig. 5 (D) shows the case where the film thickness of the infrared cut film is about 2000 nm.
  • the thick solid line shows the case where the refractive index difference is about 0.01 at a wavelength of 550 nm
  • the thin solid line shows the case where the refractive index difference is about 0.03
  • the broken line shows the case where the refractive index difference is about 0.10.
  • FIGS. 5A to 5D in the infrared cut film having any film thickness and refractive index difference, the reflectance of light repeatedly increases and decreases according to the variation of the wavelength of light.
  • the increase / decrease behavior is shown.
  • an infrared cut film with a refractive index difference of about 0.10 at a wavelength of 550 nm on the glass plate surface has a refractive index at a wavelength of 550 nm with respect to the glass plate surface.
  • the fluctuation period of the light reflectance is short, and the difference between the maximum value of the refractive index and the minimum value adjacent to the maximum value is large.
  • the infrared cut coating with a large refractive index difference of about 0.10 at a wavelength of 550 nm with respect to the glass plate surface also greatly changes the reflectance increase / decrease behavior with respect to the change in film thickness. This means that the reflected color of an infrared cut film having a large refractive index difference of about 0.10 at a wavelength of 550 nm with respect to the glass plate surface is likely to change due to a change in the film thickness of the infrared cut film.
  • the path of light passing through the infrared cut film becomes longer. Therefore, when the incident angle is large, the optical characteristics are the same as when the infrared cut film is thick.
  • the reflected color tends to change due to the change in film thickness. Makes it easy to change the reflected color.
  • the reflectance of light with a wavelength of 400 to 600 nm on the surface of the glass substrate on which the infrared cut film is formed is preferably 1.5% or less, and more preferably 1.0% or less.
  • the difference in refractive index between the infrared cut film and the glass substrate surface is 0.04. It is preferable that it is less than. If this difference is less than 0.04, it is possible to reduce the change in the reflected color due to the change in the angle with respect to the glass substrate surface on which the infrared cut film is formed, and the non-uniform infrared cut film having a film thickness difference. Even if it is formed on the surface of the glass substrate, the change in reflected color can be reduced. From the above viewpoint, the difference in refractive index between the infrared cut film and the glass substrate surface is more preferably 0.02 or less.
  • the “refractive index at a wavelength of 550 nm” is a representative value of the refractive index in the visible light region, where the wavelength of 550 nm is almost the center of the visible light region, and the human eye has the highest sensitivity! This is because the wavelength is low.
  • water-repellent coating 3 a known water-repellent coating can be used, and among them, a water-repellent coating containing a fluoroalkyl group and Z or an alkyl group is preferable. Among these, silicon compounds containing a high water repellency and containing a fluoroalkyl group are more preferred.
  • the fluoroalkyl group-containing silicon compound is a silicon compound that contains a fluoroalkyl group and also contains an alkoxy group, an acyloxy group, or a chlorine group.
  • CF (CF) (CH) Si (OCH) CF ( CF) (CH) Si (OCH)
  • CF (CF) (CH) Si (OCH) CF (CF)
  • a plurality of materials selected from a fluoroalkyl group and an alkyl group can be used in combination or alone.
  • water repellents may be used after hydrolysis using a catalyst such as an acid or a base, if necessary.
  • a silicon compound may be used as a siloxane compound by hydrolysis and condensation.
  • the film thickness of the water-repellent coating 3 is preferably 0.1 to 300 nm. If the film thickness is 0.1 nm or more, sufficient water repellency can be obtained, and if it is 300 nm or less, it has excellent wear resistance and scratch resistance, and the water-repellent coating 3 can be damaged to make it a strong film. it can.
  • a base film mainly composed of silica is formed between the water-repellent coating 3 and the glass substrate 2.
  • a base film mainly composed of silica is formed between the water-repellent coating 3 and the glass substrate 2.
  • FIG. 2 is a cross-sectional view of a vehicle glass plate having a coating according to the present invention, which is an example in which a base film is formed between a water-repellent coating and a glass substrate.
  • ⁇ and “main component” Is used as a word indicating a content rate of 50% or more.
  • silica constituting the undercoat film 5 for example, silicon alkoxide represented by tetraethoxysilane, tetramethoxysilane, tetrapropoxysilane, tetrabutoxysilane and the like, and tetrachlorosilane, SiHCl, SiHCI, etc. Chlorosilyl group
  • numerator is mentioned.
  • the chlorosilyl group has a very high reactivity and forms a dense base film by self-condensation or condensation reaction with the substrate surface. Therefore, it is preferable to use a silicon compound having a chlorosilyl group in the molecule because a dense film can be formed without heating after the film is formed.
  • the thickness of the base film 5 is preferably 5 to 300 nm.
  • the water-repellent coating can be prevented from being deteriorated by the alkali component of the glass substrate force described above, and when it is 300 nm or less, the wear resistance and scratch resistance are excellent.
  • the infrared cut film 4 in the present invention preferably contains silica as a main component and contains infrared cut fine particles.
  • the infrared cut film 4 having such a composition can easily form a transparent film on a glass substrate by a simple method such as a sol-gel method.
  • ITO indium doped tin oxide
  • ATO antimony doped tin oxide
  • AZO aluminum doped zinc oxide
  • indium doped Examples include zinc oxide (IZO) fine particles, tin doped zinc oxide fine particles, silicon-doped zinc oxide fine particles, lanthanum hexaboride fine particles, and cerium hexaboride fine particles.
  • the point power excellent in the infrared cut-off property also includes at least one of ITO (indium doped tin oxide) fine particles and ATO (antimony doped tin oxide) fine particles.
  • ITO fine particles and Z or ATO fine particles are dispersed in the infrared cut film.
  • ITO fine particles and Z or ATO fine particles As examples. Instead of these, or in addition to these, aluminum-doped zinc oxide (AZO) fine particles, indium Doped acid-zinc (IZO) fine particles, tin-doped zinc oxide fine particles, silicon-doped zinc oxide fine particles, lanthanum hexaboride fine particles, cerium hexaboride fine particles, etc. May be.
  • AZO aluminum-doped zinc oxide
  • IZO indium Doped acid-zinc
  • tin-doped zinc oxide fine particles silicon-doped zinc oxide fine particles
  • lanthanum hexaboride fine particles lanthanum hexaboride fine particles
  • cerium hexaboride fine particles etc. May be.
  • the particle diameters of the ITO fine particles and the Z or ATO fine particles are lOOnm or less, preferably 40nm or less, more preferably l to 40nm.
  • the infrared cut fine particles by using a material having excellent infrared cut performance, such as ITO fine particles and Z or ATO fine particles, and having a relatively high refractive index at a wavelength of 550 nm, as the infrared cut fine particles, the content of ITO fine particles and Z or ATO fine particles can be reduced. Even with a relatively low infrared cut film, the infrared cut performance can be maintained. Furthermore, even if the reflection color of the glass substrate surface on which the infrared cut film is formed changes depending on the angle with respect to the glass substrate or the angle to the glass substrate is the same, the infrared cut film formed on the glass substrate surface It is possible to reduce the appearance defect that the reflected color changes due to the difference in film thickness.
  • a material having excellent infrared cut performance such as ITO fine particles and Z or ATO fine particles, and having a relatively high refractive index at a wavelength of 550 nm
  • the content of ITO fine particles and / or ATO fine particles is preferably 20 to 45 mass% with respect to the total mass of the infrared cut coating 4.
  • the content is 20% by mass or more, sufficient infrared hot-cut performance can be obtained, and when it is 45% by mass or less, the hardness of the infrared cut coating 4 can be increased.
  • the thickness of the infrared cut film 4 is increased, the total content of the ITO fine particles and Z or ATO fine particles dispersed in the film in the thickness direction can be increased, so that the infrared cut A film having excellent performance can be obtained. Therefore, the thickness of the infrared cut film 4 is preferably 300 ⁇ m or more. However, when the thickness of the film increases, the abrasion resistance and scratch resistance of the film deteriorate, and when the infrared cut film 4 is formed on the glass substrate 2, defects such as film cracks are likely to occur. Therefore, the thickness of the infrared cut film 4 is preferably 3000 nm or less.
  • FIG. 3 is a cross-sectional view of another embodiment of a vehicle glass plate provided with a coating according to the present invention.
  • a vehicle glass plate 11 having a coating is formed on a glass substrate 2, an infrared cut coating 14 formed on the main surface 2a of the glass substrate that is the exterior of the vehicle when attached to the vehicle, and an infrared cut coating 14 on the infrared cut coating 14.
  • a formed water repellent coating 13 is provided.
  • the glass substrate 2 the infrared cut film 14 and the water repellent film 13 used in the second embodiment of the present invention, the glass plate and the film described in the first embodiment can be used.
  • an infrared cut film 14 exists between the water repellent film 13 and the glass substrate 2. Therefore, the infrared cut film 14 has the function as the base film described in the first embodiment. Specifically, the infrared cut film 14 prevents the water-repellent film 13 from being deteriorated by an alkali component eluted from the glass substrate 2.
  • the water repellent coating 13 since the water repellent coating 13 is formed on the infrared cut coating 14, the water repellent coating 13 has a function as a protective film for the infrared cut coating 14.
  • the water-repellent coating 13 is the same as the above-mentioned two when the infrared cut coating is an automobile door window glass such as moisture and dust. Protected against direct contact with other frames and weather strips.
  • the method for manufacturing a glass plate for a vehicle having a coating film according to the first aspect includes a first cleaning step of cleaning a main surface of a glass substrate that is the inside of a vehicle when attached to the vehicle, and cleaning in the first cleaning step. Applying a coating solution for forming an infrared cut film on the main surface to form an infrared cut film; heating the glass substrate; and firing the infrared cut film; and A second cleaning step of cleaning the main surface of the glass substrate, and a step of applying a water-repellent coating forming coating solution to the main surface cleaned in the second cleaning step to form a water-repellent coating.
  • the glass substrate constituting the first embodiment of the present invention cleans the main surface of the glass substrate that becomes the interior of the vehicle when mounted on the vehicle.
  • a known method can be used. For example, glass is placed in an alkali solution or an organic solvent, and if necessary, the surface of the glass plate is removed by heating and applying ultrasonic waves. how to For example, a method of removing dirt on the surface of the glass plate by polishing the glass surface with an aqueous polishing solution.
  • a coating method for applying the infrared cut film forming coating solution to the surface cleaned in the first cleaning step and forming the infrared cut film examples include spin coating, screen printing, flexographic printing, and flow coating.
  • the glass substrate on which the infrared cut film has been formed is heated (fired) at a predetermined temperature in order to cure the infrared cut film.
  • the firing temperature is appropriately determined according to the characteristics of the coating solution for forming an infrared cut film.
  • the firing temperature is preferably about 100-750 ° C! /.
  • the coating of the present invention When applied to a glass plate having a curved shape and Z or tempered glass as a glass plate for vehicles provided with the coating of the present invention, it is necessary to further perform bending treatment and Z or tempering treatment of the glass plate. If the firing temperature for curing the infrared cut film described above is relatively high (for example, 550 to 750 ° C), if the bending process and Z or strengthening process are performed with the heat during the firing process described above, 1 It is economical because the coating can be baked, bent and Z or strengthened by multiple heating.
  • the firing temperature for curing the infrared cut film is relatively low and the temperature (for example, 100 to 550 ° C), bending treatment and Z or strengthening treatment are performed before forming the infrared cut film on the glass substrate. It is good to do.
  • the main surface of the glass substrate that is outside the vehicle when attached to the vehicle is cleaned (second cleaning step).
  • the cleaning method the same method as the first cleaning step described above can be used.
  • a water-repellent coating-forming coating solution is applied to the glass substrate surface cleaned in the second cleaning step to form a water-repellent coating.
  • a coating method the same method as described in the method of forming an infrared cut film can be used, and a hand coating method, a brush coating method, and the like are also suitable.
  • a base film is formed between the water repellent film and the glass substrate, it is preferable to form the base film before forming the water repellent film and to form the water repellent film thereon. Further, after forming the water repellent coating, firing may be performed as necessary.
  • a water-repellent coating film is formed on the main surface of the glass substrate that becomes the outside of the vehicle when attached to the vehicle.
  • a glass plate for a vehicle provided with a coating in which an infrared cut coating is formed on the main surface of the glass substrate that is the inside of the vehicle when attached to the vehicle.
  • a method for manufacturing a glass plate for a vehicle having a coating of the second form includes a cleaning step for cleaning a main surface of a glass substrate that is an outside of a vehicle when attached to a vehicle, and an infrared ray on the main surface cleaned in the cleaning step. Applying a coating liquid for forming a cut film to form an infrared cut film, heating the glass substrate and firing the infrared cut film, and forming a water-repellent film on the surface where the infrared ray cut film is formed And applying a coating solution for forming the water-repellent coating on the infrared cut coating forming surface.
  • the glass plate for a vehicle constituting the second embodiment of the present invention When the glass plate for a vehicle constituting the second embodiment of the present invention is attached to the vehicle, the main surface of the glass substrate on the outside of the vehicle is cleaned in the cleaning step.
  • a cleaning method the same method as described in the cleaning step of the first embodiment can be used.
  • an infrared cut film-forming coating solution is applied to the surface cleaned in the cleaning step to form an infrared cut film.
  • the coating method is as described in the manufacturing method of the first embodiment.
  • the glass substrate on which the infrared cut film has been formed is heated (fired) at a predetermined temperature in order to cure the infrared cut film.
  • the firing method is as described in the manufacturing method of the first embodiment.
  • a water-repellent film-forming coating solution is applied to the surface on which the infrared cut film is formed, and a water-repellent film is formed on the infrared ray cut film-formed surface.
  • the application method is as described in the manufacturing method of the first embodiment.
  • an infrared cut coating film is formed on the main surface of the glass substrate that is the outside of the vehicle when attached to the vehicle.
  • a glass plate for a vehicle having a coating formed by forming a water-repellent coating on the infrared cut coating is possible.
  • ITO is contained in the infrared cut coating.
  • additives such as organic substances may be added.
  • organic substances By adding an organic substance, it is possible to improve the dispersibility of fine particles such as ITO, and when the thin film is formed by the sol-gel method, it is possible to obtain such effects as not generating cracks in the film.
  • the content of the organic substance is not particularly limited, but is preferably 60% by mass or less with respect to the total mass of the thin film. If it exceeds 60% by mass, the content of organic matter in the thin film is too large, and sufficient thin film hardness cannot be obtained.
  • the organic content is preferably 15% by mass or less.
  • Polyethylene glycol PEG400: manufactured by Kanto Chemical Co., Ltd.
  • polyether phosphate ester surfactant as a polymer dispersant
  • Solsperse 41000: manufactured by Nippon Lubrizol 0.162 g
  • Modified alcohol Solmix (registered trademark) AP-7: manufactured by Nippon Alcohol Sales Co., Ltd. (hereinafter referred to as “AP-7”)
  • AP-7 Modified alcohol
  • a solution containing 44 g in order was stirred for 1 minute, and then concentrated hydrochloric acid (Kanto Chemical) AP-7 (hereinafter referred to as “1% by mass AP-7”) added by 1% by mass was added to the above solution and stirred for 1 minute.
  • 1% by mass AP-7 concentrated hydrochloric acid
  • a 4 mm thick glass substrate green soda-lime silica glass having an ultraviolet absorption function
  • the main surface (top surface) that becomes the inside of the vehicle when the glass substrate was attached to the vehicle was polished with an aqueous polishing solution, rinsed with water, and dried.
  • the infrared cut film forming solution was applied to the cleaned surface by a flow coating method.
  • Olg was added with stirring to obtain a surface treatment solution.
  • the main surface (bottom surface) of the glass substrate which becomes the outside of the vehicle when the glass substrate with the infrared cut film formed thereon was attached to the vehicle, was polished with an aqueous polishing solution, rinsed with water, and dried.
  • the surface treatment solution was applied to the cleaned glass surface by flow coating at a humidity of 40% and room temperature. After drying for about 1 minute to obtain a base film, 3 ml of the water-repellent film-forming solution prepared above was applied to a cotton cloth and applied onto the surface of the base film. Thereafter, the excessively water-repellent film-forming solution was wiped off with a new cotton cloth soaked in ethanol to form a water-repellent film, and a vehicle glass plate provided with the film was obtained.
  • the film thickness of the water-repellent coating is 10 nm when observed with a scanning electron microscope (SEM, “S-4700” manufactured by Hitachi, Ltd., acceleration voltage 5 kV, emission current 10 ⁇ , measurement magnification 100,000 times) It was the following.
  • the glass plate for vehicles provided with the coating obtained in Example 1 is provided with a water-repellent coating on the main surface of the glass substrate that becomes the outside of the vehicle when attached to the vehicle.
  • An infrared cut film is provided on the main surface of the glass substrate that is the inside of the car when it is installed.
  • ITO content ITO fine particles in infrared cut coating
  • silica component in infrared cut coating Silica component in infrared cut coating
  • the content ratio of ITO content and silica content is the detection of photoelectron intensity (Intensity) of indium (In), tin (Sn), and silicon (Si), and the detected photoelectron intensity and relative sensitivity in the device used.
  • the coefficient value the sum of indium (In) and tin (Sn) and the atomic concentration of silicon (Si) It is obtained by calculating the atomic concentration% value of the degree ratio (In + Sn: Si).
  • a sample of an appropriate size such as a vehicle glass plate provided with the coating obtained in Example 1, was cut, and then the sample was fixed to a sample table using a molybdenum mask. Then, composition analysis in the depth direction was performed by X-ray photoelectron spectroscopy analysis using the following analyzer, analysis conditions, and etching conditions.
  • an X-ray photoelectron spectrometer “ESCA-5 600ci” manufactured by ULVAC FUAI Co., Ltd. was used as an analyzer.
  • a monochromatic X-ray source (Al Monochromated 2mm Filament) is used as the X-ray source (Current X-Ray anode), and the anode energy (Anode
  • the etching method is Ar ion sputtering
  • the acceleration voltage (Beam Voltage) is 3. OkV
  • the raster (Raster) is 4 X 4 mm
  • the sputtering rate (Etching Rate) is about 1.9 nmZmin. (SiO film equivalent).
  • the composition of the infrared cut film is obtained from the composition analysis result in the depth direction of the infrared cut film by X-ray photoelectron spectroscopy, and the composition (content) is It was expressed as a component of the film near the center in the depth direction of the infrared cut film.
  • FIG. 6 is a graph showing the atomic concentrations of indium (In), tin (Sn), and silicon (Si) in Example 1, the vertical axis indicates the atomic concentration (%), and the horizontal axis indicates In Fig. 6, which shows the sputter time (min), the atomic concentration ratio (In + Sn: Si) of indium (In) and tin (Sn) to silicon (Si) is about 1: 9. It can be seen that the content ratio of ITO content and silica content is about 1: 9 in mole ratio.
  • the refractive index of the infrared cut film obtained in Example 1 at a wavelength of 550 nm was measured using a spectroscopic ellipsometer (VASE manufactured by JA Woollam).
  • the refractive index of the surface of the glass plate at a wavelength of 550 nm is measured using a spectrophotometer (Hitachi Ltd. spectrophotometer U-4000).
  • the transmittance and reflectance measured using the above were calculated.
  • the degree of light interference of the vehicle glass plate provided with the coating obtained in Example 1 was visually observed.
  • the refractive index of the infrared cut film at a wavelength of 550 nm is optimized for the optical model parameters to reproduce the Psi ( ⁇ ) and Delta ( ⁇ ) obtained from the spectroscopic ellipsometer, and the optical constants (refractive index, extinction coefficient).
  • the refractive index at the wavelength of 550 nm on the surface of the glass plate, the refractive index at the wavelength of 550 nm of the infrared cut coating, the refractive index difference at the wavelength of 550 nm between the infrared cut coating and the glass plate, and the degree of interference of light Shown in Table 2.
  • Example 2 In the same manner as in Example 1, a 4 mm thick glass substrate (green soda lime silica glass having an ultraviolet absorbing function) that was cut and polished and then reinforced after being cut for a side glass of an automobile was prepared.
  • the main surface (top surface) that becomes the outside of the vehicle when the glass substrate was attached to the vehicle was polished with an aqueous polishing solution, rinsed with water, and dried.
  • the infrared cut film forming solution used in Example 1 was applied to the cleaned surface by a flow coating method. Next, after drying the glass substrate coated with the infrared cut film forming solution at room temperature for about 5 minutes, put it in an oven preheated to 200 ° C and heat for 10 minutes, then cool And the glass substrate in which the infrared cut film was formed was obtained.
  • Example 1 3 ml of the water-repellent film-forming solution used in Example 1 was applied to a cotton cloth, applied to the surface of the glass substrate on which the infrared-cut film was formed, and then applied to the surface of the glass substrate.
  • the forming solution was wiped off with a new cotton cloth soaked in ethanol to form a water-repellent coating, and a vehicle glass plate provided with the coating was obtained.
  • the glass plate for vehicles provided with the coating obtained in Example 2 is provided with an infrared cut coating on the main surface of the glass substrate that is the outside of the vehicle when attached to the vehicle, and a water-repellent coating is formed on the infrared cut coating. Has been.
  • Example 1 a vehicle glass plate provided with a coating film was obtained in the same manner as in Example 1 except that the ITO dispersion was 3.07 g and tetraethoxysilane was 5.13 g. And evaluated. The results are shown in Table 2. [0059] Example 4
  • Example 1 the same method as in Example 1 was applied except that the infrared cut film forming solution was applied to the main surface (bottom surface) that became the inside of the vehicle when the glass substrate was attached to the vehicle by the flow coating method.
  • the infrared cut film forming solution was applied to the main surface (bottom surface) that became the inside of the vehicle when the glass substrate was attached to the vehicle by the flow coating method.
  • a vehicle glass plate provided with a coating was obtained and evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • the mass of the ITO fine particles is 40% by mass of the ITO dispersion
  • the mass of the organic substance is the mass of the polymer dispersant and polyethylene glycol
  • the mass of the silica component is tetraethoxysilane. Based on the content of 28.8% by mass of the silica component.
  • the contact angle with water droplets was measured using a contact angle meter (CA-DT, Using Kyowa Interface Science Co., Ltd.), water droplets were measured as 2 mg static contact angle. Furthermore, the critical tilt angle was measured as a measure of water repellency.
  • CA-DT contact angle meter
  • the critical tilt angle was measured as a measure of water repellency.
  • the inclination angle (critical inclination angle) of the glass plate was measured.
  • the light transmittance at a wavelength of 300 to 2500 nm was measured as an infrared cut performance of a test sample (vehicle glass plate provided with a coating) obtained by the same method as in Examples 1 and 2.
  • a spectrophotometer manufactured by Shimadzu Corporation: model number UV-3100PC was used. The results obtained are shown in Figs. 4 (a) and (b).
  • Fig. 4 (a) shows the results of measuring the light transmittance at a wavelength of 300 to 2500 nm in Example 1
  • Fig. 4 (b) shows the light transmittance at a wavelength of 300 to 2500 nm in Example 2. It is the result of measurement.
  • the contact angle of the surface on which the water repellent film of the test sample (vehicle glass plate provided with a film) obtained in Examples 1 and 2 was formed was a deviation of 108 degrees, the critical inclination angle was a deviation of 13 degrees. It was confirmed that the glass plate was excellent in water repellency.
  • the infrared transmittance of the test samples (vehicle glass plates provided with a coating) obtained in Examples 1 and 2 is as shown in FIGS. 4 (a) and (b). It was confirmed that it was kept low.
  • an automotive glass plate provided with a coating film having both functions of water repellency and infrared cutting property, and it is particularly useful as a vehicle window glass.

Abstract

This invention provides a glass plate with a film for a vehicle, comprising a glass substrate and a water-repellent film and an infrared-cut film provided on a main surface of the glass substrate. For example, a water-repellent film is provided on a glass substrate on its main surface which, when the film is mounted on a vehicle, is on the vehicle exterior side, and an infrared-cut film is provided on the glass substrate on its main surface which, when the film is mounted on a vehicle, is on the vehicle interior side. In recent years, an automobile glass having a plurality of functions has become demanded for meeting the requirement that persons, who ride in the automobile, enjoy better comfort within the automobile. The glass plate for a vehicle according to the present invention has water-repellent properties and infrared-cut properties as the plurality of functions and is suitable for an window glass for a vehicle.

Description

明 細 書  Specification
被膜を備える車両用ガラス板及びその製造方法  VEHICLE GLASS PLATE HAVING COATING AND METHOD FOR MANUFACTURING SAME
技術分野  Technical field
[0001] 本発明は、撥水性被膜と赤外線カット被膜を備える車両用ガラス板及びその製造 方法に関する。  [0001] The present invention relates to a glass plate for vehicles provided with a water-repellent coating and an infrared cut coating, and a method for producing the same.
背景技術  Background art
[0002] 従来より、シリカを主成分とし、フッ素を含有する撥水性被膜を自動車用ガラスの表 面に形成した自動車用ガラス板が知られて 、る。(例えば特許文献 1参照)。  [0002] Conventionally, an automotive glass plate is known in which a water-repellent coating containing silica as a main component and containing fluorine is formed on the surface of an automotive glass. (For example, refer to Patent Document 1).
また、シリカを主成分とし、 ITO (インジウムドープ酸化スズ)、 ATO (アンチモンド一 プ酸化スズ)等の赤外線カット微粒子を含有する赤外線カット被膜を自動車用ガラス の表面に形成した自動車用ガラス板も知られて ヽる。(例えば特許文献 2及び 3参照 )  There is also an automotive glass plate in which an infrared cut film containing silica as a main component and containing infrared cut fine particles such as ITO (indium-doped tin oxide) and ATO (antimony tin oxide) is formed on the surface of an automotive glass. Known. (For example, see Patent Documents 2 and 3)
[0003] 特許文献 1 :特開 2001— 010337号公報  [0003] Patent Document 1: Japanese Patent Application Laid-Open No. 2001-010337
特許文献 2 :国際公開第 2004Z011381号パンフレット  Patent Document 2: Pamphlet of International Publication No. 2004Z011381
特許文献 3:国際公開第 2005Z095298号パンフレット  Patent Document 3: International Publication No. 2005Z095298 Pamphlet
発明の開示  Disclosure of the invention
[0004] 近年、自動車に搭乗する搭乗者がより快適に搭乗できるようにするため、複数の機 能を有する自動車用ガラスが求められている。  [0004] In recent years, there has been a demand for glass for automobiles having a plurality of functions so that passengers who ride in automobiles can board more comfortably.
本発明は、複数の機能として、撥水性と赤外線カット性を有する車両用窓ガラスに 最適な車両用ガラス板及びその製造方法を提供することを目的とする。  It is an object of the present invention to provide a vehicle glass plate that is optimal for a vehicle window glass having water repellency and infrared cutting properties as a plurality of functions, and a method for manufacturing the same.
[0005] 上述の課題を解決するために本発明は In order to solve the above-described problems, the present invention
(1)撥水性被膜と赤外線カット被膜をガラス基板の主表面に形成した被膜を備える 車両用ガラス板、  (1) A vehicle glass plate comprising a coating having a water repellent coating and an infrared cut coating formed on the main surface of the glass substrate,
(2)前記撥水性被膜は、車両に取り付けた際に車外側となるガラス基板の主表面に 形成され、前記赤外線カット被膜は、車両に取り付けた際に車内側となるガラス基板 の主表面に形成されていることを特徴とする上記(1)記載の被膜を備える車両用ガラ ス板、 (3)前記赤外線カット被膜は、車両に取り付けた際に車外側となるガラス基板の主表 面に形成され、前記撥水性被膜は、前記赤外線カット被膜上に形成されていることを 特徴とする上記(1)記載の被膜を備える車両用ガラス板、 (2) The water-repellent coating is formed on the main surface of the glass substrate that becomes the outside of the vehicle when attached to a vehicle, and the infrared cut coating is formed on the main surface of the glass substrate that becomes the inside of the vehicle when attached to the vehicle. A glass plate for vehicles provided with the coating according to (1) above, characterized in that it is formed, (3) The infrared cut film is formed on a main surface of a glass substrate which is an outside of the vehicle when attached to a vehicle, and the water repellent film is formed on the infrared cut film. A glass plate for a vehicle comprising the coating film according to (1),
(4)前記撥水性被膜はフルォロアルキル基及び Z又はアルキル基を含有する膜で あり、前記赤外線カット被膜は主成分としてシリカを含有し且つ赤外線カット微粒子を 含有する膜であることを特徴とする上記(1)乃至(3)の 、ずれかに記載の被膜を備え る車両用ガラス板、  (4) The water-repellent film is a film containing a fluoroalkyl group and Z or an alkyl group, and the infrared cut film is a film containing silica as a main component and containing infrared cut fine particles. (1) to (3) a glass plate for a vehicle comprising the coating according to any one of the above,
(5)前記赤外線カット微粒子は、インジウムドープ酸化スズ (ITO)微粒子及びアンチ モンドープ酸化スズ (ATO)微粒子の少なくともいずれかであることを特徴とする上記 (4)に記載の被膜を備える車両用ガラス板、  (5) The vehicle glass provided with the coating according to (4), wherein the infrared cut fine particles are at least one of indium-doped tin oxide (ITO) fine particles and antimony-doped tin oxide (ATO) fine particles. Board,
(6)前記撥水性被膜の膜厚は 0. l〜300nmであり、前記赤外線カット被膜の膜厚 は 300〜3000nmであることを特徴とする上記(1)乃至(5)の 、ずれかに記載の被 膜を備える車両用ガラス板、  (6) The film thickness of the water-repellent film is 0.1 to 300 nm, and the film thickness of the infrared cut film is 300 to 3000 nm. A glass plate for a vehicle comprising the film described above,
(7)前記ガラス基板は一方の表面にスズを含有し、他方の表面にスズを実質的に含 有しな ヅーダライムシリカガラス板であり、前記赤外線カット被膜はスズを実質的に 含有しな 、表面に形成されることを特徴とする上記(1)乃至(6)の 、ずれかに記載の 被膜を備える車両用ガラス板、  (7) The glass substrate is a soda lime silica glass plate containing tin on one surface and substantially free of tin on the other surface, and the infrared cut film substantially contains tin. The glass plate for vehicles provided with the coating according to any one of the above (1) to (6), characterized in that it is formed on the surface,
(8)前記ガラス基板のスズを実質的に含有しな 、表面と前記赤外線カット被膜との波 長 550nmにおける屈折率差が 0. 04未満である上記(7)に記載の被膜を備える車 両用ガラス板、  (8) An automotive vehicle comprising the coating according to (7) above, wherein the glass substrate substantially does not contain tin, and the refractive index difference at a wavelength of 550 nm between the surface and the infrared cut coating is less than 0.04. Glass plate,
(9)車両に取り付けた際に車内側となるガラス基板の主表面を洗浄する第 1洗浄ェ 程と、該第 1洗浄工程にて洗浄した主表面に赤外線カット被膜形成用塗布液を塗布 し、赤外線カット被膜を形成する工程と、前記ガラス基板を加熱し、前記赤外線カット 被膜を焼成する工程と、車両に取り付けた際に車外側となるガラス基板の主表面を 洗浄する第 2洗浄工程と、該第 2洗浄工程にて洗浄した主表面に撥水性被膜形成用 塗布液を塗布し、撥水性被膜を形成する工程とを有する被膜を備える車両用ガラス 板の製造方法  (9) A first cleaning step for cleaning the main surface of the glass substrate that is the inside of the vehicle when it is attached to the vehicle, and a coating solution for forming an infrared cut film is applied to the main surface cleaned in the first cleaning step. A step of forming an infrared cut film, a step of heating the glass substrate and firing the infrared cut film, and a second cleaning step of cleaning the main surface of the glass substrate that is the outside of the vehicle when attached to the vehicle. A method for producing a glass plate for a vehicle, comprising: a step of applying a water-repellent coating-forming coating solution to the main surface cleaned in the second cleaning step, and forming a water-repellent coating
(10)車両に取り付けた際に車外側となるガラス基板の主表面を洗浄する洗浄工程と 、該洗浄工程にて洗浄した主表面に赤外線カット被膜形成用塗布液を塗布し、赤外 線カット被膜を形成する工程と、前記ガラス基板を加熱し、前記赤外線カット被膜を 焼成する工程と、前記赤外線カット被膜形成面に撥水性被膜形成用塗布液を塗布し 、赤外線カット被膜形成面上に前記撥水性被膜を形成する工程とを有する被膜を備 える車両用ガラス板の製造方法、 (10) a cleaning process for cleaning the main surface of the glass substrate that is outside the vehicle when attached to the vehicle; Applying a coating solution for forming an infrared cut film on the main surface washed in the washing step to form an infrared ray cut film; heating the glass substrate; and firing the infrared cut film; A method for producing a glass plate for a vehicle, comprising: a step of applying a water-repellent coating-forming coating solution on the infrared cut coating-forming surface and forming the water-repellent coating on the infrared cut coating-forming surface;
を提供するものである。  Is to provide.
[0006] 本発明によれば、撥水性と赤外線カット性の両方の機能を有する被膜を備える車 両用ガラス板を得ることができる。  [0006] According to the present invention, it is possible to obtain an automotive glass plate provided with a coating film having both functions of water repellency and infrared ray cutting.
図面の簡単な説明  Brief Description of Drawings
[0007] [図 1]本発明の被膜を備える車両用ガラス板の断面図である。 [0007] FIG. 1 is a cross-sectional view of a glass plate for vehicles provided with a coating film of the present invention.
[図 2]本発明の被膜を備える車両用ガラス板の断面図であって、撥水性被膜と車両 用ガラス板の間に下地膜を形成した例を示す図である。  FIG. 2 is a cross-sectional view of a vehicle glass plate provided with the coating film of the present invention, showing an example in which a base film is formed between the water-repellent coating film and the vehicle glass plate.
[図 3]本発明の被膜を備える車両用ガラス板の他の形態の断面図である。  FIG. 3 is a cross-sectional view of another embodiment of a vehicle glass plate provided with the coating of the present invention.
[図 4]実施例 1及び 2における波長 300〜2500nmにおける光の透過率を測定した 結果を示した図である。  FIG. 4 is a diagram showing the results of measuring the light transmittance at wavelengths of 300 to 2500 nm in Examples 1 and 2.
[図 5]波長 370〜780nmの光の反射率を測定した結果を示す図である。  FIG. 5 is a diagram showing the results of measuring the reflectance of light having a wavelength of 370 to 780 nm.
[図 6]実施例 1におけるインジウム (In)、スズ (Sn)、及び珪素(Si)の原子濃度を示す 図である。  FIG. 6 shows the atomic concentrations of indium (In), tin (Sn), and silicon (Si) in Example 1.
符号の説明  Explanation of symbols
[0008] 1 被膜を備える車両用ガラス板 [0008] 1 Glass plate for vehicles provided with coating
2 ガラス基板  2 Glass substrate
2a 車両に取り付けた際に車外側となるガラス基板の主表面  2a Main surface of the glass substrate on the outside of the vehicle when attached to the vehicle
2b 車両に取り付けた際に車内側となるガラス基板の主表面  2b Main surface of the glass substrate that is the inside of the vehicle when it is mounted on the vehicle
3 撥水性被膜  3 Water repellent coating
4 赤外線カット被膜  4 Infrared cut film
5 下地膜  5 Underlayer
11 被膜を備える車両用ガラス板  11 Vehicle glass plate with coating
13 撥水性被膜 14 赤外線カット被膜 13 Water repellent coating 14 Infrared cut film
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0009] 本発明の被膜を備える車両用ガラス板は、撥水性被膜と赤外線カット被膜をガラス 基板の主表面に形成したことを特徴とする。 [0009] A glass plate for vehicles provided with the coating of the present invention is characterized in that a water-repellent coating and an infrared cut coating are formed on the main surface of a glass substrate.
以下、図面を参照しながら本発明を説明する。  The present invention will be described below with reference to the drawings.
(第 1の形態)  (First form)
図 1は、本発明の被膜を備える車両用ガラス板の 1形態を示す断面図である。図 1 に示す被膜を備える車両用ガラス板 1は、車両に取り付けた際に車外側となるガラス 基板 2の主表面 2aに形成された撥水性被膜 3と、車両に取り付けた際に車内側とな るガラス基板 2の主表面 2bに形成された赤外線カット被膜 4を備える。この第 1の実 施形態においては、赤外線カット被膜は、車両に取り付けた際に車内側となるガラス 基板の主表面に形成されて ヽるので、赤外線カット被膜を風雨及び車外の埃や砂な どにさらされないようにすることができ、赤外線カット被膜の劣化を防止することができ る。  FIG. 1 is a cross-sectional view showing one embodiment of a glass plate for vehicles provided with the coating of the present invention. The vehicle glass plate 1 having the coating shown in FIG. 1 includes a water-repellent coating 3 formed on the main surface 2a of the glass substrate 2 that becomes the outside of the vehicle when attached to the vehicle, and the inside of the vehicle when attached to the vehicle. An infrared cut film 4 formed on the main surface 2b of the glass substrate 2 is provided. In this first embodiment, the infrared cut film is formed on the main surface of the glass substrate that is the inside of the vehicle when attached to the vehicle. Therefore, the infrared cut film can be prevented from being deteriorated.
[0010] 本発明を構成するガラス基板 2は車両用として用いられるガラス板であれば特に制 限されな 、が、車両用として一般的に用いられるソーダライムシリカガラスが好ま Uヽ 。ソーダライムシリカガラスには、無色のガラス、グリーン色、グレー色、ブノレ一色など の有色のガラス、さら〖こは、紫外線をカットする機能を有するガラスや、プライバシー を保っために可視光線の透過率を低く抑えたガラスなどがあり、これらは本発明の車 両用ガラス板のガラス基板として好適である。  [0010] The glass substrate 2 constituting the present invention is not particularly limited as long as it is a glass plate used for vehicles, but soda lime silica glass generally used for vehicles is preferred. Soda lime silica glass includes colorless glass, colored glass such as green, gray, and bunole, and Sarasako is a glass that has the function of cutting ultraviolet rays, and visible light transmittance to maintain privacy. And the like, and these are suitable as the glass substrate of the vehicle glass plate of the present invention.
[0011] また、ガラス基板 2として、フロート法により製造されたガラス板を用いることができる 。フロート法により製造されたガラス板はスズを含有するガラス板表面 (ボトム面)及び 実質的にスズを含有しないガラス板表面(トップ面)を有する。本発明においては、ス ズを実質的に含有しないガラス板表面(トップ面)に赤外線カット被膜を設けることが 好ましい。  [0011] Further, as the glass substrate 2, a glass plate manufactured by a float process can be used. The glass plate produced by the float process has a glass plate surface (bottom surface) containing tin and a glass plate surface (top surface) substantially free of tin. In the present invention, it is preferable to provide an infrared cut film on the glass plate surface (top surface) substantially free of soot.
ガラス板の表面に赤外線カット被膜を設けるに際し、該赤外線カット被膜の膜厚が 比較的厚いために、赤外線カット被膜とガラス板表面の屈折率差によって、膜が形成 されたガラス板表面の反射色がガラス板に対する角度によって変化したり、ガラス板 に対する角度が同じであったとしてもガラス板表面に形成された赤外線カット被膜に 膜厚差があると反射色が変化してしまうといった見栄えの不具合が生じる場合がある 。これに対し、赤外線カット被膜を、スズを実質的に含有しないガラス板表面(トップ面 )に設けることによって、これらの不具合を低減することができる。 When the infrared cut film is provided on the surface of the glass plate, since the infrared cut film is relatively thick, the reflection color of the glass plate surface on which the film is formed due to the difference in refractive index between the infrared cut film and the glass plate surface. Varies depending on the angle with respect to the glass plate, or the glass plate Even if the angle with respect to is the same, if the infrared cut film formed on the surface of the glass plate has a difference in film thickness, there may be a problem that the reflected color changes. On the other hand, these problems can be reduced by providing the infrared cut film on the glass plate surface (top surface) substantially free of tin.
[0012] 一般的に、ボトム面はスズを含有しているため、スズを実質的に含有しないトップ面 に比べて屈折率が高い。ガラス板カ^ーダライムシリカガラスの場合、具体的にはトツ プ面の波長 550nmにおける屈折率が 1. 50〜: L 52であるのに対し、ボトム面の波 長 550nmにおける屈折率は 1. 53〜: L 55である。赤外線カット被膜とガラス板表面 の屈折率差が小さいほど、上記不具合を低減することができる。より具体的には、本 発明の赤外線カット被膜 (屈折率 1. 48〜: L 52)をガラス板表面に形成する場合、ト ップ面に形成するとボトム面に形成した場合に比べ、屈折率差を小さくすることができ 、前述した不具合を低減することができるものである。  [0012] Generally, since the bottom surface contains tin, the refractive index is higher than that of the top surface that does not substantially contain tin. In the case of glass lime glass, specifically, the refractive index at the top surface wavelength of 550 nm is 1.50 to L 52, whereas the refractive index at the bottom surface wavelength of 550 nm is 1 53 ~: L 55. The smaller the difference in refractive index between the infrared cut film and the glass plate surface, the more the above problems can be reduced. More specifically, when the infrared cut film of the present invention (refractive index: 1.48 to: L 52) is formed on the glass plate surface, the refractive index is higher when formed on the top surface than when formed on the bottom surface. The difference can be reduced, and the above-described problems can be reduced.
[0013] 以下、図 5を元に、赤外線カット被膜とガラス板表面との屈折率差と、ガラス板に対 する角度及び赤外線カット被膜の膜厚差による反射色の変化との関係について説明 する。  Hereinafter, based on FIG. 5, the relationship between the refractive index difference between the infrared cut coating and the glass plate surface and the change in the reflected color due to the angle to the glass plate and the film thickness difference of the infrared cut coating will be described. .
図 5 (A)乃至図 5 (D)は、ガラス板の表面に、赤外線カット被膜とガラス板表面の屈 折率差がそれぞれ異なる被膜を形成した場合の、被膜が形成されたガラス板表面の 反射率を波長 370m〜780nmの範囲で測定した結果であり、図 5 (A)が赤外線カツ ト被膜の膜厚が約 500nmである場合を示し、図 5 (B)が赤外線カット被膜の膜厚が 約 750nmである場合を示し、図 5 (C)が赤外線カット被膜の膜厚が約 lOOOnmであ る場合を示し、図 5 (D)が赤外線カット被膜の膜厚が約 2000nmである場合を示す。 なお、太い実線は波長 550nmにおける屈折率差が約 0. 01の場合を示し、細い実 線は屈折率差が約 0. 03の場合を示し、破線は屈折率差が約 0. 10の場合を示す。 なお、反射率については入射角が 12° の入射光の反射率を測定した。  Fig. 5 (A) to Fig. 5 (D) show the surface of the glass plate on which the coating was formed when different coatings with different refractive indices between the infrared cut coating and the glass plate were formed on the surface of the glass plate. The reflectance was measured in the wavelength range of 370 m to 780 nm. Fig. 5 (A) shows the case where the thickness of the infrared cut film is about 500 nm, and Fig. 5 (B) shows the film thickness of the infrared cut film. Fig. 5 (C) shows the case where the film thickness of the infrared cut film is about lOOOnm, and Fig. 5 (D) shows the case where the film thickness of the infrared cut film is about 2000 nm. Show. The thick solid line shows the case where the refractive index difference is about 0.01 at a wavelength of 550 nm, the thin solid line shows the case where the refractive index difference is about 0.03, and the broken line shows the case where the refractive index difference is about 0.10. Indicates. The reflectivity of incident light with an incident angle of 12 ° was measured.
[0014] 図 5 (A)乃至図 5 (D)において、いずれの膜厚及び屈折率差の赤外線カット被膜 においても、光の波長の変動に応じて、光の反射率が増大及び減少を繰り返すとい う増減挙動を示している。しかし、ガラス板表面の波長 550nmにおける屈折率差が 約 0. 10である赤外線カット被膜は、ガラス板表面との波長 550nmにおける屈折率 差が約 0. 01である赤外線カット被膜と比較して、光の反射率の変動周期が短ぐま た、屈折率の極大値と該極大値に隣接する極小値との差が大きい。また、ガラス板表 面との波長 550nmにおける屈折率差が約 0. 10と大きい赤外線カット被膜は、膜厚 の変化に対する反射率の増減挙動も大きく変化する。これは、ガラス板表面との波長 550nmにおける屈折率差が約 0. 10と大きい赤外線カット被膜は、赤外線カット被 膜の膜厚の変化によって反射色が変化しやすいことを意味している。 [0014] In FIGS. 5A to 5D, in the infrared cut film having any film thickness and refractive index difference, the reflectance of light repeatedly increases and decreases according to the variation of the wavelength of light. The increase / decrease behavior is shown. However, an infrared cut film with a refractive index difference of about 0.10 at a wavelength of 550 nm on the glass plate surface has a refractive index at a wavelength of 550 nm with respect to the glass plate surface. Compared with an infrared cut film having a difference of about 0.01, the fluctuation period of the light reflectance is short, and the difference between the maximum value of the refractive index and the minimum value adjacent to the maximum value is large. In addition, the infrared cut coating with a large refractive index difference of about 0.10 at a wavelength of 550 nm with respect to the glass plate surface also greatly changes the reflectance increase / decrease behavior with respect to the change in film thickness. This means that the reflected color of an infrared cut film having a large refractive index difference of about 0.10 at a wavelength of 550 nm with respect to the glass plate surface is likely to change due to a change in the film thickness of the infrared cut film.
ここで、ガラス板の垂線に対する入射光の角度 (入射角)が大きいほど、赤外線カツ ト被膜内を通過する光の経路が長くなる。よって、入射角が大きいと、赤外線カット被 膜が厚い場合と同様の光学特性となる。  Here, as the angle of incident light (incident angle) with respect to the normal of the glass plate increases, the path of light passing through the infrared cut film becomes longer. Therefore, when the incident angle is large, the optical characteristics are the same as when the infrared cut film is thick.
赤外線カット被膜のガラス板表面との波長 550nmにおける屈折率差が約 0. 03、 約 0. 10と大きくなるにつれて、膜厚の変化によって反射色が変化しやすいことから、 ガラス板に対する角度の変化によって反射色が変化しやすくなる。  As the refractive index difference between the infrared cut coating and the glass plate at a wavelength of 550 nm increases to about 0.03 and about 0.10, the reflected color tends to change due to the change in film thickness. Makes it easy to change the reflected color.
[0015] 次に、図 5 (A)乃至図 5 (D)により得られる、各膜厚における波長 400〜600nmの 光の反射率の最大値、最小値、及び最大値と最小値の差を第 1表に示す。  Next, the maximum value, minimum value, and difference between the maximum value and the minimum value of the reflectance of light having a wavelength of 400 to 600 nm in each film thickness obtained by FIGS. 5 (A) to 5 (D) are shown. Table 1 shows.
[0016] [表 1] 第 1表  [0016] [Table 1] Table 1
Figure imgf000008_0001
Figure imgf000008_0001
[0017] 本発明にお ヽては、赤外線カット被膜が形成されたガラス板表面の反射色がガラス 板に対する角度によって変化したり、ガラス板に対する角度が同じであったとしてもガ ラス板表面に形成された赤外線カット被膜に膜厚差があると反射色が変化してしまう といった見栄えの不具合を低減するため、赤外線カット被膜が形成されたガラス基板 表面における波長 400〜600nmの光の反射率の最大値と最小値の差を 1. 5%以 下とすることが好ましぐ 1. 0%以下とすることがより好ましい。 In the present invention, even if the reflection color of the glass plate surface on which the infrared cut film is formed varies depending on the angle with respect to the glass plate or the angle with respect to the glass plate is the same, In order to reduce defects in appearance such as the reflection color changes if there is a difference in film thickness in the formed infrared cut film, the reflectance of light with a wavelength of 400 to 600 nm on the surface of the glass substrate on which the infrared cut film is formed The difference between the maximum value and the minimum value is preferably 1.5% or less, and more preferably 1.0% or less.
[0018] また、本発明においては、赤外線カット被膜とガラス基板表面の屈折率差は 0. 04 未満であることが好ましい。この差が 0. 04未満であると、赤外線カット被膜が形成さ れたガラス基板表面に対する角度の変化による反射色の変化を低減することができ ると共に、膜厚差を有する均一でない赤外線カット被膜がガラス基板表面に形成され ていても反射色の変化を低減することができる。以上の観点から、赤外線カット被膜と ガラス基板表面の屈折率差は 0. 02以下であることがさらに好ましい。 In the present invention, the difference in refractive index between the infrared cut film and the glass substrate surface is 0.04. It is preferable that it is less than. If this difference is less than 0.04, it is possible to reduce the change in the reflected color due to the change in the angle with respect to the glass substrate surface on which the infrared cut film is formed, and the non-uniform infrared cut film having a film thickness difference. Even if it is formed on the surface of the glass substrate, the change in reflected color can be reduced. From the above viewpoint, the difference in refractive index between the infrared cut film and the glass substrate surface is more preferably 0.02 or less.
なお、ここで「波長 550nmにおける屈折率」を可視光領域における屈折率の代表 値としたのは、波長 550nmが可視光領域のほぼ中心であり、人間の目において感 度が最も高!ヽ波長だからである。  Note that the “refractive index at a wavelength of 550 nm” is a representative value of the refractive index in the visible light region, where the wavelength of 550 nm is almost the center of the visible light region, and the human eye has the highest sensitivity! This is because the wavelength is low.
[0019] 撥水性被膜 3は既知の撥水性被膜を用いることができるが、中でもフルォロアルキ ル基及び Z又はアルキル基を含有する撥水性被膜が好適である。そのなかでも、撥 水性能の高 、フルォロアルキル基を含有したシリコンィ匕合物がさらに好まし 、。 [0019] As the water-repellent coating 3, a known water-repellent coating can be used, and among them, a water-repellent coating containing a fluoroalkyl group and Z or an alkyl group is preferable. Among these, silicon compounds containing a high water repellency and containing a fluoroalkyl group are more preferred.
フルォロアルキル基含有シリコン化合物としては、フルォロアルキル基を含有し、か つアルコキシ基、ァシロキシ基、または塩素基を含有するシリコン化合物であり、例え ば、 CF (CF ) (CH ) Si(OCH ) 、 CF (CF ) (CH ) Si (OCH ) 、 CF (CF ) (  The fluoroalkyl group-containing silicon compound is a silicon compound that contains a fluoroalkyl group and also contains an alkoxy group, an acyloxy group, or a chlorine group. For example, CF (CF) (CH) Si (OCH), CF ( CF) (CH) Si (OCH), CF (CF) (
3 2 7 2 2 3 3 3 2 5 2 2 3 3 3 2 7 3 2 7 2 2 3 3 3 2 5 2 2 3 3 3 2 7
CH ) SiCl、 CF (CF ) (CH ) SiCl、等を f列示することができる。 CH) SiCl, CF (CF) (CH) SiCl, etc. can be shown in the f column.
2 2 3 3 2 5 2 2 3  2 2 3 3 2 5 2 2 3
これらのなかから、フルォロアルキル基及びアルキル基より選択される材料を複数 組み合わせて、又は単独で使用することができる。  Among these, a plurality of materials selected from a fluoroalkyl group and an alkyl group can be used in combination or alone.
これらの撥水剤は必要に応じて、酸、塩基などの触媒を用いて加水分解して用い てもよい。またシリコンィ匕合物を加水分解、縮合反応させてシロキサンィ匕合物として用 いたものでもよい。  These water repellents may be used after hydrolysis using a catalyst such as an acid or a base, if necessary. Alternatively, a silicon compound may be used as a siloxane compound by hydrolysis and condensation.
[0020] 撥水性被膜 3の膜厚は、 0. l〜300nmが好ましい。膜厚が 0. lnm以上であると、 十分な撥水性能が得られ、 300nm以下であると耐摩耗性、耐傷つき性に優れ、撥 水性被膜 3を傷つきに《強固な膜とすることができる。  [0020] The film thickness of the water-repellent coating 3 is preferably 0.1 to 300 nm. If the film thickness is 0.1 nm or more, sufficient water repellency can be obtained, and if it is 300 nm or less, it has excellent wear resistance and scratch resistance, and the water-repellent coating 3 can be damaged to make it a strong film. it can.
[0021] また、撥水性被膜 3がガラス基板 2より溶出するアルカリ成分により劣化するのを防 止する目的で、撥水性被膜 3とガラス基板 2の間にシリカを主成分とする下地膜を形 成することが好ましい。 [0021] In order to prevent the water-repellent coating 3 from being deteriorated by an alkali component eluted from the glass substrate 2, a base film mainly composed of silica is formed between the water-repellent coating 3 and the glass substrate 2. Preferably.
図 2は本発明による被膜を備える車両用ガラス板の断面図であって、撥水性被膜と ガラス基板の間に下地膜を形成した例である。ここで本明細書中にぉ 、て「主成分」 なる言葉は、 50%以上の含有率を示す言葉として用いる。 FIG. 2 is a cross-sectional view of a vehicle glass plate having a coating according to the present invention, which is an example in which a base film is formed between a water-repellent coating and a glass substrate. In this specification, ぉ and “main component” Is used as a word indicating a content rate of 50% or more.
[0022] 下地膜 5を構成するシリカの原料としては、例えばテトラエトキシシラン、テトラメトキ シシラン、テトラプロボキシシラン、テトラブトキシシランなどに代表されるシリコンアル コキシド及びテトラクロロシラン、 SiHCl、 SiH CIなどに代表されるクロロシリル基を [0022] As the raw material of silica constituting the undercoat film 5, for example, silicon alkoxide represented by tetraethoxysilane, tetramethoxysilane, tetrapropoxysilane, tetrabutoxysilane and the like, and tetrachlorosilane, SiHCl, SiHCI, etc. Chlorosilyl group
3 2 2  3 2 2
分子内に有するシリコン化合物が挙げられる。クロロシリル基は反応性が非常に高く 、 自己縮合または基材表面と縮合反応をすることにより緻密な下地膜を形成する。し たがってクロロシリル基を分子内に有するシリコンィ匕合物を用いると、被膜を形成した 後に加熱を行わなくても緻密な膜となるため好ましい。  The silicon compound which has in a molecule | numerator is mentioned. The chlorosilyl group has a very high reactivity and forms a dense base film by self-condensation or condensation reaction with the substrate surface. Therefore, it is preferable to use a silicon compound having a chlorosilyl group in the molecule because a dense film can be formed without heating after the film is formed.
[0023] 下地膜 5を形成する場合の下地膜 5の厚さは 5〜300nmが好ましい。 5nm以上で あると前述したガラス基板力 のアルカリ成分により、撥水性被膜が劣化するのを防 止でき、 300nm以下であると耐摩耗性、耐傷つき性に優れる。  When forming the base film 5, the thickness of the base film 5 is preferably 5 to 300 nm. When the thickness is 5 nm or more, the water-repellent coating can be prevented from being deteriorated by the alkali component of the glass substrate force described above, and when it is 300 nm or less, the wear resistance and scratch resistance are excellent.
[0024] 次に、本発明における赤外線カット被膜 4は、主成分としてシリカを含有し、且つ赤 外線カット微粒子を含有することが好ま Uヽ。これらの組成カゝらなる赤外線カット被膜 4は、ゾルゲル法等の簡易な方法により容易にかつ透明な被膜をガラス基板上に形 成することができる。  [0024] Next, the infrared cut film 4 in the present invention preferably contains silica as a main component and contains infrared cut fine particles. The infrared cut film 4 having such a composition can easily form a transparent film on a glass substrate by a simple method such as a sol-gel method.
赤外線カット微粒子としては、種々のものを選択することができ、例えば、 ITO (イン ジゥムドープ酸化スズ)微粒子、 ATO (アンチモンドープ酸化スズ)微粒子、アルミ- ゥムドープ酸ィ匕亜鉛 (AZO)微粒子、インジウムドープ酸ィ匕亜鉛 (IZO)微粒子、錫ド ープ酸化亜鉛微粒子、珪素ドープ酸ィ匕亜鉛微粒子、 6ホウ化ランタン微粒子、 6ホウ 化セリウム微粒子などが挙げられる。  Various types of infrared cut fine particles can be selected. For example, ITO (indium doped tin oxide) fine particles, ATO (antimony doped tin oxide) fine particles, aluminum doped zinc oxide (AZO) fine particles, indium doped Examples include zinc oxide (IZO) fine particles, tin doped zinc oxide fine particles, silicon-doped zinc oxide fine particles, lanthanum hexaboride fine particles, and cerium hexaboride fine particles.
これらのうち、本発明では、赤外線カット性に優れる点力も ITO (インジウムドープ酸 化スズ)微粒子及び ATO (アンチモンドープ酸化スズ)微粒子の少なくとも ヽずれか を含有することが好ましい。なお、 ITO微粒子及び Z又は ATO微粒子は赤外線カツ ト被膜中に分散して用いる。  Among these, in the present invention, it is preferable that the point power excellent in the infrared cut-off property also includes at least one of ITO (indium doped tin oxide) fine particles and ATO (antimony doped tin oxide) fine particles. ITO fine particles and Z or ATO fine particles are dispersed in the infrared cut film.
[0025] 以下、 ITO微粒子及び Z又は ATO微粒子を例に説明する力 これらに限定される ものではなぐこれらに代えて、またはこれらと供に、アルミニウムドープ酸ィ匕亜鉛 (AZ O)微粒子、インジウムドープ酸ィ匕亜鉛 (IZO)微粒子、錫ドープ酸化亜鉛微粒子、珪 素ドープ酸化亜鉛微粒子、 6ホウ化ランタン微粒子、 6ホウ化セリウム微粒子等を用い てもよい。 [0025] In the following, the force described by taking ITO fine particles and Z or ATO fine particles as examples. Instead of these, or in addition to these, aluminum-doped zinc oxide (AZO) fine particles, indium Doped acid-zinc (IZO) fine particles, tin-doped zinc oxide fine particles, silicon-doped zinc oxide fine particles, lanthanum hexaboride fine particles, cerium hexaboride fine particles, etc. May be.
[0026] ITO微粒子及び Z又は ATO微粒子の粒径は lOOnm以下、好ましくは 40nm以下 であり、より好ましくは l〜40nmである。これにより、赤外線カットの効率がよぐ且つ 微粒子の粒径が大きいことに起因するヘイズの発生を抑制することができる。  [0026] The particle diameters of the ITO fine particles and the Z or ATO fine particles are lOOnm or less, preferably 40nm or less, more preferably l to 40nm. Thereby, generation | occurrence | production of the haze resulting from the efficiency of infrared cut being good and the particle size of microparticles | fine-particles being large can be suppressed.
また、 ITO微粒子及び Z又は ATO微粒子のように赤外線カット性能に優れ、且つ 波長 550nmにおける屈折率が比較的高い材料を赤外線カット微粒子として用いるこ とにより、 ITO微粒子及び Z又は ATO微粒子の含有率が比較的低 ヽ赤外線カット 被膜であっても、赤外線カット性能を維持することができる。さら〖こ、赤外線カット被膜 が形成されたガラス基板表面の反射色がガラス基板に対する角度によって変化した り、ガラス基板に対する角度が同じであったとしてもガラス基板表面に形成された赤 外線カット被膜に膜厚差があることにより反射色が変化してしまうといった見栄えの不 具合を低減することができる。  Further, by using a material having excellent infrared cut performance, such as ITO fine particles and Z or ATO fine particles, and having a relatively high refractive index at a wavelength of 550 nm, as the infrared cut fine particles, the content of ITO fine particles and Z or ATO fine particles can be reduced. Even with a relatively low infrared cut film, the infrared cut performance can be maintained. Furthermore, even if the reflection color of the glass substrate surface on which the infrared cut film is formed changes depending on the angle with respect to the glass substrate or the angle to the glass substrate is the same, the infrared cut film formed on the glass substrate surface It is possible to reduce the appearance defect that the reflected color changes due to the difference in film thickness.
[0027] ITO微粒子及び/又は ATO微粒子の含有量は、赤外線カット被膜 4の全質量に 対して 20〜45質量%が好ましい。含有量が 20質量%以上であると十分な赤外線力 ット性能を得ることができ、 45質量%以下であると赤外線カット被膜 4の硬度を高くす ることがでさる。 [0027] The content of ITO fine particles and / or ATO fine particles is preferably 20 to 45 mass% with respect to the total mass of the infrared cut coating 4. When the content is 20% by mass or more, sufficient infrared hot-cut performance can be obtained, and when it is 45% by mass or less, the hardness of the infrared cut coating 4 can be increased.
[0028] また、赤外線カット被膜 4の厚さを厚くすると膜中に分散して ヽる ITO微粒子及び Z 又は ATO微粒子の厚さ方向の含有量の総量を増カロさせることができ、よって赤外線 カット性能の優れる膜を得ることができる。従って赤外線カット被膜 4の厚さは、 300η m以上が好ましい。しかしながら膜の厚さが厚くなると、膜の耐摩耗性、耐傷つき性が 悪くなり、またガラス基板 2上に赤外線カット被膜 4を形成する際に、被膜〖こクラックが 入りやすくなるといった不具合が発生する可能性がある、従って赤外線カット被膜 4の 厚さは 3000nm以下が好ましい。  [0028] In addition, when the thickness of the infrared cut film 4 is increased, the total content of the ITO fine particles and Z or ATO fine particles dispersed in the film in the thickness direction can be increased, so that the infrared cut A film having excellent performance can be obtained. Therefore, the thickness of the infrared cut film 4 is preferably 300 ηm or more. However, when the thickness of the film increases, the abrasion resistance and scratch resistance of the film deteriorate, and when the infrared cut film 4 is formed on the glass substrate 2, defects such as film cracks are likely to occur. Therefore, the thickness of the infrared cut film 4 is preferably 3000 nm or less.
[0029] (第 2の形態)  [0029] (Second form)
図 3は、本発明による被膜を備える車両用ガラス板の他の形態の断面図である。図 3において、被膜を備える車両用ガラス板 11は、ガラス基板 2、車両に取り付けた際 に車外側となるガラス基板の主表面 2aに形成された赤外線カット被膜 14と、赤外線 カット被膜 14上に形成した撥水性被膜 13を備える。 本発明における第 2の形態にて用いるガラス基板 2、赤外線カット被膜 14及び撥水 性被膜 13としては、第 1の形態にて説明したガラス板及び被膜を用いることができる FIG. 3 is a cross-sectional view of another embodiment of a vehicle glass plate provided with a coating according to the present invention. In FIG. 3, a vehicle glass plate 11 having a coating is formed on a glass substrate 2, an infrared cut coating 14 formed on the main surface 2a of the glass substrate that is the exterior of the vehicle when attached to the vehicle, and an infrared cut coating 14 on the infrared cut coating 14. A formed water repellent coating 13 is provided. As the glass substrate 2, the infrared cut film 14 and the water repellent film 13 used in the second embodiment of the present invention, the glass plate and the film described in the first embodiment can be used.
[0030] 図 3において、撥水性被膜 13とガラス基板 2の間には赤外線カット被膜 14が存在 する。従って、赤外線カット被膜 14は第 1の形態において説明した下地膜としての機 能を有する。具体的には赤外線カット被膜 14はガラス基板 2より溶出するアルカリ成 分により撥水性被膜 13が劣化するのを防止する。 In FIG. 3, an infrared cut film 14 exists between the water repellent film 13 and the glass substrate 2. Therefore, the infrared cut film 14 has the function as the base film described in the first embodiment. Specifically, the infrared cut film 14 prevents the water-repellent film 13 from being deteriorated by an alkali component eluted from the glass substrate 2.
また、赤外線カット被膜 14上に撥水性被膜 13が形成されているので、赤外線カット 被膜 14にとつて撥水性被膜 13は保護膜としての機能を有する。具体的には撥水性 被膜 13は、赤外線カット被膜が湿気及び埃等、自動車のドア窓ガラスの場合は、前 述した 2つにカ卩え、窓ガラスが接触するドア窓の昇降装置、窓のフレーム及びゥェザ ストリップ等に直接接しな 、ように保護される。  In addition, since the water repellent coating 13 is formed on the infrared cut coating 14, the water repellent coating 13 has a function as a protective film for the infrared cut coating 14. Specifically, the water-repellent coating 13 is the same as the above-mentioned two when the infrared cut coating is an automobile door window glass such as moisture and dust. Protected against direct contact with other frames and weather strips.
[0031] 上述したように、第 2の形態とすることにより、下地膜を設けなくても撥水性被膜のァ ルカリによる劣化を防止することができ且つ、摩耗、傷つき等による劣化の少ない赤 外線カット被膜を備える車両用ガラス板とすることができる。  [0031] As described above, by adopting the second form, it is possible to prevent deterioration of the water-repellent coating due to alkali even without providing a base film, and to reduce infrared rays due to wear, damage, etc. It can be set as the glass plate for vehicles provided with a cut film.
[0032] 次に本発明の被膜を備える車両用ガラス板の製造方法について説明する。  Next, a method for producing a vehicle glass plate provided with the coating of the present invention will be described.
(第 1の形態の製造方法)  (Production method of the first form)
第 1の形態の被膜を備える車両用ガラス板の製造方法は、車両に取り付けた際に 車内側となるガラス基板の主表面を洗浄する第 1洗浄工程と、該第 1洗浄工程にて 洗浄した主表面に赤外線カット被膜形成用塗布液を塗布し、赤外線カット被膜を形 成する工程と、前記ガラス基板を加熱し、前記赤外線カット被膜を焼成する工程と、 車両に取り付けた際に車外側となるガラス基板の主表面を洗浄する第 2洗浄工程と、 該第 2洗浄工程にて洗浄した主表面に撥水性被膜形成用塗布液を塗布し、撥水性 被膜を形成する工程とを有する。  The method for manufacturing a glass plate for a vehicle having a coating film according to the first aspect includes a first cleaning step of cleaning a main surface of a glass substrate that is the inside of a vehicle when attached to the vehicle, and cleaning in the first cleaning step. Applying a coating solution for forming an infrared cut film on the main surface to form an infrared cut film; heating the glass substrate; and firing the infrared cut film; and A second cleaning step of cleaning the main surface of the glass substrate, and a step of applying a water-repellent coating forming coating solution to the main surface cleaned in the second cleaning step to form a water-repellent coating.
[0033] 本発明の第 1の形態を構成するガラス基板は第 1洗浄工程において、車両に取り 付けた際に車内側となるガラス基板の主表面を洗浄する。洗浄としては、既知の方法 を用いることができ、例えば、アルカリ溶液又は有機溶剤等の中にガラスを入れ、必 要に応じて、加熱、超音波を加えることによりガラス板の表面の汚れを除去する方法 、研磨水溶液を用いてガラス表面を研磨することによりガラス板の表面の汚れを除去 する方法等が挙げられる。 [0033] In the first cleaning step, the glass substrate constituting the first embodiment of the present invention cleans the main surface of the glass substrate that becomes the interior of the vehicle when mounted on the vehicle. For cleaning, a known method can be used. For example, glass is placed in an alkali solution or an organic solvent, and if necessary, the surface of the glass plate is removed by heating and applying ultrasonic waves. how to For example, a method of removing dirt on the surface of the glass plate by polishing the glass surface with an aqueous polishing solution.
[0034] 次に第 1洗浄工程にて洗浄した面に赤外線カット被膜形成用塗布液を塗布し、前 記赤外線カット被膜を形成する塗布方法としては、スプレー法、ディップ法、ロールコ ート法、スピンコート法、スクリーン印刷法、フレキソ印刷法、フローコート法などが挙 げられる。  [0034] Next, as a coating method for applying the infrared cut film forming coating solution to the surface cleaned in the first cleaning step and forming the infrared cut film, a spray method, a dipping method, a roll coat method, Examples include spin coating, screen printing, flexographic printing, and flow coating.
[0035] 赤外線カット被膜を形成したガラス基板は赤外線カット被膜を硬化させるために所 定の温度にて加熱 (焼成)する。焼成温度は、赤外線カット被膜形成用塗布液の特 性に応じて適宜決定する。ゾルーゲル法により被膜を形成する場合、焼成温度は 10 0〜750°C程度が好まし!/、。  [0035] The glass substrate on which the infrared cut film has been formed is heated (fired) at a predetermined temperature in order to cure the infrared cut film. The firing temperature is appropriately determined according to the characteristics of the coating solution for forming an infrared cut film. When forming a film by the sol-gel method, the firing temperature is preferably about 100-750 ° C! /.
[0036] 本発明の被膜を備える車両用ガラス板として曲面形状を有するガラス板及び Z又 は強化ガラスに適用する場合、さらに、ガラス板の曲げ処理及び Z又は強化処理を 行う必要がある。前述した赤外線カット被膜を硬化させるための焼成の温度が比較的 高い温度 (例えば 550〜750°C)の場合、前述した焼成を行う際の熱で曲げ処理及 び Z又は強化処理を行うと 1回の加熱により被膜の焼成と、曲げ処理及び Z又は強 化処理を行うことができるので経済的である。  When applied to a glass plate having a curved shape and Z or tempered glass as a glass plate for vehicles provided with the coating of the present invention, it is necessary to further perform bending treatment and Z or tempering treatment of the glass plate. If the firing temperature for curing the infrared cut film described above is relatively high (for example, 550 to 750 ° C), if the bending process and Z or strengthening process are performed with the heat during the firing process described above, 1 It is economical because the coating can be baked, bent and Z or strengthened by multiple heating.
また、赤外線カット被膜を硬化させるための焼成の温度が比較的低 、温度 (例えば 100〜550°C)の場合、ガラス基板上に赤外線カット被膜を形成する前に曲げ処理 及び Z又は強化処理を行うとよい。  Also, when the firing temperature for curing the infrared cut film is relatively low and the temperature (for example, 100 to 550 ° C), bending treatment and Z or strengthening treatment are performed before forming the infrared cut film on the glass substrate. It is good to do.
[0037] 赤外線カット被膜の形成及び加熱 (焼成)を行った後、車両に取り付けた際に車外 側となるガラス基板の主表面を洗浄する(第 2洗浄工程)。洗浄方法としては前述した 第 1洗浄工程と同様の方法を用いることができる。  [0037] After the formation and heating (firing) of the infrared cut film, the main surface of the glass substrate that is outside the vehicle when attached to the vehicle is cleaned (second cleaning step). As the cleaning method, the same method as the first cleaning step described above can be used.
[0038] 次に、第 2洗浄工程にて洗浄したガラス基板面に撥水性被膜形成用塗布液を塗布 し、撥水性被膜を形成する。塗布方法としては赤外線カット被膜の形成方法にて説 明したのと同様の方法を用いることができる他、手塗り法、刷毛塗り法なども好適であ る。撥水性被膜とガラス基板の間に下地膜を形成する場合は、撥水性被膜を形成す る前に下地膜を形成し、その上に撥水性被膜を形成すると良い。また、撥水性被膜 を形成した後に、必要に応じて焼成を行ってもよい。 [0039] 上述した第 1の形態の製造方法にて被膜を備える車両用ガラス板を製造することに より、車両に取り付けた際に車外側となるガラス基板の主表面に撥水性被膜が形成さ れ、車両に取り付けた際に車内側となるガラス基板の主表面に赤外線カット被膜が 形成されている被膜を備える車両用ガラス板を得ることができる。 [0038] Next, a water-repellent coating-forming coating solution is applied to the glass substrate surface cleaned in the second cleaning step to form a water-repellent coating. As a coating method, the same method as described in the method of forming an infrared cut film can be used, and a hand coating method, a brush coating method, and the like are also suitable. When a base film is formed between the water repellent film and the glass substrate, it is preferable to form the base film before forming the water repellent film and to form the water repellent film thereon. Further, after forming the water repellent coating, firing may be performed as necessary. [0039] By manufacturing the glass plate for a vehicle having a coating film by the manufacturing method of the first embodiment described above, a water-repellent coating film is formed on the main surface of the glass substrate that becomes the outside of the vehicle when attached to the vehicle. Thus, it is possible to obtain a glass plate for a vehicle provided with a coating in which an infrared cut coating is formed on the main surface of the glass substrate that is the inside of the vehicle when attached to the vehicle.
[0040] (第 2の形態の製造方法)  [0040] (Manufacturing method of the second embodiment)
第 2の形態の被膜を備える車両用ガラス板の製造方法は、車両に取り付けた際に 車外側となるガラス基板の主表面を洗浄する洗浄工程と、該洗浄工程にて洗浄した 主表面に赤外線カット被膜形成用塗布液を塗布し、赤外線カット被膜を形成するェ 程と、前記ガラス基板を加熱し、前記赤外線カット被膜を焼成する工程と、前記赤外 線カット被膜形成面に撥水性被膜形成用塗布液を塗布し、赤外線カット被膜形成面 上に前記撥水性被膜を形成する工程とを有する。  A method for manufacturing a glass plate for a vehicle having a coating of the second form includes a cleaning step for cleaning a main surface of a glass substrate that is an outside of a vehicle when attached to a vehicle, and an infrared ray on the main surface cleaned in the cleaning step. Applying a coating liquid for forming a cut film to form an infrared cut film, heating the glass substrate and firing the infrared cut film, and forming a water-repellent film on the surface where the infrared ray cut film is formed And applying a coating solution for forming the water-repellent coating on the infrared cut coating forming surface.
本発明の第 2の形態を構成する車両用ガラス板は洗浄工程において、車両に取り 付けた際に車外側となるガラス基板の主表面が洗浄される。洗浄方法としては、第 1 の形態の洗浄工程で説明したのと同様の方法を用いることができる。  When the glass plate for a vehicle constituting the second embodiment of the present invention is attached to the vehicle, the main surface of the glass substrate on the outside of the vehicle is cleaned in the cleaning step. As a cleaning method, the same method as described in the cleaning step of the first embodiment can be used.
[0041] 次に洗浄工程にて洗浄した面に赤外線カット被膜形成用塗布液を塗布し、赤外線 カット被膜を形成する。塗布方法としては、第 1の形態の製造方法にて説明した通り である。  [0041] Next, an infrared cut film-forming coating solution is applied to the surface cleaned in the cleaning step to form an infrared cut film. The coating method is as described in the manufacturing method of the first embodiment.
[0042] 赤外線カット被膜を形成したガラス基板は赤外線カット被膜を硬化させるために所 定の温度にて加熱 (焼成)する。焼成の方法としては第 1の形態の製造方法にて説明 した通りである。  [0042] The glass substrate on which the infrared cut film has been formed is heated (fired) at a predetermined temperature in order to cure the infrared cut film. The firing method is as described in the manufacturing method of the first embodiment.
[0043] 次に、赤外線カット被膜を形成した面に撥水性被膜形成用塗布液を塗布し、赤外 線カット被膜形成面上に撥水性被膜を形成する。塗布方法としては第 1の形態の製 造方法にて説明した通りである。  [0043] Next, a water-repellent film-forming coating solution is applied to the surface on which the infrared cut film is formed, and a water-repellent film is formed on the infrared ray cut film-formed surface. The application method is as described in the manufacturing method of the first embodiment.
[0044] 上述した第 2の形態の製造方法にて被膜を備える車両用ガラス板を製造することに より車両に取り付けた際に車外側となるガラス基板の主表面に赤外線カット被膜が形 成され、赤外線カット被膜上に撥水性被膜が形成されて ヽる被膜を備える車両用ガ ラス板を得ることができる。  [0044] By manufacturing a glass plate for a vehicle having a coating film by the manufacturing method of the second embodiment described above, an infrared cut coating film is formed on the main surface of the glass substrate that is the outside of the vehicle when attached to the vehicle. In addition, it is possible to obtain a glass plate for a vehicle having a coating formed by forming a water-repellent coating on the infrared cut coating.
[0045] また、本発明の被膜を備える車両用ガラス板にお!ヽて、赤外線カット被膜中に ITO 微粒子、シリカ成分の他に、有機物などの添加剤を添加してもよい。有機物を添加す ることにより、 ITO等の微粒子の分散性を向上させたり、薄膜をゾルゲル法により形成 する場合は、膜にクラックを発生させないなどの効果を得ることができる。有機物の含 有量としては特に限定されないが、薄膜の全質量に対して 60質量%以下が好ましい 。 60質量%を超えると薄膜中の有機物の含有量が多すぎて十分な薄膜の硬度を得 ることができない。有機物の含有量はさらに 15質量%以下であることが好ましい。 実施例 [0045] Further, in the glass plate for vehicles provided with the coating of the present invention, ITO is contained in the infrared cut coating. In addition to the fine particles and the silica component, additives such as organic substances may be added. By adding an organic substance, it is possible to improve the dispersibility of fine particles such as ITO, and when the thin film is formed by the sol-gel method, it is possible to obtain such effects as not generating cracks in the film. The content of the organic substance is not particularly limited, but is preferably 60% by mass or less with respect to the total mass of the thin film. If it exceeds 60% by mass, the content of organic matter in the thin film is too large, and sufficient thin film hardness cannot be obtained. The organic content is preferably 15% by mass or less. Example
[0046] 実施例 1  [0046] Example 1
(1)赤外線カット被膜形成用溶液の調製  (1) Preparation of infrared cut film forming solution
ポリエチレングリコール(PEG400 :関東化学社製) 0. 036g、純水 5. 86g、高分子 分散剤としてのポリエーテルリン酸エステル系界面活性剤(ソルスパース 41000:日 本ルーブリゾール社製) 0. 162g、変性アルコール(ソルミックス(登録商標) AP- 7 : 日本アルコール販売社製 (以下、「AP- 7」という)) 12. 44gを順に入れた溶液を 1分 間攪拌した後、濃塩酸 (関東化学社製)を 1質量%添加した AP-7 (以下、「1質量% AP-7」という) 3. 00gを上記溶液に添加し、 1分間攪拌した。  Polyethylene glycol (PEG400: manufactured by Kanto Chemical Co., Ltd.) 0.036 g, pure water 5.86 g, polyether phosphate ester surfactant as a polymer dispersant (Solsperse 41000: manufactured by Nippon Lubrizol) 0.162 g, Modified alcohol (Solmix (registered trademark) AP-7: manufactured by Nippon Alcohol Sales Co., Ltd. (hereinafter referred to as “AP-7”)) 12. A solution containing 44 g in order was stirred for 1 minute, and then concentrated hydrochloric acid (Kanto Chemical) AP-7 (hereinafter referred to as “1% by mass AP-7”) added by 1% by mass was added to the above solution and stirred for 1 minute.
[0047] その後、テトラエトキシシラン (KBE— 04 :信越ィ匕学社製、シリカ成分含有量 = 28.  [0047] Thereafter, tetraethoxysilane (KBE-04: manufactured by Shin-Etsu Chemical Co., Ltd., silica component content = 28.
8質量%) 6. 25gを上記溶液に添加して室温で 4時間攪拌した。この後、 ITO微粒子 とエタノールを質量比 2: 3の割合で混合して 4時間攪拌することにより得られた ITO 分散液 2. 25gを上記溶液に添加して、 30分間攪拌を行い、赤外線カット被膜形成 用溶液を得た。また、 ITO分散液中の ITO微粒子として、直径が 10〜20nm程度の 微粒子を用いた。  (8% by mass) 6.25 g was added to the above solution and stirred at room temperature for 4 hours. Thereafter, ITO fine particles and ethanol were mixed at a mass ratio of 2: 3 and stirred for 4 hours, and 2.25 g of the ITO dispersion liquid obtained was added to the above solution and stirred for 30 minutes to cut off infrared rays. A film forming solution was obtained. In addition, fine particles having a diameter of about 10 to 20 nm were used as ITO fine particles in the ITO dispersion.
[0048] (2)赤外線カット被膜の形成  [0048] (2) Formation of infrared cut film
自動車のサイドガラス用にカット及び研磨後、曲げ強化した厚さ 4mmのガラス基板 (紫外線吸収機能を有するグリーン色のソーダライムシリカガラス)を準備した。該ガラ ス基板の車両に取り付けた際に車内側となる主表面(トップ面)を、研磨水溶液を用 いて研磨後、水にて洗い流し乾燥させた。この洗浄を行った表面に上記赤外線カット 被膜形成用溶液をフローコート法にて塗布した。  A 4 mm thick glass substrate (green soda-lime silica glass having an ultraviolet absorption function) which was cut and polished and then reinforced after being cut and polished for an automobile side glass was prepared. The main surface (top surface) that becomes the inside of the vehicle when the glass substrate was attached to the vehicle was polished with an aqueous polishing solution, rinsed with water, and dried. The infrared cut film forming solution was applied to the cleaned surface by a flow coating method.
次!ヽで、この赤外線カット被膜形成用溶液が塗布されたガラス基板を室温で 5分程 度乾燥した後、予め 200°Cに昇温したオーブンに投入して 10分間加熱し、その後冷 却し、赤外線カット被膜を形成したガラス基板を得た。赤外線カット被膜の膜厚は約 1 500nmであった。 Next, boil the glass substrate coated with this infrared cut film forming solution at room temperature for about 5 minutes. After drying, the glass substrate was put in an oven preheated to 200 ° C. and heated for 10 minutes, and then cooled to obtain a glass substrate on which an infrared cut film was formed. The film thickness of the infrared cut film was about 1500 nm.
[0049] (3)下地処理液 (下地膜形成用)及び撥水性被膜形成用溶液の調製  [0049] (3) Preparation of base treatment liquid (for base film formation) and water repellent film formation solution
エタノール (ナカライテスタ社製) lOOgにクロロシラン (SiCl、信越シリコーン社製) 0  Ethanol (Nacalai Testa) lOOg and chlorosilane (SiCl, Shin-Etsu Silicone) 0
4  Four
. Olgを撹拌しながら添加し、下地処理液を得た。  Olg was added with stirring to obtain a surface treatment solution.
また、 CF (CF ) (CH ) Si (OCH ) (ヘプタデカフルォロデシルトリメトキシシラン  CF (CF) (CH) Si (OCH) (heptadecafluorodecyltrimethoxysilane
3 2 7 2 2 3 3  3 2 7 2 2 3 3
、東芝シリコーン社製) 1. 3gをエタノール 40. 6gに溶解し、 1時間撹拌を行った後、 イオン交換水 0. 808gおよび 0. 1N塩酸を 1. Og添加し、更に 1時間撹拌し、撥水性 被膜形成用溶液を得た。  (Toshiba Silicone Co., Ltd.) 1. Dissolve 3 g in 40.6 g of ethanol and stir for 1 hour, then add 0.880 g of ion-exchanged water and 1. Og of 0.1N hydrochloric acid, and stir for an additional hour. A water repellent film-forming solution was obtained.
[0050] (4)撥水性被膜の形成  [0050] (4) Formation of water-repellent coating
上記赤外線カット被膜を形成したガラス基板の車両に取り付けた際に車外側となる ガラス基板の主表面 (ボトム面)を、研磨水溶液を用いて研磨後、水にて洗い流し乾 燥させた。この洗浄したガラス表面に前記下地処理液を湿度 40%、室温下でフロー コートにて塗布した。約 1分間乾燥し、下地膜を得た後、上記にて調製した撥水性被 膜形成用溶液 3mlを綿布につけ、下地膜の表面上に塗布した。その後、過剰に付着 した撥水性被膜形成用溶液を、エタノールを含ませた新しい綿布で拭き取り、撥水性 被膜を形成し、被膜を備える車両用ガラス板を得た。撥水性被膜の膜厚は、走査型 電子顕微鏡 (SEM、 日立製作所 (株)製「S— 4700型」、加速電圧 5kV、ェミッション 電流 10 μ Α、測定倍率 10万倍)で観察したところ 10nm以下であった。  The main surface (bottom surface) of the glass substrate, which becomes the outside of the vehicle when the glass substrate with the infrared cut film formed thereon was attached to the vehicle, was polished with an aqueous polishing solution, rinsed with water, and dried. The surface treatment solution was applied to the cleaned glass surface by flow coating at a humidity of 40% and room temperature. After drying for about 1 minute to obtain a base film, 3 ml of the water-repellent film-forming solution prepared above was applied to a cotton cloth and applied onto the surface of the base film. Thereafter, the excessively water-repellent film-forming solution was wiped off with a new cotton cloth soaked in ethanol to form a water-repellent film, and a vehicle glass plate provided with the film was obtained. The film thickness of the water-repellent coating is 10 nm when observed with a scanning electron microscope (SEM, “S-4700” manufactured by Hitachi, Ltd., acceleration voltage 5 kV, emission current 10 μΑ, measurement magnification 100,000 times) It was the following.
[0051] 以上のように、実施例 1にて得られた被膜を備える車両用ガラス板は、車両に取り 付けた際に車外側となるガラス基板の主表面に撥水性被膜を備え、車両に取り付け た際に車内側となるガラス基板の主表面に赤外線カット被膜を備えている。  [0051] As described above, the glass plate for vehicles provided with the coating obtained in Example 1 is provided with a water-repellent coating on the main surface of the glass substrate that becomes the outside of the vehicle when attached to the vehicle. An infrared cut film is provided on the main surface of the glass substrate that is the inside of the car when it is installed.
[0052] (5)赤外線カット被膜中の ITO微粒子の含有量 (以下、「ITO含有量」という)及び赤 外線カット被膜中のシリカ成分の含有量 (以下、「シリカ含有量」 t 、う)の含有比率 [0052] (5) Content of ITO fine particles in infrared cut coating (hereinafter referred to as “ITO content”) and content of silica component in infrared cut coating (hereinafter referred to as “silica content” t) Content ratio
ITO含有量及びシリカ含有量の含有比率は、インジウム (In)、スズ (Sn)、ケィ素(S i)の光電子強度 (Intensity)を検出し、検出した光電子強度と使用装置内の相対感 度係数値を用いて、インジウム (In)及びスズ (Sn)の合計と、ケィ素(Si)との原子濃 度比 (In+Sn: Si)の原子濃度%値を算出することによって得られる。 The content ratio of ITO content and silica content is the detection of photoelectron intensity (Intensity) of indium (In), tin (Sn), and silicon (Si), and the detected photoelectron intensity and relative sensitivity in the device used. Using the coefficient value, the sum of indium (In) and tin (Sn) and the atomic concentration of silicon (Si) It is obtained by calculating the atomic concentration% value of the degree ratio (In + Sn: Si).
[0053] ここで分析方法は以下のとおりである。 Here, the analysis method is as follows.
前処理として、実施例 1で得られた被膜を備える車両用ガラス板カゝら適当な大きさ の試料を切断した後にモリブデンマスクを用いて試料を試料台に固定した。その後、 下記の分析装置、分析条件、及びエッチング条件にて、 X線光電子分光分析による 深さ方向の組成分析を実施した。  As a pretreatment, a sample of an appropriate size, such as a vehicle glass plate provided with the coating obtained in Example 1, was cut, and then the sample was fixed to a sample table using a molybdenum mask. Then, composition analysis in the depth direction was performed by X-ray photoelectron spectroscopy analysis using the following analyzer, analysis conditions, and etching conditions.
分析装置として、アルバック 'フアイ (株)製の X線光電子分光分析装置「ESCA— 5 600ci」を使用した。  As an analyzer, an X-ray photoelectron spectrometer “ESCA-5 600ci” manufactured by ULVAC FUAI Co., Ltd. was used.
また、分析条件については、 X線源(Current X— Ray anode)として単色 X線源 (Al Monochromated 2mm Filament)を使用し、アノードエネノレギー (Anode Regarding the analysis conditions, a monochromatic X-ray source (Al Monochromated 2mm Filament) is used as the X-ray source (Current X-Ray anode), and the anode energy (Anode
Energy)を 2. 3828J (1486. 6eV)とし、電力量(Anode Power)を 150Wとし、 電圧(X— Ray Voltage)を 14kVとし、取り出し角(Stage Angle)を 45度とした。 また、エッチング条件については、エッチング方法を Arイオンによるスパッタリングと し、加速電圧 (Beam Voltage)を 3. OkVとし、ラスタ(Raster)を 4 X 4mmとし、スパ ッタレート(Etching Rate)を約 1. 9nmZmin (SiO膜換算)とした。 Energy) was 2.3828J (1486. 6eV), the power (Anode Power) was 150W, the voltage (X-Ray Voltage) was 14kV, and the extraction angle (Stage Angle) was 45 degrees. As for the etching conditions, the etching method is Ar ion sputtering, the acceleration voltage (Beam Voltage) is 3. OkV, the raster (Raster) is 4 X 4 mm, and the sputtering rate (Etching Rate) is about 1.9 nmZmin. (SiO film equivalent).
2  2
なお、赤外線カット被膜の組成、具体的には ITO含有量及びシリカ含有量は、 X線 光電子分光分析による赤外線カット被膜の深さ方向の組成分析結果により求め、そ の組成 (含有量)は、赤外線カット被膜の深さ方向の中心付近の膜の成分として表し た。  The composition of the infrared cut film, specifically the ITO content and the silica content, is obtained from the composition analysis result in the depth direction of the infrared cut film by X-ray photoelectron spectroscopy, and the composition (content) is It was expressed as a component of the film near the center in the depth direction of the infrared cut film.
[0054] 図 6は、実施例 1におけるインジウム (In)、スズ (Sn)、及びケィ素(Si)の原子濃度 を示すグラフであり、縦軸は原子濃度(%)を示し、横軸はスパッタ時間 (min)を示す 図 6において、インジウム (In)及びスズ (Sn)の合計と、ケィ素(Si)との原子濃度比( In+Sn: Si)が約 1: 9であることから、 ITO含有量及びシリカ含有量の含有比率はモ ル比で約 1: 9であることが分かる。  FIG. 6 is a graph showing the atomic concentrations of indium (In), tin (Sn), and silicon (Si) in Example 1, the vertical axis indicates the atomic concentration (%), and the horizontal axis indicates In Fig. 6, which shows the sputter time (min), the atomic concentration ratio (In + Sn: Si) of indium (In) and tin (Sn) to silicon (Si) is about 1: 9. It can be seen that the content ratio of ITO content and silica content is about 1: 9 in mole ratio.
[0055] また、実施例 1で得られる赤外線カット被膜の波長 550nmにおける屈折率は、分光 エリプソメータ (J. A. Woollam社製 VASE)を用いて測定した。ガラス板表面の波長 550nmにおける屈折率は、分光光度計(日立製作所社製分光光度計 U— 4000)を 用いて測定した透過率及び反射率カゝら算出した。実施例 1で得られた被膜を備える 車両用ガラス板の光の干渉の程度は、 目視により観察した。なお、赤外線カット被膜 の波長 550nmにおける屈折率は、分光エリプソメータより取得した Psi ( φ )、 Delta ( Δ )を再現させるように、光学モデルパラメーターを最適化し、光学定数 (屈折率、消 衰係数)を算出する偏光解析法 (分光エリプソメトリー)により評価した。ガラス板表面 の波長 550nmにおける屈折率、赤外線カット被膜の波長 550nmにおける屈折率、 赤外線カット被膜及びガラス板表面の波長 550nmにおける屈折率差、及び光の干 渉の程度にっ 、ての結果を第 2表に示す。 [0055] The refractive index of the infrared cut film obtained in Example 1 at a wavelength of 550 nm was measured using a spectroscopic ellipsometer (VASE manufactured by JA Woollam). The refractive index of the surface of the glass plate at a wavelength of 550 nm is measured using a spectrophotometer (Hitachi Ltd. spectrophotometer U-4000). The transmittance and reflectance measured using the above were calculated. The degree of light interference of the vehicle glass plate provided with the coating obtained in Example 1 was visually observed. The refractive index of the infrared cut film at a wavelength of 550 nm is optimized for the optical model parameters to reproduce the Psi (φ) and Delta (Δ) obtained from the spectroscopic ellipsometer, and the optical constants (refractive index, extinction coefficient). Was evaluated by ellipsometry (spectral ellipsometry). The refractive index at the wavelength of 550 nm on the surface of the glass plate, the refractive index at the wavelength of 550 nm of the infrared cut coating, the refractive index difference at the wavelength of 550 nm between the infrared cut coating and the glass plate, and the degree of interference of light Shown in Table 2.
[0056] 実施例 2 [0056] Example 2
実施例 1と同様に、 自動車のサイドガラス用にカット及び研磨後、曲げ強化した厚さ 4mmのガラス基板 (紫外線吸収機能を有するグリーン色のソーダライムシリカガラス) を準備した。該ガラス基板の車両に取り付けた際に車外側となる主表面(トップ面)を 、研磨水溶液を用いて研磨後、水にて洗い流し乾燥させた。この洗浄を行った表面 に実施例 1で用いた赤外線カット被膜形成用溶液をフローコート法にて塗布した。 次!ヽで、この赤外線カット被膜形成用溶液が塗布されたガラス基板を室温で 5分程 度乾燥した後、予め 200°Cに昇温したオーブンに投入して 10分間加熱し、その後冷 却し、赤外線カット被膜を形成したガラス基板を得た。  In the same manner as in Example 1, a 4 mm thick glass substrate (green soda lime silica glass having an ultraviolet absorbing function) that was cut and polished and then reinforced after being cut for a side glass of an automobile was prepared. The main surface (top surface) that becomes the outside of the vehicle when the glass substrate was attached to the vehicle was polished with an aqueous polishing solution, rinsed with water, and dried. The infrared cut film forming solution used in Example 1 was applied to the cleaned surface by a flow coating method. Next, after drying the glass substrate coated with the infrared cut film forming solution at room temperature for about 5 minutes, put it in an oven preheated to 200 ° C and heat for 10 minutes, then cool And the glass substrate in which the infrared cut film was formed was obtained.
[0057] 実施例 1で用いた撥水性被膜形成用溶液を綿布に 3mlつけ、赤外線カット被膜を 形成したガラス基板の赤外線カット被膜を形成した表面上に塗布し、その後過剰に 付着した撥水性被膜形成用溶液を、エタノールを含ませた新しい綿布で拭き取り、撥 水性被膜を形成し、被膜を備える車両用ガラス板を得た。 [0057] 3 ml of the water-repellent film-forming solution used in Example 1 was applied to a cotton cloth, applied to the surface of the glass substrate on which the infrared-cut film was formed, and then applied to the surface of the glass substrate. The forming solution was wiped off with a new cotton cloth soaked in ethanol to form a water-repellent coating, and a vehicle glass plate provided with the coating was obtained.
実施例 2にて得られた被膜を備える車両用ガラス板は、車両に取り付けた際に車外 側となるガラス基板の主表面に赤外線カット被膜を備え、赤外線カット被膜上に撥水 性被膜が形成されている。  The glass plate for vehicles provided with the coating obtained in Example 2 is provided with an infrared cut coating on the main surface of the glass substrate that is the outside of the vehicle when attached to the vehicle, and a water-repellent coating is formed on the infrared cut coating. Has been.
[0058] 実施例 3 [0058] Example 3
実施例 1において、 ITO分散液を 3. 07g、テトラエトキシシランを 5. 13gとしたこと 以外は実施例 1と同様にして、被膜を備える車両用ガラス板を得、実施例 1と同様に して評価した。結果を第 2表に示す。 [0059] 実施例 4 In Example 1, a vehicle glass plate provided with a coating film was obtained in the same manner as in Example 1 except that the ITO dispersion was 3.07 g and tetraethoxysilane was 5.13 g. And evaluated. The results are shown in Table 2. [0059] Example 4
実施例 1において、ガラス基板の車両に取り付けた際に車内側となる主表面 (ボトム 面)に上記赤外線カット被膜形成用溶液をフローコート法にて塗布したこと以外は、 実施例 1と同様にして、被膜を備える車両用ガラス板を得、実施例 1と同様にして評 価した。結果を第 2表に示す。  In Example 1, the same method as in Example 1 was applied except that the infrared cut film forming solution was applied to the main surface (bottom surface) that became the inside of the vehicle when the glass substrate was attached to the vehicle by the flow coating method. Thus, a vehicle glass plate provided with a coating was obtained and evaluated in the same manner as in Example 1. The results are shown in Table 2.
[0060] [表 2] 第 2表一 1 [0060] [Table 2] Table 2 1
Figure imgf000019_0001
Figure imgf000019_0001
[0061] [表 3] 第 2表一 2 [0061] [Table 3] Table 2 1
Figure imgf000019_0002
Figure imgf000019_0002
[0062] 実施例 2及び 4にて得られた被膜を備える車両用ガラス板の赤外線カット被膜中 の ITO含有量、赤外線カット被膜中の有機物の含有量 (以下、「有機分含有量」とい う)、及びシリカ含有量を、コーティング液に添加されている各材料の成分の質量から 計算により求めた結果、 ITO含有量は 31質量%であり、有機分含有量は 7質量%で あり、シリカ含有量は 62質量%であった。 また、実施例 3にて得られた被膜を備える車両用ガラス板の赤外線カット被膜中の I TO含有量、有機分含有量、及びシリカ含有量を同様の方法で求めた結果、 ITO含 有量は 42質量%であり、有機分含有量は 7質量%であり、シリカ含有量は 51質量% であった。 [0062] The ITO content in the infrared cut film of the vehicle glass plate provided with the film obtained in Examples 2 and 4, the organic content in the infrared cut film (hereinafter referred to as "organic content"). ), And the silica content was calculated from the mass of each material component added to the coating solution. As a result, the ITO content was 31% by mass and the organic content was 7% by mass. The content was 62% by mass. Further, the ITO content, the organic content, and the silica content in the infrared cut film of the vehicle glass plate provided with the film obtained in Example 3 were determined by the same method. As a result, the ITO content Was 42 mass%, the organic content was 7 mass%, and the silica content was 51 mass%.
なお、計算に際し、 ITO微粒子の質量は、 ITO分散液の 40質量%であることに基 づき、有機物の質量は、高分子分散剤及びポリエチレングリコールの質量とし、シリカ 成分の質量は、テトラエトキシシラン中のシリカ成分の含有量 28. 8質量%に基づい た。  In the calculation, the mass of the ITO fine particles is 40% by mass of the ITO dispersion, the mass of the organic substance is the mass of the polymer dispersant and polyethylene glycol, and the mass of the silica component is tetraethoxysilane. Based on the content of 28.8% by mass of the silica component.
[0063] 得られた被膜を備える車両用ガラス板の撥水性能及び赤外線カット性能を確認し た。確認は、実施例 1及び 2の被膜を備える車両用ガラス板と同様の方法で赤外線力 ット被膜及び撥水性被膜を形成した、曲げられて!、な!、試験用サンプルを用いた。 曲げられた車両用寸法のガラスの撥水性能及び赤外線カット性能を測定する場合、 簡易な方法での測定となるため、良好な測定精度での測定が難しいためである。  [0063] The water-repellent performance and infrared cut performance of the vehicle glass plate provided with the obtained coating were confirmed. For the confirmation, a test sample in which an infrared force coating and a water-repellent coating were formed in the same manner as the glass plate for vehicles provided with the coating of Examples 1 and 2 was used. This is because when measuring the water-repellent performance and infrared ray cutting performance of a bent glass for a vehicle, it is difficult to measure with good measurement accuracy because it is a simple method.
[0064] 実施例 1及び 2と同様の方法にて得られた試験用サンプル (被膜を備える車両用ガ ラス板)の撥水性能として水滴との接触角を、接触角計 (CA— DT、協和界面科学社 製)を用いて、水滴 2mg静的接触角として測定した。更に、撥水性能を示す尺度とし て、臨界傾斜角を測定した。水滴が撥水被膜の表面を転がる性能を測定するため、 水平に配置したガラス板表面に直径 5mmの水滴を置き、徐々に撥水性ガラス板を 傾斜させて、表面に置いた水滴が転がり始める時のガラス板の傾斜角(臨界傾斜角) を測定した。臨界傾斜角が小さいほど、動的な撥水性が優れており、例えば走行中 の自動車のガラス窓に付着した雨滴が飛散しやすくなつて、運転者の視野が妨げら れないことになる。  [0064] As the water repellency of the test sample (vehicle glass plate provided with a coating) obtained by the same method as in Examples 1 and 2, the contact angle with water droplets was measured using a contact angle meter (CA-DT, Using Kyowa Interface Science Co., Ltd.), water droplets were measured as 2 mg static contact angle. Furthermore, the critical tilt angle was measured as a measure of water repellency. In order to measure the ability of water droplets to roll on the surface of the water-repellent coating, when a water droplet with a diameter of 5 mm is placed on the surface of a horizontally placed glass plate and the water-repellent glass plate is gradually tilted, the water droplet placed on the surface begins to roll. The inclination angle (critical inclination angle) of the glass plate was measured. The smaller the critical inclination angle, the better the dynamic water repellency. For example, raindrops attached to the glass window of a running car are more likely to scatter and the driver's vision is not obstructed.
[0065] また、実施例 1及び 2と同様の方法にて得られた試験用サンプル (被膜を備える車 両用ガラス板)の赤外線カット性能として波長 300〜2500nmにおける光の透過率を 測定した。測定にあたり、分光光度計 (島津製作所社製:型番 UV— 3100PC)を用 いた。得られた結果を図 4 (a)及び (b)に記す。  [0065] Further, the light transmittance at a wavelength of 300 to 2500 nm was measured as an infrared cut performance of a test sample (vehicle glass plate provided with a coating) obtained by the same method as in Examples 1 and 2. In the measurement, a spectrophotometer (manufactured by Shimadzu Corporation: model number UV-3100PC) was used. The results obtained are shown in Figs. 4 (a) and (b).
図 4 (a)は実施例 1における波長 300〜2500nmにおける光の透過率を測定した 結果であり、図 4 (b)は実施例 2における波長 300〜2500nmにおける光の透過率を 測定した結果である。 Fig. 4 (a) shows the results of measuring the light transmittance at a wavelength of 300 to 2500 nm in Example 1, and Fig. 4 (b) shows the light transmittance at a wavelength of 300 to 2500 nm in Example 2. It is the result of measurement.
実施例 1及び 2にて得られた試験用サンプル (被膜を備える車両用ガラス板)の撥 水膜を形成した面の接触角は 、ずれも 108度、臨界傾斜角は 、ずれも 13度であり、 撥水性能に優れるガラス板であることが確認された。また、実施例 1及び 2にて得られ た試験用サンプル (被膜を備える車両用ガラス板)の赤外線の透過率は図 4 (a)及び (b)からも明らかなとおり、赤外線の透過率は低く抑えられていることが確認された。  The contact angle of the surface on which the water repellent film of the test sample (vehicle glass plate provided with a film) obtained in Examples 1 and 2 was formed was a deviation of 108 degrees, the critical inclination angle was a deviation of 13 degrees. It was confirmed that the glass plate was excellent in water repellency. In addition, the infrared transmittance of the test samples (vehicle glass plates provided with a coating) obtained in Examples 1 and 2 is as shown in FIGS. 4 (a) and (b). It was confirmed that it was kept low.
[0066] また、実施例 3及び 4においても実施例 1及び 2と同様の優れた撥水性能を有し、且 つ、赤外線の透過率が低く抑えられた被膜を備える車両用ガラス板が得られた。 産業上の利用可能性 [0066] Also in Examples 3 and 4, there is obtained a glass plate for a vehicle having the same excellent water repellency performance as in Examples 1 and 2 and having a coating with a low infrared transmittance. It was. Industrial applicability
[0067] 本発明によれば、撥水性と赤外線カット性の両方の機能を有する被膜を備える車 両用ガラス板を提供することができ、特に車両用窓ガラスとして有用である。 [0067] According to the present invention, it is possible to provide an automotive glass plate provided with a coating film having both functions of water repellency and infrared cutting property, and it is particularly useful as a vehicle window glass.

Claims

請求の範囲 The scope of the claims
[1] 撥水性被膜と赤外線カット被膜をガラス基板の主表面に形成した被膜を備える車 両用ガラス板。  [1] An automotive glass plate provided with a coating in which a water repellent coating and an infrared cut coating are formed on the main surface of the glass substrate.
[2] 前記撥水性被膜は、車両に取り付けた際に車外側となるガラス基板の主表面に形 成され、前記赤外線カット被膜は、車両に取り付けた際に車内側となるガラス基板の 主表面に形成されていることを特徴とする請求項 1記載の被膜を備える車両用ガラス 板。  [2] The water-repellent coating is formed on the main surface of the glass substrate that becomes the outside of the vehicle when attached to the vehicle, and the infrared cut coating is the main surface of the glass substrate that becomes the inside of the vehicle when attached to the vehicle. The glass plate for vehicles provided with the film of Claim 1 characterized by the above-mentioned.
[3] 前記赤外線カット被膜は、車両に取り付けた際に車外側となるガラス基板の主表面 に形成され、前記撥水性被膜は、前記赤外線カット被膜上に形成されていることを特 徴とする請求項 1記載の被膜を備える車両用ガラス板。  [3] The infrared cut film is formed on a main surface of a glass substrate which is an outside of the vehicle when attached to a vehicle, and the water repellent film is formed on the infrared cut film. A glass plate for a vehicle, comprising the coating according to claim 1.
[4] 前記撥水性被膜はフルォロアルキル基及び Z又はアルキル基を含有する膜であり 、前記赤外線カット被膜は主成分としてシリカを含有し且つ赤外線カット微粒子を含 有する膜であることを特徴とする請求項 1乃至 3のいずれか 1項に記載の被膜を備え る車両用ガラス板。  [4] The water-repellent film is a film containing a fluoroalkyl group and Z or an alkyl group, and the infrared cut film is a film containing silica as a main component and containing infrared cut fine particles. Item 4. A vehicle glass plate comprising the coating according to any one of Items 1 to 3.
[5] 前記赤外線カット微粒子は、インジウムドープ酸化スズ (ITO)微粒子及びアンチモ ンドープ酸化スズ (ATO)微粒子の少なくとも 、ずれかであることを特徴とする請求項 [5] The infrared cut fine particles are at least one of indium-doped tin oxide (ITO) fine particles and antimony-doped tin oxide (ATO) fine particles.
4に記載の被膜を備える車両用ガラス板。 A glass plate for vehicles comprising the coating according to 4.
[6] 前記撥水性被膜の膜厚は 0. l〜300nmであり、前記赤外線カット被膜の膜厚は 3[6] The film thickness of the water repellent film is 0.1 to 300 nm, and the film thickness of the infrared cut film is 3
00〜3000nmであることを特徴とする請求項 1乃至 5のいずれか 1項に記載の被膜 を備える車両用ガラス板。 The glass plate for vehicles provided with the coating according to any one of claims 1 to 5, wherein the glass plate has a thickness of 00 to 3000 nm.
[7] 前記ガラス基板は一方の表面にスズを含有し、他方の表面にスズを実質的に含有 しな ヅーダライムシリカガラス板であり、前記赤外線カット被膜はスズを実質的に含 有しない表面に形成されることを特徴とする請求項 1乃至 6のいずれか 1項に記載の 被膜を備える車両用ガラス板。 [7] The glass substrate is a soda-lime-silica glass plate containing tin on one surface and substantially not containing tin on the other surface, and the infrared cut film substantially does not contain tin. The glass plate for vehicles provided with the film of any one of Claim 1 thru | or 6 characterized by the above-mentioned.
[8] 前記ガラス基板のスズを実質的に含有しない表面と前記赤外線カット被膜との波長[8] Wavelength of the surface of the glass substrate substantially free of tin and the infrared cut film
550nmにおける屈折率差が 0. 04未満である請求項 7に記載の被膜を備える車両 用ガラス板。 The glass plate for vehicles provided with the film of Claim 7 whose refractive index difference in 550nm is less than 0.04.
[9] 車両に取り付けた際に車内側となるガラス基板の主表面を洗浄する第 1洗浄工程と 、該第 1洗浄工程にて洗浄した主表面に赤外線カット被膜形成用塗布液を塗布し、 赤外線カット被膜を形成する工程と、前記ガラス基板を加熱し、前記赤外線カット被 膜を焼成する工程と、車両に取り付けた際に車外側となるガラス基板の主表面を洗 浄する第 2洗浄工程と、該第 2洗浄工程にて洗浄した主表面に撥水性被膜形成用塗 布液を塗布し、撥水性被膜を形成する工程とを有する被膜を備える車両用ガラス板 の製造方法。 [9] A first cleaning step for cleaning the main surface of the glass substrate that is the inside of the vehicle when attached to the vehicle; Applying a coating solution for forming an infrared cut film on the main surface cleaned in the first cleaning step, forming an infrared cut film, heating the glass substrate, and firing the infrared cut film; A second cleaning step for cleaning the main surface of the glass substrate that is the outside of the vehicle when attached to the vehicle, and a coating liquid for forming a water-repellent film is applied to the main surface cleaned in the second cleaning step, The manufacturing method of the glass plate for vehicles provided with the film which has a process of forming a water-repellent film.
車両に取り付けた際に車外側となるガラス基板の主表面を洗浄する洗浄工程と、該 洗浄工程にて洗浄した主表面に赤外線カット被膜形成用塗布液を塗布し、赤外線力 ット被膜を形成する工程と、前記ガラス基板を加熱し、前記赤外線カット被膜を焼成 する工程と、前記赤外線カット被膜形成面に撥水性被膜形成用塗布液を塗布し、赤 外線カット被膜形成面上に前記撥水性被膜を形成する工程とを有する被膜を備える 車両用ガラス板の製造方法。  A cleaning process for cleaning the main surface of the glass substrate on the outside of the vehicle when it is mounted on a vehicle, and an infrared cut coating film is formed by applying a coating solution for forming an infrared cut film on the main surface cleaned in the cleaning process. Heating the glass substrate and firing the infrared cut coating; and applying a water repellent coating forming coating solution to the infrared cut coating forming surface; and forming the water repellent coating on the infrared cut coating forming surface. The manufacturing method of the glass plate for vehicles provided with the film which has a process of forming a film.
PCT/JP2007/050515 2006-01-16 2007-01-16 Glass plate with film for vehicle and process for producing the same WO2007081025A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007553984A JP5156393B2 (en) 2006-01-16 2007-01-16 VEHICLE GLASS PLATE HAVING COATING AND METHOD FOR MANUFACTURING SAME

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-007834 2006-01-16
JP2006007956 2006-01-16
JP2006-007956 2006-01-16
JP2006007834 2006-01-16

Publications (1)

Publication Number Publication Date
WO2007081025A1 true WO2007081025A1 (en) 2007-07-19

Family

ID=38256426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/050515 WO2007081025A1 (en) 2006-01-16 2007-01-16 Glass plate with film for vehicle and process for producing the same

Country Status (2)

Country Link
JP (1) JP5156393B2 (en)
WO (1) WO2007081025A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016084276A (en) * 2015-12-21 2016-05-19 旭硝子株式会社 Coated window pane for automobile
WO2018021499A1 (en) * 2016-07-29 2018-02-01 日本板硝子株式会社 Windshield and windshield manufacturing method
WO2019131802A1 (en) * 2017-12-28 2019-07-04 日本板硝子株式会社 Windshield
WO2020009203A1 (en) * 2018-07-06 2020-01-09 Agc株式会社 A pillar glass plate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5281456U (en) * 1975-08-18 1977-06-17
JP2000086293A (en) * 1998-09-10 2000-03-28 Central Glass Co Ltd Water-repellent glass and its production
JP2004338985A (en) * 2003-05-14 2004-12-02 Nippon Sheet Glass Co Ltd Substrate with heat ray shielding film, and its production method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0524886A (en) * 1991-07-15 1993-02-02 Nissan Motor Co Ltd Water-repellent treatment of glass
JPH0597477A (en) * 1991-10-04 1993-04-20 Nippon Sheet Glass Co Ltd Water repellent article and its production
JP3361180B2 (en) * 1994-04-28 2003-01-07 セントラル硝子株式会社 Water-repellent ultraviolet-infrared absorbing glass and method for producing the same
WO2005095298A1 (en) * 2004-03-31 2005-10-13 Nippon Sheet Glass Company, Limited Infrared cut glass

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5281456U (en) * 1975-08-18 1977-06-17
JP2000086293A (en) * 1998-09-10 2000-03-28 Central Glass Co Ltd Water-repellent glass and its production
JP2004338985A (en) * 2003-05-14 2004-12-02 Nippon Sheet Glass Co Ltd Substrate with heat ray shielding film, and its production method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016084276A (en) * 2015-12-21 2016-05-19 旭硝子株式会社 Coated window pane for automobile
WO2018021499A1 (en) * 2016-07-29 2018-02-01 日本板硝子株式会社 Windshield and windshield manufacturing method
CN109641793A (en) * 2016-07-29 2019-04-16 日本板硝子株式会社 The manufacturing method of windshield and windshield
JPWO2018021499A1 (en) * 2016-07-29 2019-05-23 日本板硝子株式会社 Windshield and method of manufacturing windshield
JP2020073364A (en) * 2016-07-29 2020-05-14 日本板硝子株式会社 Windshield and manufacturing method of windshield
US11897810B2 (en) 2016-07-29 2024-02-13 Nippon Sheet Glass Company, Limited Windshield and windshield manufacturing method
WO2019131802A1 (en) * 2017-12-28 2019-07-04 日本板硝子株式会社 Windshield
JP2019119285A (en) * 2017-12-28 2019-07-22 日本板硝子株式会社 Windshield
WO2020009203A1 (en) * 2018-07-06 2020-01-09 Agc株式会社 A pillar glass plate
JPWO2020009203A1 (en) * 2018-07-06 2021-08-02 Agc株式会社 Glass plate for A pillar
JP7261380B2 (en) 2018-07-06 2023-04-20 Agc株式会社 Glass plate for A pillar

Also Published As

Publication number Publication date
JP5156393B2 (en) 2013-03-06
JPWO2007081025A1 (en) 2009-06-11

Similar Documents

Publication Publication Date Title
JP4107050B2 (en) Coating material composition and article having a coating formed thereby
JP6823141B2 (en) Transparent article with anti-fog film
EP1984764B1 (en) Method of making an article with anti-reflective properties and article obtainable therefrom.
KR100783714B1 (en) Coating material composition and article having coating film formed therewith
JP6989650B2 (en) A glass substrate with a low-reflection coating, a method for manufacturing a glass substrate with a low-reflection coating, and a photoelectric conversion device.
EP0974560B1 (en) Antireflection glass plate, process for producing the same, and antireflection coating composition
EP1167313A1 (en) Low-reflection glass article
JP4527272B2 (en) Low reflection glass article
JPH08175850A (en) Hydrophobic multi-layer sheet glass
CN101309759A (en) Process for producing base material for forming heat shielding film
JP2000256040A (en) Glass panel for automobile window
JP5156393B2 (en) VEHICLE GLASS PLATE HAVING COATING AND METHOD FOR MANUFACTURING SAME
JP3427755B2 (en) Method for producing silica-based membrane coated article
WO2011090156A1 (en) Anti-fog article
JPH05330856A (en) Low-reflecting glass
JPH09314715A (en) Laminate and its manufacture
JP4292992B2 (en) Composition for forming photocatalyst film and substrate with photocatalyst film
WO2018051958A1 (en) Antifouling article
JP7083342B2 (en) A method for manufacturing a transparent substrate with a low-reflection film, a photoelectric conversion device, a coating liquid for forming a low-reflection film of a transparent substrate with a low-reflection film, and a transparent substrate with a low-reflection film.
JP2005001900A (en) Substrate coated with low light reflective coating film, its manufacturing method, and composition for the low light reflective coating film
JP7153638B2 (en) Glass articles with low reflection coating
JP2003292342A (en) Silica-based film coated article
JP2011119626A (en) Cover glass for solar panel covered with low reflecting coating and method for manufacturing the same
JP2001019494A (en) Antifogging glass article
WO2019021643A1 (en) Coating liquid for forming visible light scattering coating film, and substrate provided with visible light scattering coating film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007553984

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07706842

Country of ref document: EP

Kind code of ref document: A1