JP4292992B2 - Composition for forming photocatalyst film and substrate with photocatalyst film - Google Patents
Composition for forming photocatalyst film and substrate with photocatalyst film Download PDFInfo
- Publication number
- JP4292992B2 JP4292992B2 JP2003567988A JP2003567988A JP4292992B2 JP 4292992 B2 JP4292992 B2 JP 4292992B2 JP 2003567988 A JP2003567988 A JP 2003567988A JP 2003567988 A JP2003567988 A JP 2003567988A JP 4292992 B2 JP4292992 B2 JP 4292992B2
- Authority
- JP
- Japan
- Prior art keywords
- photocatalyst film
- composition
- forming
- photocatalyst
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000011941 photocatalyst Substances 0.000 title claims description 107
- 239000000203 mixture Substances 0.000 title claims description 53
- 239000000758 substrate Substances 0.000 title claims description 29
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 44
- 239000000463 material Substances 0.000 claims description 30
- 239000002585 base Substances 0.000 claims description 23
- 239000000377 silicon dioxide Substances 0.000 claims description 22
- 230000001699 photocatalysis Effects 0.000 claims description 17
- 239000004115 Sodium Silicate Substances 0.000 claims description 16
- 239000010419 fine particle Substances 0.000 claims description 16
- 239000002243 precursor Substances 0.000 claims description 16
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims description 16
- 229910052911 sodium silicate Inorganic materials 0.000 claims description 16
- 235000012239 silicon dioxide Nutrition 0.000 claims description 15
- 229910001413 alkali metal ion Inorganic materials 0.000 claims description 14
- -1 Silicate compound Chemical class 0.000 claims description 13
- PAZHGORSDKKUPI-UHFFFAOYSA-N lithium metasilicate Chemical compound [Li+].[Li+].[O-][Si]([O-])=O PAZHGORSDKKUPI-UHFFFAOYSA-N 0.000 claims description 13
- 229910052912 lithium silicate Inorganic materials 0.000 claims description 13
- 238000011282 treatment Methods 0.000 claims description 13
- 239000004065 semiconductor Substances 0.000 claims description 12
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims description 12
- 239000011347 resin Substances 0.000 claims description 11
- 229920005989 resin Polymers 0.000 claims description 11
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims description 8
- 229910052783 alkali metal Inorganic materials 0.000 claims description 8
- 239000003729 cation exchange resin Substances 0.000 claims description 8
- 239000011521 glass Substances 0.000 claims description 8
- 239000002245 particle Substances 0.000 claims description 8
- 230000015572 biosynthetic process Effects 0.000 claims description 4
- 238000002834 transmittance Methods 0.000 claims description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 18
- 238000000576 coating method Methods 0.000 description 17
- 239000011248 coating agent Substances 0.000 description 16
- 238000000034 method Methods 0.000 description 14
- 239000007788 liquid Substances 0.000 description 13
- 239000000243 solution Substances 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 239000004094 surface-active agent Substances 0.000 description 9
- 229910004298 SiO 2 Inorganic materials 0.000 description 8
- 239000011734 sodium Substances 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 229910018068 Li 2 O Inorganic materials 0.000 description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 229910001415 sodium ion Inorganic materials 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 239000002253 acid Substances 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 239000002689 soil Substances 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000004417 polycarbonate Substances 0.000 description 4
- 229920000515 polycarbonate Polymers 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 3
- 238000005299 abrasion Methods 0.000 description 3
- 230000003373 anti-fouling effect Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000005357 flat glass Substances 0.000 description 3
- 229910001416 lithium ion Inorganic materials 0.000 description 3
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 3
- 229910052753 mercury Inorganic materials 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- 238000004528 spin coating Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000002772 conduction electron Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 208000028659 discharge Diseases 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 239000013538 functional additive Substances 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 229910001507 metal halide Inorganic materials 0.000 description 2
- 150000005309 metal halides Chemical class 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 229920005668 polycarbonate resin Polymers 0.000 description 2
- 239000004431 polycarbonate resin Substances 0.000 description 2
- 238000012805 post-processing Methods 0.000 description 2
- 125000005372 silanol group Chemical group 0.000 description 2
- 239000005361 soda-lime glass Substances 0.000 description 2
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 2
- ZNOKGRXACCSDPY-UHFFFAOYSA-N tungsten trioxide Chemical compound O=[W](=O)=O ZNOKGRXACCSDPY-UHFFFAOYSA-N 0.000 description 2
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 2
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004111 Potassium silicate Substances 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000006059 cover glass Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000011033 desalting Methods 0.000 description 1
- 238000007607 die coating method Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- YWEUIGNSBFLMFL-UHFFFAOYSA-N diphosphonate Chemical compound O=P(=O)OP(=O)=O YWEUIGNSBFLMFL-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 230000005660 hydrophilic surface Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 description 1
- DLYUQMMRRRQYAE-UHFFFAOYSA-N phosphorus pentoxide Inorganic materials O1P(O2)(=O)OP3(=O)OP1(=O)OP2(=O)O3 DLYUQMMRRRQYAE-UHFFFAOYSA-N 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 238000012643 polycondensation polymerization Methods 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- NNHHDJVEYQHLHG-UHFFFAOYSA-N potassium silicate Chemical compound [K+].[K+].[O-][Si]([O-])=O NNHHDJVEYQHLHG-UHFFFAOYSA-N 0.000 description 1
- 229910052913 potassium silicate Inorganic materials 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D183/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
- C09D183/02—Polysilicates
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D1/00—Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
- C09D1/02—Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances alkali metal silicates
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Catalysts (AREA)
- Surface Treatment Of Glass (AREA)
- Paints Or Removers (AREA)
Description
技術分野
本発明は、各種基材の表面に光触媒膜を形成できる光触媒膜形成用組成物、および該組成物から形成された光触媒膜および該光触媒膜を有する光触媒膜付き基材に関する。
背景技術
光触媒を光励起すると光触媒表面に付着した有機汚れなどが分解され、結果として親水性表面が実現することが知られている。光触媒膜を形成する方法として、乾式法の一種である熱分解法などが従来より知られている(例えば、特表平11−512337号公報)。しかし、上記方法では、湿式法と比較して、親水持続性という点で劣っている問題があった。
また、光触媒とシリカとを含むコーティング組成物を用いて光触媒膜を形成する方法も知られている(例えば、特許2756474号公報)。しかし、上記方法のシリカを用いた膜は、親水持続性の点で劣り、かつ汚れ分解性が低い問題があった。
本発明は、上記の問題を解消するものであり、優れた親水性を基材の表面に付与でき、特に汚れ分解性に優れる光触媒膜を形成できる光触媒膜形成用組成物、該組成物から形成されてなる光触媒膜、および該光触媒膜付き基材の提供を目的とする。また、親水性の持続時間が長く、表面の耐摩耗性にも優れた光触媒膜を形成できる光触媒膜形成用組成物および該組成物から形成された光触媒膜および該光触媒膜付き基材の提供を目的とする。
発明の開示
本発明は、光触媒半導体微粒子、下記シリカ前駆体および媒体を必須とする光触媒膜形成用組成物を提供する。
シリカ前駆体:ケイ酸100質量部に対してアルカリ金属イオンが0.001〜1質量部含まれるケイ酸化合物。
また、本発明は、基材の表面に光触媒膜形成用組成物から形成されてなる光触媒膜、および該光触媒膜を有する光触媒膜付き基材を提供する。
発明を実施するための形態
本発明における光触媒半導体微粒子とは、該光触媒の価電子帯と伝導電子帯との間のエネルギー差よりも大きなエネルギーの光を照射したときに、価電子帯中の電子の励起によって伝導電子と正孔を生成しうる性質を有する材料をいう。このような光触媒半導体微粒子としては、アナターゼ型酸化チタン、ルチル型酸化チタン、酸化錫、酸化亜鉛、三酸化タングステン、酸化第二鉄、チタン酸ストロンチウムなどが好ましく挙げられる。
本発明における光触媒半導体微粒子の平均粒子径は、光散乱を利用して組成物中の微粒子の凝集粒子径をマイクロトラックUPA粒度分布計(HONEYWELL社製)を用いて測定したものであり、好ましくは5〜90nm、特に好ましくは40〜70である。平均粒子径があまりに小さいと、形成された光触媒膜の中に光触媒の微粒子が埋没してしまうため、光触媒の種々の効果が発現しにくい。また、平均粒子径があまりに大きいと、形成される光触媒膜の機械的強度が不足し、また、透明性が確保できないおそれがある。
本発明におけるシリカ前駆体とは、ケイ酸100質量部に対してアルカリ金属イオンが0.001〜1質量部含まれるケイ酸化合物であり、なかでも、0.001〜0.2質量部含まれることが好ましく、0.001〜0.15質量部含まれることが特に好ましい。アルカリ金属イオン濃度は、セイコーインスツルメンツ社製SPS4000などを用いて、ICP発光分析にて測定したものである。アルカリ金属イオンとしては、特に限定はなく、1種を用いてもよく、2種以上を用いてもよい。アルカリ金属イオンとしては、ナトリウムイオンまたはリチウムイオンが好ましい。また、ケイ酸化合物とは、後述するような後処理を施すことにより、シリカ膜を形成する化合物を意味する。
シリカ前駆体は、ケイ酸のアルカリ金属塩からアルカリ金属イオンの一部を除去して得られる生成物が好ましい。該生成物は、たとえば、陽イオン交換樹脂を用いて、ケイ酸のアルカリ金属塩からアルカリ金属イオンを減らす方法により得られる。使用する陽イオン交換樹脂の量、接触時間、接触方法等を制御することで、減らすアルカリ金属イオンの量を調節できる。
陽イオン交換樹脂としては、強酸性陽イオン交換樹脂(RSO3H型)、弱酸性陽イオン交換樹脂(RCOOH型)等が使用できるが、強酸性陽イオン交換樹脂を使用するのが反応速度の点で好ましい。
本発明の光触媒膜形成用組成物においては、アルカリ金属イオンの濃度は光触媒形成用組成物に対して質量換算で1〜80ppmであるのが好ましく、特に1〜40ppm、さらには1〜20ppmであるのが好ましい。アルカリ金属イオンの濃度が小さすぎると、該組成物の安定性および親水性が低下し、大きすぎると該組成物の安定性が著しく低下する。
ケイ酸のアルカリ金属塩としては、ケイ酸ナトリウム、ケイ酸リチウム、およびケイ酸カリウムなどの群から選ばれる1種以上が挙げられ、特にケイ酸ナトリウムおよび/またはケイ酸リチウムが好ましい。
ケイ酸ナトリウムとしては、SiO2/Na2Oの組成比が異なる材料が知られており、特に限定されずに用いることができる。なかでも、Na2Oの含有比が小さい材料が好ましい。市販のケイ酸ナトリウムとしては、ケイ酸ソーダ1号(SiO2/Na2Oのモル比:2.0〜2.3)(ケイ酸ソーダ1号とは日本化学工業社製の商品名である。以下、2〜4号についても同じ。)、ケイ酸ソーダ2号(同モル比:2.4〜2.7)、ケイ酸ソーダ3号(同モル比:3.0〜3.3)、ケイ酸ソーダ4号(同モル比:3.7〜3.9)がある。特に、Na2Oの含有比が小さいケイ酸ソーダ3号または4号が特に好ましい。
ケイ酸リチウムとしては、SiO2/Li2Oの組成比が異なる材料が知られており、特に限定されずに用いることができる。なかでも、Li2Oの含有比が小さい材料が好ましい。市販のケイ酸リチウムとしては、ケイ酸リチウム35(SiO2/Li2Oのモル比:3.5)(ケイ酸リチウム35とは日本化学工業社製の商品名である。以下、45、75についても同じ。)、ケイ酸リチウム45(同モル比:4.5)、ケイ酸リチウム75(同モル比:7.5)がある。特に、Li2Oの含有比が小さいケイ酸リチウム75が特に好ましい。
本発明の光触媒膜形成用組成物には、界面活性剤が含まれるのが好ましい。該界面活性剤には主に2つの機能があり、第1は、組成物の基材に対する濡れ性を確保することであり、第2は、該組成物を用いて形成された光触媒膜の親水性をより高くすることである。界面活性剤の種類は特に限定されないが、非イオン系界面活性剤が液分散安定性の点で好ましく用いられる。特に、親水部がポリオキシアルキレンであり、疎水部が含フッ素有機基である化合物[たとえば、C8F17CH2CH2CH(CH3)O(CH2CH2O)x(CH2CH(CH3)O)yH[x:y=70:30、x+y=5.72、平均分子量800]で表される化合物(以下、界面活性剤Qと記す。)等。]が好ましい。または、親水部がポリオキシアルキレンであり、疎水部がメチルポリシロキサンである化合物(たとえば、日本ユニカー社製、商品名「L−77」等。)が好ましい。
本発明の光触媒膜形成用組成物において、シリカ前駆体は、光触媒半導体微粒子100質量部に対して25〜900質量部含まれることが好ましく、特に50〜400質量部含まれることが好ましい。また、界面活性剤を含む場合は、界面活性剤は、光触媒半導体微粒子100質量部に対して0.1〜10質量部含まれることが好ましい。
シリカ前駆体の濃度が大きすぎると得られた光触媒膜の親水性の耐久性が低下し、小さすぎると得られた光触媒膜に親水性が付与されない。また、界面活性剤の割合が大きすぎると得られた光触媒膜の外観が損なわれ、親水性の耐久性が低下し、小さすぎると組成物の塗布性が優れず、光触媒膜の親水性が低下する。
本発明の光触媒膜形成用組成物は、媒体を含む。媒体としては、特に限定はなく、水を含む媒体が好ましく、溶剤が含まれていてもよい。溶剤は主に希釈のために用いられ、該組成物は溶液の形態であることが好ましい。該溶剤としては、低級アルコール、含窒素系溶剤、含イオウ系溶剤等の極性溶剤が好ましく、特に低級アルコールが好ましい。溶剤は2種類以上を用いてもよい。媒体としては、特に水が好ましい。
本発明の光触媒膜形成用組成物における光触媒半導体微粒子とシリカ前駆体との総量は、塗布する方法、目的とする光触媒膜の厚さにより決定すればよい。上記の総量は、該組成物の安定性、経済性等を考慮して、光触媒形成用組成物100質量部に対して0.5〜50質量部含まれることが好ましく、特に0.5〜15質量部が好ましく、とりわけ0.5〜5質量部が好ましい。
本発明の光触媒膜形成用組成物には、機能性添加剤が含まれていてもよい。該機能性添加剤としては、着色用染料、顔料、紫外線吸収剤、酸化防止剤、本発明における光触媒半導体微粒子以外の酸化物微粒子(五酸化リン、酸化マグネシウム等。平均粒子径は200nm以下が好ましい。)等が好ましく挙げられる。
本発明の光触媒膜形成用組成物を用いて、基材の表面に該組成物が塗布され、光触媒膜が形成され、光触媒膜付き基材が作られる。前記光触媒膜において、シリカ前駆体はシリカに変換されているが、部分的にシラノール基が残っていてもよい。
シリカ前駆体は、化合物中にシラノール基を有し、すなわちSiOs(OH)t(s、tは0以上の整数であり、s+t=4。)で表される構造を有する(ただし、該構造において、水酸基でない酸素原子は、別のケイ素原子と化学結合している。)と考えられ、該シリカ前駆体から脱水縮合反応によりシリカが形成される。
本発明においては、公知の湿式法を用いて光触媒膜形成用組成物を基材の表面に塗布し、図1のとおり、基材20上に光触媒膜30が形成された光触媒膜付き基材10を形成できる。湿式法としては、たとえば、スプレーコート法、はけ塗り、手塗り、回転塗布、浸漬塗布、各種印刷方式による塗布、カーテンフロー、ダイコート、フローコート等の塗布方法が好ましく挙げられる。
光触媒膜形成用組成物を塗布した後、媒体の除去や光触媒膜の硬度を高めることを目的として、後処理を施すことが好ましい。前記後処理としては、室温における乾燥や加熱や、紫外線、電子線等の電磁波の照射、加熱等が挙げられる。加熱は基材の耐熱性を考慮して、50〜700℃、特に100〜350℃の範囲で5〜60分間行うことが好ましい。特に基材が有機樹脂などの耐熱性が低い材料である場合や基材中の低分子化合物が加熱により基材外に拡散する場合には、前記後処理として、紫外線、電子線等の電磁波の照射を行うことが好ましい。
本発明においては、光触媒膜形成用組成物の濃度、溶剤の種類、塗布条件、後処理条件等を調節することにより、得られる光触媒膜の厚さを制御できる。光触媒膜の厚さは、厚すぎると膜にクラックが入ったり、干渉縞が生じたり、傷が発生した場合にその傷が目立つという欠点があり、薄すぎると所望の光触媒性能が発揮されないおそれがある。光触媒膜の厚さは、経済性も考慮して、10〜300nmが好ましく、特に10〜150nmが好ましい。
本発明に用いられる基材は、特に限定されない。基材の形状は平板に限らず、全面に、または、一部に曲率を有していてもよい。本発明において用いられる基材は、ガラス、有機樹脂等の透明な基材が好ましい。前記ガラスとしては、例えば、板ガラスや自動車用ガラスに主として用いられるソーダライムガラスが挙げられ、前記有機樹脂としては、例えば、ポリカーボネート、アクリル、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレートなどの樹脂が挙げられる。また、前記有機樹脂の強度を上げるため、樹脂の表面にシリコーンハードコートを施してもよい。また、基材として、ガラス、有機樹脂等の透明な基材を用いる場合には、その視認性の観点から、光触媒膜付き基材の可視光透過率(JIS R3106(1998年))が70%以上であることが好ましい。
基材には前処理を施してもよい。前処理としては、プラズマ処理、コロナ放電、UV処理、オゾン処理等の放電処理、酸またはアルカリ等を用いた化学的処理、研磨材を用いた物理的処理等が挙げられる。前処理を行うことで、組成物の基材への濡れ性がよくなり、組成物が均一に塗布でき、形成された光触媒膜の基材への密着性を高めることができる。特に基材が有機樹脂の場合、前処理を行うことが好ましい。一般にプラスチックの改質に用いられる低圧水銀ランプ等による紫外線照射により行われる前処理は特に有効である。
また、これらの前処理および前述したような後処理は、得られる膜の性能を大きく左右することから、それぞれの処理条件を最適化する必要がある。例えば紫外線の照射による後処理により、脱水縮重合反応を進行させ膜の硬化を進めるとともに、基材表面と組成物との密着性をも向上させることができる。このように後処理により基材との密着性を向上させることができる場合には、前処理は必須ではない。必要以上に前処理をすることによりかえって基材を劣化させ性能低下をまねく場合もある。
本発明の光触媒膜付き基材は、その表面が親水性に優れ、かつ透明性に優れるため、輸送機器用物品、建築用物品等として好ましく用いられる。輸送機器用物品としては、電車、自動車、船舶、航空機等のボディー、窓ガラス、ミラー、各種表示素子用カバー板等が挙げられる。建築用物品としては、外壁、シーラント部分、窓ガラス、橋やトンネル等の構造物等が挙げられる。また他の用途として、照明用カバーガラス、遮音壁等が挙げられる。
本発明の光触媒膜付き基材は、その表面が親水性に優れるため、表面に付着した水滴が濡れ広がり、表面が曇らないという防曇性を有する。また、表面において有機汚れが分解される。さらに、表面への光照射によって、有機汚れの分解性能がさらに向上する。さらに、降雨により雨滴が表面を流れ落ちる際に汚れも同時に流れ落ちる(セルフクリーニング効果)。本発明の光触媒膜付き基材は、視界の確保、美観の保護またはメンテナンス費用の削減等の効果も期待できる。
本発明の光触媒膜形成用組成物から形成された光触媒膜は、従来のアルコキシシランであるSi(OR)4(R:アルキル基)を加水分解して得られるSiOp(OH)q(OR)r(p、qは0以上の整数であり、rは1以上の整数であり、p+q+r=4。)で表される構造(ただし、該構造において、水酸基でない酸素原子は、別のケイ素原子と化学結合している。)を有する生成物を用いた組成物から形成された被膜よりも、親水持続性や汚れ分解性に優れる。
本発明の光触媒膜付き基材は、基材と光触媒膜との間に別の膜を設けてもよい。前記別の膜としては、例えば、アルカリバリア層(基材がアルカリ金属含有ガラスである場合、光触媒膜へのアルカリ金属の拡散を防止することを目的とした層)が挙げられる。
実施例
本発明を実施例(例1〜7、10〜12)、比較例(例8、9)により具体的に説明する。サンプルは、以下の方法を用いて評価した。評価結果を表1に示す。
[親水性]
サンプル作製直後の、光を照射していない初期の水の接触角を測定した。
[親水持続性]
サンプル作成直後からサンプルを光のあたらない環境に1週間保持した後、水の接触角を測定した。接触角は、20°以下、さらには10°以下であることが親水性維持の観点から好ましい。
[汚れ分解性]
作成直後のサンプルにオレイン酸を付着させ、水の接触角が70°程度である汚れた表面を作り、その表面にブラックライト(中心波長365nm)を0.5mW/cm2の強度で6時間照射した後、水の接触角を測定した。接触角が10°以下、さらには6°以下であることが防汚性の観点から好ましい。
[膜強度]
サンプルにテーバー磨耗試験(磨耗回数:100回、荷重:4.9N。)を行い、磨耗試験前後におけるヘーズ値を測定(測定機器名:スガ試験機社製直読ヘーズコンピュータ)し、その変化量を求めた。変化量が3%以下であることが耐磨耗性の観点から好ましい。
[防汚性]
作成直後のサンプルを屋外に1ヶ月間曝露した後、汚れの程度(ほとんど汚れが目立たない:○、少し汚れが目立つ:△、かなり汚れが目立つ:×。)を肉眼で観察した。
[防曇性]
作成直後のサンプルに息を吹きかけ、曇りの有無(曇りなし:○、曇り発生:×。)を肉眼で観察した。
[例1]
ソーダライムガラス板(100mm×100mm、厚さ3.5mm)を用意し、その表面を酸化セリウムで研磨し、蒸留水で洗浄した後に乾燥させ、前処理済ガラス板とした。
水の37.5gにケイ酸ソーダ4号(商品名:日本化学工業社製。SiO2:23.35質量%、Na2O:6.29質量%。SiO2/Na2Oのモル比:3.83。)の12.5gを添加し、さらに強酸性陽イオン交換樹脂(三菱化学社製、商品名「SK1BH」。)の30gを添加して、10分間室温で撹拌して脱塩ケイ酸ソーダ液(ケイ酸の100質量部に対してナトリウムイオンは0.12質量部。)を調整した。
また、2−プロパノールの32.1gに、アナターゼ型酸化チタン微粒子(平均粒子径:56nm。以下、光触媒Aと記す。)の水分散液(固形分濃度:10質量%。)の9gおよび脱塩ケイ酸ソーダ液の8.9gを添加し、さらに界面活性剤「L−77」(商品名:日本ユニカー社製)を液量に対して100ppmとなるように添加して、コート液1(ナトリウムイオン濃度は12ppm。)を得た。
得られたコート液1の2mLを前記処理済ガラス板の表面に滴下し、スピンコート法により塗布した後、大気雰囲気中200℃にて60分間焼成し、厚さ80nmの光触媒膜を有するサンプルを得た。
[例2]
水の36.07gにケイ酸リチウム75(商品名:日本化学工業社製。SiO2:21.54質量%、Li2O:1.43質量%。SiO2/Li2Oのモル比:7.49。)の13.93gを添加し、さらに「SK1BH」の30gを添加して、10分間室温で撹拌して脱塩ケイ酸リチウム液(ケイ酸の100質量部に対してリチウムイオンは0.13質量部。)を調整した。
また、2−プロパノールの32.1gに、光触媒Aの9gおよび脱塩ケイ酸リチウム液の8.9gを添加し、さらに「L−77」を液量に対して100ppmとなるように添加して、コート液2(リチウムイオン濃度は13ppm。)を得た。得られたコート液2を用いて、例1と同様にして、厚さ83nmの光触媒膜を有するサンプルを得た。
[例3]
2−プロパノールの32.1gに、光触媒Aの10.5gおよび例1における脱塩ケイ酸ソーダ液の6.69gを添加し、さらに「L−77」を液量に対して100ppmとなるように添加して、コート液3(ナトリウムイオン濃度は7ppm。)を得た。得られたコート液3を用いて、例1と同様にして、厚さ82nmの光触媒膜を有するサンプルを得た。
[例4]
2−プロパノールの32.1gに、光触媒Aの4.5gおよび例1における脱塩ケイ酸ソーダ液の15.6gを添加し、さらに「L−77」を液量に対して100ppmとなるように添加して、コート液4(ナトリウムイオン濃度は23ppm。)を得た。得られたコート液4を用いて、例1と同様にして、厚さ83nmの光触媒膜を有するサンプルを得た。
[例5]
例1において、「L−77」の代わりに界面活性剤Qを用いた以外は、例1と同様にしてサンプルを得た。
[例6]
例1において、大気雰囲気中200℃にて60分間焼成する代わりに、大気雰囲気中300℃にて30分間焼成してサンプルを得た。
[例7]
例1において、大気雰囲気中200℃にて60分間焼成する代わりに、大気雰囲気中650℃にて5分間焼成してサンプルを得た。
[例8](比較例)
エタノールの90gにテトラメトキシシランの5gを添加し、10分間撹拌した後、硝酸水溶液(1質量%)の5gを徐々に添加し、テトラメトキシシランの加水分解生成物Bを得た。
2−プロパノールの32.1gに、光触媒Aの9gおよび前記加水分解生成物Bの8.9gを添加し、さらに「L−77」を液量に対して100ppmとなるように添加して、コート液8(ナトリウムイオン濃度は0ppm。)を得た。
得られたコート液8を用いて、例1と同様にして、厚さ80nmの光触媒膜を有するサンプルを得た。
[例9](比較例)
2−プロパノールの32.1gに、光触媒Aの9gおよびケイ酸ソーダ4号(ケイ酸の100質量部に対してナトリウムイオンは26.9質量部。)の8.9gを添加したところ、沈殿物が発生しコート液にできなかった。
[例10]
シリコーンハードコート付きポリカーボネート樹脂板(100mm×100mm、厚さ5.0mm)を用意し、そのハードコート表面を蒸留水で洗浄した後に乾燥させ、前処理済ポリカーボネート板とした。
例1で得られたコート液1の2mLを前記処理済ポリカーボネート板の表面に滴下し、スピンコート法により塗布した後、低圧UV照射装置(センエンジニアリング株式会社製PL7−200)を用いランプと前記樹脂板との距離を2cmとして、紫外線を5分間照射し、厚さ80nmの光触媒膜を有するサンプルを得た。ここでの紫外線とは、低圧水銀ランプによる253.7nmと184.9nmを主波長とする高エネルギーな紫外線(以降UV−Cと呼ぶ)を指す。
[例11]
例10において、シリコーンハードコート付きポリカーボネート樹脂板を洗浄、乾燥後、前述の低圧UV照射装置を用いてUV−Cを2分間照射し、前処理済ポリカーボネート板とした以外は、例10と同様にしてサンプルを得た。
[例12]
例10において、UV−Cを5分間照射する代わりに、メタルハライドランプ(アイグラフィックス株式会社製M03−L31)を用いランプと前記樹脂板との距離を10cmとして紫外線を5分間照射し、厚さ80nmの光触媒膜を有するサンプルを得た。ここでのメタルハライドランプとは、300〜450nmという、低圧水銀ランプより長波長の紫外線の出力が高いランプを指す。
産業上の利用可能性
本発明によれば、基材の表面に優れた親水性を付与できる光触媒膜形成用組成物が得られる。また、本発明の光触媒膜形成用組成物を用いて、親水性に優れる光触媒膜が低温で形成でき、該光触媒膜付き基材の表面は親水性に優れる。さらに、本発明の光触媒膜形成用組成物を用いて形成された光触媒膜は、特に汚れ分解性に優れ、また、親水性の持続時間が長い。このため、表面は常に清浄に保たれる。
本発明の光触媒膜形成用組成物を用いて形成された、優れた親水性が付与された基材の表面は、流滴性、防曇性、防汚性、耐磨耗性に優れる。すなわち、基材の表面に親水性が付与されることで、基材の表面に付着する水滴が濡れ広がり、表面が曇らない。また、太陽光等の光が照射されることよってさらに汚れの分解(特に有機物の汚れの分解)が促進される。さらに、降雨等により水が物品の表面を流れ落ちる際に無機物の汚れも流れ落ちる(セルフクリーニング効果)。
【図面の簡単な説明】
図1:本発明の光触媒膜付き基材の一実施例を示す概略断面図。
符号の説明
10:光触媒膜付き基材
20:基材
30:光触媒膜TECHNICAL FIELD The present invention relates to a composition for forming a photocatalyst film that can form a photocatalyst film on the surface of various substrates, a photocatalyst film formed from the composition, and a substrate with a photocatalyst film having the photocatalyst film.
BACKGROUND ART It is known that when a photocatalyst is photoexcited, organic stains and the like attached to the surface of the photocatalyst are decomposed, and as a result, a hydrophilic surface is realized. As a method for forming a photocatalyst film, a thermal decomposition method, which is a kind of dry method, has been conventionally known (for example, JP-T-11-512337). However, the above method has a problem that it is inferior in hydrophilic sustainability as compared with the wet method.
A method of forming a photocatalyst film using a coating composition containing a photocatalyst and silica is also known (for example, Japanese Patent No. 2756474). However, the film using silica of the above method has a problem of poor hydrophilicity and low soil decomposability.
The present invention solves the above-described problems, and can be formed from a composition for forming a photocatalyst film that can form a photocatalyst film that can impart excellent hydrophilicity to the surface of a substrate and that is particularly excellent in soil degradability. An object of the present invention is to provide a photocatalyst film and a substrate with the photocatalyst film. Also provided are a composition for forming a photocatalyst film capable of forming a photocatalyst film having a long hydrophilic duration and excellent surface wear resistance, a photocatalyst film formed from the composition, and a substrate with the photocatalyst film. Objective.
DISCLOSURE OF THE INVENTION The present invention provides a composition for forming a photocatalyst film comprising the photocatalyst semiconductor fine particles, the following silica precursor and a medium as essential components.
Silica precursor: a silicic acid compound containing 0.001 to 1 part by mass of alkali metal ions with respect to 100 parts by mass of silicic acid.
Moreover, this invention provides the base material with a photocatalyst film which has a photocatalyst film formed from the composition for photocatalyst film formation on the surface of a base material, and this photocatalyst film.
BEST MODE FOR CARRYING OUT THE INVENTION The photocatalytic semiconductor fine particles in the present invention are the electrons in the valence band when irradiated with light having an energy larger than the energy difference between the valence band and the conduction electron band of the photocatalyst. A material having the property of generating conduction electrons and holes by excitation of. As such photocatalytic semiconductor fine particles, anatase type titanium oxide, rutile type titanium oxide, tin oxide, zinc oxide, tungsten trioxide, ferric oxide, strontium titanate and the like are preferably mentioned.
The average particle size of the photocatalytic semiconductor fine particles in the present invention is obtained by measuring the aggregate particle size of the fine particles in the composition using light scattering, using a Microtrac UPA particle size distribution meter (manufactured by HONEYWELL), preferably The thickness is 5 to 90 nm, particularly preferably 40 to 70. If the average particle diameter is too small, the photocatalyst fine particles are buried in the formed photocatalyst film, so that various effects of the photocatalyst are hardly exhibited. On the other hand, if the average particle size is too large, the formed photocatalytic film has insufficient mechanical strength, and transparency may not be ensured.
The silica precursor in the present invention is a silicic acid compound in which 0.001 to 1 part by mass of alkali metal ions is contained with respect to 100 parts by mass of silicic acid, and in particular, 0.001 to 0.2 parts by mass is contained. It is particularly preferable that 0.001 to 0.15 parts by mass is included. The alkali metal ion concentration is measured by ICP emission analysis using SPS4000 manufactured by Seiko Instruments Inc. There is no limitation in particular as an alkali metal ion, 1 type may be used and 2 or more types may be used. As the alkali metal ion, sodium ion or lithium ion is preferable. Moreover, a silicic acid compound means the compound which forms a silica film by performing post-processing as mentioned later.
The silica precursor is preferably a product obtained by removing a part of alkali metal ions from an alkali metal salt of silicic acid. The product is obtained, for example, by a method of reducing alkali metal ions from an alkali metal salt of silicic acid using a cation exchange resin. The amount of alkali metal ions to be reduced can be adjusted by controlling the amount of cation exchange resin used, the contact time, the contact method, and the like.
As the cation exchange resin, strong acid cation exchange resin (RSO 3 H type), weak acid cation exchange resin (RCOOH type), etc. can be used, but the reaction rate is to use strong acid cation exchange resin. This is preferable.
In the composition for forming a photocatalyst film of the present invention, the concentration of alkali metal ions is preferably 1 to 80 ppm in terms of mass relative to the composition for forming a photocatalyst, particularly 1 to 40 ppm, more preferably 1 to 20 ppm. Is preferred. When the concentration of alkali metal ions is too small, the stability and hydrophilicity of the composition are lowered, and when it is too large, the stability of the composition is significantly lowered.
Examples of the alkali metal salt of silicic acid include one or more selected from the group of sodium silicate, lithium silicate, and potassium silicate, and sodium silicate and / or lithium silicate are particularly preferable.
As sodium silicate, materials having different composition ratios of SiO 2 / Na 2 O are known, and can be used without any particular limitation. Among these, a material having a small content ratio of Na 2 O is preferable. As commercially available sodium silicate, sodium silicate No. 1 (SiO 2 / Na 2 O molar ratio: 2.0 to 2.3) (sodium silicate No. 1 is a trade name manufactured by Nippon Chemical Industry Co., Ltd.) Hereinafter, the same applies to Nos. 2 to 4, and sodium silicate 2 (same molar ratio: 2.4 to 2.7), sodium silicate 3 (same molar ratio: 3.0 to 3.3). , Sodium silicate No. 4 (same molar ratio: 3.7 to 3.9). In particular, sodium silicate No. 3 or No. 4 having a small content ratio of Na 2 O is particularly preferable.
As lithium silicate, materials having different composition ratios of SiO 2 / Li 2 O are known, and can be used without particular limitation. Among them, the material content ratio of Li 2 O is preferably small. As commercially available lithium silicate, lithium silicate 35 (SiO 2 / Li 2 O molar ratio: 3.5) (lithium silicate 35 is a trade name manufactured by Nippon Chemical Industry Co., Ltd., 45, 75 below. And lithium silicate 45 (same molar ratio: 4.5) and lithium silicate 75 (same molar ratio: 7.5). In particular, lithium silicate 75 having a small content ratio of Li 2 O is particularly preferable.
The composition for forming a photocatalyst film of the present invention preferably contains a surfactant. The surfactant mainly has two functions, the first is to ensure the wettability of the composition to the substrate, and the second is the hydrophilicity of the photocatalyst film formed using the composition. It is to make sex higher. The type of the surfactant is not particularly limited, but a nonionic surfactant is preferably used from the viewpoint of liquid dispersion stability. In particular, a compound in which the hydrophilic part is polyoxyalkylene and the hydrophobic part is a fluorine-containing organic group [for example, C 8 F 17 CH 2 CH 2 CH (CH 3 ) O (CH 2 CH 2 O) x (CH 2 CH (CH 3 ) O) A compound represented by y H [x: y = 70: 30, x + y = 5.72, average molecular weight 800] (hereinafter referred to as surfactant Q) and the like. ] Is preferable. Alternatively, a compound in which the hydrophilic part is polyoxyalkylene and the hydrophobic part is methylpolysiloxane (for example, trade name “L-77” manufactured by Nippon Unicar Co., Ltd.) is preferable.
In the composition for forming a photocatalyst film of the present invention, the silica precursor is preferably contained in an amount of 25 to 900 parts by mass, particularly preferably 50 to 400 parts by mass with respect to 100 parts by mass of the photocatalytic semiconductor fine particles. Moreover, when it contains surfactant, it is preferable that 0.1-10 mass parts of surfactant is contained with respect to 100 mass parts of photocatalyst semiconductor fine particles.
If the concentration of the silica precursor is too large, the durability of the hydrophilicity of the obtained photocatalyst film is lowered, and if it is too small, the obtained photocatalyst film is not hydrophilic. In addition, if the proportion of the surfactant is too large, the appearance of the obtained photocatalyst film is impaired, and the durability of the hydrophilicity is reduced. To do.
The composition for forming a photocatalytic film of the present invention contains a medium. There is no limitation in particular as a medium, The medium containing water is preferable and the solvent may be contained. The solvent is mainly used for dilution and the composition is preferably in the form of a solution. The solvent is preferably a polar solvent such as a lower alcohol, a nitrogen-containing solvent, or a sulfur-containing solvent, and particularly preferably a lower alcohol. Two or more kinds of solvents may be used. As the medium, water is particularly preferable.
The total amount of the photocatalyst semiconductor fine particles and the silica precursor in the composition for forming a photocatalyst film of the present invention may be determined according to the coating method and the desired thickness of the photocatalyst film. The total amount is preferably 0.5 to 50 parts by mass, particularly 0.5 to 15 parts per 100 parts by mass of the photocatalyst-forming composition in consideration of the stability and economics of the composition. Part by mass is preferable, and 0.5 to 5 parts by mass is particularly preferable.
The composition for forming a photocatalyst film of the present invention may contain a functional additive. Examples of the functional additive include coloring dyes, pigments, ultraviolet absorbers, antioxidants, and oxide fine particles (phosphorus pentoxide, magnesium oxide, etc.) other than the photocatalytic semiconductor fine particles in the present invention. The average particle size is preferably 200 nm or less. Etc.) are preferred.
Using the composition for forming a photocatalyst film of the present invention, the composition is applied to the surface of a substrate to form a photocatalyst film, and a substrate with a photocatalyst film is produced. In the photocatalyst film, the silica precursor is converted to silica, but silanol groups may partially remain.
The silica precursor has a silanol group in the compound, that is, a structure represented by SiO s (OH) t (s, t is an integer of 0 or more, and s + t = 4). In other words, oxygen atoms that are not hydroxyl groups are chemically bonded to other silicon atoms.), And silica is formed from the silica precursor by a dehydration condensation reaction.
In the present invention, a photocatalyst film-forming
After applying the composition for forming a photocatalyst film, it is preferable to perform a post-treatment for the purpose of removing the medium and increasing the hardness of the photocatalyst film. Examples of the post-treatment include drying and heating at room temperature, irradiation with electromagnetic waves such as ultraviolet rays and electron beams, and heating. In consideration of the heat resistance of the substrate, the heating is preferably performed at 50 to 700 ° C., particularly at 100 to 350 ° C. for 5 to 60 minutes. In particular, when the base material is a material having low heat resistance such as an organic resin, or when a low molecular compound in the base material diffuses out of the base material by heating, as the post-treatment, an electromagnetic wave such as an ultraviolet ray or an electron beam is used. Irradiation is preferably performed.
In the present invention, the thickness of the resulting photocatalyst film can be controlled by adjusting the concentration of the composition for forming a photocatalyst film, the type of solvent, coating conditions, post-treatment conditions, and the like. If the thickness of the photocatalyst film is too thick, the film has cracks, interference fringes, or scratches that may be noticeable. If it is too thin, the desired photocatalytic performance may not be exhibited. is there. The thickness of the photocatalyst film is preferably 10 to 300 nm, and particularly preferably 10 to 150 nm in consideration of economy.
The base material used for this invention is not specifically limited. The shape of the substrate is not limited to a flat plate, and may have a curvature on the entire surface or a part thereof. The substrate used in the present invention is preferably a transparent substrate such as glass or organic resin. Examples of the glass include soda lime glass mainly used for plate glass and automotive glass. Examples of the organic resin include resins such as polycarbonate, acrylic, polyethylene, polypropylene, and polyethylene terephthalate. In order to increase the strength of the organic resin, a silicone hard coat may be applied to the surface of the resin. When a transparent substrate such as glass or organic resin is used as the substrate, the visible light transmittance (JIS R3106 (1998)) of the substrate with a photocatalyst film is 70% from the viewpoint of visibility. The above is preferable.
The substrate may be pretreated. Examples of the pretreatment include plasma treatment, corona discharge, UV treatment, discharge treatment such as ozone treatment, chemical treatment using acid or alkali, physical treatment using an abrasive, and the like. By performing the pretreatment, the wettability of the composition to the substrate is improved, the composition can be uniformly applied, and the adhesion of the formed photocatalytic film to the substrate can be enhanced. In particular, when the substrate is an organic resin, pretreatment is preferably performed. In general, a pretreatment performed by ultraviolet irradiation by a low-pressure mercury lamp or the like generally used for plastic modification is particularly effective.
In addition, these pre-treatments and post-treatments as described above greatly affect the performance of the obtained film, and therefore it is necessary to optimize the respective treatment conditions. For example, by post-treatment by irradiation with ultraviolet rays, the dehydration condensation polymerization reaction can be advanced to promote the curing of the film, and the adhesion between the substrate surface and the composition can also be improved. Thus, when post-processing can improve adhesiveness with a base material, pre-processing is not essential. In some cases, pretreatment more than necessary may cause the base material to deteriorate and lower the performance.
The substrate with a photocatalyst film of the present invention is preferably used as an article for transportation equipment, an article for construction, and the like because its surface is excellent in hydrophilicity and excellent in transparency. Examples of articles for transportation equipment include bodies of trains, automobiles, ships, aircrafts, window glass, mirrors, various display element cover plates, and the like. Examples of building articles include outer walls, sealant portions, window glass, structures such as bridges and tunnels, and the like. Other applications include lighting cover glass and sound insulation walls.
The base material with a photocatalyst film of the present invention has an antifogging property that its surface is excellent in hydrophilicity, so that water droplets adhering to the surface spread out and the surface does not become cloudy. In addition, organic dirt is decomposed on the surface. Furthermore, the degradation performance of organic dirt is further improved by light irradiation on the surface. In addition, when rain drops fall on the surface due to rain, dirt also flows down simultaneously (self-cleaning effect). The base material with a photocatalyst film of the present invention can be expected to have effects such as ensuring visibility, protecting aesthetics, or reducing maintenance costs.
A photocatalyst film formed from the composition for forming a photocatalyst film of the present invention is obtained by hydrolyzing Si (OR) 4 (R: alkyl group), which is a conventional alkoxysilane, SiO p (OH) q (OR) r (p and q are integers greater than or equal to 0, r is an integer greater than or equal to 1 and p + q + r = 4) (However, in this structure, the oxygen atom which is not a hydroxyl group is another silicon atom. It is superior in hydrophilic sustainability and soil decomposability than a film formed from a composition using a product having a chemical bond.
In the base material with a photocatalyst film of the present invention, another film may be provided between the base material and the photocatalyst film. Examples of the another film include an alkali barrier layer (a layer intended to prevent diffusion of alkali metal into the photocatalytic film when the base material is alkali metal-containing glass).
Examples The present invention will be specifically described with reference to Examples (Examples 1 to 7, 10 to 12) and Comparative Examples (Examples 8 and 9). Samples were evaluated using the following method. The evaluation results are shown in Table 1.
[Hydrophilic]
Immediately after the preparation of the sample, the initial contact angle of water not irradiated with light was measured.
[Hydrophilic durability]
Immediately after the sample was prepared, the sample was kept in an environment free from light for 1 week, and then the contact angle of water was measured. The contact angle is preferably 20 ° or less, and more preferably 10 ° or less from the viewpoint of maintaining hydrophilicity.
[Soil degradability]
Oleic acid is attached to the sample immediately after preparation to create a dirty surface with a water contact angle of about 70 °, and the surface is irradiated with black light (center wavelength 365 nm) at an intensity of 0.5 mW / cm 2 for 6 hours. After that, the contact angle of water was measured. The contact angle is preferably 10 ° or less, and more preferably 6 ° or less from the viewpoint of antifouling properties.
[Membrane strength]
The sample is subjected to a Taber abrasion test (wear number: 100 times, load: 4.9 N), and the haze value before and after the abrasion test is measured (measuring instrument name: direct reading haze computer manufactured by Suga Test Instruments Co., Ltd.). Asked. The amount of change is preferably 3% or less from the viewpoint of wear resistance.
[Anti-fouling]
The sample immediately after preparation was exposed to the outdoors for 1 month, and then the degree of contamination (mostly less noticeable: ◯, slightly more noticeable: Δ, considerably more noticeable: ×) was observed with the naked eye.
[Anti-fogging property]
The sample immediately after preparation was blown, and the presence or absence of cloudiness (no cloudiness: ○, occurrence of cloudiness: x) was observed with the naked eye.
[Example 1]
A soda lime glass plate (100 mm × 100 mm, thickness 3.5 mm) was prepared, the surface was polished with cerium oxide, washed with distilled water and dried to obtain a pretreated glass plate.
Sodium silicate No. 4 (trade name: manufactured by Nippon Chemical Industry Co., Ltd., SiO 2 : 23.35% by mass, Na 2 O: 6.29% by mass. Molar ratio of SiO 2 / Na 2 O: 37.5 g of water 3.83.) Is added, and 30 g of a strongly acidic cation exchange resin (trade name “SK1BH”, manufactured by Mitsubishi Chemical Corporation) is added and stirred at room temperature for 10 minutes to remove demineralized silica. An acid soda solution (0.12 parts by mass of sodium ions with respect to 100 parts by mass of silicic acid) was prepared.
Further, 32.1 g of 2-propanol, 9 g of an aqueous dispersion (solid content concentration: 10% by mass) of anatase type titanium oxide fine particles (average particle size: 56 nm, hereinafter referred to as photocatalyst A) and desalting. 8.9 g of sodium silicate solution was added, and surfactant “L-77” (trade name: manufactured by Nihon Unicar Co., Ltd.) was added so as to be 100 ppm based on the liquid amount, and coating solution 1 (sodium The ion concentration was 12 ppm.).
2 mL of the obtained coating liquid 1 was dropped on the surface of the treated glass plate and applied by a spin coating method, and then baked at 200 ° C. for 60 minutes in an air atmosphere to prepare a sample having a photocatalytic film having a thickness of 80 nm. Obtained.
[Example 2]
Lithium silicate 75 (trade name: manufactured by Nippon Kagaku Kogyo Co., Ltd., SiO 2 : 21.54 mass%, Li 2 O: 1.43 mass%, molar ratio of SiO 2 / Li 2 O: 7 49.), and then 30 g of “SK1BH” was added and stirred for 10 minutes at room temperature to obtain a demineralized lithium silicate solution (the lithium ion was 0 with respect to 100 parts by mass of silicic acid). .13 parts by mass).
In addition, 9 g of photocatalyst A and 8.9 g of demineralized lithium silicate solution were added to 32.1 g of 2-propanol, and “L-77” was added to 100 ppm with respect to the liquid amount. Coating liquid 2 (lithium ion concentration was 13 ppm) was obtained. Using the obtained coating liquid 2, a sample having a photocatalytic film having a thickness of 83 nm was obtained in the same manner as in Example 1.
[Example 3]
To 32.1 g of 2-propanol, 10.5 g of photocatalyst A and 6.69 g of the desalted sodium silicate solution in Example 1 were added, and “L-77” was adjusted to 100 ppm based on the liquid amount. This was added to obtain coating solution 3 (sodium ion concentration was 7 ppm). Using the obtained coating solution 3, a sample having a photocatalytic film having a thickness of 82 nm was obtained in the same manner as in Example 1.
[Example 4]
To 32.1 g of 2-propanol, 4.5 g of photocatalyst A and 15.6 g of the desalted sodium silicate solution in Example 1 were added, and “L-77” was adjusted to 100 ppm with respect to the liquid amount. This was added to obtain coating solution 4 (sodium ion concentration was 23 ppm). A sample having a photocatalytic film having a thickness of 83 nm was obtained in the same manner as in Example 1 using the obtained coating liquid 4.
[Example 5]
A sample was obtained in the same manner as in Example 1 except that the surfactant Q was used instead of “L-77”.
[Example 6]
In Example 1, instead of baking at 200 ° C. for 60 minutes in the air atmosphere, a sample was obtained by baking at 300 ° C. for 30 minutes in the air atmosphere.
[Example 7]
In Example 1, instead of baking at 200 ° C. for 60 minutes in an air atmosphere, a sample was obtained by baking at 650 ° C. for 5 minutes in an air atmosphere.
[Example 8] (Comparative example)
After adding 5 g of tetramethoxysilane to 90 g of ethanol and stirring for 10 minutes, 5 g of an aqueous nitric acid solution (1% by mass) was gradually added to obtain a hydrolysis product B of tetramethoxysilane.
To 32.1 g of 2-propanol, 9 g of photocatalyst A and 8.9 g of the hydrolysis product B were added, and “L-77” was added so as to be 100 ppm with respect to the liquid amount. Liquid 8 (sodium ion concentration was 0 ppm) was obtained.
Using the obtained coating liquid 8, a sample having a photocatalytic film having a thickness of 80 nm was obtained in the same manner as in Example 1.
[Example 9] (Comparative Example)
When 9 g of photocatalyst A and 8.9 g of sodium silicate No. 4 (26.9 parts by mass of sodium ions with respect to 100 parts by mass of silicic acid) were added to 32.1 g of 2-propanol, a precipitate was formed. Occurred and could not be formed into a coating solution.
[Example 10]
A polycarbonate resin plate with a silicone hard coat (100 mm × 100 mm, thickness 5.0 mm) was prepared, and the hard coat surface was washed with distilled water and dried to obtain a pretreated polycarbonate plate.
After 2 mL of the coating liquid 1 obtained in Example 1 was dropped onto the surface of the treated polycarbonate plate and applied by spin coating, the lamp and the above were used using a low-pressure UV irradiation apparatus (PL7-200 manufactured by Sen Engineering Co., Ltd.). A sample having a photocatalyst film with a thickness of 80 nm was obtained by irradiating with ultraviolet rays for 5 minutes at a distance of 2 cm from the resin plate. The term “ultraviolet rays” as used herein refers to high-energy ultraviolet rays (hereinafter referred to as “UV-C”) having principal wavelengths of 253.7 nm and 184.9 nm by a low-pressure mercury lamp.
[Example 11]
In Example 10, the polycarbonate resin plate with a silicone hard coat was washed and dried, and then irradiated with UV-C for 2 minutes using the low-pressure UV irradiation apparatus described above to obtain a pretreated polycarbonate plate. Sample.
[Example 12]
In Example 10, instead of irradiating with UV-C for 5 minutes, a metal halide lamp (M03-L31 manufactured by Eye Graphics Co., Ltd.) was used, and the distance between the lamp and the resin plate was 10 cm. A sample having an 80 nm photocatalytic film was obtained. The metal halide lamp here refers to a lamp having a wavelength of 300 to 450 nm, which has a higher output of ultraviolet light having a longer wavelength than a low-pressure mercury lamp.
Industrial Applicability According to the present invention, a photocatalyst film-forming composition capable of imparting excellent hydrophilicity to the surface of a substrate can be obtained. Moreover, the photocatalyst film | membrane excellent in hydrophilicity can be formed at low temperature using the composition for photocatalyst film formation of this invention, and the surface of this base material with a photocatalyst film | membrane is excellent in hydrophilicity. Furthermore, the photocatalyst film formed using the composition for forming a photocatalyst film of the present invention is particularly excellent in soil decomposability and has a long hydrophilic duration. For this reason, the surface is always kept clean.
The surface of a base material imparted with excellent hydrophilicity, formed using the composition for forming a photocatalyst film of the present invention, is excellent in droplet property, antifogging property, antifouling property, and abrasion resistance. That is, by imparting hydrophilicity to the surface of the base material, water droplets adhering to the surface of the base material spread out and the surface does not become cloudy. In addition, irradiation with light such as sunlight further promotes decomposition of dirt (particularly, decomposition of organic dirt). Further, when water flows down on the surface of the article due to rain or the like, inorganic dirt also flows down (self-cleaning effect).
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing an example of a substrate with a photocatalyst film of the present invention.
Claims (15)
シリカ前駆体:ケイ酸100質量部に対してアルカリ金属イオンが0.001〜0.2質量部含まれるケイ酸化合物。A composition for forming a photocatalyst film comprising the photocatalyst semiconductor fine particles, the following silica precursor and a medium as essential.
Silica precursor: Silicate compound containing 0.001 to 0.2 parts by mass of alkali metal ions with respect to 100 parts by mass of silicic acid.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002038409 | 2002-02-15 | ||
JP2002038409 | 2002-02-15 | ||
PCT/JP2003/001508 WO2003068871A1 (en) | 2002-02-15 | 2003-02-13 | Compositions for forming photocatalytic film and substrate provided with photocatalytic film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2003068871A1 JPWO2003068871A1 (en) | 2005-06-02 |
JP4292992B2 true JP4292992B2 (en) | 2009-07-08 |
Family
ID=27678170
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003567988A Expired - Fee Related JP4292992B2 (en) | 2002-02-15 | 2003-02-13 | Composition for forming photocatalyst film and substrate with photocatalyst film |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP4292992B2 (en) |
CN (1) | CN1315955C (en) |
AU (1) | AU2003211967A1 (en) |
WO (1) | WO2003068871A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006070141A (en) * | 2004-09-01 | 2006-03-16 | Asahi Glass Co Ltd | Composition for forming photocatalyst membrane and substrate with the photocatalyst membrane |
US7863215B2 (en) | 2005-02-15 | 2011-01-04 | Mitsui Chemicals, Inc. | Photocatalyst, method for producing same, liquid dispersion containing photocatalyst and photocatalyst coating composition |
CN100423832C (en) * | 2005-09-16 | 2008-10-08 | 长兴化学工业股份有限公司 | Compound photocatalyst and its production process and composition |
CN101272858A (en) * | 2005-09-30 | 2008-09-24 | 三井化学株式会社 | Photocatalyst-containing organic material |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56149465A (en) * | 1980-04-21 | 1981-11-19 | Mitsui Toatsu Chem Inc | Paint composition |
JP3797037B2 (en) * | 1998-12-04 | 2006-07-12 | 東陶機器株式会社 | Photocatalytic hydrophilic coating composition |
JP3684913B2 (en) * | 1999-04-22 | 2005-08-17 | 東陶機器株式会社 | Photocatalytic hydrophilic coating hydrophilic recovery agent |
-
2003
- 2003-02-13 WO PCT/JP2003/001508 patent/WO2003068871A1/en active Application Filing
- 2003-02-13 CN CNB038038226A patent/CN1315955C/en not_active Expired - Fee Related
- 2003-02-13 JP JP2003567988A patent/JP4292992B2/en not_active Expired - Fee Related
- 2003-02-13 AU AU2003211967A patent/AU2003211967A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
CN1315955C (en) | 2007-05-16 |
WO2003068871A1 (en) | 2003-08-21 |
AU2003211967A1 (en) | 2003-09-04 |
CN1633480A (en) | 2005-06-29 |
JPWO2003068871A1 (en) | 2005-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3077199B2 (en) | Photocatalytic hydrophilic coating composition | |
EP0816466B1 (en) | Use of material having ultrahydrophilic and photocatalytic surface | |
JP5761346B2 (en) | Inorganic hydrophilic coating liquid, hydrophilic coating obtained therefrom and member using the same | |
JPH09225387A (en) | Hydrophilic member and method to make surface of member hydrophilic | |
WO2000053689A1 (en) | Hydrophilic member, method for preparation thereof, and coating agent and apparatus for preparation thereof | |
JP3797037B2 (en) | Photocatalytic hydrophilic coating composition | |
JP2007063477A (en) | Inorganic coating composition, hydrophilic coating film, and agricultural film | |
JP2006131917A (en) | Photocatalytic hydrophilic coating composition | |
JP4292992B2 (en) | Composition for forming photocatalyst film and substrate with photocatalyst film | |
CN117925091A (en) | Anti-fouling self-cleaning material and preparation method thereof | |
WO2007081025A1 (en) | Glass plate with film for vehicle and process for producing the same | |
WO2006093086A1 (en) | Antifog coated article, coating material for forming antifog coating, and method for producing antifog coated article | |
JP2006070141A (en) | Composition for forming photocatalyst membrane and substrate with the photocatalyst membrane | |
JP3684913B2 (en) | Photocatalytic hydrophilic coating hydrophilic recovery agent | |
JPH11315224A (en) | Photocatalytic hydrophilic coating composition, hydrophilic composite material, and its production | |
JPH1121511A (en) | Photocatalytically hydrophilic member and photocatalytically hydrophilic coating composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051212 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081209 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090204 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090317 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090330 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120417 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4292992 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120417 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120417 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120417 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130417 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140417 Year of fee payment: 5 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |