WO2022030399A1 - Laminate and fabric coating composition - Google Patents

Laminate and fabric coating composition Download PDF

Info

Publication number
WO2022030399A1
WO2022030399A1 PCT/JP2021/028418 JP2021028418W WO2022030399A1 WO 2022030399 A1 WO2022030399 A1 WO 2022030399A1 JP 2021028418 W JP2021028418 W JP 2021028418W WO 2022030399 A1 WO2022030399 A1 WO 2022030399A1
Authority
WO
WIPO (PCT)
Prior art keywords
functional
group
alkoxysilane
inorganic particles
dough
Prior art date
Application number
PCT/JP2021/028418
Other languages
French (fr)
Japanese (ja)
Inventor
幸広 植木
Original Assignee
ナガセケムテックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020132550A external-priority patent/JP6942849B1/en
Priority claimed from JP2021059815A external-priority patent/JP6980145B1/en
Application filed by ナガセケムテックス株式会社 filed Critical ナガセケムテックス株式会社
Priority to CN202180059722.2A priority Critical patent/CN116133843A/en
Publication of WO2022030399A1 publication Critical patent/WO2022030399A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds

Definitions

  • the present invention has a functional film comprising a laminate, a composition for forming a functional film of the laminate, a composition for coating a dough, and a cured product of the composition for coating the dough. Regarding the fabric.
  • Coating agents are required to have various functions, and are used in various applications such as furniture, interiors, automobiles, housing materials, traffic signs, home appliances, and displays. In recent years, in these applications, there is a demand for sustainable dust resistance that prevents the adhesion of dirt such as dust.
  • Patent Document 1 describes an invention in which pores are provided inside the film and the surface of the film is provided with an uneven structure to impart antifouling property by a dust adhesion prevention function.
  • Patent Document 2 describes an invention in which water- and oil-repellent properties are imparted by the formed surface irregularities to impart antifouling properties regardless of the environment in which they are used, but etching is performed by plasma discharge. Therefore, the surface has a sharp shape, the strength is weak, and the durability is low.
  • Patent Documents 1 and 2 assumes a fabric (fabric) as a base material, and does not provide a composition capable of exhibiting dust resistance against dust stains when applied to the fabric. rice field.
  • An object of the present invention is to provide a laminate having a functional film having both dust resistance and durability, and a composition for forming the functional film. Further, the present invention provides a functional film comprising a dough coating composition capable of exhibiting excellent dust resistance against dust stains when applied to a dough, and a cured product of the dough coating composition. It is an object of the present invention to provide a functional fabric having.
  • the present inventor has studied to reduce the adhesive force of dust, and found that a functional film containing silicon, oxygen, carbon, and fluorine has a specific water contact angle and a specific surface surface. We have found that if the unevenness is formed with a specific regularity, the contact area of dust can be reduced and high dust resistance can be maintained for a long period of time, and the present invention has been completed.
  • the present invention comprises a functional membrane having an arithmetic mean height Sa of 10 to 50 nm, a minimum autocorrelation length Sal of 300 to 2000 nm, and a water contact angle of 70 to 130 °, and a substrate. It relates to a laminate in which the functional film contains silicon, oxygen, carbon, and fluorine.
  • the functional membrane preferably contains inorganic particles and a cured product of a partially hydrolyzed partial condensate of alkoxysilane.
  • the base material is preferably a plastic base material, a glass base material, or a metal base material.
  • the functional membrane has a positive DTA peak at 200 to 600 ° C. in the differential thermal analysis DTA measurement.
  • the film thickness of the functional film is preferably 1 ⁇ m or less.
  • the present invention also relates to a composition for forming a functional film in the laminated body.
  • the present invention also relates to a composition containing a partially hydrolyzed condensate of alkoxysilane having a fluoro group and inorganic particles.
  • the ratio of the number of carbon atoms to the number of silicon atoms in the molecule (C / Si ratio) in the hydrolyzed partial condensate of alkoxysilane containing no fluoro group is preferably 0.1 to 4.
  • the inorganic particles are inorganic particles having a reactive group.
  • the functional film obtained by curing the composition has a positive DTA peak at 200 to 600 ° C. in the differential thermal analysis DTA measurement.
  • the inorganic particles are inorganic particles having a positive DTA peak at 200 to 600 ° C. in the differential thermal analysis DTA measurement.
  • the present invention relates to a dustproof coating composition containing the above composition.
  • composition containing an alkoxysilane having a fluoro group or a partially hydrolyzed partial condensate thereof exhibits excellent dust resistance against dust stains when applied to a dough. Completed the invention.
  • the present invention relates to a composition for coating a dough, which comprises an alkoxysilane having a fluoro group or a partially hydrolyzed partial condensate thereof.
  • the dough coating composition further contains an alkoxysilane containing no fluoro group or a partially hydrolyzed condensate thereof.
  • the ratio of the number of carbon atoms to the number of silicon atoms in the molecule (C / Si ratio) in the alkoxysilane containing no fluoro group or its hydrolyzed partial condensate is preferably 0.1 to 4.
  • the dough coating composition further contains inorganic particles.
  • the inorganic particles are inorganic particles having a reactive group.
  • the dough coating composition further contains an adhesion improver.
  • the dough coating composition is preferably used for dustproofing.
  • the present invention also relates to a functional fabric having a functional film made of a cured product of the composition on the surface of the fabric.
  • the dust adhesion rate which is the adhesion ratio of residual dust to the entire functional membrane region, is 5. % Or less is preferable.
  • the water contact angle of the functional membrane is preferably 100 to 140 °.
  • the material of the fabric is one or more selected from the group consisting of natural fibers, synthetic fibers, regenerated fibers, functional fibers, and metal fibers.
  • the functional fabric preferably has a primer layer between the functional membrane and the fabric.
  • the laminate of the present invention has a specific water contact angle in a functional film containing silicon, oxygen, carbon, and fluorine, and has a specific arithmetic mean height Sa and a minimum autocorrelation length Sa1 on the surface. Since it has irregularities, it can maintain high dust resistance for a long period of time. Further, since the composition for coating a dough of the present invention contains an alkoxysilane having a fluoro group or a partially hydrolyzed condensate thereof, it can exhibit excellent dust resistance against dust stains when applied to a dough. It can be suitably used as a composition for coating a fabric.
  • the laminate of the present invention is composed of a functional film having an arithmetic mean height Sa of 10 to 50 nm, a minimum autocorrelation length Sal of 300 to 2000 nm, and a water contact angle of 70 to 130 °, and a substrate.
  • the functional film is characterized by containing silicon, oxygen, carbon, and fluorine.
  • ⁇ Base material> examples of the material of the base material include plastic, glass, metal, concrete, brick, sandstone, mortar, cement and the like. Among these, plastic, glass and metal are preferable from the viewpoint of versatility.
  • plastics include polyester resins such as polyethylene terephthalate (PET), polyethylene naphthalate, and modified polyester, polyolefin resins such as polyethylene (PE) resin, polypropylene (PP) resin, polystyrene resin, and cyclic olefin resin, and polyvinyl chloride.
  • Vinyl chloride resin such as polyvinylidene chloride, polyether ether ketone (PEEK) resin, polysulfone (PSF) resin, polyether sulfone (PES) resin, polycarbonate (PC) resin, polyamide resin, polyimide resin, acrylic resin, bird Acetylcellulose (TAC) resin and the like can be mentioned.
  • PEEK polyether ether ketone
  • PSF polysulfone
  • PES polyether sulfone
  • PC polycarbonate
  • PC polyamide resin
  • polyimide resin acrylic resin
  • bird Acetylcellulose (TAC) resin and the like can be mentioned.
  • the metal include stainless steel, iron, copper, steel, special steel, aluminum, aluminum alloy, silver and the like.
  • the arithmetic mean height Sa of the functional membrane is 10 to 50 nm, preferably 15 to 40 nm. When it is within the above range, the dustproof property is excellent.
  • the arithmetic mean height Sa can be measured in accordance with ISO 25178, which is a standard for surface texture.
  • the minimum autocorrelation length Sal of the functional membrane is 300 to 2000 nm, preferably 500 to 1500 nm. When it is within the above range, the dustproof property is excellent.
  • the minimum autocorrelation length Sal can be measured in accordance with ISO 25178, which is a standard for surface texture. When Sal is small, the surface shape becomes regular and dense, and when Sal is large, the surface shape becomes irregular and sparse.
  • the water contact angle of the functional membrane is 70 to 130 °, preferably 90 to 120 °. When it is within the above range, the dustproof property is excellent.
  • the water contact angle can be measured by the sessile drop method.
  • the film thickness of the functional film is not particularly limited, but is preferably 1 ⁇ m or less, more preferably 0.01 to 1 ⁇ m, further preferably 0.05 to 0.8 ⁇ m or less, and particularly preferably 0.1 to 0.5 ⁇ m. Within the above range, sufficient dust resistance and durability can be obtained, which is most suitable for the applications described later.
  • the total light transmittance of the laminated body is not particularly limited, but is preferably 80% or more, and more preferably 85% or more. Within the above range, it can also be applied to applications that require visibility.
  • the haze value of the laminate is not particularly limited, but is preferably 4% or less, more preferably 3.5% or less.
  • the pencil hardness of the functional film is not particularly limited, but HB or higher is preferable, and F or higher is more preferable. If it is HB or higher, it can be applied to a wide range of applications.
  • the upper limit of the pencil hardness is not particularly limited, and 9H or less is preferable.
  • the pencil hardness can be measured according to JIS-K5600-5-4.
  • the adhesion of the functional film to the substrate is preferably 70/100 or more, more preferably 100/100 or more.
  • the adhesion can be measured according to the checkerboard peeling test of JIS K5600.
  • the dust adhesion rate which is the adhesion ratio of residual dust to the entire area of the functional membrane, is 5% or less is preferable, and 3% or less is more preferable.
  • the method of sprinkling dust on the functional film and the method of removing the adhering dust are not particularly limited, and various methods can be preferably used. For example, after sprinkling a predetermined amount of dust on the functional membrane, the dust may be sifted off by tilting it at 90 ° and lightly dropping it from a height of 3 cm on the table three times and tapping it.
  • the image capture of the functional film is not particularly limited, and a plurality of images may be captured by a method in which dust can be visually recognized in the entire functional film region.
  • the binarization process of the captured image is not particularly limited, and known image processing software or the like may be used.
  • the functional membrane preferably has a positive DTA peak at 200 ° C. to 600 ° C., and more preferably has a positive DTA peak at 300 ° C. to 600 ° C. in the differential thermal analysis DTA measurement.
  • the DTA can be measured with a differential thermogravimetric meter.
  • the positive DTA peak is a peak generated during the dehydration condensation reaction of silanol groups on the surface of the inorganic particles.
  • the functional membrane contains silicon, oxygen, carbon, and fluorine.
  • the inclusion of each element can be confirmed by elemental analysis of the raw material components and the functional film.
  • the content of each element can also be calculated from the blending amount of the raw material component, and can also be obtained by elemental analysis of the functional film.
  • the content of these four elements is preferably 20 to 50% by weight of silicon, 30 to 60% by weight of oxygen, 5 to 25% by weight of carbon, and 0.1 to 20% by weight of fluorine. It is more preferable that silicon is 25 to 35% by weight, oxygen is 40 to 55% by weight, carbon is 10 to 20% by weight, and fluorine is 1 to 15% by weight.
  • the functional membrane preferably contains inorganic particles and a cured product of a partially hydrolyzed condensate of alkoxysilane.
  • the functional film is obtained by applying a composition for forming a functional film to a base material and then curing the composition to obtain a laminate in which the functional film is laminated on the base material.
  • the composition may be applied directly on at least one surface of the base material, or may be applied on the base material after a primer layer or the like is provided on the base material in advance.
  • the primer layer is not particularly limited as long as it can impart coatability to the base material and adhesion between the base material and the functional film, but it is preferable to include a binder. Further, a cross-linking agent, a catalyst, a surfactant, a leveling agent, a pigment, a dye and the like can be appropriately contained.
  • the composition for forming the functional film preferably contains an alkoxysilane having a fluoro group or a hydrolyzed partial condensate thereof together with the inorganic particles, and preferably contains a hydrolyzed partial condensate of the alkoxysilane having a fluoro group. Is more preferable, and it is even more preferable to contain an alkoxysilane having no fluoro group or a hydrolyzed partial condensate thereof in addition to the alkoxysilane having a fluoro group or a hydrolyzed partial condensate thereof.
  • the composition can be applied to the substrate by a general method.
  • the curing conditions are not particularly limited, but in the case of heat curing, conditions at 70 to 1000 ° C. for 1 to 130 minutes can be mentioned. When it is cured by exposure, a light irradiation amount of 5 to 2000 mJ / cm 2 can be mentioned.
  • Inorganic particles are components that form specific irregularities.
  • the inorganic particles are not particularly limited, and examples thereof include metal oxide fine particles, nitrides, composite oxides composed of two or more kinds of metal elements, and compounds in which a metal oxide is doped with a different element.
  • Specific examples of the metal oxide fine particles include zinc oxide (ZrO 2 ), titanium oxide (TIO 2 ), silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), iron oxide (Fe 2 O 3 , FeO).
  • zirconium oxide (ZrO 2 ), titanium oxide (TIO 2 ), and silicon oxide (silica) are preferable from the viewpoint of dust resistance.
  • elemental metals, halides and the like can also be used.
  • Specific examples of the halide include copper fluoride (CuF, CuF 2 ), copper chloride (CuCl, CuCl 2 ), copper bromide (CuBr, CuBr 2 ), copper iodide (CuI), and silver fluoride (Ag). 2F , AgF, AgF 2, AgF 3 ), silver chloride (AgCl), silver bromide (AgBr), silver iodide (AgI) and the like can be mentioned.
  • elemental metals include copper, silver, and gold.
  • One kind of inorganic particles may be used alone, or two or more kinds may be used in combination.
  • the particle size of the inorganic particles is not particularly limited, but is preferably 1 to 1000 nm, more preferably 10 to 100 nm. When it is within the above range, the dustproof property is excellent.
  • the inorganic particles preferably have a reactive substituent (reactive group), and the reactive substituent may contain an organic reactive substituent.
  • the organic reactive substituent include an epoxy group, a methacrylic group, an isocyanate group and the like.
  • the inorganic particles are silica, a large number of hydroxyl groups are present on the surface, so that a reactive substituent can be introduced by reacting the hydroxyl groups with a silane coupling agent or the like.
  • the inorganic particles preferably have a positive DTA peak at 200 ° C. to 600 ° C., and more preferably have a positive DTA peak at 300 ° C. to 600 ° C. in the differential thermal analysis DTA. Within the above range, the functional film has excellent durability.
  • the blending amount of the inorganic particles is preferably 5 to 90% by weight, more preferably 10 to 80% by weight, still more preferably 20 to 70% by weight, based on the solid content. Within the above range, dust resistance and durability tend to be excellent.
  • Alkoxysilane having a fluoro group or a partially hydrolyzed condensate thereof is a component exhibiting water repellency.
  • the alkoxysilane having a fluoro group is not particularly limited as long as it is a silane compound having a fluoro group and an alkoxy group.
  • a fluoroalkyl group, a fluoroaryl group, a perfluoroalkyl group, a perfluoropolyether group and the like are preferable, and a perfluoroalkyl group is more preferable.
  • the number of alkoxy groups is preferably 3 or less.
  • alkoxysilane having these fluoro groups may be used alone, or two or more types may be used in combination. Further, as long as it contains at least one type of alkoxysilane having a fluoro group, an alkoxysilane not containing a fluoro group may be used in combination.
  • Examples of the hydrolyzed partial condensate of the alkoxysilane having a fluoro group include those obtained by hydrolyzing and condensing the alkoxysilane having a fluoro group by an existing method.
  • the alkoxysilane having a fluoro group the above-mentioned compound can be used.
  • One of these alkoxysilanes having a fluoro group may be used alone, or two or more of them may be used in combination for hydrolysis partial condensation. Further, as long as it contains at least one type of alkoxysilane having a fluoro group, hydrolysis partial condensation may be carried out in combination with an alkoxysilane not containing a fluoro group.
  • Alkoxysilanes having a fluoro group tend to form micelles in the composition because the alkoxy group is hydrophilic and the fluoro group is hydrophobic. However, when used as a hydrolyzed partial condensate, micelles can be formed. It is suppressed, it is easy to orient the fluoroalkyl group on the film surface, and the durability of the functional film tends to be improved.
  • the blending amount of the alkoxysilane having a fluoro group or the hydrolyzed partial condensate thereof is not particularly limited, but is preferably 0.5 to 70% by weight, more preferably 1 to 60% by weight, and 3 to 50% by weight in the solid content. % Is more preferable. Within the above range, a functional film having both dust resistance and durability tends to be formed.
  • Alkoxysilane containing no fluoro group or its hydrolyzed partial condensate is a component that imparts durability (wear resistance, hardness) and suppresses deterioration of dust resistance over time. Further, the alkoxysilane containing no fluoro group or a partially hydrolyzed partial condensate thereof binds firmly to the inorganic particles, suppresses dropping off due to an external stimulus to the functional film, and can maintain a high level of dust resistance.
  • the hydrolyzed partial condensate of an alkoxysilane containing no fluoro group is not limited as long as it is a hydrolyzed partial condensate obtained by subjecting an alkoxysilane containing no fluoro group to a condensation reaction with hydrolysis.
  • Examples thereof include those obtained by subjecting an alkoxysilane represented by (1), which does not contain a fluoro group, to hydrolysis and condensation reaction.
  • R 1 is a hydrogen, a hydroxyl group, an alkoxy group, an aliphatic hydrocarbon group or an aromatic hydrocarbon group, respectively, and one or more R 1 is an alkoxy group.
  • the alkoxy group, the aliphatic hydrocarbon group and the aromatic hydrocarbon group may each have a substituent.
  • R 1s in the general formula (1) monoalkoxysilane when one R 1 is an alkoxy group, dialkoxysilane when two R 1s are alkoxy groups, and three R 1s are alkoxy groups.
  • it is a trialkoxysilane
  • the four R1s are alkoxy groups
  • it is a tetraalkoxysilane, and any of these may be used.
  • one of these alkoxysilanes may be used alone, or two or more thereof may be used in combination.
  • a hydrolyzed partial condensate having a branched structure When trialkoxysilane or tetraalkoxysilane is contained, a hydrolyzed partial condensate having a branched structure can be obtained, and the hydrolyzed partial condensate having a branched structure has a high film density when cured to form a coating film, and has high strength and moisture resistance. Has excellent heat resistance and heat resistance.
  • dialkoxysilane the molecular weight of the partially hydrolyzed condensate can be adjusted and flexibility can be imparted.
  • monoalkoxysilane the molecular weight of the partially hydrolyzed condensate can be adjusted.
  • alkoxy group examples include C 1-4 alkoxy groups such as a methoxy group and an ethoxy group.
  • Examples of the aliphatic hydrocarbon group include C 1 such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an s-butyl group, a t-butyl group, a pentyl group, a hexyl group, a heptyl group and an octyl group.
  • Examples of the aromatic hydrocarbon group include an aryl group such as a phenyl group, a tolyl group and a xylyl group, and an aralkyl group such as a benzyl group.
  • Substituents of the aliphatic and aromatic hydrocarbon groups include crosslinkable functional groups such as (meth) acrylic group, (meth) acryloxy group, vinyl group and epoxy group, primary amino group and secondary amino. Examples include a group, a thiol group, a styryl group and the like.
  • alkoxysilane not containing a fluoro group examples include tetraalkoxysilanes such as tetramethoxysilane and tetraethoxysilane; methyltrimethoxysilane, methyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, methoxytrimethylsilane, and bis ( Triethoxysilyl) methane, bis (trimethoxysilyl) methane, bis (trimethoxysilyl) propane, bis (triethoxysilyl) propane, bis (trimethoxysilyl) hexane, bis (triethoxysilyl) hexane, bis (trimethoxy) Fat group such as silyl) octane, bis (triethoxysilyl) octane, bis (triethoxysilyl) ethylene, bis (trimethoxysilylmethyl) ethylene, 1- (
  • tetraalkoxysilane, a silane compound having an aliphatic hydrocarbon group, and a silane compound having an aromatic hydrocarbon group are preferable from the viewpoint of durability and substrate applicability, and tetramethoxysilane, tetraethoxysilane, and methyl. More preferred are trimethoxysilane, methyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, methoxytrimethylsilane, phenyltrimethoxysilane and phenyltriethoxysilane.
  • the ratio of the number of carbon atoms to the number of silicon atoms in the molecule is preferably 0.1 to 4, preferably 0.15 to 3.0. Is more preferable, and 0.2 to 2.0 is even more preferable. Within the above range, the functional film tends to be excellent in dust resistance, durability and substrate applicability.
  • the number of silicon atoms and the number of carbon atoms are the numbers of silicon atoms and carbon atoms contained in one molecule of the hydrolyzate of alkoxysilane as a raw material, respectively.
  • the ratio can be derived by calculating the total number of carbon atoms and the total number of silicon atoms based on the number of molecules of each compound.
  • the blending amount of the alkoxysilane containing no fluoro group or the hydrolyzed partial condensate thereof is not particularly limited, but is preferably 1 to 90% by weight, more preferably 5 to 80% by weight, and 10 to 70% by weight in the solid content. Is even more preferable. Within the above range, a functional film having both dust resistance and durability tends to be formed.
  • the hydrolyzed partial condensate of alkoxysilane having a fluoro group and the hydrolyzed partial condensate of alkoxysilane not containing a fluoro group can be produced, for example, by hydrolyzing partial condensation of alkoxysilane under acidic conditions. Hydrolysis partial condensation is carried out by the formation of hydroxyl groups by hydrolysis of the alkoxy group of alkoxysilane, and the condensation reaction between the formed hydroxyl groups. These reactions can be done in one step. A part of the hydroxyl group obtained by hydrolyzing the alkoxy group may remain in the hydrolyzed partial condensate.
  • the temperature conditions during the reaction are not particularly limited, but are preferably 25 to 200 ° C, more preferably 30 to 150 ° C, and even more preferably 40 to 120 ° C.
  • the time condition is not particularly limited, but is preferably 0.1 to 72 hours, more preferably 0.1 to 48 hours, and even more preferably 0.1 to 36 hours.
  • water having an equivalent number or more of the alkoxy groups of alkoxysilane is preferable to add water having an equivalent number or more of the alkoxy groups of alkoxysilane.
  • the amount of water added is preferably 100 to 500,000 mol, more preferably 500 to 100,000 mol, still more preferably 1,000 to 50,000 mol, based on 100 mol of the alkoxy group of alkoxysilane.
  • a catalyst may be used depending on the reactivity of the alkoxysilane used.
  • the catalyst include acidic catalysts, and specific examples thereof include organics such as formic acid, acetic acid, glacial acetic acid, p-toluenesulfonic acid, methanesulfonic acid, ethanesulfonic acid, trifluoroacetic acid, trifluoromethanesulfonic acid and polystyrenesulfonic acid.
  • Examples thereof include acid, hydrochloric acid, sulfuric acid, nitrate, phosphoric acid, boric acid, aluminum chloride, aluminum halide such as aluminum bromide, inorganic acids such as aluminum nitrate, acidic silica gel and acidic silica sol.
  • a volatile acid in which the catalyst does not remain in the film after film formation is preferable, an organic acid having a boiling point of 200 ° C. or lower is more preferable, and formic acid and acetic acid are further preferable.
  • an acidic catalyst By using an acidic catalyst, the effects of promoting the hydrolyzed partial condensation reaction and stabilizing the hydrolyzed partial condensate can be obtained.
  • the pH at the time of the hydrolysis partial condensation reaction is preferably 1 to 7, more preferably 2 to 7, and even more preferably 3 to 4. Within this range, a hydrolyzed partial condensate having high stability over time can be obtained, and when blended in the composition, the dispersibility of the hydrolyzed condensate in the composition and the liquid stability of the composition are ensured.
  • the amount of the catalyst added is preferably 0.0001 to 20 parts by weight, more preferably 0.0001 to 10 parts by weight, based on 100 parts by weight of alkoxysilane. Within this range, the hydrolysis partial condensation reaction proceeds rapidly and can be easily removed by heating.
  • the hydrolysis partial condensation reaction may be carried out without using a solvent, but a solvent may be used if necessary.
  • a solvent include alcohols such as methanol, ethanol, propanol and butanol; glycols such as ethylene glycol, diethylene glycol, trimethylene glycol, triethylene glycol, tetraethylene glycol and propylene glycol; glycerin, 1, 2 , 4-Butantriol, 1,2,3-Butantriol and other triols; Ethers such as tetrahydrofuran (THF); Ethylene glycol monomethyl ether, Ethylene glycol monoethyl ether, Ethylene glycol monobutyl ether, Ethylene glycol dimethyl ether, Diethylene glycol monomethyl Glycol ethers such as ether, diethylene glycol monoethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol monobutyl ether; methyl cellosolve
  • water-soluble organic solvents such as alcohols, glycols, and triols are preferable, and alcohols and glycols are particularly preferable, because a partially hydrolyzed condensate can be efficiently formed.
  • solvents may be used alone, or two or more of them may be mixed and used.
  • the above-mentioned mixed solution with water may be used, and when used as a mixed solution, a mixed solution of water and a water-soluble organic solvent is preferable, and a mixed solution of water and alcohol is more preferable.
  • the amount of the solvent to be blended is preferably 1 to 50,000 parts by weight, more preferably 10 to 5,000 parts by weight, still more preferably 20 to 1,000 parts by weight, based on 100 parts by weight of alkoxysilane.
  • the hydrolyzed partial condensate does not precipitate in water or a water-soluble organic solvent, it can be determined that the hydrolyzed partial condensate has been obtained. If the condensation reaction proceeds excessively, the water solubility decreases, and gelation or suspension occurs in water or a water-soluble organic solvent.
  • composition for forming the functional film preferably contains an adhesion improving agent from the viewpoint of improving the adhesion between the functional film and the substrate.
  • the adhesiveness improving agent is not particularly limited, but for example, silane coupling agents such as epoxysilanes, aminosilanes, acrylicsilanes, vinylsilanes, and styrylsilanes, titanate coupling agents, aluminum coupling agents, and acryloyl.
  • silane coupling agents such as epoxysilanes, aminosilanes, acrylicsilanes, vinylsilanes, and styrylsilanes, titanate coupling agents, aluminum coupling agents, and acryloyl.
  • isocyanates such as isocyanates and blocked isocyanates. These may be used alone or in combination of two or more.
  • the blending amount of the adhesion improver is preferably 0.1 to 40% by weight, more preferably 0.5 to 30% by weight, still more preferably 1 to 20% by weight, based on the solid content. Within the above range, the adhesion between the functional film and the substrate tends to be excellent.
  • the composition for forming the functional film may optionally contain other components.
  • Other components include, for example, curable resins such as epoxy resins, acrylates and melamines, thermoplastic resins such as acrylic resins and polyester resins, urethane resins and polyolefin resins, conductive polymers, carbon materials, polymerization initiators and leveling. Examples thereof include agents, surfactants, photosensitizers, defoaming agents, neutralizers, antioxidants, mold release agents, ultraviolet absorbers, thickeners, solvents and the like.
  • the leveling agent is not particularly limited, and for example, polyether-modified polydimethylsiloxane, polyether-modified siloxane, polyether ester-modified hydroxyl group-containing polydimethylsiloxane, polyether-modified acrylic group-containing polydimethylsiloxane, and polyester-modified acrylic group-containing polydimethyl.
  • Siloxane-based compounds such as siloxane, perfluoropolydimethylsiloxane, perfluoropolyether-modified polydimethylsiloxane, and perfluoropolyester-modified polydimethylsiloxane; fluorine-based compounds such as perfluoroalkylcarboxylic acid and perfluoroalkylpolyoxyethylene ethanol; poly Polyether-based compounds such as oxyethylene alkylphenyl ether, propylene oxide polymer, ethylene oxide polymer; carboxylic acids such as palm oil fatty acid amine salt and gum rosin; castor oil sulfate esters, phosphoric acid esters, alkyl ether sulfates, sorbitan fatty acids Ester-based compounds such as esters, sulfonic acid esters, and succinic acid esters; Sulfate compounds such as alkylaryl sulfonic acid amine salts and dioctyl sulfo
  • the blending amount of the leveling agent is preferably 0.001 to 5% by weight, more preferably 0.01 to 1% by weight, still more preferably 0.05 to 0.5% by weight, based on the solid content of the composition.
  • the solvent is not particularly limited, but for example, water; alcohols such as methanol, ethanol, isopropanol, ethylene glycol, diethylene glycol, triethylene glycol and propylene glycol; ethers such as tetrahydrofuran; ethylene glycol monomethyl ether (methyl cellosolve), and the like.
  • Ethylene glycol ethers such as ethylene glycol dimethyl ether, ethylene glycol methyl ethyl ether, ethylene glycol monoethyl ether (ethyl cellosolve); ethylene glycol alkyl ether acetates such as methyl cellosolve acetate and ethyl cellosolve acetate; diethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol Diethylene glycol dialkyl ethers such as dibutyl ether and diethylene glycol ethylmethyl ether; Diethylene glycol monoalkyl ethers such as diethylene glycol monomethyl ether, diethylene glycol monoethyl ether and diethylene glycol monobutyl ether; propylene glycol monoalkyl ethers such as propylene glycol monomethyl ether; propylene glycol monomethyl ether Alkylene glycol monoalkyls such as ether acetate (PGMEA), propylene glycol
  • ethylene glycol ethers alkylene glycol monoalkyl ether acetates, diethylene glycol dialkyl ethers, ketones and esters are preferable, and ethyl 3-ethoxypropionate, ethyl lactate, propylene glycol monomethyl ether acetate (PGMEA), and the like. More preferred are diethylene glycol monoethyl ether acetate and methyl amylketone. These solvents may be used alone or in combination of two or more.
  • the solid content of the composition is not particularly limited, but is preferably 0.1 to 10% by weight, more preferably 1 to 8% by weight, still more preferably 3 to 5% by weight. Within the above range, the liquid stability tends to improve.
  • the laminate of the present invention has a functional film having high durability and dust resistance on a base material, automobiles, housing materials, furniture, interiors, home appliances, traffic signs, medical appliances, signboards, shutters, etc. It can be suitably applied to applications where durability and dust resistance are required.
  • the composition of the present invention is characterized by containing a hydrolyzed partial condensate of alkoxysilane having a fluoro group and inorganic particles. Further, it is preferable to contain an alkoxysilane containing no fluoro group or a partially hydrolyzed condensate thereof. Alkoxysilane having a fluoro group or a hydrolyzed partial condensate thereof, inorganic particles, an alkoxysilane containing no fluoro group or a hydrolyzed partial condensate thereof are as described above.
  • the composition of the present invention is preferably acidic. Since the composition of the present invention can maintain high dust resistance for a long period of time, it can be suitably applied for dustproof coating.
  • the dough coating composition of the present invention contains an alkoxysilane having a fluoro group or a partially hydrolyzed condensate thereof.
  • the dough coating composition of the present invention exhibits excellent dust resistance against dust stains when applied to a dough.
  • Alkoxysilane having a fluoro group or a partially hydrolyzed condensate thereof is a component that exhibits dust resistance and water repellency against dust stains when the composition for coating the dough is applied to the dough.
  • the dough coating composition preferably contains a hydrolyzed partial condensate of alkoxysilane having a fluoro group.
  • alkoxysilane having a fluoro group and a method for producing a hydrolyzed partial condensate of the alkoxysilane having a fluoro group (hydrolyzed partial condensation reaction) are the same as those of the laminate of the present invention.
  • the blending amount of the alkoxysilane having a fluoro group or the hydrolyzed partial condensate thereof is not particularly limited, but is preferably 0.5 to 70% by weight, more preferably 1 to 60% by weight, and 3 to 50% by weight in the solid content. % Is more preferable, and 7 to 15% by weight is particularly preferable.
  • the blending amount in the dough coating composition containing the solvent is preferably 0.1 to 10% by weight, more preferably 0.2 to 5% by weight, still more preferably 0.25 to 3% by weight. Within the above range, a functional film having both dust resistance and durability against dust stains tends to be formed.
  • the dough coating composition of the present invention preferably further contains an alkoxysilane containing no fluoro group or a partially hydrolyzed condensate thereof.
  • Alkoxysilane containing no fluoro group or a partially hydrolyzed partial condensate thereof is a component that imparts durability (wear resistance, hardness), and suppresses deterioration of dust resistance against dust stains over time.
  • an alkoxysilane containing no fluoro group or a partially hydrolyzed partial condensate thereof, C / Si ratio, blending amount, preparation method (including reaction conditions for the partially hydrolyzed condensation reaction, catalyst used for the reaction, solvent, etc.), etc. Is the same as the laminated body of the present invention.
  • the dough coating composition of the present invention preferably further contains inorganic particles.
  • inorganic particles By containing the inorganic particles, unevenness can be formed on the surface of the functional film, the contact area of dust stains can be reduced, and the functional film having more excellent dust resistance can be obtained.
  • Specific examples of the inorganic particles, particle size, reactive substituent, DTA peak, blending amount, etc. are the same as those of the laminate of the present invention.
  • the dough coating composition of the present invention may optionally contain other components.
  • Other components include, for example, an adhesion improver, a curable resin such as epoxy resin, acrylate, and melamine, a thermoplastic resin such as acrylic resin, polyester resin, urethane resin, and polyolefin resin, a conductive polymer, and a carbon material. Examples thereof include polymerization initiators, leveling agents, surfactants, photosensitizers, defoaming agents, neutralizers, antioxidants, mold release agents, ultraviolet absorbers, thickeners, solvents and the like.
  • the dough coating composition of the present invention preferably contains an adhesion improver from the viewpoint of improving the adhesion between the dough and the functional film. Specific examples of the adhesion improver, leveling agent, solvent, blending amount, etc. are the same as those of the laminate of the present invention.
  • the solid content of the dough coating composition of the present invention is not particularly limited, but is preferably 0.1 to 10% by weight, more preferably 1 to 8% by weight, still more preferably 3 to 5% by weight. Within the above range, the liquid stability tends to improve.
  • the functional fabric of the present invention has a fabric and a functional film made of a cured product of the composition for coating the fabric of the present invention, it exhibits excellent dust resistance against dust stains.
  • the form of the fabric is not particularly limited, and examples thereof include woven fabrics, non-woven fabrics, meshes, and knitted fabrics.
  • the material of the fabric is not particularly limited, and examples thereof include natural fiber, synthetic fiber, regenerated fiber, functional fiber, metal fiber, carbon fiber, and glass fiber. Among these, from the viewpoint of practicality, one or more selected from the group consisting of natural fibers, synthetic fibers, regenerated fibers, functional fibers, and metal fibers is preferable.
  • natural fibers include cotton, linen, silk and wool.
  • Examples of synthetic fibers include polyester, nylon, acrylic, polyurethane, and polyamide.
  • Examples of the recycled fiber include rayon and cupra.
  • Examples of the functional fiber include fibers having functions such as ultraviolet ray shielding, heat storage and heat retention, moisture absorption, water absorption / sweat absorption, water repellency, waterproofing, flameproofing, conductivity, and antibacterial deodorization.
  • Examples of the metal fiber include those obtained by depositing a metal such as aluminum on a synthetic fiber or the like, in addition to steel, stainless steel, copper, aluminum, gold or silver.
  • the material of the dough may be a single material or a combination of two or more kinds.
  • the functional film comprises a cured product of the dough coating composition of the present invention.
  • the functional film is obtained by applying the dough coating composition to the dough, or impregnating the dough coating composition with the dough, and then curing the dough coating composition.
  • the composition for coating the dough When the composition for coating the dough is applied, it may be applied directly on at least one surface of the dough, or it may be transferred, or after a primer layer or the like is previously provided on the base material, the composition may be applied. It may be applied on top.
  • the primer layer is not particularly limited as long as it can impart coatability to the fabric and adhesion between the fabric and the functional film.
  • the primer layer preferably contains a binder, and examples thereof include thermoplastic resins such as polyurethane resin, polypropylene resin, acrylic resin, polyester resin, and polyvinyl chloride resin.
  • the functional fabric of the present invention has a primer layer between the functional membrane and the fabric from the viewpoint of waterproofness, applicability of the composition for coating the fabric to the fabric, and adhesion between the functional film and the fabric. Is preferable.
  • the application of the dough coating composition to the dough and the impregnation of the dough into the dough coating composition can be performed by a general method.
  • the curing conditions are not particularly limited, but in the case of heat curing, conditions at 70 to 1000 ° C. for 0.5 to 130 minutes can be mentioned. When it is cured by exposure, a light irradiation amount of 5 to 2000 mJ / cm 2 can be mentioned.
  • the water contact angle of the functional membrane is preferably 100 to 140 °, more preferably 100 to 135 °. When it is within the above range, it is excellent in dust resistance against dust stains.
  • the water contact angle can be measured by the sessile drop method.
  • the dust adhesion rate which is the adhesion ratio of residual dust to the entire functional membrane region, is 5% or less is preferable, and 3% or less is more preferable.
  • the method of sprinkling dust on the functional film and the method of removing the adhering dust are not particularly limited, and various methods can be preferably used. For example, after sprinkling a predetermined amount of dust on the functional membrane, the dust may be sifted off by tilting it at 90 ° and lightly dropping it from a height of 3 cm on the table three times and tapping it.
  • the image capture of the functional film is not particularly limited, and a plurality of images may be captured by a method in which dust can be visually recognized in the entire functional film region.
  • the binarization process of the captured image is not particularly limited, and known image processing software or the like may be used.
  • the functional membrane contains silicon, oxygen, carbon, and fluorine.
  • the inclusion of each element can be confirmed by elemental analysis of the raw material components and the functional film.
  • the content of each element can also be calculated from the blending amount of the raw material component, and can also be obtained by elemental analysis of the functional film.
  • the content of these four elements is preferably 20 to 50% by weight of silicon, 30 to 60% by weight of oxygen, 5 to 25% by weight of carbon, and 0.1 to 20% by weight of fluorine. It is more preferable that silicon is 25 to 35% by weight, oxygen is 40 to 55% by weight, carbon is 10 to 20% by weight, and fluorine is 1 to 15% by weight.
  • the functional membrane preferably contains inorganic particles and a cured product of a partially hydrolyzed condensate of alkoxysilane.
  • the functional fabric of the present invention has a fabric and a functional film made of a cured product of the fabric coating composition of the present invention, it has excellent dust resistance against dust stains, and tents such as awning tents, footwear, and bags.
  • tents such as awning tents, footwear, and bags.
  • part or % means “part by weight” or “% by weight”, respectively, unless otherwise specified.
  • the particle size was measured by a dynamic light scattering method using a Microtrac Nanotrac Wave UT151 manufactured by Microtrac Bell Co., Ltd.
  • the DTA peak was measured by the method described above (particle size: 100 nm, reactive group: silanol group, DTA peak: 340 ° C.).
  • the particle size was measured by a dynamic light scattering method using a Microtrac Nanotrac Wave UT151 manufactured by Microtrac Bell Co., Ltd.
  • the DTA peak was measured by the method described above (particle size: 130 nm, reactive group: silanol group, DTA peak: 330 ° C.).
  • the laminate prepared in the examples was evaluated by the following method. ⁇ Film thickness> The film thickness was measured with a stylus type surface shape measuring instrument (DEKTAK, manufactured by ULVAC, Inc.).
  • Tt Transmittance
  • ⁇ Adhesion rate> The laminated body is installed with the functional membrane facing up so that it fits completely within an area of 10 cm x 10 cm, and 1 g of Kanto loam (JIS Z 8901, 8 types of test powder 1) functions for the entire area.
  • the functional fabric was tilted at 90 ° and lightly dropped from a height of 3 cm on the table three times and tapped (tapped) to remove dust, and then a photograph was taken. The photograph taken was binarized with image software, and the adhesion ratio of residual dust to the entire functional membrane area was calculated and used as the adhesion ratio.
  • ⁇ Pencil hardness> The measurement was performed using a pencil scratch hardness tester manufactured by Yasuda Seiki Seisakusho Co., Ltd. according to the test method of JIS-K5600-5-4.
  • ⁇ Scratch resistance> The scratch resistance test of the functional film was performed with a Gakushin dyeing friction fastness tester (manufactured by Yasuda Seiki Seisakusho Co., Ltd., flat type), and the water contact angle and adhesion rate after the test were measured.
  • a non-woven fabric (Bencot, manufactured by Asahi Kasei Corporation) was attached to the friction element of the Gakushin-dyeing friction fastness tester, and the test was conducted by rubbing 10 times while applying a load of 500 g. The water contact angle and the adhesion rate were measured by the above-mentioned method.
  • DTA measurement Differential thermal analysis DTA measurement was performed using a differential thermal thermogravimetric meter (TG / DTA6200, manufactured by Seiko Instruments). The measurement conditions were an air atmosphere, a heating rate of 10 ° C./min, and a temperature range of 40 ° C. to 600 ° C.
  • the functional membranes were scraped off with a spatula or the like, and the obtained powder was used for the measurement.
  • the particles were dried in a vacuum drier and then subjected to the measurement.
  • Example 22 to 36 and Comparative Example 7 the obtained dough coating composition was applied onto the dough shown in Table 5 by a bar coater or a dip, and heated at 150 ° C. for 3 minutes to be cured, and functionalized. I got the dough.
  • an acrylic resin (Nikazol FX-3750, Tg: ⁇ 45 ° C., manufactured by Nippon Carbide Industry Co., Ltd., manufactured by Nippon Carbide Industry Co., Ltd.) was applied onto the fabrics shown in Table 5 by a bar coater. After that, the primer layer was formed by heating and drying at 150 ° C. for 3 minutes.
  • a fluororesin AG-E082, manufactured by Asahi Glass Co., Ltd. was further applied onto the primer layer by a bar coater, and dried by heating at 150 ° C. for 3 minutes.
  • the functional dough produced in the examples was evaluated by the following method.
  • Comparative Examples 5, 6 and 8 since the functional film was not formed, Comparative Example 5 had the physical characteristics of the dough itself, Comparative Example 6 had the physical properties of the primer layer, and Comparative Example 8 was the fluororesin. Each physical property of the layer was evaluated. The results are shown in Table 5.

Abstract

Provided are: a laminate that has a functional film having both durability and dust resistance; and a composition for forming the functional film. Moreover, provided are: a fabric coating composition that can exhibit excellent dust resistance against powder dust fouling when applied to a fabric; and a functional fabric that has a functional film composed of a cured product of said fabric coating composition. The present invention pertains to a laminate having an arithmetic average height Sa of 10-50 nm and a minimum autocorrelation length Sal of 300-2,000 nm, and composed of a base material and a functional film having a water contact angle of 70-130º, wherein the functional film contains silicon, oxygen, carbon, and fluorine. Moreover, the present invention pertains to a fabric coating composition containing fluoro group-containing alkoxysilane or a hydrolyzed partial condensate thereof.

Description

積層体及び生地コーティング用組成物Compositions for laminates and fabric coatings
本発明は、積層体及びその積層体の機能性膜を形成するための組成物、並びに、生地コーティング用組成物、及び、該生地コーティング用組成物の硬化物からなる機能性膜を有する機能性生地に関する。 The present invention has a functional film comprising a laminate, a composition for forming a functional film of the laminate, a composition for coating a dough, and a cured product of the composition for coating the dough. Regarding the fabric.
コーティング剤は、様々な機能が要求され、家具、インテリア、自動車、住宅建材、交通標識、家電製品や、ディスプレイ等の様々な用途で使用されている。近年、これらの用途において、粉塵等の汚れの付着を防止する持続性のある防塵性が求められている。 Coating agents are required to have various functions, and are used in various applications such as furniture, interiors, automobiles, housing materials, traffic signs, home appliances, and displays. In recent years, in these applications, there is a demand for sustainable dust resistance that prevents the adhesion of dirt such as dust.
特許文献1には、膜内部に空孔を設け、かつ、膜表面に凹凸構造を備えることにより、粉塵付着防止機能による防汚性を付与する発明が記載されている。しかしながら、凹凸構造があるものの、親水性の膜であるため、雨水による洗浄効果が期待できる屋外用途に限られており、防塵性能も十分ではなかった。一方、特許文献2には、形成される表面凹凸によって撥水撥油性を付与することにより、使用する環境によらない防汚性を付与する発明が記載されているが、プラズマ放電でエッチングを行うため、表面が尖った形状になって強度が弱く、耐久性が低いものであった。 Patent Document 1 describes an invention in which pores are provided inside the film and the surface of the film is provided with an uneven structure to impart antifouling property by a dust adhesion prevention function. However, although it has an uneven structure, it is a hydrophilic film, so it is limited to outdoor applications where a cleaning effect by rainwater can be expected, and its dustproof performance is not sufficient. On the other hand, Patent Document 2 describes an invention in which water- and oil-repellent properties are imparted by the formed surface irregularities to impart antifouling properties regardless of the environment in which they are used, but etching is performed by plasma discharge. Therefore, the surface has a sharp shape, the strength is weak, and the durability is low.
また、特許文献1及び2のいずれも、基材として生地(布帛)は想定しておらず、生地に適用した場合に粉塵汚れに対する防塵性を発揮することのできる組成物を提供するものではなかった。 Further, neither of Patent Documents 1 and 2 assumes a fabric (fabric) as a base material, and does not provide a composition capable of exhibiting dust resistance against dust stains when applied to the fabric. rice field.
特開2017-226764号公報Japanese Unexamined Patent Publication No. 2017-226764 特開平6-116430号公報Japanese Unexamined Patent Publication No. 6-116430
本発明は、防塵性と耐久性とを両立した機能性膜を有する積層体及び該機能性膜を形成するための組成物を提供することを目的とする。また、本発明は、生地に適用した場合に粉塵汚れに対して優れた防塵性を発揮することのできる生地コーティング用組成物、及び、該生地コーティング用組成物の硬化物からなる機能性膜を有する機能性生地を提供することを目的とする。 An object of the present invention is to provide a laminate having a functional film having both dust resistance and durability, and a composition for forming the functional film. Further, the present invention provides a functional film comprising a dough coating composition capable of exhibiting excellent dust resistance against dust stains when applied to a dough, and a cured product of the dough coating composition. It is an object of the present invention to provide a functional fabric having.
本発明者は、塵埃の付着力を低減することについて検討を進めたところ、ケイ素、酸素、炭素、及び、フッ素を含有する機能性膜において、特定の水接触角とするとともに、表面に特定の凹凸を特定の規則性をもって形成させると、塵埃の接地面積を低減させることができ、高い防塵性を長期間持続できることを見出し、本発明を完成した。 The present inventor has studied to reduce the adhesive force of dust, and found that a functional film containing silicon, oxygen, carbon, and fluorine has a specific water contact angle and a specific surface surface. We have found that if the unevenness is formed with a specific regularity, the contact area of dust can be reduced and high dust resistance can be maintained for a long period of time, and the present invention has been completed.
すなわち、本発明は、算術平均高さSaが10~50nmであり、最小自己相関長さSalが300~2000nmであり、水接触角が70~130°である機能性膜と、基材からなる積層体であって、前記機能性膜が、ケイ素、酸素、炭素、及び、フッ素を含有する積層体に関する。 That is, the present invention comprises a functional membrane having an arithmetic mean height Sa of 10 to 50 nm, a minimum autocorrelation length Sal of 300 to 2000 nm, and a water contact angle of 70 to 130 °, and a substrate. It relates to a laminate in which the functional film contains silicon, oxygen, carbon, and fluorine.
前記機能性膜が、無機粒子と、アルコキシシランの加水分解部分縮合物の硬化物を含むことが好ましい。 The functional membrane preferably contains inorganic particles and a cured product of a partially hydrolyzed partial condensate of alkoxysilane.
前記基材が、プラスチック基材、ガラス基材又は金属基材であることが好ましい。 The base material is preferably a plastic base material, a glass base material, or a metal base material.
前記機能性膜が、示差熱分析DTA測定において、200~600℃に正のDTAピークを有することが好ましい。 It is preferable that the functional membrane has a positive DTA peak at 200 to 600 ° C. in the differential thermal analysis DTA measurement.
前記機能性膜の膜厚が1μm以下であることが好ましい。 The film thickness of the functional film is preferably 1 μm or less.
また、本発明は、前記積層体における機能性膜を形成するための組成物に関する。 The present invention also relates to a composition for forming a functional film in the laminated body.
また、本発明は、フルオロ基を有するアルコキシシランの加水分解部分縮合物と無機粒子を含有する組成物に関する。 The present invention also relates to a composition containing a partially hydrolyzed condensate of alkoxysilane having a fluoro group and inorganic particles.
さらに、フルオロ基を含まないアルコキシシランの加水分解部分縮合物を含むことが好ましい。 Further, it is preferable to contain a hydrolyzed partial condensate of alkoxysilane containing no fluoro group.
前記フルオロ基を含まないアルコキシシランの加水分解部分縮合物における、分子中のケイ素原子数に対する炭素原子数の比(C/Si比)が0.1~4であることが好ましい。 The ratio of the number of carbon atoms to the number of silicon atoms in the molecule (C / Si ratio) in the hydrolyzed partial condensate of alkoxysilane containing no fluoro group is preferably 0.1 to 4.
前記無機粒子が反応性基を有する無機粒子であることが好ましい。 It is preferable that the inorganic particles are inorganic particles having a reactive group.
さらに、密着性向上剤を含むことが好ましい。 Further, it is preferable to include an adhesion improver.
前記組成物を硬化して得られる機能性膜が、示差熱分析DTA測定において、200~600℃に正のDTAピークを有することが好ましい。 It is preferable that the functional film obtained by curing the composition has a positive DTA peak at 200 to 600 ° C. in the differential thermal analysis DTA measurement.
前記無機粒子が、示差熱分析DTA測定において、200~600℃に正のDTAピークを有する無機粒子であることが好ましい。 It is preferable that the inorganic particles are inorganic particles having a positive DTA peak at 200 to 600 ° C. in the differential thermal analysis DTA measurement.
さらに、本発明は、前記組成物を含む防塵コーティング用組成物に関する。 Furthermore, the present invention relates to a dustproof coating composition containing the above composition.
また、本発明者は、フルオロ基を有するアルコキシシラン又はその加水分解部分縮合物を含有する組成物が、生地に適用した場合に粉塵汚れに対して優れた防塵性を発揮することを見出し、本発明を完成した。 Further, the present inventor has found that a composition containing an alkoxysilane having a fluoro group or a partially hydrolyzed partial condensate thereof exhibits excellent dust resistance against dust stains when applied to a dough. Completed the invention.
すなわち、本発明は、フルオロ基を有するアルコキシシラン又はその加水分解部分縮合物を含有する、生地コーティング用組成物に関する。 That is, the present invention relates to a composition for coating a dough, which comprises an alkoxysilane having a fluoro group or a partially hydrolyzed partial condensate thereof.
前記生地コーティング用組成物が、さらに、フルオロ基を含まないアルコキシシラン又はその加水分解部分縮合物を含むことが好ましい。 It is preferable that the dough coating composition further contains an alkoxysilane containing no fluoro group or a partially hydrolyzed condensate thereof.
前記フルオロ基を含まないアルコキシシラン又はその加水分解部分縮合物における、分子中のケイ素原子数に対する炭素原子数の比(C/Si比)が0.1~4であることが好ましい。 The ratio of the number of carbon atoms to the number of silicon atoms in the molecule (C / Si ratio) in the alkoxysilane containing no fluoro group or its hydrolyzed partial condensate is preferably 0.1 to 4.
前記生地コーティング用組成物が、さらに、無機粒子を含有することが好ましい。 It is preferable that the dough coating composition further contains inorganic particles.
前記無機粒子が反応性基を有する無機粒子であることが好ましい。 It is preferable that the inorganic particles are inorganic particles having a reactive group.
前記生地コーティング用組成物が、さらに、密着性向上剤を含むことが好ましい。 It is preferable that the dough coating composition further contains an adhesion improver.
前記生地コーティング用組成物は、防塵のために用いられることが好ましい。 The dough coating composition is preferably used for dustproofing.
また、本発明は、前記組成物の硬化物からなる機能性膜を生地の表面に有する機能性生地に関する。 The present invention also relates to a functional fabric having a functional film made of a cured product of the composition on the surface of the fabric.
関東ローム(JIS Z 8901、試験用粉体1の8種)を機能性膜に振りかけ、90°に傾けて除去した後に、機能性膜全領域に対する残存粉塵の付着割合である粉塵付着率が5%以下であることが好ましい。 After sprinkling Kanto Loam (JIS Z 8901, 8 types of test powder 1) on the functional membrane and removing it at an angle of 90 °, the dust adhesion rate, which is the adhesion ratio of residual dust to the entire functional membrane region, is 5. % Or less is preferable.
前記機能性膜の水接触角が100~140°であることが好ましい。 The water contact angle of the functional membrane is preferably 100 to 140 °.
前記生地の材質が、天然繊維、合成繊維、再生繊維、機能性繊維、及び金属繊維からなる群より選択される一つ以上であることが好ましい。 It is preferable that the material of the fabric is one or more selected from the group consisting of natural fibers, synthetic fibers, regenerated fibers, functional fibers, and metal fibers.
前記機能性生地は、前記機能性膜と前記生地との間にプライマー層を有することが好ましい。 The functional fabric preferably has a primer layer between the functional membrane and the fabric.
本発明の積層体は、ケイ素、酸素、炭素、及び、フッ素を含有する機能性膜において、特定の水接触角をするとともに、表面に特定の算術平均高さSaと最小自己相関長さSa1の凹凸を有しているため、高い防塵性を長期間持続できる。また、本発明の生地コーティング用組成物は、フルオロ基を有するアルコキシシラン又はその加水分解部分縮合物を含有するため、生地に適用した場合に粉塵汚れに対して優れた防塵性を発揮することができ、生地コーティング用組成物として好適に使用できる。 The laminate of the present invention has a specific water contact angle in a functional film containing silicon, oxygen, carbon, and fluorine, and has a specific arithmetic mean height Sa and a minimum autocorrelation length Sa1 on the surface. Since it has irregularities, it can maintain high dust resistance for a long period of time. Further, since the composition for coating a dough of the present invention contains an alkoxysilane having a fluoro group or a partially hydrolyzed condensate thereof, it can exhibit excellent dust resistance against dust stains when applied to a dough. It can be suitably used as a composition for coating a fabric.
<<積層体>>
本発明の積層体は、算術平均高さSaが10~50nmであり、最小自己相関長さSalが300~2000nmであり、水接触角が70~130°である機能性膜と、基材からなる積層体であって、前記機能性膜が、ケイ素、酸素、炭素、及び、フッ素を含有することを特徴とする。水接触角を70~130°にすることによって粉塵を付着しにくくし、特定の凹凸を特定の規則性で設けることによって、接地面積を減らすことができる。本発明では、両者の併用効果によって、積層体を傾けると、粉塵汚れが重力によって転がり落ちる。
<< Laminated body >>
The laminate of the present invention is composed of a functional film having an arithmetic mean height Sa of 10 to 50 nm, a minimum autocorrelation length Sal of 300 to 2000 nm, and a water contact angle of 70 to 130 °, and a substrate. The functional film is characterized by containing silicon, oxygen, carbon, and fluorine. By setting the water contact angle to 70 to 130 °, it is difficult for dust to adhere, and by providing specific irregularities with specific regularity, the ground contact area can be reduced. In the present invention, due to the combined effect of both, when the laminate is tilted, dust stains roll off due to gravity.
<基材>
基材の材質は、プラスチック、ガラス、金属、コンクリート、煉瓦、砂岩、モルタル、セメント等が挙げられる。これらの中でも、汎用性の観点から、プラスチック、ガラス及び金属が好ましい。プラスチックとしては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート、変性ポリエステル等のポリエステル系樹脂、ポリエチレン(PE)樹脂、ポリプロピレン(PP)樹脂、ポリスチレン樹脂、環状オレフィン系樹脂等のポリオレフィン類樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン等のビニル系樹脂、ポリエーテルエーテルケトン(PEEK)樹脂、ポリサルホン(PSF)樹脂、ポリエーテルサルホン(PES)樹脂、ポリカーボネート(PC)樹脂、ポリアミド樹脂、ポリイミド樹脂、アクリル樹脂、トリアセチルセルロース(TAC)樹脂等が挙げられる。金属としては、ステンレス、鉄、銅、鋼、特殊鋼、アルミニウム、アルミニウム合金、銀などが挙げられる。
<Base material>
Examples of the material of the base material include plastic, glass, metal, concrete, brick, sandstone, mortar, cement and the like. Among these, plastic, glass and metal are preferable from the viewpoint of versatility. Examples of plastics include polyester resins such as polyethylene terephthalate (PET), polyethylene naphthalate, and modified polyester, polyolefin resins such as polyethylene (PE) resin, polypropylene (PP) resin, polystyrene resin, and cyclic olefin resin, and polyvinyl chloride. , Vinyl chloride resin such as polyvinylidene chloride, polyether ether ketone (PEEK) resin, polysulfone (PSF) resin, polyether sulfone (PES) resin, polycarbonate (PC) resin, polyamide resin, polyimide resin, acrylic resin, bird Acetylcellulose (TAC) resin and the like can be mentioned. Examples of the metal include stainless steel, iron, copper, steel, special steel, aluminum, aluminum alloy, silver and the like.
<機能性膜>
機能性膜の算術平均高さSaは10~50nmであり、15~40nmが好ましい。上記範囲内であると、防塵性に優れる。ここで、算術平均高さSaは、表面性状の規格であるISO25178に準拠して測定することができる。
<Functional membrane>
The arithmetic mean height Sa of the functional membrane is 10 to 50 nm, preferably 15 to 40 nm. When it is within the above range, the dustproof property is excellent. Here, the arithmetic mean height Sa can be measured in accordance with ISO 25178, which is a standard for surface texture.
機能性膜の最小自己相関長さSalは300~2000nmであり、500~1500nmが好ましい。上記範囲内であると、防塵性に優れる。ここで、最小自己相関長さSalは、表面性状の規格であるISO25178に準拠して測定することができる。Salが小さいと、表面形状は規則的で密になり、逆に大きいと不規則で疎になる。 The minimum autocorrelation length Sal of the functional membrane is 300 to 2000 nm, preferably 500 to 1500 nm. When it is within the above range, the dustproof property is excellent. Here, the minimum autocorrelation length Sal can be measured in accordance with ISO 25178, which is a standard for surface texture. When Sal is small, the surface shape becomes regular and dense, and when Sal is large, the surface shape becomes irregular and sparse.
機能性膜の水接触角は70~130°であり、90~120°が好ましい。上記範囲内であると、防塵性に優れる。ここで、水接触角は、液滴法によって測定することができる。 The water contact angle of the functional membrane is 70 to 130 °, preferably 90 to 120 °. When it is within the above range, the dustproof property is excellent. Here, the water contact angle can be measured by the sessile drop method.
機能性膜の膜厚は特に限定されないが、1μm以下が好ましく、0.01~1μmがより好ましく、0.05~0.8μm以下がさらに好ましく、0.1~0.5μmが特に好ましい。上記範囲内であると、十分な防塵性と耐久性が得られ、後述の用途に最適である。 The film thickness of the functional film is not particularly limited, but is preferably 1 μm or less, more preferably 0.01 to 1 μm, further preferably 0.05 to 0.8 μm or less, and particularly preferably 0.1 to 0.5 μm. Within the above range, sufficient dust resistance and durability can be obtained, which is most suitable for the applications described later.
積層体の全光線透過率は特に限定されないが、80%以上が好ましく、85%以上がより好ましい。上記範囲内であると、視認性が求められる用途にも適用できる。 The total light transmittance of the laminated body is not particularly limited, but is preferably 80% or more, and more preferably 85% or more. Within the above range, it can also be applied to applications that require visibility.
積層体のヘイズ値は特に限定されないが、4%以下が好ましく、3.5%以下がより好ましい。 The haze value of the laminate is not particularly limited, but is preferably 4% or less, more preferably 3.5% or less.
機能性膜の鉛筆硬度は特に限定されないが、HB以上が好ましく、F以上がより好ましい。HB以上であれば、幅広い用途に適用できる。鉛筆硬度の上限は特に限定されず、9H以下が好ましい。ここで、鉛筆硬度は、JIS-K5600-5-4に準拠して測定することができる。 The pencil hardness of the functional film is not particularly limited, but HB or higher is preferable, and F or higher is more preferable. If it is HB or higher, it can be applied to a wide range of applications. The upper limit of the pencil hardness is not particularly limited, and 9H or less is preferable. Here, the pencil hardness can be measured according to JIS-K5600-5-4.
機能性膜の基材への密着性は、70/100以上が好ましく、100/100以上がより好ましい。ここで、密着性は、JIS K5600の碁盤目剥離試験に準拠して測定することができる。 The adhesion of the functional film to the substrate is preferably 70/100 or more, more preferably 100/100 or more. Here, the adhesion can be measured according to the checkerboard peeling test of JIS K5600.
関東ローム(JIS Z 8901、試験用粉体1の8種)を機能性膜に振りかけ、90°に傾けて除去した後の、機能性膜全領域に対する残存粉塵の付着割合である粉塵付着率は、5%以下が好ましく、3%以下がより好ましい。機能性膜に粉塵を振りかける方法、並びに、付着した粉塵を除去する方法は特に限定されず、種々の方法を好適に用いることができる。例えば、粉塵を機能性膜に所定量振りかけてから、90°に傾けて台上3cmの高さから3回軽く落として叩く(タップする)ことにより、粉塵をふるい落とせばよい。また、機能性膜の画像撮影についても特に限定されず、機能性膜全領域について粉塵を視認可能な方法で複数の画像を撮影すればよい。撮影した画像の二値化処理についても特に限定されず、公知の画像処理ソフトウェア等を用いればよい。 After sprinkling Kanto Loam (JIS Z 8901, 8 types of test powder 1) on the functional membrane and removing it at an angle of 90 °, the dust adhesion rate, which is the adhesion ratio of residual dust to the entire area of the functional membrane, is 5% or less is preferable, and 3% or less is more preferable. The method of sprinkling dust on the functional film and the method of removing the adhering dust are not particularly limited, and various methods can be preferably used. For example, after sprinkling a predetermined amount of dust on the functional membrane, the dust may be sifted off by tilting it at 90 ° and lightly dropping it from a height of 3 cm on the table three times and tapping it. Further, the image capture of the functional film is not particularly limited, and a plurality of images may be captured by a method in which dust can be visually recognized in the entire functional film region. The binarization process of the captured image is not particularly limited, and known image processing software or the like may be used.
機能性膜は、示差熱分析DTA測定において、200℃~600℃に正のDTAピークを有することが好ましく、300℃~600℃に正のDTAピークを有することがより好ましい。ここで、DTAは、示差熱熱重量計で測定することができる。正のDTAピークは、無機粒子表面のシラノール基の脱水縮合反応の際に生じるピークである。 The functional membrane preferably has a positive DTA peak at 200 ° C. to 600 ° C., and more preferably has a positive DTA peak at 300 ° C. to 600 ° C. in the differential thermal analysis DTA measurement. Here, the DTA can be measured with a differential thermogravimetric meter. The positive DTA peak is a peak generated during the dehydration condensation reaction of silanol groups on the surface of the inorganic particles.
機能性膜は、ケイ素、酸素、炭素、及び、フッ素を含有する。ここで、各元素を含むことは、原料成分や、機能性膜の元素分析により確認することができる。また、各元素の含有量も、原料成分の配合量から算出することができ、機能性膜の元素分析によって求めることもできる。これらの4種の元素の含有量は、ケイ素が20~50重量%、酸素が30~60重量%、炭素が5~25重量%、フッ素が0.1~20重量%であることが好ましく、ケイ素が25~35重量%、酸素が40~55重量%、炭素が10~20重量%、フッ素が1~15重量%であることがさらに好ましい。また、該機能性膜は、無機粒子と、アルコキシシランの加水分解部分縮合物の硬化物を含むことが好ましい。 The functional membrane contains silicon, oxygen, carbon, and fluorine. Here, the inclusion of each element can be confirmed by elemental analysis of the raw material components and the functional film. Further, the content of each element can also be calculated from the blending amount of the raw material component, and can also be obtained by elemental analysis of the functional film. The content of these four elements is preferably 20 to 50% by weight of silicon, 30 to 60% by weight of oxygen, 5 to 25% by weight of carbon, and 0.1 to 20% by weight of fluorine. It is more preferable that silicon is 25 to 35% by weight, oxygen is 40 to 55% by weight, carbon is 10 to 20% by weight, and fluorine is 1 to 15% by weight. Further, the functional membrane preferably contains inorganic particles and a cured product of a partially hydrolyzed condensate of alkoxysilane.
機能性膜は、機能性膜を形成するための組成物を基材に塗布した後、組成物を硬化させることにより、基材上に機能性膜が積層された積層体が得られる。該組成物は、基材の少なくとも一つの面上に、直接塗布してもよいし、プライマー層等を予め基材上に設けた後で、その上に塗布してもよい。プライマー層としては、基材に対する塗布性や、基材と機能性膜との密着性を付与することができれば、特に限定されないが、バインダーを含むことが好ましい。また、架橋剤、触媒、界面活性剤、レベリング剤、顔料、染料等を適宜含むこともできる。 The functional film is obtained by applying a composition for forming a functional film to a base material and then curing the composition to obtain a laminate in which the functional film is laminated on the base material. The composition may be applied directly on at least one surface of the base material, or may be applied on the base material after a primer layer or the like is provided on the base material in advance. The primer layer is not particularly limited as long as it can impart coatability to the base material and adhesion between the base material and the functional film, but it is preferable to include a binder. Further, a cross-linking agent, a catalyst, a surfactant, a leveling agent, a pigment, a dye and the like can be appropriately contained.
機能性膜を形成するための組成物は、無機粒子とともに、フルオロ基を有するアルコキシシラン又はその加水分解部分縮合物を含むことが好ましく、フルオロ基を有するアルコキシシランの加水分解部分縮合物を含むことがより好ましく、フルオロ基を有するアルコキシシラン又はその加水分解部分縮合物に加えて、さらに、フルオロ基を含まないアルコキシシラン又はその加水分解部分縮合物を含むことがさらにより好ましい。 The composition for forming the functional film preferably contains an alkoxysilane having a fluoro group or a hydrolyzed partial condensate thereof together with the inorganic particles, and preferably contains a hydrolyzed partial condensate of the alkoxysilane having a fluoro group. Is more preferable, and it is even more preferable to contain an alkoxysilane having no fluoro group or a hydrolyzed partial condensate thereof in addition to the alkoxysilane having a fluoro group or a hydrolyzed partial condensate thereof.
基材への組成物の塗布は、一般的な方法により行うことができる。硬化条件は特に限定されないが、加熱硬化の場合には70~1000℃で1~130分間の条件が挙げられる。露光により硬化する場合には5~2000mJ/cmの光照射量が挙げられる。 The composition can be applied to the substrate by a general method. The curing conditions are not particularly limited, but in the case of heat curing, conditions at 70 to 1000 ° C. for 1 to 130 minutes can be mentioned. When it is cured by exposure, a light irradiation amount of 5 to 2000 mJ / cm 2 can be mentioned.
(無機粒子)
無機粒子は、特定の凹凸を形成させる成分である。無機粒子は特に限定されないが、例えば、金属酸化物微粒子、窒化物、2種以上の金属元素から構成される複合酸化物、金属酸化物に異種の元素がドープされた化合物等が挙げられる。金属酸化物微粒子として、具体的には、酸化ジルコニウム(ZrO)、酸化チタン(TiO)、酸化ケイ素(SiO)、酸化アルミニウム(Al)、酸化鉄(Fe、FeO、Fe)、酸化銅(CuO、CuO)、酸化亜鉛(ZnO)、酸化イットリウム(Y)、酸化ニオブ(Nb)、酸化モリブデン(MoO)、酸化インジウム(In、InO)、酸化スズ(SnO)、酸化タンタル(Ta)、酸化タングステン(WO、W)、酸化鉛(PbO、PbO)、酸化ビスマス(Bi)、酸化セリウム(CeO、Ce)、酸化アンチモン(Sb、Sb)、酸化ゲルマニウム(GeO、GeO)等が挙げられる。これらの中でも、防塵性の観点から、酸化ジルコニウム(ZrO)、酸化チタン(TiO)、酸化ケイ素(シリカ)が好ましい。また、単体金属、ハロゲン化物等も使用することができる。ハロゲン化物として、具体的には、フッ化銅(CuF、CuF)、塩化銅(CuCl、CuCl)、臭化銅(CuBr、CuBr)、ヨウ化銅(CuI)、フッ化銀(AgF、AgF、AgF2、AgF)、塩化銀(AgCl)、臭化銀(AgBr)、ヨウ化銀(AgI)等が挙げられる。単体金属として、銅、銀、金等が挙げられる。無機粒子は1種を単独で用いてもよく、2種以上を併用してもよい。
(Inorganic particles)
Inorganic particles are components that form specific irregularities. The inorganic particles are not particularly limited, and examples thereof include metal oxide fine particles, nitrides, composite oxides composed of two or more kinds of metal elements, and compounds in which a metal oxide is doped with a different element. Specific examples of the metal oxide fine particles include zinc oxide (ZrO 2 ), titanium oxide (TIO 2 ), silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), iron oxide (Fe 2 O 3 , FeO). , Fe 3 O 4 ), Copper Oxide (CuO, Cu 2 O), Zinc Oxide (ZnO), Yttrium Oxide (Y 2 O 3 ), Niobide Oxide (Nb 2 O 5 ), Molybdenum Oxide (MoO 3 ), Indium Oxide (In 2 O 3 , In 2 O), tin oxide (SnO 2 ), tantalum oxide (Ta 2 O 5 ), tungsten oxide (WO 3 , W 2 O 5 ), lead oxide (PbO, PbO 2 ), bismuth oxide (Bi 2 O 3 ), cerium oxide (CeO 2 , Ce 2 O 3 ), antimony oxide (Sb 2 O 5 , Sb 2 O 5 ), germanium oxide (GeO 2 , GeO) and the like can be mentioned. Among these, zirconium oxide (ZrO 2 ), titanium oxide (TIO 2 ), and silicon oxide (silica) are preferable from the viewpoint of dust resistance. Further, elemental metals, halides and the like can also be used. Specific examples of the halide include copper fluoride (CuF, CuF 2 ), copper chloride (CuCl, CuCl 2 ), copper bromide (CuBr, CuBr 2 ), copper iodide (CuI), and silver fluoride (Ag). 2F , AgF, AgF 2, AgF 3 ), silver chloride (AgCl), silver bromide (AgBr), silver iodide (AgI) and the like can be mentioned. Examples of elemental metals include copper, silver, and gold. One kind of inorganic particles may be used alone, or two or more kinds may be used in combination.
無機粒子の粒子径は、特に限定されないが、1~1000nmが好ましく、10~100nmがより好ましい。上記範囲内であると、防塵性に優れる。 The particle size of the inorganic particles is not particularly limited, but is preferably 1 to 1000 nm, more preferably 10 to 100 nm. When it is within the above range, the dustproof property is excellent.
無機粒子は、反応性の置換基(反応性基)を有することが好ましく、反応性の置換基に有機反応性置換基が含まれていてもよい。有機反応性置換基としては、エポキシ基、メタクリル基、イソシアネート基等が挙げられる。例えば無機粒子がシリカの場合には、表面に多数の水酸基が存在しているので、水酸基とシランカップリング剤等で反応させることにより、反応性の置換基を導入することができる。 The inorganic particles preferably have a reactive substituent (reactive group), and the reactive substituent may contain an organic reactive substituent. Examples of the organic reactive substituent include an epoxy group, a methacrylic group, an isocyanate group and the like. For example, when the inorganic particles are silica, a large number of hydroxyl groups are present on the surface, so that a reactive substituent can be introduced by reacting the hydroxyl groups with a silane coupling agent or the like.
無機粒子は、示差熱分析DTAにおいて、200℃~600℃に正のDTAピークを有するものが好ましく、300℃~600℃に正のDTAピークを有することがより好ましい。上記範囲内であると、機能性膜が耐久性に優れたものとなる。 The inorganic particles preferably have a positive DTA peak at 200 ° C. to 600 ° C., and more preferably have a positive DTA peak at 300 ° C. to 600 ° C. in the differential thermal analysis DTA. Within the above range, the functional film has excellent durability.
無機粒子の配合量は、固形分中、5~90重量%が好ましく、10~80重量%がより好ましく、20~70重量%がさらに好ましい。上記範囲内であると、防塵性と耐久性に優れる傾向にある。 The blending amount of the inorganic particles is preferably 5 to 90% by weight, more preferably 10 to 80% by weight, still more preferably 20 to 70% by weight, based on the solid content. Within the above range, dust resistance and durability tend to be excellent.
(フルオロ基を有するアルコキシシラン又はその加水分解部分縮合物)
フルオロ基を有するアルコキシシラン又はその加水分解部分縮合物は、撥水性を発揮する成分である。
(Alkoxysilane having a fluoro group or a partially hydrolyzed condensate thereof)
Alkoxysilane having a fluoro group or a partially hydrolyzed condensate thereof is a component exhibiting water repellency.
フルオロ基を有するアルコキシシランは、フルオロ基とアルコキシ基を有するシラン化合物であれば特に限定されない。フルオロ基としては、フルオロアルキル基、フルオロアリール基、パーフルオロアルキル基、パーフルオロポリエーテル基等が好ましく、パーフルオロアルキル基がより好ましい。また、アルコキシ基は3つ以下であるものが好ましい。具体的には、トリフルオロプロピルトリメトキシシラン、パーフルオロオクチルトリエトキシシラン、ヘプタデカフルオロデシルトリメトキシシラン、ヘプタデカフルオロドデシルトリメトキシシラン等が挙げられる。なかでも、防塵性及び撥水性の点で、パーフルオロオクチルトリエトキシシラン、ヘプタデカフルオロデシルトリメトキシシランが好ましい。
また、これらのフルオロ基を有するアルコキシシランは1種を単独で用いてもよく、2種以上を併用してもよい。また、フルオロ基を有するアルコキシシランを少なくとも1種含んでいれば、フルオロ基を含まないアルコキシシランを併用しても良い。
The alkoxysilane having a fluoro group is not particularly limited as long as it is a silane compound having a fluoro group and an alkoxy group. As the fluoro group, a fluoroalkyl group, a fluoroaryl group, a perfluoroalkyl group, a perfluoropolyether group and the like are preferable, and a perfluoroalkyl group is more preferable. Further, the number of alkoxy groups is preferably 3 or less. Specific examples thereof include trifluoropropyltrimethoxysilane, perfluorooctyltriethoxysilane, heptadecafluorodecyltrimethoxysilane, and heptadecafluorododecyltrimethoxysilane. Of these, perfluorooctyltriethoxysilane and heptadecafluorodecyltrimethoxysilane are preferable in terms of dust resistance and water repellency.
In addition, one type of alkoxysilane having these fluoro groups may be used alone, or two or more types may be used in combination. Further, as long as it contains at least one type of alkoxysilane having a fluoro group, an alkoxysilane not containing a fluoro group may be used in combination.
フルオロ基を有するアルコキシシランの加水分解部分縮合物としては、フルオロ基を有するアルコキシシランを既存の手法で加水分解縮合させることにより得られたものが挙げられる。フルオロ基を有するアルコキシシランとしては、前述した化合物を使用することができる。これらのフルオロ基を有するアルコキシシランは1種を単独で用いてもよく、2種以上を併用して加水分解部分縮合してもよい。また、フルオロ基を有するアルコキシシランを少なくとも1種含んでいれば、フルオロ基を含まないアルコキシシランを併用して加水分解部分縮合してもよい。フルオロ基を有するアルコキシシランは、アルコキシ基が親水性、フルオロ基が疎水性を有するため、組成物中でミセルを形成する傾向があるが、加水分解部分縮合物として使用することで、ミセル化が抑制され、フルオロアルキル基を膜表面に配向させやすく、機能性膜の耐久性が向上する傾向にある。 Examples of the hydrolyzed partial condensate of the alkoxysilane having a fluoro group include those obtained by hydrolyzing and condensing the alkoxysilane having a fluoro group by an existing method. As the alkoxysilane having a fluoro group, the above-mentioned compound can be used. One of these alkoxysilanes having a fluoro group may be used alone, or two or more of them may be used in combination for hydrolysis partial condensation. Further, as long as it contains at least one type of alkoxysilane having a fluoro group, hydrolysis partial condensation may be carried out in combination with an alkoxysilane not containing a fluoro group. Alkoxysilanes having a fluoro group tend to form micelles in the composition because the alkoxy group is hydrophilic and the fluoro group is hydrophobic. However, when used as a hydrolyzed partial condensate, micelles can be formed. It is suppressed, it is easy to orient the fluoroalkyl group on the film surface, and the durability of the functional film tends to be improved.
フルオロ基を有するアルコキシシラン又はその加水分解部分縮合物の配合量は、特に限定されないが、固形分中、0.5~70重量%が好ましく、1~60重量%がより好ましく、3~50重量%がさらに好ましい。上記範囲内であると、防塵性と耐久性を両立した機能性膜が形成できる傾向にある。 The blending amount of the alkoxysilane having a fluoro group or the hydrolyzed partial condensate thereof is not particularly limited, but is preferably 0.5 to 70% by weight, more preferably 1 to 60% by weight, and 3 to 50% by weight in the solid content. % Is more preferable. Within the above range, a functional film having both dust resistance and durability tends to be formed.
(フルオロ基を含まないアルコキシシラン又はその加水分解部分縮合物)
フルオロ基を含まないアルコキシシラン又はその加水分解部分縮合物は、耐久性(耐摩耗性、硬度)を付与する成分であり、経時的に防塵性が低下することを抑制する。また、フルオロ基を含まないアルコキシシラン又はその加水分解部分縮合物は、無機粒子と強固に結合し、機能性膜への外部刺激による脱落等を抑制し、高いレベルの防塵性を維持できる。フルオロ基を含まないアルコキシシランの加水分解部分縮合物としては、フルオロ基を含まないアルコキシシランを加水分解と縮合反応して得られる加水分解部分縮合物であれば限定されないが、例えば、下記一般式(1)で表されるフルオロ基を含まないアルコキシシランを加水分解と縮合反応して得られるものが挙げられる。
SiR  (1)
一般式(1)中、Rは、それぞれ水素、水酸基、アルコキシ基、脂肪族炭化水素基、又は芳香族炭化水素基であり、1以上のRがアルコキシ基である。アルコキシ基、脂肪族炭化水素基及び芳香族炭化水素基は、それぞれ置換基を有してよい。
(Alkoxysilane containing no fluoro group or its hydrolyzed partial condensate)
Alkoxysilane containing no fluoro group or a partially hydrolyzed partial condensate thereof is a component that imparts durability (wear resistance, hardness) and suppresses deterioration of dust resistance over time. Further, the alkoxysilane containing no fluoro group or a partially hydrolyzed partial condensate thereof binds firmly to the inorganic particles, suppresses dropping off due to an external stimulus to the functional film, and can maintain a high level of dust resistance. The hydrolyzed partial condensate of an alkoxysilane containing no fluoro group is not limited as long as it is a hydrolyzed partial condensate obtained by subjecting an alkoxysilane containing no fluoro group to a condensation reaction with hydrolysis. Examples thereof include those obtained by subjecting an alkoxysilane represented by (1), which does not contain a fluoro group, to hydrolysis and condensation reaction.
SiR 1 4 (1)
In the general formula (1), R 1 is a hydrogen, a hydroxyl group, an alkoxy group, an aliphatic hydrocarbon group or an aromatic hydrocarbon group, respectively, and one or more R 1 is an alkoxy group. The alkoxy group, the aliphatic hydrocarbon group and the aromatic hydrocarbon group may each have a substituent.
一般式(1)の4つのRのうち、1つのRがアルコキシ基である場合はモノアルコキシシラン、2つのRがアルコキシ基である場合はジアルコキシシラン、3つのRがアルコキシ基である場合はトリアルコキシシラン、4つのRがアルコキシ基である場合はテトラアルコキシシランであり、これらのいずれであってもよい。また、これらのアルコキシシランは1種を単独で用いてもよく、2種以上を併用してもよい。トリアルコキシシラン又はテトラアルコキシシランを含有すると分岐構造の加水分解部分縮合物を得ることができ、分岐構造の加水分解部分縮合物は硬化して塗膜としたときの膜密度が高く、強度や耐湿熱性、耐熱性に優れる。ジアルコキシシランを用いることにより、加水分解部分縮合物の分子量を調整できる他、柔軟性が付与できる。モノアルコキシシランを用いることにより、加水分解部分縮合物の分子量を調整できる。 Of the four R 1s in the general formula (1), monoalkoxysilane when one R 1 is an alkoxy group, dialkoxysilane when two R 1s are alkoxy groups, and three R 1s are alkoxy groups. When is, it is a trialkoxysilane, and when the four R1s are alkoxy groups, it is a tetraalkoxysilane, and any of these may be used. In addition, one of these alkoxysilanes may be used alone, or two or more thereof may be used in combination. When trialkoxysilane or tetraalkoxysilane is contained, a hydrolyzed partial condensate having a branched structure can be obtained, and the hydrolyzed partial condensate having a branched structure has a high film density when cured to form a coating film, and has high strength and moisture resistance. Has excellent heat resistance and heat resistance. By using dialkoxysilane, the molecular weight of the partially hydrolyzed condensate can be adjusted and flexibility can be imparted. By using monoalkoxysilane, the molecular weight of the partially hydrolyzed condensate can be adjusted.
アルコキシ基としては、例えば、メトキシ基、エトキシ基等のC1-4アルコキシ基が挙げられる。 Examples of the alkoxy group include C 1-4 alkoxy groups such as a methoxy group and an ethoxy group.
脂肪族炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基等のC1-20アルキル基が挙げられる。芳香族炭化水素基としては、例えば、フェニル基、トリル基、キシリル基等のアリール基や、ベンジル基等のアラルキル基が挙げられる。 Examples of the aliphatic hydrocarbon group include C 1 such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an s-butyl group, a t-butyl group, a pentyl group, a hexyl group, a heptyl group and an octyl group. -20 Alkyl groups can be mentioned. Examples of the aromatic hydrocarbon group include an aryl group such as a phenyl group, a tolyl group and a xylyl group, and an aralkyl group such as a benzyl group.
脂肪族炭化水素基及び芳香族炭化水素基が有する置換基としては、(メタ)アクリル基、(メタ)アクリロキシ基、ビニル基、エポキシ基等の架橋性官能基、1級アミノ基、2級アミノ基、チオール基、及びスチリル基等が挙げられる。 Substituents of the aliphatic and aromatic hydrocarbon groups include crosslinkable functional groups such as (meth) acrylic group, (meth) acryloxy group, vinyl group and epoxy group, primary amino group and secondary amino. Examples include a group, a thiol group, a styryl group and the like.
フルオロ基を含まないアルコキシシランとしては、例えば、テトラメトキシシラン、テトラエトキシシラン等のテトラアルコキシシラン;メチルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、メトキシトリメチルシラン、ビス(トリエトキシシリル)メタン、ビス(トリメトキシシリル)メタン、ビス(トリメトキシシリル)プロパン、ビス(トリエトキシシリル)プロパン、ビス(トリメトキシシリル)ヘキサン、ビス(トリエトキシシリル)ヘキサン、ビス(トリメトキシシリル)オクタン、ビス(トリエトキシシリル)オクタン、ビス(トリエトキシシリル)エチレン、ビス(トリメトキシシリルメチル)エチレン、1-(トリエトキシシリル)-2-(ジエトキシメチルシリル)エタン等の脂肪族炭化水素基を有するシラン化合物;フェニルトリメトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、メチルフェニルジメトキシシラン、メチルフェニルジエトキシシラン等の芳香族炭化水素基を有するシラン化合物;ビス-[3-(トリエトキシシリル)プロピル]アミン、ビス-[3-(トリメトキシシリル)プロピル]アミン、ビス[3-(トリメトキシシリル)プロピル]エチレンジアミン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン等の2級アミノ基を有するシラン化合物;3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノフェニルトリメトキシシラン、3-アミノフェニルトリメトキシシラン、3-アミノプロピルメチルジメトキシシラン、3-アミノプロピルメチルジエトキシシラン、3-アミノプロピルジメチルメトキシシラン、3-アミノプロピルジメチルエトキシシラン等の1級アミノ基を有するシラン化合物;3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン等の(メタ)アクリル基を有するシラン化合物;ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリブトキシシラン、ビニルメチルジメトキシシラン等のビニル基を有するシラン化合物;β-グリシドキシエチルトリメトキシシラン、β-グリシドキシエチルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン等のエポキシ基を有するシラン化合物;3-イソシアネートプロピルトリエトキシシラン等のイソシアネート基を有するシラン化合物;1,3,5-トリス(メチルジメトキシシリルプロピル)イソシアヌレート、1,3,5-トリス(メチルジエトキシシリルプロピル)イソシアヌレート、1,3,5-トリス(トリメトキシシリルプロピル)イソシアヌレート、1,3,5-トリス(トリエトキシシリルプロピル)イソシアヌレート、1,3,5-トリス(トリメトキシシリルエチル)イソシアヌレート、1,3-(ジ-2-プロペン-1-イル)-5-(3-トリエトキシシリルプロピル)イソシアヌレート、1-(2-プロペン-1-イル)-3,5-ビス(3-トリエトキシシリルプロピル)イソシアヌレート、1,3-ビス(3-トリメトキシシリルプロピル)イソシアヌレート、1-グリシジルメチル-3,5-ビス(3-トリメトキシシリルプロピル)イソシアヌレート、1,3-ビス(グリシジルメチル)-5-(3-トリメトキシシリルプロピル)イソシアヌレート、1-グリシジルメチル-3-(2-プロペン-1-イル)-5-(3-トリエトキシシリルプロピル)イソシアヌレート、1,3-ジメチル-5-(3-トリエトキシシリルプロピル)イソシアヌレート等のイソシアヌレート基を有するシラン化合物等が挙げられる。これらの中でも、耐久性、基材適用性の観点から、テトラアルコキシシラン、脂肪族炭化水素基を有するシラン化合物、芳香族炭化水素基を有するシラン化合物が好ましく、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、メトキシトリメチルシラン、フェニルトリメトキシシラン、フェニルトリエトキシシランがより好ましい。 Examples of the alkoxysilane not containing a fluoro group include tetraalkoxysilanes such as tetramethoxysilane and tetraethoxysilane; methyltrimethoxysilane, methyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, methoxytrimethylsilane, and bis ( Triethoxysilyl) methane, bis (trimethoxysilyl) methane, bis (trimethoxysilyl) propane, bis (triethoxysilyl) propane, bis (trimethoxysilyl) hexane, bis (triethoxysilyl) hexane, bis (trimethoxy) Fat group such as silyl) octane, bis (triethoxysilyl) octane, bis (triethoxysilyl) ethylene, bis (trimethoxysilylmethyl) ethylene, 1- (triethoxysilyl) -2- (diethoxymethylsilyl) ethane Silane compound having a hydrocarbon group; Silane compound having an aromatic hydrocarbon group such as phenyltrimethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, methylphenyldimethoxysilane, methylphenyldiethoxysilane; bis- [3-( Triethoxysilyl) propyl] amine, bis- [3- (trimethoxysilyl) propyl] amine, bis [3- (trimethoxysilyl) propyl] ethylenediamine, N-2- (aminoethyl) -3-aminopropyltrimethoxy Silane compounds having a secondary amino group such as silane; 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminophenyltrimethoxysilane, 3-aminophenyltrimethoxysilane, 3-aminopropylmethyldimethoxy Silane compounds having a primary amino group such as silane, 3-aminopropylmethyldiethoxysilane, 3-aminopropyldimethylmethoxysilane, 3-aminopropyldimethylethoxysilane; 3-methacryloxypropyltrimethoxysilane, 3-methacryloxy Silane compound having a (meth) acrylic group such as propylmethyldimethoxysilane; silane compound having a vinyl group such as vinyltrimethoxysilane, vinyltriethoxysilane, vinyltributoxysilane, vinylmethyldimethoxysilane; β-glycidoxyethyl Trimethoxysilane, β-glycidoxyethyl triethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxypro Epoxy groups such as pillmethyldimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltriethoxysilane Silane compound having; Silane compound having an isocyanate group such as 3-isocyanatepropyltriethoxysilane; 1,3,5-tris (methyldimethoxysilylpropyl) isocyanurate, 1,3,5-tris (methyldiethoxysilylpropyl) Isocyanurate, 1,3,5-tris (trimethoxysilylpropyl) isocyanurate, 1,3,5-tris (triethoxysilylpropyl) isocyanurate, 1,3,5-tris (trimethoxysilylethyl) isocyanurate , 1,3- (di-2-propen-1-yl) -5- (3-triethoxysilylpropyl) isocyanurate, 1- (2-propen-1-yl) -3,5-bis (3-) Triethoxysilylpropyl) isocyanurate, 1,3-bis (3-trimethoxysilylpropyl) isocyanurate, 1-glycidylmethyl-3,5-bis (3-trimethoxysilylpropyl) isocyanurate, 1,3-bis (Glysidylmethyl) -5- (3-trimethoxysilylpropyl) isocyanurate, 1-glycidylmethyl-3- (2-propen-1-yl) -5- (3-triethoxysilylpropyl) isocyanurate, 1, Examples thereof include silane compounds having an isocyanurate group such as 3-dimethyl-5- (3-triethoxysilylpropyl) isocyanurate. Among these, tetraalkoxysilane, a silane compound having an aliphatic hydrocarbon group, and a silane compound having an aromatic hydrocarbon group are preferable from the viewpoint of durability and substrate applicability, and tetramethoxysilane, tetraethoxysilane, and methyl. More preferred are trimethoxysilane, methyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, methoxytrimethylsilane, phenyltrimethoxysilane and phenyltriethoxysilane.
フルオロ基を含まないアルコキシシラン又はその加水分解部分縮合物において、分子中のケイ素原子数に対する炭素原子数の比(C/Si比)は0.1~4が好ましく、0.15~3.0がより好ましく、0.2~2.0がさらに好ましい。上記範囲内であると、機能性膜が防塵性、耐久性や基材適用性に優れる傾向がある。ここで、ケイ素原子数と炭素原子数は、それぞれ、原料のアルコキシシランの加水分解物1分子中に含まれるケイ素原子と炭素原子の数である。フルオロ基を含まないアルコキシシランを2種以上併用する場合は、各化合物の分子数をもとに炭素原子の総数とケイ素原子の総数を算出すれば、比を導くことができる。 In an alkoxysilane containing no fluoro group or a partially hydrolyzed condensate thereof, the ratio of the number of carbon atoms to the number of silicon atoms in the molecule (C / Si ratio) is preferably 0.1 to 4, preferably 0.15 to 3.0. Is more preferable, and 0.2 to 2.0 is even more preferable. Within the above range, the functional film tends to be excellent in dust resistance, durability and substrate applicability. Here, the number of silicon atoms and the number of carbon atoms are the numbers of silicon atoms and carbon atoms contained in one molecule of the hydrolyzate of alkoxysilane as a raw material, respectively. When two or more types of alkoxysilanes containing no fluoro group are used in combination, the ratio can be derived by calculating the total number of carbon atoms and the total number of silicon atoms based on the number of molecules of each compound.
フルオロ基を含まないアルコキシシラン又はその加水分解部分縮合物の配合量は、特に限定されないが、固形分中、1~90重量%が好ましく、5~80重量%がより好ましく、10~70重量%がさらに好ましい。上記範囲内であると、防塵性と耐久性を両立した機能性膜が形成できる傾向にある。 The blending amount of the alkoxysilane containing no fluoro group or the hydrolyzed partial condensate thereof is not particularly limited, but is preferably 1 to 90% by weight, more preferably 5 to 80% by weight, and 10 to 70% by weight in the solid content. Is even more preferable. Within the above range, a functional film having both dust resistance and durability tends to be formed.
フルオロ基を有するアルコキシシランの加水分解部分縮合物や、フルオロ基を含まないアルコキシシランの加水分解部分縮合物は、例えばアルコキシシランを酸性条件下で加水分解部分縮合させることにより作製することができる。加水分解部分縮合は、アルコキシシランのアルコキシ基の加水分解による水酸基の形成、及び、形成された水酸基同士の縮合反応により行われる。これらの反応は一段階で行うことができる。加水分解部分縮合物には、アルコキシ基が加水分解した水酸基が一部残存してもよい。 The hydrolyzed partial condensate of alkoxysilane having a fluoro group and the hydrolyzed partial condensate of alkoxysilane not containing a fluoro group can be produced, for example, by hydrolyzing partial condensation of alkoxysilane under acidic conditions. Hydrolysis partial condensation is carried out by the formation of hydroxyl groups by hydrolysis of the alkoxy group of alkoxysilane, and the condensation reaction between the formed hydroxyl groups. These reactions can be done in one step. A part of the hydroxyl group obtained by hydrolyzing the alkoxy group may remain in the hydrolyzed partial condensate.
反応時の温度条件は、特に限定されないが、好ましくは25~200℃、より好ましくは30~150℃、さらに好ましくは40~120℃である。時間条件は、特に限定されないが、好ましくは0.1~72時間、より好ましくは0.1~48時間、さらに好ましくは0.1~36時間である。 The temperature conditions during the reaction are not particularly limited, but are preferably 25 to 200 ° C, more preferably 30 to 150 ° C, and even more preferably 40 to 120 ° C. The time condition is not particularly limited, but is preferably 0.1 to 72 hours, more preferably 0.1 to 48 hours, and even more preferably 0.1 to 36 hours.
アルコキシシランの加水分解部分縮合反応においては、アルコキシシランのアルコキシ基の当量数以上の水を添加することが好ましい。水の添加量はアルコキシシランのアルコキシ基100モルに対し、100~500,000モルが好ましく、500~100,000モルがより好ましく、1,000~50,000モルがさらに好ましい。 In the hydrolysis partial condensation reaction of alkoxysilane, it is preferable to add water having an equivalent number or more of the alkoxy groups of alkoxysilane. The amount of water added is preferably 100 to 500,000 mol, more preferably 500 to 100,000 mol, still more preferably 1,000 to 50,000 mol, based on 100 mol of the alkoxy group of alkoxysilane.
加水分解部分縮合反応においては、使用するアルコキシシランの反応性に応じて触媒を使用してもよい。触媒としては、酸性触媒が挙げられ、具体的にはギ酸、酢酸、氷酢酸、p-トルエンスルホン酸、メタンスルホン酸、エタンスルホン酸、トリフルオロ酢酸、トリフルオロメタンスルホン酸、ポリスチレンスルホン酸等の有機酸、塩酸、硫酸、硝酸、リン酸、ホウ酸、塩化アルミニウム、臭化アルミニウム等のハロゲン化アルミニウム、硝酸アルミニウム等の無機酸、酸性シリカゲル、酸性シリカゾルが挙げられる。これらの中でも、成膜後に触媒が膜内に残存しない揮発性の酸が好ましく、沸点200℃以下の有機酸がより好ましく、ギ酸、酢酸がさらに好ましい。酸性触媒を使用することで、加水分解部分縮合反応が促進される、加水分解部分縮合物が安定化される、といった効果が得られる。 In the hydrolysis partial condensation reaction, a catalyst may be used depending on the reactivity of the alkoxysilane used. Examples of the catalyst include acidic catalysts, and specific examples thereof include organics such as formic acid, acetic acid, glacial acetic acid, p-toluenesulfonic acid, methanesulfonic acid, ethanesulfonic acid, trifluoroacetic acid, trifluoromethanesulfonic acid and polystyrenesulfonic acid. Examples thereof include acid, hydrochloric acid, sulfuric acid, nitrate, phosphoric acid, boric acid, aluminum chloride, aluminum halide such as aluminum bromide, inorganic acids such as aluminum nitrate, acidic silica gel and acidic silica sol. Among these, a volatile acid in which the catalyst does not remain in the film after film formation is preferable, an organic acid having a boiling point of 200 ° C. or lower is more preferable, and formic acid and acetic acid are further preferable. By using an acidic catalyst, the effects of promoting the hydrolyzed partial condensation reaction and stabilizing the hydrolyzed partial condensate can be obtained.
加水分解部分縮合反応時のpHは、1~7が好ましく、2~7がより好ましく、3~4がさらに好ましい。この範囲とすることにより、経時安定性の高い加水分解部分縮合物が得られ、組成物に配合したときに、組成物中の加水分解縮合物の分散性及び組成物の液安定性が確保される。 The pH at the time of the hydrolysis partial condensation reaction is preferably 1 to 7, more preferably 2 to 7, and even more preferably 3 to 4. Within this range, a hydrolyzed partial condensate having high stability over time can be obtained, and when blended in the composition, the dispersibility of the hydrolyzed condensate in the composition and the liquid stability of the composition are ensured. To.
触媒の添加量は、アルコキシシラン100重量部に対し0.0001~20重量部であることが好ましく、0.0001~10重量部であることがより好ましい。この範囲とすることにより、加水分解部分縮合反応が速やかに進むうえ、加熱により除去しやすい。 The amount of the catalyst added is preferably 0.0001 to 20 parts by weight, more preferably 0.0001 to 10 parts by weight, based on 100 parts by weight of alkoxysilane. Within this range, the hydrolysis partial condensation reaction proceeds rapidly and can be easily removed by heating.
加水分解部分縮合反応は、溶媒を使用せずに行ってもよいが、必要に応じて溶媒を使用してもよい。このような溶媒としては、例えば、メタノール、エタノール、プロパノール、ブタノール等のアルコール類;エチレングリコール、ジエチレングリコール、トリメチレングリコール、トリエチレングリコール、テトラエチレングリコール、プロピレングリコール等のグリコール類;グリセリン、1,2,4-ブタントリオール、1,2,3-ブタントリオール等のトリオール類;テトラヒドロフラン(THF)等のエーテル類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノブチルエーテル等のグリコールエーテル類;メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルセロソルブアセテート、プロピレングリコールメチルエーテルアセテート(PGMEA)、3-メトキシブチル-1-アセテート等のアルキレングリコールモノアルキルエーテルアセテート類;トルエン、キシレン等の芳香族炭化水素類;メチルエチルケトン、メチルイソブチルケトン(MIBK)、メチルアミルケトン、シクロヘキサノン等のケトン類を挙げることができる。これらの中では、加水分解部分縮合物を効率的に形成できることから、アルコール類、グリコール類、トリオール類等の水溶性有機溶媒が好ましく、アルコール類、グリコール類が特に好ましい。これらの溶媒は1種を単独で用いてもよいし、2種以上を混合して用いてもよい。また、溶媒は、前述した水との混合液を用いてもよく、混合液として使用する場合、水と水溶性有機溶媒との混合液が好ましく、水とアルコールとの混合液がより好ましい。 The hydrolysis partial condensation reaction may be carried out without using a solvent, but a solvent may be used if necessary. Examples of such a solvent include alcohols such as methanol, ethanol, propanol and butanol; glycols such as ethylene glycol, diethylene glycol, trimethylene glycol, triethylene glycol, tetraethylene glycol and propylene glycol; glycerin, 1, 2 , 4-Butantriol, 1,2,3-Butantriol and other triols; Ethers such as tetrahydrofuran (THF); Ethylene glycol monomethyl ether, Ethylene glycol monoethyl ether, Ethylene glycol monobutyl ether, Ethylene glycol dimethyl ether, Diethylene glycol monomethyl Glycol ethers such as ether, diethylene glycol monoethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol monobutyl ether; methyl cellosolve acetate, ethyl cellosolve acetate, butyl cellosolve acetate, propylene glycol methyl ether acetate (PGMEA), 3-methoxybutyl-1- Examples thereof include alkylene glycol monoalkyl ether acetates such as acetate; aromatic hydrocarbons such as toluene and xylene; and ketones such as methyl ethyl ketone, methyl isobutyl ketone (MIBK), methyl amyl ketone and cyclohexanone. Among these, water-soluble organic solvents such as alcohols, glycols, and triols are preferable, and alcohols and glycols are particularly preferable, because a partially hydrolyzed condensate can be efficiently formed. One of these solvents may be used alone, or two or more of them may be mixed and used. Further, as the solvent, the above-mentioned mixed solution with water may be used, and when used as a mixed solution, a mixed solution of water and a water-soluble organic solvent is preferable, and a mixed solution of water and alcohol is more preferable.
溶媒の配合量としては、アルコキシシラン100重量部に対し、1~50000重量部が好ましく、10~5000重量部がより好ましく、20~1000重量部がさらに好ましい。 The amount of the solvent to be blended is preferably 1 to 50,000 parts by weight, more preferably 10 to 5,000 parts by weight, still more preferably 20 to 1,000 parts by weight, based on 100 parts by weight of alkoxysilane.
加水分解部分縮合物が、水や水溶性有機溶媒の中で沈殿を生じない場合には、加水分解部分縮合物が得られたと判断できる。縮合反応が過剰に進行した場合は水溶性が低下し、水や水溶性有機溶媒の中でゲル化や懸濁が発生する。 When the hydrolyzed partial condensate does not precipitate in water or a water-soluble organic solvent, it can be determined that the hydrolyzed partial condensate has been obtained. If the condensation reaction proceeds excessively, the water solubility decreases, and gelation or suspension occurs in water or a water-soluble organic solvent.
(密着性向上剤)
機能性膜を形成するための組成物は、機能性膜と基材との密着性を向上させる観点から、密着性向上剤を含むことが好ましい。
(Adhesion improver)
The composition for forming the functional film preferably contains an adhesion improving agent from the viewpoint of improving the adhesion between the functional film and the substrate.
密着性向上剤としては、特に限定されないが、例えば、エポキシシラン類、アミノシラン類、アクリルシラン類、ビニルシラン類、スチリルシラン類等のシランカップリング剤、チタネートカップリング剤、アルミニウムカップリング剤や、アクリロイルイソシアネート、ブロックドイソシアネート等のイソシアネート等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。密着性向上剤の配合量としては、固形分中、0.1~40重量%が好ましく、0.5~30重量%がより好ましく、1~20重量%がさらに好ましい。上記範囲内であると、機能性膜と基材との密着性に優れる傾向にある。 The adhesiveness improving agent is not particularly limited, but for example, silane coupling agents such as epoxysilanes, aminosilanes, acrylicsilanes, vinylsilanes, and styrylsilanes, titanate coupling agents, aluminum coupling agents, and acryloyl. Examples thereof include isocyanates such as isocyanates and blocked isocyanates. These may be used alone or in combination of two or more. The blending amount of the adhesion improver is preferably 0.1 to 40% by weight, more preferably 0.5 to 30% by weight, still more preferably 1 to 20% by weight, based on the solid content. Within the above range, the adhesion between the functional film and the substrate tends to be excellent.
機能性膜を形成するための組成物には、任意に他の成分を含有していてもよい。他の成分としては、例えば、エポキシ樹脂やアクリレート、メラミン等の硬化性樹脂、アクリル樹脂やポリエステル樹脂、ウレタン樹脂、ポリオレフィン樹脂等の熱可塑性樹脂、導電性高分子、炭素材料、重合開始剤、レベリング剤、界面活性剤、光増感剤、消泡剤、中和剤、酸化防止剤、離型剤、紫外線吸収剤、増粘剤、溶媒等が挙げられる。 The composition for forming the functional film may optionally contain other components. Other components include, for example, curable resins such as epoxy resins, acrylates and melamines, thermoplastic resins such as acrylic resins and polyester resins, urethane resins and polyolefin resins, conductive polymers, carbon materials, polymerization initiators and leveling. Examples thereof include agents, surfactants, photosensitizers, defoaming agents, neutralizers, antioxidants, mold release agents, ultraviolet absorbers, thickeners, solvents and the like.
レベリング剤としては特に限定されず、例えば、ポリエーテル変性ポリジメチルシロキサン、ポリエーテル変性シロキサン、ポリエーテルエステル変性水酸基含有ポリジメチルシロキサン、ポリエーテル変性アクリル基含有ポリジメチルシロキサン、ポリエステル変性アクリル基含有ポリジメチルシロキサン、パーフルオロポリジメチルシロキサン、パーフルオロポリエーテル変性ポリジメチルシロキサン、パーフルオロポリエステル変性ポリジメチルシロキサン等のシロキサン系化合物;パーフルオロアルキルカルボン酸、パーフルオロアルキルポリオキシエチレンエタノール等のフッ素系化合物;ポリオキシエチレンアルキルフェニルエーテル、プロピレンオキシド重合体、エチレンオキシド重合体等のポリエーテル系化合物;ヤシ油脂肪酸アミン塩、ガムロジン等のカルボン酸;ヒマシ油硫酸エステル類、リン酸エステル、アルキルエーテル硫酸塩、ソルビタン脂肪酸エステル、スルホン酸エステル、コハク酸エステル等のエステル系化合物;アルキルアリールスルホン酸アミン塩、スルホコハク酸ジオクチルナトリウム等のスルホン酸塩化合物;ラウリルリン酸ナトリウム等のリン酸塩化合物;ヤシ油脂肪酸エタノールアマイド等のアミド化合物;アクリル系化合物等が挙げられる。 The leveling agent is not particularly limited, and for example, polyether-modified polydimethylsiloxane, polyether-modified siloxane, polyether ester-modified hydroxyl group-containing polydimethylsiloxane, polyether-modified acrylic group-containing polydimethylsiloxane, and polyester-modified acrylic group-containing polydimethyl. Siloxane-based compounds such as siloxane, perfluoropolydimethylsiloxane, perfluoropolyether-modified polydimethylsiloxane, and perfluoropolyester-modified polydimethylsiloxane; fluorine-based compounds such as perfluoroalkylcarboxylic acid and perfluoroalkylpolyoxyethylene ethanol; poly Polyether-based compounds such as oxyethylene alkylphenyl ether, propylene oxide polymer, ethylene oxide polymer; carboxylic acids such as palm oil fatty acid amine salt and gum rosin; castor oil sulfate esters, phosphoric acid esters, alkyl ether sulfates, sorbitan fatty acids Ester-based compounds such as esters, sulfonic acid esters, and succinic acid esters; Sulfate compounds such as alkylaryl sulfonic acid amine salts and dioctyl sulfosuccinate; Phosphate compounds such as sodium lauryl phosphate; Palm oil fatty acid ethanol amide and the like. Amid compounds; acrylic compounds and the like can be mentioned.
レベリング剤の配合量は、組成物の固形分中、0.001~5重量%が好ましく、0.01~1重量%がより好ましく、0.05~0.5重量%がさらに好ましい。 The blending amount of the leveling agent is preferably 0.001 to 5% by weight, more preferably 0.01 to 1% by weight, still more preferably 0.05 to 0.5% by weight, based on the solid content of the composition.
溶媒としては、特に限定されないが、例えば、水;メタノール、エタノール、イソプロパノール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール等のアルコール類;テトラヒドロフラン等のエーテル類;エチレングリコールモノメチルエーテル(メチルセロソルブ)、エチレングリコールジメチルエーテル、エチレングリコールメチルエチルエーテル、エチレングリコールモノエチルエーテル(エチルセロソルブ)等のエチレングリコールエーテル類;メチルセロソルブアセテート、エチルセロソルブアセテート等のエチレングリコールアルキルエーテルアセテート類;ジエチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジブチルエーテル、ジエチレングリコールエチルメチルエーテル等のジエチレングリコールジアルキルエーテル類;ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル等のジエチレングリコールモノアルキルエーテル類;プロピレングリコールモノメチルエーテル等のプロピレングリコールモノアルキルエーテル類;プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノエチルエーテルアセテート、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、3-メトキシブチル-1-アセテート等のアルキレングリコールモノアルキルエーテルアセテート類;トルエン、キシレン等の芳香族炭化水素類;アセトン、メチルエチルケトン、メチルアミルケトン、シクロヘキサノン、4-ヒドロキシ-4-メチル-2-ペンタノン等のケトン類;2-ヒドロキシプロピオン酸エチル、2-ヒドロキシ-2-メチルプロピオン酸メチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、エトキシ酢酸エチル、ヒドロキシ酢酸エチル、2-ヒドロキシ-2-メチルブタン酸メチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、酢酸エチル、酢酸ブチル、乳酸メチル、乳酸エチル、コハク酸ジメチル、コハク酸ジエチル、アジピン酸ジエチル、マロン酸ジエチル、シュウ酸ジブチル等のエステル類等が挙げられる。これらの中では、エチレングリコールエーテル類、アルキレングリコールモノアルキルエーテルアセテート類、ジエチレングリコールジアルキルエーテル類、ケトン類及びエステル類が好ましく、3-エトキシプロピオン酸エチル、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、ジエチレングリコールモノエチルエーテルアセテート及びメチルアミルケトンがより好ましい。これらの溶媒は、単独で用いても良いし、2種以上を併用しても良い。 The solvent is not particularly limited, but for example, water; alcohols such as methanol, ethanol, isopropanol, ethylene glycol, diethylene glycol, triethylene glycol and propylene glycol; ethers such as tetrahydrofuran; ethylene glycol monomethyl ether (methyl cellosolve), and the like. Ethylene glycol ethers such as ethylene glycol dimethyl ether, ethylene glycol methyl ethyl ether, ethylene glycol monoethyl ether (ethyl cellosolve); ethylene glycol alkyl ether acetates such as methyl cellosolve acetate and ethyl cellosolve acetate; diethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol Diethylene glycol dialkyl ethers such as dibutyl ether and diethylene glycol ethylmethyl ether; Diethylene glycol monoalkyl ethers such as diethylene glycol monomethyl ether, diethylene glycol monoethyl ether and diethylene glycol monobutyl ether; propylene glycol monoalkyl ethers such as propylene glycol monomethyl ether; propylene glycol monomethyl ether Alkylene glycol monoalkyls such as ether acetate (PGMEA), propylene glycol monoethyl ether acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, 3-methoxybutyl-1-acetate Ether acetates; Aromatic hydrocarbons such as toluene and xylene; Ketones such as acetone, methyl ethyl ketone, methyl amyl ketone, cyclohexanone, 4-hydroxy-4-methyl-2-pentanone; ethyl 2-hydroxypropionate, 2- Methyl hydroxy-2-methylpropionate, ethyl 2-hydroxy-2-methylpropionate, ethyl ethoxyacetate, ethyl hydroxyacetate, methyl 2-hydroxy-2-methylbutanoate, methyl 3-methoxypropionate, 3-methoxypropionic acid Ethyl, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, ethyl acetate, butyl acetate, methyl lactate, ethyl lactate, dimethyl succinate, diethyl succinate, hydrangea Examples thereof include esters such as diethyl pinate, diethyl malonate, and dibutyl oxalate. Among these, ethylene glycol ethers, alkylene glycol monoalkyl ether acetates, diethylene glycol dialkyl ethers, ketones and esters are preferable, and ethyl 3-ethoxypropionate, ethyl lactate, propylene glycol monomethyl ether acetate (PGMEA), and the like. More preferred are diethylene glycol monoethyl ether acetate and methyl amylketone. These solvents may be used alone or in combination of two or more.
組成物の固形分率は、特に限定されないが、0.1~10重量%が好ましく、1~8重量%がより好ましく、3~5重量%がさらに好ましい。上記範囲内であると、液安定性が良くなる傾向がある。 The solid content of the composition is not particularly limited, but is preferably 0.1 to 10% by weight, more preferably 1 to 8% by weight, still more preferably 3 to 5% by weight. Within the above range, the liquid stability tends to improve.
本発明の積層体は、基材上に、高い耐久性と防塵性を有する機能性膜を有するため、自動車、住宅建材、家具、インテリア、家電製品、交通標識、医療用器具、看板、シャッター、等において耐久性と防塵性が求められる部分の用途に好適に適用できる。 Since the laminate of the present invention has a functional film having high durability and dust resistance on a base material, automobiles, housing materials, furniture, interiors, home appliances, traffic signs, medical appliances, signboards, shutters, etc. It can be suitably applied to applications where durability and dust resistance are required.
<<組成物>>
本発明の組成物は、フルオロ基を有するアルコキシシランの加水分解部分縮合物と、無機粒子とを含有することを特徴とする。さらに、フルオロ基を含まないアルコキシシラン又はその加水分解部分縮合物を含むことが好ましい。フルオロ基を有するアルコキシシラン又はその加水分解部分縮合物、無機粒子、フルオロ基を含まないアルコキシシラン又はその加水分解部分縮合物については、前述した通りである。本発明の組成物は、酸性であることが好ましい。本発明の組成物は、高い防塵性を長期間持続できるため、防塵コーティング用として好適に適用できる。
<< Composition >>
The composition of the present invention is characterized by containing a hydrolyzed partial condensate of alkoxysilane having a fluoro group and inorganic particles. Further, it is preferable to contain an alkoxysilane containing no fluoro group or a partially hydrolyzed condensate thereof. Alkoxysilane having a fluoro group or a hydrolyzed partial condensate thereof, inorganic particles, an alkoxysilane containing no fluoro group or a hydrolyzed partial condensate thereof are as described above. The composition of the present invention is preferably acidic. Since the composition of the present invention can maintain high dust resistance for a long period of time, it can be suitably applied for dustproof coating.
<<生地コーティング用組成物>>
本発明の生地コーティング用組成物は、フルオロ基を有するアルコキシシラン又はその加水分解部分縮合物を含有する。本発明の生地コーティング用組成物は、生地に適用した場合に粉塵汚れに対して優れた防塵性を発揮する。
<< Composition for fabric coating >>
The dough coating composition of the present invention contains an alkoxysilane having a fluoro group or a partially hydrolyzed condensate thereof. The dough coating composition of the present invention exhibits excellent dust resistance against dust stains when applied to a dough.
(フルオロ基を有するアルコキシシラン又はその加水分解部分縮合物)
フルオロ基を有するアルコキシシラン又はその加水分解部分縮合物は、生地コーティング用組成物を生地に適用した場合に、粉塵汚れに対する防塵性及び撥水性を発揮する成分である。生地コーティング用組成物は、フルオロ基を有するアルコキシシランの加水分解部分縮合物を含むことが好ましい。
(Alkoxysilane having a fluoro group or a partially hydrolyzed condensate thereof)
Alkoxysilane having a fluoro group or a partially hydrolyzed partial condensate thereof is a component that exhibits dust resistance and water repellency against dust stains when the composition for coating the dough is applied to the dough. The dough coating composition preferably contains a hydrolyzed partial condensate of alkoxysilane having a fluoro group.
フルオロ基を有するアルコキシシランの具体例、フルオロ基を有するアルコキシシランの加水分解部分縮合物の作製方法(加水分解部分縮合反応)については、本発明の積層体と同様である。 Specific examples of the alkoxysilane having a fluoro group and a method for producing a hydrolyzed partial condensate of the alkoxysilane having a fluoro group (hydrolyzed partial condensation reaction) are the same as those of the laminate of the present invention.
フルオロ基を有するアルコキシシラン又はその加水分解部分縮合物の配合量は、特に限定されないが、固形分中、0.5~70重量%が好ましく、1~60重量%がより好ましく、3~50重量%がさらに好ましく、7~15重量%が特に好ましい。また、溶媒を含む生地コーティング用組成物中の配合量としては、0.1~10重量%が好ましく、0.2~5重量%がより好ましく、0.25~3重量%がさらに好ましい。上記範囲内であると、粉塵汚れに対する防塵性と耐久性を両立した機能性膜が形成できる傾向にある。 The blending amount of the alkoxysilane having a fluoro group or the hydrolyzed partial condensate thereof is not particularly limited, but is preferably 0.5 to 70% by weight, more preferably 1 to 60% by weight, and 3 to 50% by weight in the solid content. % Is more preferable, and 7 to 15% by weight is particularly preferable. The blending amount in the dough coating composition containing the solvent is preferably 0.1 to 10% by weight, more preferably 0.2 to 5% by weight, still more preferably 0.25 to 3% by weight. Within the above range, a functional film having both dust resistance and durability against dust stains tends to be formed.
(フルオロ基を含まないアルコキシシラン又はその加水分解部分縮合物)
本発明の生地コーティング用組成物は、さらに、フルオロ基を含まないアルコキシシラン又はその加水分解部分縮合物を含むことが好ましい。フルオロ基を含まないアルコキシシラン又はその加水分解部分縮合物は、耐久性(耐摩耗性、硬度)を付与する成分であり、粉塵汚れに対する防塵性が経時的に低下することを抑制する。
フルオロ基を含まないアルコキシシラン又はその加水分解部分縮合物の具体例、C/Si比、配合量、作製方法(加水分解部分縮合反応の反応条件や、反応に用いる触媒、溶媒等を含む)等については、本発明の積層体と同様である。
(Alkoxysilane containing no fluoro group or its hydrolyzed partial condensate)
The dough coating composition of the present invention preferably further contains an alkoxysilane containing no fluoro group or a partially hydrolyzed condensate thereof. Alkoxysilane containing no fluoro group or a partially hydrolyzed partial condensate thereof is a component that imparts durability (wear resistance, hardness), and suppresses deterioration of dust resistance against dust stains over time.
Specific examples of an alkoxysilane containing no fluoro group or a partially hydrolyzed partial condensate thereof, C / Si ratio, blending amount, preparation method (including reaction conditions for the partially hydrolyzed condensation reaction, catalyst used for the reaction, solvent, etc.), etc. Is the same as the laminated body of the present invention.
(無機粒子)
本発明の生地コーティング用組成物は、さらに、無機粒子を含有することが好ましい。無機粒子を含有することにより、機能性膜の表面に凹凸を形成させて、粉塵汚れの接地面積を低減させることができ、より防塵性に優れた機能性膜とすることができる。無機粒子の具体例、粒子径、反応性の置換基、DTAピーク、配合量等については、本発明の積層体と同様である。
(Inorganic particles)
The dough coating composition of the present invention preferably further contains inorganic particles. By containing the inorganic particles, unevenness can be formed on the surface of the functional film, the contact area of dust stains can be reduced, and the functional film having more excellent dust resistance can be obtained. Specific examples of the inorganic particles, particle size, reactive substituent, DTA peak, blending amount, etc. are the same as those of the laminate of the present invention.
本発明の生地コーティング用組成物は、任意に他の成分を含有していてもよい。他の成分としては、例えば、密着性向上剤、エポキシ樹脂やアクリレート、メラミン等の硬化性樹脂、アクリル樹脂やポリエステル樹脂、ウレタン樹脂、ポリオレフィン樹脂等の熱可塑性樹脂、導電性高分子、炭素材料、重合開始剤、レベリング剤、界面活性剤、光増感剤、消泡剤、中和剤、酸化防止剤、離型剤、紫外線吸収剤、増粘剤、溶媒等が挙げられる。本発明の生地コーティング用組成物は、生地と機能性膜との密着性を向上させる観点から、密着性向上剤を含むことが好ましい。密着性向上剤、レベリング剤、溶媒の具体例、配合量等については、本発明の積層体と同様である。 The dough coating composition of the present invention may optionally contain other components. Other components include, for example, an adhesion improver, a curable resin such as epoxy resin, acrylate, and melamine, a thermoplastic resin such as acrylic resin, polyester resin, urethane resin, and polyolefin resin, a conductive polymer, and a carbon material. Examples thereof include polymerization initiators, leveling agents, surfactants, photosensitizers, defoaming agents, neutralizers, antioxidants, mold release agents, ultraviolet absorbers, thickeners, solvents and the like. The dough coating composition of the present invention preferably contains an adhesion improver from the viewpoint of improving the adhesion between the dough and the functional film. Specific examples of the adhesion improver, leveling agent, solvent, blending amount, etc. are the same as those of the laminate of the present invention.
本発明の生地コーティング用組成物の固形分率は、特に限定されないが、0.1~10重量%が好ましく、1~8重量%がより好ましく、3~5重量%がさらに好ましい。上記範囲内であると、液安定性が良くなる傾向がある。 The solid content of the dough coating composition of the present invention is not particularly limited, but is preferably 0.1 to 10% by weight, more preferably 1 to 8% by weight, still more preferably 3 to 5% by weight. Within the above range, the liquid stability tends to improve.
<<機能性生地>>
本発明の機能性生地は、生地と、本発明の生地コーティング用組成物の硬化物からなる機能性膜とを有するため、粉塵汚れに対して優れた防塵性を発揮する。
<< Functional fabric >>
Since the functional fabric of the present invention has a fabric and a functional film made of a cured product of the composition for coating the fabric of the present invention, it exhibits excellent dust resistance against dust stains.
<生地>
生地の形態としては、特に限定されないが、織物、不織布、メッシュ、編物等が挙げられる。生地の材質としては、特に限定されないが、天然繊維、合成繊維、再生繊維、機能性繊維、金属繊維、炭素繊維、ガラス繊維等が挙げられる。これらの中では、実用性の観点から、天然繊維、合成繊維、再生繊維、機能性繊維、及び金属繊維からなる群より選択される一つ以上であることが好ましい。天然繊維としては、綿、麻、絹、ウール等が挙げられる。合成繊維としては、ポリエステル、ナイロン、アクリル、ポリウレタン、ポリアミド等が挙げられる。再生繊維としては、レーヨン、キュプラ等が挙げられる。機能性繊維としては、紫外線遮蔽、蓄熱保温、吸湿、吸水・吸汗、撥水、防水、防炎、導電、抗菌防臭等の機能を付与した繊維等が挙げられる。金属繊維としては、スチール、ステンレス、銅、アルミニウム、金又は銀等の他、アルミ等の金属を合成繊維等に蒸着したものが挙げられる。生地の材質は、単独でもよいし、2種以上の組合せであってもよい。
<Dough>
The form of the fabric is not particularly limited, and examples thereof include woven fabrics, non-woven fabrics, meshes, and knitted fabrics. The material of the fabric is not particularly limited, and examples thereof include natural fiber, synthetic fiber, regenerated fiber, functional fiber, metal fiber, carbon fiber, and glass fiber. Among these, from the viewpoint of practicality, one or more selected from the group consisting of natural fibers, synthetic fibers, regenerated fibers, functional fibers, and metal fibers is preferable. Examples of natural fibers include cotton, linen, silk and wool. Examples of synthetic fibers include polyester, nylon, acrylic, polyurethane, and polyamide. Examples of the recycled fiber include rayon and cupra. Examples of the functional fiber include fibers having functions such as ultraviolet ray shielding, heat storage and heat retention, moisture absorption, water absorption / sweat absorption, water repellency, waterproofing, flameproofing, conductivity, and antibacterial deodorization. Examples of the metal fiber include those obtained by depositing a metal such as aluminum on a synthetic fiber or the like, in addition to steel, stainless steel, copper, aluminum, gold or silver. The material of the dough may be a single material or a combination of two or more kinds.
<機能性膜>
機能性膜は、本発明の生地コーティング用組成物の硬化物からなる。
<Functional membrane>
The functional film comprises a cured product of the dough coating composition of the present invention.
機能性膜は、生地コーティング用組成物を生地に塗布した後、又は、生地コーティング用組成物に生地を含浸させた後に、生地コーティング用組成物を硬化させることにより得られる。生地コーティング用組成物を塗布する場合は、生地の少なくとも一つの面上に、直接塗布してもよいし、転写してもよいし、プライマー層等を予め基材上に設けた後で、その上に塗布してもよい。プライマー層としては、生地に対する塗布性や、生地と機能性膜との密着性を付与することができれば、特に限定されない。プライマー層は、バインダーを含むことが好ましく、ポリウレタン樹脂、ポリプロピレン樹脂、アクリル樹脂、ポリエステル樹脂、又は、ポリ塩化ビニル樹脂等の熱可塑性樹脂が挙げられる。また、架橋剤、触媒、界面活性剤、レベリング剤、顔料、染料等を適宜含むこともできる。本発明の機能性生地は、防水性や、生地に対する生地コーティング用組成物の塗布性、機能性膜と生地との密着性の観点から、機能性膜と生地との間に、プライマー層を有することが好ましい。 The functional film is obtained by applying the dough coating composition to the dough, or impregnating the dough coating composition with the dough, and then curing the dough coating composition. When the composition for coating the dough is applied, it may be applied directly on at least one surface of the dough, or it may be transferred, or after a primer layer or the like is previously provided on the base material, the composition may be applied. It may be applied on top. The primer layer is not particularly limited as long as it can impart coatability to the fabric and adhesion between the fabric and the functional film. The primer layer preferably contains a binder, and examples thereof include thermoplastic resins such as polyurethane resin, polypropylene resin, acrylic resin, polyester resin, and polyvinyl chloride resin. Further, a cross-linking agent, a catalyst, a surfactant, a leveling agent, a pigment, a dye and the like can be appropriately contained. The functional fabric of the present invention has a primer layer between the functional membrane and the fabric from the viewpoint of waterproofness, applicability of the composition for coating the fabric to the fabric, and adhesion between the functional film and the fabric. Is preferable.
生地への生地コーティング用組成物の塗布や、生地コーティング用組成物への生地の含浸は、一般的な方法により行うことができる。硬化条件は特に限定されないが、加熱硬化の場合には70~1000℃で0.5~130分間の条件が挙げられる。露光により硬化する場合には5~2000mJ/cmの光照射量が挙げられる。 The application of the dough coating composition to the dough and the impregnation of the dough into the dough coating composition can be performed by a general method. The curing conditions are not particularly limited, but in the case of heat curing, conditions at 70 to 1000 ° C. for 0.5 to 130 minutes can be mentioned. When it is cured by exposure, a light irradiation amount of 5 to 2000 mJ / cm 2 can be mentioned.
機能性膜の水接触角は100~140°であることが好ましく、100~135°であることがより好ましい。上記範囲内であると、粉塵汚れに対する防塵性に優れる。ここで、水接触角は、液滴法によって測定することができる。 The water contact angle of the functional membrane is preferably 100 to 140 °, more preferably 100 to 135 °. When it is within the above range, it is excellent in dust resistance against dust stains. Here, the water contact angle can be measured by the sessile drop method.
関東ローム(JIS Z 8901、試験用粉体1の8種)を機能性膜に振りかけ、90°に傾けて除去した後に、機能性膜全領域に対する残存粉塵の付着割合である粉塵付着率は、5%以下が好ましく、3%以下がより好ましい。 After sprinkling Kanto Loam (JIS Z 8901, 8 types of test powder 1) on the functional membrane and removing it at an angle of 90 °, the dust adhesion rate, which is the adhesion ratio of residual dust to the entire functional membrane region, is 5% or less is preferable, and 3% or less is more preferable.
機能性膜に粉塵を振りかける方法、並びに、付着した粉塵を除去する方法は特に限定されず、種々の方法を好適に用いることができる。例えば、粉塵を機能性膜に所定量振りかけてから、90°に傾けて台上3cmの高さから3回軽く落として叩く(タップする)ことにより、粉塵をふるい落とせばよい。また、機能性膜の画像撮影についても特に限定されず、機能性膜全領域について粉塵を視認可能な方法で複数の画像を撮影すればよい。撮影した画像の二値化処理についても特に限定されず、公知の画像処理ソフトウェア等を用いればよい。 The method of sprinkling dust on the functional film and the method of removing the adhering dust are not particularly limited, and various methods can be preferably used. For example, after sprinkling a predetermined amount of dust on the functional membrane, the dust may be sifted off by tilting it at 90 ° and lightly dropping it from a height of 3 cm on the table three times and tapping it. Further, the image capture of the functional film is not particularly limited, and a plurality of images may be captured by a method in which dust can be visually recognized in the entire functional film region. The binarization process of the captured image is not particularly limited, and known image processing software or the like may be used.
機能性膜は、ケイ素、酸素、炭素、及び、フッ素を含有する。ここで、各元素を含むことは、原料成分や、機能性膜の元素分析により確認することができる。また、各元素の含有量も、原料成分の配合量から算出することができ、機能性膜の元素分析によって求めることもできる。これらの4種の元素の含有量は、ケイ素が20~50重量%、酸素が30~60重量%、炭素が5~25重量%、フッ素が0.1~20重量%であることが好ましく、ケイ素が25~35重量%、酸素が40~55重量%、炭素が10~20重量%、フッ素が1~15重量%であることがさらに好ましい。また、該機能性膜は、無機粒子と、アルコキシシランの加水分解部分縮合物の硬化物を含むことが好ましい。 The functional membrane contains silicon, oxygen, carbon, and fluorine. Here, the inclusion of each element can be confirmed by elemental analysis of the raw material components and the functional film. Further, the content of each element can also be calculated from the blending amount of the raw material component, and can also be obtained by elemental analysis of the functional film. The content of these four elements is preferably 20 to 50% by weight of silicon, 30 to 60% by weight of oxygen, 5 to 25% by weight of carbon, and 0.1 to 20% by weight of fluorine. It is more preferable that silicon is 25 to 35% by weight, oxygen is 40 to 55% by weight, carbon is 10 to 20% by weight, and fluorine is 1 to 15% by weight. Further, the functional membrane preferably contains inorganic particles and a cured product of a partially hydrolyzed condensate of alkoxysilane.
本発明の機能性生地は、生地と、本発明の生地コーティング用組成物の硬化物からなる機能性膜とを有するため、粉塵汚れに対する防塵性に優れ、オーニングテント等のテント類、履物、鞄、皮革製品、作業服、防護服、アウトドアウェア、車体カバー、寝袋、レジャーシート、ブラインド、カーテン、カーペット、自動車や列車、船舶、航空機、ベビーカーなどの輸送機器の座席シートや天井材、壁材等の建造物の内装材、或いはベッド、ソファ等の表地等の布製品に好適に使用され得る。 Since the functional fabric of the present invention has a fabric and a functional film made of a cured product of the fabric coating composition of the present invention, it has excellent dust resistance against dust stains, and tents such as awning tents, footwear, and bags. , Leather products, work clothes, protective clothing, outdoor wear, body covers, sleeping bags, leisure seats, blinds, curtains, carpets, automobiles and trains, ships, aircraft, strollers and other transportation equipment seats, ceiling materials, wall materials, etc. It can be suitably used for interior materials of buildings of the above, or cloth products such as outer materials such as beds and sofas.
以下、実施例を挙げて本発明を説明するが、本発明は以下の実施例に限定されない。以下、「部」又は「%」は特記ない限り、それぞれ「重量部」又は「重量%」を意味する。 Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to the following examples. Hereinafter, "part" or "%" means "part by weight" or "% by weight", respectively, unless otherwise specified.
以下に、実施例及び比較例で使用した各種薬品について、まとめて説明する。
(1)アルコキシシラン
テトラエトキシシラン(TEOS)(多摩化学工業株式会社製)
メチルトリエトキシシラン(MTES)(東レ・ダウ株式会社製、OFS-6383)
フェニルトリエトキシシラン(PTES)(東京化成工業株式会社製)
ヘプタデカフルオロデシルトリメトキシシラン(HDFDTMOS)(東京化成工業株式会社製)
(2)無機粒子
無機粒子1(日産化学株式会社製、ST-O、粒子径:12nm、反応性基:シラノール基、DTAピーク600℃以上)
無機粒子2(合成例7にて製造、シリカ分散体、粒子径:100nm、反応性基:シラノール基、DTAピーク:340℃)
無機粒子3(合成例8にて製造)
無機粒子4(日産化学株式会社製、スノーテックス(登録商標) ST-OL、粒子径:45nm)
(3)密着性向上剤
ブロックイソシアネート(旭化成ケミカルズ株式会社製、WM44-L70G)
(4)溶媒
エタノール(AP-7)(日本アルコール販売株式会社製)
純水(PW)
(5)基材
プラスチックフィルム(東レ株式会社製、ルミラー)
ガラス白板(太佑機材株式会社製)
金属アルミ板(太佑機材株式会社製、A-1050P)
(6)生地
生地1(株式会社色染製、ポリエステルタフタ(ポリエステル))
生地2(帝人フロンティア株式会社製、シャガール(ポリエステル))
Hereinafter, various chemicals used in Examples and Comparative Examples will be collectively described.
(1) Alkoxysilane Tetraethoxysilane (TEOS) (manufactured by Tama Chemical Industry Co., Ltd.)
Methyltriethoxysilane (MTES) (manufactured by Toray Dow Co., Ltd., OFS-6383)
Phenyltriethoxysilane (PTES) (manufactured by Tokyo Chemical Industry Co., Ltd.)
Heptadecafluorodecyltrimethoxysilane (HDFDTMOS) (manufactured by Tokyo Chemical Industry Co., Ltd.)
(2) Inorganic particles Inorganic particles 1 (manufactured by Nissan Chemical Industries, Ltd., ST-O, particle size: 12 nm, reactive group: silanol group, DTA peak 600 ° C or higher)
Inorganic particles 2 (manufactured in Synthesis Example 7, silica dispersion, particle size: 100 nm, reactive group: silanol group, DTA peak: 340 ° C.)
Inorganic particles 3 (manufactured in Synthesis Example 8)
Inorganic particles 4 (manufactured by Nissan Chemical Industries, Ltd., Snowtex (registered trademark) ST-OL, particle diameter: 45 nm)
(3) Adhesion improver blocked isocyanate (manufactured by Asahi Kasei Chemicals Co., Ltd., WM44-L70G)
(4) Solvent ethanol (AP-7) (manufactured by Japan Alcohol Trading Co., Ltd.)
Pure water (PW)
(5) Base plastic film (manufactured by Toray Industries, Inc., Lumirror)
Glass white board (manufactured by Taiyu Equipment Co., Ltd.)
Metal aluminum plate (manufactured by Taiyu Equipment Co., Ltd., A-1050P)
(6) Fabric Fabric 1 (Made by Color Dyeing Co., Ltd., Polyester Taffeta (Polyester))
Fabric 2 (Made by Teijin Frontier Co., Ltd., Chagall (polyester))
(合成例1~5)
室温で、500mLセパラブルフラスコに、水と酢酸とエタノールと、TEOS、MTES、及びPTESを表1記載の重量比で仕込み、60℃まで昇温後、36時間熟成させ、フルオロ基を含まないアルコキシシランの加水分解部分縮合物を得た。酢酸の配合量は、pH3~4となる量とし、水とエタノールの配合量は、水とエタノールの重量比を50:50とし、反応液の固形分濃度が15重量%となる量とした。得られたフルオロ基を含まないアルコキシシランの加水分解部分縮合物における、分子中のケイ素原子数に対する炭素原子数の比(C/Si比)を合わせて表1に示す。
(Synthesis Examples 1 to 5)
At room temperature, water, acetic acid, ethanol, TEOS, MTES, and PTES are charged in a 500 mL separable flask at the weight ratios shown in Table 1, heated to 60 ° C., aged for 36 hours, and fluorogroup-free alkoxy. A partially hydrolyzed condensate of silane was obtained. The amount of acetic acid blended was such that the pH was 3 to 4, the blending amount of water and ethanol was such that the weight ratio of water and ethanol was 50:50, and the solid content concentration of the reaction solution was 15% by weight. Table 1 shows the ratio (C / Si ratio) of the number of carbon atoms to the number of silicon atoms in the molecule in the obtained hydrolyzed partial condensate of alkoxysilane containing no fluoro group.
(合成例6)
TEOS、MTES、及びPTESの代わりに、ヘプタデカフルオロデシルトリメトキシシラン(HDFDTMOS)を使用した他は、上述した手法にて、フルオロ基を有するアルコキシシランの加水分解部分縮合物を合成した。
(Synthesis Example 6)
In addition to using heptadecafluorodecyltrimethoxysilane (HDFDTMOS) instead of TEOS, MTES, and PTES, a hydrolyzed partial condensate of alkoxysilane having a fluoro group was synthesized by the above-mentioned method.
(合成例7)
500mLセパラブルフラスコに、水35mLと28重量%アンモニア水10mLとエタノール120mLを仕込み、45℃まで昇温後、TEOS15gとエタノール20mLの混合液を30分かけて滴下し、20分間攪拌した。次に、減圧留去して、アンモニアを除去することにより、シリカゾル液を得た。このシリカゾル液に、3-グリシドキシプロピルトリメトキシシラン(東レ・ダウ株式会社製、OFS-6040)1gを添加して、24時間攪拌することにより、無機粒子2を得た。粒子径は、マイクロトラック・ベル株式会社製Micro trac Nanotrac Wave UT151を用いて、動的光散乱法により測定した。DTAピークは、先述の手法で測定した(粒子径:100nm、反応性基:シラノール基、DTAピーク:340℃)。
(Synthesis Example 7)
35 mL of water, 10 mL of 28 wt% ammonia water and 120 mL of ethanol were charged in a 500 mL separable flask, the temperature was raised to 45 ° C., a mixture of 15 g of TEOS and 20 mL of ethanol was added dropwise over 30 minutes, and the mixture was stirred for 20 minutes. Next, it was distilled off under reduced pressure to remove ammonia to obtain a silica sol solution. Inorganic particles 2 were obtained by adding 1 g of 3-glycidoxypropyltrimethoxysilane (manufactured by Toray Dow Co., Ltd., OFS-6040) to this silica sol solution and stirring for 24 hours. The particle size was measured by a dynamic light scattering method using a Microtrac Nanotrac Wave UT151 manufactured by Microtrac Bell Co., Ltd. The DTA peak was measured by the method described above (particle size: 100 nm, reactive group: silanol group, DTA peak: 340 ° C.).
(合成例8)
500mLセパラブルフラスコに、水35mLと28重量%アンモニア水10mLとエタノール120mLを仕込み、40℃まで昇温後、TEOS15gとエタノール20mLの混合液を30分かけて滴下し、20分間攪拌した。次に、減圧留去して、アンモニアを除去することにより、シリカゾル液を得た。このシリカゾル液に、3-グリシドキシプロピルトリメトキシシラン(東レ・ダウ株式会社製、OFS-6040)1gを添加して、24時間攪拌することにより、無機粒子3を得た。粒子径は、マイクロトラック・ベル株式会社製Micro trac Nanotrac Wave UT151を用いて、動的光散乱法により測定した。DTAピークは、先述の手法で測定した(粒子径:130nm、反応性基:シラノール基、DTAピーク:330℃)。
(Synthesis Example 8)
35 mL of water, 10 mL of 28 wt% ammonia water and 120 mL of ethanol were charged in a 500 mL separable flask, the temperature was raised to 40 ° C., a mixture of 15 g of TEOS and 20 mL of ethanol was added dropwise over 30 minutes, and the mixture was stirred for 20 minutes. Next, it was distilled off under reduced pressure to remove ammonia to obtain a silica sol solution. Inorganic particles 3 were obtained by adding 1 g of 3-glycidoxypropyltrimethoxysilane (manufactured by Toray Dow Co., Ltd., OFS-6040) to this silica sol solution and stirring for 24 hours. The particle size was measured by a dynamic light scattering method using a Microtrac Nanotrac Wave UT151 manufactured by Microtrac Bell Co., Ltd. The DTA peak was measured by the method described above (particle size: 130 nm, reactive group: silanol group, DTA peak: 330 ° C.).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<<積層体>>
(実施例1~21及び比較例1~4)
合成例で作製したアルコキシシランの加水分解部分縮合物とともに、無機粒子等の各成分を、表1に記載の固形分比で配合し、水:エタノール=30:70(重量比)の溶液にて、表2~4記載の固形分に希釈することにより樹脂組成物を作製した。なお、これらの組成物はpH3~4であった。この組成物を表2に記載の基材上に、バーコーターにより塗布した。表2~4に記載の温度、時間で硬化させ、積層体を得た。機能性膜の各物性を評価した。その結果を表2~4に示す。
<< Laminated body >>
(Examples 1 to 21 and Comparative Examples 1 to 4)
Along with the partially hydrolyzed partial condensate of alkoxysilane prepared in the synthesis example, each component such as inorganic particles is blended at the solid content ratio shown in Table 1 and prepared in a solution of water: ethanol = 30:70 (weight ratio). , A resin composition was prepared by diluting to the solid content shown in Tables 2 to 4. In addition, these compositions had a pH of 3-4. This composition was applied on the substrate shown in Table 2 by a bar coater. It was cured at the temperature and time shown in Tables 2 to 4 to obtain a laminated body. Each physical characteristic of the functional membrane was evaluated. The results are shown in Tables 2-4.
実施例で作製した積層体は以下の方法で評価した。
<膜厚>
触針式表面形状測定器(アルバック株式会社製、DEKTAK)により膜厚を測定した。
The laminate prepared in the examples was evaluated by the following method.
<Film thickness>
The film thickness was measured with a stylus type surface shape measuring instrument (DEKTAK, manufactured by ULVAC, Inc.).
<算術平均高さ(Sa)と最小自己相関長さ(Sal)>
ISO25178に準拠し、形状解析レーザー顕微鏡(キーエンス株式会社製、VK-X1000)で測定した。
<Arithmetic mean height (Sa) and minimum autocorrelation length (Sal)>
It was measured with a shape analysis laser microscope (manufactured by KEYENCE CORPORATION, VK-X1000) in accordance with ISO25178.
<透過率(Tt)>
スガ試験機株式会社製ヘイズメーターHZ-2を用いて測定した。
<Transmittance (Tt)>
The measurement was performed using a haze meter HZ-2 manufactured by Suga Test Instruments Co., Ltd.
<ヘイズ(Haze)>
スガ試験機株式会社製ヘイズメーターHZ-2を用いて測定した。
<Haze>
The measurement was performed using a haze meter HZ-2 manufactured by Suga Test Instruments Co., Ltd.
<水接触角>
液滴法に準拠し、協和界面化学株式会社製、DM-501Hiを用いて測定した。
<Water contact angle>
The measurement was performed using DM-501Hi manufactured by Kyowa Surface Chemistry Co., Ltd. in accordance with the sessile drop method.
<付着率>
積層体を10cm×10cmの面積内に完全に収まるように機能性膜を上にして設置し、この面積全体に対して関東ローム(JIS Z 8901、試験用粉体1の8種)1gを機能性膜に振りかけた(機能性膜の面積1cm当たりの試験ほこりの使用量が10mgである)。機能性生地を90°に傾けて台上3cmの高さから3回軽く落として叩く(タップする)ことにより粉塵を除去した後に、写真撮影した。撮影した写真を画像ソフトで二値化処理し、機能性膜全領域に対する残存粉塵の付着割合を算出し、付着率とした。
<Adhesion rate>
The laminated body is installed with the functional membrane facing up so that it fits completely within an area of 10 cm x 10 cm, and 1 g of Kanto loam (JIS Z 8901, 8 types of test powder 1) functions for the entire area. Sprinkled on the sex membrane (the amount of test dust used per cm 2 of the functional membrane area is 10 mg). The functional fabric was tilted at 90 ° and lightly dropped from a height of 3 cm on the table three times and tapped (tapped) to remove dust, and then a photograph was taken. The photograph taken was binarized with image software, and the adhesion ratio of residual dust to the entire functional membrane area was calculated and used as the adhesion ratio.
<鉛筆硬度>
JIS-K5600-5-4の試験法に準じて、安田精機製作所社製鉛筆引っかき硬度試験機を用いて測定した。
<Pencil hardness>
The measurement was performed using a pencil scratch hardness tester manufactured by Yasuda Seiki Seisakusho Co., Ltd. according to the test method of JIS-K5600-5-4.
<密着性>
JIS K5600の碁盤目剥離試験により、基材と塗膜との密着性を測定した。
<Adhesion>
The adhesion between the base material and the coating film was measured by a grid peeling test of JIS K5600.
<耐擦傷性>
学振形染色摩擦堅ろう度試験機(株式会社安田精機製作所製、平面型)にて機能性膜の耐擦傷性試験を行い、試験後の水接触角と付着率を測定した。学振形染色摩擦堅ろう度試験機の摩擦子には、不織布(旭化成株式会社製、ベンコット)を取り付け、500gの荷重を加えながら10往復擦ることにより試験を行った、試験後の積層体について、前述の方法で、水接触角と、付着率を測定した。
<Scratch resistance>
The scratch resistance test of the functional film was performed with a Gakushin dyeing friction fastness tester (manufactured by Yasuda Seiki Seisakusho Co., Ltd., flat type), and the water contact angle and adhesion rate after the test were measured. A non-woven fabric (Bencot, manufactured by Asahi Kasei Corporation) was attached to the friction element of the Gakushin-dyeing friction fastness tester, and the test was conducted by rubbing 10 times while applying a load of 500 g. The water contact angle and the adhesion rate were measured by the above-mentioned method.
<DTA測定>
示差熱熱重量計(セイコーインスツルメンツ社製、TG/DTA6200)を用いて示差熱分析DTA測定を行った。測定条件は、空気雰囲気下、昇温速度10℃/分、40℃~600℃の温度範囲とした。実施例、比較例の機能性膜のDTA測定については、機能性膜をスパチュラ等で掻き取り、得られた粉末を測定に供した。無機粒子のDTA測定については、減圧乾燥機にて乾燥後、測定に供した。
<DTA measurement>
Differential thermal analysis DTA measurement was performed using a differential thermal thermogravimetric meter (TG / DTA6200, manufactured by Seiko Instruments). The measurement conditions were an air atmosphere, a heating rate of 10 ° C./min, and a temperature range of 40 ° C. to 600 ° C. For the DTA measurement of the functional membranes of Examples and Comparative Examples, the functional membranes were scraped off with a spatula or the like, and the obtained powder was used for the measurement. Regarding the DTA measurement of the inorganic particles, the particles were dried in a vacuum drier and then subjected to the measurement.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
<<生地コーティング用組成物>>
(実施例22~36及び比較例5~8)
合成例1~6で作製したアルコキシシランの加水分解部分縮合物とともに、無機粒子等の各成分を、表5に記載の固形分比で配合し、水:エタノール=30:70(重量比)の溶液にて、表5記載の固形分に希釈することにより生地コーティング用組成物を作製した。なお、これらの生地コーティング用組成物はpH3~4であった。
<< Composition for fabric coating >>
(Examples 22 to 36 and Comparative Examples 5 to 8)
Along with the partially hydrolyzed partial condensate of alkoxysilane prepared in Synthesis Examples 1 to 6, each component such as inorganic particles was blended at the solid content ratio shown in Table 5, and water: ethanol = 30:70 (weight ratio). A composition for dough coating was prepared by diluting with a solution to the solid content shown in Table 5. These dough coating compositions had a pH of 3-4.
実施例22~36及び比較例7において、得られた生地コーティング用組成物を表5に記載の生地上に、バーコーター又はディップにより塗布し、150℃で3分間加熱して硬化させ、機能性生地を得た。なお、実施例24及び比較例6、8では、生地として、表5に記載の生地上にバーコーターによりアクリル樹脂(日本カーバイド工業株式会社製、ニカゾール FX-3750、Tg:-45℃)を塗布した後、150℃で3分間加熱乾燥させることで、プライマー層を形成したものを使用した。比較例8では、プライマー層上にさらに、フッ素系樹脂(旭硝子株式会社製、AG-E082)をバーコーターにより塗布し、150℃で3分間加熱乾燥させた。 In Examples 22 to 36 and Comparative Example 7, the obtained dough coating composition was applied onto the dough shown in Table 5 by a bar coater or a dip, and heated at 150 ° C. for 3 minutes to be cured, and functionalized. I got the dough. In Examples 24 and Comparative Examples 6 and 8, an acrylic resin (Nikazol FX-3750, Tg: −45 ° C., manufactured by Nippon Carbide Industry Co., Ltd., manufactured by Nippon Carbide Industry Co., Ltd.) was applied onto the fabrics shown in Table 5 by a bar coater. After that, the primer layer was formed by heating and drying at 150 ° C. for 3 minutes. In Comparative Example 8, a fluororesin (AG-E082, manufactured by Asahi Glass Co., Ltd.) was further applied onto the primer layer by a bar coater, and dried by heating at 150 ° C. for 3 minutes.
実施例で作製した機能性生地は以下の方法で評価した。なお、比較例5、6及び8においては、機能性膜を形成しなかったため、比較例5は生地そのものの各物性を、比較例6はプライマー層の各物性を、比較例8はフッ素系樹脂層の各物性を、それぞれ評価した。結果を表5に示す。 The functional dough produced in the examples was evaluated by the following method. In Comparative Examples 5, 6 and 8, since the functional film was not formed, Comparative Example 5 had the physical characteristics of the dough itself, Comparative Example 6 had the physical properties of the primer layer, and Comparative Example 8 was the fluororesin. Each physical property of the layer was evaluated. The results are shown in Table 5.
<水接触角、DTA測定>
上述の実施例1~21(積層体)と同様の方法で測定した。
<Water contact angle, DTA measurement>
The measurement was carried out in the same manner as in Examples 1 to 21 (laminated body) described above.
<粉塵付着率>
上述の実施例1~21(積層体)における<付着率>と同様の方法で測定した。
<Dust adhesion rate>
It was measured by the same method as the <adhesion rate> in Examples 1 to 21 (laminated body) described above.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005

Claims (26)

  1. 算術平均高さSaが10~50nmであり、最小自己相関長さSalが300~2000nmであり、水接触角が70~130°である機能性膜と、基材からなる積層体であって、
    前記機能性膜が、ケイ素、酸素、炭素、及び、フッ素を含有する積層体。
    A laminate consisting of a functional membrane having an arithmetic mean height Sa of 10 to 50 nm, a minimum autocorrelation length Sal of 300 to 2000 nm, and a water contact angle of 70 to 130 °, and a substrate.
    A laminate in which the functional film contains silicon, oxygen, carbon, and fluorine.
  2. 前記機能性膜が、無機粒子と、アルコキシシランの加水分解部分縮合物の硬化物を含む請求項1に記載の積層体。 The laminate according to claim 1, wherein the functional film contains inorganic particles and a cured product of a partially hydrolyzed partial condensate of alkoxysilane.
  3. 前記基材が、プラスチック基材、ガラス基材又は金属基材である請求項1又は2に記載の積層体。 The laminate according to claim 1 or 2, wherein the base material is a plastic base material, a glass base material, or a metal base material.
  4. 前記機能性膜が、示差熱分析DTA測定において、200~600℃に正のDTAピークを有する請求項1~3のいずれかに記載の積層体。 The laminate according to any one of claims 1 to 3, wherein the functional film has a positive DTA peak at 200 to 600 ° C. in differential thermal analysis DTA measurement.
  5. 前記機能性膜の膜厚が1μm以下である、請求項1~4のいずれかに記載の積層体。 The laminate according to any one of claims 1 to 4, wherein the functional film has a film thickness of 1 μm or less.
  6. 請求項1~5のいずれかに記載の積層体における機能性膜を形成するための組成物。 A composition for forming a functional film in the laminate according to any one of claims 1 to 5.
  7. フルオロ基を有するアルコキシシランの加水分解部分縮合物と無機粒子を含有する組成物。 A composition containing a partially hydrolyzed condensate of alkoxysilane having a fluoro group and inorganic particles.
  8. さらに、フルオロ基を含まないアルコキシシランの加水分解部分縮合物を含む請求項7に記載の組成物。 The composition according to claim 7, further comprising a hydrolyzed partial condensate of alkoxysilane containing no fluoro group.
  9. 前記フルオロ基を含まないアルコキシシランの加水分解部分縮合物における、分子中のケイ素原子数に対する炭素原子数の比(C/Si比)が0.1~4である請求項8に記載の組成物。 The composition according to claim 8, wherein the ratio (C / Si ratio) of the number of carbon atoms to the number of silicon atoms in the molecule in the hydrolyzed partial condensate of alkoxysilane containing no fluoro group is 0.1 to 4. ..
  10. 前記無機粒子が反応性基を有する無機粒子である請求項7~9のいずれかに記載の組成物。 The composition according to any one of claims 7 to 9, wherein the inorganic particles are inorganic particles having a reactive group.
  11. さらに、密着性向上剤を含む請求項7~10のいずれかに記載の組成物。 The composition according to any one of claims 7 to 10, further comprising an adhesion improver.
  12. 請求項6~11のいずれかに記載の組成物であって、前記組成物を硬化して得られる機能性膜が示差熱分析DTA測定において、200~600℃に正のDTAピークを有する、組成物。 The composition according to any one of claims 6 to 11, wherein the functional film obtained by curing the composition has a positive DTA peak at 200 to 600 ° C. in differential thermal analysis DTA measurement. thing.
  13. 前記無機粒子が、示差熱分析DTA測定において、200~600℃に正のDTAピークを有する無機粒子である請求項6~12のいずれかに記載の組成物。 The composition according to any one of claims 6 to 12, wherein the inorganic particles are inorganic particles having a positive DTA peak at 200 to 600 ° C. in differential thermal analysis DTA measurement.
  14. 請求項6~13のいずれかに記載の組成物を含む防塵コーティング用組成物。 A composition for dustproof coating containing the composition according to any one of claims 6 to 13.
  15. フルオロ基を有するアルコキシシラン又はその加水分解部分縮合物を含有する、生地コーティング用組成物。 A composition for dough coating, which comprises an alkoxysilane having a fluoro group or a partially hydrolyzed condensate thereof.
  16. さらに、フルオロ基を含まないアルコキシシラン又はその加水分解部分縮合物を含む請求項15に記載の生地コーティング用組成物。 The dough coating composition according to claim 15, further comprising an alkoxysilane containing no fluoro group or a partially hydrolyzed partial condensate thereof.
  17. 前記フルオロ基を含まないアルコキシシラン又はその加水分解部分縮合物における、分子中のケイ素原子数に対する炭素原子数の比(C/Si比)が0.1~4である請求項16に記載の生地コーティング用組成物。 The dough according to claim 16, wherein the ratio of the number of carbon atoms to the number of silicon atoms in the molecule (C / Si ratio) in the alkoxysilane containing no fluoro group or its hydrolyzed partial condensate is 0.1 to 4. Composition for coating.
  18. さらに、無機粒子を含有する請求項15~17のいずれか1項に記載の生地コーティング用組成物。 The dough coating composition according to any one of claims 15 to 17, further comprising inorganic particles.
  19. 前記無機粒子が反応性基を有する無機粒子である請求項18に記載の生地コーティング用組成物。 The dough coating composition according to claim 18, wherein the inorganic particles are inorganic particles having a reactive group.
  20. さらに、密着性向上剤を含む請求項15~19のいずれか1項に記載の生地コーティング用組成物。 The dough coating composition according to any one of claims 15 to 19, further comprising an adhesion improver.
  21. 防塵のために用いられる、請求項15~20のいずれか1項に記載の生地コーティング用組成物。 The dough coating composition according to any one of claims 15 to 20, which is used for dustproofing.
  22. 請求項15~21のいずれか1項に記載の生地コーティング用組成物の硬化物からなる機能性膜を生地の表面に有する機能性生地。 A functional dough having a functional film made of a cured product of the dough coating composition according to any one of claims 15 to 21 on the surface of the dough.
  23. 関東ローム(JIS Z 8901、試験用粉体1の8種)を機能性膜に振りかけ、90°に傾けて除去した後に、残存粉塵の全領域に対する割合である粉塵付着率が5%以下である請求項22に記載の機能性生地。 After sprinkling Kanto Loam (JIS Z 8901, 8 types of test powder 1) on a functional membrane and removing it at an angle of 90 °, the dust adhesion rate, which is the ratio of residual dust to the entire area, is 5% or less. The functional fabric according to claim 22.
  24. 前記機能性膜の水接触角が100~140°である請求項22又は23に記載の機能性生地。 The functional fabric according to claim 22 or 23, wherein the functional membrane has a water contact angle of 100 to 140 °.
  25. 前記生地の材質が、天然繊維、合成繊維、再生繊維、機能性繊維、及び金属繊維からなる群より選択される一つ以上である請求項22~24のいずれか1項に記載の機能性生地。 The functional fabric according to any one of claims 22 to 24, wherein the material of the fabric is one or more selected from the group consisting of natural fibers, synthetic fibers, regenerated fibers, functional fibers, and metal fibers. ..
  26. 前記機能性膜と前記生地との間にプライマー層を有する請求項22~25のいずれか1項に記載の機能性生地。

     
    The functional fabric according to any one of claims 22 to 25, which has a primer layer between the functional membrane and the fabric.

PCT/JP2021/028418 2020-08-04 2021-07-30 Laminate and fabric coating composition WO2022030399A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180059722.2A CN116133843A (en) 2020-08-04 2021-07-30 Composition for coating laminate and grey cloth

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020132550A JP6942849B1 (en) 2020-08-04 2020-08-04 Laminate
JP2020-132550 2020-08-04
JP2021-059815 2021-03-31
JP2021059815A JP6980145B1 (en) 2021-03-31 2021-03-31 Dough coating composition

Publications (1)

Publication Number Publication Date
WO2022030399A1 true WO2022030399A1 (en) 2022-02-10

Family

ID=80117512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028418 WO2022030399A1 (en) 2020-08-04 2021-07-30 Laminate and fabric coating composition

Country Status (3)

Country Link
CN (1) CN116133843A (en)
TW (1) TW202214793A (en)
WO (1) WO2022030399A1 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50140388A (en) * 1974-02-28 1975-11-11
JPH04175388A (en) * 1989-11-27 1992-06-23 Matsushita Electric Works Ltd Coating composition, coated inorganic cured body, and preparation thereof
JPH05321147A (en) * 1992-05-23 1993-12-07 Sumitomo Electric Ind Ltd Fiber product such as paper and cloth having water and oil repellency
JPH09249748A (en) * 1996-03-18 1997-09-22 Shin Etsu Chem Co Ltd Water-soluble fiber-treating agent and its production
JP2003183980A (en) * 2001-12-14 2003-07-03 Mitsubishi Materials Corp Metal coated fiber body and method for producing the same
JP2006028322A (en) * 2004-07-15 2006-02-02 Toray Ind Inc Siloxane coating film and coating for forming the same
JP2010089373A (en) * 2008-10-08 2010-04-22 Snt Co Water repellent-oil repellent coating article and production of the same
JP2013154481A (en) * 2012-01-26 2013-08-15 Nissha Printing Co Ltd Transparent stain resistant sheet
JP2014039928A (en) * 2006-01-11 2014-03-06 Evonik Degussa Gmbh Ceramic wall covering composite material with electromagnetic shielding characteristics
CN103938432A (en) * 2014-03-28 2014-07-23 中国林业科学研究院林产化学工业研究所 Preparation method of super-hydrophobic cellulose material with micro-nano structure
WO2016010080A1 (en) * 2014-07-18 2016-01-21 旭硝子株式会社 Antifouling article, method for producing same, antifouling layer-forming composition and cover glass for solar cells
WO2018051958A1 (en) * 2016-09-16 2018-03-22 旭硝子株式会社 Antifouling article
JP2019000983A (en) * 2015-10-28 2019-01-10 Agc株式会社 Antifouling article and manufacturing method thereof

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50140388A (en) * 1974-02-28 1975-11-11
JPH04175388A (en) * 1989-11-27 1992-06-23 Matsushita Electric Works Ltd Coating composition, coated inorganic cured body, and preparation thereof
JPH05321147A (en) * 1992-05-23 1993-12-07 Sumitomo Electric Ind Ltd Fiber product such as paper and cloth having water and oil repellency
JPH09249748A (en) * 1996-03-18 1997-09-22 Shin Etsu Chem Co Ltd Water-soluble fiber-treating agent and its production
JP2003183980A (en) * 2001-12-14 2003-07-03 Mitsubishi Materials Corp Metal coated fiber body and method for producing the same
JP2006028322A (en) * 2004-07-15 2006-02-02 Toray Ind Inc Siloxane coating film and coating for forming the same
JP2014039928A (en) * 2006-01-11 2014-03-06 Evonik Degussa Gmbh Ceramic wall covering composite material with electromagnetic shielding characteristics
JP2010089373A (en) * 2008-10-08 2010-04-22 Snt Co Water repellent-oil repellent coating article and production of the same
JP2013154481A (en) * 2012-01-26 2013-08-15 Nissha Printing Co Ltd Transparent stain resistant sheet
CN103938432A (en) * 2014-03-28 2014-07-23 中国林业科学研究院林产化学工业研究所 Preparation method of super-hydrophobic cellulose material with micro-nano structure
WO2016010080A1 (en) * 2014-07-18 2016-01-21 旭硝子株式会社 Antifouling article, method for producing same, antifouling layer-forming composition and cover glass for solar cells
JP2019000983A (en) * 2015-10-28 2019-01-10 Agc株式会社 Antifouling article and manufacturing method thereof
WO2018051958A1 (en) * 2016-09-16 2018-03-22 旭硝子株式会社 Antifouling article

Also Published As

Publication number Publication date
CN116133843A (en) 2023-05-16
TW202214793A (en) 2022-04-16

Similar Documents

Publication Publication Date Title
JP6823141B2 (en) Transparent article with anti-fog film
US7727635B2 (en) Abrasion-resistant coating composition and coated article
JP5625641B2 (en) Plastic substrate for automotive glazing
JP2004075970A (en) Hard-coating agent and article formed with the hard coat
WO2011142463A1 (en) Application liquid for forming ultraviolet-absorbing film, and ultraviolet-absorbing glass article
JP2006501341A (en) Coating composition and method for preparing the composition
JP7128321B2 (en) Coating method
JP2006501342A (en) Layered system and method for producing the same
CN111918926B (en) Mixed composition
US20130164539A1 (en) Plastic substrate for automotive glazing and its repairing method
JP2019183110A (en) Composition for forming water-repellent film, and water-repellent film
JP6980145B1 (en) Dough coating composition
WO2022030399A1 (en) Laminate and fabric coating composition
US20190177573A1 (en) Curable Silsesquioxane Polymer Comprising Inorganic Oxide Nanoparticles, Articles, and Methods
JP6942849B1 (en) Laminate
WO2007119805A1 (en) Phosphoric ester containing coating fluid and antireflection coatings
JP7267343B2 (en) laminate
WO2015166863A1 (en) Liquid composition, and glass article
JP2022156230A (en) laminate
JP6997897B1 (en) Composition
JP2021182134A (en) Antifogging porous silicon oxide film and method for manufacturing the same
WO2023145474A1 (en) Thermosetting resin composition
JP5480664B2 (en) Hydrophilic coating material composition and outer housing member
JP7055051B2 (en) Laminate coating film
JP2013124280A (en) Contamination-resistant coating, and building board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21852581

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21852581

Country of ref document: EP

Kind code of ref document: A1