WO2006093086A1 - Antifog coated article, coating material for forming antifog coating, and method for producing antifog coated article - Google Patents

Antifog coated article, coating material for forming antifog coating, and method for producing antifog coated article Download PDF

Info

Publication number
WO2006093086A1
WO2006093086A1 PCT/JP2006/303602 JP2006303602W WO2006093086A1 WO 2006093086 A1 WO2006093086 A1 WO 2006093086A1 JP 2006303602 W JP2006303602 W JP 2006303602W WO 2006093086 A1 WO2006093086 A1 WO 2006093086A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
coating material
antifogging film
antifogging
coated article
Prior art date
Application number
PCT/JP2006/303602
Other languages
French (fr)
Japanese (ja)
Inventor
Takeshi Ohara
Shizuo Ootori
Kenichi Yamada
Toyoyuki Teranishi
Kazutaka Kamitani
Original Assignee
Yoo Corporation
Nippon Sheet Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoo Corporation, Nippon Sheet Glass Company, Limited filed Critical Yoo Corporation
Publication of WO2006093086A1 publication Critical patent/WO2006093086A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/18Materials not provided for elsewhere for application to surfaces to minimize adherence of ice, mist or water thereto; Thawing or antifreeze materials for application to surfaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/228Other specific oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/229Non-specific enumeration
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/23Mixtures

Definitions

  • Antifogging coated article coating material for forming antifogging film, and method for producing antifogging coated article
  • the present invention relates to an antifogging film-coated article, a coating material for forming an antifogging film, and a method for producing an antifogging film-covered article.
  • an anti-fogging coating is applied.
  • organic and inorganic antifogging films are excellent in antifogging performance, but have the disadvantage of low film hardness and low wear resistance.
  • inorganic antifogging coatings have the advantage of high film hardness and high wear resistance, but have the disadvantage of being inferior in antifogging performance compared to organic antifogging coatings.
  • an antifogging article having an antifogging film in which an organic substance and an inorganic substance are combined is proposed.
  • a concavo-convex film having a metal oxide having a specific particle size as a matrix is covered on a substrate, and a layer of organosilane having a specific functional group is further formed thereon.
  • Antifogging article see Patent Document 1, Claims 1 and 7
  • an antifogging composition comprising a surfactant and an isocyanate group-containing silane compound (Patent Document 2, Claims) 1) is proposed.
  • a phosphoric acid compound for the purpose of maintaining antifogging performance by imparting hydrophilicity to the membrane over a long period of time and maintaining the strength of the membrane.
  • an antifogging coating material characterized by blending a phosphoric acid compound binder and acid fine particles having an average particle diameter of 1 to 300 nm has been proposed (Patent Document 3, Claim 1). (See)
  • the proposed coating composition has poor anti-fogging maintenance performance, and has a thick film and low film hardness, resulting in poor wear resistance and disadvantages. .
  • Patent Document 1 Japanese Patent Laid-Open No. 11 100234
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-73652
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-231827
  • an object of the present invention is to provide an antifogging film-coated article excellent in antifogging performance and wear resistance, a coating material for forming an antifogging film, and a method for producing an antifogging film-coated article. Is provided.
  • the present inventors have made use of an antifogging film-coated article in which an antifogging film containing phosphorus and an alkaline earth metal is disposed on a substrate.
  • the present inventors have found that the above problems can be solved, and have completed the present invention based on the findings.
  • An antifogging film-coated article comprising a base material and an antifogging film formed on the surface of the base material, wherein the antifogging film contains phosphorus and an alkaline earth metal Coated articles,
  • a coating material for forming an antifogging film containing a phosphate compound and an alkaline earth metal
  • the phosphoric acid compound is at least one selected from the group power consisting of orthophosphoric acid, metaphosphoric acid, polyphosphoric acid, pyrophosphoric acid, triphosphoric acid, tetraphosphoric acid and phosphate power.
  • the anti-fogging film-coated article of the present invention is excellent in anti-fogging performance and abrasion resistance, and is suitably used as optical parts such as glasses, goggles and optical lenses, architectural or vehicle window glass.
  • the coating material for forming an antifogging film of the present invention and the method for producing an antifogging film-coated article using the coating material for forming an antifogging film are excellent.
  • An antifogging film-coated article can be produced efficiently with high productivity.
  • FIG. 1 is a result of composition analysis of a film-coated article produced in Example 1.
  • FIG. 2 is a scanning electron micrograph of the cross section of the coated article manufactured in Example 1.
  • FIG. 3 is a scanning electron micrograph of the surface of the coated article manufactured in Example 1. BEST MODE FOR CARRYING OUT THE INVENTION
  • the antifogging film in the antifogging film-coated article of the present invention is characterized by containing phosphorus and an alkaline earth metal.
  • Phosphorus (P) and alkaline earth metal (M) in the anti-fogging coating are presumed to be bonded via oxygen, and —P—O—P—, —P—O—M—, -M- It seems that an anti-fogging film is formed by bonds such as 0 —M—.
  • alkaline earth metals examples include beryllium, magnesium, calcium, strontium, barium, and radium. Of these, V and magnesium are preferred because they can easily form a film when combined with phosphorus compounds.
  • the proportion of phosphorus and alkaline earth metal in the antifogging coating is not particularly limited as long as the effect of the present invention is achieved, but the proportion of alkaline earth metal (M) and phosphorus (P) is not limited.
  • the range of 0.5 to 10 is preferable.
  • the ratio means the ratio of the number of photoelectrons of alkaline earth metal and phosphorus detected by X-ray photoelectron spectroscopy per unit time (MZP, unit; count / sec).
  • the ratio of alkaline earth metal (M) and phosphorus (P) is 0.5 or more, there is an advantage that there is sufficient wear resistance, and when it is 10 or less, there is an advantage that the antifogging maintenance property is excellent. is there. From the above viewpoint, the ratio of alkaline earth metal (M) and phosphorus (P) is more preferably in the range of 1-6.
  • magnesium which is the most preferred embodiment as an alkaline earth metal
  • the content ratio of magnesium and phosphorus is 0 (MgZP) as the ratio of magnesium (Mg) and phosphorus (P). It is preferably in the range of 5 to 10, and more preferably in the range of 1 to 6.
  • the ratio of alkaline earth metal (M) and phosphorus (P) in the antifogging film is determined by X-ray photoelectron spectroscopic analysis while performing argon etching in the depth direction of the antifogging film. Elemental analysis was performed and calculated as the average value of the entire antifogging coating.
  • the antifogging film of the present invention may contain other components in addition to the above-described phosphorus and alkaline earth metal as long as the effects of the present invention are not impaired.
  • examples thereof include titania having a photocatalytic function, silica, zirconium, alumina for increasing the strength of the antifogging coating.
  • the components in the base material may be diffused and present in the antifogging film.
  • soda lime glass is used as a substrate and an antifogging film is formed thereon, the sodium component in the soda lime glass is diffused, and the sodium component may be contained in the antifogging film.
  • the phosphorus compound and alkaline earth metal in the present invention function as a water-absorbing material in the anti-fogging film, thereby forming an adsorbed water layer on the anti-fogging film. Is done. Then, it is considered that the surface of the antifogging film is made hydrophilic, thereby expressing the antifogging property. The thickness of these adsorbed water layers is considered to vary depending on the film structure of the film, and the larger the surface area of the film, the more adsorbed water can be stably held on the film. Therefore, it is preferable that the surface of the antifogging film has an uneven shape or a pore structure rather than a smooth surface.
  • the arithmetic average roughness (Ra) force is preferably S80 nm or less, and more preferably 30 nm or less.
  • the arithmetic average roughness (Ra) is 80 nm or less, the initial haze value can be kept small.
  • the thickness of the anti-fogging film of the present invention is not particularly limited as long as the effects of the present invention are exhibited, but it is preferably 2 to: LOOOnm. If it is 2 nm or more, a sufficient adsorbed water layer can be formed, and sufficient anti-fogging performance can be obtained. On the other hand, if it is less than lOOOnm, sufficient wear resistance can be obtained. From the above viewpoint, the thickness of the antifogging film is preferably in the range of 2 to 500 nm. Furthermore, from the point of view that no interference color is recognized, it is particularly preferable to be in the range of 2 to 200 nm! /.
  • the antifogging film in the present invention may be directly formed on a base material, or a film having a smooth or uneven surface of a metal oxide is formed on the surface of the base material. You may form in. Special When an antifogging film is formed on a metal oxide film having irregularities on the surface, the antifogging film is also preferably formed according to the irregularities of the metal oxide film. There are no particular restrictions on the method of imparting irregularities to the metal oxide film, for example, a method of obtaining irregularities by dispersing fine particles such as acid silicate in the metal oxide, There is a method of embedding fat fine particles in a metal oxide, and obtaining irregularities by thermally decomposing and burning off the fine fat particles after film formation.
  • heat decomposable resin fine particles are encapsulated in a matrix such as water glass, and after film formation on the substrate, Heat treatment is performed at a temperature higher than the decomposition temperature of the fine resin particles (usually higher than about 300 ° C) and lower than the heat resistance temperature of the substrate.
  • the heat-resistant temperature of the base material means the upper limit temperature at which the characteristics of the base material can be maintained, and differs depending on the type of base material used.
  • a glass substrate it means the soft spot or devitrification temperature (usually about 600 to 700 ° C)
  • it means the glass transition temperature, crystallization temperature, decomposition point, etc.
  • the antifogging film-coated article of the present invention preferably has an initial haze value of 0.5% or less.
  • the haze value is a value measured using a direct reading haze computer (“HG M-2DMJ” manufactured by Suga Test Instruments Co., Ltd.).
  • the anti-fogging coated article of the present invention preferably has a difference in haze value of 2% or less before and after the Taber abrasion test.
  • the Taber abrasion test is a test when the rotation of the wear wheel is 100 revolutions in the method of JIS R3212: 1998 3.7. The smaller the change in the haze ratio of the antifogging coated article, the higher the wear resistance.
  • the substrate used in the present invention is not particularly limited, and examples thereof include glass, resin, ceramics, plastic, and metal. Of these, the viewpoint power to ensure transparency
  • the glass plate, the resin plate, or the resin film is particularly preferable because the glass or the resin is preferable.
  • the thickness of the substrate is appropriately selected depending on the application and is not particularly limited, but is usually about 0.01 to about LOmm.
  • the film in the antifogging coated article of the present invention is formed by applying a coating material for forming an antifogging film containing a phosphoric acid compound and an alkaline earth metal to the surface of the substrate, and forming the film. Form be able to.
  • coating material for forming an antifogging film containing a phosphoric acid compound and an alkaline earth metal (hereinafter sometimes simply referred to as “coating material”) will be described in detail.
  • the phosphoric acid compound in the coating material is not particularly limited, and examples thereof include orthophosphoric acid, metal phosphoric acid, polyphosphoric acid, pyrophosphoric acid, triphosphoric acid, tetraphosphoric acid, and phosphate. These may be used alone or in admixture of two or more. Among these, in particular, those having a straight chain structure are superior in water resistance, and have a strong viewpoint of strong bonds with alkaline earth metals compared to phosphates, etc. Orthophosphoric acid, polyphosphoric acid, pyrophosphoric acid, Triphosphoric acid and tetraphosphoric acid are preferred. These phosphate compounds are thought to react with alkaline earth metal (M), which will be described in detail later, to form P—O—M bonds via oxygen and increase the strength of the coating film.
  • M alkaline earth metal
  • the alkaline earth metal in the coating material is the same as the alkaline earth metal present in the antifogging film described above, and magnesium is particularly preferable.
  • alkaline earth metal starting materials can be used.
  • hydroxides, chlorides, oxides, sulfates, and the like can be used. Of these, in view of ease of handling, hydroxides or salts are preferred.
  • magnesium hydroxide, magnesium chloride, magnesium oxide, magnesium sulfate, etc. can be used as starting materials present in the coating material.
  • sodium hydroxide or magnesium salt is preferred.
  • the content ratio (mass ratio of MZP) of the alkaline earth metal and phosphoric acid compound in the coating material is not particularly limited as long as the effect of the present invention is achieved, but the alkaline earth metal ( It is preferably in the range of 0.05 to 4 in terms of mass ratio of M) and phosphorus (P). If the content of alkaline earth metal (M) and phosphorus (P) is 0.05 or more, sufficient wear resistance is advantageous, and if it is 4 or less, it is excellent in antifogging maintenance. There are advantages. From the above viewpoint, the content ratio of the alkaline earth metal (M) and phosphorus (P) is more preferably in the range of 0.1 to 2, particularly preferably in the range of 0.3 to 1. .
  • the content ratio of magnesium and phosphate compound is in the range of 0.05 to 4 in terms of mass ratio of magnesium (Mg) and phosphorus (P). Preferably there is. Further preferred is a range of 0.1-2, particularly preferred is a range of 0.3-1.
  • the content ratio of alkaline earth metal (M) and phosphorus (P) was calculated by ICP emission spectrometry.
  • the method for applying the coating material to the substrate is not particularly limited, and a known method can be used.
  • vacuum film formation such as sputtering or vapor deposition, flow coating, dip coating, etc.
  • wet coating such as the coating method, curtain coating method, spin coating method, spray coating method, bar coating method, roll coating method, hand coating method, immersion adsorption method, and sol-gel method.
  • Wet coating is advantageous in that it does not require expensive equipment, and the method for producing an antifogging film-coated article of the present invention will be described in detail below using the wet coating method as an example.
  • the solvent of the coating material containing the phosphoric acid compound and the alkaline earth metal is not particularly limited as long as it can dissolve the phosphate compound and the alkaline earth metal. Forces preferably mentioned Water is particularly preferable. Water can be easily removed by drying at the time of film formation or by heat treatment after film formation, which is also suitable for the production environment. In addition, this solvent can be used individually by 1 type or in mixture of 2 or more types.
  • the total amount of alkaline earth metal such as magnesium and phosphorus (metal conversion) in the coating material is preferably in the range of 0.01 to 50% by mass.
  • the content is 0.01% by mass or more, there is an advantage that a film thickness of a certain level or more is secured and anti-fogging maintenance is good. There is an advantage of being good.
  • the total amount of alkaline earth metal such as magnesium and phosphorus is preferably in the range of 0.07 to 10% by mass.
  • the surface of the base material can be cleaned or surface-modified.
  • a phenomenon such as repelling of the solution may occur, and the film may not be uniformly formed.
  • cleaning is effective.
  • the cleaning method include degreasing cleaning with an organic solvent such as alcohol, acetone, and hexane, cleaning with an alkali or acid, and polishing of the substrate surface with an abrasive. It is also preferable to perform surface treatment of the substrate in advance before forming the anti-fogging film in order to increase the hydrophilic group, which preferably has a hydrophilic group on the substrate surface. is there.
  • the surface modification method include ultraviolet irradiation treatment, ultraviolet ozone treatment, plasma treatment, corona discharge treatment, and heat treatment.
  • the coating material is preferably dried in the range of room temperature to 200 ° C, more preferably in the range of 100 to 200 ° C. Further, it is preferable to perform the heat treatment at a temperature higher than 300 ° C. and lower than the heat resistance temperature of the base material. Specifically, a range of 300 to 700 ° C is preferable, and a range of 300 to 500 ° C is more preferable.
  • the coating composition was evaluated by using X-ray photoelectron spectroscopy (“ESCA-5600ci” manufactured by ULVAC 'Huai Co., Ltd.).
  • the conditions for X-ray photoelectron spectroscopy are as follows.
  • the anti-fogging coated article obtained in each Example and Comparative Example was subjected to an abrasion resistance test (Taber abrasion test) according to the method of JIS R3212: 19 98 3.7, and the abrasion resistance before and after the test was determined as a haze value. It was evaluated with. The test was conducted with the wear wheel rotating at 100 rotations. The haze value was measured using a direct reading haze computer (“HGM-2DM” manufactured by Suga Test Instruments Co., Ltd.). The smaller the haze value is, the better the abrasion resistance is without the appearance defects such as scratches when the film is peeled off.
  • HGM-2DM direct reading haze computer
  • the anti-fogging coated article obtained in each Example and Comparative Example was left in a room with a temperature of 20 ⁇ 5 ° C and a humidity of 30 ⁇ 10%.
  • the evaluation was based on the visibility of the field of view visible through the glass. The evaluation was based on the following criteria.
  • ICP emission spectrometry Quantitative analysis of phosphorus (P), magnesium (Mg), and titanium (Ti) in the coating material was performed by ICP emission spectrometry.
  • an ICP emission analyzer (“I CPS-8000” manufactured by Shimadzu Corporation) was used.
  • the precipitate was settled by standing, and the supernatant liquid was diluted 5 times with ion-exchanged water to obtain a coating material C for forming an antifogging film.
  • the contents of magnesium and phosphorus in the coating material C were 0.166% by mass and 0.546% by mass, respectively. Further, titanium was below the detection limit.
  • the coating material C was applied on a cleaned glass substrate by a flow coating method at 20 ° C. and a relative humidity of 30%. Thereafter, the film was dried at room temperature for 30 minutes, further at 100 ° C for 30 minutes, and then heat-treated at 320 ° C for 30 minutes.
  • Figure 1 and Table 1 show the measurement results by X-ray photoelectron spectroscopy. Magnesium (1S orbital) and phosphorus (2p orbital) are detected as the main components of the anti-fogging coating, and it can be seen that phosphorus is present up to the part where the sputtering time is about 30 minutes. Since Si (2p orbital) saturates after about 30 minutes of sputtering time, it is considered that this is the substrate part after this point. The average ratio of magnesium and phosphorus in the antifogging film was 2.6.
  • the glass article had an antifogging coating thickness of about 50 nm.
  • Table 2 shows the change in haze ratio before and after the Taber abrasion test and the evaluation results of anti-fogging maintenance. It was confirmed that the film had excellent wear resistance with no appearance defects such as scratches if the film peeled off with little change in haze ratio before and after the Taber abrasion test. It was also confirmed that the anti-fogging performance was maintained even after 2 months.
  • the precipitate was settled by allowing it to stand, and the supernatant was used as coating material D for forming an antifogging film.
  • the contents of magnesium and phosphorus in coating material D were 1.32% by mass and 1.46% by mass, respectively. Titanium was below the detection limit.
  • This coating material D was washed on a glass substrate washed at 20 ° C and 30% relative humidity. It was applied by a one-coat method. Then, after drying at room temperature for 30 minutes, it was heat-treated at 320 ° C for 15 minutes. The above evaluation was performed on this glass article.
  • the thickness of the antifogging film of the obtained glass article was about 250 nm.
  • Magnesium and phosphorus were detected as the main components of the antifogging coating, and the average ratio of magnesium and phosphorus in the antifogging coating was 2.7.
  • Table 2 shows the changes in haze ratio before and after the Taber abrasion test and the evaluation results of anti-fogging maintenance. It was confirmed that the haze rate change before and after the Taber abrasion test was small, and that the film had excellent wear resistance with no defects in appearance such as scratches. Further, it was confirmed that the antifogging performance was maintained even after being left for 2 months.
  • a glass article was obtained in the same manner as in Example 1 except that the coating material C of Example 1 was diluted 4-fold with ion-exchanged water, and was similarly evaluated.
  • the thickness of the antifogging film of the obtained glass article was about 13 nm.
  • magnesium and phosphorus were detected as the main components of the antifogging coating, and the contents of magnesium and phosphorus in the coating material were 0.0415% by mass and 0.1365% by mass, respectively.
  • the average ratio of magnesium and phosphorus in the antifogging film was 2.7. Table 2 shows the changes in haze ratio before and after the Taber abrasion test and the evaluation results of anti-fogging maintenance.
  • the film had excellent wear resistance with no appearance defects such as scratches if the film peeled off with little change in haze ratio before and after the Taber abrasion test. It was also confirmed that anti-fogging performance was maintained even after 2 months.
  • This coating material E is applied to the cleaned glass substrate by the flow coating method at 20 ° C and relative humidity of 30%, and then heat-treated at 300 ° C for 1 hour for antifogging coating coated glass. I got a product.
  • the thickness of the antifogging film of the obtained glass article was 200 nm.
  • This glass article was evaluated in the same manner as in Example 1. The evaluation results are shown in Table 2.
  • the anti-fogging film-coated article of the present invention is excellent in anti-fogging performance and abrasion resistance, and is suitably used as optical parts such as glasses, goggles and optical lenses, architectural or vehicle window glass. Further, according to the coating material of the present invention and the production method using the coating material, an anti-fogging film-coated article excellent in anti-fogging performance and wear resistance is high! It can be manufactured efficiently and efficiently.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Surface Treatment Of Glass (AREA)
  • Paints Or Removers (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)

Abstract

Disclosed is an antifog coated article comprising a base and an antifog coating formed on the surface of the base. The antifog coating contains phosphorus and an alkaline earth metal. Also disclosed is a coating material for forming an antifog coating which contains a phosphate compound and an alkaline earth metal. Further disclosed is a method for producing an antifog coated article wherein an antifog coating is formed by applying such a coating material onto the surface of a base. The antifog coated article is excellent in antifog properties and abrasion resistance. The method enables to efficiently produce a coating material for forming an antifog coating and an antifog coated article.

Description

明 細 書  Specification
防曇性被膜被覆物品、防曇性被膜形成用塗工材料及び防曇性被膜被 覆物品の製造方法  Antifogging coated article, coating material for forming antifogging film, and method for producing antifogging coated article
技術分野  Technical field
[0001] 本発明は、防曇性被膜被覆物品、防曇性被膜形成用塗工材料及び防曇性被膜被 覆物品の製造方法に関する。  The present invention relates to an antifogging film-coated article, a coating material for forming an antifogging film, and a method for producing an antifogging film-covered article.
背景技術  Background art
[0002] ガラスその他の物品表面が曇る現象は、物品の表面に結露等によって微小な水滴 が付着し、この微小水滴が光を乱反射するために生じる。この曇りは、眼鏡、ゴーグ ル、光学レンズ等の光学部品において、その性能の著しい低下を引き起こし、また建 築用窓ガラスや鏡においては、意匠上や設計上問題となる。さらに、自動車をはじめ とする車両用窓ガラスにおいては、視野の低下を招き、安全上の問題が生じる場合 がある。  [0002] The phenomenon of the fogging of the surface of glass or other articles occurs because minute water droplets adhere to the surface of the article due to condensation or the like, and the minute water droplets diffusely reflect light. This fogging causes a significant decrease in the performance of optical parts such as glasses, goggles, and optical lenses, and becomes a design and design problem for building window glass and mirrors. In addition, vehicle window glasses such as automobiles may cause a reduction in the field of view and cause safety problems.
これらの曇りをなくすために、防曇性被膜が施される。防曇性被膜には、有機系の ものと無機系のものがあり、有機系の防曇性被膜は防曇性能に優れるが、膜の硬度 が低ぐ耐摩耗性が低いという欠点を有する。一方、無機系の防曇性被膜は、膜の硬 度が高ぐ耐摩耗性が高いという利点があるが、有機系の防曇性被膜に比較して防 曇性能に劣るという欠点がある。  In order to eliminate these fogging, an anti-fogging coating is applied. There are organic and inorganic antifogging films, and organic antifogging films are excellent in antifogging performance, but have the disadvantage of low film hardness and low wear resistance. On the other hand, inorganic antifogging coatings have the advantage of high film hardness and high wear resistance, but have the disadvantage of being inferior in antifogging performance compared to organic antifogging coatings.
[0003] 以上の問題点を解決するために種々の提案がなされており、例えば有機系物質と 無機系物質を複合ィ匕した防曇膜を備えた防曇性物品等が提案されて ヽる。具体的 には、特定の粒径を有する金属酸ィ匕物をマトリックスとする凹凸状の膜を基材上に被 覆し、さらにその上に特定の官能基を有するオルガノシラン等の層を形成させた防曇 物品 (特許文献 1、請求項 1及び 7参照)、界面活性剤およびイソシァネート基含有シ ランィ匕合物を含んでなることを特徴とする防曇性組成物 (特許文献 2、請求項 1参照) などが提案されている。 [0003] Various proposals have been made to solve the above-described problems. For example, an antifogging article having an antifogging film in which an organic substance and an inorganic substance are combined is proposed. . Specifically, a concavo-convex film having a metal oxide having a specific particle size as a matrix is covered on a substrate, and a layer of organosilane having a specific functional group is further formed thereon. Antifogging article (see Patent Document 1, Claims 1 and 7), an antifogging composition comprising a surfactant and an isocyanate group-containing silane compound (Patent Document 2, Claims) 1) is proposed.
しかしながら、これら提案される防曇物品及び防曇性組成物は、いずれも、防曇性 能が不十分である、防曇性能を維持することが困難である、あるいは膜硬度が低い ために耐摩耗性に乏 、と!ヽぅ欠点があった。 However, all of these proposed antifogging articles and antifogging compositions have insufficient antifogging performance, difficulty in maintaining antifogging performance, or low film hardness. Because of poor wear resistance, and! There was a defect.
[0004] また、膜に長期間にわたって親水性を付与することで防曇性能を維持し、かつ膜の 強度を持続させることを目的にリン酸ィ匕合物を用いることが提案されている。例えば、 リン酸ィ匕合物バインダーおよび平均粒径 l〜300nmの酸ィ匕物微粒子を配合してなる ことを特徴とする防曇性コーティング材料が提案されている (特許文献 3、請求項 1参 照)。 [0004] In addition, it has been proposed to use a phosphoric acid compound for the purpose of maintaining antifogging performance by imparting hydrophilicity to the membrane over a long period of time and maintaining the strength of the membrane. For example, an antifogging coating material characterized by blending a phosphoric acid compound binder and acid fine particles having an average particle diameter of 1 to 300 nm has been proposed (Patent Document 3, Claim 1). (See)
し力しながら、提案されているコーティング組成物は、防曇維持性能が乏しぐまた 被膜の膜厚が厚く、膜硬度が低!ヽために耐摩耗性に乏 ヽと ヽぅ欠点があった。  However, the proposed coating composition has poor anti-fogging maintenance performance, and has a thick film and low film hardness, resulting in poor wear resistance and disadvantages. .
[0005] 特許文献 1:特開平 11 100234号公報 Patent Document 1: Japanese Patent Laid-Open No. 11 100234
特許文献 2:特開 2003 - 73652号公報  Patent Document 2: Japanese Patent Laid-Open No. 2003-73652
特許文献 3:特開 2003 - 231827号公報  Patent Document 3: Japanese Patent Laid-Open No. 2003-231827
発明の開示  Disclosure of the invention
[0006] 本発明の目的は、上記問題点に鑑み、防曇性能と耐摩耗性に優れる防曇性被膜 被覆物品、防曇性被膜形成用塗工材料及び防曇性被膜被覆物品の製造方法を提 供するものである。  In view of the above problems, an object of the present invention is to provide an antifogging film-coated article excellent in antifogging performance and wear resistance, a coating material for forming an antifogging film, and a method for producing an antifogging film-coated article. Is provided.
[0007] 本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、基材上にリン とアルカリ土類金属を含有する防曇性被膜を配した防曇性被膜被覆物品によって、 前記課題を解決し得ることを見出し、その知見に基づいて本発明を完成するに至つ た。  [0007] As a result of intensive studies to achieve the above object, the present inventors have made use of an antifogging film-coated article in which an antifogging film containing phosphorus and an alkaline earth metal is disposed on a substrate. The present inventors have found that the above problems can be solved, and have completed the present invention based on the findings.
すなわち、本発明は、  That is, the present invention
(1)基材と、該基材表面に形成された防曇性被膜を備える防曇性被膜被覆物品であ つて、該防曇性被膜がリンとアルカリ土類金属を含有する防曇性被膜被覆物品、 (1) An antifogging film-coated article comprising a base material and an antifogging film formed on the surface of the base material, wherein the antifogging film contains phosphorus and an alkaline earth metal Coated articles,
(2)前記アルカリ土類金属がマグネシウムである上記(1)に記載の防曇性被膜被覆 物品、 (2) The antifogging film-coated article according to (1), wherein the alkaline earth metal is magnesium,
(3)防曇性被膜中のマグネシウムとリンの割合 (MgZP)が 0. 5〜10である上記(2) に記載の防曇性被膜被覆物品、  (3) The antifogging film-coated article according to the above (2), wherein the ratio of magnesium to phosphorus (MgZP) in the antifogging film is 0.5 to 10,
(4)前記防曇性被膜の厚さが 2〜: LOOOnmである上記(1)〜(3)の 、ずれかに記載 の防曇性被膜被覆物品、 (5)初期のヘイズ値が 0. 5%以下である上記(1)〜 (4)の 、ずれかに記載の防曇性 被膜被覆物品、 (4) The antifogging film-coated article according to any one of (1) to (3), wherein the antifogging film has a thickness of 2 to LOOOnm, (5) The antifogging coated article according to any one of (1) to (4), wherein the initial haze value is 0.5% or less,
(6)テーバー摩耗試験前後のヘイズ値の差が 2%以下である上記(1)〜(5)の 、ず れかに記載の防曇性被膜被覆物品、  (6) The antifogging film-coated article according to any one of (1) to (5) above, wherein the difference in haze value before and after the Taber abrasion test is 2% or less,
(7)前記基材が、透明な、ガラス板、榭脂板又は榭脂フィルムのいずれかである上記 (1)〜 (6)の 、ずれかに記載の防曇性被膜被覆物品、  (7) The antifogging film-coated article according to any one of the above (1) to (6), wherein the substrate is any one of a transparent glass plate, a resin board, or a resin film,
(8)リン酸ィ匕合物とアルカリ土類金属を含む防曇性被膜形成用塗工材料、  (8) A coating material for forming an antifogging film containing a phosphate compound and an alkaline earth metal,
(9)前記リン酸ィ匕合物がオルトリン酸、メタリン酸、ポリリン酸、ピロリン酸、三リン酸、四 リン酸及びリン酸塩力 なる群力 選ばれる少なくとも 1種である上記(8)に記載の防 曇性被膜形成用塗工材料、  (9) In the above (8), the phosphoric acid compound is at least one selected from the group power consisting of orthophosphoric acid, metaphosphoric acid, polyphosphoric acid, pyrophosphoric acid, triphosphoric acid, tetraphosphoric acid and phosphate power. The coating material for forming the antifogging film as described,
(10)前記アルカリ土類金属が水酸ィヒ物、塩化物、酸ィヒ物及び硫ィヒ物からなる群か ら選ばれる少なくとも 1種の化合物を出発物質とする上記 (8)又は(9)に記載の防曇 性被膜形成用塗工材料、  (10) The above (8) or (8) wherein the alkaline earth metal is at least one compound selected from the group consisting of hydroxide, chloride, acid and sulfate. The coating material for forming an antifogging film according to 9),
(11)前記アルカリ土類金属がマグネシウムである上記(10)に記載の防曇性被膜形 成用塗工材料、  (11) The antifogging film forming coating material according to the above (10), wherein the alkaline earth metal is magnesium,
(12)マグネシウムとリンの含有割合 (MgZPの質量割合)が 0. 05〜4である上記(1 1)に記載の防曇性被膜形成用塗工材料、  (12) The coating material for forming an antifogging film according to the above (11), wherein the content ratio of magnesium and phosphorus (mass ratio of MgZP) is 0.05 to 4,
(13)前記塗工材料が溶媒を含み、塗工材料中のアルカリ土類金属とリンの総量 (金 属換算)が 0. 01〜50質量%である上記(8)〜(12)のいずれかに記載の防曇性被 膜形成用塗工材料、  (13) Any of the above (8) to (12), wherein the coating material contains a solvent, and the total amount of alkaline earth metal and phosphorus (metal conversion) in the coating material is 0.01 to 50% by mass The antifogging film-forming coating material according to claim 1,
(14)前記溶媒がアルコール又は水である上記(13)に記載の防曇性被膜形成用塗 工材料、及び  (14) The coating material for forming an antifogging film according to the above (13), wherein the solvent is alcohol or water, and
(15)上記 (8)〜(14)の ヽずれかに記載の防曇性被膜形成用塗工材料を基材表面 に塗布し、成膜することによって防曇性被膜を形成する防曇性被膜被覆物品の製造 方法、  (15) Antifogging property in which an antifogging film-forming coating material as described in any one of (8) to (14) above is applied to the surface of the substrate and then formed into an antifogging film. Method for producing coated article,
を提供するものである。 Is to provide.
本発明の防曇性被膜被覆物品は防曇性能と耐摩耗性に優れ、眼鏡、ゴーグル、光 学レンズ等の光学部品、建築用または車両用窓ガラスなどとして好適に使用される。 また、本発明の防曇性被膜形成用塗工材料及び該防曇性被膜形成用塗工材料を 用いた防曇性被膜被覆物品の製造方法によれば、防曇性能と耐摩耗性に優れる防 曇性被膜被覆物品を高 、生産性で、効率よく製造することができる。 The anti-fogging film-coated article of the present invention is excellent in anti-fogging performance and abrasion resistance, and is suitably used as optical parts such as glasses, goggles and optical lenses, architectural or vehicle window glass. In addition, according to the coating material for forming an antifogging film of the present invention and the method for producing an antifogging film-coated article using the coating material for forming an antifogging film, the antifogging performance and the wear resistance are excellent. An antifogging film-coated article can be produced efficiently with high productivity.
図面の簡単な説明  Brief Description of Drawings
[0009] [図 1]実施例 1で製造した被膜被覆物品の組成分析結果である。  FIG. 1 is a result of composition analysis of a film-coated article produced in Example 1.
[図 2]実施例 1で製造した被膜被覆物品の断面の走査型電子顕微鏡写真である。  FIG. 2 is a scanning electron micrograph of the cross section of the coated article manufactured in Example 1.
[図 3]実施例 1で製造した被膜被覆物品の表面の走査型電子顕微鏡写真である。 発明を実施するための最良の形態  FIG. 3 is a scanning electron micrograph of the surface of the coated article manufactured in Example 1. BEST MODE FOR CARRYING OUT THE INVENTION
[0010] 本発明の防曇性被膜被覆物品における防曇性被膜はリンとアルカリ土類金属を含 有することを特徴とする。防曇性被膜中におけるリン (P)及びアルカリ土類金属 (M) は酸素を介して結合していると推定され、—P— O— P—、—P— O— M—、 -M-0 —M—などの結合によって防曇性被膜を形成するものと思われる。  [0010] The antifogging film in the antifogging film-coated article of the present invention is characterized by containing phosphorus and an alkaline earth metal. Phosphorus (P) and alkaline earth metal (M) in the anti-fogging coating are presumed to be bonded via oxygen, and —P—O—P—, —P—O—M—, -M- It seems that an anti-fogging film is formed by bonds such as 0 —M—.
アルカリ土類金属としては、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バ リウム、ラジウムが挙げられ、これらのうちリン化合物と結合しやすぐ膜を形成しやす V、マグネシウムが好まし!/、。  Examples of alkaline earth metals include beryllium, magnesium, calcium, strontium, barium, and radium. Of these, V and magnesium are preferred because they can easily form a film when combined with phosphorus compounds.
[0011] 防曇性被膜中のリンとアルカリ土類金属との存在割合については、本発明の効果 を奏する範囲で特に限定されないが、アルカリ土類金属 (M)とリン (P)の割合が 0. 5 〜10の範囲であることが好ましい。ここで割合とは、 X線光電子分光分析法により検 出されたアルカリ土類金属とリンの光電子の単位時間あたりの数の比(MZP、単位; count/ sec)をいつ。  [0011] The proportion of phosphorus and alkaline earth metal in the antifogging coating is not particularly limited as long as the effect of the present invention is achieved, but the proportion of alkaline earth metal (M) and phosphorus (P) is not limited. The range of 0.5 to 10 is preferable. Here, the ratio means the ratio of the number of photoelectrons of alkaline earth metal and phosphorus detected by X-ray photoelectron spectroscopy per unit time (MZP, unit; count / sec).
アルカリ土類金属(M)とリン (P)の割合が 0. 5以上であると、十分な耐摩耗性を有 するという利点があり、 10以下であると防曇維持性に優れるという利点がある。以上 の観点から、アルカリ土類金属(M)とリン (P)の割合は、 1〜6の範囲であることがさら に好ましい。  When the ratio of alkaline earth metal (M) and phosphorus (P) is 0.5 or more, there is an advantage that there is sufficient wear resistance, and when it is 10 or less, there is an advantage that the antifogging maintenance property is excellent. is there. From the above viewpoint, the ratio of alkaline earth metal (M) and phosphorus (P) is more preferably in the range of 1-6.
アルカリ土類金属として、最も好適な態様であるマグネシウムの場合にぉ ヽても同 様であり、マグネシウムとリンの含有割合力 マグネシウム (Mg)とリン (P)の割合とし て(MgZP)で 0. 5〜10の範囲であることが好ましぐさらに 1〜6の範囲であることが 好ましい。 なお、防曇性被膜中のアルカリ土類金属 (M)とリン (P)の割合は、防曇性被膜の深 さ方向に、アルゴンエッチングをしながら、 X線光電子分光分析によって Mと Pの元素 分析を行い、防曇性被膜全体の平均値として算出した。 The same is true in the case of magnesium, which is the most preferred embodiment as an alkaline earth metal, and the content ratio of magnesium and phosphorus is 0 (MgZP) as the ratio of magnesium (Mg) and phosphorus (P). It is preferably in the range of 5 to 10, and more preferably in the range of 1 to 6. The ratio of alkaline earth metal (M) and phosphorus (P) in the antifogging film is determined by X-ray photoelectron spectroscopic analysis while performing argon etching in the depth direction of the antifogging film. Elemental analysis was performed and calculated as the average value of the entire antifogging coating.
[0012] 本発明の防曇性被膜には、上述のリン及びアルカリ土類金属の他に本発明の効果 を阻害しない範囲内で他の成分を含んでいてもよい。例えば、光触媒機能を有する チタ二了、防曇性被膜の強度を上げるためのシリカ、ジルコユア、アルミナ等である。 また、本発明の効果を損なわないものであれば、防曇性被膜中に基材中の成分が 拡散されて存在してもよい。例えば、基材としてソーダライムガラスを用い、その上に 防曇性被膜を形成するとソーダライムガラス中のナトリウム成分が拡散され、防曇性 被膜中にナトリウム成分が含まれる場合がある。  [0012] The antifogging film of the present invention may contain other components in addition to the above-described phosphorus and alkaline earth metal as long as the effects of the present invention are not impaired. Examples thereof include titania having a photocatalytic function, silica, zirconium, alumina for increasing the strength of the antifogging coating. Moreover, as long as the effects of the present invention are not impaired, the components in the base material may be diffused and present in the antifogging film. For example, when soda lime glass is used as a substrate and an antifogging film is formed thereon, the sodium component in the soda lime glass is diffused, and the sodium component may be contained in the antifogging film.
[0013] 本発明におけるリンの化合物とアルカリ土類金属は、防曇性被膜中にあって吸水 性材料として機能し、これらによって防曇性被膜上に吸着水層が形成されるものと推 定される。そして、防曇性被膜表面が親水性化され、これによつて防曇性を発現して いるものと考えられる。これら吸着水層の厚さは被膜の膜構造によって変化すると思 われ、被膜の表面積が大きいほど、被膜上により多くの吸着水を安定的に保持する ことが可能である。従って、防曇性被膜の表面は平滑な表面よりも、凹凸形状や細孔 構造を有していることが好ましい。凹凸形状を有する場合には、算術平均粗さ (Ra) 力 S80nm以下であることが好ましぐさらには 30nm以下であることが好ましい。算術 平均粗さ(Ra)が 80nm以下であると、初期のヘイズ値を小さく抑えることができ好ま しい。  [0013] It is presumed that the phosphorus compound and alkaline earth metal in the present invention function as a water-absorbing material in the anti-fogging film, thereby forming an adsorbed water layer on the anti-fogging film. Is done. Then, it is considered that the surface of the antifogging film is made hydrophilic, thereby expressing the antifogging property. The thickness of these adsorbed water layers is considered to vary depending on the film structure of the film, and the larger the surface area of the film, the more adsorbed water can be stably held on the film. Therefore, it is preferable that the surface of the antifogging film has an uneven shape or a pore structure rather than a smooth surface. In the case of having an uneven shape, the arithmetic average roughness (Ra) force is preferably S80 nm or less, and more preferably 30 nm or less. When the arithmetic average roughness (Ra) is 80 nm or less, the initial haze value can be kept small.
[0014] 本発明の防曇性被膜の厚さについては、本発明の効果を奏する範囲で特に限定 されないが、 2〜: LOOOnmであること力 S好ましい。 2nm以上であると十分な吸着水層 ができるために十分な防曇維持性能が得られると考えられる。一方、 lOOOnm以下 であると十分な耐摩耗性を得ることができる。以上の観点から、防曇性被膜の厚さは 、さらに 2〜500nmの範囲であることが好ましい。さらに干渉色が認められないとの観 点から、特に 2〜200nmの範囲であることが好まし!/、。  [0014] The thickness of the anti-fogging film of the present invention is not particularly limited as long as the effects of the present invention are exhibited, but it is preferably 2 to: LOOOnm. If it is 2 nm or more, a sufficient adsorbed water layer can be formed, and sufficient anti-fogging performance can be obtained. On the other hand, if it is less than lOOOnm, sufficient wear resistance can be obtained. From the above viewpoint, the thickness of the antifogging film is preferably in the range of 2 to 500 nm. Furthermore, from the point of view that no interference color is recognized, it is particularly preferable to be in the range of 2 to 200 nm! /.
[0015] 本発明における防曇性被膜は、基材上に直接形成してもよいし、基材の表面に金 属酸ィ匕物の平滑または凹凸を有する膜を形成しておき、その上に形成してもよい。特 に凹凸を有する金属酸化物膜上に防曇性被膜を形成すると、金属酸化物膜の凹凸 に応じて防曇性被膜も凹凸が形成され好ましい。金属酸ィ匕物膜に凹凸を付与する方 法としては特に制限はなぐ例えば酸ィ匕ケィ素などの微粒子を金属酸ィ匕物中に分散 させて凹凸を得る方法や、熱分解可能な榭脂微粒子を金属酸ィ匕物中に内包させて ぉ 、て成膜の後に該榭脂微粒子を熱分解 ·焼失させることにより凹凸を得る方法など がある。 [0015] The antifogging film in the present invention may be directly formed on a base material, or a film having a smooth or uneven surface of a metal oxide is formed on the surface of the base material. You may form in. Special When an antifogging film is formed on a metal oxide film having irregularities on the surface, the antifogging film is also preferably formed according to the irregularities of the metal oxide film. There are no particular restrictions on the method of imparting irregularities to the metal oxide film, for example, a method of obtaining irregularities by dispersing fine particles such as acid silicate in the metal oxide, There is a method of embedding fat fine particles in a metal oxide, and obtaining irregularities by thermally decomposing and burning off the fine fat particles after film formation.
上記熱分解可能な榭脂微粒子を用いて凹凸を得る方法にお!ヽては、例えば水ガラ スなどのマトリックス中に熱分解可能な榭脂微粒子を内包させ、基材上に成膜後、該 榭脂微粒子の分解温度以上 (通常 300°C程度以上)、かつ基材の耐熱温度以下の 温度で熱処理する。ここで基材の耐熱温度とは基材の特性が保持できる上限の温度 をいい、用いる基材の種類によって異なる。例えばガラス基材の場合には軟ィ匕点や 失透温度をいい(通常 600〜700°C程度)、プラスチック基材の場合は、ガラス転移 温度、結晶化温度、分解点などをいう。  In the method of obtaining irregularities using the above heat decomposable resin fine particles, for example, heat decomposable resin fine particles are encapsulated in a matrix such as water glass, and after film formation on the substrate, Heat treatment is performed at a temperature higher than the decomposition temperature of the fine resin particles (usually higher than about 300 ° C) and lower than the heat resistance temperature of the substrate. Here, the heat-resistant temperature of the base material means the upper limit temperature at which the characteristics of the base material can be maintained, and differs depending on the type of base material used. For example, in the case of a glass substrate, it means the soft spot or devitrification temperature (usually about 600 to 700 ° C), and in the case of a plastic substrate, it means the glass transition temperature, crystallization temperature, decomposition point, etc.
[0016] 次に、本発明の防曇性被膜被覆物品はその初期のヘイズ値が 0. 5%以下であるこ とが好ましい。ここで、ヘイズ値は直読ヘイズコンピューター (スガ試験機 (株)製「HG M- 2DMJ )を用いて測定した値である。 [0016] Next, the antifogging film-coated article of the present invention preferably has an initial haze value of 0.5% or less. Here, the haze value is a value measured using a direct reading haze computer (“HG M-2DMJ” manufactured by Suga Test Instruments Co., Ltd.).
また、本発明の防曇性被膜被覆物品はテーバー摩耗試験前後のヘイズ値の差が 2%以下であることが好ましい。ここでテーバー摩耗試験とは、 JIS R3212 : 1998 3. 7の方法において、摩耗ホイールの回転を 100回転とした場合の試験である。テ 一バー摩耗試験によって、防曇性被膜被覆物品のヘイズ率の変化が小さいほど耐 摩耗性が高いことを意味する。  The anti-fogging coated article of the present invention preferably has a difference in haze value of 2% or less before and after the Taber abrasion test. Here, the Taber abrasion test is a test when the rotation of the wear wheel is 100 revolutions in the method of JIS R3212: 1998 3.7. The smaller the change in the haze ratio of the antifogging coated article, the higher the wear resistance.
[0017] 本発明で用いる基材としては特に限定されず、例えば、ガラス、榭脂、セラミックス、 プラスチック、金属などが挙げられる。これらのうち透明性を確保する観点力 ガラス または榭脂が好ましぐ特に透明な、ガラス板、榭脂板、または榭脂フィルムが好まし い。基材の厚さは、用途に応じ適宜選定されるものであり、特に限定されないが、通 常 0. 01〜: LOmm程度である。  [0017] The substrate used in the present invention is not particularly limited, and examples thereof include glass, resin, ceramics, plastic, and metal. Of these, the viewpoint power to ensure transparency The glass plate, the resin plate, or the resin film is particularly preferable because the glass or the resin is preferable. The thickness of the substrate is appropriately selected depending on the application and is not particularly limited, but is usually about 0.01 to about LOmm.
[0018] 本発明の防曇性被膜物品における被膜は、基材表面にリン酸ィ匕合物とアルカリ土 類金属を含む防曇性被膜形成用塗工材料を塗布し、成膜することによって形成する ことができる。 [0018] The film in the antifogging coated article of the present invention is formed by applying a coating material for forming an antifogging film containing a phosphoric acid compound and an alkaline earth metal to the surface of the substrate, and forming the film. Form be able to.
以下、リン酸化合物とアルカリ土類金属を含む防曇性被膜形成用塗工材料 (以下 単に「塗工材料」という場合がある。 )について詳細に説明する。  Hereinafter, a coating material for forming an antifogging film containing a phosphoric acid compound and an alkaline earth metal (hereinafter sometimes simply referred to as “coating material”) will be described in detail.
塗工材料におけるリン酸ィ匕合物としては特に制限はなぐ例えばオルトリン酸、メタリ ン酸、ポリリン酸、ピロリン酸、三リン酸、四リン酸、リン酸塩などを挙げることができる。 これらは単独でまたは 2種以上を混合して用いることができる。これらのうち特に、直 鎖構造を有するものの方が耐水性に優れ、またリン酸塩等と比較してアルカリ土類金 属との結合が強いとの観点力 オルトリン酸、ポリリン酸、ピロリン酸、三リン酸及び四 リン酸が好ましい。これらのリン酸ィ匕合物は後に詳述するアルカリ土類金属(M)と反 応して、酸素を介して P— O— M結合を形成し、コーティング膜の強度を高めると考え られる。  The phosphoric acid compound in the coating material is not particularly limited, and examples thereof include orthophosphoric acid, metal phosphoric acid, polyphosphoric acid, pyrophosphoric acid, triphosphoric acid, tetraphosphoric acid, and phosphate. These may be used alone or in admixture of two or more. Among these, in particular, those having a straight chain structure are superior in water resistance, and have a strong viewpoint of strong bonds with alkaline earth metals compared to phosphates, etc. Orthophosphoric acid, polyphosphoric acid, pyrophosphoric acid, Triphosphoric acid and tetraphosphoric acid are preferred. These phosphate compounds are thought to react with alkaline earth metal (M), which will be described in detail later, to form P—O—M bonds via oxygen and increase the strength of the coating film.
[0019] 塗工材料中のアルカリ土類金属としては、上述した防曇性被膜中に存在するアル カリ土類金属と同様であり、特にマグネシウムが好ましい。  [0019] The alkaline earth metal in the coating material is the same as the alkaline earth metal present in the antifogging film described above, and magnesium is particularly preferable.
また、アルカリ土類金属の出発物質としては種々の形態のものを用いることができ、 例えば水酸化物、塩化物、酸化物、硫ィ匕物などを用いることができる。これらのうち取 り扱いの容易さ等を考慮すると水酸ィ匕物または塩ィ匕物が好ましい。  In addition, various forms of alkaline earth metal starting materials can be used. For example, hydroxides, chlorides, oxides, sulfates, and the like can be used. Of these, in view of ease of handling, hydroxides or salts are preferred.
従って、アルカリ土類金属としてマグネシウムを用いる場合には、塗工材料中に存 在する出発物質として水酸化マグネシウム、塩化マグネシウム、酸ィ匕マグネシウム、 硫ィ匕マグネシウムなどを用いることができる。これらのうち取り扱いの容易さ等を考慮 すると、水酸ィ匕マグネシウム又は塩ィ匕マグネシウムが好まし 、。  Accordingly, when magnesium is used as the alkaline earth metal, magnesium hydroxide, magnesium chloride, magnesium oxide, magnesium sulfate, etc. can be used as starting materials present in the coating material. Of these, considering the ease of handling, sodium hydroxide or magnesium salt is preferred.
[0020] 塗工材料中でのアルカリ土類金属とリン酸ィ匕合物との含有割合 (MZPの質量割合 )は、本発明の効果を奏する範囲で特に限定されないが、アルカリ土類金属 (M)とリ ン(P)の質量比換算で 0. 05〜4の範囲であることが好ましい。アルカリ土類金属(M )とリン (P)の含有割合が 0. 05以上であると十分な耐摩耗性を有すると 、う利点があ り、 4以下であると防曇維持性に優れるという利点がある。以上の観点から、アルカリ 土類金属(M)とリン (P)の含有割合は、 0. 1〜2の範囲であることがさらに好ましぐ 0 . 3〜1の範囲であることが特に好ましい。 [0020] The content ratio (mass ratio of MZP) of the alkaline earth metal and phosphoric acid compound in the coating material is not particularly limited as long as the effect of the present invention is achieved, but the alkaline earth metal ( It is preferably in the range of 0.05 to 4 in terms of mass ratio of M) and phosphorus (P). If the content of alkaline earth metal (M) and phosphorus (P) is 0.05 or more, sufficient wear resistance is advantageous, and if it is 4 or less, it is excellent in antifogging maintenance. There are advantages. From the above viewpoint, the content ratio of the alkaline earth metal (M) and phosphorus (P) is more preferably in the range of 0.1 to 2, particularly preferably in the range of 0.3 to 1. .
また、アルカリ土類金属として、最も好適な態様であるマグネシウムの場合において も同様であり、マグネシウムとリン酸ィ匕合物との含有割合 (Mg/Pの質量割合)が、マ グネシゥム(Mg)とリン (P)の質量比換算で 0. 05〜4の範囲であることが好ましい。さ らには 0. 1〜2の範囲であることが好ましぐ 0. 3〜1の範囲であることが特に好まし V、。なお、アルカリ土類金属(M)とリン (P)の含有割合 (MZPの質量割合)は、 ICP 発光分析法により算出した。 In the case of magnesium, which is the most preferred embodiment as an alkaline earth metal In the same way, the content ratio of magnesium and phosphate compound (Mg / P mass ratio) is in the range of 0.05 to 4 in terms of mass ratio of magnesium (Mg) and phosphorus (P). Preferably there is. Further preferred is a range of 0.1-2, particularly preferred is a range of 0.3-1. The content ratio of alkaline earth metal (M) and phosphorus (P) (mass ratio of MZP) was calculated by ICP emission spectrometry.
[0021] 基材に塗工材料を塗布する方法としては、特に限定されず公知の方法を用いるこ とができ、例えば、スパッタリングや蒸着法等の真空成膜、フローコーティング法、ディ ップコーティング法、カーテンコーティング法、スピンコーティング法、スプレーコーテ イング法、バーコーティング法、ロールコーティング法、手塗り法、浸漬吸着法、ゾル ゲル法などのウエットコーティングが挙げられる。ウエットコーティングは高価な設備を 必要しない点で有利であり、以下ウエットコーティング法を用いた場合を例として、本 発明の防曇性被膜被覆物品の製造方法について詳細に説明する。  [0021] The method for applying the coating material to the substrate is not particularly limited, and a known method can be used. For example, vacuum film formation such as sputtering or vapor deposition, flow coating, dip coating, etc. Examples include wet coating such as the coating method, curtain coating method, spin coating method, spray coating method, bar coating method, roll coating method, hand coating method, immersion adsorption method, and sol-gel method. Wet coating is advantageous in that it does not require expensive equipment, and the method for producing an antifogging film-coated article of the present invention will be described in detail below using the wet coating method as an example.
[0022] リン酸ィ匕合物とアルカリ土類金属を含む塗工材料の溶媒に関しては、リン酸化合物 とアルカリ土類金属を溶解し得るものであれば特に限定されず、水、アルコール等が 好適に挙げられる力 特に水が好ましい。水は成膜時の乾燥や成膜後の熱処理によ つて簡単に除去でき、製造環境上も好適である。なお、該溶媒は 1種を単独で、又は 2種以上を混合して使用することができる。  [0022] The solvent of the coating material containing the phosphoric acid compound and the alkaline earth metal is not particularly limited as long as it can dissolve the phosphate compound and the alkaline earth metal. Forces preferably mentioned Water is particularly preferable. Water can be easily removed by drying at the time of film formation or by heat treatment after film formation, which is also suitable for the production environment. In addition, this solvent can be used individually by 1 type or in mixture of 2 or more types.
また、塗工材料中のマグネシウム等のアルカリ土類金属とリンの総量 (金属換算)は 、 0. 01〜50質量%の範囲であることが好ましい。 0. 01質量%以上であると、一定 以上の膜厚が確保され、防曇維持性が良いとの利点があり、 50質量%以下であると 膜厚が厚くなりすぎず、耐摩耗性が良いという利点がある。以上の観点から、マグネ シゥム等のアルカリ土類金属とリンの総量は、さらに 0. 07〜10質量%の範囲が好ま しい。  The total amount of alkaline earth metal such as magnesium and phosphorus (metal conversion) in the coating material is preferably in the range of 0.01 to 50% by mass. When the content is 0.01% by mass or more, there is an advantage that a film thickness of a certain level or more is secured and anti-fogging maintenance is good. There is an advantage of being good. From the above viewpoint, the total amount of alkaline earth metal such as magnesium and phosphorus is preferably in the range of 0.07 to 10% by mass.
[0023] 基材に前記塗工材料を塗布するにあたり、基材表面の洗浄や表面改質を行うこと ができる。基材の汚れの付着状態等によっては、該溶液をはじくなどの現象が起こり 、均一に成膜できない場合があり、その場合に洗浄は有効である。洗浄の方法として は、例えばアルコール、アセトン、へキサン等の有機溶媒による脱脂洗浄、アルカリ や酸による洗浄、研磨剤により基材表面を研磨する方法などがある。 また、基材表面には親水性基が存在することが好ましぐ親水性基を増加させる目 的で、防曇性被膜を形成する前に、あらかじめ基材の表面処理を行うことも好適であ る。表面改質の方法としては、紫外線照射処理、紫外線オゾン処理、プラズマ処理、 コロナ放電処理、熱処理などが挙げられる。 [0023] In applying the coating material to the base material, the surface of the base material can be cleaned or surface-modified. Depending on the state of adhesion of dirt on the substrate, a phenomenon such as repelling of the solution may occur, and the film may not be uniformly formed. In such a case, cleaning is effective. Examples of the cleaning method include degreasing cleaning with an organic solvent such as alcohol, acetone, and hexane, cleaning with an alkali or acid, and polishing of the substrate surface with an abrasive. It is also preferable to perform surface treatment of the substrate in advance before forming the anti-fogging film in order to increase the hydrophilic group, which preferably has a hydrophilic group on the substrate surface. is there. Examples of the surface modification method include ultraviolet irradiation treatment, ultraviolet ozone treatment, plasma treatment, corona discharge treatment, and heat treatment.
[0024] 基材上に塗工材料を塗布した後は、室温から 200°Cの範囲、さらに好ましくは 100 〜200°Cの範囲で乾燥することが好ましい。また乾燥後に焼成することが好ましぐ焼 成温度としては 300°Cよりも高ぐかつ基材の耐熱温度以下の温度で熱処理すること が好ましい。具体的には 300〜700°Cの範囲が好ましぐさらに好ましくは 300〜50 0°Cの範囲である。  [0024] After the coating material is applied on the substrate, it is preferably dried in the range of room temperature to 200 ° C, more preferably in the range of 100 to 200 ° C. Further, it is preferable to perform the heat treatment at a temperature higher than 300 ° C. and lower than the heat resistance temperature of the base material. Specifically, a range of 300 to 700 ° C is preferable, and a range of 300 to 500 ° C is more preferable.
実施例  Example
[0025] 次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によ つてなんら限定されるものではな!/、。  Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples at all! /.
(評価方法)  (Evaluation methods)
(1)防曇性被膜の分析  (1) Analysis of anti-fogging coating
被膜組成を X線光電子分光分析 (アルバック 'フアイ (株)製「ESCA— 5600ci」 )を 用いて評価した。 X線光電子分光分析の条件は以下のとおりである。  The coating composition was evaluated by using X-ray photoelectron spectroscopy (“ESCA-5600ci” manufactured by ULVAC 'Huai Co., Ltd.). The conditions for X-ray photoelectron spectroscopy are as follows.
(a)前処理方法;試料切断後、モリブデンマスクを用いて試料台に固定した。  (a) Pretreatment method: After cutting the sample, it was fixed on a sample table using a molybdenum mask.
(b)分析条件  (b) Analysis conditions
し urrent X-ray anode ;A1 Monocnromated 2mm Filament  Urrent X-ray anode; A1 Monocnromated 2mm Filament
Anode Energy; 1486.6eV  Anode Energy; 1486.6eV
Anode Power; 150Watts  Anode Power; 150Watts
X-ray Voltage;14kV  X-ray Voltage; 14kV
Stage Angle;45°  Stage Angle; 45 °
(c)エッチング条件  (c) Etching conditions
Primary ion species ;Ar  Primary ion species; Ar
Beam voltage;3.0kV  Beam voltage; 3.0kV
Raster;4 X 4mm  Raster; 4 X 4mm
Etching Rate;約 1.4nm/min(SiO膜換算) また、被膜の表面構造及び断面構造を走査型電子顕微鏡(日立製作所 (株)製「sEtching Rate; about 1.4nm / min (SiO film equivalent) In addition, the surface structure and the cross-sectional structure of the coating were measured using a scanning electron microscope (“s
—4700型」)を用いて、加速電圧 5kV、照射電流 10 A、傾斜角 10度(断面)、 30 度 (表面)、表面の観察倍率 5万倍、断面の観察倍率 10万倍の条件で観察した。—4700 ”), with an acceleration voltage of 5 kV, irradiation current of 10 A, tilt angle of 10 degrees (cross section), 30 degrees (surface), surface observation magnification of 50,000 times, and cross-section observation magnification of 100,000 times. Observed.
(2)耐摩耗性の評価 (2) Evaluation of wear resistance
各実施例及び比較例で得られた防曇性被膜被覆物品について、 JIS R3212 : 19 98 3. 7の方法による耐摩耗性試験 (テーバー摩耗試験)を行い、試験前後の耐摩 耗性をヘイズ値で評価した。なお、摩耗ホイールの回転を 100回転として試験を実施 した。ヘイズ値は、直読ヘイズコンピューター (スガ試験機 (株)製「HGM— 2DM」) を用いて測定した。ヘイズ値の値が小さいほど、膜剥がれゃキズ等の外観不良がなく 、耐摩耗性に優れていることを示す。  The anti-fogging coated article obtained in each Example and Comparative Example was subjected to an abrasion resistance test (Taber abrasion test) according to the method of JIS R3212: 19 98 3.7, and the abrasion resistance before and after the test was determined as a haze value. It was evaluated with. The test was conducted with the wear wheel rotating at 100 rotations. The haze value was measured using a direct reading haze computer (“HGM-2DM” manufactured by Suga Test Instruments Co., Ltd.). The smaller the haze value is, the better the abrasion resistance is without the appearance defects such as scratches when the film is peeled off.
(3)防曇維持性の評価  (3) Evaluation of anti-fogging maintenance
各実施例及び比較例で得られた防曇性被膜被覆物品について、温度 20± 5°C、 湿度 30 ± 10%の室内に放置し、防曇性能の経時変化を、呼気を吹き付けた際のガ ラス越しに見える視界の曇り具合の見え方で評価した。評価は以下の基準に基づい て行った。  The anti-fogging coated article obtained in each Example and Comparative Example was left in a room with a temperature of 20 ± 5 ° C and a humidity of 30 ± 10%. The evaluation was based on the visibility of the field of view visible through the glass. The evaluation was based on the following criteria.
◎;曇りがなぐ見え方が乾燥状態と変わらない。  ◎; The appearance of cloudiness is the same as the dry state.
〇;ぼやけや歪みがわずかに見られる力 見え方は良好である。  〇; Power with slight blurring and distortion Appearance is good.
△;同一条件で呼気を吹き付けた通常のガラスにおける曇りよりも良好であるが、見 え方は悪い。  Δ: It is better than the fogging in normal glass blown under the same conditions, but it looks bad.
X;同一条件で呼気を吹き付けた通常のガラスにおける曇りと同等もしくはそれ以 下であり、見え方は悪い。  X: It is equal to or less than fogging in ordinary glass blown under the same conditions, and the appearance is poor.
(4)塗工材料中の元素分析  (4) Elemental analysis in coating materials
ICP発光分析法により、塗工材料中のリン (P)、マグネシウム (Mg)、チタン (Ti)の 定量分析を実施した。なお、測定装置としては、 ICP発光分析装置 (島津製作所製「I CPS— 8000」を使用した。  Quantitative analysis of phosphorus (P), magnesium (Mg), and titanium (Ti) in the coating material was performed by ICP emission spectrometry. As the measuring device, an ICP emission analyzer (“I CPS-8000” manufactured by Shimadzu Corporation) was used.
実施例 1 Example 1
イオン交換水 1000質量部に四塩ィ匕チタン (TiCl;キシダ化学 (株)製) 100質量部  100 parts by mass of ionized water and 1000 parts by mass of tetrasalt 匕 titanium
4  Four
を混合し、 30分以上攪拌して A液を得た。またイオン交換水 4000質量部と、この A 液 200質量部を混合し、 30分以上攪拌して B液を得た。次に、 B液 1000質量部に、 ポリリン酸 (H P O;キシダイ匕学 (株)製) 70質量部、水酸ィ匕マグネシウム (Mg (OH) Were mixed and stirred for 30 minutes or more to obtain a liquid A. In addition, 4000 parts by mass of ion exchange water and this A 200 parts by mass of the liquid was mixed and stirred for 30 minutes or more to obtain a liquid B. Next, 1000 parts by mass of B liquid, 70 parts by mass of polyphosphoric acid (HPO; manufactured by Kishidai Chemical Co., Ltd.), magnesium hydroxide (Mg (OH)
13 4 6  13 4 6
;シグマアルドリッチジャパン (株)製) 20質量部を混合して攪拌した。この後、これを ; Sigma-Aldrich Japan Co., Ltd.) 20 parts by mass were mixed and stirred. After this,
2 2
静置することによって沈殿物を沈澱させ、上澄み液をイオン交換水で 5倍に希釈して 防曇性被膜形成用塗工材料 Cとした。塗工材料 C中のマグネシウムとリンの含有量は それぞれ 0. 166質量%、 0. 546質量%であった。また、チタンについては検出限界 以下であった。 The precipitate was settled by standing, and the supernatant liquid was diluted 5 times with ion-exchanged water to obtain a coating material C for forming an antifogging film. The contents of magnesium and phosphorus in the coating material C were 0.166% by mass and 0.546% by mass, respectively. Further, titanium was below the detection limit.
この塗工材料 Cを洗浄したガラス基板上に、 20°C、相対湿度 30%の条件下でフロ 一コート法により塗布した。その後、室温下で 30分間、さらに 100°Cで 30分間乾燥し た後、 320°Cで 30分間熱処理した。このガラス物品について、上記評価を実施した。 図 1及び第 1表に X線光電子分光分析による測定結果を示す。防曇性被膜の主成 分としてマグネシウム(1S軌道)とリン(2p軌道)が検出され、スパッタリング時間 30分 程度の部分までリンが存在することがわかる。スパッタリング時間 30分程度で Si (2p 軌道)が飽和することから、この時点以降は基板部分であると考えられる。防曇性被 膜中のマグネシウムとリンの平均の割合は 2. 6であった。  The coating material C was applied on a cleaned glass substrate by a flow coating method at 20 ° C. and a relative humidity of 30%. Thereafter, the film was dried at room temperature for 30 minutes, further at 100 ° C for 30 minutes, and then heat-treated at 320 ° C for 30 minutes. The above evaluation was performed on this glass article. Figure 1 and Table 1 show the measurement results by X-ray photoelectron spectroscopy. Magnesium (1S orbital) and phosphorus (2p orbital) are detected as the main components of the anti-fogging coating, and it can be seen that phosphorus is present up to the part where the sputtering time is about 30 minutes. Since Si (2p orbital) saturates after about 30 minutes of sputtering time, it is considered that this is the substrate part after this point. The average ratio of magnesium and phosphorus in the antifogging film was 2.6.
また、走査型電子顕微鏡写真を図 2及び図 3に示す。該ガラス物品の防曇性被膜 の厚さは約 50nmであった。  Scanning electron micrographs are shown in FIGS. The glass article had an antifogging coating thickness of about 50 nm.
次に、テーバー摩耗試験前後のヘイズ率変化、及び防曇維持性の評価結果を第 2 表に示す。テーバー摩耗試験前後のヘイズ率変化が小さぐ膜剥がれゃキズ等の外 観不良もなぐ耐摩耗性に優れていることが確認された。また、 2ヶ月放置後であって も防曇性能が維持されて 、ることが確認された。  Next, Table 2 shows the change in haze ratio before and after the Taber abrasion test and the evaluation results of anti-fogging maintenance. It was confirmed that the film had excellent wear resistance with no appearance defects such as scratches if the film peeled off with little change in haze ratio before and after the Taber abrasion test. It was also confirmed that the anti-fogging performance was maintained even after 2 months.
実施例 2 Example 2
実施例 1で調製した B液 1000質量部に、リン酸 (H PO;キシダ化学 (株)製) 60質  60 parts of phosphoric acid (H 3 PO; manufactured by Kishida Chemical Co., Ltd.) was added to 1000 parts by mass of the B solution prepared in Example 1.
3 4  3 4
量部、水酸ィ匕マグネシウム (Mg (OH) ;前出) 20質量部を混合して攪拌した。この後 An amount of 20 parts by mass of magnesium hydroxide (Mg (OH); supra) was mixed and stirred. After this
2  2
、これを静置することによって沈殿物を沈澱させ、上澄み液を防曇性被膜形成用塗 工材料 Dとした。塗工材料 D中のマグネシウムとリンの含有量はそれぞれ 1. 32質量 %、 1. 46質量%であった。また、チタンについては検出限界以下であった。  The precipitate was settled by allowing it to stand, and the supernatant was used as coating material D for forming an antifogging film. The contents of magnesium and phosphorus in coating material D were 1.32% by mass and 1.46% by mass, respectively. Titanium was below the detection limit.
この塗工材料 Dを洗浄したガラス基板上に、 20°C、相対湿度 30%の条件下でフロ 一コート法により塗布した。その後、室温下で 30分間乾燥した後、 320°Cで 15分間 熱処理した。このガラス物品について、上記評価を実施した。 This coating material D was washed on a glass substrate washed at 20 ° C and 30% relative humidity. It was applied by a one-coat method. Then, after drying at room temperature for 30 minutes, it was heat-treated at 320 ° C for 15 minutes. The above evaluation was performed on this glass article.
得られたガラス物品の防曇性被膜の厚さは約 250nmであった。また、防曇性被膜 の主成分としてマグネシウムとリンが検出され、防曇性被膜中のマグネシウムとリンの 平均の割合は 2. 7であった。テーバー摩耗試験前後のヘイズ率変化、及び防曇維 持性の評価結果を第 2表に示す。テーバー摩耗試験前後のヘイズ率変化が小さぐ 膜剥がれゃキズ等の外観不良もなぐ耐摩耗性に優れていることが確認された。また 、 2ヶ月放置後であっても防曇性能が維持されて 、ることが確認された。  The thickness of the antifogging film of the obtained glass article was about 250 nm. Magnesium and phosphorus were detected as the main components of the antifogging coating, and the average ratio of magnesium and phosphorus in the antifogging coating was 2.7. Table 2 shows the changes in haze ratio before and after the Taber abrasion test and the evaluation results of anti-fogging maintenance. It was confirmed that the haze rate change before and after the Taber abrasion test was small, and that the film had excellent wear resistance with no defects in appearance such as scratches. Further, it was confirmed that the antifogging performance was maintained even after being left for 2 months.
[0028] 実施例 3 [0028] Example 3
実施例 1の塗工材料 Cを、イオン交換水を用いて 4倍に希釈したこと以外は実施例 1と同様にしてガラス物品を得、同様に評価した。得られたガラス物品の防曇性被膜 の厚さは約 13nmであった。また、防曇性被膜の主成分としてマグネシウムとリンが検 出され、塗工材料中のマグネシウムとリンの含有量は、それぞれ 0. 0415質量%、 0 . 1365質量%であった。また、防曇性被膜中のマグネシウムとリンの平均の割合は 2 . 7であった。テーバー摩耗試験前後のヘイズ率変化、及び防曇維持性の評価結果 を第 2表に示す。テーバー摩耗試験前後のヘイズ率変化が小さぐ膜剥がれゃキズ 等の外観不良もなぐ耐摩耗性に優れていることが確認された。また、 2ヶ月放置後で あっても防曇性能が維持されていることが確認された。  A glass article was obtained in the same manner as in Example 1 except that the coating material C of Example 1 was diluted 4-fold with ion-exchanged water, and was similarly evaluated. The thickness of the antifogging film of the obtained glass article was about 13 nm. Further, magnesium and phosphorus were detected as the main components of the antifogging coating, and the contents of magnesium and phosphorus in the coating material were 0.0415% by mass and 0.1365% by mass, respectively. The average ratio of magnesium and phosphorus in the antifogging film was 2.7. Table 2 shows the changes in haze ratio before and after the Taber abrasion test and the evaluation results of anti-fogging maintenance. It was confirmed that the film had excellent wear resistance with no appearance defects such as scratches if the film peeled off with little change in haze ratio before and after the Taber abrasion test. It was also confirmed that anti-fogging performance was maintained even after 2 months.
[0029] 比較例 1 [0029] Comparative Example 1
水溶性第一リン酸アルミニウム水溶液 50質量部(多木化学 (株)製「50L」、水溶性 第一リン酸アルミニウム含有量 33質量%)に蒸留水 150質量部とエチレングリコール モノブチルエーテル 20質量部を添カ卩した。その後、平均粒径 20nmのシリカゾル分 散体(日産化学工業 (株)「スノーテックス C」、分散媒;水、シリカ含有量; 20質量%) 200質量部とエタノール 500質量部を加え、防曇性被膜形成用塗工材料 Eを得た。 溶液 E中の水溶性リン酸アルミニウム Zシリカの固形分換算質量比は、 0. 29/0. 7 1、全固形分濃度は 5. 8質量%であった。  50 parts by mass of water-soluble monobasic aluminum phosphate aqueous solution (“50L” manufactured by Taki Chemical Co., Ltd., water-soluble primary aluminum phosphate content 33% by mass) and 150 parts by mass of distilled water and 20 parts by mass of ethylene glycol monobutyl ether Added. After that, silica sol dispersion with an average particle size of 20 nm (Nissan Chemical Industry Co., Ltd. “Snowtex C”, dispersion medium; water, silica content; 20% by mass) 200 parts by mass and 500 parts by mass of ethanol were added, and anti-fogging A coating material E for forming a conductive film was obtained. The mass ratio of the water-soluble aluminum phosphate Z silica in solution E in terms of solid content was 0.329 / 0.71, and the total solid content concentration was 5.8% by mass.
この塗工材料 Eを洗浄したガラス基板上に 20°C、相対湿度 30%の条件下でフロー コート法により塗布し、その後、 300°Cで 1時間熱処理して防曇性被膜被覆ガラス物 品を得た。得られたガラス物品の防曇性被膜の厚さは 200nmであった。このガラス 物品について、実施例 1と同様に評価した。評価結果を第 2表に示す。 This coating material E is applied to the cleaned glass substrate by the flow coating method at 20 ° C and relative humidity of 30%, and then heat-treated at 300 ° C for 1 hour for antifogging coating coated glass. I got a product. The thickness of the antifogging film of the obtained glass article was 200 nm. This glass article was evaluated in the same manner as in Example 1. The evaluation results are shown in Table 2.
テーバー摩耗試験前後のヘイズ率変化が大きぐまた、膜剥がれなどの外観変化 も発生し、耐摩耗性に劣ることが確認された。また、 2ヶ月放置後の防曇性能が低下 しており、防曇維持性が低いことが確認された。  It was confirmed that the haze rate change before and after the Taber abrasion test was large, and appearance changes such as film peeling occurred, resulting in poor wear resistance. In addition, the anti-fogging performance after standing for 2 months has declined, and it has been confirmed that the anti-fogging maintenance property is low.
[表 1] [table 1]
第 1表 Table 1
Figure imgf000016_0001
Figure imgf000016_0001
Mg/P=1 792999.57/680049.85= 2.6 [表 2] Mg / P = 1 792999.57 / 680049.85 = 2.6 [Table 2]
第 2表 Table 2
Figure imgf000017_0001
Figure imgf000017_0001
産業上の利用可能性 Industrial applicability
本発明の防曇性被膜被覆物品は防曇性能と耐摩耗性に優れ、眼鏡、ゴーグル、光 学レンズ等の光学部品、建築用または車両用窓ガラスなどとして好適に使用される。 また、本発明の塗工材料及び該塗工材料を用いた製造方法によれば、防曇性能と 耐摩耗性に優れる防曇性被膜被覆物品を高!、生産性で、効率よく製造することがで きる。  The anti-fogging film-coated article of the present invention is excellent in anti-fogging performance and abrasion resistance, and is suitably used as optical parts such as glasses, goggles and optical lenses, architectural or vehicle window glass. Further, according to the coating material of the present invention and the production method using the coating material, an anti-fogging film-coated article excellent in anti-fogging performance and wear resistance is high! It can be manufactured efficiently and efficiently.

Claims

請求の範囲 The scope of the claims
[I] 基材と、該基材表面に形成された防曇性被膜を備える防曇性被膜被覆物品であつ て、該防曇性被膜がリンとアルカリ土類金属を含有する防曇性被膜被覆物品。  [I] An antifogging film-coated article comprising a base material and an antifogging film formed on the surface of the base material, wherein the antifogging film contains phosphorus and an alkaline earth metal Coated articles.
[2] 前記アルカリ土類金属がマグネシウムである請求項 1に記載の防曇性被膜被覆物品  [2] The anti-fogging coated article according to claim 1, wherein the alkaline earth metal is magnesium.
[3] 防曇性被膜中のマグネシウムとリンの割合 (MgZP)が 0. 5〜10である請求項 2に記 載の防曇性被膜被覆物品。 [3] The antifogging film-coated article according to [2], wherein the ratio of magnesium to phosphorus (MgZP) in the antifogging film is 0.5 to 10.
[4] 前記防曇性被膜の厚さが 2〜: LOOOnmである請求項 1〜3のいずれかに記載の防曇 性被膜被覆物品。 [4] The antifogging film-coated article according to any one of [1] to [3], wherein the antifogging film has a thickness of 2 to: LOOOnm.
[5] 初期のヘイズ値が 0. 5%以下である請求項 1〜4のいずれかに記載の防曇性被膜 被覆物品。  [5] The antifogging film-coated article according to any one of [1] to [4], wherein an initial haze value is 0.5% or less.
[6] テーバー摩耗試験前後のヘイズ値の差が 2%以下である請求項 1〜5のいずれかに 記載の防曇性被膜被覆物品。  [6] The anti-fogging coated article according to any one of claims 1 to 5, wherein the difference in haze value before and after the Taber abrasion test is 2% or less.
[7] 前記基材が、透明な、ガラス板、榭脂板又は榭脂フィルムの 、ずれかである請求項 1[7] The substrate is a transparent glass plate, a resin board, or a resin film.
〜6の 、ずれかに記載の防曇性被膜被覆物品。 The antifogging film-coated article according to any one of 6 to 6.
[8] リン酸化合物とアルカリ土類金属を含む防曇性被膜形成用塗工材料。 [8] A coating material for forming an antifogging film comprising a phosphoric acid compound and an alkaline earth metal.
[9] 前記リン酸ィ匕合物がオルトリン酸、メタリン酸、ポリリン酸、ピロリン酸、三リン酸、四リン 酸及びリン酸塩力 なる群力 選ばれる少なくとも 1種である請求項 8に記載の防曇 性被膜形成用塗工材料。 [9] The phosphoric acid compound is at least one selected from the group forces of orthophosphoric acid, metaphosphoric acid, polyphosphoric acid, pyrophosphoric acid, triphosphoric acid, tetraphosphoric acid, and phosphate power. Coating material for forming anti-fogging film.
[10] 前記アルカリ土類金属が水酸ィ匕物、塩化物、酸化物及び硫化物からなる群から選ば れる少なくとも 1種の化合物を出発物質とする請求項 8又は 9に記載の防曇性被膜形 成用塗工材料。 10. The antifogging property according to claim 8 or 9, wherein the alkaline earth metal starts with at least one compound selected from the group consisting of hydroxides, chlorides, oxides and sulfides. Coating material for film formation.
[I I] 前記アルカリ土類金属がマグネシウムである請求項 10に記載の防曇性被膜形成用 塗工材料。  [I I] The coating material for forming an antifogging film according to claim 10, wherein the alkaline earth metal is magnesium.
[12] マグネシウムとリンの含有割合 (Mg/Pの質量割合)が 0. 05〜4である請求項 11に 記載の防曇性被膜形成用塗工材料。  12. The coating material for forming an antifogging film according to claim 11, wherein the content ratio of magnesium and phosphorus (mass ratio of Mg / P) is 0.05 to 4.
[13] 前記塗工材料が溶媒を含み、塗工材料中のアルカリ土類金属とリンの総量 (金属換 算)が 0. 01〜50質量%である請求項 8〜12のいずれかに記載の防曇性被膜形成 用塗工材料。 [13] The coating material according to any one of claims 8 to 12, wherein the coating material contains a solvent, and the total amount (metal conversion) of alkaline earth metal and phosphorus in the coating material is 0.01 to 50% by mass. Antifogging film formation Coating material.
[14] 前記溶媒がアルコール及び Z又は水である請求項 13に記載の防曇性被膜形成用 塗工材料。  14. The coating material for forming an antifogging film according to claim 13, wherein the solvent is alcohol and Z or water.
[15] 請求項 8〜14の ヽずれかに記載の防曇性被膜形成用塗工材料を基材表面に塗布 し、成膜することによって防曇性被膜を形成する防曇性被膜被覆物品の製造方法。  [15] An antifogging film-coated article which forms an antifogging film by applying the coating material for forming an antifogging film according to any one of claims 8 to 14 onto a substrate surface and forming the film. Manufacturing method.
PCT/JP2006/303602 2005-03-01 2006-02-27 Antifog coated article, coating material for forming antifog coating, and method for producing antifog coated article WO2006093086A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-055561 2005-03-01
JP2005055561A JP2006239495A (en) 2005-03-01 2005-03-01 Anti-fogging film coated article, coating material for forming anti-fogging film and method for manufacturing anti-fogging film coated article

Publications (1)

Publication Number Publication Date
WO2006093086A1 true WO2006093086A1 (en) 2006-09-08

Family

ID=36941115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303602 WO2006093086A1 (en) 2005-03-01 2006-02-27 Antifog coated article, coating material for forming antifog coating, and method for producing antifog coated article

Country Status (2)

Country Link
JP (1) JP2006239495A (en)
WO (1) WO2006093086A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008059606A1 (en) * 2006-11-16 2008-05-22 Ibiden Co., Ltd. Method of producing honeycomb structural body and honeycomb structural body
MY187287A (en) * 2015-12-16 2021-09-19 Eng Kah Entpr Sdn Bhd Laser printed photo on glass article method thereof
JP6955866B2 (en) * 2016-12-28 2021-10-27 日本板硝子株式会社 Glass plate manufacturing method and automobile glass plate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11172148A (en) * 1997-12-12 1999-06-29 Kobe Steel Ltd Hydrophilic coating material and production of hydrophilic substrate
JP2000079370A (en) * 1998-09-08 2000-03-21 Nippon Steel Corp Galvanized steel sheet excellent in heat resistance, heat discoloration resistance and corrosion resistance
JP2002080829A (en) * 2000-09-07 2002-03-22 Toto Ltd Hydrophilic member, its production method, and coating material for its production
JP2005082763A (en) * 2003-09-10 2005-03-31 Yoo Corporation:Kk Amorphous coating film and fog-resistant amorphous coating film

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060041320A (en) * 2000-12-28 2006-05-11 쇼와 덴코 가부시키가이샤 Particle exhibiting optical function and powder thereof
JPWO2003053576A1 (en) * 2001-12-21 2005-04-28 昭和電工株式会社 Highly active photocatalytic particles, method for producing the same, and use thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11172148A (en) * 1997-12-12 1999-06-29 Kobe Steel Ltd Hydrophilic coating material and production of hydrophilic substrate
JP2000079370A (en) * 1998-09-08 2000-03-21 Nippon Steel Corp Galvanized steel sheet excellent in heat resistance, heat discoloration resistance and corrosion resistance
JP2002080829A (en) * 2000-09-07 2002-03-22 Toto Ltd Hydrophilic member, its production method, and coating material for its production
JP2005082763A (en) * 2003-09-10 2005-03-31 Yoo Corporation:Kk Amorphous coating film and fog-resistant amorphous coating film

Also Published As

Publication number Publication date
JP2006239495A (en) 2006-09-14

Similar Documents

Publication Publication Date Title
US6783845B2 (en) Anti-fogging coating material, anti-fogging coating, and anti-fogging optical member
EP0816466B1 (en) Use of material having ultrahydrophilic and photocatalytic surface
EP0887179B1 (en) Non-fogging article and process for the production thereof
JP6989650B2 (en) A glass substrate with a low-reflection coating, a method for manufacturing a glass substrate with a low-reflection coating, and a photoelectric conversion device.
JP3344256B2 (en) Coating liquid for forming hydrophilic film and method for producing the same
CN104085165B (en) A kind of preparation method of photocatalyst of titanium dioxide coating
JP2017064707A (en) Photocatalyst coated body
JP2007063477A (en) Inorganic coating composition, hydrophilic coating film, and agricultural film
WO2006093086A1 (en) Antifog coated article, coating material for forming antifog coating, and method for producing antifog coated article
JP2006076829A (en) Anti-fogging article and its producing method
JP2000192021A (en) Hydrophilic, antifogging and antistaining substrate and its preparation
JP2004315722A (en) Primer composition for photocatalyst coating film, photocatalyst coated product and preparation process of photocatalyst coated product
EP3406579A1 (en) Transparent substrate with non-transparent film
JPH10101377A (en) Anticlouding coating film and its production
JP4292992B2 (en) Composition for forming photocatalyst film and substrate with photocatalyst film
JP2003027039A (en) Photocatalytic, hydrophilic membrane and manufacturing method therefor
JP3628802B2 (en) Antifogging thin film and method for forming the same
JP2001070801A (en) Base material provided with highly durable photocatalyst film and production process of the same
JP3869174B2 (en) Bent glass with hydrophilic film and method for producing the same
JPH10101374A (en) Anticlouding coating film and its production
Bi et al. A silica-sol-based fortified structure with superhydrophobic coating for harsh conditions
JP7476564B2 (en) Superhydrophilic film, its manufacturing method, and optical member
JP3400259B2 (en) Hydrophilic coating and method for producing the same
JP2001152137A (en) Non-fogging film-formed base and its preparation process
JP2006070141A (en) Composition for forming photocatalyst membrane and substrate with the photocatalyst membrane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06714739

Country of ref document: EP

Kind code of ref document: A1