JP3628802B2 - Antifogging thin film and method for forming the same - Google Patents

Antifogging thin film and method for forming the same Download PDF

Info

Publication number
JP3628802B2
JP3628802B2 JP10728096A JP10728096A JP3628802B2 JP 3628802 B2 JP3628802 B2 JP 3628802B2 JP 10728096 A JP10728096 A JP 10728096A JP 10728096 A JP10728096 A JP 10728096A JP 3628802 B2 JP3628802 B2 JP 3628802B2
Authority
JP
Japan
Prior art keywords
water
solution
thin film
film
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10728096A
Other languages
Japanese (ja)
Other versions
JPH09295835A (en
Inventor
透 倉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP10728096A priority Critical patent/JP3628802B2/en
Publication of JPH09295835A publication Critical patent/JPH09295835A/en
Application granted granted Critical
Publication of JP3628802B2 publication Critical patent/JP3628802B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/25Oxides by deposition from the liquid phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/113Deposition methods from solutions or suspensions by sol-gel processes

Description

【0001】
【発明の属する技術分野】
本発明は、多孔質形状をした防曇性能を有する酸化物薄膜およびその形成法であり、ガラス基板の表面に形成した単層膜または積層膜の表面で防曇性能を持った保護膜として、多孔質形状による屈折率の低下での低反射膜として、また防曇性と低反射性を合わせ持つ複合化膜として、さらには多孔質形状で表面積が格段に大きくかつガラスまたは上下層膜との化学的結合力も格段に良好となって例えば長期にわたりその効果を持続せしめるプレコ−ト膜として、光学特性を損なうことなく、高い密着力で耐摩耗性あるいは耐久性に優れ、クラック等の欠陥もないものとなり、鏡などの産業用、建築用もしくは自動車用の窓材、各種膜付きガラス物品等に有用な防曇性薄膜及びその形成法に関する。
【0002】
【従来の技術】
ガラス基板上に防曇性薄膜を形成する方法としては、例えばポリビニルアルコ−ルやポリビニルピロリドンなどに代表される親水性有機高分子や非イオン系界面活性剤をガラス表面に塗布処理して親水性にするなどの方法がある(例えば、特開昭48−89278号公報、特開平1−37268 号公報)。
【0003】
また例えば、硼珪酸ガラス基板を酸でエッチングして多孔質化する方法やソ−ダライムガラスをフッ酸でエッチングして表面に凹凸をつけ親水性物質を被覆する方法などがある(例えば、特開平4−124046号公報)。
【0004】
さらに例えば、リン酸を含むバルクガラスにリン酸の液または蒸気を接触させる方法(例えば、特開昭54−105120 号公報)などがある。
【0005】
【発明が解決しようとする課題】
前述した従来のガラス表面を親水性有機高分子や非イオン系界面活性剤で処理する方法では耐摩耗性や耐久性が不充分である。
【0006】
また例えばガラス基板表面および組織を多孔質化する方法では多孔質化するのに長時間を要するとともに、使用するエッチング溶液が強酸性であるため取り扱いが危険であって作業性が極めて劣り、生産性の低下等をも招くこととなる。
【0007】
さらに例えば、リン酸系処理については、耐水性がなく雨水で流去するようなことが起こる。
いずれにしても、実用的なものとは言い難く、また使用場所も限定されるようなものであった。
【0008】
そこで、ガラス基板に単に親水性有機高分子や非イオン系界面活性剤を塗布するような方法、あるいはガラス表面を強酸でエッチングして凹凸形状とするような方法ではなくて、優れた親水性を長期間持続する耐久性があり、自動車用窓材等にも使用可能なものが望まれていた。
【0009】
【課題を解決するための手段】
本発明は、従来のかかる課題に鑑みてなしたものであって、被膜の表面積を増大させるために溶液中に水溶性有機高分子を添加し、塗布、被覆し乾燥した後、添加した該水溶性有機高分子を燃焼分解によって除去するのではなく、溶媒で除去し加熱処理することで多孔質状防曇性膜を成膜するので、クラック等の欠陥を発現することもなく、簡便でかつ確実に表面積を増大させ、密着性、耐候性に優れ、しかも硬い制御された膜であり、一旦形成した多孔質性は変化することがなく、化学的に強固に結合して優れた耐摩耗性を発揮し、格段に優れた防曇性を長期にわたって持続する耐久性が充分にある等、有用な防曇性薄膜及びその形成法を提供するものである。
【0010】
すなわち、本発明は、ガラス基板表面に形成した薄膜を、 系の金属アルコキシド系化合物と、SiO 系の金属アルコキシド系化合物とを混合した溶液を用いて、溶媒、水および酸とともに水溶性有機高分子の共存下で加水分解ならびに縮重合反応を進めた溶液をコ−ティング溶液とし、該コ−ティング溶液を塗布して被覆し、乾燥後、水またはアルコ−ルと水との混合溶液で有機高分子の洗い出しを行い、焼成をすることで成る多孔質構造を有する酸化物薄膜としたことを特徴とする防曇性薄膜。
【0011】
ならびに、少なくともP 系の金属アルコキシド系化合物と、SiO 系の金属アルコキシド系化合物とを混合した溶液を用いて、溶媒、水および酸とともに水溶性有機高分子の共存下で加水分解ならびに縮重合反応を進めた溶液をコ−ティング溶液とし、該コ−ティング溶液を塗布して被覆し、乾燥後、水またはアルコ−ルと水との混合溶液で有機高分子の洗い出しを行い、600℃以上690℃以下の高温加熱による焼成をすることを特徴とする防曇性薄膜の形成法。
【0012】
また、前記防曇性薄膜の表面形状を、添加する水溶性有機高分子の種類、添加量もしくはそれらの組み合わせ、ならびに水溶性有機高分子層の洗い出し処理溶媒の種類によって制御することを特徴とする上述した防曇性薄膜の形成法。
【0013】
さらに、前記した水溶性有機高分子が、水または水とアルコ−ルの混合溶液に常温で容易に溶けるカルボニル基を有することを特徴とする上述した防曇性薄膜の形成法。
【0014】
さらにまた、前記した溶媒が、水、アルコ−ル類あるいはエ−テル類であることを特徴とする上述した防曇性薄膜の形成法。
またさらに、前記した酸が、硝酸またはしゅう酸あるいは塩酸であることを特徴とする上述した防曇性薄膜の形成法。
【0015】
またさらに、前記した高温加熱が、600 ℃以上690 以下の温度による被膜の焼成処理であることを特徴とする上述した防曇性薄膜の形成法をそれぞれ提供するものである。
【0016】
【発明の実施の形態】
ここで、前記したように、金属アルコキシド系化合物または平衡水蒸気圧が低い酸化物微粒子を分散した溶液と、金属アルコキシド系化合物とを混合した溶液を用いて、溶媒、水および酸とともに水溶性有機高分子の共存下で加水分解ならびに縮重合反応を進めた溶液をコ−ティング溶液とし、該コ−ティング溶液を塗布して被覆し、乾燥後、水またはアルコ−ルと水との混合溶液で有機高分子の洗い出しを行い、高温加熱による焼成をすることで成る多孔質構造を有する酸化物薄膜とした防曇性薄膜としたのは、防曇性の持続性が表面積はもちろん被膜の膜厚の影響も大きく、一般に被膜の膜厚が増大するほど防曇性は良化する傾向にあるが、膜にクラックが発生する危険性も大きくなる。したがって例えば膜厚が約500nm 程度以上となるとクラックが発生するが、本発明は例え500nm 程度以上であっても前記水溶性有機高分子を高温で焼成処理する前に溶媒で除去するため、高温加熱処理時の膜収縮による応力を緩和することができ、その結果クラック等の欠陥がなく、光学特性も損なうこともなく、しかもガラス基板と強固に密着して優れた耐久性等を併せ持ち、単層膜でも充分な防曇機能を発揮できるとともに、積層膜の下地層膜としても多孔性であるが故に上層膜との密着性も格段に向上するなど、有用な多孔質構造を有する酸化物薄膜を厄介な工程もなく、高い安定性と安全性で作業効率よく、生産性を格段に上げ、かつ確実に提供することができるものである。
【0017】
ならびに、少なくともP 系の金属アルコキシド系化合物と、SiO 系の金属アルコキシド系化合物とを混合した溶液を用いて、溶媒、水および酸とともに水溶性有機高分子の共存下で加水分解ならびに縮重合反応を進めた溶液をコ−ティング溶液とし、 該溶液をガラス基板の表面に塗布、被覆し、次いで150 ℃以下の温度で乾燥処理した後、水または水とアルコ−ルの混合溶液でもって水溶性有機高分子層を除去する処理し、600℃以上690℃以下の高温加熱による焼成をする。
【0018】
また、前記金属アルコキシド系化合物としては、例えば、金属アルコキシドがSiO、TiO、P系であり、具体的には、テトラエトキシシラン、テトラメトキシシラン、チタンテトライソプロポキシド、トリエチルフォスフェ−ト、ジルコニウムノルマルブトキシドなどが挙げられ、リン酸系についてはアルコキシドでは他にトリメチルフォスフェ−トが挙げられ、アルコキシド以外ではPOCl、HPOなども使用できるが、これらはゲル化が早くあまり好ましくない。
【0019】
また、前記平衡水蒸気圧が低い酸化物微粒子としては、該平衡水蒸気圧の値が例えば約10-4mmHg程度であり、具体的には、ベ−マタイト結晶型のアルミナ(Al2O3 )あるいはシリカ(SiO2挙げられる。また、酸化物微粒子の粒径は約2〜20nm程度である。
【0020】
また、前記溶媒としては、例えば、アルコ−ル類、水およびエ−テル類であり、具体的には、エタノ−ル、イソプロパノ−ル、ブタノ−ル、蒸留水、エチルエ−テルなどが挙げられ、好ましくは蒸気圧が高いエタノ−ル、イソプロパノ−ルと蒸留水の混合溶媒がよい。
【0021】
また、前記酸としては、例えば硝酸またはしゅう酸あるいは塩酸等である。
また、前記水溶性有機高分子としては、例えば、水または水とアルコ−ルの混合溶液に常温で容易に溶けるカルボニル基を有するものであるが、水または水とアルコ−ルの混合溶液に可溶で金属アルコキシドと均一に混ざりあえば特に限定し制限するものではなく、具体的には、ポリエチレングリコ−ル、ヒドロキシプロピルセルロ−ス、ポリビニルピロリドンまたはポリアクリル酸などが挙げられる。
【0025】
またさらに、コ−ティング溶液のpHとしては約3以上5以下であり、3未満ではアルコキシド溶液の縮重合反応が早くなり、かつ水溶性有機高分子の溶解度が小さくなるためであり、また5を超えると逆に縮重合反応が遅く、コ−ティングできるまでの時間が長くなるからであり、好ましくはpHが3.5 〜4.5 の範囲である。
【0026】
さらにまた、前記150 ℃以下の温度で乾燥処理したのは、150 ℃を超えると、例えばゾル中に含まれている無機元素が溶媒の蒸気とともに濃縮され、膜骨格を次第に強固にし、水溶性有機高分子の溶出処理による除去効率が悪化し、必ずしも洗い出し操作の効力を発揮できなくなって高温での加熱処理時にクラックが発生するからであり、好ましくは100 ℃以上130 ℃以下の範囲である。
【0027】
さらにまた、前記被膜を600 ℃以上の高温で焼成することとしたのは、ガラス基板に影響を与えない程度であって、膜に形成される多孔質形状が焼失することがなく、充分な膜強度を付与することができる温度であり、好ましくは600 ℃以上690 ℃以下、より好ましくは630 ℃以上670 ℃以下である。
【0028】
さらにまた、前記した膜の膜付け法としては、ディッピング法、フローコート法あるいはスピンコート法、ロ−ラ−コ−ト法、印刷法、ノズルフロ−コ−ト法、スプレー法、ならびにそれらの併用等既知の塗布手段が適宜採用し得るものである。
【0029】
また、前記ガラス基板としては、建築用における窓材、鏡、航空機用あるいは船舶用の窓材、および自動車用窓材等、種々のガラス物品などに用いられるソ−ダライムガラス、たとえばフロ−トガラスおよび各種成分組成のガラスを採用することができる。
【0030】
前述したように、本発明の防曇性薄膜及びその形成法によれば、被膜の表面積を増大させるために溶液中に水溶性有機高分子を添加し、塗布、被覆し乾燥した後、添加した該水溶性有機高分子を燃焼分解によって除去するのではなく、溶媒で除去し加熱処理することで多孔質状防曇性膜を成膜するので、クラック等の欠陥を発現することもなく、簡便でかつ確実に表面積を増大させ、密着性、耐候性に優れ、しかも硬い制御された膜であり、一旦形成した多孔質性は変化することがなく、化学的に強固に結合して優れた耐摩耗性を発揮し、例えば眼鏡の曇り止め剤試験(JIS S 4030)のサイクル試験をも合格する等、格段に優れた防曇性を長期にわたって持続する耐久性が充分にある等、建築用もしくは鏡などの産業用、さらには自動車用の窓材をはじめ、各種ガラス物品等、種々の被膜に広く採用できる有用な防曇性薄膜及びその形成法を提供することができる。
【0031】
【実施例】
以下、実施例により本発明を具体的に説明する。ただし本発明は係る実施例に限定されるものではない。
【0032】
実施例1
出発原料として、リン酸トリエチル(PTE;キシダ化学製)、ケイ酸エチル(TEOS; キシダ化学製)、アルミナ微粒子分散ゾル(Al−10; 川研ファインケミカル製)、イソプロピルアルコ−ル(iPA;キシダ化学製)、純水、ポリエチレングリコ−ル(PEG;平均分子量4000; キシダ化学製)を用い、先ずPEG4000 をAl−10とiPA と純水の混合溶液で室温にて完全に溶解させて、該溶液にPTE とTEOSを添加し、溶液中のモル比がPTE:TEOS: Al−10:iPA: 純水=0.5:1:0.5:10:50 で、かつ、PEG4000 の添加量が重量%で5%とした当該溶液を約3時間室温で攪拌しコ−ティング溶液とした。
【0033】
次いで、予めセリア研磨、上水で水洗、蒸留水でリンス、乾燥した後、アセトン等で払拭したフロ−トガラス基板(10mm×10mm×2mm 厚)をディッピング法により上述したコ−ティング溶液を表面に塗布した。なお、浸漬後のガラス基板の引き上げ速度は約4mm/sec 〜7mm/sec の範囲で塗布処理を行い、ゲル膜付きガラス基板を得た。
【0034】
次に、このゲル膜付きガラス基板を約 150℃で約30分間乾燥した後、エチルアルコ−ルと純水の混合溶媒(体積比で1:1)中に約5分間浸漬し、約40℃で約10分間乾燥した後、電気炉中で約 690℃(昇温速度が約10℃/min )で約4分間熱処理を行い、P−Al−SiO膜付きガラスを得た。
【0035】
得られたP−Al−SiO膜付きガラスについて以下の評価を実施した。
〔評価方法〕
防曇性能:▲1▼約43℃飽和水蒸気に約3分間接触させた後、約40℃の乾燥器中に約10分間放置し、室温まで冷却された状態で再度最初の飽和水蒸気接触を開始するまでを1サイクルとして、10サイクルまで実施し、その間の曇りの発生状況を目視で評価した。
【0036】
10サイクルにおいて全く曇りの発生が認められなかったものを合格とした。
▲2▼マイナス20℃(冷凍庫)中で約10分間放置直後、約25℃(室温)で約50%RHの環境に放置するのを1サイクルとして、10サイクルまで実施し、その間の曇りの発生状況を目視で評価した。
【0037】
10サイクルにおいて全く曇りの発生が認められなかったものを合格とした。
なお、▲1▼および▲2▼とも後述する表中では、全く曇りの発生が認められないものを○印とし、曇りの発生が認められたものを×印とした。
【0038】
膜表面形状:▲1▼走査型電子顕微鏡(SEM 、日立製作所製、S−415 )によって観察し、撮影した写真をもって膜表面形状の凹凸程度を目視し、凹凸状がハッキリ観察されれば合格とした。
【0039】
▲2▼走査型プロ−ブ顕微鏡のAFM (原子間力顕微鏡)モ−ド(セイコ−電子製、SP13700 、5 μm 四方スキャンあるいはオリンパス製、NV2000、5 μm 四方スキャン)で観察し、JIS B 0601で定義されている中心線平均粗さRa値を求め評価した。
【0040】
膜厚の測定:DEKTAK(Sloan 社製、3030)にて測定した。
その他 :▲1▼クラック等の欠陥の有無。▲2▼膜の各種試験による耐久性。▲3▼可視光線透過率の変化等光学特性への影響など、建築用、産業用ならびに自動車用の窓材をはじめ、各種ガラス物品に必要な事項を評価した。
【0041】
その結果、該P−Al−SiO膜付きガラスは、膜厚が約200nm であり、また膜の表面形状は走査型電子顕微鏡(以下、SEM という。)の写真(1万5千倍)を図1に示すように、ハッキリした凹凸状を呈し、原子間力顕微鏡(以下、AFM という。)による中心線平均粗さRa値は約9.5nm である凹凸状であり、めざす多孔質形状を有する酸化物薄膜であった。
【0042】
また、表1および2に示すように、防曇性能▲1▼および▲2▼の評価試験では10サイクルにおいて全く曇りの発生が認められなく、格段に優れた防曇性能を示すものであり、クラック等の欠陥もなく、しかも耐久性に優れたP−Al−SiO膜付きガラスを、安定かつ確実に厄介な工程もなく簡便な手段で効率よく得ることができ、建築用、産業用ならびに自動車用の窓材をはじめ、各種ガラス物品に使用可能なめざす所期の防曇性薄膜を得た。
【0043】
なお、上記該薄膜中の微粒子の残存状態を、X 線〔(株)理学製、RINT 1500 〕でもって調べたところ、結晶としてγ−Alが存在していた。
実施例2
出発原料として、リン酸トリエチル(PTE;キシダ化学製)、アルミナ微粒子分散ゾル(Al−10; 川研ファインケミカル製)、イソプロピルアルコ−ル(iPA;キシダ化学製)、純水、ポリエチレングリコ−ル(PEG;平均分子量4000; キシダ化学製)を用い、先ずPEG4000 をAl−10とiPA と純水の混合溶液で室温にて完全に溶解させて、該溶液にPTE を添加し、溶液中のモル比がPTE:Al−10:iPA: 純水=0.5:0.5:10:50 で、かつ、PEG4000 の添加量が重量%で5%とした当該溶液を約3時間室温で攪拌しコ−ティング溶液とした。
【0044】
塗布成膜ならびに熱処理(焼成)条件については、前記実施例1と同様に行い、P−Al膜付きガラスを得た。
得られたP−Al膜付きガラスについて、前記実施例1と同様の評価を実施した。
【0045】
その結果、該P−Al膜付きガラスは、膜厚が約230nm であり、またSEM による写真は実施例1と同様ハッキリしためざす凹凸状を呈し、AFM による中心線平均粗さRa値は約7.0nm でめざす凹凸状であり、多孔質形状を有する酸化物薄膜であった。
【0046】
また、表1および2に示すように、実施例1と同様に、防曇性能▲1▼および▲2▼の評価試験では10サイクルにおいて全く曇りの発生が認められなく、格段に優れた防曇性能を示すものであり、クラック等の欠陥もなく、しかも耐久性に優れたP−Al膜付きガラスを、安定かつ確実に厄介な工程もなく簡便な手段で効率よく得ることができ、建築用、産業用ならびに自動車用の窓材をはじめ、各種ガラス物品に使用可能なめざす所期の防曇性薄膜を得た。
【0047】
なお、実施例1と同様、上記該薄膜中の微粒子の残存状態を、X 線〔(株)理学製、RINT 1500 〕でもって調べたところ、結晶としてγ−Alが存在していた。
【0048】
実施例3
出発原料として、実施例1と同様のPTE 、TEOS、Al−10、iPA 、純水、PEG を用い、先ずPEG4000 をAl−10とiPA と純水の混合溶液で室温にて完全に溶解させて、該溶液にPTE とTEOSを添加し、溶液中のモル比がPTE:TEOS: Al−10:iPA: 純水=0.5:1:0.5:10:80 で、かつ、PEG4000 の添加量が重量%で5%とした当該溶液を約3時間室温で攪拌しコ−ティング溶液とした。
【0049】
塗布成膜ならびに熱処理(焼成)条件については、前記実施例1と同様に行い、P−Al−SiO膜付きガラスを得た。
得られたP−Al−SiO膜付きガラスについて、前記実施例1と同様の評価を実施した。
【0050】
その結果、該P−Al−SiO膜付きガラスは、膜厚が約190nm であり、またSEM による写真は実施例1と同様ハッキリしためざす凹凸状を呈し、AFM による中心線平均粗さRa値は約7.6nm でめざす凹凸状であり、多孔質形状を有する酸化物薄膜であった。
【0051】
また、表1および2に示すように、実施例1と同様に、防曇性能▲1▼および▲2▼の評価試験では10サイクルにおいて全く曇りの発生が認められなく、格段に優れた防曇性能を示すものであり、クラック等の欠陥もなく、しかも耐久性に優れたP−Al−SiO膜付きガラスを、安定かつ確実に厄介な工程もなく簡便な手段で効率よく得ることができ、建築用、産業用ならびに自動車用の窓材をはじめ、各種ガラス物品に使用可能なめざす所期の防曇性薄膜を得た。
【0052】
なお、実施例1と同様、上記該薄膜中の微粒子の残存状態を、X 線〔(株)理学製、RINT 1500 〕でもって調べたところ、結晶としてγ−Alが存在していた。
【0053】
実施例4
出発原料として、実施例1および3と同様に行うなかで、溶液中のモル比をPTE:TEOS: Al−10:iPA: 純水=0.5:1:0.5:10:100とし、かつ、PEG4000 の添加量が5重量%の当該溶液を約3時間室温で攪拌しコ−ティング溶液とした。
【0054】
塗布成膜ならびに熱処理(焼成)条件については、前記実施例1と同様に行い、P−Al−SiO膜付きガラスを得た。
得られたP−Al−SiO膜付きガラスについて、前記実施例1と同様の評価を実施した。
【0055】
その結果、該P−Al−SiO膜付きガラスは、膜厚が約200nm であり、またSEM による写真は実施例1と同様ハッキリしためざす凹凸状を呈し、AFM による中心線平均粗さRa値は約7.7nm でめざす凹凸状であり、多孔質形状を有する酸化物薄膜であった。
【0056】
また、表1および2に示すように、実施例1と同様に、防曇性能▲1▼および▲2▼の評価試験では10サイクルにおいて全く曇りの発生が認められなく、格段に優れた防曇性能を示すものであり、クラック等の欠陥もなく、しかも耐久性に優れたP−Al−SiO膜付きガラスを、安定かつ確実に厄介な工程もなく簡便な手段で効率よく得ることができ、建築用、産業用ならびに自動車用の窓材をはじめ、各種ガラス物品に使用可能なめざす所期の防曇性薄膜を得た。
【0057】
なお、実施例1と同様、上記該薄膜中の微粒子の残存状態を、X 線〔(株)理学製、RINT 1500 〕でもって調べたところ、結晶としてγ−Alが存在していた。
【0058】
実施例5
出発原料として、実施例4と同様に行うなかで、PEG4000 の添加量を10重量%の当該溶液を約3時間室温で攪拌しコ−ティング溶液とした。
【0059】
塗布成膜ならびに熱処理(焼成)条件については、前記実施例1と同様に行い、P−Al−SiO膜付きガラスを得た。
得られたP−Al−SiO膜付きガラスについて、前記実施例1と同様の評価を実施した。
【0060】
その結果、該P−Al−SiO膜付きガラスは、膜厚が約240nm であり、またSEM による写真は実施例1と同様ハッキリしためざす凹凸状を呈し、AFM による中心線平均粗さRa値は約11.5nmでめざす凹凸状であり、多孔質形状を有する酸化物薄膜であった。
【0061】
また、表1および2に示すように、実施例1と同様に、防曇性能▲1▼および▲2▼の評価試験では10サイクルにおいて全く曇りの発生が認められなく、格段に優れた防曇性能を示すものであり、クラック等の欠陥もなく、しかも耐久性に優れたP−Al−SiO膜付きガラスを、安定かつ確実に厄介な工程もなく簡便な手段で効率よく得ることができ、建築用、産業用ならびに自動車用の窓材をはじめ、各種ガラス物品に使用可能なめざす所期の防曇性薄膜を得た。
【0062】
なお、実施例1と同様、上記該薄膜中の微粒子の残存状態を、X 線〔(株)理学製、RINT 1500 〕でもって調べたところ、結晶としてγ−Alが存在していた。
【0063】
実施例6
出発原料として、TEOS、PTE 、iPA 、酸触媒(0.01N 硝酸)を用い、コ−ティング溶液組成をTEOS: PTE:iPA:酸触媒=1:1:10:7(モル比)とし、室温で約24時間攪拌しコ−ティング溶液とした。
【0064】
塗布成膜ならびに熱処理(焼成)条件については、前記実施例1と同様に行い、P−SiO膜付きガラスを得た。
得られたP−SiO膜付きガラスについて、前記実施例1と同様の評価を実施した。
【0065】
その結果、該P−SiO膜付きガラスは、膜厚が約200nm であり、またSEM による写真は実施例1と同様ハッキリしためざす凹凸状を呈し、AFM による中心線平均粗さRa値は約1.5nm でめざす凹凸状であり、多孔質形状を有する酸化物薄膜であった。
【0066】
また、表1および2に示すように、実施例1と同様に、防曇性能▲1▼および▲2▼の評価試験では10サイクルにおいて全く曇りの発生が認められなく、格段に優れた防曇性能を示すものであり、クラック等の欠陥もなく、しかも耐久性に優れたP−Al−SiO膜付きガラスを、安定かつ確実に厄介な工程もなく簡便な手段で効率よく得ることができ、建築用、産業用ならびに自動車用の窓材をはじめ、各種ガラス物品に使用可能なめざす所期の防曇性薄膜を得た。
【0067】
比較例1
実施例1において、上記したPEG を添加しなかった以外はすべて同様にして行い、P−Al−SiO膜付きガラスを得た。
【0068】
得られたP−Al−SiO膜付きガラスについて、前記実施例1と同様の評価を実施した。
その結果、該P−Al−SiO膜付きガラスは、膜厚が約200nm であり、図2に示すように、SEM による写真(1万5千倍)は実施例1とは異なって凹凸がハッキリせず平坦化を呈し、明らかにめざす多孔質形状を有する酸化物薄膜ではなかった。
【0069】
また、表1および2に示すように、防曇性能▲1▼の評価試験では2サイクル目において曇りの発生が認められ、▲2▼の評価試験では1サイクル目において曇りの発生が認められる等、防曇性能が全く劣るものであり、到底めざす所期の防曇性薄膜ではなかった。
【0070】
比較例2
実施例1において、コ−ティング溶液に添加する純水の量をTEOS1mol に対して30モル比とした以外はすべて同様にして行い、P−Al−SiO膜付きガラスを得た。
【0071】
得られたP−Al−SiO膜付きガラスについて、前記実施例1と同様の評価を実施した。
その結果、該P−Al−SiO膜付きガラスは、膜厚が約200nm であり、SEM による写真観察では比較例1より多少凹凸があるものの、実施例1とは異なって凹凸がハッキリせず、めざす凹凸からは平面化状を呈していると言えるものであり、到底めざす多孔質形状を有する酸化物薄膜ではなかった。
【0072】
また、表1および2に示すように、比較例1と同様、防曇性能▲1▼の評価試験では2サイクル目において曇りの発生が認められ、▲2▼の評価試験では1サイクル目において曇りの発生が認められる等、防曇性能が全く劣るものであり、到底めざす所期の防曇性薄膜ではなかった。
【0073】
比較例3
スパッタリング法でフロ−トガラス基板上にTiO膜を約200nm の厚みに形成した。水に対する接触角が約5°程度であった。
【0074】
得られたTiO膜付きガラスについて、前記実施例1と同様の評価を実施した。
その結果、該TiO膜付きガラスは、SEM による写真観察では実施例1とは異なって凹凸がハッキリせず平面化状を呈しており、到底めざす多孔質形状を有する酸化物薄膜ではなかった。
【0075】
また、表1および2に示すように、比較例1と同様、防曇性能▲1▼の評価試験では2サイクル目において曇りの発生が認められ、▲2▼の評価試験では1サイクル目において曇りの発生が認められる等、防曇性能が全く劣るものであり、到底めざす所期の防曇性薄膜ではなかった。
【0076】
比較例4
市販の眼鏡用の曇り止め剤「クリンピュ−」(呉工業製)を用い、実施例1〜5と同様に洗浄したガラス基板に手で塗布し、余分の液を完全に拭き取り、常温で乾燥した。
【0077】
得られた防曇膜付きガラスについて、前記実施例1と同様の評価を実施した。
その結果、該防曇膜付きガラスは、表1および2に示すように、防曇性能▲1▼の評価試験では4サイクル目において曇りの発生が認められ、▲2▼の評価試験では1サイクル目において曇りの発生が認められる等、比較例1〜3とは多少改善が見受けられるように見えるものの、防曇性能が全く劣るものであり、到底めざす所期の防曇性薄膜ではなかった。
【0078】
【表1】

Figure 0003628802
【0079】
【表2】
Figure 0003628802
【0080】
【発明の効果】
以上前述したように、本発明の防曇性薄膜及びその形成法によれば、安定かつ確実に厄介な工程もなく手軽に容易な特定の形成手段でもって特異な多孔質形状をした格段に優れた防曇性能を有する酸化物薄膜を安価に効率よく高生産性でうることができ、クラック等の欠陥がなくかつ充分な防曇可視光線透過率と耐久性等に優れるものとなるなど、建築用もしくは鏡などの産業用、さらには自動車用の窓材をはじめ、各種ガラス物品等、種々の被膜に広く採用できる有用な防曇性薄膜及びその形成法を提供することができるものである。
【図面の簡単な説明】
【図1】実施例1における防曇性薄膜の表面形状を、SEM によって1万5千倍の倍率で撮影した写真で示す図である。
【図2】比較例1における防曇性薄膜の表面形状を、SEM によって1万5千倍の倍率で撮影した写真で示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention is a porous oxide thin film having antifogging performance and a method for forming the same, and as a protective film having antifogging performance on the surface of a single layer film or laminated film formed on the surface of a glass substrate, As a low-reflection film with a reduced refractive index due to the porous shape, as a composite film having both anti-fogging properties and low-reflectivity, and with a porous shape that has a remarkably large surface area and glass or upper and lower layer films For example, as a precoat film that has extremely good chemical bonding strength and maintains its effect over a long period of time, it does not impair optical properties, has excellent adhesion and durability, and has no defects such as cracks. The present invention relates to an antifogging thin film useful for industrial, architectural or automotive window materials such as mirrors, various glass articles with a film, and the like.
[0002]
[Prior art]
As a method for forming an antifogging thin film on a glass substrate, for example, hydrophilic organic polymers such as polyvinyl alcohol and polyvinylpyrrolidone and nonionic surfactants are coated on the glass surface to be hydrophilic. (For example, JP-A-48-89278 and JP-A-1-37268).
[0003]
For example, there are a method of etching a borosilicate glass substrate with an acid to make it porous, and a method of etching soda lime glass with hydrofluoric acid to make the surface uneven and coat a hydrophilic substance (for example, (Kaihei 4-124046).
[0004]
Furthermore, for example, there is a method of bringing a phosphoric acid solution or vapor into contact with a bulk glass containing phosphoric acid (for example, JP-A-54-105120).
[0005]
[Problems to be solved by the invention]
The conventional method of treating the glass surface with a hydrophilic organic polymer or a nonionic surfactant has insufficient wear resistance and durability.
[0006]
In addition, for example, in the method of making the glass substrate surface and the structure porous, it takes a long time to make it porous, and the etching solution used is strongly acidic, so handling is dangerous and workability is extremely inferior, and productivity It will also lead to a decrease in the amount.
[0007]
Further, for example, with respect to the phosphoric acid-based treatment, there are cases in which there is no water resistance and the rainwater is washed away.
In any case, it is difficult to say that it is practical, and the place of use is limited.
[0008]
Therefore, it is not a method of simply applying a hydrophilic organic polymer or a nonionic surfactant to a glass substrate, or a method of etching the glass surface with a strong acid to form a concavo-convex shape. It has been desired to have durability that lasts for a long time and can be used for automobile window materials and the like.
[0009]
[Means for Solving the Problems]
The present invention has been made in view of such conventional problems, and in order to increase the surface area of the coating, a water-soluble organic polymer is added to the solution, and the coating is applied., CoatingAfter drying, the added water-soluble organic polymer is not removed by combustion decomposition, but a porous antifogging film is formed by removing it with a solvent and heat-treating it, so that defects such as cracks are removed. It is a controlled film that does not develop, simply and reliably increases the surface area, has excellent adhesion and weather resistance, and is hard, and once formed, the porous property does not change and is chemically strong. The present invention provides a useful anti-fogging thin film and a method for forming the same, such as exhibiting excellent wear resistance by bonding to the surface, and having sufficient durability to maintain a remarkably excellent anti-fogging property for a long period of time.
[0010]
That is, the present invention provides a thin film formed on the surface of a glass substrate.P 2 O 5 SystematicA metal alkoxide compound,SiO 2 SystematicA solution obtained by proceeding hydrolysis and polycondensation reaction in the presence of a water-soluble organic polymer together with a solvent, water and an acid using a solution mixed with a metal alkoxide compound is used as a coating solution. ApplyCoatingAnd after drying, the organic polymer is washed out with water or a mixed solution of alcohol and water and baked to form an oxide thin film having a porous structure. .
[0011]
AndAt least P 2 O 5 SystematicA metal alkoxide compound,SiO 2 Using a mixed solution of a metal alkoxide compound of the system,Hydrolysis and polycondensation reaction in the presence of water-soluble organic polymer together with solvent, water and acidThe coating solution is applied as a coating solution, coated and coated, dried, and washed with water or a mixed solution of alcohol and water to wash out the organic polymer. High temperature heating below ℃A method for forming an anti-fogging thin film, characterized by firing by means of a method.
[0012]
Further, the surface shape of the antifogging thin film is controlled by the type of water-soluble organic polymer to be added, the amount added or a combination thereof, and the type of washing solvent for the water-soluble organic polymer layer. A method for forming the above-described antifogging thin film.
[0013]
Furthermore, the water-soluble organic polymer described above has a carbonyl group that is easily soluble in water or a mixed solution of water and alcohol at room temperature.
[0014]
Furthermore, the above-mentioned method for forming an antifogging thin film is characterized in that the solvent is water, alcohols or ethers.
Furthermore, the above-mentioned antifogging thin film forming method, wherein the acid is nitric acid, oxalic acid or hydrochloric acid.
[0015]
Furthermore, the above-mentioned high-temperature heating is a baking treatment of a film at a temperature of 600 ° C. or higher and 690 or lower, respectively.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Here, as described above, using a solution in which a metal alkoxide compound or oxide fine particles having a low equilibrium water vapor pressure are dispersed and a metal alkoxide compound is mixed, a solvent, water, and an acid together with a water-soluble organic compound. A solution that has undergone hydrolysis and polycondensation reaction in the presence of molecules is used as a coating solution, and the coating solution is applied.CoatingThen, after drying, the organic polymer was washed out with water or a mixed solution of alcohol and water, and baked by high temperature heating to obtain an antifogging thin film having an oxide thin film having a porous structure. The anti-fogging durability has a large influence on the film thickness as well as the surface area. Generally, as the film thickness increases, the anti-fogging property tends to improve, but there is a risk of cracking in the film. Sexuality also increases. Therefore, for example, cracks occur when the film thickness is about 500 nm or more, but the present invention removes the water-soluble organic polymer with a solvent before baking treatment at a high temperature even if the film thickness is about 500 nm or more. The stress due to film shrinkage during processing can be relieved. As a result, there are no defects such as cracks, optical characteristics are not impaired, and the glass substrate is firmly adhered to each other and has excellent durability. An oxide thin film having a useful porous structure, such as a film that can exhibit a sufficient anti-fogging function and is also significantly improved in adhesion with an upper layer film because it is porous as an underlayer film of a laminated film. There is no troublesome process, it is highly stable and safe, the work efficiency is high, the productivity is remarkably raised, and it can be surely provided.
[0017]
AndAt least P 2 O 5 SystematicA metal alkoxide compound,SiO 2 Using a mixed solution of a metal alkoxide compound of the system,Hydrolysis and polycondensation reaction in the presence of water-soluble organic polymer together with solvent, water and acidThe solution obtained by proceeding as a coating solution  Apply the solution to the surface of the glass substrate, CoatingThen, after drying at a temperature of 150 ° C. or lower, the water-soluble organic polymer layer is removed with water or a mixed solution of water and alcohol,High temperature heating from 600 ° C to 690 ° CFiring by.
[0018]
Examples of the metal alkoxide compound include metal alkoxides such as SiO.2TiO2, P2O5Specific examples include tetraethoxysilane, tetramethoxysilane, titanium tetraisopropoxide, triethyl phosphate, zirconium normal butoxide and the like. As for phosphoric acid systems, alkoxides also include trimethyl phosphate. In addition to alkoxides, POCl3, H3PO4Etc. can be used, but they are not preferred because of their rapid gelation.
[0019]
Further, as the oxide fine particles having a low equilibrium water vapor pressure, the value of the equilibrium water vapor pressure is, for example, about 10-FourSpecifically, it is about the bemite crystal type alumina (Al2OThree) Or silica (SiO2)ButCan be mentioned. The particle size of the oxide fine particles is about 2 to 20 nm.
[0020]
Examples of the solvent include alcohols, water, and ethers. Specific examples include ethanol, isopropanol, butanol, distilled water, and ethyl ether. Preferably, ethanol having a high vapor pressure, a mixed solvent of isopropanol and distilled water are used.
[0021]
Examples of the acid include nitric acid, oxalic acid, hydrochloric acid, and the like.
Examples of the water-soluble organic polymer include those having a carbonyl group that easily dissolves in water or a mixed solution of water and alcohol at room temperature, but can be used in a mixed solution of water or water and alcohol. If it is dissolved and mixed with the metal alkoxide uniformly, there is no particular limitation and specific examples include polyethylene glycol, hydroxypropyl cellulose, polyvinyl pyrrolidone, and polyacrylic acid.
[0025]
Furthermore, the pH of the coating solution is about 3 or more and 5 or less, and if it is less than 3, the condensation polymerization reaction of the alkoxide solution is accelerated, and the solubility of the water-soluble organic polymer is decreased. On the contrary, the condensation polymerization reaction is slow, and the time until coating can be increased, and the pH is preferably in the range of 3.5 to 4.5.
[0026]
Furthermore, when the drying treatment is performed at a temperature of 150 ° C. or lower, when the temperature exceeds 150 ° C., for example, the inorganic element contained in the sol is concentrated together with the vapor of the solvent, and the film skeleton is gradually strengthened to This is because the removal efficiency due to the elution treatment of the polymer is deteriorated, and the effectiveness of the washing operation cannot be exhibited, and cracks are generated during the heat treatment at a high temperature, preferably in the range of 100 ° C. or higher and 130 ° C. or lower.
[0027]
Furthermore, the reason why the film is baked at a high temperature of 600 ° C. or higher is that it does not affect the glass substrate, and the porous shape formed in the film is not burned out. It is a temperature at which strength can be imparted, preferably 600 ° C. or more and 690 ° C. or less, more preferably 630 ° C. or more and 670 ° C. or less.
[0028]
Furthermore, as the film forming method described above, dipping method, flow coating method or spin coating method, roller coating method, printing method, nozzle flow coating method, spraying method, and combination thereof Any known coating means can be employed as appropriate.
[0029]
Further, as the glass substrate, soda lime glass used for various glass articles such as window materials for construction, mirrors, window materials for aircraft or ships, and window materials for automobiles, for example, float glass And glass of various component compositions can be employed.
[0030]
As described above, according to the antifogging thin film and the method of forming the same of the present invention, a water-soluble organic polymer is added to the solution in order to increase the surface area of the coating., CoatingAfter drying, the added water-soluble organic polymer is not removed by combustion decomposition, but a porous antifogging film is formed by removing it with a solvent and heat-treating it, so that defects such as cracks are removed. It is a controlled film that does not develop, simply and reliably increases the surface area, has excellent adhesion and weather resistance, and is hard, and once formed, the porous property does not change and is chemically strong. Combined with a glass, it exhibits excellent wear resistance. For example, it passes the cycle test of spectacle anti-fogging agent test (JIS S 4030). The present invention provides a useful anti-fogging thin film that can be widely applied to various coatings such as window materials for construction or mirrors, automobiles, and various glass articles. it can.
[0031]
【Example】
Hereinafter, the present invention will be described specifically by way of examples. However, the present invention is not limited to the embodiment.
[0032]
Example 1
As starting materials, triethyl phosphate (PTE; manufactured by Kishida Chemical), ethyl silicate (TEOS; manufactured by Kishida Chemical), alumina fine particle dispersion sol (Al-10; manufactured by Kawaken Fine Chemical), isopropyl alcohol (iPA; Kishida Chemical) Product), pure water, and polyethylene glycol (PEG; average molecular weight 4000; manufactured by Kishida Chemical Co., Ltd.). First, PEG 4000 was completely dissolved at room temperature with a mixed solution of Al-10, iPA and pure water, and the solution PTE and TEOS were added to the solution, and the molar ratio in the solution was PTE: TEOS: Al-10: iPA: pure water = 0.5: 1: 0.5: 10: 50, and the addition amount of PEG 4000 was weight. The solution having a concentration of 5% was stirred at room temperature for about 3 hours to obtain a coating solution.
[0033]
Next, after ceria polishing, rinsing with clean water, rinsing with distilled water, and drying, a float glass substrate (10 mm × 10 mm × 2 mm thick) wiped with acetone or the like is applied to the surface by the dipping method. Applied. In addition, the glass substrate with a gel film was obtained by performing a coating treatment at a pulling rate of the glass substrate after immersion in the range of about 4 mm / sec to 7 mm / sec.
[0034]
Next, the glass substrate with the gel film is dried at about 150 ° C. for about 30 minutes, and then immersed in a mixed solvent of ethyl alcohol and pure water (1: 1 by volume) for about 5 minutes, at about 40 ° C. After drying for about 10 minutes, heat treatment is carried out in an electric furnace at about 690 ° C. (heating rate is about 10 ° C./min) for about 4 minutes.2O5-Al2O3-SiO2A glass with a film was obtained.
[0035]
P obtained2O5-Al2O3-SiO2The following evaluation was implemented about the glass with a film | membrane.
〔Evaluation methods〕
Anti-fogging performance: (1) After contact with saturated steam at about 43 ° C for about 3 minutes, leave it in a dryer at about 40 ° C for about 10 minutes and start the first saturated steam contact again after cooling to room temperature. Up to 10 cycles were performed until this time, and the occurrence of fogging during that period was visually evaluated.
[0036]
Those in which no cloudiness was observed in 10 cycles were regarded as acceptable.
(2) Immediately after standing in minus 20 ° C. (freezer) for about 10 minutes, leaving in an environment of about 50% RH at about 25 ° C. (room temperature) is carried out up to 10 cycles, and clouding occurs during that time The situation was evaluated visually.
[0037]
Those in which no cloudiness was observed in 10 cycles were regarded as acceptable.
In the tables described later for both (1) and (2), those where no clouding was observed were marked with ○, and those where clouding was observed were marked with X.
[0038]
Film surface shape: (1) Observed with a scanning electron microscope (SEM, manufactured by Hitachi, Ltd., S-415). did.
[0039]
(2) Observation with AFM (Atomic Force Microscope) mode of scanning probe microscope (Seiko Electronics, SP13700, 5 μm square scan or Olympus, NV2000, 5 μm square scan) and JIS B 0601 The centerline average roughness Ra value defined in (1) was obtained and evaluated.
[0040]
Measurement of film thickness: Measured with DEKTAK (manufactured by Sloan, 3030).
Other: (1) Presence or absence of defects such as cracks. (2) Durability by various tests of the membrane. (3) Necessary items for various glass articles, including window materials for construction, industrial and automobiles, were evaluated, such as effects on optical properties such as changes in visible light transmittance.
[0041]
As a result, the P2O5-Al2O3-SiO2The film-coated glass has a film thickness of about 200 nm, and the surface shape of the film is clear asperity as shown in a scanning electron microscope (hereinafter referred to as SEM) photograph (15,000 times) as shown in FIG. The oxide thin film had an irregular shape with a center line average roughness Ra value of about 9.5 nm by an atomic force microscope (hereinafter referred to as AFM), and had a porous shape to be aimed at.
[0042]
Moreover, as shown in Tables 1 and 2, in the evaluation test of antifogging performance (1) and (2), no fogging was observed in 10 cycles, and the antifogging performance was excellent. P with no defects such as cracks and excellent durability2O5-Al2O3-SiO2Filmed glass can be obtained efficiently and easily by simple means without any troublesome process, and it is intended to be used for various glass articles including architectural, industrial and automotive window materials. An antifogging thin film was obtained.
[0043]
The remaining state of the fine particles in the thin film was examined by X-ray [RINT 1500, manufactured by Rigaku Corporation].2O3Existed.
Example 2
As starting materials, triethyl phosphate (PTE; manufactured by Kishida Chemical), alumina fine particle dispersed sol (Al-10; manufactured by Kawaken Fine Chemical), isopropyl alcohol (iPA; manufactured by Kida Chemical), pure water, polyethylene glycol ( PEG; average molecular weight 4000; manufactured by Kishida Chemical Co., Ltd., first, PEG4000 was completely dissolved at room temperature with a mixed solution of Al-10, iPA and pure water, and PTE was added to the solution, and the molar ratio in the solution PTE: Al-10: iPA: pure water = 0.5: 0.5: 10: 50 and the amount of PEG4000 added is 5% by weight, and the solution is stirred for about 3 hours at room temperature. -It was used as a ting solution.
[0044]
The coating film formation and heat treatment (firing) conditions were the same as in Example 1, and P2O5-Al2O3A glass with a film was obtained.
P obtained2O5-Al2O3The glass-coated glass was evaluated in the same manner as in Example 1.
[0045]
As a result, the P2O5-Al2O3The film-coated glass has a film thickness of about 230 nm, and the SEM photograph shows an uneven shape that clearly looks like Example 1, and the center line average roughness Ra value by AFM is an uneven shape that aims at about 7.0 nm. It was an oxide thin film having a porous shape.
[0046]
Further, as shown in Tables 1 and 2, as in Example 1, in the evaluation test of antifogging performance (1) and (2), no fogging was observed at 10 cycles, and the antifogging was remarkably excellent. P which shows performance, has no defects such as cracks, and has excellent durability.2O5-Al2O3Filmed glass can be obtained efficiently and easily by simple means without any troublesome process, and it is intended to be used for various glass articles including architectural, industrial and automotive window materials. An antifogging thin film was obtained.
[0047]
As in Example 1, the remaining state of the fine particles in the thin film was examined by X-ray [RINT 1500, manufactured by Rigaku Corporation].2O3Existed.
[0048]
Example 3
As the starting material, PTE, TEOS, Al-10, iPA, pure water and PEG as in Example 1 were used. First, PEG4000 was completely dissolved at room temperature with a mixed solution of Al-10, iPA and pure water. PTE and TEOS were added to the solution, and the molar ratio in the solution was PTE: TEOS: Al-10: iPA: pure water = 0.5: 1: 0.5: 10: 80 and addition of PEG4000 The solution having an amount of 5% by weight was stirred at room temperature for about 3 hours to obtain a coating solution.
[0049]
The coating film formation and heat treatment (firing) conditions were the same as in Example 1, and P2O5-Al2O3-SiO2A glass with a film was obtained.
P obtained2O5-Al2O3-SiO2The glass-coated glass was evaluated in the same manner as in Example 1.
[0050]
As a result, the P2O5-Al2O3-SiO2The film-coated glass has a film thickness of about 190 nm, and the SEM photograph shows an uneven shape that clearly looks like Example 1, and the center line average roughness Ra value by AFM is an uneven shape that aims at about 7.6 nm. It was an oxide thin film having a porous shape.
[0051]
Further, as shown in Tables 1 and 2, as in Example 1, in the evaluation test of antifogging performance (1) and (2), no fogging was observed at 10 cycles, and the antifogging was remarkably excellent. P which shows performance, has no defects such as cracks, and has excellent durability.2O5-Al2O3-SiO2Filmed glass can be obtained efficiently and easily by simple means without any troublesome process, and it is intended to be used for various glass articles including architectural, industrial and automotive window materials. An antifogging thin film was obtained.
[0052]
As in Example 1, the remaining state of the fine particles in the thin film was examined by X-ray [RINT 1500, manufactured by Rigaku Corporation].2O3Existed.
[0053]
Example 4
As a starting material, in the same manner as in Examples 1 and 3, the molar ratio in the solution was PTE: TEOS: Al-10: iPA: pure water = 0.5: 1: 0.5: 10: 100, The solution containing 5% by weight of PEG 4000 was stirred at room temperature for about 3 hours to obtain a coating solution.
[0054]
The coating film formation and heat treatment (firing) conditions were the same as in Example 1, and P2O5-Al2O3-SiO2A glass with a film was obtained.
P obtained2O5-Al2O3-SiO2The glass-coated glass was evaluated in the same manner as in Example 1.
[0055]
As a result, the P2O5-Al2O3-SiO2The film-coated glass has a film thickness of about 200 nm, and the SEM photograph shows an uneven shape that clearly looks like Example 1, and the center line average roughness Ra value by AFM is an uneven shape that aims at about 7.7 nm. It was an oxide thin film having a porous shape.
[0056]
Further, as shown in Tables 1 and 2, as in Example 1, in the evaluation test of antifogging performance (1) and (2), no fogging was observed at 10 cycles, and the antifogging was remarkably excellent. P which shows performance, has no defects such as cracks, and has excellent durability.2O5-Al2O3-SiO2Filmed glass can be obtained efficiently and easily by simple means without any troublesome process. An antifogging thin film was obtained.
[0057]
As in Example 1, the remaining state of the fine particles in the thin film was examined by X-ray [RINT 1500, manufactured by Rigaku Corporation].2O3Existed.
[0058]
Example 5
In the same manner as in Example 4 as a starting material, the solution containing 10% by weight of PEG 4000 was stirred for about 3 hours at room temperature to obtain a coating solution.
[0059]
The coating film formation and heat treatment (firing) conditions were the same as in Example 1, and P2O5-Al2O3-SiO2A glass with a film was obtained.
P obtained2O5-Al2O3-SiO2The glass-coated glass was evaluated in the same manner as in Example 1.
[0060]
As a result, the P2O5-Al2O3-SiO2The film-coated glass has a film thickness of about 240 nm, and the SEM photograph shows an uneven shape that clearly looks like Example 1, and the center line average roughness Ra value by AFM is an uneven shape that aims at about 11.5 nm. It was an oxide thin film having a porous shape.
[0061]
Further, as shown in Tables 1 and 2, as in Example 1, in the evaluation test of antifogging performance (1) and (2), no fogging was observed at 10 cycles, and the antifogging was remarkably excellent. P which shows performance, has no defects such as cracks, and has excellent durability.2O5-Al2O3-SiO2Filmed glass can be obtained efficiently and easily by simple means without any troublesome process, and it is intended to be used for various glass articles including architectural, industrial and automotive window materials. An antifogging thin film was obtained.
[0062]
As in Example 1, the remaining state of the fine particles in the thin film was examined by X-ray [RINT 1500, manufactured by Rigaku Corporation].2O3Existed.
[0063]
Example 6
TEOS, PTE, iPA and acid catalyst (0.01N nitric acid) were used as starting materials, and the coating solution composition was TEOS: PTE: iPA: acid catalyst = 1: 1: 10: 7 (molar ratio) at room temperature. For about 24 hours to obtain a coating solution.
[0064]
The coating film formation and heat treatment (firing) conditions were the same as in Example 1, and P2O5-SiO2A glass with a film was obtained.
P obtained2O5-SiO2The glass-coated glass was evaluated in the same manner as in Example 1.
[0065]
As a result, the P2O5-SiO2The film-coated glass has a film thickness of about 200 nm, and the SEM photograph shows an uneven shape that clearly looks like Example 1, and the center line average roughness Ra value by AFM is an uneven shape that aims at about 1.5 nm. It was an oxide thin film having a porous shape.
[0066]
Further, as shown in Tables 1 and 2, as in Example 1, in the evaluation test of antifogging performance (1) and (2), no fogging was observed at 10 cycles, and the antifogging was remarkably excellent. P which shows performance, has no defects such as cracks, and has excellent durability.2O5-Al2O3-SiO2Filmed glass can be obtained efficiently and easily by simple means without any troublesome process, and it is intended to be used for various glass articles including architectural, industrial and automotive window materials. An antifogging thin film was obtained.
[0067]
Comparative Example 1
In Example 1, everything was carried out in the same manner except that the above PEG was not added.2O5-Al2O3-SiO2A glass with a film was obtained.
[0068]
P obtained2O5-Al2O3-SiO2The glass-coated glass was evaluated in the same manner as in Example 1.
As a result, the P2O5-Al2O3-SiO2The film-coated glass has a film thickness of about 200 nm, and as shown in FIG. 2, the SEM photo (15,000 times) differs from Example 1 in that the unevenness is not clear but is flattened. It was not an oxide thin film having the desired porous shape.
[0069]
Further, as shown in Tables 1 and 2, in the evaluation test of anti-fogging performance (1), the occurrence of fogging was observed in the second cycle, and in the evaluation test of (2), occurrence of fogging was observed in the first cycle, etc. The antifogging performance was completely inferior, and it was not the desired antifogging thin film.
[0070]
Comparative Example 2
In Example 1, everything was carried out in the same manner except that the amount of pure water added to the coating solution was changed to 30 mol ratio with respect to 1 mol of TEOS.2O5-Al2O3-SiO2A glass with a film was obtained.
[0071]
P obtained2O5-Al2O3-SiO2The glass-coated glass was evaluated in the same manner as in Example 1.
As a result, the P2O5-Al2O3-SiO2The film-coated glass has a film thickness of about 200 nm and is slightly uneven as compared with Comparative Example 1 in SEM photo observation. However, unlike Example 1, the unevenness is not clear, and the target unevenness exhibits a flattened shape. Therefore, it was not an oxide thin film having a porous shape aimed at.
[0072]
As shown in Tables 1 and 2, as in Comparative Example 1, in the evaluation test for anti-fogging performance (1), clouding was observed in the second cycle, and in the evaluation test (2), cloudiness was observed in the first cycle. Thus, the antifogging performance was completely inferior, and the antifogging thin film was not intended.
[0073]
Comparative Example 3
TiO 2 on a float glass substrate by sputtering2A film was formed to a thickness of about 200 nm. The contact angle with water was about 5 °.
[0074]
TiO obtained2The glass-coated glass was evaluated in the same manner as in Example 1.
As a result, the TiO2The glass with a film was not an oxide thin film having a porous shape to be achieved, because the unevenness was not clear and the surface was flattened by photographic observation by SEM, unlike the first example.
[0075]
As shown in Tables 1 and 2, as in Comparative Example 1, in the evaluation test for anti-fogging performance (1), clouding was observed in the second cycle, and in the evaluation test (2), cloudiness was observed in the first cycle. Thus, the antifogging performance was completely inferior, and the antifogging thin film was not intended.
[0076]
Comparative Example 4
Using a commercially available anti-fogging agent “Crimpy” (manufactured by Kure Kogyo Co., Ltd.), it was applied by hand to a glass substrate washed in the same manner as in Examples 1 to 5, and the excess liquid was completely wiped off and dried at room temperature. .
[0077]
About the obtained glass with an anti-fogging film, evaluation similar to the said Example 1 was implemented.
As a result, as shown in Tables 1 and 2, in the glass with anti-fogging film, fogging was observed in the fourth cycle in the evaluation test of anti-fogging performance (1), and one cycle in the evaluation test of (2). Although the appearance of fogging was observed in the eyes, although it seemed that some improvement was seen from Comparative Examples 1 to 3, the antifogging performance was completely inferior and was not the intended antifogging thin film.
[0078]
[Table 1]
Figure 0003628802
[0079]
[Table 2]
Figure 0003628802
[0080]
【The invention's effect】
As described above, according to the antifogging thin film and the method of forming the same of the present invention, it is remarkably excellent in having a unique porous shape with a specific forming means that is easy and easy without a troublesome process. It is possible to obtain an oxide thin film having high anti-fogging performance at low cost with high productivity, no defects such as cracks, and excellent anti-fogging visible light transmittance and durability, etc. It is possible to provide a useful anti-fogging thin film that can be widely used for various coatings such as window materials for automobiles and mirrors, as well as window materials for automobiles and various glass articles, and a method for forming the same.
[Brief description of the drawings]
FIG. 1 is a view showing a photograph of the surface shape of an antifogging thin film in Example 1 taken with a SEM at a magnification of 15,000 times.
FIG. 2 is a view showing a photograph of the surface shape of an antifogging thin film in Comparative Example 1 taken with a SEM at a magnification of 15,000 times.

Claims (3)

ガラス基板表面に形成した薄膜を、 系の金属アルコキシド系化合物と、SiO 系の金属アルコキシド系化合物とを混合した溶液を用いて、溶媒、水および酸とともに水溶性有機高分子の共存下で加水分解ならびに縮重合反応を進めた溶液をコ−ティング溶液とし、該コ−ティング溶液を塗布して被覆し、乾燥後、水またはアルコ−ルと水との混合溶液で有機高分子の洗い出しを行い、焼成をすることで成る多孔質構造を有する酸化物薄膜としたことを特徴とする防曇性薄膜。A thin film formed on the surface of a glass substrate is prepared by using a solution obtained by mixing a P 2 O 5 -based metal alkoxide compound and a SiO 2 -based metal alkoxide compound with a solvent, water, and an acid. A solution which has been subjected to hydrolysis and condensation polymerization reaction in the presence of a coating solution is used as a coating solution. The coating solution is applied and coated , and after drying, an organic polymer is mixed with water or a mixed solution of alcohol and water. An antifogging thin film characterized in that an oxide thin film having a porous structure is formed by washing out and firing. 系の金属アルコキシド系化合物、SiO 系の金属アルコキシド系化合物、及びベーマイト型結晶型のアルミナ、シリカから選ばれる平衡水蒸気圧が低い酸化物微粒子を分散した溶液が混合されることを特徴とする請求項1に記載の防曇性薄膜 A solution in which oxide fine particles having a low equilibrium water vapor pressure selected from P 2 O 5 -based metal alkoxide compounds, SiO 2 -based metal alkoxide compounds, boehmite crystal type alumina, and silica is dispersed is mixed. The anti-fogging thin film according to claim 1 . 少なくともP 系の金属アルコキシド系化合物と、SiO 系の金属アルコキシド系化合物とを混合した溶液を用いて、溶媒、水および酸とともに水溶性有機高分子の共存下で加水分解ならびに縮重合反応を進めた溶液をコ−ティング溶液とし、該コ−ティング溶液を塗布して被覆し、乾燥後、水またはアルコ−ルと水との混合溶液で有機高分子の洗い出しを行い、600℃以上690℃以下の高温加熱による焼成をすることを特徴とする防曇性薄膜の形成法。 At least P 2 O 5 based metal alkoxide compound, with a solution of a mixture of metal alkoxide compound of the SiO 2 system, the solvent, hydrolysis and polycondensation in the presence of a water-soluble organic polymer with water and an acid the reaction proceeded solution co - a coating solution,該Ko - coating solution was applied to coat the, after drying, water or alcohol - performs washout organic polymer in a mixed solution of le and water, 600 ° C. or higher A method of forming an antifogging thin film, characterized by firing by high-temperature heating at 690 ° C. or lower .
JP10728096A 1996-04-26 1996-04-26 Antifogging thin film and method for forming the same Expired - Fee Related JP3628802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10728096A JP3628802B2 (en) 1996-04-26 1996-04-26 Antifogging thin film and method for forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10728096A JP3628802B2 (en) 1996-04-26 1996-04-26 Antifogging thin film and method for forming the same

Publications (2)

Publication Number Publication Date
JPH09295835A JPH09295835A (en) 1997-11-18
JP3628802B2 true JP3628802B2 (en) 2005-03-16

Family

ID=14455077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10728096A Expired - Fee Related JP3628802B2 (en) 1996-04-26 1996-04-26 Antifogging thin film and method for forming the same

Country Status (1)

Country Link
JP (1) JP3628802B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2880474A4 (en) * 2012-08-01 2016-03-23 Ferro Corp Light influencing nano layer

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9821984D0 (en) * 1998-10-08 1998-12-02 Thorstone Business Man Ltd Adhesive promotion
JP2003231827A (en) 2002-02-12 2003-08-19 Canon Inc Fog-resistant coating material, fog-resistant coated film and fog-resistant optical member
WO2003097548A1 (en) 2002-05-21 2003-11-27 Interfloat Corporation Method and device for the production of an antireflective coating, antireflective coating, and antireflective-coated substrate
JP5206653B2 (en) * 2009-11-30 2013-06-12 三菱化学株式会社 Method for producing porous silica film and method for producing laminated substrate
CN115403269A (en) * 2022-08-24 2022-11-29 上海博迪装饰材料有限公司 Antifogging and dustproof glass and preparation process thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2880474A4 (en) * 2012-08-01 2016-03-23 Ferro Corp Light influencing nano layer
US9671529B2 (en) 2012-08-01 2017-06-06 Ferro Corporation Light influencing nano layer

Also Published As

Publication number Publication date
JPH09295835A (en) 1997-11-18

Similar Documents

Publication Publication Date Title
US5394269A (en) Reflectance reducing film and method of forming same on glass substrate
US5858462A (en) Porous metal-oxide thin film and method of forming same on glass substrate
JP4107050B2 (en) Coating material composition and article having a coating formed thereby
JP5437662B2 (en) Antireflection film and method for forming the same
JP5183066B2 (en) Silica membrane and method for producing the same
US20010051213A1 (en) Process for depositing optical layers
JP3344256B2 (en) Coating liquid for forming hydrophilic film and method for producing the same
KR20080106510A (en) Coating system
JPH0637283B2 (en) Method for forming oxide thin film
JP2002180003A (en) AQUEOUS COATING SOLUTION FOR ABRASION RESISTANT SiO2 ANTI- REFLECTIVE LAYER
JP2003231827A (en) Fog-resistant coating material, fog-resistant coated film and fog-resistant optical member
AU2009305384A1 (en) Stain resistant particles
JP2001254072A (en) Preparation process of anti-fogging composition, anti- fogging coating agent and anti-fogging coated film- forming base material
JP4619601B2 (en) PHOTOCATALYTIC COATING COMPOSITION AND PRODUCT HAVING PHOTOCATALYTIC THIN FILM
JP3628802B2 (en) Antifogging thin film and method for forming the same
EP0748775A2 (en) Water-repellent glass plate having minutely roughed metal-oxide base film
JPH10101377A (en) Anticlouding coating film and its production
JP3514065B2 (en) Laminate and manufacturing method thereof
JPH09202651A (en) Hydrophilic coating membrane and its formation
JP3788532B2 (en) Antifogging film and method for producing the same
JP2005081292A (en) Production method of substrate bearing coating having fine recessed part and liquid composition to be used therefor
JP3649596B2 (en) Substrate on which hydrophilic oxide film is formed and method for producing the same
JP3270422B2 (en) Glass goods
JPH10114543A (en) Anticlounding coating film and its production
JPH08292301A (en) Hydrophilic glass and its production

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041209

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees