WO2018051958A1 - Antifouling article - Google Patents

Antifouling article Download PDF

Info

Publication number
WO2018051958A1
WO2018051958A1 PCT/JP2017/032745 JP2017032745W WO2018051958A1 WO 2018051958 A1 WO2018051958 A1 WO 2018051958A1 JP 2017032745 W JP2017032745 W JP 2017032745W WO 2018051958 A1 WO2018051958 A1 WO 2018051958A1
Authority
WO
WIPO (PCT)
Prior art keywords
antifouling
layer
hardness
article
antifouling article
Prior art date
Application number
PCT/JP2017/032745
Other languages
French (fr)
Japanese (ja)
Inventor
万江美 増田
広和 小平
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2018051958A1 publication Critical patent/WO2018051958A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/25Oxides by deposition from the liquid phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/30Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being formed of particles, e.g. chips, granules, powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions

Definitions

  • the present invention relates to an antifouling article, and in particular, to an antifouling article having excellent antifouling properties and excellent wear resistance.
  • an antifouling article has been proposed that has a hydrophilic microporous antifouling layer on a substrate surface in which an aggregate of silica fine particles such as pearl necklace-like silica is bound with a siliceous binder (for example, a patent) Reference 1).
  • the antifouling layer in the antifouling article of Patent Document 1 has fine irregularities on the surface, so that the contact area when dirt adheres to the antifouling layer surface can be reduced, thereby exhibiting excellent antifouling properties. Is.
  • the uneven shape on the antifouling layer surface is formed by reflecting the accumulated shape of the silica fine particle aggregate.
  • the antifouling layer is not only difficult to get dirty due to the uneven shape of the surface, but also has the effect that the dirt attached due to being hydrophilic is spread and washed away by the attachment of rainwater etc. It is known that there is.
  • the antifouling layer using silica fine particles as described in Patent Document 1 is excellent in antifouling properties as described above, but a visible scratch is generated on the antifouling layer due to wear during long-term use. However, it was difficult to say that the abrasion resistance was insufficient.
  • Patent Document 2 describes a coating composition containing nano diamond particles having high hardness and a resin.
  • this coating composition is used for forming a smooth surface film having excellent transparency, high strength and high elastic modulus, and does not have an antifouling function. That is, Patent Document 2 does not describe a technique for forming an antifouling film having an uneven shape on the surface by adjusting the deposition state of nanodiamond particles.
  • the present invention has been made from the above viewpoint and aims to provide an antifouling article having excellent antifouling properties and excellent wear resistance.
  • the present invention comprises the following.
  • An antifouling article comprising a substrate and an antifouling layer disposed on the substrate and having a plurality of protrusions including a concavo-convex layer containing an aggregate of high hardness nanoparticles and a binder on the surface, After placing a cotton cloth specified in JIS L0803 on the surface of the antifouling layer, applying a pressure of 1.23 ⁇ 10 4 N / m 2 and reciprocating 100 times, and then washing the antifouling article with water, An antifouling article having an antifouling index ⁇ Hx measured by the following method of 12% or less.
  • the mixed powder for evaluation (2.3% by mass of carbon black 1 (particle size 0.002 to 0.028 ⁇ m), 9.3% by mass on the surface of the antifouling layer) %
  • Carbon black 2 (12 types of JIS test powder 1), 62.8% by mass of yellow ocher (natural ocher for pigments), 20.9% by mass of calcined Kanto loam (8 of JIS test powder 1) Seed) and 4.7% by mass of silica powder (mixed powder of three kinds of JIS test powder 1) are sprayed at a rate of 0.02 g / cm 2 and allowed to stand for 10 seconds.
  • the haze value is measured after removing the evaluation mixed powder by repeating twice the operation of moving the lower end of the antifouling article to the surface of the test plate at a speed of / sec. The haze value measurement is carried out five times, and the average is taken as the haze value after the test, and the value obtained by subtracting the haze value before the test from the haze value after the test is taken as the antifouling index ⁇ Hx.
  • the average distance between the apexes of the body T is 50 to 1,000 nm, and the ratio of the total area of the bottom surface of the protrusion T to the area of the substrate on which the antifouling layer is disposed is 12 to 70% [1. ]
  • antifouling article [6] The antifouling article according to [1] to [5], wherein the volume ratio of the high hardness nanoparticles to the binder is 30/70 to 70/30.
  • an antifouling article having excellent antifouling properties and excellent wear resistance can be provided.
  • the term “process” includes not only an independent process but also a case where the intended purpose of the process is achieved even if it cannot be clearly distinguished from other processes.
  • a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the content of each component in the composition means the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition.
  • the average primary particle diameter of the particles is a particle diameter determined by observation with a scanning electron microscope.
  • the secondary particle diameter is a particle diameter measured by a dynamic light scattering method.
  • FIG. 1 and FIG. 2 are diagrams schematically showing a cross section of one example and another example of the antifouling article according to the present invention.
  • An antifouling article 1 ⁇ / b> A shown in FIG. 1 includes a base 2 and an antifouling layer 6 disposed on the base 2.
  • the antifouling layer 6 is composed of a concavo-convex layer 5 containing an aggregate of high hardness nanoparticles 3 and a binder 4 and has a plurality of protrusions 9.
  • the antifouling article 1B shown in FIG. 2 has a base 2 and an antifouling layer 6 disposed on the base 2.
  • the antifouling layer 6 has a concavo-convex layer 5 including an aggregate of high hardness nanoparticles 3 and a binder 4, an intermediate layer 7, and a water repellent layer 8 in order from the substrate 2 side.
  • the surface shape of the antifouling layer 6 reflects the surface shape of the uneven layer 5 substantially as it is, and has a plurality of protrusions 9.
  • the antifouling index ⁇ Hx (hereinafter also simply referred to as “antifouling index ⁇ Hx”) measured by the above method is 12% or less.
  • the antifouling article of the present invention has a plurality of protrusions on the surface of the antifouling layer, thereby reducing the contact area of dirt against the antifouling article. As a result, dirt is less likely to adhere to the antifouling article, and thus the antifouling article of the present invention has excellent antifouling properties.
  • the antifouling article of the present invention since the high hardness nanoparticles are used for the formation of the protrusions, the abrasion resistance is also excellent.
  • the substrate is not particularly limited as long as it has a surface on which an antifouling layer can be disposed.
  • the material of the substrate is not particularly limited, and examples thereof include glass, plastic, metal, ceramics, and combinations thereof (for example, composite materials and laminated materials).
  • the substrate is preferably a light transmissive substrate made of glass or plastic.
  • the glass may be a tempered glass subjected to a physical tempering treatment or a chemical tempering treatment, or may be a laminated glass in which a plurality of glass plates are laminated via an adhesive layer.
  • the shape of the substrate is not particularly limited, and examples thereof include a flat plate shape and a shape having a curvature on the entire surface or a part thereof.
  • the thickness of the substrate is not particularly limited and can be appropriately selected depending on the use of the antifouling article.
  • the thickness of the substrate is preferably 1 to 10 mm from the viewpoint of ease of handling.
  • the antifouling layer 6 is disposed on the substrate 2 and has an uneven layer 5 including an aggregate of high hardness nanoparticles 3 and a binder 4 as an essential layer.
  • the antifouling layer may be composed of only the uneven layer 5 as in the antifouling article 1A shown in FIG. 1, and the unevenness as in the antifouling article 1B shown in FIG.
  • the structure which has the water-repellent layer 8 on the layer 5 may be sufficient.
  • the antifouling layer 6 of the antifouling article 1B has a configuration including the uneven layer 5, the water repellent layer 8, and the intermediate layer 7 disposed therebetween.
  • a configuration without an intermediate layer may be used.
  • the concavo-convex layer 5 is a layer that includes aggregates of the high hardness nanoparticles 3 and the binder 4 and has concavo-convex surfaces.
  • the plurality of protrusions 9 on the surface of the antifouling layer 6 correspond to the convex portions of the uneven layer 5 on the surface in the antifouling article 1A.
  • the concave portion 10 of the concavo-convex layer 5 is a portion where the protrusions 9 are not formed, and has a surface substantially parallel to the surface on which the antifouling layer of the substrate is disposed (hereinafter referred to as “substrate surface”).
  • the protrusions 9 are those in which the uneven shape of the uneven layer 5 on the surface is directly exposed on the surface of the antifouling layer 6. Since the antifouling layer 6 has the fine protrusions 9 on the surface, in the antifouling articles 1 ⁇ / b> A and 1 ⁇ / b> B, dirt hardly adheres to the antifouling layer 6.
  • the antifouling layer has a water-repellent layer on the uneven layer, the surface energy is small on the antifouling layer surface and the surface frictional force is small. Therefore, the antifouling layer surface is not easily worn, and for example, even when the dirt adhering to the antifouling layer surface is wiped off with a cloth or the like, the antifouling performance is not easily lowered.
  • the convex portion of the concave-convex layer and the protrusion of the antifouling layer refer to a shape having an apex that is higher in height from the base surface than a concave portion having a surface substantially parallel to the base surface.
  • the shape of the protrusions included in the antifouling layer is not particularly limited, and examples thereof include a substantially quadrangular pyramid, a substantially triangular pyramid, and a substantially cone.
  • the radius of curvature of the partial spherical surface is preferably 5 nm or more, and more preferably 5 nm to 15 nm.
  • the height of the protrusion is preferably 10 nm or more, more preferably 30 to 200 nm.
  • the height of the protrusion is the height from the substrate surface to the apex of the protrusion, and can be measured using a scanning electron microscope.
  • the height of the recess that is, the distance from the substrate surface to the surface substantially parallel to the substrate surface of the recess is preferably 10 to 50 nm on average.
  • the height of the protrusions and the recesses in the antifouling layer is, for example, in the range of 1 ⁇ m ⁇ 1 ⁇ m randomly extracted from the scanning electron micrograph image of the antifouling layer surface as shown in FIG. It is obtained using image conversion software such as J (trade name; manufactured by NIH).
  • image conversion software such as J (trade name; manufactured by NIH).
  • measurement using a scanning electron microscope refers to measurement performed by such image conversion software, for example, image J (trade name; manufactured by NIH).
  • the number of protrusions in the antifouling layer is preferably 30 to 100 / ⁇ m 2, and more preferably 50 to 100 / ⁇ m 2 .
  • the number of protrusions can be measured, for example, by observing the film surface with a scanning electron microscope.
  • the size of the bottom surface of the protrusion is preferably 10 to 700 nm, more preferably 30 to 200 nm.
  • the bottom surface of the protrusion means the bottom surface of the protrusion obtained when the protrusion is cut by a surface parallel to the substrate surface at the average height of the recess.
  • the size of the bottom surface of the protrusion is the size of the protrusion.
  • the diameter of the circle in which the bottom shape is inscribed is used.
  • the bottom size of the protrusion can be measured using a scanning electron microscope.
  • the average value of the angle between the bottom surface and the side surface of the protrusion is not particularly limited, but is preferably 10 to 90 °, more preferably 20 to 70 °. If the angle between the bottom surface and the side surface of the protrusion is 10 ° or more, a steeper protrusion can be obtained.
  • the average value of the distances between the apexes of the adjacent protrusions T (hereinafter, It is preferably also referred to as “distance between vertices”) of 50 to 1,000 nm.
  • the distance between the vertices is more preferably 50 to 800 nm, and particularly preferably 50 to 500 nm. That the distance between vertices is 50 nm or more means that the interval between the irregularities formed by the protrusions T on the surface of the antifouling layer is large.
  • the distance between the vertices is 50 nm or more, the adsorption of dirt due to capillary action can be suppressed. As a result, oil stains and the like are hardly attached, and even if attached, they can be easily removed.
  • the distance between vertices can be measured with a scanning electron microscope.
  • the distance between the vertices is a protrusion having the maximum height among protrusions existing in a predetermined region in a direction parallel to the surface having the antifouling layer of the substrate from a surface photograph of the antifouling article.
  • Select a body select a protrusion T having a height of 90% or more, measure the distance between vertices of adjacent protrusions T (that is, the distance between the vertices), and calculate the average value. To do.
  • the ratio (%) of the total area of the bottom surface of the protrusion T to the area of the substrate surface on which the antifouling layer is disposed is preferably 12 to 70%.
  • the area of the bottom surface of the protrusion T is an area measured on the bottom surface of the protrusion T obtained when the protrusion T is cut along a plane parallel to the substrate surface at the average height of the recesses. Can be measured.
  • the antifouling layer has a large proportion of high-hardness nanoparticle aggregates and protrusions containing a binder that can come into contact with dirt, so that sufficient antifouling properties can be obtained. .
  • the convex portion coverage is preferably 15 to 70%, more preferably 20 to 70%, and particularly preferably 50 to 70%.
  • the convex portion coverage is calculated based on the total area of the bottom surface of the protrusion T measured in this manner in a predetermined region on the base surface on which the antifouling layer is disposed.
  • the surface Ra of the antifouling layer is preferably 2 to 6 nm. If Ra is 2 nm or more, contact between the portion having a film thickness thinner than the apex of the protrusion and the dirt can be suppressed, and more excellent antifouling properties can be obtained. If it is 6 nm or less, it is excellent in abrasion resistance strength.
  • a more preferable range of the surface Ra of the antifouling layer varies depending on the type of the high-hardness nanoparticles. For example, when the high-hardness nanoparticles are nanodiamond, the surface Ra of the antifouling layer is more preferably 3 to 6 nm, and particularly preferably 4 to 6 nm.
  • Ra refers to the arithmetic average roughness calculated in accordance with JIS B 0031: 2003 on the specimen surface. Ra can be measured, for example, with a scanning probe microscope.
  • the film thickness of the antifouling layer is not particularly limited, but is preferably 20 to 350 nm, more preferably 30 to 300 nm, and particularly preferably 50 to 300 nm. If the film thickness of the antifouling layer is 20 nm or more, the antifouling property tends to be high, and if it is 350 nm or less, the mechanical strength is excellent.
  • the film thickness is 10 in descending order from the protrusion having the maximum height in the range of 1.5 ⁇ m in the direction parallel to the surface having the antifouling layer of the substrate from the film cross-sectional image obtained by an electron microscope or the like. This is a value obtained by extracting 10 points up to the first protrusion and averaging the heights of the protrusions at the 10 points.
  • each layer constituting the antifouling article 1A and the antifouling article 1B shown in FIG. 1 and FIG. 2 will be described below.
  • the uneven layer 5 is the same layer.
  • the concavo-convex layer 5 is a layer that includes the aggregates of the high hardness nanoparticles 3 and the binder 4 that are disposed on the base 2, and has a convex portion corresponding to the protrusion 9.
  • the volume ratio of the high-hardness nanoparticles and the binder in the uneven layer (hereinafter also referred to as “particle / binder”) is preferably 30/70 to 70/30, more preferably 35/65 to 65/35, More preferred is 60-60 / 40.
  • a concavo-convex layer having an appropriate distance between the apexes of the protrusions T can be formed on the surface of the substrate, so that the antifouling property tends to be high.
  • the adhesion between the substrate and the uneven layer tends to be high.
  • the aggregate of the high-hardness nanoparticles 3 is an aggregate of nanoparticles made of a high-hardness material, and is particularly suitable as long as it can form an aggregate with the binder 4 and form the uneven layer 5 having convex portions on the surface. It is not limited.
  • a material having a Mohs hardness of 12 or more is preferable, and a material having a Mohs hardness of 15 or more is more preferable.
  • high-hardness nanoparticles include particles such as nanodiamond (Mohs hardness 15), ⁇ -alumina particles (Mohs hardness 12), silicon carbide particles (Mohs hardness 13), and the like.
  • the high-hardness nanoparticles may be one type or a combination of two or more types. Nanodiamonds are preferred as the high hardness nanoparticles.
  • the average primary particle diameter of the high hardness nanoparticles is preferably 1 to 50 nm, more preferably 3 to 40 nm, still more preferably 5 to 30 nm, and particularly preferably 5 to 20 nm.
  • the average primary particle diameter of the high-hardness nanoparticles is 1 nm or more, it becomes easy to form convex portions, and the antifouling property tends to be improved.
  • the average primary particle diameter of the high hardness nanoparticles is 50 nm or less, the haze value can be reduced.
  • the secondary particle diameter indicating the size of the aggregate of high hardness nanoparticles is preferably 1 to 100 nm, more preferably 5 to 80 nm, and particularly preferably 10 to 50 nm.
  • the binder 4 is not particularly limited as long as it can form an aggregate with the aggregates of the high-hardness nanoparticles 3 and can form the uneven layer 5 having convex portions on the surface.
  • an inorganic binder is preferable in terms of excellent durability.
  • the binder is preferably a hydrophilic inorganic binder because the antifouling property is increased.
  • the water-repellent layer 8 is formed on the uneven layer 5 through the water-repellent layer 8, preferably the intermediate layer 7. In this case, the water repellent layer forming composition and the intermediate layer forming composition are preferable because they are easily bonded.
  • hydrophilic inorganic binders include metal oxides such as silica, alumina, titania, zirconia, tantalum oxide and tin oxide.
  • the binder is more preferably a silica binder in terms of ease of handling.
  • the silica binder preferably has a small alkali component content.
  • a silica binder having a low alkali content a dehydrated alkali silicate compound obtained by removing a part of an alkali metal from a hydrolysis condensate of an alkoxysilane compound or an alkali metal salt of silicic acid (hereinafter also referred to as “demineralized silicic acid”). )).
  • These hydrolysis condensates may contain unreacted silanol groups (Si—OH) groups.
  • the binder may be a mixture of two or more binders. 50 mass% or more is preferable and, as for the silica content rate in a binder, 75 mass% or more is more preferable.
  • the concavo-convex layer 5 can contain further components in addition to the aggregates of the high hardness nanoparticles 3 and the binder 4 as long as the effects of the present invention are not impaired. Additional components include surfactants, antifoaming agents, leveling agents, UV absorbers, viscosity modifiers, antioxidants, fungicides, pigments and the like. The total content of the further components is preferably 5% by mass or less, more preferably 1% by mass or less in the uneven layer.
  • the antifouling article of the present invention preferably has a water repellent layer 8 on the uneven layer 5 like the antifouling layer 6 of the antifouling article 1B shown in FIG.
  • the thickness of the water repellent layer 8 is preferably substantially uniform. If the thickness of the water repellent layer 8 is reduced at the tip of the protrusion 9, the water repellency of the antifouling layer 6 may be reduced, or the dirt removability may be reduced.
  • the water repellent layer 8 is preferably made of a silane compound containing fluorine, since the water repellency becomes high.
  • the water repellent layer 8 is more preferably made of a hydrolyzed condensate of fluorine-containing alkoxysilane.
  • the antifouling article of the present invention has excellent antifouling properties against various stains and is excellent in wear resistance.
  • the dirt that is subject to antifouling properties is inorganic dirt such as atmospheric dust, alkali residue from the concrete wall (water dry spots), water stains, and glass burns.
  • Organic dirt such as smoke in the atmosphere, automobile exhaust, cigarette smoke, and oil.
  • the antifouling article has a better antifouling effect against dust and oil stains.
  • the antifouling property of the antifouling article can be evaluated by, for example, an antifouling index ⁇ Hx (hereinafter, also simply referred to as “ ⁇ Hx”) measured by the following method.
  • the initial ⁇ Hx of the antifouling article is also referred to as ⁇ Hxi.
  • ⁇ Hxi is preferably 1.5% or less, more preferably 1.0% or less, and further preferably 0.5% or less.
  • ⁇ Hx is an index for evaluating the antifouling property against powder such as sand, and as ⁇ Hx is smaller, it means that powder such as sand is less likely to adhere and is less likely to become dirty even when used outdoors for a long time.
  • the main surface of the antifouling article is leveled, and the following mixed powder for evaluation is sprayed on the surface of the antifouling layer at a rate of 0.02 g / cm 2 and allowed to stand for 10 seconds.
  • an aluminum test plate was used, and the antifouling article was tilted so that the angle formed by the main surface of the test plate and the surface of the test plate was 135 ° from the height of 3 cm above the test plate.
  • the haze value is measured after removing the evaluation mixed powder by repeating the operation of moving the antifouling article at a speed of / sec until the lower end of the antifouling article contacts the surface of the test plate.
  • the haze value is measured five times, the average is taken as the haze value after the test, and the value obtained by subtracting the haze value (%) before the test from the haze value after the test (%) is taken as the antifouling index ⁇ Hx (%). .
  • the mixed powder for evaluation is a mixed powder used in an antifouling evaluation test conducted by the Public Works Research Center, 2.3% by mass of carbon black 1 (particle size: 0.002 to 0.028 ⁇ m) 9.3 mass% carbon black 2 (12 kinds of powder 1 for JIS test), 62.8 mass% yellow ocher (natural ocher for pigment) and 20.9 mass% calcined Kanto loam (for JIS test) 8 types of powder 1) and 4.7% by mass of silica powder (3 types of powder 1 for JIS test).
  • JIS test powder 1 is specified in JIS Z 8901.
  • the abrasion resistance of the antifouling article can be evaluated by ⁇ Hx measured after the following abrasion resistance test 1.
  • ⁇ Hx after the abrasion resistance test 1 is also referred to as ⁇ Hxr1.
  • the antifouling article of the present invention has ⁇ Hxr1 of 12% or less and is excellent in wear resistance.
  • ⁇ Hxr1 is preferably 10% or less, and more preferably 5% or less.
  • ⁇ Hx after the abrasion resistance test 2 is also referred to as ⁇ Hxr2.
  • ⁇ Hxr2 is preferably 15% or less, ⁇ Hxr2 is more preferably 12% or less, and further preferably 10% or less.
  • the antifouling layer of the present invention for example, when the antifouling layer has a water repellent layer on the uneven layer, it is easy to achieve 10% or less of ⁇ Hxr2. Furthermore, when the antifouling layer 6 has the water repellent layer 8 through the intermediate film 7 on the uneven layer 5 as in the antifouling article 1B shown in FIG. 2, it is easy to achieve 5% or less of ⁇ Hxr2. In the antifouling article of the present invention, when the antifouling layer has a water-repellent layer on the uneven layer, the friction coefficient of the surface of the antifouling layer is small, and abrasion due to rubbing hardly occurs.
  • the antifouling performance is not easily lowered.
  • the antifouling layer has a water-repellent layer on the uneven layer through an intermediate film, the effect of suppressing the deterioration of the antifouling performance is high.
  • the sessile drop method specified in JIS R3257: 1999 is applied mutatis mutandis.
  • a 1 ⁇ L water droplet is dropped on the surface of the soil layer, and the water contact angle measured after 3 seconds (hereinafter, the water contact angle measured by the method is simply referred to as “water contact angle”) is approximately 110 ° or more. be able to.
  • the water contact angle is an evaluation index of water repellency. If it is 80 ° or more, the water repellency is excellent.
  • the water contact angle on the surface of the antifouling layer is more preferably 100 ° or more, and further preferably 110 ° or more. Note that a contact angle of 150 ° or less is preferable because productivity increases.
  • the adhesion force acting between the dirt and the antifouling layer is small. Therefore, not only dirt containing moisture such as mud dirt is hard to adhere, but even if dirt adheres, the attached dirt is easily removed by wind or gravity.
  • the antifouling layer has excellent water repellency and abrasion resistance when the antifouling layer has a water repellent layer on the uneven layer via an intermediate film.
  • the antifouling article having such a configuration can have a water contact angle measured after the wear resistance test 2 of approximately 95 ° or more.
  • the Martens hardness of the antifouling layer surface is preferably 1000 MPa or more, more preferably 1300 MPa or more.
  • a Martens hardness of 1000 MPa or more is preferred because of excellent wear resistance.
  • the Martens hardness is measured by using an indentation test apparatus (Fischer, Picodenter HM500), indentation load of 0.03 mN, holding time of 5 seconds, loading speed and unloading speed of 0.05 mN / 5 seconds.
  • the antifouling article of the present invention can be produced, for example, by the method described below.
  • the concavo-convex layer 5, the intermediate layer 7, and the substrate 2, the aggregates of the high-hardness nanoparticles 3 arranged on the substrate 2, and the binder 4 are sequentially arranged from the substrate 2 side.
  • the case of the antifouling article 1B having the antifouling layer 6 having the water repellent layer 8 will be described as an example.
  • the antifouling article 1A shown in FIG. 1 can be manufactured by a method in which the intermediate layer 7 and the water repellent layer 8 are not formed in the following method.
  • a base when the intermediate layer 7 is not formed, a base, a concavo-convex layer containing agglomerates of high-hardness nanoparticles and a binder arranged in this order from the base side, and a water-repellent layer are arranged on the base.
  • An antifouling article having an antifouling layer can be produced.
  • a step of preparing a concavo-convex layer-forming composition comprising an aggregate of high-hardness nanoparticles and a binder precursor, an intermediate layer-forming composition, a water-repellent layer-forming composition, and a substrate (referred to as a “preparation step”);
  • a step of applying a concavo-convex layer forming composition on a substrate to form a concavo-convex layer (referred to as a “concave layer forming step”), and an intermediate layer forming composition applied on the formed concavo-convex layer.
  • a step of forming a layer referred to as “intermediate layer forming step”
  • a step of applying a water repellent layer forming composition on the formed intermediate layer to form a water repellent layer (“water repellent layer forming step”).
  • water repellent layer forming step water repellent layer forming step”.
  • the preparation step is a step of preparing a concavo-convex layer forming composition containing an aggregate of high-hardness nanoparticles and a binder precursor, an intermediate layer forming composition, a water repellent layer forming composition, and a substrate.
  • substrate Since the substrate is the same as the substrate in the antifouling article of the present invention, description thereof is omitted.
  • the uneven layer forming composition includes an aggregate of high hardness nanoparticles and a binder precursor. Since the concavo-convex layer-forming composition contains aggregates of high-hardness nanoparticles, when applied to the surface of the substrate, the particles are likely to be locally stacked, so that the concavo-convex layer is likely to be formed on the resulting coating. Moreover, the intensity
  • the high-hardness nanoparticles and aggregates are the same as the high-hardness nanoparticles and aggregates in the antifouling article described above, and thus the description thereof is omitted.
  • the high-hardness nanoparticles are prepared as a dispersion in which aggregates of high-hardness nanoparticles are dispersed in a dispersion medium, and are blended into the uneven layer forming composition.
  • the dispersion medium used for the dispersion of the aggregate of high hardness nanoparticles include organic solvents such as water, N-methylpyrrolidone, isopropyl alcohol, N-ethylpyrrolidone, dimethylacetamide, and ethylene glycol.
  • organic solvent is preferable as a dispersion medium for nanodiamond aggregates, and N-methylpyrrolidone is particularly preferable.
  • a commercially available product may be used as the dispersion liquid of the aggregates of the high hardness nanoparticles.
  • a commercial ratio as a dispersion of nanodiamond aggregate, for example, manufactured by Carbodeon; product grade Hydrogen D in NMP (3.0 mass% N-methylpyrrolidone of nanodiamond aggregate having an average primary particle size of 4 to 6 nm) Dispersion).
  • the binder precursor is a component that forms the above-described binder by heat treatment, solvent removal treatment, photocuring treatment, or the like.
  • the binder precursor include an inorganic binder precursor and an organic-inorganic hybrid binder precursor.
  • a silica precursor is preferable.
  • the uneven layer forming composition contains a silica precursor, the adhesion between the formed uneven layer and the substrate can be further improved.
  • the silica precursor include a silane compound having a hydrolyzable group and silicic acid.
  • the binder precursor other than the silica precursor include metal oxide precursors, for example, metal compounds having a hydrolyzable group.
  • the metal oxide precursor is a component that forms a metal oxide by hydrolysis condensation reaction.
  • One type of binder precursor may be used alone, or two or more types may be used in combination.
  • silica precursor examples include silicic acid and a silane compound having a hydrolyzable group.
  • silica precursor one having a low alkali metal content is preferable because it improves the adhesion between the uneven layer to be formed and the substrate.
  • desalting in which a part of the alkali metal is removed from the alkali metal salt of silicic acid.
  • Silicic acid or an alkoxysilane compound or a partial hydrolysis condensate thereof is preferred.
  • alkali metal salt of silicic acid examples include sodium silicate, lithium silicate and potassium silicate, and sodium silicate is particularly preferable.
  • Sodium silicate is preferred because those molar ratio of SiO 2 to Na 2 O indicated by SiO 2 / Na 2 O is large tends to remove alkali metal ions, the molar ratio of SiO 2 / Na 2 O 3 or more Those are particularly preferred.
  • the method for removing alkali metal ions from the alkali metal salt of silicic acid can be a conventionally known method.
  • an aqueous solution of sodium silicate is stirred together with a strongly acidic cation exchange resin, and sodium ions are ion-exchanged to reduce the ratio of sodium ions to the total solid content in the aqueous solution.
  • a silane compound having a hydrolyzable group is a compound having 1 to 4 hydrolyzable groups bonded to a silicon atom in one molecule.
  • the hydrolyzable group include an alkoxy group, an isocyanato group, an acyloxy group, an aminoxy group, a halogen and the like, and an alkoxy group is preferable. Therefore, an alkoxysilane compound is preferable as the silane compound having a hydrolyzable group.
  • the alkoxysilane compound may be a condensate in which at least some of the molecules are hydrolyzed and condensed (hereinafter also referred to as “partially hydrolyzed condensate of alkoxysilane compound”).
  • the alkoxysilane compound is a compound having 1 to 4 alkoxy groups bonded to a silicon atom in one molecule, and examples thereof include compounds represented by the following general formula (I).
  • R 1 O p SiR 2 (4-p)
  • each R 1 independently represents an alkyl group having 1 to 4 carbon atoms
  • R 2 independently represents an optionally substituted alkyl group having 1 to 10 carbon atoms
  • p represents an integer of 1 to 4.
  • R 1 is an alkyl group having 1 to 4 carbon atoms, and examples thereof include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, and t-butyl, and methyl and ethyl are preferable.
  • the alkyl group having 1 to 10 carbon atoms in R 2 is linear or branched, and examples thereof include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, hexyl, decyl and the like.
  • R 2 is preferably an alkyl group having 1 to 6 carbon atoms.
  • the substituent in R 2 is not particularly limited, but epoxy group, glycidoxy group, methacryloyloxy group, acryloyloxy group, isocyanato group, hydroxy group, amino group, phenylamino group, alkylamino group, aminoalkylamino group, ureido Group, mercapto group and the like.
  • the “alkyl group having 1 to 10 carbon atoms” in R 2 means that the alkyl group portion excluding the substituent has 1 to 10 carbon atoms.
  • alkoxysilane compounds examples include tetraalkoxysilane compounds such as tetramethoxysilane and tetraethoxysilane; 3-glycidoxypropyltrimethoxysilane, 3-aminopropyltrimethoxysilane and the like which are bonded to silicon atoms in one molecule. And alkoxysilane compounds having 3 alkoxy groups, and tetraalkoxysilane compounds are preferred.
  • the volume ratio in terms of metal oxide between the high hardness nanoparticles and the binder precursor is preferably 30/70 or more because the antifouling property is obtained due to the concavo-convex shape, and is in close contact with the substrate. 70/30 or less is preferable in order to obtain properties.
  • the silica precursor is preferably demineralized silicic acid obtained by removing a part of the alkali metal from the alkali metal salt of silicic acid.
  • corrugated layer forming composition contains the partial hydrolysis-condensation product of an alkoxysilane compound
  • content of the partial hydrolysis-condensation product of an alkoxysilane compound is the conversion amount of a silica.
  • the uneven layer forming composition may contain water and an acid under the condition that a hydrolysis condensate of the binder precursor is obtained.
  • the hydrolysis condensation reaction proceeds.
  • the amount of water to be contained is preferably 10 to 500 parts by mass, more preferably 50 to 300 parts by mass with respect to 100 parts by mass of the binder precursor.
  • the amount of the binder precursor is an amount in terms of metal oxide.
  • Acid acts as a catalyst for hydrolysis condensation reaction.
  • corrugated layer forming composition can adjust the reaction rate of the hydrolysis condensation of a binder precursor by containing an acid.
  • the acid include hydrochloric acid, nitric acid, sulfuric acid and the like.
  • the amount of the acid is preferably 0.1 to 5.0 parts by mass, more preferably 0.2 to 3.5 parts by mass with respect to 100 parts by mass of the binder precursor.
  • the amount of the binder precursor is an amount in terms of metal oxide.
  • the uneven layer forming composition may contain a solvent for the purpose of improving workability.
  • the solvent is preferably a solvent having good dispersibility of the high-hardness nanoparticles and the binder precursor and low reactivity with these components.
  • Specific examples of the solvent include alcohol (methanol, ethanol, 2-propanol, etc.), ester (acetic ester, butyl acetate, etc.), ether (diethylene glycol dimethyl ether, etc.), ketone (methyl ethyl ketone, etc.), water, and the like.
  • the solvent is preferably water or isopropyl alcohol, more preferably isopropyl alcohol, from the viewpoint of good appearance.
  • the solvent may be a single type or a combination of two or more types.
  • the content of the solvent is not particularly limited, but is preferably 1,000 to 100,000 parts by weight, and 2,000 to 50,000 parts by weight with respect to a total of 100 parts by weight of the high-hardness nanoparticles and the binder precursor. More preferred.
  • the dispersion medium of the dispersion is included as part of the solvent. That is, the amount of the solvent in that case is the total amount of the amount of the dispersion medium and the amount of the solvent newly used for the uneven layer forming composition. If the content of the solvent is 1,000 parts by mass or more with respect to a total of 100 parts by mass of the high-hardness nanoparticles and the binder precursor, rapid progress of hydrolysis and condensation reaction can be prevented. If the amount is less than or equal to parts by mass, hydrolysis and condensation reactions proceed.
  • the amount of the binder precursor is an amount in terms of metal oxide.
  • the concavo-convex layer forming composition can contain further components within a range not impairing the effects of the present invention.
  • Such components include surfactants, antifoaming agents, leveling agents, ultraviolet absorbers, viscosity modifiers, antioxidants, fungicides, and pigments.
  • the content of the further component in the uneven layer forming composition is not particularly limited, but is preferably 0.02 to 1 part by mass, preferably 0.02 to 1 part by mass with respect to 100 parts by mass in total of the high-hardness nanoparticles and the binder precursor. 0.5 parts by mass is more preferable, and 0.02 to 0.3 parts by mass is particularly preferable.
  • the amount of the binder precursor is an amount in terms of metal oxide.
  • the concavo-convex layer forming composition examples include a nano-diamond aggregate as high-hardness nanoparticles and a silica precursor as a binder precursor at a ratio of 30/70 to 70/30 in volume ratio (where the silica precursor is In terms of silicon oxide), the total content of nanodiamond aggregate and silica precursor with respect to the total amount of the composition is 0.5 to 2.5% by mass, and the solvent is selected from water and isopropyl alcohol (however, In the case where the nanodiamond aggregate is blended in a dispersion, the solvent preferably includes a composition containing a dispersion medium of nanodiamond aggregate). In this case, the nanodiamond aggregate is preferably blended into the composition as an N-methylpyrrolidone dispersion. In that case, the solvent in the composition contains N-methylpyrrolidone.
  • silica precursor in the composition silicic acid and a silane compound having a hydrolyzable group are preferable, and demineralized silicic acid obtained by removing a part of the alkali metal from the alkali metal salt of silicic acid is particularly preferable.
  • the intermediate layer forming composition is preferably a composition including a silica precursor such as silicic acid or a silane compound having a hydrolyzable group and a solvent.
  • the water repellent layer-forming composition preferably contains a fluorine-containing hydrolyzable silane compound.
  • the water repellent layer layer-forming composition may contain a solvent for the purpose of improving workability.
  • the solvent is preferably a solvent having good solubility of the fluorine-containing hydrolyzable silane compound and low reactivity to these components. Examples of the solvent include alcohol (methanol, ethanol, 2-propanol, etc.), hydrofluorocarbon and the like.
  • the solvent may be a single type or a combination of two or more types.
  • the content of the solvent is not particularly limited, but is preferably 1,000 to 100,000 parts by weight, more preferably 2,000 to 50,000 parts by weight, based on 100 parts by weight of the total of the fluorine-containing hydrolyzable silane compound. preferable. When it is in the above range, sufficient antifouling property can be imparted and the appearance of the resulting film is improved.
  • fluorinated hydrolyzable silane compound examples include compounds represented by the following formula (II) as hydrolyzable silane compounds having a fluorinated alkyl group or a fluorinated alkylene group.
  • Rf is a divalent organic group having 1 to 20 carbon atoms including at least one fluoroalkylene group
  • A is a fluorine atom or —Si (R 3 ) v X 3 (3-v)
  • R 3 is a substituted or unsubstituted hydrocarbon group having 1 to 10 carbon atoms having no fluorine atom
  • X 3 represents a hydrolyzable group.
  • r is 1 or 2
  • v is 0 or 1
  • r + v is 1 or 2.
  • R 3 is preferably a hydrocarbon group having 1 to 3 carbon atoms, and particularly preferably a methyl group.
  • r is 1 and v is 0 or 1.
  • X 3 include an alkoxy group, a halogen atom, and an acyl group. Hydroxyl group is converted into a hydroxyl group (silanol group), and further, a reaction of condensation reaction between atoms to form a Si—O—Si bond facilitates the smooth progress of the alkoxy group having 1 to 4 carbon atoms and the halogen atom.
  • a methoxy group, an ethoxy group, and a chlorine atom are more preferable, and a methoxy group and an ethoxy group are particularly preferable.
  • fluorine-containing hydrolyzable silane compound (II) include the following compounds. F (CF 2 ) 4 CH 2 CH 2 Si (OCH 3 ) 3 , F (CF 2 ) 4 CH 2 CH 2 Si (OC 2 H 5 ) 3 , F (CF 2 ) 6 CH 2 CH 2 Si (OCH 3 ) 3 , F (CF 2 ) 6 CH 2 CH 2 Si (OC 2 H 5 ) 3 , (CH 3 O) 3 SiCH 2 CH 2 (CF 2 ) 6 CH 2 CH 2 Si (OCH 3 ) 3 , CF 3 O (CF 2 CF 2 O) 7 CF 2 C (O) NHCH 2 CH 2 CH 2 Si (OCH 3) 3, CF 3 CF 2 O (CF 2 ) O (CF 2 CF 2 CF 2 CF 2 OCF 2 CF 2 O) 7 CF 2 CF 2 C (O) NHCH 2 CH 2 CH 2 Si (OCH 3) 3, CF 3 CF 2 O (CF 2 ) O (CF 2 CF 2 CF 2
  • a compound having no ether group is preferable because it is excellent in light resistance.
  • F (CF 2 ) 4 CH 2 CH 2 Si (OC 2 H 5 ) 3 is particularly preferable in that the compound itself is less deteriorated.
  • the content of the fluorine-containing hydrolyzable silane compound in the water-repellent layer forming composition is appropriately adjusted according to the type and combination of the fluorine-containing hydrolyzable silane compound used.
  • the water-repellent layer-forming composition contains a fluorine-containing hydrolyzable silane compound
  • it may contain water and an acid under the condition that the hydrolysis condensate is obtained.
  • the acid include hydrochloric acid, nitric acid, sulfuric acid and the like.
  • the concavo-convex layer forming step includes a step of coating the concavo-convex layer forming composition on the substrate to form the concavo-convex layer forming composition layer, and a step of heating the concavo-convex layer forming composition layer to form the concavo-convex layer. Including.
  • the uneven layer forming composition can be applied by various wet coating methods.
  • the wet coating method include spin coating, dip coating, spray coating, flow coating, curtain flow coating, die coating, and squeegee coating, and spin coating is preferable.
  • the uneven layer forming composition is preferably applied to at least a part of the surface of the substrate and applied to the entire surface of at least one main surface of the substrate.
  • the thickness of the concavo-convex layer forming composition layer is not particularly limited as long as it is an amount that provides a desired concavo-convex layer. Further, the amount of the concavo-convex layer forming composition applied on the substrate is not particularly limited as long as a desired concavo-convex layer is obtained, and the solid content is set to 1.6 to 1,600 g / m 2. It is preferably 8.0 to 800 g / m 2 .
  • the content of the component in terms of solid content refers to the mass of the residue excluding volatile components such as water.
  • the formed uneven layer forming composition layer becomes an uneven layer by curing. Curing is accelerated by heating.
  • the binder precursor may react with the high hardness nanoparticles by heating.
  • the concavo-convex layer forming composition contains an aggregate of high-hardness nanoparticles and silicic acid or an alkoxysilane compound
  • the silicic acid or alkoxysilane compound is hydrolyzed and condensed to obtain a silica binder.
  • at least a part of the silicic acid or the alkoxysilane compound may hydrolyze and condense with silanol groups present on the surface of the aggregate of high-hardness nanoparticles.
  • the heating can be performed by any heating means such as an electric furnace, a gas furnace, or an infrared heating furnace.
  • the treatment temperature is preferably 20 to 700 ° C, more preferably 80 to 500 ° C, and particularly preferably 100 to 400 ° C.
  • the treatment time varies depending on the treatment temperature, but is preferably 1 to 180 minutes, more preferably 5 to 120 minutes, and particularly preferably 10 to 60 minutes.
  • the heat treatment time is 1 minute or longer, the adhesion between the substrate and the concavo-convex layer is further improved, and when it is 180 minutes or shorter, deterioration of the substrate due to heat is suppressed and the productivity is excellent.
  • the intermediate layer forming composition is applied on the concavo-convex layer obtained in the above-described step and cured.
  • the coating method include spin coating, dip coating, spray coating, flow coating, curtain flow coating, die coating, and squeegee coating, and spin coating is preferred.
  • excess liquid may be removed. By removing the excess liquid, the film thickness of the intermediate layer is made uniform, so that an antifouling layer reflecting the shape of the uneven layer can be obtained.
  • the excess liquid may be removed after the following curing process, may be performed before the curing process, or may be performed during the curing process.
  • the intermediate layer forming composition applied on the uneven layer is cured to form an intermediate layer on the uneven layer. Curing of the intermediate layer forming composition is accelerated by heating or humidification.
  • Heating can be performed by any heating means such as an electric furnace, a gas furnace or an infrared heating furnace.
  • the treatment temperature is preferably 20 to 200 ° C, more preferably 50 to 180 ° C, and more preferably 80 to 150 ° C. In particular, when not humidified, the treatment temperature is preferably 50 ° C. or higher, more preferably 80 ° C. or higher.
  • Humidification can be performed by any humidifying means such as a constant temperature and high humidity tank.
  • the humidity is preferably 50 to 95% RH.
  • the curing treatment time is preferably 1 to 60 minutes, and more preferably 10 to 20 minutes.
  • the curing time is 1 minute or longer, the adhesion between the uneven layer and the intermediate layer is further improved, and when it is 60 minutes or shorter, the productivity is excellent.
  • the water-repellent layer is formed by applying a water-repellent layer-forming composition on the intermediate layer obtained in the above-described step and curing it. If necessary, excess liquid may be removed. By removing the excess liquid, the film thickness of the water-repellent layer is made uniform, so that an antifouling layer reflecting the shape of the uneven layer / intermediate layer can be obtained.
  • the excess liquid may be removed after the following curing process, may be performed before the curing process, or may be performed during the curing process.
  • the water repellent layer forming composition applied on the intermediate layer is cured to obtain an antifouling layer. Curing of the water repellent layer forming composition is accelerated by heating or humidification.
  • Heating can be performed by any heating means such as an electric furnace, a gas furnace or an infrared heating furnace.
  • the treatment temperature is preferably 20 to 200 ° C, more preferably 50 to 180 ° C, and more preferably 80 to 150 ° C. In particular, when not humidified, the treatment temperature is preferably 50 ° C. or higher, more preferably 80 ° C. or higher.
  • Humidification can be performed by any humidifying means such as a constant temperature and high humidity tank.
  • the humidity is preferably 50 to 95% RH.
  • the curing treatment time is preferably 1 to 60 minutes, and more preferably 10 to 20 minutes.
  • the curing treatment time is 1 minute or longer, the adhesion between the intermediate layer and the water repellent layer is further improved, and when it is 60 minutes or shorter, the productivity is excellent.
  • the antifouling article includes window glass (for example, window glass for transportation equipment such as automobiles, railroads, ships, airplanes), walls (for example, partitions, road walls, etc.), refrigerated showcases, mirrors (for example, vanity tables) Mirrors, bathroom mirrors, etc.), optical instruments, tiles, toilets, bathtubs, bathroom walls, vanity tables, curtain walls, aluminum sashes, faucet fittings, building boards, lenses, cover glasses, condensing mirrors It is done.
  • window glass for example, window glass for transportation equipment such as automobiles, railroads, ships, airplanes
  • walls for example, partitions, road walls, etc.
  • refrigerated showcases for example, mirrors (for example, vanity tables) Mirrors, bathroom mirrors, etc.)
  • optical instruments tiles, toilets, bathtubs, bathroom walls, vanity tables, curtain walls, aluminum sashes, faucet fittings, building boards, lenses, cover glasses, condensing mirrors It is done.
  • cover glass examples include a solar cell, a condensing lens, and a condensing mirror cover glass.
  • a condensing lens or a condensing mirror is used for a concentrating solar power generation device or a concentrating solar power generation device, for example.
  • This antifouling article is particularly suitable for outdoor use in areas with little rain, such as deserts. Since this antifouling article is excellent in wear resistance, it is also suitable as a window glass for automobiles and the like.
  • Example 1 While stirring 237.5 g of distilled water, sodium silicate No. 4 (manufactured by Nippon Chemical Industry Co., Ltd., (SiO 2 : 24.0% by mass, Na 2 O: 7.0% by mass. SiO 2 / Na 2 O 62.5 g of a molar ratio of 3.5 / 1) and 180 g of a cation exchange resin (Diaion SK1BH, manufactured by Mitsubishi Chemical Corporation) were added and stirred for 10 minutes or more, and then the cation exchange resin was separated by suction filtration. Then, a desalted sodium silicate solution having a solid content concentration of 5% by mass in terms of silicon oxide was obtained.
  • sodium silicate No. 4 manufactured by Nippon Chemical Industry Co., Ltd., (SiO 2 : 24.0% by mass, Na 2 O: 7.0% by mass. SiO 2 / Na 2 O 62.5 g of a molar ratio of 3.5 / 1
  • a cation exchange resin Diaion SK1BH
  • nanodiamond dispersion Carbodeon: HydrogenD in NMP: (3.0% by mass N ⁇ of nanodiamond aggregate having an average primary particle size of 4 to 6 nm) Methylpyrrolidone dispersion
  • 63.84 g the above-mentioned desalted sodium silicate solution in the order of 0.58 g
  • the total solid content of nanodiamond and binder precursor is 1.5 mass%
  • nanodiamond and binder precursor A concave-convex layer forming composition (A1) having a volume ratio of 80/20 to the solid content in terms of silicon oxide was prepared.
  • the volume of the binder precursor when referring to the volume ratio of the particles to the binder precursor is oxidation. It is the volume of solid content in terms of silicon.
  • a glass plate (sodium lime glass manufactured by Asahi Glass) with a length of 100 mm, width of 100 mm, and thickness of 3.5 mm on a spin coater, and drop coat 2.0 g of the uneven layer forming composition (A1) onto the surface of the glass plate.
  • heat treatment was performed at 200 ° C. for 30 minutes to obtain an antifouling article having the same cross section as shown in FIG. 1 having only the uneven layer as the antifouling layer.
  • the volume ratio of nanodiamond and binder in the resulting uneven layer is 80/20.
  • the volume ratio of the nanodiamond particles and the binder in the uneven layer is the same as the volume ratio of the nanodiamond particles and the binder precursor.
  • the volume ratio of the particles such as nanodiamond and the binder precursor is described in the “Volume ratio between particles and binder” column of Table 1.
  • Examples 2 to 4 As in Example 1, except that the volume ratio of nanodiamond and binder precursor (nanodiamond / binder precursor) was adjusted as shown in the volume ratio of particles to binder (particle / binder) in Table 1, Layer forming compositions A2 to A4 were prepared. Subsequently, using the antifouling layer forming compositions A2 to A4, an antifouling article having only an uneven layer as an antifouling layer was produced in the same manner as in Example 1. Table 1 shows the volume ratio of nanodiamond and binder in the uneven layer obtained in each example. Moreover, the scanning electron micrograph (800,000 times) of the antifouling layer surface of the antifouling article obtained in Example 2 is shown in FIG.
  • Tetraisocyanatosilane manufactured by Matsumoto Fine Chemical Co., Ltd.
  • butyl acetate manufactured by Junsei Kagaku Co., Ltd.
  • a water repellent layer-forming composition (C1) having a partial concentration of 0.25% by mass was prepared.
  • Example 2 the glass plate on which the uneven layer was formed was set on a spin coater, and 4.0 g of the intermediate layer forming composition (B1) was dropped on the surface of the uneven layer and spin-coated.
  • 4.0 g of the water repellent layer-forming composition (C1) was dropped on the surface of the formed intermediate layer (uncured) and spin-coated, and then the temperature was increased in a high-temperature and high-humidity tank set at 20 ° C. and 50 RH%.
  • Example 6 In the same manner as in Example 5 except that no intermediate layer was formed in Example 5, an antifouling article having an uneven layer and a water-repellent layer in order from the glass plate side as an antifouling layer was produced.
  • Example 7 While stirring 6.58 g of 2-propanol, a dispersion of a pearl necklace-like silica aggregate (a long and narrow silica aggregate in which a plurality of spherical particles are linked together to form a secondary aggregate) (manufactured by Nissan Chemical Co., Ltd., Snow (Text PS-SO: average primary particle diameter 15 nm, average secondary particle diameter 88 nm) 1.19 g, 2.18 g of the above-mentioned desalted sodium silicate solution were added in this order, and the solid content in terms of silicon oxide was 2.95% by mass, pearl The uneven
  • a pearl necklace-like silica aggregate a long and narrow silica aggregate in which a plurality of spherical particles are linked together to form a secondary aggregate
  • Snow Text PS-SO: average primary
  • An antifouling article was produced in the same manner as in Example 1 except that the uneven layer forming composition was changed to the uneven layer forming composition (A5).
  • Example 8 While stirring 1.85 g of 2-propanol, a nanodiamond dispersion (Carbodeon: HydrogenD in NMP (3.0 mass% N-methyl of nanodiamond aggregate having an average primary particle size of 4 to 6 nm) was added thereto. 5.59 g of pyrrolidone dispersion) and 2.53 g of the above-mentioned desalted sodium silicate solution were added in order, the total solid content of nanodiamond and binder precursor was 2.95% by mass, oxidation of nanodiamond and binder precursor The uneven
  • A6 whose silicon conversion solid content volume ratio is 57/43 was prepared.
  • An antifouling article was produced in the same manner as in Example 1 except that the uneven layer forming composition was changed to the uneven layer forming composition (A6).
  • Example 9 The glass plate not coated with the antifouling composition was evaluated as it was.
  • A no foreign matter or defect having a diameter of 1 mm or more is observed.
  • B Foreign matter having a diameter of 1 mm or more and defects of 1 or more and 5 or less.
  • C foreign matter having a diameter of 1 mm or more, and more than 5 defects.
  • the haze value is measured after removing the evaluation mixed powder by repeating the operation of moving the antifouling article at a speed of / sec until the lower end of the antifouling article contacts the surface of the test plate twice.
  • the haze value is measured five times, and the average is taken as the haze value after the test, and the value obtained by subtracting the haze value before the test from the haze value after the test is taken as the antifouling index ⁇ Hx.
  • Table 1 shows the initial ⁇ Hx as ⁇ Hxi.
  • Water contact angle CA A 1 ⁇ L water droplet was placed on the surface of the antifouling layer, and the contact angle was measured with a contact angle measuring device (DM-701, manufactured by Kyowa Interface Science Co., Ltd.). Measurements were made at three different points, and the average value was calculated.
  • Martens hardness Measure Martens hardness (unit: MPa) using indentation test equipment (Fischer, Picodenter HM500) with indentation load of 0.03 mN, holding time of 5 seconds, loading speed and unloading speed of 0.05 mN / 5 seconds. did. The average value was obtained by measuring three times.
  • Abrasion resistance test 1 For Examples 1 to 3 and Examples 7 to 8, a reciprocating traverse tester (manufactured by KT Corporation) was attached with a cotton cloth according to JIS L0803, and a load of 1.23 ⁇ 10 4 N / m 2 using a 700 g weight. And the antifouling article was washed with water. The appearance of the antifouling article after rubbing and washing with water was visually observed and evaluated according to the following criteria. “A”: No scratch of 50 mm or more in length was observed. “B”: 1 to 5 scratches having a length of 50 mm or more are observed. “C]; more than 5 scratches having a length of 50 mm or more. “D”: The film peels off. Further, the above-mentioned dirt adhesion test was performed on the surface after friction, and the change in haze value ( ⁇ Hxr1) after friction was obtained.
  • the antifouling article of this example has a good appearance and excellent wear resistance and antifouling properties.
  • the wear resistance was not sufficient.
  • Comparative Example 8 had a problem in appearance at the initial stage and did not reach a practical level.

Abstract

The present invention provides an antifouling article that has a superb antifouling property and also exhibits excellent resistance to wear. Provided is an antifouling article that has a substrate and an antifouling layer which is disposed on the substrate, and which has, on the surface thereof, a plurality of protrusions including a uneven layer that contains a binder and an aggregate of high-hardness nanoparticles, wherein, after the surface of the antifouling layer is reciprocally rubbed with a cotton cloth placed thereon conforming to the requirements of JIS L0803 for 100 times under a pressure of 1.23×104 N/m2 and is washed with water, the antifouling layer exhibits an antifouling index ΔHx of 12% or less, as measured by a prescribed method.

Description

防汚性物品Antifouling article
 本発明は、防汚性物品に関し、特には、防汚性に優れるとともに耐摩耗性にも優れる防汚性物品に関する。 The present invention relates to an antifouling article, and in particular, to an antifouling article having excellent antifouling properties and excellent wear resistance.
 ガラス等の透明基体表面に砂や泥水、雨水等が付着すると、基体表面が汚れ、透明性が損なわれる。そこで、基体表面に汚れを付きにくくする防汚層を形成する技術については、これまで種々の方法が提供されてきた。具体的には、パールネックレス状シリカ等のシリカ微粒子の凝集体をケイ酸質バインダーで結合した親水性の微細多孔防汚層を基体表面に有する防汚性物品が提案されている(例えば、特許文献1参照)。 If sand, muddy water, rainwater, or the like adheres to the surface of a transparent substrate such as glass, the substrate surface becomes dirty and the transparency is impaired. Therefore, various methods have been provided so far for techniques for forming an antifouling layer that makes it difficult to get dirt on the substrate surface. Specifically, an antifouling article has been proposed that has a hydrophilic microporous antifouling layer on a substrate surface in which an aggregate of silica fine particles such as pearl necklace-like silica is bound with a siliceous binder (for example, a patent) Reference 1).
 特許文献1の防汚性物品における防汚層は表面に微細な凹凸を有することで、汚れが防汚層表面に付着する際の接触面積を小さくでき、それにより優れた防汚性を発現するものである。なお、この防汚層表面の凹凸形状は、シリカ微粒子凝集体の堆積形状が反映されて形成されたものである。 The antifouling layer in the antifouling article of Patent Document 1 has fine irregularities on the surface, so that the contact area when dirt adheres to the antifouling layer surface can be reduced, thereby exhibiting excellent antifouling properties. Is. The uneven shape on the antifouling layer surface is formed by reflecting the accumulated shape of the silica fine particle aggregate.
 また、特許文献1の防汚性物品では、防汚層は表面の凹凸形状により汚れが付きにくいだけでなく、親水性であることで付着した汚れが雨水等の付着により濡れ広がり洗い流される効果もあることが知られている。しかしながら、特許文献1に記載されるような、シリカ微粒子を用いた防汚層は、上記のように防汚性には優れるものの、長期使用における摩耗により、防汚層に視認可能な傷が発生する、防汚性が低下する等、耐摩耗性に関して十分とは言い難かった。 Further, in the antifouling article of Patent Document 1, the antifouling layer is not only difficult to get dirty due to the uneven shape of the surface, but also has the effect that the dirt attached due to being hydrophilic is spread and washed away by the attachment of rainwater etc. It is known that there is. However, the antifouling layer using silica fine particles as described in Patent Document 1 is excellent in antifouling properties as described above, but a visible scratch is generated on the antifouling layer due to wear during long-term use. However, it was difficult to say that the abrasion resistance was insufficient.
 一方、例えば、特許文献2には、硬度の高いナノダイヤモンド粒子と樹脂を含むコーティング組成物が記載されている。しかしながら、このコーティング組成物は、優れた透明性、高強度及び高弾性率を有する表面平滑なフィルム形成に用いられるものであって、防汚性の機能を有するものではない。すなわち、特許文献2には、ナノダイヤモンド粒子の堆積状態を調整することで、表面に凹凸形状を有する防汚性を有するフィルムを形成する技術の記載はない。 On the other hand, for example, Patent Document 2 describes a coating composition containing nano diamond particles having high hardness and a resin. However, this coating composition is used for forming a smooth surface film having excellent transparency, high strength and high elastic modulus, and does not have an antifouling function. That is, Patent Document 2 does not describe a technique for forming an antifouling film having an uneven shape on the surface by adjusting the deposition state of nanodiamond particles.
国際公開第2016/010080号International Publication No. 2016/010080 特開2011-26390号公報JP 2011-26390 A
 本発明は、上記観点からなされたものであって、防汚性に優れるとともに耐摩耗性にも優れる防汚性物品の提供を目的とする。 The present invention has been made from the above viewpoint and aims to provide an antifouling article having excellent antifouling properties and excellent wear resistance.
 本発明は、以下を構成とする。
[1]基体と、前記基体上に配置され、高硬度ナノ粒子の凝集体およびバインダーを含む凹凸層を含む複数の突起体を表面に有する防汚層とを有する防汚性物品であって、
 前記防汚層の表面にJIS L0803に規定する綿布を載置し、1.23×10N/mの圧力を加えて100回往復摩擦し、次いで前記防汚性物品を水洗した後、以下の方法で測定される防汚性の指標ΔHxが12%以下である防汚性物品。
(防汚性の指標ΔHxの測定方法)
 前記防汚性物品の主面を水平にして前記防汚層の表面に評価用混合粉体(2.3質量%のカーボンブラック1(粒径0.002~0.028μm)、9.3質量%のカーボンブラック2(JIS試験用粉体1の12種)、62.8質量%のイエローオーカー(顔料用天然黄土)、20.9質量%の焼成関東ローム(JIS試験用粉体1の8種)、および4.7質量%のシリカ粉(JIS試験用粉体1の3種)からなる混合粉体)を、0.02g/cmの割合で散布し10秒間静置する。次いで、アルミニウム製の試験板を用い、前記防汚性物品をその主面と前記試験板の表面のなす角が135°となるように傾けた状態で、前記試験板上3cmの高さから10cm/秒の速度で前記防汚性物品の下端が前記試験板の表面に接触するまで移動する操作を2回繰り返すことで、前記評価用混合粉体を除去した後にヘイズ値を測定する。前記ヘイズ値測定を5回行い、その平均を試験後ヘイズ値とし、試験後ヘイズ値から試験前のヘイズ値を引いた値を防汚性の指標ΔHxとする。
[2]前記高硬度ナノ粒子は、モース硬度が12以上である、[1]の防汚性物品。
[3]前記防汚層は、表面Raが2~6nmである、[1]または[2]の防汚性物品。
[4]前記高硬度ナノ粒子は、平均一次粒子径が1~50nmである、[1]~[3]のの防汚性物品。
[5]前記突起体中、前記基体の前記防汚層が配置された面からの最大高さを有する突起体を基準として、90%以上の高さを有する突起体Tについて、隣り合う前記突起体Tの頂点間距離の平均値が50~1,000nmであり、前記防汚層が配置された基体の面積に対する前記突起体Tの底面の総面積の割合が12~70%である[1]~[4]の防汚性物品。
[6]前記高硬度ナノ粒子と前記バインダーとの体積比は、30/70~70/30である、[1]~[5]の防汚性物品。
[7]前記防汚層は前記凹凸層の上にさらに撥水層を有する、[1]~[6]の防汚性物品。
[8]前記防汚層は、前記凹凸層と前記撥水層の間にさらに中間層を有する、[7]の防汚性物品。
[9]前記防汚層は、表面のマルテンス硬度が1000MPa以上である、[1]~[8]の防汚性物品。
The present invention comprises the following.
[1] An antifouling article comprising a substrate and an antifouling layer disposed on the substrate and having a plurality of protrusions including a concavo-convex layer containing an aggregate of high hardness nanoparticles and a binder on the surface,
After placing a cotton cloth specified in JIS L0803 on the surface of the antifouling layer, applying a pressure of 1.23 × 10 4 N / m 2 and reciprocating 100 times, and then washing the antifouling article with water, An antifouling article having an antifouling index ΔHx measured by the following method of 12% or less.
(Measurement method of antifouling index ΔHx)
With the main surface of the antifouling article horizontal, the mixed powder for evaluation (2.3% by mass of carbon black 1 (particle size 0.002 to 0.028 μm), 9.3% by mass on the surface of the antifouling layer) % Carbon black 2 (12 types of JIS test powder 1), 62.8% by mass of yellow ocher (natural ocher for pigments), 20.9% by mass of calcined Kanto loam (8 of JIS test powder 1) Seed) and 4.7% by mass of silica powder (mixed powder of three kinds of JIS test powder 1) are sprayed at a rate of 0.02 g / cm 2 and allowed to stand for 10 seconds. Next, an aluminum test plate was used, and the antifouling article was tilted so that the angle formed by the main surface of the test plate and the surface of the test plate was 135 ° from the height of 3 cm above the test plate. The haze value is measured after removing the evaluation mixed powder by repeating twice the operation of moving the lower end of the antifouling article to the surface of the test plate at a speed of / sec. The haze value measurement is carried out five times, and the average is taken as the haze value after the test, and the value obtained by subtracting the haze value before the test from the haze value after the test is taken as the antifouling index ΔHx.
[2] The antifouling article according to [1], wherein the high-hardness nanoparticles have a Mohs hardness of 12 or more.
[3] The antifouling article according to [1] or [2], wherein the antifouling layer has a surface Ra of 2 to 6 nm.
[4] The antifouling article according to [1] to [3], wherein the high-hardness nanoparticles have an average primary particle diameter of 1 to 50 nm.
[5] Among the protrusions, the protrusions T adjacent to each other with respect to the protrusion T having a height of 90% or more with reference to the protrusion having the maximum height from the surface of the base on which the antifouling layer is disposed. The average distance between the apexes of the body T is 50 to 1,000 nm, and the ratio of the total area of the bottom surface of the protrusion T to the area of the substrate on which the antifouling layer is disposed is 12 to 70% [1. ] To [4] antifouling article.
[6] The antifouling article according to [1] to [5], wherein the volume ratio of the high hardness nanoparticles to the binder is 30/70 to 70/30.
[7] The antifouling article according to [1] to [6], wherein the antifouling layer further has a water repellent layer on the uneven layer.
[8] The antifouling article according to [7], wherein the antifouling layer further has an intermediate layer between the uneven layer and the water repellent layer.
[9] The antifouling article according to [1] to [8], wherein the antifouling layer has a surface Martens hardness of 1000 MPa or more.
 本発明によれば、防汚性に優れるとともに耐摩耗性にも優れる防汚性物品を提供できる。 According to the present invention, an antifouling article having excellent antifouling properties and excellent wear resistance can be provided.
本発明に係る、防汚性物品の一例の断面を模式的に示す図である。It is a figure which shows typically the cross section of an example of the antifouling article based on this invention. 本発明に係る、防汚性物品の別の一例の断面を模式的に示す図である。It is a figure which shows typically the cross section of another example of the antifouling | stain-proof article based on this invention. 実施例の例2で得られた防汚性物品の防汚層表面の走査型電子顕微鏡写真(80万倍)である。It is a scanning electron micrograph (800,000 times) of the antifouling layer surface of the antifouling article obtained in Example 2 of the Examples.
 本明細書において「工程」の用語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されればその場合を範疇に含む。また「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値および最大値として含む範囲を示す。さらに組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。 In this specification, the term “process” includes not only an independent process but also a case where the intended purpose of the process is achieved even if it cannot be clearly distinguished from other processes. A numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively. Further, the content of each component in the composition means the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition.
 本明細書において、粒子の平均一次粒子径は、走査型電子顕微鏡による観察で求められる粒子径である。また、二次粒子径は、動的光散乱法により測定される粒子径である。 In this specification, the average primary particle diameter of the particles is a particle diameter determined by observation with a scanning electron microscope. The secondary particle diameter is a particle diameter measured by a dynamic light scattering method.
[防汚性物品]
 以下、図面を用いて本発明の防汚性物品の実施の形態を説明する。なお、本発明は、これらの実施形態に限定されるものではなく、これらの実施形態を、本発明の趣旨および範囲を逸脱することなく、変更または変形することができる。
[Anti-fouling article]
Hereinafter, embodiments of the antifouling article of the present invention will be described with reference to the drawings. Note that the present invention is not limited to these embodiments, and these embodiments can be changed or modified without departing from the spirit and scope of the present invention.
 図1および図2は、本発明に係る防汚性物品の一例および別の一例の断面を模式的に示す図である。図1に示す防汚性物品1Aは、基体2と、基体2上に配置された防汚層6を有する。防汚層6は、高硬度ナノ粒子3の凝集体およびバインダー4を含む凹凸層5からなり複数の突起体9を有する。 FIG. 1 and FIG. 2 are diagrams schematically showing a cross section of one example and another example of the antifouling article according to the present invention. An antifouling article 1 </ b> A shown in FIG. 1 includes a base 2 and an antifouling layer 6 disposed on the base 2. The antifouling layer 6 is composed of a concavo-convex layer 5 containing an aggregate of high hardness nanoparticles 3 and a binder 4 and has a plurality of protrusions 9.
 図2に示す防汚性物品1Bは、基体2と、基体2上に配置された防汚層6を有する。防汚層6は、基体2側から順に高硬度ナノ粒子3の凝集体およびバインダー4を含む凹凸層5、中間層7および撥水層8を有する。防汚層6の表面形状は、凹凸層5の表面形状が略そのまま反映されており、複数の突起体9を有する。 The antifouling article 1B shown in FIG. 2 has a base 2 and an antifouling layer 6 disposed on the base 2. The antifouling layer 6 has a concavo-convex layer 5 including an aggregate of high hardness nanoparticles 3 and a binder 4, an intermediate layer 7, and a water repellent layer 8 in order from the substrate 2 side. The surface shape of the antifouling layer 6 reflects the surface shape of the uneven layer 5 substantially as it is, and has a plurality of protrusions 9.
 防汚性物品1Aおよび防汚性物品1Bにおいては、防汚層6の表面にJIS L0803に規定する綿布を載置し、1.23×10N/mの圧力を加えて100回往復摩擦し、次いで上記防汚性物品を水洗した後、上記の方法で測定される防汚性の指標ΔHx(以下、単に「防汚性の指標ΔHx」ともいう。)が12%以下である。 In the antifouling article 1A and the antifouling article 1B, a cotton cloth specified in JIS L0803 is placed on the surface of the antifouling layer 6, and a pressure of 1.23 × 10 4 N / m 2 is applied to reciprocate 100 times. After rubbing and then washing the antifouling article with water, the antifouling index ΔHx (hereinafter also simply referred to as “antifouling index ΔHx”) measured by the above method is 12% or less.
 本発明の防汚性物品においては、防汚層の表面に複数の突起体を有することで、防汚性物品に対する汚れの接触面積を小さくしている。これにより汚れは防汚性物品に付着しにくく、よって本発明の防汚性物品は優れた防汚性を有する。本発明の防汚性物品においては、上記突起体の形成に高硬度ナノ粒子を用いていることから耐摩耗性にも優れる。 The antifouling article of the present invention has a plurality of protrusions on the surface of the antifouling layer, thereby reducing the contact area of dirt against the antifouling article. As a result, dirt is less likely to adhere to the antifouling article, and thus the antifouling article of the present invention has excellent antifouling properties. In the antifouling article of the present invention, since the high hardness nanoparticles are used for the formation of the protrusions, the abrasion resistance is also excellent.
<基体>
 基体としては、防汚層の配置が可能な表面を有する基体であれば特に限定されない。基体の材質は、特に限定されず、ガラス、プラスチック、金属、セラミックス、およびこれらの組み合わせ(例えば、複合材料、積層材料等)が挙げられる。基体は、ガラスまたはプラスチックからなる光透過性基体が好ましい。ガラスは、物理強化処理または化学強化処理が施された強化ガラスでもよく、また複数のガラス板が接着層を介して積層された合わせガラスでもよい。
<Substrate>
The substrate is not particularly limited as long as it has a surface on which an antifouling layer can be disposed. The material of the substrate is not particularly limited, and examples thereof include glass, plastic, metal, ceramics, and combinations thereof (for example, composite materials and laminated materials). The substrate is preferably a light transmissive substrate made of glass or plastic. The glass may be a tempered glass subjected to a physical tempering treatment or a chemical tempering treatment, or may be a laminated glass in which a plurality of glass plates are laminated via an adhesive layer.
 基体の形状は、特に限定されず、平板状、全面または一部に曲率を有している形状等が挙げられる。基体の厚さは、特に限定されず、防汚性物品の用途により適宜選択することができる。基体の厚さは、1~10mmであることが扱いやすさの点で好ましい。 The shape of the substrate is not particularly limited, and examples thereof include a flat plate shape and a shape having a curvature on the entire surface or a part thereof. The thickness of the substrate is not particularly limited and can be appropriately selected depending on the use of the antifouling article. The thickness of the substrate is preferably 1 to 10 mm from the viewpoint of ease of handling.
<防汚層>
 防汚層6は、基体2上に配置され、高硬度ナノ粒子3の凝集体およびバインダー4を含む凹凸層5を必須の層として有する。本発明の防汚性物品おいて防汚層は、図1に示す防汚性物品1Aのように凹凸層5のみで構成されてもよく、図2に示す防汚性物品1Bのように凹凸層5上に撥水層8を有する構成であってもよい。なお、防汚性物品1Bの防汚層6は、凹凸層5と撥水層8と、両者の間に配置された中間層7とを有する構成である。ただし、防汚性物品の防汚層が凹凸層上に撥水層を有する場合、中間層を有しない構成であってもよい。
<Anti-fouling layer>
The antifouling layer 6 is disposed on the substrate 2 and has an uneven layer 5 including an aggregate of high hardness nanoparticles 3 and a binder 4 as an essential layer. In the antifouling article of the present invention, the antifouling layer may be composed of only the uneven layer 5 as in the antifouling article 1A shown in FIG. 1, and the unevenness as in the antifouling article 1B shown in FIG. The structure which has the water-repellent layer 8 on the layer 5 may be sufficient. In addition, the antifouling layer 6 of the antifouling article 1B has a configuration including the uneven layer 5, the water repellent layer 8, and the intermediate layer 7 disposed therebetween. However, when the antifouling layer of the antifouling article has a water-repellent layer on the concavo-convex layer, a configuration without an intermediate layer may be used.
 凹凸層5は、高硬度ナノ粒子3の凝集体およびバインダー4を含み、表面に凹凸を有する層である。防汚層6が表面に有する複数の突起体9は、防汚性物品1Aにおいては凹凸層5が表面に有する凸部に相当する。凹凸層5の凹部10は突起体9が形成されていない部分であり、基体の防汚層が配置された面(以下、「基体面」という。)に略平行な面を有する。また、防汚性物品1Bにおいて突起体9は、凹凸層5が表面に有する凹凸形状がそのまま防汚層6の表面に表出したものである。防汚層6が表面に微細な突起体9を有することで、防汚性物品1A、1Bにおいて、防汚層6上に汚れが付着しにくい。 The concavo-convex layer 5 is a layer that includes aggregates of the high hardness nanoparticles 3 and the binder 4 and has concavo-convex surfaces. The plurality of protrusions 9 on the surface of the antifouling layer 6 correspond to the convex portions of the uneven layer 5 on the surface in the antifouling article 1A. The concave portion 10 of the concavo-convex layer 5 is a portion where the protrusions 9 are not formed, and has a surface substantially parallel to the surface on which the antifouling layer of the substrate is disposed (hereinafter referred to as “substrate surface”). Further, in the antifouling article 1 </ b> B, the protrusions 9 are those in which the uneven shape of the uneven layer 5 on the surface is directly exposed on the surface of the antifouling layer 6. Since the antifouling layer 6 has the fine protrusions 9 on the surface, in the antifouling articles 1 </ b> A and 1 </ b> B, dirt hardly adheres to the antifouling layer 6.
 なお、防汚層が凹凸層上に撥水層を有する場合には、防汚層表面において表面エネルギーが小さく、表面摩擦力が小さい。したがって、防汚層表面は摩耗しにくく、例えば、防汚層表面に付着した汚れを布等で拭き取った場合でも、防汚性能が低下しにくい。 When the antifouling layer has a water-repellent layer on the uneven layer, the surface energy is small on the antifouling layer surface and the surface frictional force is small. Therefore, the antifouling layer surface is not easily worn, and for example, even when the dirt adhering to the antifouling layer surface is wiped off with a cloth or the like, the antifouling performance is not easily lowered.
 本明細書において凹凸層の凸部、防汚層の突起体とは、基体面に略平行な面を有する凹部に比べて基体面からの高さが高い頂点を有する形状をいう。防汚層が有する突起体の形状は、特に限定されず、例えば、略四角錐、略三角錐、略円錐等が挙げられる。突起体の頂点から高さ50%までの領域を部分球面に近似したとき、上記部分球面の曲率半径は、5nm以上が好ましく、5nm~15nmがより好ましい。また、突起体の高さは、10nm以上が好ましく、30~200nmがより好ましい。突起体の高さとは、基体面から突起体の頂点までの高さであり、走査型電子顕微鏡を用いて測定できる。また、凹部の高さ、すなわち基体面から凹部が有する基体面に略平行な面までの距離は平均して10~50nmが好ましい。 In the present specification, the convex portion of the concave-convex layer and the protrusion of the antifouling layer refer to a shape having an apex that is higher in height from the base surface than a concave portion having a surface substantially parallel to the base surface. The shape of the protrusions included in the antifouling layer is not particularly limited, and examples thereof include a substantially quadrangular pyramid, a substantially triangular pyramid, and a substantially cone. When a region from the apex of the protrusion to a height of 50% is approximated to a partial spherical surface, the radius of curvature of the partial spherical surface is preferably 5 nm or more, and more preferably 5 nm to 15 nm. Further, the height of the protrusion is preferably 10 nm or more, more preferably 30 to 200 nm. The height of the protrusion is the height from the substrate surface to the apex of the protrusion, and can be measured using a scanning electron microscope. The height of the recess, that is, the distance from the substrate surface to the surface substantially parallel to the substrate surface of the recess is preferably 10 to 50 nm on average.
 防汚層における突起体の高さや凹部の高さは、例えば、図3に示すような防汚層表面の走査型電子顕微鏡写真の画像から無作為に抽出された1μm×1μmの範囲で、image J(商品名;NIH製)等の画像変換ソフトを用いて求められる。以下の説明において走査型電子顕微鏡を用いた測定とは、このような画像変換ソフト、例えば、image J(商品名;NIH製)により行われるものを指す。 The height of the protrusions and the recesses in the antifouling layer is, for example, in the range of 1 μm × 1 μm randomly extracted from the scanning electron micrograph image of the antifouling layer surface as shown in FIG. It is obtained using image conversion software such as J (trade name; manufactured by NIH). In the following description, measurement using a scanning electron microscope refers to measurement performed by such image conversion software, for example, image J (trade name; manufactured by NIH).
 防汚層における突起体の数は、30~100個/μmが好ましく、50~100個/μmがより好ましい。突起体の数は、例えば、走査型電子顕微鏡により膜表面を観察して測定できる。 The number of protrusions in the antifouling layer is preferably 30 to 100 / μm 2, and more preferably 50 to 100 / μm 2 . The number of protrusions can be measured, for example, by observing the film surface with a scanning electron microscope.
 突起体の底面のサイズは、10~700nmが好ましく、30~200nmがより好ましい。なお、突起体の底面とは、凹部の平均高さにおける基体面に平行な面で突起体を切った際に得られる突起体の底面をいい、突起体の底面のサイズとは、突起体の底面形状が内接する円の直径とする。突起体の底面サイズは、走査型電子顕微鏡を用いて測定できる。また、突起体の底面と側面との角度の平均値は、特に限定されないが、10~90°が好ましく、20~70°がより好ましい。突起体の底面と側面との角度が、10°以上であれば、より急峻な突起体が得られる。 The size of the bottom surface of the protrusion is preferably 10 to 700 nm, more preferably 30 to 200 nm. The bottom surface of the protrusion means the bottom surface of the protrusion obtained when the protrusion is cut by a surface parallel to the substrate surface at the average height of the recess. The size of the bottom surface of the protrusion is the size of the protrusion. The diameter of the circle in which the bottom shape is inscribed is used. The bottom size of the protrusion can be measured using a scanning electron microscope. The average value of the angle between the bottom surface and the side surface of the protrusion is not particularly limited, but is preferably 10 to 90 °, more preferably 20 to 70 °. If the angle between the bottom surface and the side surface of the protrusion is 10 ° or more, a steeper protrusion can be obtained.
 防汚層において、基体面からの最大高さを有する突起体を基準として、90%以上の高さを有する突起体Tについては、隣り合う該突起体Tの頂点間距離の平均値(以下、単に「頂点間距離」ともいう。)が50~1,000nmであることが好ましい。頂点間距離は、50~800nmがより好ましく、50~500nmが特に好ましい。頂点間距離が、50nm以上であることは、防汚層の表面に、突起体Tにより形成される凹凸の間隔が大きいことを意味する。頂点間距離が50nm以上あることで、毛管現象による汚れの吸着を抑制できる。その結果、油汚れ等が付きにくく、また付着したとしても容易に除去できる。 In the antifouling layer, with respect to the protrusion T having a height of 90% or more on the basis of the protrusion having the maximum height from the substrate surface, the average value of the distances between the apexes of the adjacent protrusions T (hereinafter, It is preferably also referred to as “distance between vertices”) of 50 to 1,000 nm. The distance between the vertices is more preferably 50 to 800 nm, and particularly preferably 50 to 500 nm. That the distance between vertices is 50 nm or more means that the interval between the irregularities formed by the protrusions T on the surface of the antifouling layer is large. When the distance between the vertices is 50 nm or more, the adsorption of dirt due to capillary action can be suppressed. As a result, oil stains and the like are hardly attached, and even if attached, they can be easily removed.
 頂点間距離は、走査型電子顕微鏡により測定できる。具体的には、頂点間距離は、防汚性物品の表面写真から、基板の防汚層を有する面に平行な方向に、所定の領域内に存在する突起体中、最大高さを有する突起体を選択し、その90%以上の高さを有する突起体Tを選択し、これら突起体Tについて、隣り合う突起体Tの頂点間距離(すなわち、頂点間隔)を測定し、平均値を算出する。 The distance between vertices can be measured with a scanning electron microscope. Specifically, the distance between the vertices is a protrusion having the maximum height among protrusions existing in a predetermined region in a direction parallel to the surface having the antifouling layer of the substrate from a surface photograph of the antifouling article. Select a body, select a protrusion T having a height of 90% or more, measure the distance between vertices of adjacent protrusions T (that is, the distance between the vertices), and calculate the average value. To do.
 防汚層が配置された基体面の面積に対する、突起体Tの底面の総面積の割合(%)(以下、「凸部被覆率」ともいう。)は、12~70%が好ましい。突起体Tの底面の面積とは、突起体Tを凹部の平均高さにおける基体面に平行な面で切った際に得られる突起体Tの底面において測定される面積であり、走査型電子顕微鏡により測定することができる。凸部被覆率が12%以上であると、防汚層において、汚れに接触できる、高硬度ナノ粒子の凝集体およびバインダーを含む突起体の存在割合が大きいので、充分な防汚性が得られる。70%以下であれば、耐摩耗強度に優れる。凸部被覆率は、15~70%が好ましく、20~70%がより好ましく、50~70%が特に好ましい。凸部被覆率は、防汚層が配置された基体面上の所定領域において、このようにして測定される突起体Tの底面の総面積に基づいて算出される。 The ratio (%) of the total area of the bottom surface of the protrusion T to the area of the substrate surface on which the antifouling layer is disposed (hereinafter also referred to as “protrusion coverage”) is preferably 12 to 70%. The area of the bottom surface of the protrusion T is an area measured on the bottom surface of the protrusion T obtained when the protrusion T is cut along a plane parallel to the substrate surface at the average height of the recesses. Can be measured. When the convex portion coverage is 12% or more, the antifouling layer has a large proportion of high-hardness nanoparticle aggregates and protrusions containing a binder that can come into contact with dirt, so that sufficient antifouling properties can be obtained. . If it is 70% or less, the wear resistance is excellent. The convex portion coverage is preferably 15 to 70%, more preferably 20 to 70%, and particularly preferably 50 to 70%. The convex portion coverage is calculated based on the total area of the bottom surface of the protrusion T measured in this manner in a predetermined region on the base surface on which the antifouling layer is disposed.
 防汚層の表面Raは、2~6nmが好ましい。Raが2nm以上であれば、突起体の頂点より膜厚が薄い部分と汚れとの接触が抑えられ、より優れた防汚性が得られる。6nm以下であれば、耐摩耗強度に優れる。防汚層の表面Raのより好ましい範囲は、高硬度ナノ粒子の種類により異なる。例えば、高硬度ナノ粒子がナノダイヤモンドの場合には、防汚層の表面Raは、3~6nmがより好ましく、4~6nmが特に好ましい。 The surface Ra of the antifouling layer is preferably 2 to 6 nm. If Ra is 2 nm or more, contact between the portion having a film thickness thinner than the apex of the protrusion and the dirt can be suppressed, and more excellent antifouling properties can be obtained. If it is 6 nm or less, it is excellent in abrasion resistance strength. A more preferable range of the surface Ra of the antifouling layer varies depending on the type of the high-hardness nanoparticles. For example, when the high-hardness nanoparticles are nanodiamond, the surface Ra of the antifouling layer is more preferably 3 to 6 nm, and particularly preferably 4 to 6 nm.
 なお、本明細書において、「Ra」は検体表面におけるJIS B 0031:2003に準じて算出される算術平均粗さをいう。Raは、例えば、走査型プローブ顕微鏡で測定できる。 In this specification, “Ra” refers to the arithmetic average roughness calculated in accordance with JIS B 0031: 2003 on the specimen surface. Ra can be measured, for example, with a scanning probe microscope.
 防汚層の膜厚は、特に限定されないが、20~350nmが好ましく、30~300nmがより好ましく、50~300nmが特に好ましい。防汚層の膜厚が、20nm以上であれば、防汚性が高くなる傾向があり、350nm以下であれば、機械的強度に優れる。ここで膜厚は、電子顕微鏡等により得られた膜断面画像から、基体の防汚層を有する面に平行な方向に1.5μmの範囲において、最大高さを有する突起体から、高い順に10番目の突起体までを10点抽出し、それら10点の突起体の高さを平均した値である。 The film thickness of the antifouling layer is not particularly limited, but is preferably 20 to 350 nm, more preferably 30 to 300 nm, and particularly preferably 50 to 300 nm. If the film thickness of the antifouling layer is 20 nm or more, the antifouling property tends to be high, and if it is 350 nm or less, the mechanical strength is excellent. Here, the film thickness is 10 in descending order from the protrusion having the maximum height in the range of 1.5 μm in the direction parallel to the surface having the antifouling layer of the substrate from the film cross-sectional image obtained by an electron microscope or the like. This is a value obtained by extracting 10 points up to the first protrusion and averaging the heights of the protrusions at the 10 points.
 図1および図2がそれぞれ示す防汚性物品1Aおよび防汚性物品1Bの防汚層6を構成する各層について、以下に説明する。防汚性物品1Aおよび防汚性物品1Bの防汚層6において、凹凸層5は同様の層である。 Each layer constituting the antifouling article 1A and the antifouling article 1B shown in FIG. 1 and FIG. 2 will be described below. In the antifouling layer 6 of the antifouling article 1A and the antifouling article 1B, the uneven layer 5 is the same layer.
(凹凸層)
 凹凸層5は、基体2上に配置される、高硬度ナノ粒子3の凝集体およびバインダー4を含み、上記突起体9に相当する凸部を有する層である。凹凸層における高硬度ナノ粒子とバインダーとの体積比(以下、「粒子/バインダー」ともいう。)は、30/70~70/30が好ましく、35/65~65/35がより好ましく、40/60~60/40がさらに好ましい。
(Uneven layer)
The concavo-convex layer 5 is a layer that includes the aggregates of the high hardness nanoparticles 3 and the binder 4 that are disposed on the base 2, and has a convex portion corresponding to the protrusion 9. The volume ratio of the high-hardness nanoparticles and the binder in the uneven layer (hereinafter also referred to as “particle / binder”) is preferably 30/70 to 70/30, more preferably 35/65 to 65/35, More preferred is 60-60 / 40.
 粒子/バインダーが30/70以上であれば、基体表面に適切な突起体Tの頂点間距離を有する凹凸層を形成できるために、防汚性が高くなる傾向があり、70/30以下であれば、基体と凹凸層との密着力が高くなる傾向がある。 If the particle / binder is 30/70 or more, a concavo-convex layer having an appropriate distance between the apexes of the protrusions T can be formed on the surface of the substrate, so that the antifouling property tends to be high. For example, the adhesion between the substrate and the uneven layer tends to be high.
(高硬度ナノ粒子の凝集体)
 高硬度ナノ粒子3の凝集体は、高硬度の材料からなるナノ粒子の凝集体であって、バインダー4と共に集合体を形成し表面に凸部を有する凹凸層5を形成できるものであれば特に限定されない。高硬度ナノ粒子を構成する高硬度の材料としては、モース硬度が12以上の材料が好ましく、モース硬度が15以上の材料がより好ましい。
(Agglomerates of high hardness nanoparticles)
The aggregate of the high-hardness nanoparticles 3 is an aggregate of nanoparticles made of a high-hardness material, and is particularly suitable as long as it can form an aggregate with the binder 4 and form the uneven layer 5 having convex portions on the surface. It is not limited. As the high hardness material constituting the high hardness nanoparticles, a material having a Mohs hardness of 12 or more is preferable, and a material having a Mohs hardness of 15 or more is more preferable.
 高硬度ナノ粒子として、具体的には、ナノダイヤモンド(モース硬度15)、α-アルミナ粒子(モース硬度12)、炭化ケイ素粒子(モース硬度13)等の粒子が挙げられる。高硬度ナノ粒子は、1種でもよく、2種以上の組み合わせでもよい。高硬度ナノ粒子としてはナノダイヤモンドが好ましい。 Specific examples of high-hardness nanoparticles include particles such as nanodiamond (Mohs hardness 15), α-alumina particles (Mohs hardness 12), silicon carbide particles (Mohs hardness 13), and the like. The high-hardness nanoparticles may be one type or a combination of two or more types. Nanodiamonds are preferred as the high hardness nanoparticles.
 高硬度ナノ粒子の平均一次粒子径は、1~50nmが好ましく、3~40nmがより好ましく、5~30nmがさらに好ましく、5~20nmが特に好ましい。高硬度ナノ粒子の平均一次粒子径が1nm以上である場合、凸部を形成しやすくなり、防汚性が向上する傾向がある。また、高硬度ナノ粒子の平均一次粒子径が50nm以下であれば、ヘイズ値を小さくできる。 The average primary particle diameter of the high hardness nanoparticles is preferably 1 to 50 nm, more preferably 3 to 40 nm, still more preferably 5 to 30 nm, and particularly preferably 5 to 20 nm. When the average primary particle diameter of the high-hardness nanoparticles is 1 nm or more, it becomes easy to form convex portions, and the antifouling property tends to be improved. Moreover, if the average primary particle diameter of the high hardness nanoparticles is 50 nm or less, the haze value can be reduced.
 高硬度ナノ粒子の凝集体の大きさを示す二次粒子径は、1~100nmが好ましく、5~80nmがより好ましく、10~50nmが特に好ましい。 The secondary particle diameter indicating the size of the aggregate of high hardness nanoparticles is preferably 1 to 100 nm, more preferably 5 to 80 nm, and particularly preferably 10 to 50 nm.
(バインダー)
 バインダー4は、高硬度ナノ粒子3の凝集体と共に集合体を形成し表面に凸部を有する凹凸層5を形成できるものであれば特に限定されない。バインダーとしては、耐久性に優れる点で、無機バインダーが好ましい。バインダーは、親水性無機バインダーであると、防汚性が高くなるので好ましい。また、親水性無機バインダーを用いて形成した凹凸層は、表面のOH基量が多くなるから、凹凸層5上に撥水層8、好ましくは中間層7を介して撥水層8を形成する場合に、撥水層形成組成物や中間層形成組成物が結合しやすいので好ましい。
(binder)
The binder 4 is not particularly limited as long as it can form an aggregate with the aggregates of the high-hardness nanoparticles 3 and can form the uneven layer 5 having convex portions on the surface. As the binder, an inorganic binder is preferable in terms of excellent durability. The binder is preferably a hydrophilic inorganic binder because the antifouling property is increased. Moreover, since the uneven | corrugated layer formed using the hydrophilic inorganic binder increases the amount of OH groups on the surface, the water-repellent layer 8 is formed on the uneven layer 5 through the water-repellent layer 8, preferably the intermediate layer 7. In this case, the water repellent layer forming composition and the intermediate layer forming composition are preferable because they are easily bonded.
 親水性無機バインダーとして、シリカ、アルミナ、チタニア、ジルコニア、酸化タンタル、酸化スズ等の金属酸化物が挙げられる。バインダーは扱いやすさの点でシリカバインダーがより好ましい。シリカバインダーは、アルカリ成分含有量が小さいことが好ましい。アルカリ含有量が少ないシリカバインダーとして、アルコキシシラン化合物の加水分解縮合物またはケイ酸のアルカリ金属塩からアルカリ金属の一部を除去した脱塩ケイ酸アルカリ化合物(以下、「脱塩ケイ酸」ともいう。)の加水分解縮合物があげられる。なお、これらの加水分解縮合物は、未反応のシラノール基(Si-OH)基を含有していてもよい。 Examples of hydrophilic inorganic binders include metal oxides such as silica, alumina, titania, zirconia, tantalum oxide and tin oxide. The binder is more preferably a silica binder in terms of ease of handling. The silica binder preferably has a small alkali component content. As a silica binder having a low alkali content, a dehydrated alkali silicate compound obtained by removing a part of an alkali metal from a hydrolysis condensate of an alkoxysilane compound or an alkali metal salt of silicic acid (hereinafter also referred to as “demineralized silicic acid”). )). These hydrolysis condensates may contain unreacted silanol groups (Si—OH) groups.
 バインダーは、2種以上のバインダーの混合物でもよい。バインダー中のシリカ含有率は、50質量%以上が好ましく、75質量%以上がより好ましい。 The binder may be a mixture of two or more binders. 50 mass% or more is preferable and, as for the silica content rate in a binder, 75 mass% or more is more preferable.
 凹凸層5は、高硬度ナノ粒子3の凝集体およびバインダー4以外に、本発明の効果を損なわない範囲内で、さらなる成分を含有できる。さらなる成分としては、界面活性剤、泡立ち防止剤、レベリング剤、紫外線吸収剤、粘度調整剤、酸化防止剤、防カビ剤、顔料等が挙げられる。さらなる成分の含有率は合計で、凹凸層中、5質量%以下が好ましく、1質量%以下がより好ましい。 The concavo-convex layer 5 can contain further components in addition to the aggregates of the high hardness nanoparticles 3 and the binder 4 as long as the effects of the present invention are not impaired. Additional components include surfactants, antifoaming agents, leveling agents, UV absorbers, viscosity modifiers, antioxidants, fungicides, pigments and the like. The total content of the further components is preferably 5% by mass or less, more preferably 1% by mass or less in the uneven layer.
(撥水層)
 本発明の防汚性物品は図2に示す防汚性物品1Bの防汚層6のように、凹凸層5上に撥水層8を有することが好ましい。撥水層8の厚さは、ほぼ均一であることが好ましい。撥水層8の厚さが、突起体9の先端部分で薄くなると、防汚層6の撥水性が低下する、または汚れの除去性が低下するおそれがある。
(Water repellent layer)
The antifouling article of the present invention preferably has a water repellent layer 8 on the uneven layer 5 like the antifouling layer 6 of the antifouling article 1B shown in FIG. The thickness of the water repellent layer 8 is preferably substantially uniform. If the thickness of the water repellent layer 8 is reduced at the tip of the protrusion 9, the water repellency of the antifouling layer 6 may be reduced, or the dirt removability may be reduced.
 撥水層8はフッ素を含有するシラン化合物からなることが、撥水性が高くなるので好ましい。撥水層8は、フッ素含有アルコキシシランの加水分解縮合物からなることがより好ましい。 The water repellent layer 8 is preferably made of a silane compound containing fluorine, since the water repellency becomes high. The water repellent layer 8 is more preferably made of a hydrolyzed condensate of fluorine-containing alkoxysilane.
(中間層)
 本発明の防汚性物品において防汚層が、凹凸層上に撥水層を有する場合には、図2に示す防汚性物品1Bのように凹凸層5と撥水層8の間に中間層7を有することが好ましい。中間層7を有することで、防汚性および撥水性の耐摩耗性を向上できる。中間層形成に用いる材料としては、シリカが好ましい。
(Middle layer)
In the antifouling article of the present invention, when the antifouling layer has a water-repellent layer on the uneven layer, an intermediate between the uneven layer 5 and the water-repellent layer 8 as in the antifouling article 1B shown in FIG. It is preferable to have the layer 7. By having the intermediate layer 7, antifouling properties and water-repellent wear resistance can be improved. Silica is preferable as a material used for forming the intermediate layer.
<防汚性物品の性状>
 本発明の防汚性物品は、上記防汚層を有することで、様々な汚れに対して、優れた防汚性を有するとともに、耐摩耗性にも優れる。防汚性の対象となる汚れとして、具体的には、大気中の砂塵、コンクリート壁由来のアルカリ分が残ったもの(水の乾きジミ)、水アカ、ガラス自体のヤケなどの無機系の汚れ、大気中の煤煙や自動車の排気ガス、たばこの煙、油などの有機系の汚れが挙げられる。防汚性物品は、砂塵、油汚れに対して、より優れた防汚効果を有する。
<Properties of antifouling article>
By having the antifouling layer, the antifouling article of the present invention has excellent antifouling properties against various stains and is excellent in wear resistance. Specifically, the dirt that is subject to antifouling properties is inorganic dirt such as atmospheric dust, alkali residue from the concrete wall (water dry spots), water stains, and glass burns. Organic dirt such as smoke in the atmosphere, automobile exhaust, cigarette smoke, and oil. The antifouling article has a better antifouling effect against dust and oil stains.
 防汚性物品の防汚性は、例えば、以下の方法で測定される防汚性の指標ΔHx(以下、単に「ΔHx」ともいう。)で評価できる。なお、防汚性物品の初期のΔHxをΔHxiともいう。本発明の防汚性物品において、ΔHxiは1.5%以下が好ましく、1.0%以下がより好ましく、0.5%以下がさらに好ましい。なお、ΔHxは砂等の粉体に対する防汚性を評価する指標であり、ΔHxが小さいほど砂等の粉体が付着しにくく、屋外で長期間使用しても汚れにくいことを意味する。 The antifouling property of the antifouling article can be evaluated by, for example, an antifouling index ΔHx (hereinafter, also simply referred to as “ΔHx”) measured by the following method. The initial ΔHx of the antifouling article is also referred to as ΔHxi. In the antifouling article of the present invention, ΔHxi is preferably 1.5% or less, more preferably 1.0% or less, and further preferably 0.5% or less. Note that ΔHx is an index for evaluating the antifouling property against powder such as sand, and as ΔHx is smaller, it means that powder such as sand is less likely to adhere and is less likely to become dirty even when used outdoors for a long time.
(防汚性の指標ΔHxの測定方法)
 防汚性物品の主面を水平にして防汚層の表面に以下の評価用混合粉体を、0.02g/cmの割合で散布し10秒間静置する。次いで、アルミニウム製の試験板を用い、前記防汚性物品をその主面と前記試験板の表面のなす角が135°となるように傾けた状態で、前記試験板上3cmの高さから10cm/秒の速度で防汚性物品の下端が前記試験板の表面に接触するまで移動する操作を2回繰り返すことで、評価用混合粉体を除去した後にヘイズ値を測定する。該ヘイズ値測定を5回行い、その平均を試験後ヘイズ値とし、試験後ヘイズ値(%)から試験前のヘイズ値(%)を引いた値を防汚性の指標ΔHx(%)とする。
(Measurement method of antifouling index ΔHx)
The main surface of the antifouling article is leveled, and the following mixed powder for evaluation is sprayed on the surface of the antifouling layer at a rate of 0.02 g / cm 2 and allowed to stand for 10 seconds. Next, an aluminum test plate was used, and the antifouling article was tilted so that the angle formed by the main surface of the test plate and the surface of the test plate was 135 ° from the height of 3 cm above the test plate. The haze value is measured after removing the evaluation mixed powder by repeating the operation of moving the antifouling article at a speed of / sec until the lower end of the antifouling article contacts the surface of the test plate. The haze value is measured five times, the average is taken as the haze value after the test, and the value obtained by subtracting the haze value (%) before the test from the haze value after the test (%) is taken as the antifouling index ΔHx (%). .
 評価用混合粉体は、一般財団法人土木研究センターが行う防汚性評価試験に用いられる混合粉体であって、2.3質量%のカーボンブラック1(粒径0.002~0.028μm)と9.3質量%のカーボンブラック2(JIS試験用粉体1の12種)と62.8質量%のイエローオーカー(顔料用天然黄土)と20.9質量%の焼成関東ローム(JIS試験用粉体1の8種)と4.7質量%のシリカ粉(JIS試験用粉体1の3種)からなる。JIS試験用粉体1は、JIS Z 8901に規定される。 The mixed powder for evaluation is a mixed powder used in an antifouling evaluation test conducted by the Public Works Research Center, 2.3% by mass of carbon black 1 (particle size: 0.002 to 0.028 μm) 9.3 mass% carbon black 2 (12 kinds of powder 1 for JIS test), 62.8 mass% yellow ocher (natural ocher for pigment) and 20.9 mass% calcined Kanto loam (for JIS test) 8 types of powder 1) and 4.7% by mass of silica powder (3 types of powder 1 for JIS test). JIS test powder 1 is specified in JIS Z 8901.
 また、防汚性物品の耐摩耗性は、以下の耐摩耗試験1後に測定されるΔHxにより評価できる。以下、耐摩耗試験1後のΔHxをΔHxr1ともいう。本発明の防汚性物品は、ΔHxr1が12%以下であり、耐摩耗性に優れる。ΔHxr1は10%以下が好ましく、5%以下がより好ましい。 Further, the abrasion resistance of the antifouling article can be evaluated by ΔHx measured after the following abrasion resistance test 1. Hereinafter, ΔHx after the abrasion resistance test 1 is also referred to as ΔHxr1. The antifouling article of the present invention has ΔHxr1 of 12% or less and is excellent in wear resistance. ΔHxr1 is preferably 10% or less, and more preferably 5% or less.
(耐摩耗試験1)
 防汚性物品の防汚層の表面にJIS L0803に規定する綿布を載置し、1.23×10N/mの圧力を加えて100回往復摩擦し、次いで防汚性物品を水洗する。
(Abrasion resistance test 1)
Place the cotton cloth specified in JIS L0803 on the surface of the antifouling layer of the antifouling article, apply a pressure of 1.23 × 10 4 N / m 2 and rub it back and forth 100 times, and then wash the antifouling article with water To do.
 なお、防汚性物品の耐摩耗性は上記に比べてより厳しい条件下での、以下の耐摩耗試験2後に測定されるΔHxにより、より高いレベルの耐摩耗性が評価できる。以下、耐摩耗試験2後のΔHxをΔHxr2ともいう。本発明の防汚性物品は、ΔHxr2が15%以下が好ましく、ΔHxr2は12%以下がより好ましく、10%以下がさらに好ましい。 Note that the abrasion resistance of the antifouling article can be evaluated at a higher level of abrasion resistance by ΔHx measured after the following abrasion resistance test 2 under conditions more severe than those described above. Hereinafter, ΔHx after the abrasion resistance test 2 is also referred to as ΔHxr2. In the antifouling article of the present invention, ΔHxr2 is preferably 15% or less, ΔHxr2 is more preferably 12% or less, and further preferably 10% or less.
(耐摩耗試験2)
 防汚性物品の防汚層の表面にJIS L0803に規定する綿布を載置し、2.95×10N/mの圧力を加えて500回往復摩擦し、次いで防汚性物品を水洗する。
(Abrasion resistance test 2)
Place the cotton cloth specified in JIS L0803 on the surface of the antifouling layer of the antifouling article, apply a pressure of 2.95 × 10 4 N / m 2 and rub it back and forth 500 times, and then wash the antifouling article with water To do.
 本発明の防汚性物品においては、例えば、防汚層が凹凸層上に撥水層を有する場合には、ΔHxr2の10%以下を達成しやすい。さらに、図2に示す防汚性物品1Bのように、防汚層6が凹凸層5上に中間膜7を介して撥水層8を有する場合に、ΔHxr2の5%以下を達成しやすい。本発明の防汚性物品においては、防汚層が凹凸層上に撥水層を有する場合には、防汚層の表面の摩擦係数が小さく、擦れによる摩耗が生じにくい。したがって、付着した汚れを、布等で拭き取った場合でも防汚性能が低下しにくい。特に防汚層が凹凸層上に中間膜を介して撥水層を有する場合に、防汚性能の低下抑制効果が高い。 In the antifouling article of the present invention, for example, when the antifouling layer has a water repellent layer on the uneven layer, it is easy to achieve 10% or less of ΔHxr2. Furthermore, when the antifouling layer 6 has the water repellent layer 8 through the intermediate film 7 on the uneven layer 5 as in the antifouling article 1B shown in FIG. 2, it is easy to achieve 5% or less of ΔHxr2. In the antifouling article of the present invention, when the antifouling layer has a water-repellent layer on the uneven layer, the friction coefficient of the surface of the antifouling layer is small, and abrasion due to rubbing hardly occurs. Therefore, even when the attached dirt is wiped off with a cloth or the like, the antifouling performance is not easily lowered. In particular, when the antifouling layer has a water-repellent layer on the uneven layer through an intermediate film, the effect of suppressing the deterioration of the antifouling performance is high.
 本発明の防汚性物品においては、例えば、防汚性物品において、防汚層が凹凸層上に撥水層を有する場合には、JIS R3257:1999に規定する静滴法を準用して防汚層の表面に1μLの水滴を滴下し、3秒後に測定される水接触角(以下、該方法で測定される水接触角を単に「水接触角」という。)を概ね110°以上とすることができる。水接触角は撥水性の評価指標であり、80°以上であれば撥水性に優れる。 In the antifouling article of the present invention, for example, in the antifouling article, when the antifouling layer has a water-repellent layer on the uneven layer, the sessile drop method specified in JIS R3257: 1999 is applied mutatis mutandis. A 1 μL water droplet is dropped on the surface of the soil layer, and the water contact angle measured after 3 seconds (hereinafter, the water contact angle measured by the method is simply referred to as “water contact angle”) is approximately 110 ° or more. be able to. The water contact angle is an evaluation index of water repellency. If it is 80 ° or more, the water repellency is excellent.
 本発明の防汚性物品において防汚層表面の水接触角は100°以上がより好ましく、110°以上がさらに好ましい。なお、接触角は150°以下であると生産性が高くなるので好ましい。このように、防汚層の表面が撥水性を有すると、汚れと防汚層間に働く凝着力が小さい。したがって、泥汚れ等の水分を含む汚れが固着しにくいだけでなく、汚れが付着した場合でも、風や重力などによって、付着した汚れが容易に除去される。 In the antifouling article of the present invention, the water contact angle on the surface of the antifouling layer is more preferably 100 ° or more, and further preferably 110 ° or more. Note that a contact angle of 150 ° or less is preferable because productivity increases. Thus, when the surface of the antifouling layer has water repellency, the adhesion force acting between the dirt and the antifouling layer is small. Therefore, not only dirt containing moisture such as mud dirt is hard to adhere, but even if dirt adheres, the attached dirt is easily removed by wind or gravity.
 本発明の防汚性物品においては、防汚層が凹凸層上に中間膜を介して撥水層を有する場合に撥水性の耐摩耗性に優れる。例えば、このような構成である防汚性物品は、上記耐摩耗試験2を行った後に測定される水接触角を概ね95°以上とすることができる。 In the antifouling article of the present invention, the antifouling layer has excellent water repellency and abrasion resistance when the antifouling layer has a water repellent layer on the uneven layer via an intermediate film. For example, the antifouling article having such a configuration can have a water contact angle measured after the wear resistance test 2 of approximately 95 ° or more.
 さらに、本発明の防汚性物品においては、防汚層表面のマルテンス硬度が1000MPa以上であることが好ましく、1300MPa以上がより好ましい。マルテンス硬度が1000MPa以上であれば耐摩耗性が優れるので好ましい。 Furthermore, in the antifouling article of the present invention, the Martens hardness of the antifouling layer surface is preferably 1000 MPa or more, more preferably 1300 MPa or more. A Martens hardness of 1000 MPa or more is preferred because of excellent wear resistance.
 なお、本明細書において、マルテンス硬度は、インデンテーション試験装置(フィッシャー製、ピコデンターHM500)を用い、押込荷重を0.03mN、保持時間を5秒、負荷速度および除荷速度0.05mN/5秒として測定したマルテンス硬度をいう。 In this specification, the Martens hardness is measured by using an indentation test apparatus (Fischer, Picodenter HM500), indentation load of 0.03 mN, holding time of 5 seconds, loading speed and unloading speed of 0.05 mN / 5 seconds. The Martens hardness measured as.
<防汚性物品の製造方法>
 本発明の防汚性物品は例えば以下に説明する方法により製造できる。なお、以下の説明は、図2に示す、基体2と、基体2上に配置された、基体2側から順に高硬度ナノ粒子3の凝集体およびバインダー4を含む凹凸層5、中間層7および撥水層8を有する防汚層6とを有する防汚性物品1Bの場合を例に説明する。なお、図1に示す防汚性物品1Aの場合は、以下の方法において、中間層7および撥水層8を形成しない方法で製造できる。また、以下の方法において、中間層7を形成しない場合は、基体と、該基体上に配置された、基体側から順に高硬度ナノ粒子の凝集体およびバインダーを含む凹凸層、および撥水層を有する防汚層とを有する防汚性物品が製造できる。
<Method for producing antifouling article>
The antifouling article of the present invention can be produced, for example, by the method described below. In the following description, as shown in FIG. 2, the concavo-convex layer 5, the intermediate layer 7, and the substrate 2, the aggregates of the high-hardness nanoparticles 3 arranged on the substrate 2, and the binder 4 are sequentially arranged from the substrate 2 side. The case of the antifouling article 1B having the antifouling layer 6 having the water repellent layer 8 will be described as an example. Note that the antifouling article 1A shown in FIG. 1 can be manufactured by a method in which the intermediate layer 7 and the water repellent layer 8 are not formed in the following method. Further, in the following method, when the intermediate layer 7 is not formed, a base, a concavo-convex layer containing agglomerates of high-hardness nanoparticles and a binder arranged in this order from the base side, and a water-repellent layer are arranged on the base. An antifouling article having an antifouling layer can be produced.
 高硬度ナノ粒子の凝集体およびバインダー前駆体を含む凹凸層形成組成物と、中間層形成組成物と、撥水層形成組成物と、基体とを準備する工程(「準備工程」という。)と、基体上に、凹凸層形成組成物を塗布して凹凸層を形成する工程(「凹凸層形成工程」という。)と、前記形成された凹凸層上に中間層形成組成物を塗布して中間層を形成する工程(「中間層形成工程」という。)と、前記形成された中間層上に撥水層形成組成物を塗布して撥水層を形成する工程(「撥水層形成工程」という。)と、を含む。 A step of preparing a concavo-convex layer-forming composition comprising an aggregate of high-hardness nanoparticles and a binder precursor, an intermediate layer-forming composition, a water-repellent layer-forming composition, and a substrate (referred to as a “preparation step”); A step of applying a concavo-convex layer forming composition on a substrate to form a concavo-convex layer (referred to as a “concave layer forming step”), and an intermediate layer forming composition applied on the formed concavo-convex layer. A step of forming a layer (referred to as “intermediate layer forming step”), and a step of applying a water repellent layer forming composition on the formed intermediate layer to form a water repellent layer (“water repellent layer forming step”). And).
(準備工程)
 準備工程は、高硬度ナノ粒子の凝集体およびバインダー前駆体を含む凹凸層形成組成物と、中間層形成組成物と、撥水層形成組成物と、基体とを準備する工程である。
(基体)
 基体は本発明の防汚性物品における基体と同様なので、説明を省略する。
(Preparation process)
The preparation step is a step of preparing a concavo-convex layer forming composition containing an aggregate of high-hardness nanoparticles and a binder precursor, an intermediate layer forming composition, a water repellent layer forming composition, and a substrate.
(Substrate)
Since the substrate is the same as the substrate in the antifouling article of the present invention, description thereof is omitted.
(凹凸層形成組成物)
 凹凸層形成組成物は、高硬度ナノ粒子の凝集体とバインダー前駆体とを含む。
 凹凸層形成組成物は、高硬度ナノ粒子の凝集体を含むので、基体表面に塗布したときに、粒子が局所的に積層しやすいため、得られる被膜に凹凸が形成されやすい。また、バインダー前駆体を含むことで、得られる膜の強度が高くなる。
(Uneven layer forming composition)
The uneven layer forming composition includes an aggregate of high hardness nanoparticles and a binder precursor.
Since the concavo-convex layer-forming composition contains aggregates of high-hardness nanoparticles, when applied to the surface of the substrate, the particles are likely to be locally stacked, so that the concavo-convex layer is likely to be formed on the resulting coating. Moreover, the intensity | strength of the film | membrane obtained becomes high by including a binder precursor.
 高硬度ナノ粒子および凝集体は、先に説明した防汚性物品における高硬度ナノ粒子および凝集体と同じなので説明を省略する。 The high-hardness nanoparticles and aggregates are the same as the high-hardness nanoparticles and aggregates in the antifouling article described above, and thus the description thereof is omitted.
 ただし、高硬度ナノ粒子は、高硬度ナノ粒子の凝集体が分散媒に分散された分散液として準備され、凹凸層形成組成物に配合することが好ましい。高硬度ナノ粒子の凝集体の分散液に用いる分散媒としては、水、N-メチルピロリドン、イソプロピルアルコール、N-エチルピロリドン、ジメチルアセトアミド、エチレングリコール等の有機溶媒が挙げられる。本発明においては、例えば、ナノダイヤモンド凝集体の分散媒としては有機溶媒が好ましく、N-メチルピロリドンが特に好ましい。 However, it is preferable that the high-hardness nanoparticles are prepared as a dispersion in which aggregates of high-hardness nanoparticles are dispersed in a dispersion medium, and are blended into the uneven layer forming composition. Examples of the dispersion medium used for the dispersion of the aggregate of high hardness nanoparticles include organic solvents such as water, N-methylpyrrolidone, isopropyl alcohol, N-ethylpyrrolidone, dimethylacetamide, and ethylene glycol. In the present invention, for example, an organic solvent is preferable as a dispersion medium for nanodiamond aggregates, and N-methylpyrrolidone is particularly preferable.
 また、高硬度ナノ粒子の凝集体の分散液は市販品を用いてもよい。市販比としては、ナノダイヤモンド凝集体の分散液として、例えば、Carbodeon社製;製品グレードHydrogen D in NMP(平均一次粒子径が4~6nmのナノダイヤモンド凝集体の3.0質量%N-メチルピロリドン分散液)等が挙げられる。 Also, a commercially available product may be used as the dispersion liquid of the aggregates of the high hardness nanoparticles. As a commercial ratio, as a dispersion of nanodiamond aggregate, for example, manufactured by Carbodeon; product grade Hydrogen D in NMP (3.0 mass% N-methylpyrrolidone of nanodiamond aggregate having an average primary particle size of 4 to 6 nm) Dispersion).
 バインダー前駆体は、加熱処理、脱溶媒処理または光硬化処理等により前述のバインダーを形成する成分である。バインダー前駆体は、無機バインダー前駆体や有機無機ハイブリッドバインダー前駆体が挙げられる。 The binder precursor is a component that forms the above-described binder by heat treatment, solvent removal treatment, photocuring treatment, or the like. Examples of the binder precursor include an inorganic binder precursor and an organic-inorganic hybrid binder precursor.
 無機バインダー前駆体としては、シリカ前駆体が好ましい。凹凸層形成組成物が、シリカ前駆体を含有することにより、形成される凹凸層と基体との密着性をより向上させることができる。シリカ前駆体としては、加水分解性基を有するシラン化合物およびケイ酸が挙げられる。シリカ前駆体以外のバインダー前駆体として、金属酸化物前駆体、例えば、加水分解性基を有する金属化合物が挙げられる。金属酸化物前駆体は、加水分解縮合反応により金属酸化物を形成する成分である。バインダー前駆体は、1種単独であってもよく、2種以上の組み合わせであってもよい。 As the inorganic binder precursor, a silica precursor is preferable. When the uneven layer forming composition contains a silica precursor, the adhesion between the formed uneven layer and the substrate can be further improved. Examples of the silica precursor include a silane compound having a hydrolyzable group and silicic acid. Examples of the binder precursor other than the silica precursor include metal oxide precursors, for example, metal compounds having a hydrolyzable group. The metal oxide precursor is a component that forms a metal oxide by hydrolysis condensation reaction. One type of binder precursor may be used alone, or two or more types may be used in combination.
 シリカ前駆体としては、ケイ酸および加水分解性基を有するシラン化合物が挙げられる。シリカ前駆体としては、形成される凹凸層と基体との密着性をより向上させるのでアルカリ金属含有量が少ないものが好ましく、例えばケイ酸のアルカリ金属塩からアルカリ金属の一部を除去した脱塩ケイ酸またはアルコキシシラン化合物もしくはその部分加水分解縮合物が好ましい。ケイ酸のアルカリ金属塩としては、ケイ酸ナトリウム、ケイ酸リチウムおよびケイ酸カリウム等が挙げられ、特にケイ酸ナトリウムが好ましい。 Examples of the silica precursor include silicic acid and a silane compound having a hydrolyzable group. As the silica precursor, one having a low alkali metal content is preferable because it improves the adhesion between the uneven layer to be formed and the substrate. For example, desalting in which a part of the alkali metal is removed from the alkali metal salt of silicic acid. Silicic acid or an alkoxysilane compound or a partial hydrolysis condensate thereof is preferred. Examples of the alkali metal salt of silicic acid include sodium silicate, lithium silicate and potassium silicate, and sodium silicate is particularly preferable.
 ケイ酸ナトリウムは、SiO/NaOで示されるNaOに対するSiOのモル比が大きいものがアルカリ金属イオンを除去しやすいので好ましく、SiO/NaOのモル比が3以上のものが特に好ましい。 Sodium silicate is preferred because those molar ratio of SiO 2 to Na 2 O indicated by SiO 2 / Na 2 O is large tends to remove alkali metal ions, the molar ratio of SiO 2 / Na 2 O 3 or more Those are particularly preferred.
 ケイ酸のアルカリ金属塩からアルカリ金属イオンを除去する方法は、従来公知の方法とすることができる。例えば、ケイ酸ナトリウムの水溶液を強酸性陽イオン交換樹脂とともに撹拌して、ナトリウムイオンをイオン交換させて、水溶液中の全固形分に対するナトリウムイオンの割合を低くする等が挙げられる。 The method for removing alkali metal ions from the alkali metal salt of silicic acid can be a conventionally known method. For example, an aqueous solution of sodium silicate is stirred together with a strongly acidic cation exchange resin, and sodium ions are ion-exchanged to reduce the ratio of sodium ions to the total solid content in the aqueous solution.
 加水分解性基を有するシラン化合物は、1分子中にケイ素原子に結合する1~4の加水分解性基を有する化合物である。加水分解性基としては、アルコキシ基、イソシアナト基、アシルオキシ基、アミノキシ基、ハロゲン等が挙げられ、アルコキシ基が好ましい。よって、加水分解性基を有するシラン化合物として、アルコキシシラン化合物が好ましい。また、アルコキシシラン化合物は、少なくとも一部の分子同士が加水分解縮合している縮合物(以下、「アルコキシシラン化合物の部分加水分解縮合物」ともいう。)でもよい。 A silane compound having a hydrolyzable group is a compound having 1 to 4 hydrolyzable groups bonded to a silicon atom in one molecule. Examples of the hydrolyzable group include an alkoxy group, an isocyanato group, an acyloxy group, an aminoxy group, a halogen and the like, and an alkoxy group is preferable. Therefore, an alkoxysilane compound is preferable as the silane compound having a hydrolyzable group. Further, the alkoxysilane compound may be a condensate in which at least some of the molecules are hydrolyzed and condensed (hereinafter also referred to as “partially hydrolyzed condensate of alkoxysilane compound”).
 アルコキシシラン化合物は、1分子中にケイ素原子に結合する1~4のアルコキシ基を有する化合物であり、下記一般式(I)で表される化合物が挙げられる。
 (RO)SiR (4-p)  (I)
 式中、Rは、それぞれ独立して炭素数1~4のアルキル基を示し、Rは、それぞれ独立して置換基を有していてもよい炭素数1~10のアルキル基を示し、pは1~4の整数を示す。RまたはRが複数存在する場合、それらは互いに同一であっても、異なっていてもよい。
The alkoxysilane compound is a compound having 1 to 4 alkoxy groups bonded to a silicon atom in one molecule, and examples thereof include compounds represented by the following general formula (I).
(R 1 O) p SiR 2 (4-p) (I)
In the formula, each R 1 independently represents an alkyl group having 1 to 4 carbon atoms, R 2 independently represents an optionally substituted alkyl group having 1 to 10 carbon atoms, p represents an integer of 1 to 4. When a plurality of R 1 or R 2 are present, they may be the same as or different from each other.
 Rは、炭素数1~4のアルキル基であり、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、t-ブチルが挙げられ、メチル、エチルが好ましい。Rにおける、炭素数1~10のアルキル基は、直鎖または分岐状であり、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、t-ブチル、ヘキシル、デシル等が挙げられる。Rは、炭素数1~6のアルキル基が好ましい。Rにおける、置換基は、特に限定されないが、エポキシ基、グリシドキシ基、メタクリロイルオキシ基、アクリロイルオキシ基、イソシアナト基、ヒドロキシ基、アミノ基、フェニルアミノ基、アルキルアミノ基、アミノアルキルアミノ基、ウレイド基、メルカプト基等が挙げられる。なお、Rにおける、「炭素数1~10のアルキル基」は、置換基を除いたアルキル基部分の炭素数が1~10であることを意味する。 R 1 is an alkyl group having 1 to 4 carbon atoms, and examples thereof include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, and t-butyl, and methyl and ethyl are preferable. The alkyl group having 1 to 10 carbon atoms in R 2 is linear or branched, and examples thereof include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, hexyl, decyl and the like. R 2 is preferably an alkyl group having 1 to 6 carbon atoms. The substituent in R 2 is not particularly limited, but epoxy group, glycidoxy group, methacryloyloxy group, acryloyloxy group, isocyanato group, hydroxy group, amino group, phenylamino group, alkylamino group, aminoalkylamino group, ureido Group, mercapto group and the like. The “alkyl group having 1 to 10 carbon atoms” in R 2 means that the alkyl group portion excluding the substituent has 1 to 10 carbon atoms.
 アルコキシシラン化合物としては、テトラメトキシシラン、テトラエトキシシラン等のテトラアルコキシシラン化合物;3-グリシドキシプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン等の1分子中にケイ素原子に結合する1~3のアルコキシ基を有するアルコキシシラン化合物が挙げられ、テトラアルコキシシラン化合物が好ましい。 Examples of the alkoxysilane compounds include tetraalkoxysilane compounds such as tetramethoxysilane and tetraethoxysilane; 3-glycidoxypropyltrimethoxysilane, 3-aminopropyltrimethoxysilane and the like which are bonded to silicon atoms in one molecule. And alkoxysilane compounds having 3 alkoxy groups, and tetraalkoxysilane compounds are preferred.
 凹凸層形成組成物において、高硬度ナノ粒子とバインダー前駆体との、金属酸化物換算での体積比は、凹凸形状により防汚性が得られるために30/70以上が好ましく、基板との密着性が得られるために、70/30以下が好ましい。また、前記シリカ前駆体は、ケイ酸のアルカリ金属塩からアルカリ金属の一部を除去した脱塩ケイ酸が好ましい。 In the concavo-convex layer forming composition, the volume ratio in terms of metal oxide between the high hardness nanoparticles and the binder precursor is preferably 30/70 or more because the antifouling property is obtained due to the concavo-convex shape, and is in close contact with the substrate. 70/30 or less is preferable in order to obtain properties. The silica precursor is preferably demineralized silicic acid obtained by removing a part of the alkali metal from the alkali metal salt of silicic acid.
 なお、凹凸層形成組成物がアルコキシシラン化合物の部分加水分解縮合物を含有する場合、アルコキシシラン化合物の部分加水分解縮合物の含有量は、シリカの換算量である。 In addition, when the uneven | corrugated layer forming composition contains the partial hydrolysis-condensation product of an alkoxysilane compound, content of the partial hydrolysis-condensation product of an alkoxysilane compound is the conversion amount of a silica.
 凹凸層形成組成物は、バインダー前駆体の加水分解縮合物が得られる条件において、水および酸を含んでいてもよい。凹凸層形成組成物は、水を含有することにより、加水分解縮合反応が進行する。含有する水の量は、バインダー前駆体100質量部に対して、10~500質量部が好ましく、50~300質量部がより好ましい。ここで、バインダー前駆体の量は、金属酸化物換算の量である。 The uneven layer forming composition may contain water and an acid under the condition that a hydrolysis condensate of the binder precursor is obtained. When the uneven layer forming composition contains water, the hydrolysis condensation reaction proceeds. The amount of water to be contained is preferably 10 to 500 parts by mass, more preferably 50 to 300 parts by mass with respect to 100 parts by mass of the binder precursor. Here, the amount of the binder precursor is an amount in terms of metal oxide.
 酸は、加水分解縮合反応の触媒として作用する。凹凸層形成組成物が、酸を含有することにより、バインダー前駆体の加水分解縮合の反応速度を調整できる。酸として、塩酸、硝酸、硫酸等が挙げられる。酸の量は、バインダー前駆体100質量部に対して、0.1~5.0質量部が好ましく、0.2~3.5質量部がより好ましい。ここで、バインダー前駆体の量は、金属酸化物換算の量である。 Acid acts as a catalyst for hydrolysis condensation reaction. The uneven | corrugated layer forming composition can adjust the reaction rate of the hydrolysis condensation of a binder precursor by containing an acid. Examples of the acid include hydrochloric acid, nitric acid, sulfuric acid and the like. The amount of the acid is preferably 0.1 to 5.0 parts by mass, more preferably 0.2 to 3.5 parts by mass with respect to 100 parts by mass of the binder precursor. Here, the amount of the binder precursor is an amount in terms of metal oxide.
 凹凸層形成組成物は、作業性を向上する等の目的で溶剤を含有してもよい。溶剤は、高硬度ナノ粒子およびバインダー前駆体の分散性が良好であり、かつこれらの成分に対する反応性が低い溶剤が好ましい。溶剤は、具体的には、アルコール(メタノール、エタノール、2-プロパノール等)、エステル(酢酸エステル、酢酸ブチル等)、エーテル(ジエチレングリコールジメチルエーテル等)、ケトン(メチルエチルケトン等)、水、等が挙げられる。溶剤は、外観が良好になる点で水、イソプロピルアルコールが好ましく、イソプロピルアルコールがより好ましい。溶剤は、1種単独であってもよく、2種以上の組み合わせであってもよい。 The uneven layer forming composition may contain a solvent for the purpose of improving workability. The solvent is preferably a solvent having good dispersibility of the high-hardness nanoparticles and the binder precursor and low reactivity with these components. Specific examples of the solvent include alcohol (methanol, ethanol, 2-propanol, etc.), ester (acetic ester, butyl acetate, etc.), ether (diethylene glycol dimethyl ether, etc.), ketone (methyl ethyl ketone, etc.), water, and the like. The solvent is preferably water or isopropyl alcohol, more preferably isopropyl alcohol, from the viewpoint of good appearance. The solvent may be a single type or a combination of two or more types.
 溶剤の含有量は、特に限定されないが、高硬度ナノ粒子およびバインダー前駆体の合計100質量部に対して、1,000~100,000質量部が好ましく、2,000~50,000質量部がより好ましい。なお、高硬度ナノ粒子の凝集体を分散液として用いる場合には、該分散液の分散媒は溶剤の一部として含まれる。すなわち、その場合の溶剤の量は、該分散媒の量と凹凸層形成組成物用として新たに用いた溶剤の量の合計量である。溶剤の含有量が、高硬度ナノ粒子およびバインダー前駆体の合計100質量部に対して、1,000質量部以上であれば加水分解、縮合反応の急激な進行を防ぐことができ、100,000質量部以下であれば、加水分解、縮合反応が進行する。ここで、バインダー前駆体の量は、金属酸化物換算の量である。 The content of the solvent is not particularly limited, but is preferably 1,000 to 100,000 parts by weight, and 2,000 to 50,000 parts by weight with respect to a total of 100 parts by weight of the high-hardness nanoparticles and the binder precursor. More preferred. When an aggregate of high hardness nanoparticles is used as a dispersion, the dispersion medium of the dispersion is included as part of the solvent. That is, the amount of the solvent in that case is the total amount of the amount of the dispersion medium and the amount of the solvent newly used for the uneven layer forming composition. If the content of the solvent is 1,000 parts by mass or more with respect to a total of 100 parts by mass of the high-hardness nanoparticles and the binder precursor, rapid progress of hydrolysis and condensation reaction can be prevented. If the amount is less than or equal to parts by mass, hydrolysis and condensation reactions proceed. Here, the amount of the binder precursor is an amount in terms of metal oxide.
 凹凸層形成組成物は、本発明の効果を損なわない範囲内でさらなる成分を含有することができる。このような成分として、界面活性剤、泡立ち防止剤、レベリング剤、紫外線吸収剤、粘度調整剤、酸化防止剤、防カビ剤、顔料等が挙げられる。 The concavo-convex layer forming composition can contain further components within a range not impairing the effects of the present invention. Examples of such components include surfactants, antifoaming agents, leveling agents, ultraviolet absorbers, viscosity modifiers, antioxidants, fungicides, and pigments.
 凹凸層形成組成物中のさらなる成分の含有量は、特に限定されないが、高硬度ナノ粒子およびバインダー前駆体の合計100質量部に対して、0.02~1質量部が好ましく、0.02~0.5質量部がより好ましく、0.02~0.3質量部が特に好ましい。ここで、バインダー前駆体の量は、金属酸化物換算の量である。 The content of the further component in the uneven layer forming composition is not particularly limited, but is preferably 0.02 to 1 part by mass, preferably 0.02 to 1 part by mass with respect to 100 parts by mass in total of the high-hardness nanoparticles and the binder precursor. 0.5 parts by mass is more preferable, and 0.02 to 0.3 parts by mass is particularly preferable. Here, the amount of the binder precursor is an amount in terms of metal oxide.
 凹凸層形成組成物としては、例えば、高硬度ナノ粒子としてナノダイヤモンド凝集体と、バインダー前駆体としてシリカ前駆体を、体積比が30/70~70/30となる割合(ただし、シリカ前駆体は酸化ケイ素換算)で含有し、組成物全量に対するナノダイヤモンド凝集体とシリカ前駆体の合計含有量が0.5~2.5質量%であり、溶剤が、水、イソプロピルアルコールから選ばれる(ただし、ナノダイヤモンド凝集体が分散液で配合される場合、溶剤はさらにナノダイヤモンド凝集体の分散媒を含む)組成物が好ましく挙げられる。なお、この場合、ナノダイヤモンド凝集体は、N-メチルピロリドン分散液として組成物に配合されるのが好ましい。また、その場合、組成物における溶剤はN-メチルピロリドンを含有する。 Examples of the concavo-convex layer forming composition include a nano-diamond aggregate as high-hardness nanoparticles and a silica precursor as a binder precursor at a ratio of 30/70 to 70/30 in volume ratio (where the silica precursor is In terms of silicon oxide), the total content of nanodiamond aggregate and silica precursor with respect to the total amount of the composition is 0.5 to 2.5% by mass, and the solvent is selected from water and isopropyl alcohol (however, In the case where the nanodiamond aggregate is blended in a dispersion, the solvent preferably includes a composition containing a dispersion medium of nanodiamond aggregate). In this case, the nanodiamond aggregate is preferably blended into the composition as an N-methylpyrrolidone dispersion. In that case, the solvent in the composition contains N-methylpyrrolidone.
 さらに該組成物におけるシリカ前駆体としてはケイ酸および加水分解性基を有するシラン化合物が好ましく、ケイ酸のアルカリ金属塩からアルカリ金属の一部を除去した脱塩ケイ酸が特に好ましい。 Further, as the silica precursor in the composition, silicic acid and a silane compound having a hydrolyzable group are preferable, and demineralized silicic acid obtained by removing a part of the alkali metal from the alkali metal salt of silicic acid is particularly preferable.
(中間層形成組成物)
 中間層形成組成物としては、上記凹凸層形成組成物において高硬度ナノ粒子を含有しない組成物が挙げられる。中間層形成組成物は、好ましくは、例えば、ケイ酸または加水分解性基を有するシラン化合物のようなシリカ前駆体と溶剤を含む組成物である。
(Intermediate layer forming composition)
As an intermediate | middle layer forming composition, the composition which does not contain a high hardness nanoparticle in the said uneven | corrugated layer forming composition is mentioned. The intermediate layer forming composition is preferably a composition including a silica precursor such as silicic acid or a silane compound having a hydrolyzable group and a solvent.
(撥水層形成組成物)
 撥水層形成組成物は、含フッ素加水分解性シラン化合物を含有することが好ましい。
 撥水層層形成組成物は、作業性を向上する等の目的で溶剤を含有してもよい。溶剤は、含フッ素加水分解性シラン化合物の溶解性が良好であり、かつこれらの成分に対する反応性が低い溶剤が好ましい。溶剤は、アルコール(メタノール、エタノール、2-プロパノール等)、ハイドロフルオロカーボン等が挙げられる。溶剤は、1種単独であってもよく、2種以上の組み合わせであってもよい。
(Water repellent layer forming composition)
The water repellent layer-forming composition preferably contains a fluorine-containing hydrolyzable silane compound.
The water repellent layer layer-forming composition may contain a solvent for the purpose of improving workability. The solvent is preferably a solvent having good solubility of the fluorine-containing hydrolyzable silane compound and low reactivity to these components. Examples of the solvent include alcohol (methanol, ethanol, 2-propanol, etc.), hydrofluorocarbon and the like. The solvent may be a single type or a combination of two or more types.
 溶剤の含有量は、特に限定されないが、含フッ素加水分解性シラン化合物の合計100質量部に対して、1,000~100,000質量部が好ましく、2,000~50,000質量部がより好ましい。上記範囲にあると、十分な防汚性を付与できるとともに、得られる膜の外観が良好になる。 The content of the solvent is not particularly limited, but is preferably 1,000 to 100,000 parts by weight, more preferably 2,000 to 50,000 parts by weight, based on 100 parts by weight of the total of the fluorine-containing hydrolyzable silane compound. preferable. When it is in the above range, sufficient antifouling property can be imparted and the appearance of the resulting film is improved.
 含フッ素加水分解性シラン化合物としては、含フッ素アルキル基または含フッ素アルキレン基を有する加水分解性シラン化合物として、具体的に下記式(II)で表わされる化合物等が挙げられる。
  (A-Rf)r-Si(R (4-r-v) …(II)
 式(II)中、Rfは、少なくともひとつのフルオロアルキレン基を含む炭素数1~20の2価の有機基、Aはフッ素原子または-Si(R (3-v)であり、Rはフッ素原子を有しない、置換または非置換の炭素数1~10の炭化水素基であり、Xは加水分解性基を示す。rは1または2、vは0または1、r+vは1または2である。A-RfおよびXが複数個存在する場合には、これらは互いに異なっていても同一であってもよい。
Specific examples of the fluorinated hydrolyzable silane compound include compounds represented by the following formula (II) as hydrolyzable silane compounds having a fluorinated alkyl group or a fluorinated alkylene group.
(A-Rf) r -Si (R 3 ) v X 3 (4-rv) (II)
In the formula (II), Rf is a divalent organic group having 1 to 20 carbon atoms including at least one fluoroalkylene group, and A is a fluorine atom or —Si (R 3 ) v X 3 (3-v) , R 3 is a substituted or unsubstituted hydrocarbon group having 1 to 10 carbon atoms having no fluorine atom, and X 3 represents a hydrolyzable group. r is 1 or 2, v is 0 or 1, and r + v is 1 or 2. When a plurality of A-Rf and X 3 are present, these may be different from each other or the same.
 Rは、炭素数1~3の炭化水素基が好ましく、メチル基が特に好ましい。
 式(II)中、rが1であり、vが0または1であることが特に好ましい。
 Xとしては、アルコキシ基、ハロゲン原子、アシル基等が挙げられる。加水分解反応により、水酸基(シラノール基)となり、さらに原子間で縮合反応してSi-O-Si結合を形成する反応が円滑に進みやすい点から炭素原子数1~4のアルコキシ基およびハロゲン原子が好ましく、メトキシ基、エトキシ基、塩素原子がより好ましく、メトキシ基、エトキシ基が特に好ましい。
R 3 is preferably a hydrocarbon group having 1 to 3 carbon atoms, and particularly preferably a methyl group.
In formula (II), it is particularly preferred that r is 1 and v is 0 or 1.
Examples of X 3 include an alkoxy group, a halogen atom, and an acyl group. Hydroxyl group is converted into a hydroxyl group (silanol group), and further, a reaction of condensation reaction between atoms to form a Si—O—Si bond facilitates the smooth progress of the alkoxy group having 1 to 4 carbon atoms and the halogen atom. Preferably, a methoxy group, an ethoxy group, and a chlorine atom are more preferable, and a methoxy group and an ethoxy group are particularly preferable.
 含フッ素加水分解性シラン化合物(II)の具体例としては、以下の化合物が挙げられる。
F(CFCHCHSi(OCH
F(CFCHCHSi(OC
F(CFCHCHSi(OCH
F(CFCHCHSi(OC
(CHO)SiCHCH(CFCHCHSi(OCH
CFO(CFCFO)CFC(O)NHCHCHCHSi(OCH3、
CFCFO(CF)O(CFCFCFCFOCFCFO)CFCFCFC(O)NHCHCHCHSi(OCH
CFCFO(CF)O(CFCFCFCFOCFCFO)13CFCFCFC(O)NHCHCHCHSi(OCH
F(CFCHCHSiCl
Specific examples of the fluorine-containing hydrolyzable silane compound (II) include the following compounds.
F (CF 2 ) 4 CH 2 CH 2 Si (OCH 3 ) 3 ,
F (CF 2 ) 4 CH 2 CH 2 Si (OC 2 H 5 ) 3 ,
F (CF 2 ) 6 CH 2 CH 2 Si (OCH 3 ) 3 ,
F (CF 2 ) 6 CH 2 CH 2 Si (OC 2 H 5 ) 3 ,
(CH 3 O) 3 SiCH 2 CH 2 (CF 2 ) 6 CH 2 CH 2 Si (OCH 3 ) 3 ,
CF 3 O (CF 2 CF 2 O) 7 CF 2 C (O) NHCH 2 CH 2 CH 2 Si (OCH 3) 3,
CF 3 CF 2 O (CF 2 ) O (CF 2 CF 2 CF 2 CF 2 OCF 2 CF 2 O) 7 CF 2 CF 2 CF 2 C (O) NHCH 2 CH 2 CH 2 Si (OCH 3) 3,
CF 3 CF 2 O (CF 2 ) O (CF 2 CF 2 CF 2 CF 2 OCF 2 CF 2 O) 13 CF 2 CF 2 CF 2 C (O) NHCH 2 CH 2 CH 2 Si (OCH 3) 3,
F (CF 2 ) 6 CH 2 CH 2 SiCl 3 ,
 これらのなかでも、エーテル基をもたない化合物は、耐光性に優れているので好ましい。化合物自体の劣化が少ない点でF(CFCHCHSi(OCが特に好ましい。 Among these, a compound having no ether group is preferable because it is excellent in light resistance. F (CF 2 ) 4 CH 2 CH 2 Si (OC 2 H 5 ) 3 is particularly preferable in that the compound itself is less deteriorated.
 これらは、1種を単独で用いてもよく、2種以上を組み合せて用いてもよい。なお、用いる含フッ素加水分解性シラン化合物の種類や組み合わせに応じて、撥水層形成組成物における含フッ素加水分解性シラン化合物の含有量は、適宜調整される。 These may be used individually by 1 type, and may be used in combination of 2 or more type. The content of the fluorine-containing hydrolyzable silane compound in the water-repellent layer forming composition is appropriately adjusted according to the type and combination of the fluorine-containing hydrolyzable silane compound used.
 撥水層形成組成物は、含フッ素加水分解性シラン化合物を含有する場合、その加水分解縮合物が得られる条件において、水および酸を含んでいてもよい。酸として、塩酸、硝酸、硫酸等が挙げられる。 When the water-repellent layer-forming composition contains a fluorine-containing hydrolyzable silane compound, it may contain water and an acid under the condition that the hydrolysis condensate is obtained. Examples of the acid include hydrochloric acid, nitric acid, sulfuric acid and the like.
(凹凸層形成工程)
 凹凸層形成工程は、基体上に凹凸層形成組成物を塗布して、凹凸層形成組成物層を形成する工程と、該凹凸層形成組成物層を加熱処理して、凹凸層を形成する工程とを含む。
(Uneven layer forming process)
The concavo-convex layer forming step includes a step of coating the concavo-convex layer forming composition on the substrate to form the concavo-convex layer forming composition layer, and a step of heating the concavo-convex layer forming composition layer to form the concavo-convex layer. Including.
(凹凸層形成組成物の塗布)
 凹凸層形成組成物の塗布は、種々のウェットコーティング法で行うことができる。ウェットコーティング法としては、スピンコート、ディップコート、スプレーコート、フローコート、カーテンフローコート、ダイコート、スキージコート等が挙げられ、スピンコートが好ましい。
(Application of uneven layer forming composition)
The uneven layer forming composition can be applied by various wet coating methods. Examples of the wet coating method include spin coating, dip coating, spray coating, flow coating, curtain flow coating, die coating, and squeegee coating, and spin coating is preferable.
 凹凸層形成組成物は、基体上の少なくとも一部の表面に塗布され、基体の少なくとも1つの主面の全面に塗布されるのが好ましい。凹凸層形成組成物層の厚みは、所望の凹凸層が得られる厚みとなる量であれば特に限定されない。また、基体上に塗布される凹凸層形成組成物の量は、所望の凹凸層が得られる量であれば特に限定されず、固形分として1.6~1,600g/mとすることが好ましく、8.0~800g/mとすることがより好ましい。本発明において、成分の固形分換算の含有量とは、水等の揮発性成分を除いた残渣の質量をいう。 The uneven layer forming composition is preferably applied to at least a part of the surface of the substrate and applied to the entire surface of at least one main surface of the substrate. The thickness of the concavo-convex layer forming composition layer is not particularly limited as long as it is an amount that provides a desired concavo-convex layer. Further, the amount of the concavo-convex layer forming composition applied on the substrate is not particularly limited as long as a desired concavo-convex layer is obtained, and the solid content is set to 1.6 to 1,600 g / m 2. It is preferably 8.0 to 800 g / m 2 . In the present invention, the content of the component in terms of solid content refers to the mass of the residue excluding volatile components such as water.
(凹凸層形成組成物の硬化)
 形成された凹凸層形成組成物層は、硬化することにより凹凸層となる。硬化は、加熱によって促進される。バインダー前駆体は、加熱によって高硬度ナノ粒子と反応する場合がある。凹凸層形成組成物が、高硬度ナノ粒子の凝集体およびケイ酸またはアルコキシシラン化合物を含む場合、ケイ酸またはアルコキシシラン化合物が加水分解縮合して、シリカバインダーが得られる。この場合、ケイ酸またはアルコキシシラン化合物の少なくとも一部は、高硬度ナノ粒子の凝集体の表面に存在するシラノール基と加水分解縮合することがある。
(Curing the uneven layer forming composition)
The formed uneven layer forming composition layer becomes an uneven layer by curing. Curing is accelerated by heating. The binder precursor may react with the high hardness nanoparticles by heating. When the concavo-convex layer forming composition contains an aggregate of high-hardness nanoparticles and silicic acid or an alkoxysilane compound, the silicic acid or alkoxysilane compound is hydrolyzed and condensed to obtain a silica binder. In this case, at least a part of the silicic acid or the alkoxysilane compound may hydrolyze and condense with silanol groups present on the surface of the aggregate of high-hardness nanoparticles.
 凹凸層形成組成物層を加熱して硬化する場合、加熱は、電気炉やガス炉や赤外加熱炉などの任意の加熱手段により行なうことができる。処理温度は、20~700℃が好ましく、80~500℃がより好ましく、100~400℃が特に好ましい。処理温度が20℃以上であると、基体と凹凸層との密着力がより向上し、700℃以下であると、基体の熱による劣化が抑制され、また生産性に優れる。処理時間は、処理温度により異なるが、1~180分が好ましく、より好ましくは5~120分であり、特に好ましくは10~60分である。熱処理時間が、1分以上であると、基体と凹凸層との密着力がより向上し、180分以下であると、基体の熱による劣化が抑制され、また生産性に優れる。 When the uneven layer forming composition layer is cured by heating, the heating can be performed by any heating means such as an electric furnace, a gas furnace, or an infrared heating furnace. The treatment temperature is preferably 20 to 700 ° C, more preferably 80 to 500 ° C, and particularly preferably 100 to 400 ° C. When the treatment temperature is 20 ° C. or higher, the adhesion between the substrate and the concavo-convex layer is further improved, and when it is 700 ° C. or less, deterioration of the substrate due to heat is suppressed and the productivity is excellent. The treatment time varies depending on the treatment temperature, but is preferably 1 to 180 minutes, more preferably 5 to 120 minutes, and particularly preferably 10 to 60 minutes. When the heat treatment time is 1 minute or longer, the adhesion between the substrate and the concavo-convex layer is further improved, and when it is 180 minutes or shorter, deterioration of the substrate due to heat is suppressed and the productivity is excellent.
(中間層形成工程)
 中間層を形成する方法としては、前述の工程で得られた凹凸層上に中間層形成組成物を塗布し、硬化処理することで行う。塗布の方法としては、スピンコート、ディップコート、スプレーコート、フローコート、カーテンフローコート、ダイコート、スキージコート等が挙げられ、スピンコートが好ましい。
(Intermediate layer forming process)
As a method of forming the intermediate layer, the intermediate layer forming composition is applied on the concavo-convex layer obtained in the above-described step and cured. Examples of the coating method include spin coating, dip coating, spray coating, flow coating, curtain flow coating, die coating, and squeegee coating, and spin coating is preferred.
 必要に応じて、余分の液を除去してもよい。余分の液を除去することで、中間層の膜厚が均一化するので、凹凸層の形状を反映した防汚層が得られる。余分の液の除去は、以下の硬化処理の後で行ってもよく、硬化処理の前に行ってもよく、硬化処理の途中で行ってもよい。 If necessary, excess liquid may be removed. By removing the excess liquid, the film thickness of the intermediate layer is made uniform, so that an antifouling layer reflecting the shape of the uneven layer can be obtained. The excess liquid may be removed after the following curing process, may be performed before the curing process, or may be performed during the curing process.
 凹凸層上に塗布した中間層形成組成物を硬化処理して凹凸層上に中間層を形成する。中間層形成組成物の硬化は、加熱または加湿によって促進される。 The intermediate layer forming composition applied on the uneven layer is cured to form an intermediate layer on the uneven layer. Curing of the intermediate layer forming composition is accelerated by heating or humidification.
 加熱は、電気炉やガス炉や赤外加熱炉などの任意の加熱手段により行なうことができる。処理温度は、20~200℃が好ましく、50~180℃がより好ましく、80~150℃がより好ましい。特に、加湿しない場合には、処理温度は50℃以上が好ましく、80℃以上がより好ましい。 Heating can be performed by any heating means such as an electric furnace, a gas furnace or an infrared heating furnace. The treatment temperature is preferably 20 to 200 ° C, more preferably 50 to 180 ° C, and more preferably 80 to 150 ° C. In particular, when not humidified, the treatment temperature is preferably 50 ° C. or higher, more preferably 80 ° C. or higher.
 加湿は、恒温高湿槽などの任意の加湿手段により行うことができる。加湿は、温度が20~50℃の場合には、湿度を50~95%RHとすることが好ましい。 Humidification can be performed by any humidifying means such as a constant temperature and high humidity tank. For humidification, when the temperature is 20 to 50 ° C., the humidity is preferably 50 to 95% RH.
 硬化処理時間は、1~60分が好ましく、10~20分がより好ましい。硬化処理時間が、1分以上であると、凹凸層と中間層との密着力がより向上し、60分以下であると、生産性に優れる。なお、中間層形成組成物の硬化処理は、以下の撥水層形成組成物の硬化処理と同時に行ってもよい。 The curing treatment time is preferably 1 to 60 minutes, and more preferably 10 to 20 minutes. When the curing time is 1 minute or longer, the adhesion between the uneven layer and the intermediate layer is further improved, and when it is 60 minutes or shorter, the productivity is excellent. In addition, you may perform the hardening process of an intermediate | middle layer forming composition simultaneously with the hardening process of the following water repellent layer forming compositions.
(撥水層形成工程)
 撥水層の形成は、前述の工程で得られた中間層上に撥水層形成組成物を塗布し、硬化処理することで行う。必要に応じて、余分の液を除去してもよい。余分の液を除去することで、撥水層の膜厚が均一化するので、凹凸層/中間層の形状を反映した防汚層が得られる。余分の液の除去は、以下の硬化処理の後で行ってもよく、硬化処理の前に行ってもよく、硬化処理の途中で行ってもよい。
(Water repellent layer forming process)
The water-repellent layer is formed by applying a water-repellent layer-forming composition on the intermediate layer obtained in the above-described step and curing it. If necessary, excess liquid may be removed. By removing the excess liquid, the film thickness of the water-repellent layer is made uniform, so that an antifouling layer reflecting the shape of the uneven layer / intermediate layer can be obtained. The excess liquid may be removed after the following curing process, may be performed before the curing process, or may be performed during the curing process.
 中間層上に塗布した撥水層形成組成物を硬化処理して、防汚層を得る。撥水層形成組成物の硬化は、加熱または加湿によって促進される。 The water repellent layer forming composition applied on the intermediate layer is cured to obtain an antifouling layer. Curing of the water repellent layer forming composition is accelerated by heating or humidification.
 加熱は、電気炉やガス炉や赤外加熱炉などの任意の加熱手段により行なうことができる。処理温度は、20~200℃が好ましく、50~180℃がより好ましく、80~150℃がより好ましい。特に、加湿しない場合には、処理温度は50℃以上が好ましく、80℃以上がより好ましい。 Heating can be performed by any heating means such as an electric furnace, a gas furnace or an infrared heating furnace. The treatment temperature is preferably 20 to 200 ° C, more preferably 50 to 180 ° C, and more preferably 80 to 150 ° C. In particular, when not humidified, the treatment temperature is preferably 50 ° C. or higher, more preferably 80 ° C. or higher.
 加湿は、恒温高湿槽などの任意の加湿手段により行うことができる。加湿は、温度が20~50℃の場合には、湿度を50~95%RHとすることが好ましい。 Humidification can be performed by any humidifying means such as a constant temperature and high humidity tank. For humidification, when the temperature is 20 to 50 ° C., the humidity is preferably 50 to 95% RH.
 硬化処理時間は、1~60分が好ましく、10~20分がより好ましい。硬化処理時間が、1分以上であると、中間層と撥水層との密着力がより向上し、60分以下であると、生産性に優れる。 The curing treatment time is preferably 1 to 60 minutes, and more preferably 10 to 20 minutes. When the curing treatment time is 1 minute or longer, the adhesion between the intermediate layer and the water repellent layer is further improved, and when it is 60 minutes or shorter, the productivity is excellent.
<防汚性物品の用途>
 本防汚性物品は、窓ガラス(例えば、自動車、鉄道、船舶、飛行機等の輸送機器用窓ガラス)、壁(例えば、間仕切り、道路壁等)、冷蔵ショーケース、鏡(例えば、洗面化粧台用鏡、浴室用鏡等)、光学機器、タイル、便器、浴槽、浴室用壁、洗面化粧台、カーテンウォール、アルミサッシ、水栓金具、建築用ボード、レンズ、カバーガラス、集光ミラーに用いられる。
<Use of antifouling article>
The antifouling article includes window glass (for example, window glass for transportation equipment such as automobiles, railroads, ships, airplanes), walls (for example, partitions, road walls, etc.), refrigerated showcases, mirrors (for example, vanity tables) Mirrors, bathroom mirrors, etc.), optical instruments, tiles, toilets, bathtubs, bathroom walls, vanity tables, curtain walls, aluminum sashes, faucet fittings, building boards, lenses, cover glasses, condensing mirrors It is done.
 カバーガラスとしては、例えば太陽電池、集光レンズまたは集光ミラーのカバーガラスが挙げられる。集光レンズまたは集光ミラーは、例えば集光型太陽熱発電装置または集光型太陽光発電装置等に用いられる。 Examples of the cover glass include a solar cell, a condensing lens, and a condensing mirror cover glass. A condensing lens or a condensing mirror is used for a concentrating solar power generation device or a concentrating solar power generation device, for example.
 本防汚性物品は、砂漠等の雨が少ない地域における屋外での使用に、特に適している。
 本防汚性物品は、耐摩耗性に優れるので自動車等の窓ガラスとしても好適である。
This antifouling article is particularly suitable for outdoor use in areas with little rain, such as deserts.
Since this antifouling article is excellent in wear resistance, it is also suitable as a window glass for automobiles and the like.
 以下、実施例によって本発明を詳細に説明する。本発明はこれらの実施例に限定されない。なお、以下に説明する例2、3、5、6が実施例であり、例1、4、7~9が比較例である。 Hereinafter, the present invention will be described in detail by way of examples. The present invention is not limited to these examples. Examples 2, 3, 5, and 6 described below are examples, and examples 1, 4, and 7 to 9 are comparative examples.
<防汚性物品の調整>
[例1]
 蒸留水237.5gを撹拌しながら、これにケイ酸ソーダ4号(日本化学工業社製、(SiO:24.0質量%、NaO:7.0質量%。SiO/NaOのモル比:3.5/1)を62.5g、陽イオン交換樹脂(三菱化学社製、ダイヤイオンSK1BH)を180g加え、10分以上撹拌した後、吸引ろ過により陽イオン交換樹脂を分離し、酸化ケイ素換算の固形分濃度が5質量%の脱塩ケイ酸ソーダ液を得た。
<Adjustment of antifouling articles>
[Example 1]
While stirring 237.5 g of distilled water, sodium silicate No. 4 (manufactured by Nippon Chemical Industry Co., Ltd., (SiO 2 : 24.0% by mass, Na 2 O: 7.0% by mass. SiO 2 / Na 2 O 62.5 g of a molar ratio of 3.5 / 1) and 180 g of a cation exchange resin (Diaion SK1BH, manufactured by Mitsubishi Chemical Corporation) were added and stirred for 10 minutes or more, and then the cation exchange resin was separated by suction filtration. Then, a desalted sodium silicate solution having a solid content concentration of 5% by mass in terms of silicon oxide was obtained.
 2-プロパノールの5.53gを撹拌しながら、これにナノダイヤモンドの分散液(Carbodeon社製:HydrogenD in NMP:(平均一次粒子径が4~6nmのナノダイヤモンド凝集体の3.0質量%N-メチルピロリドン分散液)の63.84g、前述の脱塩ケイ酸ソーダ液を0.58g順に加え、ナノダイヤモンドおよびバインダー前駆体の合計固形分が1.5質量%、ナノダイヤモンドと、バインダー前駆体の酸化ケイ素換算固形分との体積比が80/20である凹凸層形成組成物(A1)を調製した。以下、粒子とバインダー前駆体の体積比をいう場合の、バインダー前駆体の体積とは酸化ケイ素換算固形分の体積である。 While stirring 5.53 g of 2-propanol, a nanodiamond dispersion (Carbodeon: HydrogenD in NMP: (3.0% by mass N− of nanodiamond aggregate having an average primary particle size of 4 to 6 nm) Methylpyrrolidone dispersion) (63.84 g) and the above-mentioned desalted sodium silicate solution in the order of 0.58 g, the total solid content of nanodiamond and binder precursor is 1.5 mass%, nanodiamond and binder precursor A concave-convex layer forming composition (A1) having a volume ratio of 80/20 to the solid content in terms of silicon oxide was prepared.Hereinafter, the volume of the binder precursor when referring to the volume ratio of the particles to the binder precursor is oxidation. It is the volume of solid content in terms of silicon.
 スピンコーターに、縦100mm、横100mm、厚み3.5mmのガラス板(旭硝子製ソーダライムガラス)をセットし、凹凸層形成組成物(A1)をガラス板の表面に2.0g滴下してスピンコートした後、200℃で30分間加熱処理して、防汚層として凹凸層のみを有する図1に示されるとの同様の断面を有する防汚性物品を得た。得られた凹凸層におけるナノダイヤモンドとバインダーの体積比は80/20である。なお、凹凸層におけるナノダイヤモンド等の粒子とバインダーの体積比は、ナノダイヤモンド等の粒子とバインダー前駆体との体積比と同じといえる。以下の各例においては、表1の「粒子とバインダーの体積比」欄には、ナノダイヤモンド等の粒子とバインダー前駆体との体積比を記載した。 Set a glass plate (sodium lime glass manufactured by Asahi Glass) with a length of 100 mm, width of 100 mm, and thickness of 3.5 mm on a spin coater, and drop coat 2.0 g of the uneven layer forming composition (A1) onto the surface of the glass plate. After that, heat treatment was performed at 200 ° C. for 30 minutes to obtain an antifouling article having the same cross section as shown in FIG. 1 having only the uneven layer as the antifouling layer. The volume ratio of nanodiamond and binder in the resulting uneven layer is 80/20. In addition, it can be said that the volume ratio of the nanodiamond particles and the binder in the uneven layer is the same as the volume ratio of the nanodiamond particles and the binder precursor. In each of the following examples, the volume ratio of the particles such as nanodiamond and the binder precursor is described in the “Volume ratio between particles and binder” column of Table 1.
[例2~例4]
 ナノダイヤモンドとバインダー前駆体との体積比(ナノダイヤモンド/バインダー前駆体)を表1の粒子とバインダーの体積比(粒子/バインダー)に示すように調整した以外は、例1と同様にして、凹凸層形成組成物A2~A4を調製した。次いで、防汚層形成組成物A2~A4を用いて、例1と同様にして、防汚層として凹凸層のみを有する防汚性物品を製造した。各例において得られた凹凸層におけるナノダイヤモンドとバインダーの体積比を表1に示す。また、例2で得られた防汚性物品の防汚層表面の走査型電子顕微鏡写真(80万倍)を図3に示す。
[Examples 2 to 4]
As in Example 1, except that the volume ratio of nanodiamond and binder precursor (nanodiamond / binder precursor) was adjusted as shown in the volume ratio of particles to binder (particle / binder) in Table 1, Layer forming compositions A2 to A4 were prepared. Subsequently, using the antifouling layer forming compositions A2 to A4, an antifouling article having only an uneven layer as an antifouling layer was produced in the same manner as in Example 1. Table 1 shows the volume ratio of nanodiamond and binder in the uneven layer obtained in each example. Moreover, the scanning electron micrograph (800,000 times) of the antifouling layer surface of the antifouling article obtained in Example 2 is shown in FIG.
[例5]
 酢酸ブチル(純正化学社製)で、テトライソシアナトシラン(マツモトファインケミカル社製)を5質量%となるように希釈して、中間層形成用成物(B1)を得た。
[Example 5]
Tetraisocyanatosilane (manufactured by Matsumoto Fine Chemical Co., Ltd.) was diluted with butyl acetate (manufactured by Junsei Kagaku Co., Ltd.) to 5% by mass to obtain an intermediate layer forming composition (B1).
 また、2-プロパノールの14.49gを撹拌しながら、これにトリデカフルオロオクチルトリメトキシシラン(F(CFCHCHSi(OCH;モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同社製、TSL8257)の0.51g、1質量%の硝酸水溶液の0.15gとをこの順で加えた後、25℃で180分撹拌し、固形分濃度が3質量%の撥水層形成用前駆体(1)を得た。 In addition, while stirring 14.49 g of 2-propanol, tridecafluorooctyltrimethoxysilane (F (CF 2 ) 6 CH 2 CH 2 Si (OCH 3 ) 3 ; Momentive Performance Materials Japan Joint After adding 0.51 g of TSL8257) and 0.15 g of 1% by mass nitric acid aqueous solution in this order, the mixture was stirred at 25 ° C. for 180 minutes to form a water repellent layer having a solid content concentration of 3% by mass. A precursor (1) was obtained.
 ハイドロフルオロカーボン(旭硝子社製、アサヒクリンAC-6000(商品名))の13.75gを撹拌しながら、これに撥水層形成用前駆体(1)の1.25gとをこの順で加え、固形分濃度が0.25質量%の撥水層形成組成物(C1)を調製した。 While stirring 13.75 g of hydrofluorocarbon (Asahi Glass AC-6000 (trade name) manufactured by Asahi Glass Co., Ltd.), 1.25 g of the water-repellent layer forming precursor (1) was added in this order to obtain a solid. A water repellent layer-forming composition (C1) having a partial concentration of 0.25% by mass was prepared.
 次に、例1と同様にして、凹凸層を形成したガラス板をスピンコーターにセットし、中間層形成組成物(B1)を凹凸層の表面に4.0g滴下してスピンコートした。次いで、形成した中間層(未硬化)の表面に、撥水層形成組成物(C1)を4.0g滴下してスピンコートした後、20℃、50RH%に設定された高温高湿槽で15分保持した後、その表面に変性アルコールを滴下し、スピンコーターを用いて余剰成分を除去することで、ガラス板側から順に凹凸層、中間層(膜厚;1nm)、撥水層(膜厚;1nm)有する図2に示されるとの同様の断面を有する防汚性物品を得た。 Next, in the same manner as in Example 1, the glass plate on which the uneven layer was formed was set on a spin coater, and 4.0 g of the intermediate layer forming composition (B1) was dropped on the surface of the uneven layer and spin-coated. Next, 4.0 g of the water repellent layer-forming composition (C1) was dropped on the surface of the formed intermediate layer (uncured) and spin-coated, and then the temperature was increased in a high-temperature and high-humidity tank set at 20 ° C. and 50 RH%. After holding for a minute, denatured alcohol is dropped on the surface, and excess components are removed using a spin coater, so that an uneven layer, an intermediate layer (film thickness: 1 nm), and a water repellent layer (film thickness) are sequentially formed from the glass plate side. An antifouling article having a cross section similar to that shown in FIG.
[例6]
 例5で中間層を形成しないこと以外は例5と同様にして、防汚層としてガラス板側から順に凹凸層と撥水層を有する防汚性物品を製造した。
[Example 6]
In the same manner as in Example 5 except that no intermediate layer was formed in Example 5, an antifouling article having an uneven layer and a water-repellent layer in order from the glass plate side as an antifouling layer was produced.
[例7]
 2-プロパノールの6.58gを撹拌しながら、これにパールネックレス状シリカ凝集体(球状粒子が複数個連結して二次凝集した細長い形状のシリカ凝集体)の分散液(日産化学社製、スノーテックスPS-SO:平均一次粒子径15nm、平均二次粒子径88nm)1.19g、前述の脱塩ケイ酸ソーダ液を2.18g順に加え、酸化ケイ素換算固形分が2.95質量%、パールネックレス状シリカ凝集体と、バインダー前駆体の酸化ケイ素換算固形分との体積比が57/43である凹凸層形成組成物(A5)を調製した。
[Example 7]
While stirring 6.58 g of 2-propanol, a dispersion of a pearl necklace-like silica aggregate (a long and narrow silica aggregate in which a plurality of spherical particles are linked together to form a secondary aggregate) (manufactured by Nissan Chemical Co., Ltd., Snow (Text PS-SO: average primary particle diameter 15 nm, average secondary particle diameter 88 nm) 1.19 g, 2.18 g of the above-mentioned desalted sodium silicate solution were added in this order, and the solid content in terms of silicon oxide was 2.95% by mass, pearl The uneven | corrugated layer forming composition (A5) whose volume ratio of the necklace-like silica aggregate and the silicon oxide conversion solid content of a binder precursor is 57/43 was prepared.
 凹凸層形成組成物を、凹凸層形成組成物(A5)に変更した以外は、例1と同様にして防汚性物品を製造した。 An antifouling article was produced in the same manner as in Example 1 except that the uneven layer forming composition was changed to the uneven layer forming composition (A5).
[例8]
 2-プロパノールの1.85gを撹拌しながら、これにナノダイヤモンドの分散液(Carbodeon社製:HydrogenD in NMP(平均一次粒子径が4~6nmのナノダイヤモンド凝集体の3.0質量%N-メチルピロリドン分散液)の5.59g、前述の脱塩ケイ酸ソーダ液を2.53g順に加え、ナノダイヤモンドおよびバインダー前駆体の合計固形分が2.95質量%、ナノダイヤモンドとバインダー前駆体との酸化ケイ素換算固形分体積比が57/43である凹凸層形成組成物(A6)を調製した。
[Example 8]
While stirring 1.85 g of 2-propanol, a nanodiamond dispersion (Carbodeon: HydrogenD in NMP (3.0 mass% N-methyl of nanodiamond aggregate having an average primary particle size of 4 to 6 nm) was added thereto. 5.59 g of pyrrolidone dispersion) and 2.53 g of the above-mentioned desalted sodium silicate solution were added in order, the total solid content of nanodiamond and binder precursor was 2.95% by mass, oxidation of nanodiamond and binder precursor The uneven | corrugated layer forming composition (A6) whose silicon conversion solid content volume ratio is 57/43 was prepared.
 凹凸層形成組成物を、凹凸層形成組成物(A6)に変更した以外は、例1と同様にして防汚性物品を製造した。 An antifouling article was produced in the same manner as in Example 1 except that the uneven layer forming composition was changed to the uneven layer forming composition (A6).
[例9]
 防汚性組成物を塗布しないガラス板について、そのまま評価を行った。
[Example 9]
The glass plate not coated with the antifouling composition was evaluated as it was.
<防汚性物品の評価>
 各例における防汚性物品の評価は、以下のように行った。
 なお以下において、ヘイズ値は、ヘイズ測定装置(ビックガードナー社製、ヘイズガードプラス)を用いてC光源にて測定した。
<Evaluation of antifouling articles>
The evaluation of the antifouling article in each example was performed as follows.
In addition, below, the haze value was measured with C light source using the haze measuring apparatus (the Big Gardner company make, haze guard plus).
(外観評価)
 防汚性物品の外観を目視で観察し、以下の基準で評価した。
「A」;直径1mm以上の異物、欠点が認められない。
「B」;直径1mm以上の異物、欠点が1個以上5個以下である。
「C」;直径1mm以上の異物、欠点が5個を超える。
(Appearance evaluation)
The appearance of the antifouling article was visually observed and evaluated according to the following criteria.
“A”: no foreign matter or defect having a diameter of 1 mm or more is observed.
“B”: Foreign matter having a diameter of 1 mm or more and defects of 1 or more and 5 or less.
“C”; foreign matter having a diameter of 1 mm or more, and more than 5 defects.
(表面粗さ(Ra))
 走査型プローブ顕微鏡(SIIナノテクノロジー社製、SPA400)を用いて測定した。顕微鏡の設定条件は、カンチレバー:SI-DF40(背面AL有)、XYデータ数:256点、走査エリア:10μm×10μm、とした。
(Surface roughness (Ra))
It measured using the scanning probe microscope (SII nanotechnology company make, SPA400). The setting conditions of the microscope were: cantilever: SI-DF40 (with rear surface AL), number of XY data: 256 points, scanning area: 10 μm × 10 μm.
(頂点間距離(平均値)、凸部被覆率)
 防汚層の表面を走査型電子顕微鏡(日立製作所社製、S-4800)にて観察し、得られた画像から、画像変換ソフト(image J)により、無作為に抽出された1μm×1μmの範囲で基体面からの最大高さを有する突起体を基準として、90%以上の高さを有する突起体Tを識別し、該突起体Tの頂点間距離(平均値)および測定領域全面積に対する該突起体Tの底面の総面積の割合(凸部被覆率)を算出した。
(Vertical distance (average value), convex part coverage)
The surface of the antifouling layer was observed with a scanning electron microscope (manufactured by Hitachi, Ltd., S-4800), and 1 μm × 1 μm randomly extracted from the obtained image by image conversion software (image J). With reference to the protrusion having the maximum height from the substrate surface in the range, the protrusion T having a height of 90% or more is identified, and the distance between the vertices (average value) of the protrusion T and the total area of the measurement region is identified. The ratio (protrusion coverage) of the total area of the bottom surface of the protrusion T was calculated.
(汚れ付着性)
 防汚性物品から5cm×5cmの試験片を切り出し、防汚性物品の主面を水平にして上記防汚層の表面に評価用混合粉体(2.3質量%のカーボンブラック1(粒径0.002~0.028μm)、9.3質量%のカーボンブラック2(JIS試験用粉体1の12種)、62.8質量%のイエローオーカー(顔料用天然黄土)、20.9質量%の焼成関東ローム(JIS試験用粉体1の8種)、および4.7質量%のシリカ粉(JIS試験用粉体1の3種)からなる混合粉体)を、0.02g/cmの割合で散布し10秒間静置する。次いで、アルミニウム製の試験板を用い、上記防汚性物品をその主面と上記試験板の表面のなす角が135°となるように傾けた状態で、上記試験板上3cmの高さから10cm/秒の速度で上記防汚性物品の下端が上記試験板の表面に接触するまで移動する操作を2回繰り返すことで、上記評価用混合粉体を除去した後にヘイズ値を測定する。該ヘイズ値測定を5回行い、その平均を試験後ヘイズ値とし、試験後ヘイズ値から試験前のヘイズ値を引いた値を防汚性の指標ΔHxとする。初期のΔHxをΔHxiとして表1に示した。
(Dirt adhesion)
A 5 cm × 5 cm test piece was cut out from the antifouling article, and the evaluation mixed powder (2.3% by mass of carbon black 1 (particle diameter) was placed on the surface of the antifouling layer with the main surface of the antifouling article horizontal. 0.002 to 0.028 μm), 9.3% by mass of carbon black 2 (12 kinds of JIS test powder 1), 62.8% by mass of yellow ocher (natural ocher for pigments), 20.9% by mass Baked Kanto loam (8 kinds of JIS test powder 1) and 4.7% by mass of silica powder (3 kinds of JIS test powder 1)) of 0.02 g / cm 2 Sprinkle at a rate of 10 and leave for 10 seconds. Next, an aluminum test plate was used, and the antifouling article was tilted so that the angle formed by the main surface of the test plate and the surface of the test plate was 135 ° from the height of 3 cm above the test plate to 10 cm. The haze value is measured after removing the evaluation mixed powder by repeating the operation of moving the antifouling article at a speed of / sec until the lower end of the antifouling article contacts the surface of the test plate twice. The haze value is measured five times, and the average is taken as the haze value after the test, and the value obtained by subtracting the haze value before the test from the haze value after the test is taken as the antifouling index ΔHx. Table 1 shows the initial ΔHx as ΔHxi.
(水接触角CA)
 防汚層表面に、1μLの水滴を置いて、その接触角を接触角測定器(協和界面科学社製、DM-701)で測定した。それぞれ異なる3ヶ所にて測定を行い、その平均値を算出した。
(Water contact angle CA)
A 1 μL water droplet was placed on the surface of the antifouling layer, and the contact angle was measured with a contact angle measuring device (DM-701, manufactured by Kyowa Interface Science Co., Ltd.). Measurements were made at three different points, and the average value was calculated.
(マルテンス硬度)
 インデンテーション試験装置(フィッシャー製、ピコデンターHM500)を用い、押込荷重を0.03mN、保持時間を5秒、負荷速度および除荷速度0.05mN/5秒として、マルテンス硬度(単位:MPa)を測定した。3回測定して平均値を求めた。
(Martens hardness)
Measure Martens hardness (unit: MPa) using indentation test equipment (Fischer, Picodenter HM500) with indentation load of 0.03 mN, holding time of 5 seconds, loading speed and unloading speed of 0.05 mN / 5 seconds. did. The average value was obtained by measuring three times.
(耐摩耗性試験1)
 例1~例3、例7~例8について往復式トラバース試験機(ケイエヌテー社製)にJIS L0803に準拠する綿布を取り付け、700gの重りを用いて1.23×10N/mの荷重を加え、100回往復摩擦した後、防汚性物品を水洗した。
 摩擦し、水洗した後の防汚性物品の外観を目視で観察し、以下の基準で評価した。
「A」;長さ50mm以上の傷が認められない。
「B];長さ50mm以上の傷が1~5個認められる
「C];長さ50mm以上の傷が5個を超える。
「D」;膜が剥離する。
 また、摩擦後の表面について前述の汚れ付着性試験を行い、摩擦後のヘイズ値変化(ΔHxr1)を求めた。
(Abrasion resistance test 1)
For Examples 1 to 3 and Examples 7 to 8, a reciprocating traverse tester (manufactured by KT Corporation) was attached with a cotton cloth according to JIS L0803, and a load of 1.23 × 10 4 N / m 2 using a 700 g weight. And the antifouling article was washed with water.
The appearance of the antifouling article after rubbing and washing with water was visually observed and evaluated according to the following criteria.
“A”: No scratch of 50 mm or more in length was observed.
“B”: 1 to 5 scratches having a length of 50 mm or more are observed. “C]; more than 5 scratches having a length of 50 mm or more.
“D”: The film peels off.
Further, the above-mentioned dirt adhesion test was performed on the surface after friction, and the change in haze value (ΔHxr1) after friction was obtained.
(耐摩耗性試験2)
 例5、例6について往復式トラバース試験機(ケイエヌテー社製)にJIS L0803に準拠する綿布を取り付け、1.2kgの重りを用いて2.95×10N/mの荷重を加え、500回往復摩擦した後、防汚性物品を水洗した。
 摩擦し、水洗した後の防汚性物品の外観を目視で観察し、上記同様の評価基準で評価した。
(Abrasion resistance test 2)
About Example 5 and Example 6, a cotton cloth compliant with JIS L0803 was attached to a reciprocating traverse tester (manufactured by KT Corporation), a load of 2.95 × 10 4 N / m 2 was applied using a 1.2 kg weight, and 500 After the reciprocating friction, the antifouling article was washed with water.
The appearance of the antifouling article after rubbing and washing with water was visually observed and evaluated according to the same evaluation criteria as described above.
 また、摩擦後の表面について前述の汚れ付着性試験を行い、摩擦後のヘイズ値変化(ΔHxr2)を求めた。なお、ΔHxr2が12%以下の防汚性物品は、ΔHxr1についても結果は12%以下である。
 結果を表1に示す。なお、表1において空欄は評価未実施を示す。
Further, the above-mentioned dirt adhesion test was performed on the surface after friction, and the change in haze value (ΔHxr2) after friction was obtained. Note that the antifouling article having ΔHxr2 of 12% or less also has a result of 12% or less for ΔHxr1.
The results are shown in Table 1. In Table 1, a blank indicates that evaluation has not been performed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本実施例の防汚性物品は、外観が良好で耐摩耗性と防汚性に優れることがわかる。比較例の例1、4、7は、耐摩耗性が十分ではなかった。また、比較例の例8は初期において外観に問題があり実用レベルに達していなかった。 It can be seen that the antifouling article of this example has a good appearance and excellent wear resistance and antifouling properties. In Comparative Examples 1, 4, and 7, the wear resistance was not sufficient. Further, Comparative Example 8 had a problem in appearance at the initial stage and did not reach a practical level.
1A、1B…防汚性物品、2…基体、3…高硬度ナノ粒子、4…バインダー、5…凹凸層、6…防汚層、7…中間層、8…撥水層、9…突起体、10…凹部 DESCRIPTION OF SYMBOLS 1A, 1B ... Antifouling | stain-proof article, 2 ... Base | substrate, 3 ... High-hardness nanoparticle, 4 ... Binder, 5 ... Uneven layer, 6 ... Antifouling layer, 7 ... Intermediate | middle layer, 8 ... Water-repellent layer, 9 ... Protrusion 10 ... recess

Claims (9)

  1.  基体と、前記基体上に配置され、高硬度ナノ粒子の凝集体およびバインダーを含む凹凸層を含む複数の突起体を表面に有する防汚層とを有する防汚性物品であって、
     前記防汚層の表面にJIS L0803に規定する綿布を載置し、1.23×10N/mの圧力を加えて100回往復摩擦し、次いで前記防汚性物品を水洗した後、以下の方法で測定される防汚性の指標ΔHxが12%以下である防汚性物品。
    (防汚性の指標ΔHxの測定方法)
     前記防汚性物品の主面を水平にして前記防汚層の表面に評価用混合粉体(2.3質量%のカーボンブラック1(粒径0.002~0.028μm)、9.3質量%のカーボンブラック2(JIS試験用粉体1の12種)、62.8質量%のイエローオーカー(顔料用天然黄土)、20.9質量%の焼成関東ローム(JIS試験用粉体1の8種)、および4.7質量%のシリカ粉(JIS試験用粉体1の3種)からなる混合粉体)を、0.02g/cmの割合で散布し10秒間静置する。次いで、アルミニウム製の試験板を用い、前記防汚性物品をその主面と前記試験板の表面のなす角が135°となるように傾けた状態で、前記試験板上3cmの高さから10cm/秒の速度で前記防汚性物品の下端が前記試験板の表面に接触するまで移動する操作を2回繰り返すことで、前記評価用混合粉体を除去した後にヘイズ値を測定する。前記ヘイズ値測定を5回行い、その平均を試験後ヘイズ値とし、試験後ヘイズ値から試験前のヘイズ値を引いた値を防汚性の指標ΔHxとする。
    An antifouling article comprising a substrate and an antifouling layer disposed on the substrate and having a plurality of protrusions including a concavo-convex layer containing an aggregate of high hardness nanoparticles and a binder on the surface,
    After placing a cotton cloth specified in JIS L0803 on the surface of the antifouling layer, applying a pressure of 1.23 × 10 4 N / m 2 and reciprocating 100 times, and then washing the antifouling article with water, An antifouling article having an antifouling index ΔHx measured by the following method of 12% or less.
    (Measurement method of antifouling index ΔHx)
    With the main surface of the antifouling article horizontal, the mixed powder for evaluation (2.3% by mass of carbon black 1 (particle size 0.002 to 0.028 μm), 9.3% by mass on the surface of the antifouling layer) % Carbon black 2 (12 types of JIS test powder 1), 62.8% by mass of yellow ocher (natural ocher for pigments), 20.9% by mass of calcined Kanto loam (8 of JIS test powder 1) Seed) and 4.7% by mass of silica powder (mixed powder of three kinds of JIS test powder 1) are sprayed at a rate of 0.02 g / cm 2 and allowed to stand for 10 seconds. Next, an aluminum test plate was used, and the antifouling article was tilted so that the angle formed by the main surface of the test plate and the surface of the test plate was 135 ° from the height of 3 cm above the test plate. The haze value is measured after removing the evaluation mixed powder by repeating twice the operation of moving the lower end of the antifouling article to the surface of the test plate at a speed of / sec. The haze value measurement is carried out five times, and the average is taken as the haze value after the test, and the value obtained by subtracting the haze value before the test from the haze value after the test is taken as the antifouling index ΔHx.
  2.  前記高硬度ナノ粒子は、モース硬度が12以上である、請求項1に記載の防汚性物品。 The antifouling article according to claim 1, wherein the high-hardness nanoparticles have a Mohs hardness of 12 or more.
  3.  前記防汚層は、表面Raが2~6nmである、請求項1または2に記載の防汚性物品。 The antifouling article according to claim 1 or 2, wherein the antifouling layer has a surface Ra of 2 to 6 nm.
  4.  前記高硬度ナノ粒子は、平均一次粒子径が1~50nmである、請求項1~3のいずれか一項に記載の防汚性物品。 The antifouling article according to any one of claims 1 to 3, wherein the high-hardness nanoparticles have an average primary particle diameter of 1 to 50 nm.
  5.  前記突起体中、前記基体の前記防汚層が配置された面からの最大高さを有する突起体を基準として、90%以上の高さを有する突起体Tについて、隣り合う前記突起体Tの頂点間距離の平均値が50~1,000nmであり、
     前記防汚層が配置された基体の面積に対する前記突起体Tの底面の総面積の割合が12~70%である請求項1~4のいずれか一項に記載の防汚性物品。
    Among the protrusions, with respect to the protrusion T having a height of 90% or more with reference to the protrusion having the maximum height from the surface on which the antifouling layer of the base is disposed, The average value of the distance between vertices is 50 to 1,000 nm,
    The antifouling article according to any one of claims 1 to 4, wherein the ratio of the total area of the bottom surface of the protrusion T to the area of the substrate on which the antifouling layer is disposed is 12 to 70%.
  6.  前記高硬度ナノ粒子と前記バインダーとの体積比は、30/70~70/30である、請求項1~5のいずれか一項に記載の防汚性物品。 The antifouling article according to any one of claims 1 to 5, wherein a volume ratio of the high-hardness nanoparticles and the binder is 30/70 to 70/30.
  7.  前記防汚層は前記凹凸層の上にさらに撥水層を有する、請求項1~6のいずれか一項に記載の防汚性物品。 The antifouling article according to any one of claims 1 to 6, wherein the antifouling layer further has a water repellent layer on the uneven layer.
  8.  前記防汚層は、前記凹凸層と前記撥水層の間にさらに中間層を有する、請求項7に記載の防汚性物品。 The antifouling article according to claim 7, wherein the antifouling layer further comprises an intermediate layer between the uneven layer and the water repellent layer.
  9.  前記防汚層は、表面のマルテンス硬度が1000MPa以上である、請求項1~8のいずれか一項に記載の防汚性物品。 The antifouling article according to any one of claims 1 to 8, wherein the antifouling layer has a surface Martens hardness of 1000 MPa or more.
PCT/JP2017/032745 2016-09-16 2017-09-12 Antifouling article WO2018051958A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-181888 2016-09-16
JP2016181888 2016-09-16

Publications (1)

Publication Number Publication Date
WO2018051958A1 true WO2018051958A1 (en) 2018-03-22

Family

ID=61620071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032745 WO2018051958A1 (en) 2016-09-16 2017-09-12 Antifouling article

Country Status (1)

Country Link
WO (1) WO2018051958A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022030399A1 (en) * 2020-08-04 2022-02-10 ナガセケムテックス株式会社 Laminate and fabric coating composition

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004174498A (en) * 1999-03-17 2004-06-24 Inax Corp Method for reducing rain streak fouling
WO2004052640A1 (en) * 2002-12-10 2004-06-24 Nippon Sheet Glass Co., Ltd. Article having functional coating film thereon, method for manufacture thereof, and applying material for forming functional coating film
WO2011090035A1 (en) * 2010-01-19 2011-07-28 旭硝子株式会社 Water-repellent base and process for producing same
JP2014228728A (en) * 2013-05-23 2014-12-08 日揮触媒化成株式会社 Base material with antireflection film, and method for producing the same
WO2016010080A1 (en) * 2014-07-18 2016-01-21 旭硝子株式会社 Antifouling article, method for producing same, antifouling layer-forming composition and cover glass for solar cells
WO2016031780A1 (en) * 2014-08-27 2016-03-03 旭硝子株式会社 Scratch prevention film-equipped substrate, and production method therefor
WO2016204003A1 (en) * 2015-06-18 2016-12-22 旭硝子株式会社 Glass article and method for producing same
WO2017073726A1 (en) * 2015-10-28 2017-05-04 旭硝子株式会社 Stain-proof article and production method for stain-proof article

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004174498A (en) * 1999-03-17 2004-06-24 Inax Corp Method for reducing rain streak fouling
WO2004052640A1 (en) * 2002-12-10 2004-06-24 Nippon Sheet Glass Co., Ltd. Article having functional coating film thereon, method for manufacture thereof, and applying material for forming functional coating film
WO2011090035A1 (en) * 2010-01-19 2011-07-28 旭硝子株式会社 Water-repellent base and process for producing same
JP2014228728A (en) * 2013-05-23 2014-12-08 日揮触媒化成株式会社 Base material with antireflection film, and method for producing the same
WO2016010080A1 (en) * 2014-07-18 2016-01-21 旭硝子株式会社 Antifouling article, method for producing same, antifouling layer-forming composition and cover glass for solar cells
WO2016031780A1 (en) * 2014-08-27 2016-03-03 旭硝子株式会社 Scratch prevention film-equipped substrate, and production method therefor
WO2016204003A1 (en) * 2015-06-18 2016-12-22 旭硝子株式会社 Glass article and method for producing same
WO2017073726A1 (en) * 2015-10-28 2017-05-04 旭硝子株式会社 Stain-proof article and production method for stain-proof article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022030399A1 (en) * 2020-08-04 2022-02-10 ナガセケムテックス株式会社 Laminate and fabric coating composition

Similar Documents

Publication Publication Date Title
US6017609A (en) Water-repellent glass plate
WO2017073726A1 (en) Stain-proof article and production method for stain-proof article
US20090087646A1 (en) Coated substrate, composition for treating a substrate and process of treatment
JPWO2008072707A1 (en) Articles having a water repellent surface
US20080026163A1 (en) Treatment For Forming Waterdrop Slidable Films And Process For Forming Waterdrop Slidable Films
WO2012073685A1 (en) Anti-fog coated article
JP5660500B2 (en) Abrasion-resistant super water- and oil-repellent antifouling glass, method for producing the same, glass window using them, solar energy utilization device, optical device and display device
JP5347125B2 (en) Water / oil repellent / antifouling antireflection film and method for producing the same, lens, glass plate, glass, optical device, solar energy utilization device and display
WO2016010080A1 (en) Antifouling article, method for producing same, antifouling layer-forming composition and cover glass for solar cells
JP2014024288A (en) Substrate with water-repellent film
TW202035596A (en) Easy to clean coating
JP5076257B2 (en) Water-repellent composition, surface-treated substrate, method for producing the same, and article for transportation equipment
WO2016204003A1 (en) Glass article and method for producing same
JP4876424B2 (en) Manufacturing method for water slidable articles
WO2018051958A1 (en) Antifouling article
JP4522357B2 (en) Manufacturing method for water slidable glass articles
JP2002121286A (en) Fluorine-containing organosilicon compound, water- repelling composition containing the same, and surface- treated base and method for producing the same
JPH09309745A (en) Water-repellent and oil-repellent article and its production
JP3649585B2 (en) Water repellent coating solution
JP2006206765A (en) Water-repellent composition, substrate having water-repellent layer, method for producing the same, and article for transportation equipment
JPH11228942A (en) Water-repellent fluid and production of water-repellent film
JP4826226B2 (en) Treatment agent for obtaining water slidable film and method for producing water slidable film
JP5156393B2 (en) VEHICLE GLASS PLATE HAVING COATING AND METHOD FOR MANUFACTURING SAME
JP4706097B2 (en) Substrate having surface treatment layer and method for producing the same
JP2001205747A (en) Base material having surface treatment layer and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850860

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17850860

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP