JP2006070141A - Composition for forming photocatalyst membrane and substrate with the photocatalyst membrane - Google Patents

Composition for forming photocatalyst membrane and substrate with the photocatalyst membrane Download PDF

Info

Publication number
JP2006070141A
JP2006070141A JP2004254389A JP2004254389A JP2006070141A JP 2006070141 A JP2006070141 A JP 2006070141A JP 2004254389 A JP2004254389 A JP 2004254389A JP 2004254389 A JP2004254389 A JP 2004254389A JP 2006070141 A JP2006070141 A JP 2006070141A
Authority
JP
Japan
Prior art keywords
composition
mass
parts
photocatalyst film
photocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004254389A
Other languages
Japanese (ja)
Inventor
Katsumasa Nakahara
勝正 中原
Takashige Yoneda
貴重 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2004254389A priority Critical patent/JP2006070141A/en
Publication of JP2006070141A publication Critical patent/JP2006070141A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Paints Or Removers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composition for forming a photocatalyst membrane, which is suitable for forming the photocatalyst membrane excellent in stain degradation and hydrophilicity persistence through a spraying method, the photocatalyst membrane formed from the composition and a substrate with the photocatalyst membrane. <P>SOLUTION: The composition for forming the photocatalyst membrane through spraying essentially comprises a photocatalyst semiconductor particulate, a silica precursor and a solvent, wherein the solvent comprises an alcohol with a boiling point of ≤90°C and an alcohol with a boiling point of >90°C but ≤130°C. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、各種基材の表面に光触媒膜を形成できる光触媒膜形成用組成物、および該組成物から形成された光触媒膜および該光触媒膜を有する光触媒膜付き基材に関する。   The present invention relates to a composition for forming a photocatalyst film capable of forming a photocatalyst film on the surface of various substrates, a photocatalyst film formed from the composition, and a substrate with a photocatalyst film having the photocatalyst film.

光触媒を光励起すると光触媒表面に付着した有機汚れなどが分解され、結果として親水性表面が実現することが知られている。汚れ分解性に優れ、かつ親水性の耐久性に優れる光触媒膜の形成を目的として、ある特定のシリカ前駆体を用いることが知られている(例えば、特許文献1参照。)。しかし、この光触媒組成物は、スプレー法といったある特定のコートの方法にとって好ましい組成物の範囲を規定しているとはいえない。   It is known that when the photocatalyst is photoexcited, organic stains and the like attached to the surface of the photocatalyst are decomposed, and as a result, a hydrophilic surface is realized. It is known to use a specific silica precursor for the purpose of forming a photocatalyst film having excellent soil decomposability and excellent hydrophilic durability (see, for example, Patent Document 1). However, this photocatalyst composition does not prescribe a preferred composition range for a particular coating method such as spraying.

国際公開第03/068871号パンフレットInternational Publication No. 03/068771 Pamphlet

本発明は、汚れ分解性、親水持続性に優れる光触媒膜をスプレー法で形成するのに好適な光触媒膜形成用組成物、該組成物から形成されてなる光触媒膜、および該光触媒膜付き基材の提供を目的とする。   The present invention relates to a composition for forming a photocatalyst film suitable for forming a photocatalyst film excellent in soil decomposability and hydrophilic sustainability by a spray method, a photocatalyst film formed from the composition, and a substrate with the photocatalyst film The purpose is to provide.

本発明は、光触媒半導体微粒子、下記シリカ前駆体および溶媒を必須とする光触媒膜形成用組成物であって、溶媒として沸点90℃以下のアルコールと沸点90℃超130℃以下のアルコールとを含み、該組成物100質量部に対する光触媒半導体微粒子とシリカ前駆体の固形分との総量が0.3〜1.2質量部であり、沸点90℃以下のアルコールの含有量が40〜65質量部であり、かつ沸点90℃超130℃以下のアルコールの含有量が25〜50質量部であることを特徴とするスプレー用の光触媒膜形成用組成物(シリカ前駆体:ケイ酸100質量部に対してアルカリ金属イオンが0.001〜1質量部含まれるケイ酸化合物)を提供する。   The present invention is a composition for forming a photocatalyst film comprising the photocatalyst semiconductor fine particles, the following silica precursor, and a solvent, including an alcohol having a boiling point of 90 ° C. or lower and an alcohol having a boiling point of 90 ° C. or higher and 130 ° C. or lower as a solvent, The total amount of the photocatalyst semiconductor fine particles and the solid content of the silica precursor with respect to 100 parts by mass of the composition is 0.3 to 1.2 parts by mass, and the content of alcohol having a boiling point of 90 ° C. or less is 40 to 65 parts by mass. And a composition for forming a photocatalyst film for spraying (silica precursor: 100 parts by mass of silicic acid), wherein the content of the alcohol having a boiling point of 90 ° C. or more and 130 ° C. or less is 25 to 50 parts by mass. A silicic acid compound containing 0.001 to 1 part by mass of metal ions).

本発明の光触媒膜形成用組成物により、スプレー法で親水性、汚れ分解性、親水持続性、耐摩耗性に優れる光触媒膜および該光触媒膜付き基材を得ることができる。   With the composition for forming a photocatalyst film of the present invention, a photocatalyst film excellent in hydrophilicity, soil decomposability, hydrophilicity persistence, and abrasion resistance and a substrate with the photocatalyst film can be obtained by a spray method.

湿式法で膜を形成する方法としては、スプレー、はけ塗り、ローラーコート、スピンコート、浸漬塗布、各種印刷方式による塗布、カーテンフロー、ダイコート、フローコート等の塗布方法が挙げられる。しかし、これらの方法の中で、既存の建築物に設置されているガラスや樹脂といった基材上に塗膜を形成する方法としては、外観上の塗膜の均一性や作業性が優れる点から、スプレー法が用いられる場合もある。特に大面積の基材に組成物を塗布する場合、スピンコートなどの方法では回転が非常に困難になるといった問題もあり、この点でもスプレー法は優れている。   Examples of the method for forming a film by a wet method include coating methods such as spraying, brush coating, roller coating, spin coating, dip coating, coating by various printing methods, curtain flow, die coating, and flow coating. However, among these methods, as a method of forming a coating film on a substrate such as glass or resin installed in an existing building, the uniformity of the coating film on the appearance and the workability are excellent. In some cases, the spray method is used. In particular, when a composition is applied to a large-area substrate, there is a problem that rotation is very difficult by a method such as spin coating, and the spray method is excellent also in this respect.

スプレー法では、基材に向けて、スプレーガンの先端からコート液の液滴が噴霧されるという特徴を有する。よって、例えば1μm以下といった微粒子を含む組成物をスプレー法により基材表面に塗布する場合、組成物中に含まれる溶媒の乾燥速度が速すぎると、組成物の液滴が基材表面に着弾する前に液滴が乾燥し、微粒子が数100μmの塊状となって基材表面に付着し外観上の均一性が損なわれたりする問題があることが分かった。一方、組成物中に含まれる溶媒の乾燥速度が遅すぎると、液滴が基材表面に着弾後、液滴の重力等の影響で下に流れ、そのまま乾燥されることにより塗布むらとなり、外観上の均一性が損なわれるといった問題があることが分かった。   The spray method has a characteristic that droplets of the coating liquid are sprayed from the tip of the spray gun toward the substrate. Therefore, when a composition containing fine particles of, for example, 1 μm or less is applied to the substrate surface by a spray method, if the drying speed of the solvent contained in the composition is too high, droplets of the composition land on the substrate surface. It was found that there was a problem that the droplets dried before and the fine particles became a lump of several hundred μm and adhered to the surface of the base material, and the uniformity in appearance was impaired. On the other hand, if the drying speed of the solvent contained in the composition is too slow, after the droplets land on the surface of the substrate, the droplets flow downward due to the gravity of the droplets, etc. It was found that there was a problem that the uniformity above was impaired.

本発明者らは、ある特定の溶媒や微粒子を用いることにより、スプレー法に好適な組成物を得ることができることを見出した。   The present inventors have found that a composition suitable for the spray method can be obtained by using a specific solvent or fine particles.

以下、本発明について詳述する。
本発明における光触媒半導体微粒子とは、該光触媒の価電子帯と伝導電子帯との間のエネルギー差よりも大きなエネルギーの光を照射したときに、価電子帯中の電子の励起によって伝導電子と正孔を生成しうる性質を有する材料をいう。このような光触媒半導体微粒子の材料としては、アナターゼ型酸化チタン、ルチル型酸化チタン、酸化錫、酸化亜鉛、三酸化タングステン、酸化第二鉄、チタン酸ストロンチウムなどが好ましく挙げられる。
Hereinafter, the present invention will be described in detail.
In the present invention, the photocatalytic semiconductor fine particle means that when irradiated with light having an energy larger than the energy difference between the valence band and the conduction electron band of the photocatalyst, conduction electrons and positive electrons are excited by excitation of electrons in the valence band. A material having the property of generating pores. Preferred examples of the material for such photocatalytic semiconductor fine particles include anatase-type titanium oxide, rutile-type titanium oxide, tin oxide, zinc oxide, tungsten trioxide, ferric oxide, and strontium titanate.

本発明における光触媒半導体微粒子の平均粒子径は、微粒子の凝集粒子径を動的光散乱法粒度分析計(日機装製、型式:マイクロトラックUPA)により測定したものであり、好ましくは5〜90nm、特に好ましくは40〜70nmである。平均粒子径が小さいと、形成された光触媒膜の中に光触媒の微粒子が埋没するため、光触媒の種々の効果が発現しにくい。また、平均粒子径が大きいと、形成される光触媒膜の機械的強度が不足し、また、透明性が確保できないおそれがある。   The average particle size of the photocatalytic semiconductor fine particles in the present invention is obtained by measuring the aggregate particle size of the fine particles with a dynamic light scattering particle size analyzer (manufactured by Nikkiso, model: Microtrac UPA), preferably 5 to 90 nm, particularly Preferably it is 40-70 nm. When the average particle size is small, the photocatalyst fine particles are buried in the formed photocatalyst film, so that various effects of the photocatalyst are hardly exhibited. On the other hand, if the average particle size is large, the mechanical strength of the formed photocatalyst film may be insufficient, and transparency may not be ensured.

本発明におけるシリカ前駆体とは、ケイ酸100質量部に対してアルカリ金属イオンが0.001〜1質量部含まれるケイ酸化合物であり、なかでも、0.001〜0.2質量部含まれることが好ましく、0.001〜0.15質量部含まれることが特に好ましい。アルカリ金属イオン濃度は、セイコーインスツルメンツ社製SPS4000などを用いて、ICP発光分析にて測定したものである。アルカリ金属イオンとしては、特に限定はなく、1種を用いてもよく、2種以上を用いてもよい。アルカリ金属イオンとしては、ナトリウムイオンまたはリチウムイオンが好ましい。また、ケイ酸化合物とは、後述するような後処理を施すことにより、シリカ膜を形成する化合物を意味する。   The silica precursor in the present invention is a silicic acid compound in which 0.001 to 1 part by mass of alkali metal ions is contained with respect to 100 parts by mass of silicic acid, and in particular, 0.001 to 0.2 parts by mass is contained. It is particularly preferable that 0.001 to 0.15 parts by mass is included. The alkali metal ion concentration is measured by ICP emission analysis using SPS4000 manufactured by Seiko Instruments Inc. There is no limitation in particular as an alkali metal ion, 1 type may be used and 2 or more types may be used. As the alkali metal ion, sodium ion or lithium ion is preferable. Moreover, a silicic acid compound means the compound which forms a silica film by performing post-processing as mentioned later.

本発明におけるシリカ前駆体は、ケイ酸のアルカリ金属塩からアルカリ金属イオンの一部を除去して得られる生成物であることが好ましい。該生成物は、たとえば、陽イオン交換樹脂を用いて、ケイ酸のアルカリ金属塩からアルカリ金属イオンを減らす方法により得られる。使用する陽イオン交換樹脂の量、接触時間、接触方法等を制御することで、減らすアルカリ金属イオンの量を調節できる。   The silica precursor in the present invention is preferably a product obtained by removing a part of alkali metal ions from an alkali metal salt of silicic acid. The product is obtained, for example, by a method of reducing alkali metal ions from an alkali metal salt of silicic acid using a cation exchange resin. The amount of alkali metal ions to be reduced can be adjusted by controlling the amount of cation exchange resin used, the contact time, the contact method, and the like.

陽イオン交換樹脂としては、強酸性陽イオン交換樹脂(RSOH型)、弱酸性陽イオン交換樹脂(RCOOH型)等が使用できるが、強酸性陽イオン交換樹脂を使用するのが反応速度の点で好ましい。 As the cation exchange resin, strong acid cation exchange resin (RSO 3 H type), weak acid cation exchange resin (RCOOH type), etc. can be used, but the reaction rate is to use strong acid cation exchange resin. This is preferable.

本発明の光触媒膜形成用組成物においては、アルカリ金属イオンの濃度は光触媒形成用組成物に対して質量換算で0.2〜80ppmであるのが好ましく、特に0.2〜40ppm、さらには0.2〜20ppmであるのが好ましい。アルカリ金属イオン濃度が小さすぎると、形成された光触媒膜の親水性が悪くなるので好ましくない。一方、アルカリ金属イオンの濃度が大きすぎると該組成物の安定性が著しく低下するので好ましくない。   In the composition for forming a photocatalyst film of the present invention, the concentration of alkali metal ions is preferably 0.2 to 80 ppm in terms of mass relative to the composition for forming a photocatalyst, particularly 0.2 to 40 ppm, and more preferably 0. It is preferably 2 to 20 ppm. If the alkali metal ion concentration is too small, the hydrophilicity of the formed photocatalyst film is deteriorated, which is not preferable. On the other hand, if the concentration of alkali metal ions is too large, the stability of the composition is significantly reduced, which is not preferable.

ケイ酸のアルカリ金属塩としては、ケイ酸ナトリウム、ケイ酸リチウム、およびケイ酸カリウムなどの群から選ばれる1種以上が挙げられ、特にケイ酸ナトリウムおよび/またはケイ酸リチウムが好ましい。   Examples of the alkali metal salt of silicic acid include one or more selected from the group of sodium silicate, lithium silicate, and potassium silicate, and sodium silicate and / or lithium silicate are particularly preferable.

ケイ酸ナトリウムとしては、SiO/NaOの組成比が異なる材料が知られており、特に限定されずに用いることができる。中でも、NaOの含有比が小さい材料がアルカリ金属イオンを除去しやすいので好ましい。市販のケイ酸ナトリウムとしては、ケイ酸ソーダ1号(SiO/NaOのモル比:2.0〜2.3)、ケイ酸ソーダ2号(同モル比:2.4〜2.7)、ケイ酸ソーダ3号(同モル比:3.0〜3.3)、ケイ酸ソーダ4号(同モル比:3.7〜3.9)がある。NaOの含有比が小さいケイ酸ソーダ3号または4号が特に好ましい。 As sodium silicate, materials having different composition ratios of SiO 2 / Na 2 O are known, and can be used without any particular limitation. Among them, a material having a small content ratio of Na 2 O is preferable because alkali metal ions can be easily removed. As commercially available sodium silicate, sodium silicate No. 1 (SiO 2 / Na 2 O molar ratio: 2.0 to 2.3), sodium silicate No. 2 (same molar ratio: 2.4 to 2.7) ), Sodium silicate 3 (same molar ratio: 3.0 to 3.3), and sodium silicate 4 (same molar ratio: 3.7 to 3.9). Sodium silicate No. 3 or No. 4 having a small Na 2 O content ratio is particularly preferred.

ケイ酸リチウムとしては、SiO/LiOの組成比が異なる材料が知られており、特に限定されずに用いることができる。中でも、LiOの含有比が小さい材料がアルカリ金属イオンを除去しやすいので好ましい。市販のケイ酸リチウムとしては、ケイ酸リチウム35(SiO/LiOのモル比:3.5)(ケイ酸リチウム35とは日本化学工業社製の商品名である。以下、45、75についても同じ。)、ケイ酸リチウム45(同モル比:4.5)、ケイ酸リチウム75(同モル比:7.5)がある。特に、LiOの含有比が小さいケイ酸リチウム75が特に好ましい。 As lithium silicate, materials having different composition ratios of SiO 2 / Li 2 O are known, and can be used without particular limitation. Among them, a material having a small Li 2 O content ratio is preferable because alkali metal ions can be easily removed. As commercially available lithium silicate, lithium silicate 35 (SiO 2 / Li 2 O molar ratio: 3.5) (lithium silicate 35 is a trade name manufactured by Nippon Chemical Industry Co., Ltd., 45, 75 below. And lithium silicate 45 (same molar ratio: 4.5) and lithium silicate 75 (same molar ratio: 7.5). In particular, lithium silicate 75 having a small content ratio of Li 2 O is particularly preferable.

本発明では、光触媒膜成用組成物100質量部に対して、光触媒半導体微粒子とシリカ前駆体の固形分との総量が0.3〜1.2質量部である。0.3質量部より小さいと、形成された光触媒膜の膜厚が小さくなり、親水性や汚れ分解性が悪くなるので好ましくない。また、1.2質量部より大きいと、スプレー塗布した際に、微粒子が数100μmの大きさの塊状となって基材表面に付着し、外観の均一性が損なわれるので好ましくない。より好ましくは、0.5〜0.9質量部である。0.5〜0.9質量部であれば、汚れ分解性に特に優れより好ましい。なお、固形分とは、成膜後に膜を形成する成分を意味し、例えば、シリカ前駆体の固形分とは、シリカ前駆体中に含まれるケイ酸を意味する。   In the present invention, the total amount of the photocatalyst semiconductor fine particles and the solid content of the silica precursor is 0.3 to 1.2 parts by mass with respect to 100 parts by mass of the photocatalyst film forming composition. If it is less than 0.3 parts by mass, the film thickness of the formed photocatalyst film becomes small, and hydrophilicity and dirt degradability deteriorate, which is not preferable. On the other hand, when the amount is larger than 1.2 parts by mass, the fine particles adhere to the surface of the base material when sprayed and adhere to the surface of the substrate, which is not preferable. More preferably, it is 0.5-0.9 mass part. If it is 0.5-0.9 mass part, it is especially excellent in stain | pollution | contamination decomposability, and more preferable. In addition, solid content means the component which forms a film | membrane after film-forming, for example, the solid content of a silica precursor means the silicic acid contained in a silica precursor.

本発明では、前記光触媒半導体微粒子100質量部に対して、前記シリカ前駆体の固形分が25〜900質量部含まれることが好ましい。25質量部より小さいと、形成された光触媒膜の機械的強度が弱くなり、膜が傷つきやすくなるので好ましくない。一方、900質量部より大きいと、汚れ分解性が悪くなるので好ましくない。より好ましくは、50〜400質量部である。   In this invention, it is preferable that 25-900 mass parts of solid content of the said silica precursor is contained with respect to 100 mass parts of said photocatalyst semiconductor fine particles. If it is less than 25 parts by mass, the mechanical strength of the formed photocatalyst film becomes weak and the film is easily damaged. On the other hand, when it is larger than 900 parts by mass, the soil decomposability deteriorates, which is not preferable. More preferably, it is 50-400 mass parts.

本発明の光触媒膜形成用組成物は、溶媒を含む。前記溶媒としては、スプレー法に好適な組成物とするために、沸点90℃以下のアルコールと沸点90℃超130℃以下のアルコールとをそれぞれ所定の割合で含有する。なお、上記アルコールは、1価のアルコールのみならず多価アルコールであってもよい。溶媒として、他に水などを含んでいてもよい。   The composition for forming a photocatalyst film of the present invention contains a solvent. The solvent contains an alcohol having a boiling point of 90 ° C. or lower and an alcohol having a boiling point higher than 90 ° C. and 130 ° C. or lower in a predetermined ratio in order to obtain a composition suitable for the spray method. The alcohol may be a monohydric alcohol or a polyhydric alcohol. In addition, water or the like may be included as a solvent.

沸点90℃以下のアルコールとしては、メタノール(沸点:65℃)、エタノール(沸点:78℃)、2−プロパノール(沸点:83℃)、tert−ブタノール(沸点83℃)が挙げられる。これらのアルコール溶媒は蒸発速度が速く、かつ、光触媒半導体微粒子およびシリカ前駆体が凝集を起こし難いという特徴があり、上記アルコールが光触媒半導体微粒子およびシリカ前駆体の電荷を大きくし、相互に反発させるという働きをすることにより凝集を防止でき好ましい。沸点90℃以下のアルコールの含有量は、組成物100質量部に対して40〜65質量部が好ましい。40質量部よりも小さいと、該組成物をスプレー塗布した際に乾燥速度が遅すぎて、基材表面に着弾後、液滴が重力等の影響で流れて塗布むらとなり、外観上の均一性が損なわれるので好ましくない。一方、65質量部よりも大きいと、該組成物をスプレー塗布した際に乾燥速度が速すぎて、液滴が基材表面に着弾する前に乾燥してしまい、微粒子が数100μmの塊状となって付着して外観上の均一性が損なわれるので好ましくない。より好ましくは、組成物100質量部に対して45〜60質量部である。   Examples of the alcohol having a boiling point of 90 ° C. or lower include methanol (boiling point: 65 ° C.), ethanol (boiling point: 78 ° C.), 2-propanol (boiling point: 83 ° C.), and tert-butanol (boiling point 83 ° C.). These alcohol solvents have a feature that the evaporation rate is high and the photocatalytic semiconductor fine particles and the silica precursor hardly aggregate, and the alcohol increases the charges of the photocatalytic semiconductor fine particles and the silica precursor and repels each other. It is preferable because it works to prevent aggregation. The content of alcohol having a boiling point of 90 ° C. or less is preferably 40 to 65 parts by mass with respect to 100 parts by mass of the composition. If it is less than 40 parts by mass, the drying speed is too slow when the composition is spray-coated, and after landing on the surface of the substrate, the droplets flow due to the influence of gravity, etc., resulting in uneven coating and uniformity in appearance. Is unfavorable because it is damaged. On the other hand, if it is larger than 65 parts by mass, when the composition is spray-coated, the drying speed is too fast, and the droplets are dried before landing on the surface of the substrate, and the fine particles become a lump of several hundred μm. It is not preferable because it adheres and the appearance uniformity is impaired. More preferably, it is 45-60 mass parts with respect to 100 mass parts of compositions.

一方、沸点90℃超130℃以下のアルコールとしては、1−プロパノール(沸点:97℃)、1−ブタノール(沸点:118℃)、2−ブタノール(沸点:100℃)、2−メチル−1−プロパノール(沸点:108℃)、シクロブタノール(沸点:123℃)、2−ブテン−1−オール(沸点:122℃)、3−ブテン−1−オール(沸点:113℃)、3−ブテン−2−オール(沸点:97℃)、3−ブチン−1−オール(沸点:129℃)が挙げられる。これらのアルコール中では、光触媒半導体微粒子およびシリカ前駆体が凝集を起こしやすいという欠点があるが、蒸発速度が遅いという特徴があるので、前記の沸点90℃以下のアルコールと組合せて用いることにより、スプレーコート法に好適な光触媒膜形成用組成物を得ることができる。沸点90℃超130℃以下のアルコールの含有量は、組成物100質量部に対して25〜50質量部が好ましい。25質量部よりも小さいと、該組成物をスプレー塗布した際に乾燥速度が速すぎて、液滴が基材表面に着弾する前に乾燥し、微粒子が数100μmの塊状となって付着して外観上の均一性が損なわれるので好ましくない。一方、50質量部よりも大きいと、光触媒半導体微粒子およびシリカ前駆体が凝集してしまい、スプレーコートできなくなるので好ましくない。より好ましくは、30〜45質量部である。   On the other hand, as alcohols having a boiling point of more than 90 ° C. and not more than 130 ° C., 1-propanol (boiling point: 97 ° C.), 1-butanol (boiling point: 118 ° C.), 2-butanol (boiling point: 100 ° C.), 2-methyl-1- Propanol (boiling point: 108 ° C), cyclobutanol (boiling point: 123 ° C), 2-buten-1-ol (boiling point: 122 ° C), 3-buten-1-ol (boiling point: 113 ° C), 3-butene-2 -Ol (boiling point: 97 ° C.), 3-butyn-1-ol (boiling point: 129 ° C.). Among these alcohols, the photocatalyst semiconductor fine particles and the silica precursor are liable to agglomerate. However, since the evaporation rate is slow, the use of the alcohol in combination with the alcohol having a boiling point of 90 ° C. or lower allows A composition for forming a photocatalyst film suitable for the coating method can be obtained. The content of alcohol having a boiling point of more than 90 ° C and not more than 130 ° C is preferably 25 to 50 parts by mass with respect to 100 parts by mass of the composition. If it is less than 25 parts by mass, the drying speed is too high when the composition is spray-coated, and the droplets are dried before landing on the surface of the substrate, and the fine particles adhere as a lump of several hundred μm. Since the uniformity in appearance is impaired, it is not preferable. On the other hand, when the amount is larger than 50 parts by mass, the photocatalyst semiconductor fine particles and the silica precursor are aggregated, and spray coating cannot be performed. More preferably, it is 30-45 mass parts.

本発明の光触媒膜形成用組成物中には、界面活性剤を含むことが好ましい。該界面活性剤には主に2つの機能があり、第1は、組成物の基材に対する濡れ性を確保することであり、第2は、該組成物を用いて形成された光触媒膜の親水性をより高くすることである。界面活性剤の種類は特に限定されないが、非イオン系界面活性剤が液分散安定性の点で好ましく用いられる。特に、親水部がポリオキシアルキレンであり、疎水部が含フッ素有機基である化合物[たとえば、C17CHCHCH(CH)O(CHCHO)(CHCH(CH)O)H[x:y=70:30、x+y=5.72、平均分子量800]で表される化合物等。]が好ましい。または、親水部がポリオキシアルキレンであり、疎水部がメチルポリシロキサンである化合物(たとえば、日本ユニカー社製、商品名「L−77」等。)が好ましい。 The composition for forming a photocatalyst film of the present invention preferably contains a surfactant. The surfactant mainly has two functions, the first is to ensure the wettability of the composition to the substrate, and the second is the hydrophilicity of the photocatalyst film formed using the composition. It is to make sex higher. The type of the surfactant is not particularly limited, but a nonionic surfactant is preferably used from the viewpoint of liquid dispersion stability. In particular, a compound in which the hydrophilic part is polyoxyalkylene and the hydrophobic part is a fluorine-containing organic group [for example, C 8 F 17 CH 2 CH 2 CH (CH 3 ) O (CH 2 CH 2 O) x (CH 2 CH (CH 3 ) O) Compounds represented by y H [x: y = 70: 30, x + y = 5.72, average molecular weight 800] and the like. ] Is preferable. Alternatively, a compound in which the hydrophilic part is polyoxyalkylene and the hydrophobic part is methylpolysiloxane (for example, trade name “L-77” manufactured by Nippon Unicar Co., Ltd.) is preferable.

本発明の光触媒膜形成用組成物には、機能性添加剤が含まれていてもよい。該機能性添加剤としては、着色用染料、顔料、紫外線吸収剤、酸化防止剤、本発明における光触媒半導体微粒子以外の酸化物微粒子(五酸化リン、酸化マグネシウム等)等が好ましく挙げられる。   The composition for forming a photocatalyst film of the present invention may contain a functional additive. Preferred examples of the functional additive include coloring dyes, pigments, ultraviolet absorbers, antioxidants, and oxide fine particles (phosphorus pentoxide, magnesium oxide, etc.) other than the photocatalytic semiconductor fine particles in the present invention.

本発明の光触媒膜形成用組成物を用いて、基材表面に該組成物が塗布され、光触媒膜が形成され、光触媒膜付き基材が得られる。前記光触媒膜において、シリカ前駆体はシリカに変換されているが、部分的にシラノール基が残っていてもよい。   Using the composition for forming a photocatalyst film of the present invention, the composition is applied to the surface of a substrate to form a photocatalyst film, and a substrate with a photocatalyst film is obtained. In the photocatalyst film, the silica precursor is converted to silica, but silanol groups may partially remain.

シリカ前駆体は、化合物中にシラノール基を有し、すなわちSiO(OH)(s、tは0以上の整数であり、s+t=4。)で表される構造を有する(ただし、該構造において、水酸基でない酸素原子は、別のケイ素原子と化学結合している。)と考えられ、該シリカ前駆体から脱水縮合反応によりシリカが形成される。 The silica precursor has a silanol group in the compound, that is, a structure represented by SiO s (OH) t (s, t is an integer of 0 or more, and s + t = 4). In other words, oxygen atoms that are not hydroxyl groups are chemically bonded to other silicon atoms.), And silica is formed from the silica precursor by a dehydration condensation reaction.

本発明の光触媒膜形成用組成物はスプレー法に適した組成物である。基材を地上に対して水平に設置した場合、地上に対して鉛直に設置した場合どちらでも本発明の組成物を好適に使用できる。特に、すでに建築物に設置済みの基材に組成物を塗布する場合、基材は地上に対して鉛直に設置されている場合が多く、その場合は、基材表面に着弾した後液滴の重力により垂れ下がり塗布むらとなりやすい。本発明の組成物は、このような塗布むらもなく塗布することが可能であるため、すでに建築物に設置済みの基材、例えばビルの窓ガラス等に好適に用いられる。   The composition for forming a photocatalyst film of the present invention is a composition suitable for a spray method. The composition of the present invention can be preferably used when the substrate is installed horizontally with respect to the ground or when the substrate is installed vertically with respect to the ground. In particular, when the composition is applied to a base material that has already been installed in a building, the base material is often installed perpendicular to the ground. It tends to sag due to gravity and cause uneven coating. Since the composition of the present invention can be applied without such application unevenness, it is preferably used for a substrate already installed in a building, for example, a window glass of a building.

本発明においては、光触媒膜形成用組成物の濃度、塗布量等を調節することにより、得られる光触媒膜の厚さを制御できる。光触媒膜の厚さは、厚すぎると膜にクラックが入ったり、干渉縞が生じたり、傷が発生した場合にその傷が目立つという欠点があり、薄すぎると親水性や汚れ分解性が悪くなるおそれがある。光触媒膜の厚さは、5〜90nmが好ましく、特に20〜80nmが好ましい。   In the present invention, the thickness of the resulting photocatalyst film can be controlled by adjusting the concentration, coating amount, etc. of the composition for forming the photocatalyst film. If the thickness of the photocatalyst film is too thick, the film has cracks, interference fringes, or scratches that are noticeable, and if it is too thin, the hydrophilicity and dirt degradability deteriorate. There is a fear. The thickness of the photocatalytic film is preferably 5 to 90 nm, and particularly preferably 20 to 80 nm.

本発明に用いられる基材は、特に限定されない。基材の形状は平板に限らず、全面に、または、一部に曲率を有していてもよい。本発明において用いられる基材は、ガラス、有機樹脂等の透明な基材が、本発明の組成物が透明性を維持できる点で好ましい。前記ガラスとしては、例えば、板ガラスや自動車用ガラスに主として用いられるソーダライムガラスが挙げられ、前記有機樹脂としては、例えば、ポリカーボネート、アクリル、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレートなどの樹脂が挙げられる。また、前記有機樹脂の強度を上げるため、樹脂の表面にシリコーンハードコートを施してもよい。また、基材として、ガラス、有機樹脂等の透明な基材を用いる場合には、その視認性の観点から、光触媒膜付き基材の可視光透過率(JIS R3106(1998年))が70%以上であることが好ましい。   The base material used for this invention is not specifically limited. The shape of the substrate is not limited to a flat plate, and may have a curvature on the entire surface or a part thereof. The base material used in the present invention is preferably a transparent base material such as glass or organic resin in that the composition of the present invention can maintain transparency. Examples of the glass include soda lime glass mainly used for plate glass and automotive glass. Examples of the organic resin include resins such as polycarbonate, acrylic, polyethylene, polypropylene, and polyethylene terephthalate. In order to increase the strength of the organic resin, a silicone hard coat may be applied to the surface of the resin. When a transparent substrate such as glass or organic resin is used as the substrate, the visible light transmittance (JIS R3106 (1998)) of the substrate with a photocatalyst film is 70% from the viewpoint of visibility. The above is preferable.

基材には前処理を施してもよい。前処理としては、プラズマ処理、コロナ放電、UV処理、オゾン処理等の放電処理、酸またはアルカリ等を用いた化学的処理、研磨材を用いた物理的処理等が挙げられる。前処理を行うことで、組成物の基材への濡れ性がよくなり、組成物が均一に塗布でき、形成された光触媒膜の基材への密着性を高めることができる。特に基材が有機樹脂の場合、前処理を行うことが好ましい。一般にプラスチックの改質に用いられる低圧水銀ランプ等による紫外線照射により行われる前処理は特に有効である。   The substrate may be pretreated. Examples of the pretreatment include plasma treatment, corona discharge, UV treatment, discharge treatment such as ozone treatment, chemical treatment using acid or alkali, physical treatment using an abrasive, and the like. By performing the pretreatment, the wettability of the composition to the substrate is improved, the composition can be uniformly applied, and the adhesion of the formed photocatalytic film to the substrate can be enhanced. In particular, when the substrate is an organic resin, pretreatment is preferably performed. In general, a pretreatment performed by ultraviolet irradiation by a low-pressure mercury lamp or the like generally used for plastic modification is particularly effective.

本発明の光触媒膜形成用組成物を基材上にスプレーし、乾燥することにより、光触媒膜が得られる。この時の乾燥は常温の放置乾燥で充分であるが、光触媒膜の硬度を高めることを目的として、後処理を施しても良い。後処理としては加熱や、紫外線、電子線等の電磁波の照射等が挙げられる。加熱は基材の耐熱性を考慮して、50〜700℃、特に100〜350℃の範囲で5〜60分間行うことが好ましい。また基材が有機樹脂などの耐熱性が低い材料である場合や基材中の低分子化合物が加熱により基材外に拡散する場合には、後処理として紫外線、電子線等の電磁波の照射を行うことが好ましい。   A photocatalyst film is obtained by spraying the composition for forming a photocatalyst film of the present invention on a substrate and drying it. In this case, drying at room temperature is sufficient, but post-treatment may be performed for the purpose of increasing the hardness of the photocatalyst film. Examples of the post-treatment include heating and irradiation with electromagnetic waves such as ultraviolet rays and electron beams. In consideration of the heat resistance of the substrate, the heating is preferably performed at 50 to 700 ° C., particularly at 100 to 350 ° C. for 5 to 60 minutes. When the base material is a material with low heat resistance such as an organic resin, or when low molecular compounds in the base material diffuse out of the base material by heating, irradiation with electromagnetic waves such as ultraviolet rays and electron beams is performed as a post-treatment. Preferably it is done.

また、光触媒膜形成用組成物の塗布量は、形成される膜厚により多少変動するが、5〜150ml/mであることが好ましい。塗布量が少なすぎると形成される膜厚が小さくなり、親水性や汚れ分解性が悪くなるおそれがある。一方、塗布量が多すぎると塗布むらを起こしやすくなるだけでなく、形成される膜厚が大きくなり膜にクラックが入ったり、干渉縞が生じたり、傷が発生した場合にその傷が目立つという欠点がある。塗布量のより好ましい範囲は、10〜100ml/mである。 Moreover, the coating amount of the composition for forming a photocatalyst film varies somewhat depending on the film thickness to be formed, but is preferably 5 to 150 ml / m 2 . If the coating amount is too small, the formed film thickness becomes small, and there is a possibility that the hydrophilicity and dirt decomposability are deteriorated. On the other hand, if the coating amount is too large, not only coating unevenness is likely to occur, but also the film thickness that is formed becomes large, cracks occur in the film, interference fringes occur, or scratches are noticeable. There are drawbacks. A more preferable range of the coating amount is 10 to 100 ml / m 2 .

本発明の光触媒膜付き基材は、その表面が親水性に優れ、かつ透明性に優れるため、輸送機器用物品、建築用物品等として好ましく用いられる。輸送機器用物品としては、電車、自動車、船舶、航空機等のボディー、窓ガラス、ミラー、各種表示素子用カバー板等が挙げられる。建築用物品としては、外壁、窓ガラス、橋やトンネル等の構造物等が挙げられる。また他の用途として、照明用カバーガラス、遮音壁等が挙げられる。特に、すでに建築物に設置済みの窓ガラス等に好適に用いられる。   The substrate with a photocatalyst film of the present invention is preferably used as an article for transportation equipment, an article for construction, and the like because its surface is excellent in hydrophilicity and excellent in transparency. Examples of articles for transportation equipment include bodies of trains, automobiles, ships, aircrafts, window glass, mirrors, various display element cover plates, and the like. Examples of building articles include outer walls, window glass, structures such as bridges and tunnels, and the like. Other applications include lighting cover glass and sound insulation walls. In particular, it is suitably used for window glass already installed in buildings.

本発明の光触媒膜付き基材は、その表面が親水性に優れるため、表面に付着した水滴が濡れ広がり、表面が曇らないという防曇性を有する。また、表面において有機汚れが分解される。さらに、表面への光照射によって、有機汚れの分解性能がさらに向上する。さらに、降雨により雨滴が表面を流れ落ちる際に汚れも同時に流れ落ちる。本発明の光触媒膜付き基材は、視界の確保、美観の保護またはメンテナンス費用の削減等の効果も期待できる。   The base material with a photocatalyst film of the present invention has an antifogging property that its surface is excellent in hydrophilicity, so that water droplets adhering to the surface spread out and the surface does not become cloudy. In addition, organic dirt is decomposed on the surface. Furthermore, the degradation performance of organic dirt is further improved by light irradiation on the surface. Furthermore, when raindrops flow down the surface due to rain, dirt also flows down at the same time. The base material with a photocatalyst film of the present invention can be expected to have effects such as ensuring visibility, protecting aesthetics, or reducing maintenance costs.

本発明の光触媒膜形成用組成物から形成された光触媒膜は、従来のアルコキシシランであるSi(OR)(R:アルキル基)を加水分解して得られるSiO(OH)(OR)r(p、qは0以上の整数であり、rは1以上の整数であり、p+q+r=4。)で表される構造(ただし、該構造において、水酸基でない酸素原子は、別のケイ素原子と化学結合している。)を有する生成物を用いた組成物から形成された被膜よりも、親水持続性や汚れ分解性に優れる。 A photocatalyst film formed from the composition for forming a photocatalyst film of the present invention is obtained by hydrolyzing Si (OR) 4 (R: alkyl group), which is a conventional alkoxysilane, SiO p (OH) q (OR) r (p, q is an integer of 0 or more, r is an integer of 1 or more, and p + q + r = 4) (in this structure, an oxygen atom that is not a hydroxyl group includes another silicon atom) It is superior in hydrophilic sustainability and soil decomposability than a film formed from a composition using a product having a chemical bond.

本発明の光触媒膜付き基材は、基材と光触媒膜との間や光触媒膜の上に別の膜を設けてもよい。前記別の膜としては、例えば、アルカリバリア層(基材がアルカリ金属含有ガラスである場合、光触媒膜へのアルカリ金属の拡散を防止することを目的とした層)や保護膜等が挙げられる。   The base material with a photocatalyst film of the present invention may be provided with another film between the base material and the photocatalyst film or on the photocatalyst film. Examples of the another film include an alkali barrier layer (a layer intended to prevent diffusion of alkali metal into the photocatalyst film when the base material is alkali metal-containing glass), a protective film, and the like.

以下に本発明を実施例(例1〜例6)と比較例(例7〜例11)により具体的に説明する。サンプルは、以下の方法を用いて作製、評価した。評価結果を表1に示す。   Hereinafter, the present invention will be specifically described with reference to Examples (Examples 1 to 6) and Comparative Examples (Examples 7 to 11). Samples were prepared and evaluated using the following methods. The evaluation results are shown in Table 1.

[外観]
サンプル表面に、肉眼で塗布むらが生じたり、顕微鏡観察で微粒子が数100μmの塊状となって付着していたりする場合を×とした。またこれらの欠点が無い場合を○とした。
[appearance]
A case where the coating unevenness was observed on the sample surface with the naked eye or the microparticles were adhered in the form of a lump of several hundreds μm by microscopic observation was marked as x. In addition, the case where there was no such defect was marked as ◯.

[ヘーズ]
サンプルのヘーズ値を測定して、透明性を評価した。ヘーズ測定はJIS K−7105(1981年)により、ヘーズコンピューター(スガ試験機社製、HGM−3DP型)で測定した。なお、このJIS規格は主としてプラスチックの試験方法であるが、本評価ではこの試験方法をガラスに応用したものである。ヘーズ値が2%以下のものが透明性に優れるため実用上好ましい。
[Haze]
Transparency was evaluated by measuring the haze value of the sample. The haze measurement was performed by JIS K-7105 (1981) with a haze computer (HGM-3DP type, manufactured by Suga Test Instruments Co., Ltd.). This JIS standard is mainly a test method for plastics. In this evaluation, this test method is applied to glass. A haze value of 2% or less is preferred for practical use because of its excellent transparency.

[膜強度(耐磨耗性)]
サンプルにテーバー磨耗試験(磨耗回数:20回、荷重:4.9N)を行い、磨耗試験前後のヘーズ値をヘーズコンピューター(スガ試験機社製、HGM−3DP型)で測定し、その変化量を求めた。変化量が2%以下であるものが実用上好ましい。
[Membrane strength (Abrasion resistance)]
The sample is subjected to a Taber abrasion test (wear frequency: 20 times, load: 4.9 N), and the haze value before and after the abrasion test is measured with a haze computer (HGM-3DP type, manufactured by Suga Test Instruments Co., Ltd.). Asked. A change amount of 2% or less is practically preferable.

[親水性]
サンプル作製直後の、光を照射していない初期の水滴接触角を接触角計(協和界面科学社製、CA−X型)を用いて測定した。水滴接触角は10°以下のものを○、10°を超えるものを×とした。
[Hydrophilic]
Immediately after the preparation of the sample, the initial water droplet contact angle that was not irradiated with light was measured using a contact angle meter (Kyowa Interface Science Co., Ltd., CA-X type). The water droplet contact angle was evaluated as ◯ when the angle was 10 ° or less, and x when the angle exceeded 10 °.

[親水持続性]
サンプル作成直後からサンプルを光のあたらない環境に1週間保持した後、水滴接触角を測定した。水滴接触角が10°以下を維持しているものを○、10°を超えるものを×とした。1週間後も水滴接触角が10°以下であることが親水性維持の観点から好ましい。
[Hydrophilic durability]
Immediately after the sample was prepared, the sample was kept in an environment free from light for 1 week, and then the contact angle of the water droplet was measured. A case where the water droplet contact angle is maintained at 10 ° or less was evaluated as ◯, and a case where the water droplet contact angle exceeded 10 ° was evaluated as ×. Even after one week, the water droplet contact angle is preferably 10 ° or less from the viewpoint of maintaining hydrophilicity.

[汚れ分解性]
作製直後のサンプルにオレイン酸を付着させ、水滴接触角が70°程度の汚れた表面を作り、その表面にブラックライト(中心波長365nm)を0.5mW/cmの強度で所定時間照射した後、水滴接触角を測定した。6時間以内の照射で水滴接触角が10°以下となったものを◎、24時間以内の照射で水滴接触角が10°以下となったものを○、24時間照射しても10°以下にならなかったものを×とした。24時間以内の照射で10°以下になることが防汚性の観点から好ましい。
[Soil degradability]
After attaching oleic acid to the sample immediately after production to create a dirty surface with a water droplet contact angle of about 70 °, the surface was irradiated with black light (center wavelength 365 nm) at an intensity of 0.5 mW / cm 2 for a predetermined time. The water droplet contact angle was measured. When the water droplet contact angle is 10 ° or less after irradiation within 6 hours, ◎, when the water droplet contact angle is 10 ° or less after irradiation within 24 hours, ○, 10 ° or less even when irradiated for 24 hours What did not become was set as x. It is preferable from the viewpoint of antifouling property that the irradiation is within 10 ° after irradiation within 24 hours.

[防汚性]
作成直後のサンプルを屋外に1ヶ月間曝露した後、汚れの程度を肉眼で観察した。汚れが目立たないものを○、少し汚れが目立つものを△、かなり汚れが目立つものを×とした。
[Anti-fouling]
The sample immediately after preparation was exposed outdoors for one month, and then the degree of contamination was observed with the naked eye. The case where the dirt was not noticeable was rated as “◯”, the case where the dirt was slightly noticed as “Δ”, and the case where the dirt was noticeable as “x”.

[防曇性]
作成直後のサンプルに息を吹きかけ、曇りの有無を肉眼で観察した。曇りなしを○、曇り発生を×とした。
[Anti-fogging property]
The sample immediately after preparation was blown, and the presence or absence of cloudiness was observed with the naked eye. No cloudiness was indicated by ○, and occurrence of cloudiness was indicated by ×.

[例1]実施例
ソーダライムガラス板(100mm×100mm、厚さ3mm)を用意し、その表面を酸化セリウムで研磨し、蒸留水で洗浄した後に乾燥させ、前処理済ガラス板とした。
水の79.4gにケイ酸ソーダ3号(洞海化学工業製、SiO:24.3質量%、NaO:7.62質量%。SiO/NaOのモル比:3.3)の20.6gを添加し、さらに強酸性陽イオン交換樹脂(三菱化学製、商品名「ダイヤイオンSK1BH」。)の63gを添加して、10分間室温で撹拌して脱ナトリウムしたケイ酸ソーダ液(ケイ酸の100質量部に対してナトリウムイオンは0.02質量部)を調整した。
[Example 1] Example A soda-lime glass plate (100 mm x 100 mm, thickness 3 mm) was prepared, its surface was polished with cerium oxide, washed with distilled water and dried to obtain a pretreated glass plate.
To 79.4 g of water, sodium silicate 3 (manufactured by Dokai Chemical Industries, SiO 2 : 24.3 mass%, Na 2 O: 7.62 mass%. SiO 2 / Na 2 O molar ratio: 3.3 20.6 g), 63 g of a strongly acidic cation exchange resin (product name “Diaion SK1BH” manufactured by Mitsubishi Chemical) was added, and the mixture was stirred for 10 minutes at room temperature to remove sodium silicate. The liquid (0.02 mass part of sodium ions with respect to 100 mass parts of silicic acid) was adjusted.

また、2−プロパノール(沸点:83℃)の53.3gに、アナターゼ型酸化チタン微粒子(平均粒子径:60nm)の水分散液(固形分濃度:10質量%)の4.8g、脱塩ケイ酸ソーダ液の6.4g、および1−ブタノール(沸点:118℃)の35.5gを添加し、さらに界面活性剤(日本ユニカー社製、商品名:L−77)を液量に対して12.5ppmとなるように添加して、コート液1を得た。このコート液1は、
組成物100質量部に対する酸化チタン微粒子とシリカ前駆体の固形分との総量=0.8質量部
組成物100質量部に対する2−プロパノールの含有量=53質量部
組成物100質量部に対する1−ブタノールの含有量=36質量部
組成物中のナトリウムイオン濃度は0.6ppm
であった。
Also, 53.3 g of 2-propanol (boiling point: 83 ° C.), 4.8 g of an aqueous dispersion (solid content concentration: 10% by mass) of anatase-type titanium oxide fine particles (average particle size: 60 nm), demineralized silica 6.4 g of acid soda liquid and 35.5 g of 1-butanol (boiling point: 118 ° C.) were added, and further a surfactant (trade name: L-77, manufactured by Nihon Unicar Co., Ltd.) was added to the liquid amount. It added so that it might become 0.5 ppm, and the coating liquid 1 was obtained. This coating liquid 1
Total amount of titanium oxide fine particles and solid content of silica precursor with respect to 100 parts by mass of the composition = 0.8 parts by mass Content of 2-propanol with respect to 100 parts by mass of the composition = 53 parts by mass of 1-butanol with respect to 100 parts by mass of the composition Content = 36 parts by mass Sodium ion concentration in the composition is 0.6 ppm
Met.

得られたコート液1を前記処理済ガラス板の表面にスプレーガンを用いて、スプレー塗布した。塗布量は60ml/mであった。塗布後、常温で1日放置して乾燥し、厚さ60nmの光触媒膜を有するサンプル1を得た。 The obtained coating liquid 1 was spray-coated on the surface of the treated glass plate using a spray gun. The coating amount was 60 ml / m 2 . After application, the sample was left to stand at room temperature for one day and dried to obtain Sample 1 having a photocatalyst film having a thickness of 60 nm.

[例2]実施例
例1におけるコート液の調合において、2−プロパノールを40.0g、1−ブタノールを48.8gとした以外は、実施例1と同様にしてコート液2を得た。このコート液2は、
組成物100質量部に対する酸化チタン微粒子とシリカ前駆体の固形分との総量=0.8質量部
組成物100質量部に対する2−プロパノールの含有量=40質量部
組成物100質量部に対する1−ブタノールの含有量=49質量部
組成物中のナトリウムイオン濃度は0.6ppm
であった。
[Example 2] A coating liquid 2 was obtained in the same manner as in Example 1 except that the preparation of the coating liquid in Example 1 was changed to 40.0 g of 2-propanol and 48.8 g of 1-butanol. This coating liquid 2 is
Total amount of titanium oxide fine particles and solid content of silica precursor with respect to 100 parts by mass of the composition = 0.8 parts by mass Content of 2-propanol with respect to 100 parts by mass of the composition = 40 parts by mass of 1-butanol with respect to 100 parts by mass of the composition Content = 49 parts by mass Sodium ion concentration in the composition is 0.6 ppm
Met.

得られたコート液2を例1と同様にスプレー、乾燥し、厚さ60nmの光触媒膜を有するサンプル2を得た。   The obtained coating liquid 2 was sprayed and dried in the same manner as in Example 1 to obtain Sample 2 having a photocatalytic film having a thickness of 60 nm.

[例3]実施例
例1におけるコート液の調合において、2−プロパノールを62.2g、1−ブタノールを26.6gとした以外は、実施例1と同様にしてコート液3を得た。このコート液3は、
組成物100質量部に対する酸化チタン微粒子とシリカ前駆体の固形分との総量=0.8質量部
組成物100質量部に対する2−プロパノールの含有量=62質量部
組成物100質量部に対する1−ブタノールの含有量=27質量部
組成物中のナトリウムイオン濃度は0.6ppm
であった。
[Example 3] A coating liquid 3 was obtained in the same manner as in Example 1 except that 62.2 g of 2-propanol and 26.6 g of 1-butanol were prepared in the preparation of the coating liquid in Example 1. This coating solution 3
Total amount of titanium oxide fine particles and solid content of silica precursor with respect to 100 parts by mass of the composition = 0.8 parts by mass Content of 2-propanol with respect to 100 parts by mass of the composition = 62 parts by mass of 1-butanol with respect to 100 parts by mass of the composition Content = 27 parts by mass Sodium ion concentration in the composition is 0.6 ppm
Met.

得られたコート液3を例1と同様にスプレー、乾燥し、厚さ60nmの光触媒膜を有するサンプル3を得た。   The obtained coating liquid 3 was sprayed and dried in the same manner as in Example 1 to obtain Sample 3 having a photocatalytic film having a thickness of 60 nm.

[例4]実施例
例1におけるコート液の調合において、2−プロパノールを56.6g、アナターゼ型酸化チタン微粒子の水分散液を2.4g、脱ナトリウムしたケイ酸ソーダ液を3.2g、および1−ブタノールを37.8gとした以外は、実施例1と同様にしてコート液4を得た。このコート液4は、
組成物100質量部に対する酸化チタン微粒子とシリカ前駆体の固形分との総量=0.4質量部
組成物100質量部に対する2−プロパノールの含有量=57質量部
組成物100質量部に対する1−ブタノールの含有量=38質量部
組成物中のナトリウムイオン濃度は0.3ppm
であった。
Example 4 In the preparation of the coating liquid in Example 1, 56.6 g of 2-propanol, 2.4 g of an aqueous dispersion of anatase-type titanium oxide fine particles, 3.2 g of sodium silicate solution dehydrated, and A coating solution 4 was obtained in the same manner as in Example 1 except that 37.8 g of 1-butanol was used. This coating solution 4 is
Total amount of titanium oxide fine particles and solid content of silica precursor with respect to 100 parts by mass of composition = 0.4 parts by mass Content of 2-propanol with respect to 100 parts by mass of composition = 57 parts by mass of 1-butanol with respect to 100 parts by mass of composition Content = 38 parts by mass Sodium ion concentration in the composition is 0.3 ppm
Met.

得られたコート液4を例1と同様にスプレー、乾燥し、厚さ30nmの光触媒膜を有するサンプル4を得た。   The obtained coating liquid 4 was sprayed and dried in the same manner as in Example 1 to obtain Sample 4 having a photocatalytic film having a thickness of 30 nm.

[例5]実施例
例1のコート液1を用いて、スプレー塗布量を30ml/mとした以外は、例1と同様にして厚さ30nmの光触媒膜を有するサンプル5を得た。
[Example 5] Using the coating solution 1 of Example Example 1, except that the spray coating amount was 30 ml / m 2, to obtain a sample 5 with a photocatalyst film having a thickness of 30nm in the same manner as in Example 1.

[例6]実施例
例1のコート液1を用いて、スプレー塗布量を10ml/mとした以外は、例1と同様にして厚さ10nmの光触媒膜を有するサンプル6を得た。
Example 6 A sample 6 having a photocatalytic film having a thickness of 10 nm was obtained in the same manner as in Example 1 except that the coating amount 1 of Example 1 was used and the spray coating amount was 10 ml / m 2 .

[例7]比較例(1−ブタノールが多すぎる場合)
例1におけるコート液の調合において、2−プロパノールを35.5g、1−ブタノールを53.3gとしたところ、1−ブタノールを添加した直後に液が凝集沈殿を起こし、スプレー法により塗布できなかった。このコート液7は、
組成物100質量部に対する酸化チタン微粒子とシリカ前駆体の固形分との総量=0.8質量部
組成物100質量部に対する2−プロパノールの含有量=36質量部
組成物100質量部に対する1−ブタノールの含有量=53質量部
組成物中のナトリウムイオン濃度は0.6ppm
であった。
[Example 7] Comparative example (when 1-butanol is too much)
In the preparation of the coating liquid in Example 1, when 2propanol was 35.5 g and 1-butanol was 53.3 g, the liquid aggregated and precipitated immediately after the addition of 1-butanol, and could not be applied by the spray method. . This coating liquid 7
Total amount of titanium oxide fine particles and solid content of silica precursor with respect to 100 parts by mass of the composition = 0.8 parts by mass Content of 2-propanol with respect to 100 parts by mass of the composition = 36 parts by mass of 1-butanol with respect to 100 parts by mass of the composition Content = 53 parts by mass Sodium ion concentration in the composition is 0.6 ppm
Met.

[例8]比較例(1−ブタノールが少なすぎる場合)
例1におけるコート液の調合において、2−プロパノールを66.6g、1−ブタノールを22.2gとした以外は、実施例1と同様にしてコート液8を得た。このコート液8は、
組成物100質量部に対する酸化チタン微粒子とシリカ前駆体の固形分との総量=0.8質量部
組成物100質量部に対する2−プロパノールの含有量=67質量部
組成物100質量部に対する1−ブタノールの含有量=22質量部
組成物中のナトリウムイオン濃度は0.6ppm
であった。
[Example 8] Comparative example (when 1-butanol is too little)
A coating solution 8 was obtained in the same manner as in Example 1 except that 66.6 g of 2-propanol and 22.2 g of 1-butanol were prepared in the preparation of the coating solution in Example 1. This coating liquid 8
Total amount of titanium oxide fine particles and solid content of silica precursor with respect to 100 parts by mass of the composition = 0.8 parts by mass Content of 2-propanol with respect to 100 parts by mass of the composition = 67 parts by mass of 1-butanol with respect to 100 parts by mass of the composition Content = 22 parts by mass Sodium ion concentration in the composition is 0.6 ppm
Met.

得られたコート液8を例1と同様にスプレー、乾燥し、厚さ60nmの光触媒膜を有するサンプル8を得た。   The obtained coating liquid 8 was sprayed and dried in the same manner as in Example 1 to obtain Sample 8 having a photocatalytic film having a thickness of 60 nm.

[例9]比較例(固形分濃度が高すぎる場合)
例1におけるコート液の調合において、2−プロパノールを46.6g、アナターゼ型酸化チタン微粒子の水分散液を9.6g、脱ナトリウムしたケイ酸ソーダ液を12.8g、および1−ブタノールを31.0gとした以外は、実施例1と同様にしてコート液9を得た。このコート液9は、
組成物100質量部に対する酸化チタン微粒子とシリカ前駆体の固形分との総量=1.5質量部
組成物100質量部に対する2−プロパノールの含有量=47質量部
組成物100質量部に対する1−ブタノールの含有量=31質量部
組成物中のナトリウムイオン濃度は1.3ppm
であった。
[Example 9] Comparative example (when solid content concentration is too high)
In the preparation of the coating liquid in Example 1, 46.6 g of 2-propanol, 9.6 g of an aqueous dispersion of anatase-type titanium oxide fine particles, 12.8 g of sodium silicate solution removed with sodium, and 31. 1-butanol. A coating solution 9 was obtained in the same manner as in Example 1 except that the amount was 0 g. This coating liquid 9
Total amount of titanium oxide fine particles and solid content of silica precursor with respect to 100 parts by mass of the composition = 1.5 parts by mass Content of 2-propanol with respect to 100 parts by mass of the composition = 47 parts by mass of 1-butanol with respect to 100 parts by mass of the composition Content = 31 parts by mass Sodium ion concentration in the composition is 1.3 ppm
Met.

得られたコート液9を例1と同様にスプレー、乾燥し、厚さ110nmの光触媒膜を有するサンプル9を得た。   The obtained coating liquid 9 was sprayed and dried in the same manner as in Example 1 to obtain Sample 9 having a photocatalytic film having a thickness of 110 nm.

[例10]比較例(固形分濃度が低すぎる場合)
例1におけるコート液の調合において、2−プロパノールを58.7g、アナターゼ型酸化チタン微粒子の水分散液を1.0g、脱ナトリウムしたケイ酸ソーダ液を1.3g、および1−ブタノールを39.1gとした以外は、実施例1と同様にしてコート液10を得た。このコート液10は、
組成物100質量部に対する酸化チタン微粒子とシリカ前駆体の固形分との総量=0.2質量部
組成物100質量部に対する2−プロパノールの含有量=59質量部
組成物100質量部に対する1−ブタノールの含有量=39質量部
組成物中のナトリウムイオン濃度は0.1ppm
であった。
[Example 10] Comparative example (when solid content concentration is too low)
In the preparation of the coating liquid in Example 1, 58.7 g of 2-propanol, 1.0 g of an aqueous dispersion of anatase-type titanium oxide fine particles, 1.3 g of sodium silicate solution removed with sodium, and 39. 1-butanol. A coating solution 10 was obtained in the same manner as in Example 1 except that the amount was 1 g. This coating solution 10 is
Total amount of titanium oxide fine particles and solid content of silica precursor with respect to 100 parts by mass of composition = 0.2 parts by mass Content of 2-propanol with respect to 100 parts by mass of composition = 59 parts by mass of 1-butanol with respect to 100 parts by mass of composition Content = 39 parts by mass Sodium ion concentration in the composition is 0.1 ppm
Met.

得られたコート液10を用いて、スプレー塗布量を30ml/m2とした以外は、例1と同様にして厚さ4nmの光触媒膜を有するサンプル10を得た。   A sample 10 having a photocatalyst film having a thickness of 4 nm was obtained in the same manner as in Example 1 except that the obtained coating liquid 10 was used and the amount of spray coating was changed to 30 ml / m2.

[例11]比較例(1−ブタノールがない場合)
ソーダライムガラス板(100mm×100mm、厚さ3.5mm)を用意し、その表面を酸化セリウムで研磨し、蒸留水で洗浄した後に乾燥させ、前処理済ガラス板とした。
[Example 11] Comparative example (when 1-butanol is not present)
A soda lime glass plate (100 mm × 100 mm, thickness 3.5 mm) was prepared, the surface was polished with cerium oxide, washed with distilled water and dried to obtain a pretreated glass plate.

水の37.5gにケイ酸ソーダ4号(商品名:日本化学工業社製。SiO:23.35質量%、NaO:6.29質量%。SiO/NaOのモル比:3.83。)の12.5gを添加し、さらに強酸性陽イオン交換樹脂(三菱化学社製、商品名「SK1BH」。)の30gを添加して、10分間室温で撹拌して脱塩ケイ酸ソーダ液(ケイ酸の100質量部に対してナトリウムイオンは0.12質量部。)を調整した。 Sodium silicate No. 4 (trade name: manufactured by Nippon Chemical Industry Co., Ltd., SiO 2 : 23.35% by mass, Na 2 O: 6.29% by mass. Molar ratio of SiO 2 / Na 2 O: 37.5 g of water 3.83.) Is added, and 30 g of a strongly acidic cation exchange resin (trade name “SK1BH”, manufactured by Mitsubishi Chemical Corporation) is added and stirred at room temperature for 10 minutes to remove demineralized silica. An acid soda solution (0.12 parts by mass of sodium ions with respect to 100 parts by mass of silicic acid) was prepared.

また、2−プロパノールの32.1gに、アナターゼ型酸化チタン微粒子(平均粒子径:56nm。)の水分散液(固形分濃度:10質量%。)の9gおよび脱塩ケイ酸ソーダ液の8.9gを添加し、さらに界面活性剤「L−77」(商品名:日本ユニカー社製)を液量に対して100ppmとなるように添加して、コート液11(液中のナトリウムイオン濃度は12ppm。)を得た。   Further, 32.1 g of 2-propanol was added to 9 g of an aqueous dispersion (solid content concentration: 10% by mass) of anatase-type titanium oxide fine particles (average particle size: 56 nm) and 8. 9 g was added, and a surfactant “L-77” (trade name: manufactured by Nihon Unicar Co., Ltd.) was added so as to be 100 ppm with respect to the liquid volume, and coating liquid 11 (sodium ion concentration in the liquid was 12 ppm). .)

このコート液11を前記処理済ガラス板の表面にスプレーガンを用いて、スプレー塗布した。塗布量は60ml/mであった。塗布後、常温で1日放置して乾燥し、厚さ60nmの光触媒膜を有するサンプル11を得た。 This coating liquid 11 was spray-coated on the surface of the treated glass plate using a spray gun. The coating amount was 60 ml / m 2 . After application, the sample was left to stand at room temperature for one day and dried to obtain Sample 11 having a photocatalyst film having a thickness of 60 nm.

Figure 2006070141
Figure 2006070141

本発明によれば、基材の表面に優れた親水性を付与できるスプレー法用の光触媒膜形成用組成物が得られる。また、本発明の光触媒膜形成用組成物を用いて、親水性に優れる光触媒膜が形成でき、該光触媒膜付き基材の表面は親水性に優れる。さらに、本発明の光触媒膜形成用組成物を用いて形成された光触媒膜は、特に汚れ分解性に優れ、また、親水性の持続時間が長い。このため、表面は常に清浄に保たれる。また、建築物に設置済みの基材であっても塗布むらなく塗布することができ有用である。
ADVANTAGE OF THE INVENTION According to this invention, the composition for photocatalyst film formation for the spray method which can provide the hydrophilic property excellent in the surface of a base material is obtained. Moreover, the photocatalyst film | membrane excellent in hydrophilic property can be formed using the composition for photocatalyst film formation of this invention, and the surface of this base material with a photocatalyst film | membrane is excellent in hydrophilicity. Furthermore, the photocatalyst film formed using the composition for forming a photocatalyst film of the present invention is particularly excellent in soil decomposability and has a long hydrophilic duration. For this reason, the surface is always kept clean. Moreover, even if it is the base material already installed in the building, it can apply | coat without application | coating unevenness and is useful.

Claims (11)

光触媒半導体微粒子、下記シリカ前駆体および溶媒を必須とする光触媒膜形成用組成物であって、溶媒として沸点90℃以下のアルコールと沸点90℃超130℃以下のアルコールとを含み、該組成物100質量部に対する光触媒半導体微粒子とシリカ前駆体の固形分との総量が0.3〜1.2質量部であり、沸点90℃以下のアルコールの含有量が40〜65質量部であり、かつ沸点90℃超130℃以下のアルコールの含有量が25〜50質量部であることを特徴とするスプレー用の光触媒膜形成用組成物。
シリカ前駆体:ケイ酸100質量部に対してアルカリ金属イオンが0.001〜1質量部含まれるケイ酸化合物。
A composition for forming a photocatalyst film comprising the photocatalyst semiconductor fine particles, the following silica precursor, and a solvent, wherein the composition comprises an alcohol having a boiling point of 90 ° C. or lower and an alcohol having a boiling point of 90 ° C. or higher and 130 ° C. or lower. The total amount of the photocatalyst semiconductor fine particles and the solid content of the silica precursor with respect to parts by mass is 0.3 to 1.2 parts by mass, the content of alcohol having a boiling point of 90 ° C. or less is 40 to 65 parts by mass, and the boiling point 90 The composition for forming a photocatalyst film for spraying, wherein the content of an alcohol having a temperature of more than 130 ° C and not more than 130 ° C is 25 to 50 parts by mass.
Silica precursor: a silicic acid compound containing 0.001 to 1 part by mass of alkali metal ions with respect to 100 parts by mass of silicic acid.
沸点90℃以下のアルコールの含有量が45〜60質量部であり、沸点90℃超130℃以下のアルコールの含有量が30〜45質量部である請求項1に記載の光触媒膜形成用組成物。   The composition for forming a photocatalyst film according to claim 1, wherein the content of alcohol having a boiling point of 90 ° C or lower is 45 to 60 parts by mass, and the content of alcohol having a boiling point of 90 ° C or higher and 130 ° C or lower is 30 to 45 parts by mass. . 前記光触媒半導体微粒子の平均粒子径が、5〜90nmである請求項1または2に記載の光触媒膜形成用組成物。   The composition for forming a photocatalyst film according to claim 1 or 2, wherein the photocatalyst semiconductor fine particles have an average particle diameter of 5 to 90 nm. 前記光触媒膜形成用組成物中のアルカリ金属イオンの濃度が、光触媒膜形成用組成物に対して質量換算で0.2〜80ppmである請求項1、2または3に記載の光触媒膜形成用組成物。   The composition for forming a photocatalyst film according to claim 1, 2 or 3, wherein the concentration of alkali metal ions in the composition for forming a photocatalyst film is 0.2 to 80 ppm in terms of mass with respect to the composition for forming a photocatalyst film. object. 前記シリカ前駆体が、ケイ酸のアルカリ金属塩からアルカリ金属イオンの一部を除去することにより形成されてなる請求項1〜4いずれか1項に記載の光触媒膜形成用組成物。   5. The composition for forming a photocatalyst film according to claim 1, wherein the silica precursor is formed by removing a part of alkali metal ions from an alkali metal salt of silicic acid. 前記シリカ前駆体が、ケイ酸のアルカリ金属塩からアルカリ金属イオンの一部を、陽イオン交換樹脂を用いて除去することにより形成されてなる請求項5に記載の光触媒膜形成用組成物。   The composition for forming a photocatalyst film according to claim 5, wherein the silica precursor is formed by removing a part of alkali metal ions from an alkali metal salt of silicic acid using a cation exchange resin. 前記光触媒半導体微粒子100質量部に対して前記シリカ前駆体の固形分が25〜900質量部含まれる請求項1〜6いずれか1項に記載の光触媒膜形成用組成物。   The composition for forming a photocatalyst film according to any one of claims 1 to 6, wherein the silica precursor has a solid content of 25 to 900 parts by mass with respect to 100 parts by mass of the photocatalytic semiconductor fine particles. 基材の表面に、請求項1〜7いずれか1項に記載の光触媒膜形成用組成物をスプレー法で塗布することにより形成されてなる光触媒膜。   The photocatalyst film formed by apply | coating the composition for photocatalyst film formation of any one of Claims 1-7 on the surface of a base material with a spray method. 該光触媒膜の厚さが5〜90nmである請求項8に記載の光触媒膜。   The photocatalyst film according to claim 8, wherein the photocatalyst film has a thickness of 5 to 90 nm. 基材の表面に請求項8または9に記載の光触媒膜を有する光触媒膜付き基材。   The base material with a photocatalyst film which has the photocatalyst film of Claim 8 or 9 on the surface of a base material. 前記基材がすでに建築物に設置済みの基材である請求項10に記載の光触媒膜付き基材。
The substrate with a photocatalyst film according to claim 10, wherein the substrate is a substrate already installed in a building.
JP2004254389A 2004-09-01 2004-09-01 Composition for forming photocatalyst membrane and substrate with the photocatalyst membrane Withdrawn JP2006070141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004254389A JP2006070141A (en) 2004-09-01 2004-09-01 Composition for forming photocatalyst membrane and substrate with the photocatalyst membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004254389A JP2006070141A (en) 2004-09-01 2004-09-01 Composition for forming photocatalyst membrane and substrate with the photocatalyst membrane

Publications (1)

Publication Number Publication Date
JP2006070141A true JP2006070141A (en) 2006-03-16

Family

ID=36151103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004254389A Withdrawn JP2006070141A (en) 2004-09-01 2004-09-01 Composition for forming photocatalyst membrane and substrate with the photocatalyst membrane

Country Status (1)

Country Link
JP (1) JP2006070141A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008000672A (en) * 2006-06-22 2008-01-10 Nippon Light Metal Co Ltd Coating method of aqueous coating
CN112391112A (en) * 2020-11-03 2021-02-23 江苏皇冠新材料科技有限公司 Antifogging coating, antifogging film and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000303027A (en) * 1998-12-04 2000-10-31 Toto Ltd Photocatalytic hydrophilic coating composition
WO2003068871A1 (en) * 2002-02-15 2003-08-21 Asahi Glass Company, Limited Compositions for forming photocatalytic film and substrate provided with photocatalytic film
JP2003277689A (en) * 2002-03-26 2003-10-02 Sumitomo Chem Co Ltd Coating material composition and substrate coated therewith

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000303027A (en) * 1998-12-04 2000-10-31 Toto Ltd Photocatalytic hydrophilic coating composition
WO2003068871A1 (en) * 2002-02-15 2003-08-21 Asahi Glass Company, Limited Compositions for forming photocatalytic film and substrate provided with photocatalytic film
JP2003277689A (en) * 2002-03-26 2003-10-02 Sumitomo Chem Co Ltd Coating material composition and substrate coated therewith

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008000672A (en) * 2006-06-22 2008-01-10 Nippon Light Metal Co Ltd Coating method of aqueous coating
CN112391112A (en) * 2020-11-03 2021-02-23 江苏皇冠新材料科技有限公司 Antifogging coating, antifogging film and preparation method thereof

Similar Documents

Publication Publication Date Title
EP0816466B1 (en) Use of material having ultrahydrophilic and photocatalytic surface
JP5761346B2 (en) Inorganic hydrophilic coating liquid, hydrophilic coating obtained therefrom and member using the same
JP3077199B2 (en) Photocatalytic hydrophilic coating composition
US6156409A (en) Non-fogging article and process for the production thereof
US6783845B2 (en) Anti-fogging coating material, anti-fogging coating, and anti-fogging optical member
JP3344256B2 (en) Coating liquid for forming hydrophilic film and method for producing the same
SA517381194B1 (en) Low-Reflection Coating
WO2012073685A1 (en) Anti-fog coated article
JP2007063477A (en) Inorganic coating composition, hydrophilic coating film, and agricultural film
JP2000303027A (en) Photocatalytic hydrophilic coating composition
JP3087682B2 (en) Photocatalytic hydrophilic member
JP4292992B2 (en) Composition for forming photocatalyst film and substrate with photocatalyst film
JP2006070141A (en) Composition for forming photocatalyst membrane and substrate with the photocatalyst membrane
JP2001172545A (en) Coating composition
WO2006093086A1 (en) Antifog coated article, coating material for forming antifog coating, and method for producing antifog coated article
JP2006021494A (en) Base material with laminated film and its manufacturing method
KR20060035945A (en) Antifouling functional ceramic coating composition
JP7369957B2 (en) Coating agent and coating film
JP7083342B2 (en) A method for manufacturing a transparent substrate with a low-reflection film, a photoelectric conversion device, a coating liquid for forming a low-reflection film of a transparent substrate with a low-reflection film, and a transparent substrate with a low-reflection film.
JP2000303055A (en) Agent for restoring hydrophilicity of photocatalytic hydrophilic coating film
JPH1067543A (en) Photocatalytic hydrophilic parts material
JP2011126948A (en) Coating agent for glass, and method for producing the same
JP2003073618A (en) Undercoating composition for undercoat layer on surface before forming photocatalytic hydrophilic coating film
JP2010001182A (en) Glass coating agent and method for producing the same
JPWO2018198935A1 (en) Glass article with low reflection coating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070521

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20101019