WO2016010080A1 - Antifouling article, method for producing same, antifouling layer-forming composition and cover glass for solar cells - Google Patents

Antifouling article, method for producing same, antifouling layer-forming composition and cover glass for solar cells Download PDF

Info

Publication number
WO2016010080A1
WO2016010080A1 PCT/JP2015/070296 JP2015070296W WO2016010080A1 WO 2016010080 A1 WO2016010080 A1 WO 2016010080A1 JP 2015070296 W JP2015070296 W JP 2015070296W WO 2016010080 A1 WO2016010080 A1 WO 2016010080A1
Authority
WO
WIPO (PCT)
Prior art keywords
antifouling
antifouling layer
particles
silica
forming composition
Prior art date
Application number
PCT/JP2015/070296
Other languages
French (fr)
Japanese (ja)
Inventor
雄一 ▲桑▼原
修二 種田
阿部 啓介
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2016010080A1 publication Critical patent/WO2016010080A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/16Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer formed of particles, e.g. chips, powder or granules
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • C09D1/02Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances alkali metal silicates

Definitions

  • the present invention relates to an antifouling article, a production method thereof, an antifouling layer forming composition, and a cover glass for a solar cell.
  • Patent Document 1 discloses a hydrophilic surface in which silica fine particles are bonded with a siliceous binder, the surface of which is a fine rough surface with protruding silica fine particles, and a large number of bent fine pores communicating from the surface to the inside.
  • a structure having a fine porous antifouling layer on the outer surface of a substrate has been proposed.
  • Antifouling articles provided with a super-water-repellent coating may not have a sufficient antifouling effect when used in an environment with little rainwater such as deserts. Moreover, according to the knowledge of the present inventors, the fine porous antifouling layer described in Patent Document 1 does not have sufficient antifouling properties.
  • the present invention solves the conventional problems as described above, and provides an antifouling article excellent in antifouling property, a method for producing the same, and an antifouling layer forming composition.
  • the present invention provides a cover glass that is excellent in antifouling property even in an environment with little rainwater.
  • the present invention comprises the following.
  • the present invention has a substrate and an antifouling layer disposed on the substrate and having a plurality of protrusions including particle aggregates and a binder on the surface, and the maximum height from the substrate surface in the protrusions.
  • the protrusion T having a height of 90% or more on the basis of the protrusion having a thickness
  • the average distance between the apexes of the adjacent protrusions T is 100 to 1,000 nm
  • the antifouling layer is disposed.
  • the present invention relates to an antifouling article in which the ratio of the total covered area of the particles to the area of the substrate is 12 to 100%.
  • the present invention is an antifouling article comprising a substrate and an antifouling layer disposed on the substrate, wherein the antifouling layer comprises an aggregate of particles and a binder, and the surface of the antifouling layer Has a plurality of protrusions, and the antifouling layer is sprinkled with JIS test powder and allowed to stand for 10 seconds, tilted 135 ° with respect to the horizontal surface, and twice from a height of 3 cm to a speed of 10 cm / second.
  • the present invention relates to an antifouling article having a value obtained by dropping the powder in contact with the ground and measuring the haze value 10 times and subtracting the haze value before the test from the average value within 1.0.
  • the present invention is a cover glass for a solar cell having an antifouling layer on a surface thereof, the antifouling layer comprising an aggregate of particles and a binder, and the surface of the antifouling layer having a plurality of protrusions.
  • the antifouling layer is sprinkled with JIS test powder and allowed to stand for 10 seconds, tilted 135 ° with respect to the horizontal plane, and brought into contact with the ground twice at a speed of 3 cm from a height of 3 cm.
  • a solar cell cover glass in which the value obtained by dropping the powder and measuring the haze value 10 times and subtracting the haze value before the test from the average value is within 1.0.
  • the present invention includes a pearl necklace-like silica having an average primary particle diameter of 5 to 300 nm and a silica precursor, and the volume ratio of the pearl necklace-like silica and the silica precursor in terms of silica is 7/93.
  • the present invention relates to an antifouling layer-forming composition that is ⁇ 95 / 5.
  • the present invention includes a particle that can form a protrusion and a binder precursor on a substrate, and the volume ratio of the particle that can form the protrusion and the binder precursor in terms of metal oxide is 7/93.
  • the present invention includes a pearl necklace-like silica having an average primary particle diameter of 5 to 300 nm and a silica precursor on a substrate, and the volume ratio of the pearl necklace-like silica and the silica precursor in terms of silica is The antifouling layer forming composition of 7/93 to 95/5 is applied to form an antifouling layer forming composition layer, and the antifouling layer forming composition layer is heated to obtain an antifouling layer.
  • the present invention relates to a method for producing an antifouling article comprising a step of forming a layer.
  • an antifouling article superior in antifouling property, a production method thereof, and an antifouling layer forming composition can be provided.
  • FIG. 2 is a scanning electron micrograph of the surface of an antifouling article obtained in Example 1.
  • FIG. 2 is a scanning electron micrograph of the cross section of the antifouling article obtained in Example 1.
  • the term “process” is not limited to an independent process, and is included in the term if the intended purpose of the process is achieved even when it cannot be clearly distinguished from other processes.
  • a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the content of each component in the composition means the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition.
  • “Pearl necklace-like silica” is a pearl necklace in which a plurality of spherical silica particles are connected and secondary-agglomerated to form a long and slender silica particle, that is, a plurality of decorative pearls connected in a rosary shape.
  • it refers to a shape in which a plurality of particles of silica are connected, and the connection method may be linear or branched.
  • a circular figure caused by a spherical portion has a roundness of 70% or more, and the total area of the inscribed circles of each circular figure is a secondary particle.
  • a particle that occupies 70% or more of the total projected area and in which the inscribed circles of the circular figures do not overlap each other is called a chain particle.
  • the roundness is represented by the ratio of the radius of the inscribed circle to the radius of the circumscribed circle of the target figure outline, and is 100% for a perfect circle.
  • “pearl necklace-like particles” are obtained by replacing silica in the above-mentioned “pearl necklace-like silica” with other various particles.
  • the primary particle diameter of the particle is a particle diameter determined by observation with a scanning electron microscope.
  • the secondary particle diameter is a particle diameter measured by a dynamic light scattering method.
  • An antifouling article according to the present invention has a base and an antifouling layer disposed on the base and having a plurality of protrusions containing particle aggregates and a binder on the surface.
  • a protrusion T having a height of 90% or more on the basis of the protrusion having the maximum height from the body surface hereinafter also simply referred to as “projection T”
  • the distance between the apexes of adjacent protrusions T Is 100 to 1,000 nm
  • the ratio of the total covered area by the particles to the area of the substrate on which the antifouling layer is disposed is 12 to 100%.
  • FIG. 1 is a diagram showing an example of an antifouling article according to the present invention.
  • an antifouling article 1 has a base 2 and an antifouling layer 6 disposed on the base 2 and having a plurality of protrusions 5 including aggregates of particles 3 and a binder 4 on the surface.
  • the “projection including an aggregate of particles and a binder” is also simply referred to as “projection”.
  • the substrate is not particularly limited, and examples thereof include glass, plastic, metal, ceramics, and combinations thereof (for example, composite materials, laminated materials, etc.), and a light transmissive substrate made of glass or plastic is preferable.
  • a tempering treatment for example, a physical tempering treatment or a chemical tempering treatment. May be.
  • the shape of the substrate is not particularly limited, and examples thereof include a flat plate shape, a shape having a curvature on the entire surface or a part thereof, and the like.
  • the thickness of the substrate is not particularly limited and can be appropriately selected depending on the use of the antifouling article.
  • the thickness of the substrate is preferably 1 to 10 mm.
  • the substrate may be a cover glass. Examples of the cover glass include a cover glass for protecting a mirror or a lens used in a solar cell cover glass or concentrating solar thermal power generation or concentrating solar power generation.
  • the antifouling layer is the following first antifouling layer or second antifouling layer.
  • first antifouling layer and the second antifouling layer are not particularly distinguished and described as “antifouling layer”, the first antifouling layer and the second antifouling layer are used. It includes both dirty layers.
  • the first antifouling layer is disposed on the substrate and has a plurality of protrusions including a particle aggregate and a binder on the surface, and the protrusion has the maximum height from the substrate surface as a reference.
  • the average value of the distance between the apexes of the adjacent protrusions T is 100 to 1,000 nm, and the area relative to the area of the substrate on which the antifouling layer is disposed.
  • the ratio of the total covered area by the particles is 12 to 100%.
  • the first antifouling layer has a plurality of protrusions including aggregates of the particles and a binder protruding from the surface of the antifouling layer, and other regions (for example, convexes including non-aggregated particles and a binder). It is preferable that irregularities are formed on the surface thereof. In that case, since the protrusion is an aggregate of particle aggregates and a binder that are present unevenly on the surface of the substrate, more appropriate unevenness is formed compared to the unevenness formed by the particles alone, There exists a tendency for antifouling property to improve more.
  • the dirt adhering to the antifouling article comes into contact with the projections present on the surface of the antifouling layer, the dirt comes into contact with the protrusions in the present invention. Therefore, in the antifouling layer, the contact area in contact with the dirt can be further reduced, and an antifouling layer having better antifouling properties can be obtained.
  • the distance between vertices described later is 100 nm or more, even when the dirt is oil dirt, adsorption due to capillary action can be suppressed. As a result, it is difficult for oil stains to adhere, and even if it adheres, it can be easily removed by washing with water.
  • the shape of the protrusion is not particularly limited, and examples thereof include a substantially quadrangular pyramid, a substantially triangular pyramid, and a substantially cone.
  • the radius of curvature of the partial spherical surface is not particularly limited, but is preferably 5 nm or more, more preferably 5 nm to 15 nm.
  • the height of the protrusion is not particularly limited, but is preferably 10 nm or more, and more preferably 30 to 200 nm.
  • the height of the protrusion is the height from the base surface to the apex of the protrusion, and can be measured using a scanning electron microscope.
  • the size of the bottom surface of the protrusion is not particularly limited, but is preferably 10 to 700 nm, and more preferably 30 to 200 nm.
  • the average value of the angle between the bottom surface of the protrusion (ie, the surface parallel to the substrate) and the side surface is not particularly limited, but is preferably 10 to 90 °, more preferably 20 to 70 °. If the angle between the bottom surface and the side surface of the protrusion is 10 ° or more, a steeper protrusion is obtained.
  • the size of the bottom surface of the protrusion is defined as the diameter of a circle in which the bottom shape of the protrusion is inscribed. The bottom size of the protrusion can be measured using a scanning electron microscope.
  • the average value of the distances between the apexes of adjacent protrusions T (Hereinafter also simply referred to as “distance between vertices”) is 100 to 1,000 nm, preferably 100 to 800 nm, and more preferably 100 to 500 nm.
  • the distance between the vertices of 100 to 1,000 nm means that the unevenness formed by the protrusions T is large on the surface of the antifouling layer.
  • the protrusion T since the protrusion T includes two or more particles (that is, an aggregate of particles) and a binder, the protrusion T has a large protrusion compared to the surface roughness of the antifouling layer formed by the protrusions including the single particle and the binder. This means that a partial structure is formed.
  • the distance between vertices can be measured with a scanning electron microscope. Specifically, the distance between the vertices is a protrusion having a maximum height among protrusions existing in a predetermined region in a direction parallel to the surface of the substrate having the antifouling layer, from a cross-sectional photograph of the antifouling article.
  • a body select a protrusion T having a height of 90% or more, measure the distance between vertices of adjacent protrusions T (that is, the distance between the vertices), and calculate the average value. Can be obtained.
  • the distance between vertices can be measured by a measurement method of “distance between vertices” described later in the embodiment.
  • the ratio of the total covered area of the aggregate of particles to the area of the substrate on which the antifouling layer is disposed is preferably 12 to 100%.
  • the convex portion coverage is preferably 15 to 100%, more preferably 20 to 100%, and particularly preferably 50 to 100%.
  • the convex portion coverage can be measured with a scanning electron microscope. Specifically, it can be measured by a measuring method of “convex portion coverage” which will be described later in Examples.
  • the number of protrusions in the antifouling layer is not particularly limited, but is preferably 30 to 100 / ⁇ m 2, and more preferably 50 to 100 / ⁇ m 2 .
  • the number of protrusions can be measured, for example, by observing the film surface obliquely with a scanning electron microscope.
  • the second antifouling layer is sprinkled with JIS test powder and allowed to stand for 10 seconds, tilted 135 ° with respect to the horizontal plane, and brought into contact with the ground twice at a rate of 10 cm / second from a height of 3 cm. And measuring the haze value 10 times, the value obtained by subtracting the haze value before the test from the average value is within 1.0.
  • the second antifouling layer is the first antifouling layer. That is, the second antifouling layer can be obtained by the same configuration as the first antifouling layer described above.
  • the arithmetic average roughness (hereinafter also referred to as “Ra”) of the antifouling layer is not particularly limited, but is preferably 5 to 30 nm, more preferably 6 to 25 nm, and particularly preferably 7 to 20 nm.
  • Ra arithmetic average roughness
  • the aggregate particles constituting the protrusion of the present invention are not particularly limited as long as they can form an aggregate together with a binder described later and can form a protrusion on the surface of the antifouling layer.
  • the particles include inorganic particles and organic particles, and inorganic particles are preferable.
  • the inorganic particles include metal oxide particles such as silica, titania, alumina, and zirconia.
  • silica particles are preferable. If the particles are silica particles, light scattering is suppressed and the color of the substrate is not impaired.
  • the particles are preferably silica particles.
  • the particles may be used alone or in combination of two or more. When the particles are a combination of two or more, the silica content is preferably 50% by mass or more, and more preferably 75% by mass or more.
  • the shape of the particles is not particularly limited, but a pearl necklace shape or a chain shape is preferable.
  • pearl necklace-like silica is particularly preferable. If the particles are pearl necklace-like silica, when the antifouling layer is formed, protrusions capable of forming more appropriate irregularities are easily formed, and the antifouling property tends to be improved.
  • the average primary particle diameter of the particles is not particularly limited, but is preferably 5 to 300 nm, more preferably 10 to 100 nm, further preferably 10 to 50 nm, and particularly preferably 10 to 30 nm.
  • the average particle diameter of the particles is 5 nm or more, it becomes easy to form protrusions and the antifouling property tends to be improved.
  • grains is 300 nm or less, a haze value can be made small.
  • the secondary particle diameter of the particles is preferably 40 to 200 nm, more preferably 50 to 100 nm, and particularly preferably 60 to 90 nm.
  • the chain particles have, for example, an average primary particle diameter d of 10 to 100 nm, an average length (L) of 60 to 500 nm, and a ratio of the average length to the average primary particle diameter of 3 to 20 nm (L / and chain particles having d).
  • the spherical particles include spherical particles having an average primary particle diameter d of 1 to 1000 nm.
  • Examples of commercially available pearl necklace-like silica particles include ST-PS-S, ST-PS-SO, ST-PS-M, and ST-PS-MO (all of which are pearl necklace-like silica sols manufactured by Nissan Chemical Industries, Ltd.). It is done.
  • Commercially available chain silica particles include ST-OUP and ST-U (both are chain silica sols manufactured by Nissan Chemical Industries, Ltd.).
  • Examples of commercially available spherical silica particles include IPA-ST, IPA-STL, and IPA-STZL (all of which are isopropyl alcohol-dispersed silica sols manufactured by Nissan Chemical Industries, Ltd.).
  • a binder is not specifically limited, For example, an inorganic binder is mentioned.
  • the binder is preferably a hydrophilic inorganic binder because the antifouling property is increased.
  • the hydrophilic inorganic binder include metal oxides such as silica, alumina, titania, zirconia, tantalum oxide, and tin oxide.
  • the binder is more preferably a silica binder in terms of ease of handling.
  • the silica binder is preferably a hydrolyzate of a silane compound having a hydrolyzable group or a hydrolyzate of silicic acid, and preferably has a low alkali component content.
  • silica binder having a low alkali content examples include a hydrolyzate of an alkoxysilane compound or a hydrolyzate of demineralized silicic acid obtained by removing a part of an alkali metal from an alkali metal salt of silicic acid. Note that these hydrolysates may have an unreacted silanol group (Si—OH) group.
  • the silica content is preferably 50% by mass or more, and more preferably 75% by mass or more.
  • a cured product of a binder precursor described later is used as the binder.
  • the volume ratio (particle / binder) of particles capable of forming protrusions (for example, pearl necklace particles, chain particles) to the binder is preferably 7/93 to 95/5. If the volume ratio of the particles to the binder is 7/93 or more, an antifouling layer having an average distance between the apexes of appropriate protrusions can be formed on the substrate surface, and thus the antifouling property tends to be further improved. If it is 95/5 or less, the adhesion between the substrate and the antifouling layer tends to be sufficient.
  • the antifouling layer can contain further components as long as the effects of the present invention are not impaired. Further components include surfactants, antifoaming agents, leveling agents, ultraviolet absorbers, viscosity modifiers, antioxidants, fungicides, pigments and the like. The content of the further components is preferably 5% by mass or less, and more preferably 1% by mass or less in the antifouling layer.
  • the thickness of the antifouling layer is not particularly limited, but is preferably 20 to 350 nm, more preferably 30 to 300 nm, and particularly preferably 50 to 300 nm. If the film thickness of the antifouling layer is 20 nm or more, the antifouling property tends to be exhibited sufficiently, and if it is 350 nm or less, the mechanical strength is excellent and the economy is excellent.
  • the film thickness is 10 in descending order from the protrusion having the maximum height in the range of 1.5 ⁇ m in the direction parallel to the surface having the antifouling layer of the substrate from the film cross-sectional image obtained by an electron microscope or the like. This is a value obtained by extracting 10 points up to the first protrusion and averaging the heights of the protrusions at the 10 points.
  • This antifouling article has excellent antifouling properties against various stains.
  • dirt inorganic dirt such as dust remaining in the atmosphere, alkali wall residue from the concrete wall (water dry spots), water stains, burns on the glass itself, smoke in the atmosphere, automobile exhaust gas, tobacco Organic stains such as smoke and oil.
  • the antifouling article has a better antifouling effect against dust and oil stains.
  • the antifouling property of the antifouling article can be evaluated by, for example, a change in haze value measured by a “dirt adhesion test” (that is, a dry powder sprinkling test) in Examples described later.
  • the change in haze value of the antifouling article is preferably 5% or less, more preferably 2% or less, and particularly preferably 1% or less, when measured by a “dirt adhesion test” in Examples described later.
  • the change in haze value exceeds 5%, practical antifouling properties cannot be exhibited.
  • the haze value can be measured using a commercially available haze measuring device.
  • the antifouling layer forming composition includes particles capable of forming protrusions and a binder precursor.
  • ⁇ Particles that can form protrusions As particles capable of forming protrusions, pearl necklace-like silica having an average primary particle diameter of 5 to 300 nm is preferable.
  • a composition for forming an antifouling layer containing spherical silica particles is applied to the surface of the substrate, the particles are likely to be laminated relatively uniformly, so that the resulting coating does not have irregularities sufficient to exhibit antifouling properties. .
  • the binder precursor is a component that forms a binder by heat treatment, solvent removal treatment, photocuring treatment, or the like.
  • the binder precursor include inorganic binder precursors, and examples include a metal oxide precursor such as a silica precursor, an alumina precursor, a titania precursor, a zirconia precursor, a tantalum oxide precursor, and a tin oxide precursor.
  • the silica precursor include a silane compound having a hydrolyzable group and silicic acid.
  • the binder precursor other than the silica precursor include a metal compound having a hydrolyzable group.
  • the metal oxide precursor is a component that forms a metal oxide by a hydrolysis reaction.
  • a silica precursor is preferable as the binder precursor.
  • the adhesion between the antifouling layer to be formed and the substrate can be further improved.
  • One type of binder precursor may be used alone, or two or more types may be used in combination.
  • silica precursor examples include silicic acid and a silane compound having a hydrolyzable group.
  • silica precursor one having a low alkali metal content is preferable because it improves the adhesion between the antifouling layer to be formed and the substrate.
  • a part of the alkali metal is removed from the alkali metal salt of silicic acid described later. Desalted silicic acid or alkoxysilane compounds or partially hydrolyzed condensates thereof are preferred.
  • silicic acid examples include orthosilicic acid, metasilicic acid, and metadisilicic acid, with metasilicic acid being preferred.
  • the silicic acid is preferably demineralized silicic acid obtained by removing at least part of the alkali metal from the alkali metal salt of silicic acid (hereinafter also simply referred to as “demineralized silicic acid”).
  • Desalted silicic acid is preferably obtained by a method of reducing alkali metal ions from an aqueous solution of an alkali metal salt of silicic acid using a cation exchange resin.
  • the amount of the alkali metal ion of the desalted silicic acid is not particularly limited, but the alkali metal ion is preferably 0.001 to 1 part by mass, and 0.001 to 0.2 part by mass with respect to 100 parts by mass of silicic acid. More preferred is 0.001 to 0.15 parts by mass.
  • the alkali metal ion concentration of silicic acid can be measured by ICP emission analysis.
  • the cation exchange resin is not particularly limited, a strongly acidic cation exchange resin (RSO 3 H type), weakly acidic cation exchange resin (RCOOH type) and the like, a strongly acidic cation exchange resin is a reaction rate This is preferable.
  • the amount of alkali metal ions to be reduced can be adjusted by controlling the amount of cation exchange resin used, the contact time, the contact method, and the like.
  • alkali metal salt of silicate examples include sodium silicate, lithium silicate, and potassium silicate.
  • Sodium silicate and / or lithium silicate are preferable, and sodium silicate is particularly preferable.
  • an aqueous solution of sodium silicate one having a SiO 2 / Na 2 O molar ratio of about 0.5 to 4 is commercially available.
  • An aqueous solution of sodium silicate having a large SiO 2 / Na 2 O molar ratio is preferable because alkali metal ions can be easily removed, and an SiO 2 / Na 2 O molar ratio of 3 or more is particularly preferable.
  • lithium silicate materials having different composition ratios of SiO 2 / Li 2 O are known, and materials having a small content ratio of Li 2 O are preferable because alkali metal ions can be easily removed.
  • Commercially available lithium silicates include those having a SiO 2 / Li 2 O molar ratio of 3.5 / 1.0, 4.5 / 1.0, and 7.5 / 1.0. is there.
  • As the aqueous solution of lithium silicate one having a large SiO 2 / Li 2 O molar ratio is preferable because alkali metal ions can be easily removed, and one having a SiO 2 / Li 2 O molar ratio of 7 or more is particularly preferable.
  • a silane compound having a hydrolyzable group is a compound having 1 to 4 hydrolyzable groups bonded to a silicon atom in one molecule.
  • the hydrolyzable group include an alkoxy group, an isocyanato group, an acyloxy group, an aminoxy group, and a halogen group, and an alkoxy group is preferable. Therefore, an alkoxysilane compound is preferable as the silane compound having a hydrolyzable group.
  • the alkoxysilane compound may be a condensate in which at least some of the molecules are hydrolyzed and condensed (hereinafter also referred to as “partially hydrolyzed condensate of alkoxysilane compound”).
  • the alkoxysilane compound is a compound having 1 to 4 alkoxy groups bonded to a silicon atom in one molecule.
  • alkoxysilane compound examples include compounds represented by the following general formula (I).
  • each R 1 independently represents an alkyl group having 1 to 4 carbon atoms
  • R 2 independently represents an optionally substituted alkyl group having 1 to 10 carbon atoms
  • p represents a number from 1 to 4.
  • R 1 is an alkyl group having 1 to 4 carbon atoms, and examples thereof include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, and t-butyl, and methyl and ethyl are preferable.
  • the alkyl group having 1 to 10 carbon atoms in R 2 is linear or branched, and examples thereof include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, hexyl, decyl and the like.
  • R 2 is preferably an alkyl group having 1 to 6 carbon atoms.
  • the substituent in R 2 is not particularly limited, but epoxy group, glycidoxy group, methacryloyloxy group, acryloyloxy group, isocyanato group, hydroxy group, amino group, phenylamino group, alkylamino group, aminoalkylamino group, ureido Group, mercapto group and the like.
  • the “alkyl group having 1 to 10 carbon atoms” in R 2 means that the alkyl group portion excluding the substituent has 1 to 10 carbon atoms.
  • alkoxysilane compound examples include tetraalkoxysilane compounds having an alkoxy group bonded to four silicon atoms in one molecule such as tetramethoxysilane and tetraethoxysilane; 3-glycidoxypropyltrimethoxysilane, 3-glycidoxy Propyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-isocyanatopropyltrimethoxy Silane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyl
  • the volume ratio of the particles capable of forming protrusions to the binder precursor is 7/93 to 95/5.
  • the volume ratio between the particles capable of forming the protrusions and the binder precursor is in terms of metal oxide.
  • the antifouling layer-forming composition contains pearl necklace-like silica having an average primary particle diameter of 5 to 300 nm and a silica precursor, the pearl necklace-like silica and the silica precursor are converted into silica.
  • the volume ratio (pearl necklace-like silica / silica precursor) is 7/93 to 95/5.
  • the silica precursor is preferably desalted silicic acid or a hydrolyzate of alkoxysilane.
  • the volume ratio in terms of metal oxide of the particles capable of forming protrusions and the binder precursor is less than 7/93, the particles are not sufficiently present on the substrate, and If the stain resistance is inferior and exceeds 95/5, an antifouling layer having sufficient adhesion between the antifouling layer and the substrate cannot be obtained.
  • an antifouling layer forming composition contains the partial hydrolysis-condensation product of an alkoxysilane compound, content of the partial hydrolysis-condensation product of an alkoxysilane compound is a conversion amount of a silica.
  • the antifouling layer forming composition may contain water and an acid catalyst under the condition that a hydrolysis condensate of the binder precursor is obtained.
  • the antifouling layer forming composition may contain water.
  • water When the antifouling layer-forming composition contains water, hydrolysis condensation reaction proceeds.
  • the amount of water is preferably 10 to 500 parts by weight and more preferably 50 to 300 parts by weight with respect to 100 parts by weight of the binder precursor.
  • the amount of the binder precursor is an amount in terms of metal oxide.
  • the antifouling layer forming composition may contain an acid catalyst.
  • an acid catalyst include hydrochloric acid, nitric acid, sulfuric acid and the like.
  • the amount of the acid catalyst is preferably 0.1 to 5.0 parts by mass, more preferably 0.2 to 3.5 parts by mass with respect to 100 parts by mass of the binder precursor.
  • the amount of the binder precursor is an amount in terms of metal oxide.
  • the antifouling layer forming composition may contain a solvent.
  • the solvent is not particularly limited as long as the dispersibility of the particles capable of forming the protrusions and the binder precursor is good and the reactivity with these components is low.
  • Solvents include alcohols (methanol, ethanol, 2-propanol, etc.), esters (acetic ester (butyl acetate), etc.), ethers (diethylene glycol dimethyl ether, etc.), ketones (methyl ethyl ketone, etc.), water (ion exchange water, etc.), etc.
  • the solvent may be a single type or a combination of two or more types.
  • at least one of the particles capable of forming the protrusions and the binder precursor may be used alone or as a mixture of two or more and a solvent.
  • the solvent contained in the mixture may be used as the solvent in the antifouling layer-forming composition, or another solvent may be added to form the antifouling layer-forming composition.
  • the content of the solvent is not particularly limited, but is preferably 1,000 to 100,000 parts by weight, and 2,000 to 50,000 parts by weight with respect to a total of 100 parts by weight of the particles capable of forming protrusions and the binder precursor. Part is more preferred. If the content of the solvent is 1,000 parts by mass or more with respect to 100 parts by mass in total of the particles capable of forming the protrusions and the binder precursor, hydrolysis and condensation reaction can be prevented from proceeding rapidly. If it is 1,000 parts by mass or less, the hydrolysis and condensation reaction proceed more.
  • grains and binder precursor which can form a protrusion is an amount of metal oxide conversion.
  • the antifouling layer-forming composition can contain further components within a range not impairing the effects of the present invention.
  • examples of such components include surfactants, antifoaming agents, leveling agents, ultraviolet absorbers, viscosity modifiers, antioxidants, fungicides, and pigments.
  • the content of the further component in the antifouling layer forming composition is not particularly limited, but is preferably 0.02 to 1 part by mass with respect to 100 parts by mass in total of the particles capable of forming the protrusion and the binder precursor,
  • the amount is more preferably 0.02 to 0.5 parts by mass, and particularly preferably 0.02 to 0.3 parts by mass.
  • the amount of the binder precursor is an amount in terms of metal oxide.
  • the method for producing an antifouling article comprises, on a substrate, a particle capable of forming a protrusion and a binder precursor, and a volume ratio in terms of metal oxide of the particle capable of forming the protrusion and the binder precursor.
  • the antifouling layer forming composition of 7/93 to 95/5 is applied to form the antifouling layer forming composition layer, and the antifouling layer forming composition layer is heat-treated, Forming a dirty layer.
  • a pearl necklace-like silica having an average primary particle size of 5 to 300 nm and a silica precursor are included on a substrate, the pearl necklace-like silica and the silica precursor.
  • the antifouling layer forming composition having a volume ratio in terms of silica of 7/93 to 95/5 to form an antifouling layer forming composition layer, and the antifouling layer forming composition Heating the physical layer to form an antifouling layer.
  • the application (that is, application) of the antifouling layer-forming composition can be performed by a wet coating method.
  • the wet coating method is not particularly limited, and examples thereof include spin coating, dip coating, spray coating, flow coating, curtain flow coating, die coating, and squeegee coating, and spin coating is preferable.
  • the antifouling layer forming composition is preferably applied to at least a part of the surface of the substrate and applied to the entire surface of at least one main surface of the substrate.
  • the thickness of the antifouling layer-forming composition layer is not particularly limited as long as it is an amount that provides a desired antifouling layer.
  • the application amount of the antifouling layer-forming composition applied on the substrate is not particularly limited as long as it is an amount that provides the above-mentioned antifouling layer thickness, and the solid content is 1.6 to 1,600 g / m 2 . It is preferably 8.0 to 800 g / m 2 .
  • the content of the component in terms of solid content refers to the mass of the residue excluding volatile components such as water.
  • the antifouling layer forming composition layer formed by applying the antifouling layer forming composition on the substrate is heat-treated to form the antifouling layer.
  • the binder precursor may react with the particles by heat treatment.
  • the antifouling layer forming composition contains pearl necklace-like silica and a silica precursor
  • the silica precursor reacts to obtain a binder.
  • the silica precursor is silicic acid and an alkoxysilane compound
  • the silicic acid and the alkoxysilane compound are hydrolyzed and condensed to obtain silica that is a hydrolyzate of the silicic acid and the alkoxysilane compound.
  • at least part of the silicic acid and the alkoxysilane compound is hydrolytically condensed with silanol groups present on the surface of the pearl necklace-like silica particles.
  • the heat treatment of the antifouling layer forming composition layer can be performed by any heating means such as an electric furnace, a gas furnace, an infrared heating furnace set to a predetermined temperature.
  • the heat treatment temperature is preferably 20 to 700 ° C, more preferably 80 to 500 ° C, and particularly preferably 100 to 400 ° C.
  • the heat treatment time varies depending on the heat treatment temperature, but heat treatment for 1 to 180 minutes is preferable, more preferably 5 to 120 minutes, and particularly preferably 10 to 60 minutes. When the heat treatment time is 1 minute or more, the adhesion between the substrate and the antifouling layer is further improved, and when it is 180 minutes or less, deterioration of the base material due to heat is suppressed and the productivity is excellent.
  • the antifouling article is, for example, a cover glass.
  • the cover glass is, for example, a cover glass of a solar cell, a condenser lens, or a condenser mirror.
  • a condensing lens or a condensing mirror is used for a concentrating solar power generation device or a concentrating solar power generation device, for example.
  • the cover glass of the present invention is sprinkled with JIS test powder, left still for 10 seconds, tilted 135 ° with respect to the horizontal surface, and brought into contact with the ground twice at a rate of 10 cm / second from a height of 3 cm. Drop and measure the haze value 10 times, and the value obtained by subtracting the haze value before the test from the average value is within 1.0.
  • This cover glass is preferable because it exhibits high antifouling performance even when installed in an environment with little rainwater.
  • Applications of this antifouling article include cover glass, window glass (for example, window glass for transportation equipment such as automobiles, railways, ships, airplanes), walls (for example, partitions, road walls, etc.), refrigerated showcases. , Mirrors (for example, vanity mirrors, bathroom mirrors, etc.), optical equipment, tiles, toilet bowls, bathtubs, bathroom walls, vanity tables, curtain walls, aluminum sashes, faucets, building boards, lenses, A condensing mirror is mentioned.
  • This antifouling article is particularly suitable for outdoor use in areas with little rain, such as deserts.
  • Examples 1 to 3 and 16 described below are examples, and examples 4 to 15 and 17 are comparative examples.
  • binder precursor (1) (desalted sodium silicate solution)
  • sodium silicate No. 4 manufactured by Nippon Chemical Industry Co., Ltd., (SiO 2 : 24.0% by mass, Na 2 O: 7.0% by mass.
  • 180 g of cation exchange resin manufactured by Mitsubishi Chemical Corporation, Diaion SK1BH
  • the ion exchange resin was separated, and a binder precursor (1), which is a silicon oxide precursor, was obtained as a desalted sodium silicate solution having a solid content concentration in terms of silica of 5% by mass.
  • a soda lime glass plate (made by Asahi Glass, product number FL3.5, length 100 mm, width 100 mm, thickness 3.5 mm) selected as a substrate and set at a room temperature is set on a spin coater, and an antifouling layer forming composition ( 2.0 g of A1) was dropped on the surface of a soda lime glass plate, spin-coated, then heat-treated at 300 ° C. for 30 minutes, and the antifouling layer forming composition layer was baked to form an antifouling layer.
  • a product was manufactured. Scanning electron micrographs of the surface and cross section of the antifouling article obtained in Example 1 are shown in FIGS. 2 and 3, respectively.
  • Antifouling layer forming compositions A2 to A5 were prepared in the same manner as in Example 1 except that the volume ratio of particles to binder precursor (particle / binder precursor) was changed to the amount shown in Table 1. Subsequently, an antifouling article was produced in the same manner as in Example 1 using the antifouling layer forming compositions A2 to A5.
  • Example 6 to 10 The pearl necklace-like silica dispersion was changed to a spherical silica dispersion having an average primary particle diameter of 11 nm (manufactured by Nissan Chemical Co., Snowtex OS), and the volume ratio of the particles to the binder precursor was changed to the amount shown in Table 1. Except for the above, antifouling layer-forming compositions A6 to A10 were prepared in the same manner as in Example 1. Next, an antifouling article was produced in the same manner as in Example 1 using the antifouling layer forming compositions A6 to A10.
  • Example 11 to 15 The pearl necklace-like silica dispersion was changed to a spherical silica dispersion (Nissan Chemical Co., Snowtex O-40) with an average primary particle size of 30 nm, and the volume ratio of the particles to the binder precursor was changed to the amount shown in Table 1. Except that, antifouling layer forming compositions A11 to A15 were prepared in the same manner as in Example 1. Subsequently, an antifouling article was produced in the same manner as in Example 1 using the antifouling layer forming compositions A11 to A15.
  • Example 16 Preparation of binder precursor (2) (solution of partially hydrolyzed condensate of alkoxysilane compound)) While stirring 16.45 g of 2-propanol (manufactured by Junsei Kagaku Co., Ltd.), 1.18 g of methyl silicate polymer (manufactured by Tama Chemical Industry Co., Ltd., M silicate 51, solid content 51% in terms of silica, methanol solvent), 2.26 g of distilled water and a 10% by mass nitric acid aqueous solution (manufactured by Kanto Chemical Co., Inc.) were added in this order, and the mixture was stirred at 25 ° C. for 60 minutes to obtain an alkoxysilane compound having a silica-converted solid content concentration of 3% by mass.
  • a binder precursor (2) which is a silicon oxide precursor, was obtained as a solution of the partially hydrolyzed condensate.
  • An antifouling layer-forming composition A16 was prepared in the same manner as in Example 1 except that the binder precursor (1) was changed to the binder precursor (2).
  • An antifouling article was produced in the same manner as in Example 1 using the antifouling layer forming composition A16.
  • Example 17 The glass plate not coated with the antifouling composition and having no antifouling layer was evaluated as it was.
  • Average primary particle size of particles From the image obtained by observing the surface of the antifouling layer from above with a scanning electron microscope (manufactured by Hitachi, Ltd., model: S-4800) with respect to the surface having the antifouling layer of the antifouling article, 100 particles were extracted for the purpose, and the average value of the diameter of each particle was defined as the average primary particle size of the particles.
  • the cross section of the antifouling article is observed with a scanning electron microscope (manufactured by Hitachi, Ltd., model: S-4800), and the obtained image is randomly selected in a direction parallel to the surface of the glass plate having the antifouling layer.
  • the projection having the highest height from the surface of the glass plate is used as a reference, and the projection having a height of 90% or more of the height is between apexes of adjacent projections. All the distances were measured, and the average value was calculated.
  • ⁇ Measurement conditions of haze value> The haze of the translucent member was measured with a C light source using a haze measuring device (Bic Gardner, model name: haze guard plus).
  • Example 17 having no antifouling layer did not have sufficient antifouling properties.
  • the antifouling article of the present invention is superior in antifouling properties as compared with conventional antifouling articles.
  • the antifouling article of the present invention includes window glass (for example, window glass for transportation equipment such as automobiles, railways, ships, airplanes), cover glass for solar cells, walls (for example, partitions, road walls, etc.), refrigerated showcases.
  • Window glass for example, window glass for transportation equipment such as automobiles, railways, ships, airplanes
  • cover glass for solar cells for example, partitions, road walls, etc.
  • Mirrors for example, vanity mirrors, bathroom mirrors, etc.
  • optical equipment tiles, toilet bowls, bathtubs, bathroom walls, vanity tables, curtain walls, aluminum sashes, faucets, building boards, lenses, etc.

Abstract

Provided are: an antifouling article having an antifouling layer that has more excellent antifouling properties; and a method for producing this antifouling article. The present invention is an antifouling article which comprises a base and an antifouling layer that is arranged on the base and has a plurality of projections on the surface, said projections containing an aggregate of particles and a binder. With respect to projections (T) each having a height of 90% or more based on a projection having the maximum height from the base surface among the projections, the average peak-to-peak distance between adjacent projections (T) is 100-1,000 nm. The ratio of the total area covered by the particles with respect to the area of the base on which the antifouling layer is arranged is 12-100%.

Description

防汚性物品、その製造方法、防汚層形成組成物および太陽電池用カバーガラスAntifouling article, method for producing the same, antifouling layer forming composition, and cover glass for solar cell
 本発明は、防汚性物品、その製造方法、防汚層形成組成物及び太陽電池用カバーガラスに関する。 The present invention relates to an antifouling article, a production method thereof, an antifouling layer forming composition, and a cover glass for a solar cell.
 タイルまたは板ガラス等の板状基体表面に親水性の防汚層を形成する技術については、これまで種々の方法が提案されてきた。 Various techniques have so far been proposed for forming a hydrophilic antifouling layer on the surface of a plate-like substrate such as tile or plate glass.
 例えば、特許文献1には、表面がシリカ微粒子の突き出た微細粗面となっていて、かつ表面から内部に連通する屈曲した微細孔を多数有する、シリカ微粒子を珪酸質バインダーで結合した親水性の微細多孔防汚層を基体外面に有する構造体が提案されている。 For example, Patent Document 1 discloses a hydrophilic surface in which silica fine particles are bonded with a siliceous binder, the surface of which is a fine rough surface with protruding silica fine particles, and a large number of bent fine pores communicating from the surface to the inside. A structure having a fine porous antifouling layer on the outer surface of a substrate has been proposed.
特開2004-174498号公報JP 2004-174498 A
 超撥水性被覆を設けた防汚性物品は、砂漠等の雨水が少ない環境で使用する場合には、十分な防汚効果が得られないおそれがある。また、本発明者らの知見によれば、特許文献1に記載された微細多孔防汚層は、防汚性が十分ではない。 ∙ Antifouling articles provided with a super-water-repellent coating may not have a sufficient antifouling effect when used in an environment with little rainwater such as deserts. Moreover, according to the knowledge of the present inventors, the fine porous antifouling layer described in Patent Document 1 does not have sufficient antifouling properties.
 本発明は、上記のような従来の課題を解消し、防汚性により優れる防汚性物品およびその製造方法および防汚層形成組成物を提供する。
 また、雨水が少ない環境でも防汚性に優れるカバーガラスを提供する。
The present invention solves the conventional problems as described above, and provides an antifouling article excellent in antifouling property, a method for producing the same, and an antifouling layer forming composition.
In addition, the present invention provides a cover glass that is excellent in antifouling property even in an environment with little rainwater.
 本発明は、以下を構成とする。
 本発明は、基体と、該基体上に配置され、粒子の凝集体およびバインダーを含む複数の突起体を表面に有する防汚層とを有し、該突起体中、基体面からの最大高さを有する突起体を基準として、90%以上の高さを有する突起体Tについて、隣り合う該突起体Tの頂点間距離の平均値が100~1,000nmであり、前記防汚層が配置された基体の面積に対する前記粒子による総被覆面積の割合が12~100%である防汚性物品に関する。
 本発明は、基体と、該基体上に配置された防汚層とを備えた防汚性物品であって、前記防汚層は、粒子の凝集体およびバインダーを含み、前記防汚層の表面は、複数の突起体を有し、前記防汚層は、JIS試験粉体を振りかけて10秒静置し、水平面に対して135°傾け、3cmの高さから10cm/秒のスピードで2回地面に接触させて前記粉体を落とし、ヘイズ値を測定することを10回繰り返し、その平均値から試験前のヘイズ値を引いた値が1.0以内である防汚性物品に関する。
 本発明は、表面に防汚層を有する太陽電池用カバーガラスであって、前記防汚層は、粒子の凝集体およびバインダーを含み、かつ前記防汚層の表面は、複数の突起体を有しており、前記防汚層は、JIS試験粉体を振りかけて10秒静置し、水平面に対して135°傾け、3cmの高さから10cm/秒のスピードで2回地面に接触させて前記粉体を落とし、ヘイズ値を測定することを10回繰り返し、その平均値から試験前のヘイズ値を引いた値が1.0以内である太陽電池用カバーガラス。
 本発明は、平均一次粒子径が5~300nmであるパールネックレス状シリカとシリカ前駆体とを含み、該パールネックレス状シリカと該シリカ前駆体との、シリカ換算での体積比が、7/93~95/5である防汚層形成組成物に関する。
 本発明は、基板上に、突起体を形成できる粒子とバインダー前駆体とを含み、該突起体を形成できる粒子と該バインダー前駆体との、金属酸化物換算での体積比が、7/93~95/5である防汚層形成組成物を付与して、防汚層形成組成物層を形成する工程と、該防汚層形成組成物層を加熱処理して、防汚層を形成する工程と、を含む防汚性物品の製造方法に関する。
 本発明は、基体上に、平均一次粒子径が5~300nmであるパールネックレス状シリカとシリカ前駆体とを含み、該パールネックレス状シリカと該シリカ前駆体との、シリカ換算での体積比が、7/93~95/5である防汚層形成組成物を付与して、防汚層形成組成物層を形成する工程と、該防汚層形成組成物層を加熱処理して、防汚層を形成する工程とを含む防汚性物品の製造方法に関する。
The present invention comprises the following.
The present invention has a substrate and an antifouling layer disposed on the substrate and having a plurality of protrusions including particle aggregates and a binder on the surface, and the maximum height from the substrate surface in the protrusions. With respect to the protrusion T having a height of 90% or more on the basis of the protrusion having a thickness, the average distance between the apexes of the adjacent protrusions T is 100 to 1,000 nm, and the antifouling layer is disposed. Further, the present invention relates to an antifouling article in which the ratio of the total covered area of the particles to the area of the substrate is 12 to 100%.
The present invention is an antifouling article comprising a substrate and an antifouling layer disposed on the substrate, wherein the antifouling layer comprises an aggregate of particles and a binder, and the surface of the antifouling layer Has a plurality of protrusions, and the antifouling layer is sprinkled with JIS test powder and allowed to stand for 10 seconds, tilted 135 ° with respect to the horizontal surface, and twice from a height of 3 cm to a speed of 10 cm / second. The present invention relates to an antifouling article having a value obtained by dropping the powder in contact with the ground and measuring the haze value 10 times and subtracting the haze value before the test from the average value within 1.0.
The present invention is a cover glass for a solar cell having an antifouling layer on a surface thereof, the antifouling layer comprising an aggregate of particles and a binder, and the surface of the antifouling layer having a plurality of protrusions. The antifouling layer is sprinkled with JIS test powder and allowed to stand for 10 seconds, tilted 135 ° with respect to the horizontal plane, and brought into contact with the ground twice at a speed of 3 cm from a height of 3 cm. A solar cell cover glass in which the value obtained by dropping the powder and measuring the haze value 10 times and subtracting the haze value before the test from the average value is within 1.0.
The present invention includes a pearl necklace-like silica having an average primary particle diameter of 5 to 300 nm and a silica precursor, and the volume ratio of the pearl necklace-like silica and the silica precursor in terms of silica is 7/93. The present invention relates to an antifouling layer-forming composition that is ˜95 / 5.
The present invention includes a particle that can form a protrusion and a binder precursor on a substrate, and the volume ratio of the particle that can form the protrusion and the binder precursor in terms of metal oxide is 7/93. A step of forming an antifouling layer forming composition layer by applying an antifouling layer forming composition of ~ 95/5, and heat-treating the antifouling layer forming composition layer to form an antifouling layer And a process for producing an antifouling article.
The present invention includes a pearl necklace-like silica having an average primary particle diameter of 5 to 300 nm and a silica precursor on a substrate, and the volume ratio of the pearl necklace-like silica and the silica precursor in terms of silica is The antifouling layer forming composition of 7/93 to 95/5 is applied to form an antifouling layer forming composition layer, and the antifouling layer forming composition layer is heated to obtain an antifouling layer. The present invention relates to a method for producing an antifouling article comprising a step of forming a layer.
 本発明により、防汚性により優れる防汚性物品、その製造方法、防汚層形成組成物を提供することができる。 According to the present invention, an antifouling article superior in antifouling property, a production method thereof, and an antifouling layer forming composition can be provided.
本発明に係る、防汚性物品の一例を示す図である。It is a figure which shows an example of the antifouling article based on this invention. 実施例1で得られた防汚性物品の表面の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of the surface of an antifouling article obtained in Example 1. FIG. 実施例1で得られた防汚性物品の断面の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of the cross section of the antifouling article obtained in Example 1. FIG.
 本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。また「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値および最大値として含む範囲を示す。更に組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
 「パールネックレス状シリカ」は、球状シリカ粒子が、複数個連結して二次凝集した、細長い形状のシリカ粒子、すなわち装飾品であるパールの複数個が、数珠状に繋げられたパールネックレスのように、シリカの複数の粒子が繋がった形状のものを指すものであり、その繋がり方は、直線状でも分岐を有してもよい。本明細書では、特に、電子顕微鏡による二次元像において、球状部分に起因する円状図形が真円度70%以上を有し、かつ各円状図形の内接円の合計面積が二次粒子全投影面積の70%以上を占め、かつ各円状図形の内接円が互いに重ならないものをいい、球状部分が少ないものを鎖状粒子という。ここで、真円度とは、対象とする図形輪郭の外接円の半径に対する内接円の半径の比率で表され、真円では100%となる。また、本明細書において、「パールネックレス状粒子」とは、上記した「パールネックレス状シリカ」において、シリカをその他の各種の粒子に置き換えたものである。
 本明細書において、粒子の一次粒子径は、走査型電子顕微鏡による観察で求められる粒子径である。また、二次粒径は、動的光散乱法により測定される粒子径である。
In this specification, the term “process” is not limited to an independent process, and is included in the term if the intended purpose of the process is achieved even when it cannot be clearly distinguished from other processes. . A numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively. Furthermore, the content of each component in the composition means the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition.
“Pearl necklace-like silica” is a pearl necklace in which a plurality of spherical silica particles are connected and secondary-agglomerated to form a long and slender silica particle, that is, a plurality of decorative pearls connected in a rosary shape. In addition, it refers to a shape in which a plurality of particles of silica are connected, and the connection method may be linear or branched. In this specification, in particular, in a two-dimensional image obtained by an electron microscope, a circular figure caused by a spherical portion has a roundness of 70% or more, and the total area of the inscribed circles of each circular figure is a secondary particle. A particle that occupies 70% or more of the total projected area and in which the inscribed circles of the circular figures do not overlap each other is called a chain particle. Here, the roundness is represented by the ratio of the radius of the inscribed circle to the radius of the circumscribed circle of the target figure outline, and is 100% for a perfect circle. Further, in this specification, “pearl necklace-like particles” are obtained by replacing silica in the above-mentioned “pearl necklace-like silica” with other various particles.
In this specification, the primary particle diameter of the particle is a particle diameter determined by observation with a scanning electron microscope. The secondary particle diameter is a particle diameter measured by a dynamic light scattering method.
[防汚性物品]
 本発明に係る防汚性物品は、基体と、該基体上に配置され、粒子の凝集体およびバインダーを含む複数の突起体を表面に有する防汚層とを有し、該突起体中、基体面からの最大高さを有する突起体を基準として、90%以上の高さを有する突起体T(以下、単に「突起体T」ともいう。)について、隣り合う該突起体Tの頂点間距離の平均値が100~1,000nmであり、前記防汚層が配置された基体の面積に対する前記粒子による総被覆面積の割合が12~100%である。
 図1は、本発明に係る防汚性物品の一例を示す図である。図1において、防汚性物品1は、基体2と、該基体2上に配置され、粒子3の凝集体およびバインダー4を含む複数の突起体5を表面に有する防汚層6を有する。
 本明細書において、「粒子の凝集体およびバインダーを含む突起体」を単に「突起体」ともいう。
[Anti-fouling article]
An antifouling article according to the present invention has a base and an antifouling layer disposed on the base and having a plurality of protrusions containing particle aggregates and a binder on the surface. With respect to a protrusion T having a height of 90% or more on the basis of the protrusion having the maximum height from the body surface (hereinafter also simply referred to as “projection T”), the distance between the apexes of adjacent protrusions T Is 100 to 1,000 nm, and the ratio of the total covered area by the particles to the area of the substrate on which the antifouling layer is disposed is 12 to 100%.
FIG. 1 is a diagram showing an example of an antifouling article according to the present invention. In FIG. 1, an antifouling article 1 has a base 2 and an antifouling layer 6 disposed on the base 2 and having a plurality of protrusions 5 including aggregates of particles 3 and a binder 4 on the surface.
In the present specification, the “projection including an aggregate of particles and a binder” is also simply referred to as “projection”.
(基体)
 基体としては、特に限定されず、ガラス、プラスチック、金属、セラミックス、およびこれらの組み合わせ(例えば、複合材料、積層材料等)が挙げられ、ガラスまたはプラスチックからなる光透過性基体が好ましい。また、基体がガラスの場合は、強化処理(たとえば、物理強化処理、化学強化処理)を施したものであってもよく、また複数のガラス板が接着層を介して積層された合わせガラスであってもよい。基体の形状は、特に限定されず、平板状、全面または一部に曲率を有している形状等が挙げられる。基体の厚さは、特に限定されず、防汚性物品の用途により適宜選択することができる。基体の厚さは、1~10mmであることが好ましい。
 基体は、カバーガラスでもよい。カバーガラスとしては、たとえば太陽電池のカバーガラスまたは集光型太陽熱発電や集光型太陽光発電で用いられる鏡またはレンズを保護するカバーガラスがあげられる。
(Substrate)
The substrate is not particularly limited, and examples thereof include glass, plastic, metal, ceramics, and combinations thereof (for example, composite materials, laminated materials, etc.), and a light transmissive substrate made of glass or plastic is preferable. When the substrate is glass, it may be subjected to a tempering treatment (for example, a physical tempering treatment or a chemical tempering treatment). May be. The shape of the substrate is not particularly limited, and examples thereof include a flat plate shape, a shape having a curvature on the entire surface or a part thereof, and the like. The thickness of the substrate is not particularly limited and can be appropriately selected depending on the use of the antifouling article. The thickness of the substrate is preferably 1 to 10 mm.
The substrate may be a cover glass. Examples of the cover glass include a cover glass for protecting a mirror or a lens used in a solar cell cover glass or concentrating solar thermal power generation or concentrating solar power generation.
(防汚層)
 防汚層は、以下の第一の防汚層または第二の防汚層である。以下の説明において、第一の防汚層と第二の防汚層とを特に区別せず、「防汚層」と記載している場合には、第一の防汚層および第二の防汚層の双方を含むものである。
 第一の防汚層は、基体上に配置され、粒子の凝集体およびバインダーを含む複数の突起体を表面に有し、該突起体中、基体面からの最大高さを有する突起体を基準として、90%以上の高さを有する突起体Tについて、隣り合う該突起体Tの頂点間距離の平均値が100~1,000nmであり、前記防汚層が配置された基体の面積に対する前記粒子による総被覆面積の割合が12~100%である。
(Anti-fouling layer)
The antifouling layer is the following first antifouling layer or second antifouling layer. In the following description, when the first antifouling layer and the second antifouling layer are not particularly distinguished and described as “antifouling layer”, the first antifouling layer and the second antifouling layer are used. It includes both dirty layers.
The first antifouling layer is disposed on the substrate and has a plurality of protrusions including a particle aggregate and a binder on the surface, and the protrusion has the maximum height from the substrate surface as a reference. As for the protrusion T having a height of 90% or more, the average value of the distance between the apexes of the adjacent protrusions T is 100 to 1,000 nm, and the area relative to the area of the substrate on which the antifouling layer is disposed. The ratio of the total covered area by the particles is 12 to 100%.
 第一の防汚層は、防汚層の表面に突出した、前記粒子の凝集体およびバインダーを含む複数の突起体と、それ以外の領域(たとえば、凝集していない粒子とバインダーとを含む凸部および/またはバインダー)とで、その表面に凹凸が形成されることが好ましい。その場合、突起体は、基体の表面に不均一に存在する、粒子の凝集体とバインダーとの集合体であるため、粒子単独で形成される凹凸に比べて、より適切な凹凸が形成され、防汚性がより向上する傾向がある。防汚性物品に付着する汚れは、防汚層の表面に存在する凸部に接触するため、本発明においては、汚れは突起体に接触する。そのため、防汚層において、汚れに接触する接触面積をより小さくすることができ、防汚性により優れる防汚層が得られる。一方、後述する頂点間距離が100nm以上あることで、汚れが油汚れの場合でも、毛管現象による吸着を抑制することができる。その結果、油汚れが付きにくく、また付着したとしても水洗により容易に除去することが可能となる。 The first antifouling layer has a plurality of protrusions including aggregates of the particles and a binder protruding from the surface of the antifouling layer, and other regions (for example, convexes including non-aggregated particles and a binder). It is preferable that irregularities are formed on the surface thereof. In that case, since the protrusion is an aggregate of particle aggregates and a binder that are present unevenly on the surface of the substrate, more appropriate unevenness is formed compared to the unevenness formed by the particles alone, There exists a tendency for antifouling property to improve more. Since the dirt adhering to the antifouling article comes into contact with the projections present on the surface of the antifouling layer, the dirt comes into contact with the protrusions in the present invention. Therefore, in the antifouling layer, the contact area in contact with the dirt can be further reduced, and an antifouling layer having better antifouling properties can be obtained. On the other hand, when the distance between vertices described later is 100 nm or more, even when the dirt is oil dirt, adsorption due to capillary action can be suppressed. As a result, it is difficult for oil stains to adhere, and even if it adheres, it can be easily removed by washing with water.
 突起体の形状は、特に限定されず、例えば、略四角錐、略三角錐、略円錐等が挙げられる。突起体の頂点から高さ50%までの領域を部分球面に近似したとき、上記部分球面の曲率半径は、特に限定されないが、5nm以上が好ましく、5nm~15nmがより好ましい。また、突起体の高さは、特に限定されないが、10nm以上が好ましく、30~200nmがより好ましい。突起体の高さは、基体面から突起体の頂点までの高さであり、走査型電子顕微鏡を用いて測定することができる。 The shape of the protrusion is not particularly limited, and examples thereof include a substantially quadrangular pyramid, a substantially triangular pyramid, and a substantially cone. When the region from the apex of the protrusion to the height of 50% is approximated to a partial spherical surface, the radius of curvature of the partial spherical surface is not particularly limited, but is preferably 5 nm or more, more preferably 5 nm to 15 nm. The height of the protrusion is not particularly limited, but is preferably 10 nm or more, and more preferably 30 to 200 nm. The height of the protrusion is the height from the base surface to the apex of the protrusion, and can be measured using a scanning electron microscope.
 突起体の底面のサイズは、特に限定されないが、10~700nmが好ましく、30~200nmがより好ましい。また、突起体の底面(すなわち、基体に平行な面)と側面との角度の平均値は、特に限定されないが、10~90°が好ましく、20~70°がより好ましい。突起体の底面と側面との角度が、10°以上であれば、より急峻な突起体が得られている。ここで、突起体の底面のサイズとは、突起体の底面形状が内接する円の直径とする。突起体の底面サイズは、走査型電子顕微鏡を用いて測定することができる。 The size of the bottom surface of the protrusion is not particularly limited, but is preferably 10 to 700 nm, and more preferably 30 to 200 nm. The average value of the angle between the bottom surface of the protrusion (ie, the surface parallel to the substrate) and the side surface is not particularly limited, but is preferably 10 to 90 °, more preferably 20 to 70 °. If the angle between the bottom surface and the side surface of the protrusion is 10 ° or more, a steeper protrusion is obtained. Here, the size of the bottom surface of the protrusion is defined as the diameter of a circle in which the bottom shape of the protrusion is inscribed. The bottom size of the protrusion can be measured using a scanning electron microscope.
 防汚層において、突起体中、基体面からの最大高さを有する突起体を基準として、90%以上の高さを有する突起体Tについて、隣り合う該突起体Tの頂点間距離の平均値(以下、単に「頂点間距離」ともいう。)が100~1,000nmであり、100~800nmが好ましく、100~500nmがより好ましい。頂点間距離が、100~1,000nmであることは、防汚層の表面に、突起体Tにより形成される凹凸の間隔が大きいことを意味する。また、突起体Tが、2以上の粒子(すなわち、粒子の凝集体)およびバインダーを含むため、単独粒子およびバインダーを含む凸部で形成される防汚層の表面粗さに比べて、大きな凸部構造が形成されていることを意味する。頂点間距離は、走査型電子顕微鏡により測定することができる。具体的には、頂点間距離は、防汚性物品の断面写真から、基板の防汚層を有する面に平行な方向に、所定の領域内に存在する突起体中、最大高さを有する突起体を選択し、その90%以上の高さを有する突起体Tを選択し、これら突起体Tについて、隣り合う突起体Tの頂点間距離(すなわち、頂点間隔)を測定し、平均値を算出することにより求めることができる。好ましくは、頂点間距離は、実施例において後述する「頂点間距離」の測定方法により測定することができる。 In the antifouling layer, with respect to the protrusion T having a height of 90% or more with reference to the protrusion having the maximum height from the substrate surface, the average value of the distances between the apexes of adjacent protrusions T (Hereinafter also simply referred to as “distance between vertices”) is 100 to 1,000 nm, preferably 100 to 800 nm, and more preferably 100 to 500 nm. The distance between the vertices of 100 to 1,000 nm means that the unevenness formed by the protrusions T is large on the surface of the antifouling layer. Further, since the protrusion T includes two or more particles (that is, an aggregate of particles) and a binder, the protrusion T has a large protrusion compared to the surface roughness of the antifouling layer formed by the protrusions including the single particle and the binder. This means that a partial structure is formed. The distance between vertices can be measured with a scanning electron microscope. Specifically, the distance between the vertices is a protrusion having a maximum height among protrusions existing in a predetermined region in a direction parallel to the surface of the substrate having the antifouling layer, from a cross-sectional photograph of the antifouling article. Select a body, select a protrusion T having a height of 90% or more, measure the distance between vertices of adjacent protrusions T (that is, the distance between the vertices), and calculate the average value. Can be obtained. Preferably, the distance between vertices can be measured by a measurement method of “distance between vertices” described later in the embodiment.
 防汚層が配置された基体の面積に対する、粒子の凝集体による総被覆面積の割合(以下、「凸部被覆率」ともいう。)は、12~100%が好ましい。凸部被覆率が12%以上であると、防汚層において、汚れに接触できる、粒子の凝集体およびバインダーを含む突起体の存在割合が大きいので、充分な防汚性が得られる。凸部被覆率は、15~100%が好ましく、20~100%がより好ましく、50~100%が特に好ましい。凸部被覆率は、走査型電子顕微鏡により測定することができる。具体的には、実施例において後述する「凸部被覆率」の測定方法により測定することができる。 The ratio of the total covered area of the aggregate of particles to the area of the substrate on which the antifouling layer is disposed (hereinafter also referred to as “convex coverage”) is preferably 12 to 100%. When the convex portion coverage is 12% or more, a sufficient antifouling property can be obtained because the presence ratio of the aggregates of particles and the protrusions containing the binder that can come into contact with dirt in the antifouling layer is large. The convex portion coverage is preferably 15 to 100%, more preferably 20 to 100%, and particularly preferably 50 to 100%. The convex portion coverage can be measured with a scanning electron microscope. Specifically, it can be measured by a measuring method of “convex portion coverage” which will be described later in Examples.
 防汚層における突起体の数は、特に限定されないが、30~100個/μmが好ましく、50~100個/μmがより好ましい。突起体の数は、例えば、走査型電子顕微鏡により膜表面を斜めから観察して測定することができる。
 第二の防汚層は、JIS試験粉体を振りかけて10秒静置し、水平面に対して135°傾け、3cmの高さから10cm/秒の勢いで2回地面に接触させて前記粉体を落とし、ヘイズ値を測定することを10回繰り返し、その平均値から試験前のヘイズ値を引いた値が1.0以内である。
 第二の防汚層は、第一の防汚層であることがより好ましい。すなわち、第二の防汚層は、前述した第一の防汚層と同様な構成によって得ることができる。
The number of protrusions in the antifouling layer is not particularly limited, but is preferably 30 to 100 / μm 2, and more preferably 50 to 100 / μm 2 . The number of protrusions can be measured, for example, by observing the film surface obliquely with a scanning electron microscope.
The second antifouling layer is sprinkled with JIS test powder and allowed to stand for 10 seconds, tilted 135 ° with respect to the horizontal plane, and brought into contact with the ground twice at a rate of 10 cm / second from a height of 3 cm. And measuring the haze value 10 times, the value obtained by subtracting the haze value before the test from the average value is within 1.0.
More preferably, the second antifouling layer is the first antifouling layer. That is, the second antifouling layer can be obtained by the same configuration as the first antifouling layer described above.
 防汚層の算術平均粗さ(以下、「Ra」ともいう。)は、特に限定されないが、5~30nmが好ましく、6~25nmがより好ましく、7~20nmが特に好ましい。Raが5nm以上であれば、単独粒子およびバインダーを含む凸部の頂点より膜厚が薄い部分と汚れとの接触が抑えられ、より優れた防汚性が得られる。30nm以下であれば、耐摩耗強度に優れる。Raは、走査型プローブ顕微鏡で測定することができる。 The arithmetic average roughness (hereinafter also referred to as “Ra”) of the antifouling layer is not particularly limited, but is preferably 5 to 30 nm, more preferably 6 to 25 nm, and particularly preferably 7 to 20 nm. When Ra is 5 nm or more, the contact between the portion having a smaller film thickness than the apex of the convex portion including single particles and the binder and dirt is suppressed, and more excellent antifouling property is obtained. If it is 30 nm or less, it is excellent in abrasion resistance strength. Ra can be measured with a scanning probe microscope.
<粒子>
 本発明の突起体を構成する凝集体の粒子は、後述するバインダーと共に集合体を形成し、防汚層の表面に突起体を形成できるものであれば特に限定されない。粒子として、無機粒子および有機粒子が挙げられ、無機粒子が好ましい。無機粒子としては、シリカ、チタニア、アルミナ、ジルコニア等の金属酸化物の粒子が挙げられる。粒子として、シリカの粒子が好ましい。粒子がシリカの粒子であれば、光の散乱が抑制され、基体の色味を損なわず、特に基体がガラスの場合に粒子がシリカの粒子であることが好ましい。
 粒子は、1種単独であってもよく、2種以上の組み合わせであってもよい。
 粒子が2種以上の組合せである場合は、シリカの含有率が、50質量%以上が好ましく、75質量%以上がより好ましい。
<Particle>
The aggregate particles constituting the protrusion of the present invention are not particularly limited as long as they can form an aggregate together with a binder described later and can form a protrusion on the surface of the antifouling layer. Examples of the particles include inorganic particles and organic particles, and inorganic particles are preferable. Examples of the inorganic particles include metal oxide particles such as silica, titania, alumina, and zirconia. As the particles, silica particles are preferable. If the particles are silica particles, light scattering is suppressed and the color of the substrate is not impaired. In particular, when the substrate is glass, the particles are preferably silica particles.
The particles may be used alone or in combination of two or more.
When the particles are a combination of two or more, the silica content is preferably 50% by mass or more, and more preferably 75% by mass or more.
 粒子の形状は、特に限定されないが、パールネックレス状または鎖状が好ましい。粒子として、パールネックレス状シリカが特に好ましい。粒子がパールネックレス状シリカであれば、防汚層が形成するときに、より適切な凹凸を形成できる突起体が形成されやすく、防汚性が向上する傾向がある。 The shape of the particles is not particularly limited, but a pearl necklace shape or a chain shape is preferable. As the particles, pearl necklace-like silica is particularly preferable. If the particles are pearl necklace-like silica, when the antifouling layer is formed, protrusions capable of forming more appropriate irregularities are easily formed, and the antifouling property tends to be improved.
 パールネックレス状の粒子の場合、その粒子の平均一次粒子径は、特に限定されないが、5~300nmが好ましく、10~100nmがより好ましく、10~50nmがさらに好ましく、10~30nmが特に好ましい。粒子の平均粒子径が5nm以上である場合、突起体を形成しやすくなり、防汚性が向上する傾向がある。また、粒子の平均粒子径が300nm以下であれば、ヘイズ値を小さくできる。 In the case of pearl necklace-like particles, the average primary particle diameter of the particles is not particularly limited, but is preferably 5 to 300 nm, more preferably 10 to 100 nm, further preferably 10 to 50 nm, and particularly preferably 10 to 30 nm. When the average particle diameter of the particles is 5 nm or more, it becomes easy to form protrusions and the antifouling property tends to be improved. Moreover, if the average particle diameter of particle | grains is 300 nm or less, a haze value can be made small.
 また、パールネックレス状の粒子の場合、その粒子の二次粒子径は、40~200nmが好ましく、50~100nmがより好ましく、60~90nmが特に好ましい。 In the case of pearl necklace-like particles, the secondary particle diameter of the particles is preferably 40 to 200 nm, more preferably 50 to 100 nm, and particularly preferably 60 to 90 nm.
 なお、パールネックレス状粒子を用いる場合、本発明の効果を損なわない範囲内で、パールネックレス状粒子と比較して球状部分が少ない鎖状粒子を併用してもよい。また、球状粒子を本発明の効果を損なわない範囲内で併用してもよい。 In addition, when using a pearl necklace-like particle | grain, you may use together the chain particle with few spherical parts compared with a pearl necklace-like particle within the range which does not impair the effect of this invention. Moreover, you may use a spherical particle together within the range which does not impair the effect of this invention.
 鎖状粒子としては、例えば、10~100nmの平均一次粒径dを有し、60~500nmの平均長さ(L)、および3~20nmの平均一次粒径に対する平均長さの比(L/d)を有する鎖状粒子が挙げられる。
 球状粒子としては、1~1000nmの平均一次粒径dを有する球状粒子が挙げられる。
The chain particles have, for example, an average primary particle diameter d of 10 to 100 nm, an average length (L) of 60 to 500 nm, and a ratio of the average length to the average primary particle diameter of 3 to 20 nm (L / and chain particles having d).
Examples of the spherical particles include spherical particles having an average primary particle diameter d of 1 to 1000 nm.
 パールネックレス状シリカ粒子の市販品として、ST-PS-S、ST-PS-SO、ST-PS-M、ST-PS-MO(いずれも、日産化学工業社製のパールネックレス状シリカゾル)が挙げられる。
 鎖状シリカ粒子の市販品として、ST-OUP、ST-U(いずれも、日産化学工業社製の鎖状のシリカゾル)が挙げられる。
 球状シリカ粒子の市販品として、IPA-ST、IPA-STL、IPA-STZL(いずれも、日産化学工業社製のイソプロピルアルコール分散シリカゾル)が挙げられる。
Examples of commercially available pearl necklace-like silica particles include ST-PS-S, ST-PS-SO, ST-PS-M, and ST-PS-MO (all of which are pearl necklace-like silica sols manufactured by Nissan Chemical Industries, Ltd.). It is done.
Commercially available chain silica particles include ST-OUP and ST-U (both are chain silica sols manufactured by Nissan Chemical Industries, Ltd.).
Examples of commercially available spherical silica particles include IPA-ST, IPA-STL, and IPA-STZL (all of which are isopropyl alcohol-dispersed silica sols manufactured by Nissan Chemical Industries, Ltd.).
<バインダー>
 バインダーは、特に限定されず、たとえば無機バインダーが挙げられる。バインダーは、親水性無機バインダーであると防汚性が高くなるので好ましい。親水性無機バインダーとして、シリカ、アルミナ、チタニア、ジルコニア、酸化タンタル、酸化スズ等の金属酸化物が挙げられる。バインダーは扱いやすさの点でシリカバインダーがより好ましい。シリカバインダーは、加水分解性基を有するシラン化合物の加水分解物またはケイ酸の加水分解物が好ましく、アルカリ成分含有量が小さいことが好ましい。アルカリ含有量が少ないシリカバインダーとして、アルコキシシラン化合物の加水分解物またはケイ酸のアルカリ金属塩からアルカリ金属の一部を除去した脱塩ケイ酸の加水分解物があげられる。なお、これらの加水分解物には、未反応のシラノール基(Si-OH)基を有していてもよい。
<Binder>
A binder is not specifically limited, For example, an inorganic binder is mentioned. The binder is preferably a hydrophilic inorganic binder because the antifouling property is increased. Examples of the hydrophilic inorganic binder include metal oxides such as silica, alumina, titania, zirconia, tantalum oxide, and tin oxide. The binder is more preferably a silica binder in terms of ease of handling. The silica binder is preferably a hydrolyzate of a silane compound having a hydrolyzable group or a hydrolyzate of silicic acid, and preferably has a low alkali component content. Examples of the silica binder having a low alkali content include a hydrolyzate of an alkoxysilane compound or a hydrolyzate of demineralized silicic acid obtained by removing a part of an alkali metal from an alkali metal salt of silicic acid. Note that these hydrolysates may have an unreacted silanol group (Si—OH) group.
 バインダーが2種以上のバインダーの混合物である場合、シリカの含有率が、50質量%以上が好ましく、好ましくは75質量%以上がより好ましい。
 バインダーは、後述するバインダー前駆体の硬化物が用いられる。
When the binder is a mixture of two or more binders, the silica content is preferably 50% by mass or more, and more preferably 75% by mass or more.
As the binder, a cured product of a binder precursor described later is used.
 防汚層において、突起体を形成できる粒子(たとえば、パールネックレス状粒子、鎖状粒子)とバインダーとの体積比(粒子/バインダー)が、7/93~95/5であるのが好ましい。粒子とバインダーとの体積比が7/93以上であれば、基体表面に適切な突起体の頂点間距離の平均値を有する防汚層を形成できるために、防汚性がより向上する傾向があり、95/5以下であれば、基体と防汚層との密着力が充分である傾向がある。 In the antifouling layer, the volume ratio (particle / binder) of particles capable of forming protrusions (for example, pearl necklace particles, chain particles) to the binder is preferably 7/93 to 95/5. If the volume ratio of the particles to the binder is 7/93 or more, an antifouling layer having an average distance between the apexes of appropriate protrusions can be formed on the substrate surface, and thus the antifouling property tends to be further improved. If it is 95/5 or less, the adhesion between the substrate and the antifouling layer tends to be sufficient.
<更なる成分>
 防汚層は、本発明の効果を損なわない範囲内で、更なる成分を含有することができる。更なる成分として、界面活性剤、泡立ち防止剤、レベリング剤、紫外線吸収剤、粘度調整剤、酸化防止剤、防カビ剤、顔料等が挙げられる。更なる成分の含有率は、防汚層中、5質量%以下が好ましく、1質量%以下がより好ましい。
<Additional ingredients>
The antifouling layer can contain further components as long as the effects of the present invention are not impaired. Further components include surfactants, antifoaming agents, leveling agents, ultraviolet absorbers, viscosity modifiers, antioxidants, fungicides, pigments and the like. The content of the further components is preferably 5% by mass or less, and more preferably 1% by mass or less in the antifouling layer.
<膜厚>
 防汚層の膜厚は、特に限定されないが、20~350nmが好ましく、30~300nmがより好ましく、50~300nmが特に好ましい。防汚層の膜厚が、20nm以上であれば、防汚性が充分に発揮する傾向があり、350nm以下であれば、機械的強度に優れ、また経済性に優れる。ここで膜厚は、電子顕微鏡等により得られた膜断面画像から、基板の防汚層を有する面に平行な方向に1.5μmの範囲において、最大高さを有する突起体から、高い順に10番目の突起体までを10点抽出し、それら10点の突起体の高さを平均することにより求められる値である。
<Film thickness>
The thickness of the antifouling layer is not particularly limited, but is preferably 20 to 350 nm, more preferably 30 to 300 nm, and particularly preferably 50 to 300 nm. If the film thickness of the antifouling layer is 20 nm or more, the antifouling property tends to be exhibited sufficiently, and if it is 350 nm or less, the mechanical strength is excellent and the economy is excellent. Here, the film thickness is 10 in descending order from the protrusion having the maximum height in the range of 1.5 μm in the direction parallel to the surface having the antifouling layer of the substrate from the film cross-sectional image obtained by an electron microscope or the like. This is a value obtained by extracting 10 points up to the first protrusion and averaging the heights of the protrusions at the 10 points.
<防汚性>
 本防汚性物品は、様々な汚れに対して、優れた防汚性を有する。汚れとして、大気中の砂塵、コンクリート壁由来のアルカリ分が残ったもの(水の乾きジミ)、水アカ、ガラス自体のヤケなどの無機系の汚れ、大気中の煤煙や自動車の排気ガス、たばこの煙、油などの有機系の汚れが挙げられる。防汚性物品は、砂塵、油汚れに対して、より優れた防汚効果を有する。防汚性物品の防汚性は、例えば、後述の実施例における「汚れ付着試験」(すなわち、乾燥粉ふりかけ試験)により測定されるヘイズ値変化で評価することができる。防汚性物品のヘイズ値変化は、後述の実施例における「汚れ付着試験」により測定された場合、5%以下が好ましく、2%以下がより好ましく、1%以下が特に好ましい。ヘイズ値変化が5%超であると、実用上の防汚性が発現できない。なお、ヘイズ値は、市販のヘイズ測定装置を用いて測定することができる。
<Anti-fouling property>
This antifouling article has excellent antifouling properties against various stains. As dirt, inorganic dirt such as dust remaining in the atmosphere, alkali wall residue from the concrete wall (water dry spots), water stains, burns on the glass itself, smoke in the atmosphere, automobile exhaust gas, tobacco Organic stains such as smoke and oil. The antifouling article has a better antifouling effect against dust and oil stains. The antifouling property of the antifouling article can be evaluated by, for example, a change in haze value measured by a “dirt adhesion test” (that is, a dry powder sprinkling test) in Examples described later. The change in haze value of the antifouling article is preferably 5% or less, more preferably 2% or less, and particularly preferably 1% or less, when measured by a “dirt adhesion test” in Examples described later. When the change in haze value exceeds 5%, practical antifouling properties cannot be exhibited. The haze value can be measured using a commercially available haze measuring device.
(防汚層形成組成物)
 防汚層形成組成物は、突起体を形成できる粒子とバインダー前駆体とを含む。
(Anti-fouling layer forming composition)
The antifouling layer forming composition includes particles capable of forming protrusions and a binder precursor.
<突起体を形成できる粒子>
 突起体を形成できる粒子としては、平均一次粒子径が5~300nmであるパールネックレス状シリカが好ましい。球状のシリカ粒子を含む防汚層形成組成物を基体表面に塗布したのでは、粒子が比較的均一に積層しやすいため、得られる被膜は防汚性を充分に発現させる程度の凹凸は形成されない。
<Particles that can form protrusions>
As particles capable of forming protrusions, pearl necklace-like silica having an average primary particle diameter of 5 to 300 nm is preferable. When a composition for forming an antifouling layer containing spherical silica particles is applied to the surface of the substrate, the particles are likely to be laminated relatively uniformly, so that the resulting coating does not have irregularities sufficient to exhibit antifouling properties. .
<バインダー前駆体>
 バインダー前駆体とは、加熱処理、脱溶媒処理または光硬化処理等によりバインダーを形成する成分である。バインダー前駆体は、無機バインダー前駆体が挙げられ、シリカ前駆体、アルミナ前駆体、チタニア前駆体、ジルコニア前駆体、酸化タンタル前駆体、酸化スズ前駆体等の金属酸化物前駆体が挙げられる。シリカ前駆体として、加水分解性基を有するシラン化合物およびケイ酸が挙げられる。シリカ前駆体以外のバインダー前駆体として、加水分解性基を有する金属化合物が挙げられる。金属酸化物前駆体は、加水分解反応により金属酸化物を形成する成分である。バインダー前駆体として、シリカ前駆体が好ましい。防汚層形成組成物が、シリカ前駆体を含有することにより、形成される防汚層と基体との密着性をより向上させることができる。
 バインダー前駆体は、1種単独であってもよく、2種以上の組み合わせであってもよい。
<Binder precursor>
The binder precursor is a component that forms a binder by heat treatment, solvent removal treatment, photocuring treatment, or the like. Examples of the binder precursor include inorganic binder precursors, and examples include a metal oxide precursor such as a silica precursor, an alumina precursor, a titania precursor, a zirconia precursor, a tantalum oxide precursor, and a tin oxide precursor. Examples of the silica precursor include a silane compound having a hydrolyzable group and silicic acid. Examples of the binder precursor other than the silica precursor include a metal compound having a hydrolyzable group. The metal oxide precursor is a component that forms a metal oxide by a hydrolysis reaction. A silica precursor is preferable as the binder precursor. When the antifouling layer-forming composition contains a silica precursor, the adhesion between the antifouling layer to be formed and the substrate can be further improved.
One type of binder precursor may be used alone, or two or more types may be used in combination.
 シリカ前駆体としては、ケイ酸および加水分解性基を有するシラン化合物が挙げられる。シリカ前駆体としては、形成される防汚層と基体との密着性をより向上させるのでアルカリ金属含有量が少ないものが好ましく、たとえば後述するケイ酸のアルカリ金属塩からアルカリ金属の一部を除去した脱塩ケイ酸またはアルコキシシラン化合物もしくはその部分加水分解縮合物が好ましい。 Examples of the silica precursor include silicic acid and a silane compound having a hydrolyzable group. As the silica precursor, one having a low alkali metal content is preferable because it improves the adhesion between the antifouling layer to be formed and the substrate. For example, a part of the alkali metal is removed from the alkali metal salt of silicic acid described later. Desalted silicic acid or alkoxysilane compounds or partially hydrolyzed condensates thereof are preferred.
 ケイ酸として、オルトケイ酸、メタケイ酸、メタ二ケイ酸が挙げられ、メタケイ酸が好ましい。ケイ酸は、ケイ酸のアルカリ金属塩からアルカリ金属の少なくとも一部を除去した脱塩ケイ酸(以下、単に「脱塩ケイ酸」ともいう。)が好ましい。脱塩ケイ酸は、陽イオン交換樹脂を用いて、ケイ酸のアルカリ金属塩の水溶液からアルカリ金属イオンを減らす方法により得られるのが好ましい。脱塩ケイ酸のアルカリ金属イオンの量は、特に限定されないが、ケイ酸100質量部に対して、アルカリ金属イオンが0.001~1質量部が好ましく、0.001~0.2質量部がより好ましく、0.001~0.15質量部が特に好ましい。ケイ酸のアルカリ金属イオン濃度は、ICP発光分析法にて測定することができる。 Examples of silicic acid include orthosilicic acid, metasilicic acid, and metadisilicic acid, with metasilicic acid being preferred. The silicic acid is preferably demineralized silicic acid obtained by removing at least part of the alkali metal from the alkali metal salt of silicic acid (hereinafter also simply referred to as “demineralized silicic acid”). Desalted silicic acid is preferably obtained by a method of reducing alkali metal ions from an aqueous solution of an alkali metal salt of silicic acid using a cation exchange resin. The amount of the alkali metal ion of the desalted silicic acid is not particularly limited, but the alkali metal ion is preferably 0.001 to 1 part by mass, and 0.001 to 0.2 part by mass with respect to 100 parts by mass of silicic acid. More preferred is 0.001 to 0.15 parts by mass. The alkali metal ion concentration of silicic acid can be measured by ICP emission analysis.
 陽イオン交換樹脂としては、特に限定されないが、強酸性陽イオン交換樹脂(RSOH型)、弱酸性陽イオン交換樹脂(RCOOH型)等が挙げられ、強酸性陽イオン交換樹脂が反応速度の点で好ましい。使用する陽イオン交換樹脂の量、接触時間、接触方法等を制御することで、減らすアルカリ金属イオンの量を調節できる。 The cation exchange resin is not particularly limited, a strongly acidic cation exchange resin (RSO 3 H type), weakly acidic cation exchange resin (RCOOH type) and the like, a strongly acidic cation exchange resin is a reaction rate This is preferable. The amount of alkali metal ions to be reduced can be adjusted by controlling the amount of cation exchange resin used, the contact time, the contact method, and the like.
 ケイ酸のアルカリ金属塩としては、ケイ酸ナトリウム、ケイ酸リチウムおよびケイ酸カリウム等が挙げられ、ケイ酸ナトリウムおよび/またはケイ酸リチウムが好ましく、特にケイ酸ナトリウムが好ましい。 Examples of the alkali metal salt of silicate include sodium silicate, lithium silicate, and potassium silicate. Sodium silicate and / or lithium silicate are preferable, and sodium silicate is particularly preferable.
 ケイ酸ナトリウムの水溶液としては、SiO/NaOのモル比が0.5~4程度のものが市販されている。ケイ酸ナトリウムの水溶液は、SiO/NaOのモル比が大きいものがアルカリ金属イオンを除去しやすいので好ましく、SiO/NaOのモル比が3以上のものが特に好ましい。 As an aqueous solution of sodium silicate, one having a SiO 2 / Na 2 O molar ratio of about 0.5 to 4 is commercially available. An aqueous solution of sodium silicate having a large SiO 2 / Na 2 O molar ratio is preferable because alkali metal ions can be easily removed, and an SiO 2 / Na 2 O molar ratio of 3 or more is particularly preferable.
 ケイ酸リチウムの水溶液としては、SiO/LiOの組成比が異なる材料が知られており、LiOの含有比が小さい材料がアルカリ金属イオンを除去しやすいので好ましい。市販のケイ酸リチウムとしては、SiO/LiOのモル比が3.5/1.0のもの、4.5/1.0のもの、および7.5/1.0のもの等がある。ケイ酸リチウムの水溶液は、SiO/LiOのモル比が大きいものがアルカリ金属イオンを除去しやすいので好ましく、SiO/LiOのモル比が7以上のものが特に好ましい。 As the aqueous solution of lithium silicate, materials having different composition ratios of SiO 2 / Li 2 O are known, and materials having a small content ratio of Li 2 O are preferable because alkali metal ions can be easily removed. Commercially available lithium silicates include those having a SiO 2 / Li 2 O molar ratio of 3.5 / 1.0, 4.5 / 1.0, and 7.5 / 1.0. is there. As the aqueous solution of lithium silicate, one having a large SiO 2 / Li 2 O molar ratio is preferable because alkali metal ions can be easily removed, and one having a SiO 2 / Li 2 O molar ratio of 7 or more is particularly preferable.
 加水分解性基を有するシラン化合物は、1分子中にケイ素原子に結合する1~4の加水分解性基を有する化合物である。加水分解性基として、アルコキシ基、イソシアナト基、アシルオキシ基、アミノキシ基、ハロゲン基等が挙げられ、アルコキシ基が好ましい。よって、加水分解性基を有するシラン化合物として、アルコキシシラン化合物が好ましい。また、アルコキシシラン化合物は、少なくとも一部の分子同士が加水分解縮合している縮合物(以下、「アルコキシシラン化合物の部分加水分解縮合物」ともいう。)であってもよい。 A silane compound having a hydrolyzable group is a compound having 1 to 4 hydrolyzable groups bonded to a silicon atom in one molecule. Examples of the hydrolyzable group include an alkoxy group, an isocyanato group, an acyloxy group, an aminoxy group, and a halogen group, and an alkoxy group is preferable. Therefore, an alkoxysilane compound is preferable as the silane compound having a hydrolyzable group. Further, the alkoxysilane compound may be a condensate in which at least some of the molecules are hydrolyzed and condensed (hereinafter also referred to as “partially hydrolyzed condensate of alkoxysilane compound”).
 アルコキシシラン化合物は、1分子中にケイ素原子に結合する1~4のアルコキシ基を有する化合物である。 The alkoxysilane compound is a compound having 1 to 4 alkoxy groups bonded to a silicon atom in one molecule.
 アルコキシシラン化合物として、下記一般式(I)で表される化合物が挙げられる。 Examples of the alkoxysilane compound include compounds represented by the following general formula (I).
 (RO)SiR (4-p)  (I)
 式中、Rは、それぞれ独立して炭素数1~4のアルキル基を示し、Rは、それぞれ独立して置換基を有していてもよい炭素数1~10のアルキル基を示し、pは1~4の数を示す。RまたはRが複数存在する場合、それらは互いに同一であっても、異なっていてもよい。
(R 1 O) p SiR 2 (4-p) (I)
In the formula, each R 1 independently represents an alkyl group having 1 to 4 carbon atoms, R 2 independently represents an optionally substituted alkyl group having 1 to 10 carbon atoms, p represents a number from 1 to 4. When a plurality of R 1 or R 2 are present, they may be the same as or different from each other.
 Rは、炭素数1~4のアルキル基であり、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、t-ブチルが挙げられ、メチル、エチルが好ましい。Rにおける、炭素数1~10のアルキル基は、直鎖または分岐状であり、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、t-ブチル、ヘキシル、デシル等が挙げられる。Rは、炭素数1~6のアルキル基が好ましい。Rにおける、置換基は、特に限定されないが、エポキシ基、グリシドキシ基、メタクリロイルオキシ基、アクリロイルオキシ基、イソシアナト基、ヒドロキシ基、アミノ基、フェニルアミノ基、アルキルアミノ基、アミノアルキルアミノ基、ウレイド基、メルカプト基等が挙げられる。なお、Rにおける、「炭素数1~10のアルキル基」は、置換基を除いたアルキル基部分の炭素数が1~10であることを意味する。 R 1 is an alkyl group having 1 to 4 carbon atoms, and examples thereof include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, and t-butyl, and methyl and ethyl are preferable. The alkyl group having 1 to 10 carbon atoms in R 2 is linear or branched, and examples thereof include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, hexyl, decyl and the like. R 2 is preferably an alkyl group having 1 to 6 carbon atoms. The substituent in R 2 is not particularly limited, but epoxy group, glycidoxy group, methacryloyloxy group, acryloyloxy group, isocyanato group, hydroxy group, amino group, phenylamino group, alkylamino group, aminoalkylamino group, ureido Group, mercapto group and the like. The “alkyl group having 1 to 10 carbon atoms” in R 2 means that the alkyl group portion excluding the substituent has 1 to 10 carbon atoms.
 アルコキシシラン化合物としては、テトラメトキシシラン、テトラエトキシシラン等の1分子中に4のケイ素原子に結合するアルコキシ基を有するテトラアルコキシシラン化合物;3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-イソシアナトプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルメチルジメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン等の1分子中にケイ素原子に結合する1~3のアルコキシ基を有するアルコキシシラン化合物が挙げられる。アルコキシシラン化合物としては、テトラアルコキシシラン化合物が好ましい。 Examples of the alkoxysilane compound include tetraalkoxysilane compounds having an alkoxy group bonded to four silicon atoms in one molecule such as tetramethoxysilane and tetraethoxysilane; 3-glycidoxypropyltrimethoxysilane, 3-glycidoxy Propyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-isocyanatopropyltrimethoxy Silane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyl 1 to 3 alkoxy groups bonded to silicon atoms in one molecule such as pyrmethyldimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, and 3-mercaptopropyltrimethoxysilane The alkoxysilane compound which has is mentioned. As the alkoxysilane compound, a tetraalkoxysilane compound is preferable.
<体積比>
 防汚層形成組成物において、突起体を形成できる粒子とバインダー前駆体との体積比(突起体を形成できる粒子/バインダー前駆体)は、7/93~95/5である。突起体を形成できる粒子とバインダー前駆体との体積比は、金属酸化物換算である。好ましい態様は、防汚層形成組成物が、平均一次粒子径が5~300nmであるパールネックレス状シリカとシリカ前駆体とを含む場合、パールネックレス状シリカとシリカ前駆体との、シリカ換算での体積比(パールネックレス状シリカ/シリカ前駆体)が、7/93~95/5である。また、前記シリカ前駆体は、脱塩ケイ酸、又はアルコキシシランの加水分解物が好ましい。
 防汚層形成組成物において、突起体を形成できる粒子とバインダー前駆体との、金属酸化物換算での体積比が7/93未満であれば、基体上に粒子が充分に存在せず、防汚性が劣り、95/5超であれば、防汚層と基体との密着性が充分な防汚層が得られない。なお、防汚層形成組成物がアルコキシシラン化合物の部分加水分解縮合物を含有する場合、アルコキシシラン化合物の部分加水分解縮合物の含有量は、シリカの換算量である。
<Volume ratio>
In the antifouling layer forming composition, the volume ratio of the particles capable of forming protrusions to the binder precursor (particles capable of forming protrusions / binder precursor) is 7/93 to 95/5. The volume ratio between the particles capable of forming the protrusions and the binder precursor is in terms of metal oxide. In a preferred embodiment, when the antifouling layer-forming composition contains pearl necklace-like silica having an average primary particle diameter of 5 to 300 nm and a silica precursor, the pearl necklace-like silica and the silica precursor are converted into silica. The volume ratio (pearl necklace-like silica / silica precursor) is 7/93 to 95/5. The silica precursor is preferably desalted silicic acid or a hydrolyzate of alkoxysilane.
In the antifouling layer forming composition, if the volume ratio in terms of metal oxide of the particles capable of forming protrusions and the binder precursor is less than 7/93, the particles are not sufficiently present on the substrate, and If the stain resistance is inferior and exceeds 95/5, an antifouling layer having sufficient adhesion between the antifouling layer and the substrate cannot be obtained. In addition, when an antifouling layer forming composition contains the partial hydrolysis-condensation product of an alkoxysilane compound, content of the partial hydrolysis-condensation product of an alkoxysilane compound is a conversion amount of a silica.
<水および酸触媒>
 防汚層形成組成物は、バインダー前駆体の加水分解縮合物が得られる条件において、水および酸触媒を含んでいてもよい。
<Water and acid catalyst>
The antifouling layer forming composition may contain water and an acid catalyst under the condition that a hydrolysis condensate of the binder precursor is obtained.
 防汚層形成組成物は、水を含んでいてもよい。防汚層形成組成物が水を含有することにより、加水分解縮合反応が進行する。水の量は、バインダー前駆体100質量部に対して、10~500質量部が好ましく、50~300質量部がより好ましい。ここで、バインダー前駆体の量は、金属酸化物換算の量である。 The antifouling layer forming composition may contain water. When the antifouling layer-forming composition contains water, hydrolysis condensation reaction proceeds. The amount of water is preferably 10 to 500 parts by weight and more preferably 50 to 300 parts by weight with respect to 100 parts by weight of the binder precursor. Here, the amount of the binder precursor is an amount in terms of metal oxide.
 防汚層形成組成物は、酸触媒を含んでいてもよい。防汚層形成組成物が、酸触媒を含有することにより、バインダー前駆体の加水分解縮合の反応速度を調整することが可能となる。酸触媒として、塩酸、硝酸、硫酸等が挙げられる。酸触媒の量は、バインダー前駆体100質量部に対して、0.1~5.0質量部が好ましく、0.2~3.5質量部がより好ましい。ここで、バインダー前駆体の量は、金属酸化物換算の量である。 The antifouling layer forming composition may contain an acid catalyst. When the antifouling layer-forming composition contains an acid catalyst, it becomes possible to adjust the reaction rate of hydrolysis condensation of the binder precursor. Examples of the acid catalyst include hydrochloric acid, nitric acid, sulfuric acid and the like. The amount of the acid catalyst is preferably 0.1 to 5.0 parts by mass, more preferably 0.2 to 3.5 parts by mass with respect to 100 parts by mass of the binder precursor. Here, the amount of the binder precursor is an amount in terms of metal oxide.
<溶剤>
 防汚層形成組成物は、溶剤を含有してもよい。防汚層形成組成物が、溶剤を含有することで、作業性が向上する傾向がある。溶剤は、突起体を形成できる粒子およびバインダー前駆体の分散性が良好であり、かつこれらの成分に対する反応性が低い溶剤であれば特に限定されない。溶剤は、アルコール(メタノール、エタノール、2-プロパノール等)、エステル(酢酸エステル(酢酸ブチル)等)、エーテル(ジエチレングリコールジメチルエーテル等)、ケトン(メチルエチルケトン等)、水(イオン交換水等)等が挙げられ、エステルおよびアルコールが好ましく、アルコールがより好ましい。溶剤は、1種単独であってもよく、2種以上の組み合わせであってもよい。なお、突起体を形成できる粒子およびバインダー前駆体の少なくとも1つは、それぞれ単独または2以上の組合せと溶剤との混合物として使用される場合がある。この場合には、該混合物中に含まれる溶剤を防汚層形成組成物における溶剤としてもよく、さらに他の溶剤を加えて防汚層形成組成物としてもよい。
<Solvent>
The antifouling layer forming composition may contain a solvent. There exists a tendency for workability | operativity to improve because an antifouling layer forming composition contains a solvent. The solvent is not particularly limited as long as the dispersibility of the particles capable of forming the protrusions and the binder precursor is good and the reactivity with these components is low. Solvents include alcohols (methanol, ethanol, 2-propanol, etc.), esters (acetic ester (butyl acetate), etc.), ethers (diethylene glycol dimethyl ether, etc.), ketones (methyl ethyl ketone, etc.), water (ion exchange water, etc.), etc. Esters and alcohols are preferred, and alcohols are more preferred. The solvent may be a single type or a combination of two or more types. In addition, at least one of the particles capable of forming the protrusions and the binder precursor may be used alone or as a mixture of two or more and a solvent. In this case, the solvent contained in the mixture may be used as the solvent in the antifouling layer-forming composition, or another solvent may be added to form the antifouling layer-forming composition.
 溶剤の含有量は、特に限定されないが、突起体を形成できる粒子およびバインダー前駆体の合計100質量部に対して、1,000~100,000質量部が好ましく、2,000~50,000質量部がより好ましい。溶剤の含有量が、突起体を形成できる粒子およびバインダー前駆体の合計100質量部に対して、1,000質量部以上であれば加水分解、縮合反応の急激な進行を防ぐことができ、100,000質量部以下であれば、加水分解、縮合反応がより進行する。ここで、突起体を形成できる粒子およびバインダー前駆体の量は、金属酸化物換算の量である。 The content of the solvent is not particularly limited, but is preferably 1,000 to 100,000 parts by weight, and 2,000 to 50,000 parts by weight with respect to a total of 100 parts by weight of the particles capable of forming protrusions and the binder precursor. Part is more preferred. If the content of the solvent is 1,000 parts by mass or more with respect to 100 parts by mass in total of the particles capable of forming the protrusions and the binder precursor, hydrolysis and condensation reaction can be prevented from proceeding rapidly. If it is 1,000 parts by mass or less, the hydrolysis and condensation reaction proceed more. Here, the quantity of the particle | grains and binder precursor which can form a protrusion is an amount of metal oxide conversion.
<更なる成分>
 防汚層形成組成物は、本発明の効果を損なわない範囲内で更なる成分を含有することができる。このような成分として、界面活性剤、泡立ち防止剤、レベリング剤、紫外線吸収剤、粘度調整剤、酸化防止剤、防カビ剤、顔料等が挙げられる。
<Additional ingredients>
The antifouling layer-forming composition can contain further components within a range not impairing the effects of the present invention. Examples of such components include surfactants, antifoaming agents, leveling agents, ultraviolet absorbers, viscosity modifiers, antioxidants, fungicides, and pigments.
 防汚層形成組成物中の更なる成分の含有量は、特に限定されないが、突起体を形成できる粒子およびバインダー前駆体の合計100質量部に対して、0.02~1質量部が好ましく、0.02~0.5質量部がより好ましく、0.02~0.3質量部が特に好ましい。ここで、バインダー前駆体の量は、金属酸化物換算の量である。 The content of the further component in the antifouling layer forming composition is not particularly limited, but is preferably 0.02 to 1 part by mass with respect to 100 parts by mass in total of the particles capable of forming the protrusion and the binder precursor, The amount is more preferably 0.02 to 0.5 parts by mass, and particularly preferably 0.02 to 0.3 parts by mass. Here, the amount of the binder precursor is an amount in terms of metal oxide.
[防汚性物品の製造方法]
 防汚性物品の製造方法は、基板上に、突起体を形成できる粒子とバインダー前駆体とを含み、該突起体を形成できる粒子と該バインダー前駆体との、金属酸化物換算での体積比が、7/93~95/5である防汚層形成組成物を付与して、防汚層形成組成物層を形成する工程と、該防汚層形成組成物層を加熱処理して、防汚層を形成する工程とを含む。
 より好ましい態様の防汚性物品の製造方法においては、基体上に、平均一次粒子径が5~300nmであるパールネックレス状シリカとシリカ前駆体とを含み、該パールネックレス状シリカと該シリカ前駆体との、シリカ換算での体積比が、7/93~95/5である防汚層形成組成物を付与して、防汚層形成組成物層を形成する工程と、該防汚層形成組成物層を加熱処理して、防汚層を形成する工程とを含む。
 防汚層形成組成物の付与(すなわち、塗布)は、ウェットコーティング法で行うことができる。ウェットコーティング法としては、特に限定されないが、スピンコート、ディップコート、スプレーコート、フローコート、カーテンフローコート、ダイコート、スキージコート等が挙げられ、スピンコートが好ましい。防汚層形成組成物は、基体上の少なくとも一部の表面に付与され、基体の少なくとも1つの主面の全面に付与されるのが好ましい。防汚層形成組成物層の厚みは、所望の防汚層が得られる厚みとなる量であれば特に限定されない。
[Method for producing antifouling article]
The method for producing an antifouling article comprises, on a substrate, a particle capable of forming a protrusion and a binder precursor, and a volume ratio in terms of metal oxide of the particle capable of forming the protrusion and the binder precursor. However, the antifouling layer forming composition of 7/93 to 95/5 is applied to form the antifouling layer forming composition layer, and the antifouling layer forming composition layer is heat-treated, Forming a dirty layer.
In a more preferred embodiment of the method for producing an antifouling article, a pearl necklace-like silica having an average primary particle size of 5 to 300 nm and a silica precursor are included on a substrate, the pearl necklace-like silica and the silica precursor. The antifouling layer forming composition having a volume ratio in terms of silica of 7/93 to 95/5 to form an antifouling layer forming composition layer, and the antifouling layer forming composition Heating the physical layer to form an antifouling layer.
The application (that is, application) of the antifouling layer-forming composition can be performed by a wet coating method. The wet coating method is not particularly limited, and examples thereof include spin coating, dip coating, spray coating, flow coating, curtain flow coating, die coating, and squeegee coating, and spin coating is preferable. The antifouling layer forming composition is preferably applied to at least a part of the surface of the substrate and applied to the entire surface of at least one main surface of the substrate. The thickness of the antifouling layer-forming composition layer is not particularly limited as long as it is an amount that provides a desired antifouling layer.
 基体上に付与される防汚層形成組成物の付与量は、前記した防汚層の厚みとなる量であれば特に限定されず、固形分として1.6~1,600g/mとすることが好ましく、8.0~800g/mとすることがより好ましい。本発明において、成分の固形分換算の含有量とは、水等の揮発性成分を除いた残渣の質量をいう。 The application amount of the antifouling layer-forming composition applied on the substrate is not particularly limited as long as it is an amount that provides the above-mentioned antifouling layer thickness, and the solid content is 1.6 to 1,600 g / m 2 . It is preferably 8.0 to 800 g / m 2 . In the present invention, the content of the component in terms of solid content refers to the mass of the residue excluding volatile components such as water.
 防汚層形成組成物を基体上に付与して形成された防汚層形成組成物層は、加熱処理することにより防汚層が形成される。バインダー前駆体は、加熱処理によって粒子と反応する場合がある。防汚層形成組成物が、パールネックレス状シリカおよびシリカ前駆体を含む場合、シリカ前駆体が反応して、バインダーが得られる。シリカ前駆体が、ケイ酸およびアルコキシシラン化合物である場合、ケイ酸およびアルコキシシラン化合物が加水分解縮合して、ケイ酸およびアルコキシシラン化合物の加水分解物であるシリカが得られる。なお、ケイ酸およびアルコキシシラン化合物の少なくとも一部は、場合により、パールネックレス状シリカ粒子の表面に存在するシラノール基と加水分解縮合する。 The antifouling layer forming composition layer formed by applying the antifouling layer forming composition on the substrate is heat-treated to form the antifouling layer. The binder precursor may react with the particles by heat treatment. When the antifouling layer forming composition contains pearl necklace-like silica and a silica precursor, the silica precursor reacts to obtain a binder. When the silica precursor is silicic acid and an alkoxysilane compound, the silicic acid and the alkoxysilane compound are hydrolyzed and condensed to obtain silica that is a hydrolyzate of the silicic acid and the alkoxysilane compound. In some cases, at least part of the silicic acid and the alkoxysilane compound is hydrolytically condensed with silanol groups present on the surface of the pearl necklace-like silica particles.
 防汚層形成組成物層の熱処理は、所定温度に設定した電気炉やガス炉や赤外加熱炉などの任意の加熱手段により行なうことができる。熱処理温度は、20~700℃が好ましく、80~500℃がより好ましく、100~400℃が特に好ましい。熱処理温度が20℃以上であると、基体と防汚層との密着力がより向上し、700℃以下であると、基材の熱による劣化が抑制され、また生産性に優れる。熱処理時間は、熱処理温度により異なるが、1~180分の間での熱処理が好ましく、より好ましくは5~120分であり、特に好ましくは10~60分である。熱処理時間が、1分以上であると、基体と防汚層との密着力がより向上し、180分以下であると、基材の熱による劣化が抑制され、また生産性に優れる。 The heat treatment of the antifouling layer forming composition layer can be performed by any heating means such as an electric furnace, a gas furnace, an infrared heating furnace set to a predetermined temperature. The heat treatment temperature is preferably 20 to 700 ° C, more preferably 80 to 500 ° C, and particularly preferably 100 to 400 ° C. When the heat treatment temperature is 20 ° C. or higher, the adhesion between the substrate and the antifouling layer is further improved, and when it is 700 ° C. or lower, deterioration of the substrate due to heat is suppressed, and the productivity is excellent. The heat treatment time varies depending on the heat treatment temperature, but heat treatment for 1 to 180 minutes is preferable, more preferably 5 to 120 minutes, and particularly preferably 10 to 60 minutes. When the heat treatment time is 1 minute or more, the adhesion between the substrate and the antifouling layer is further improved, and when it is 180 minutes or less, deterioration of the base material due to heat is suppressed and the productivity is excellent.
[カバーガラス]
 本防汚性物品は、たとえばカバーガラスである。カバーガラスは、例えば太陽電池、集光レンズまたは集光ミラーのカバーガラスである。集光レンズまたは集光ミラーは、たとえば集光型太陽熱発電装置または集光型太陽光発電装置等に用いられる。
 本発明のカバーガラスは、JIS試験粉体を振りかけて10秒静置し、水平面に対して135°傾け、3cmの高さから10cm/秒の勢いで2回地面に接触させて前記粉体を落とし、ヘイズ値を測定することを10回繰り返し、その平均値から試験前のヘイズ値を引いた値が1.0以内である。本カバーガラスは雨水が少ない環境に設置しても高い防汚性能を示すので好ましい。
[その他の用途]
 本防汚性物品の用途としては、カバーガラスの他、窓ガラス(例えば、自動車、鉄道、船舶、飛行機等の輸送機器用窓ガラス)、壁(例えば、間仕切り、道路壁等)、冷蔵ショーケース、鏡(例えば、洗面化粧台用鏡、浴室用鏡等)、光学機器、タイル、便器、浴槽、浴室用壁、洗面化粧台、カーテンウォール、アルミサッシ、水栓金具、建築用ボード、レンズ、集光ミラーが挙げられる。
 本防汚性物品は、砂漠等の雨が少ない地域における屋外での使用に、特に適している。
[cover glass]
The antifouling article is, for example, a cover glass. The cover glass is, for example, a cover glass of a solar cell, a condenser lens, or a condenser mirror. A condensing lens or a condensing mirror is used for a concentrating solar power generation device or a concentrating solar power generation device, for example.
The cover glass of the present invention is sprinkled with JIS test powder, left still for 10 seconds, tilted 135 ° with respect to the horizontal surface, and brought into contact with the ground twice at a rate of 10 cm / second from a height of 3 cm. Drop and measure the haze value 10 times, and the value obtained by subtracting the haze value before the test from the average value is within 1.0. This cover glass is preferable because it exhibits high antifouling performance even when installed in an environment with little rainwater.
[Other uses]
Applications of this antifouling article include cover glass, window glass (for example, window glass for transportation equipment such as automobiles, railways, ships, airplanes), walls (for example, partitions, road walls, etc.), refrigerated showcases. , Mirrors (for example, vanity mirrors, bathroom mirrors, etc.), optical equipment, tiles, toilet bowls, bathtubs, bathroom walls, vanity tables, curtain walls, aluminum sashes, faucets, building boards, lenses, A condensing mirror is mentioned.
This antifouling article is particularly suitable for outdoor use in areas with little rain, such as deserts.
 以下、本発明の実施例を挙げてさらに説明するが、本発明はこれらの実施例に限定されるものではない。なお、以下に説明する例1~例3および例16が実施例であり、例4~例15および例17が比較例である。 Hereinafter, examples of the present invention will be further described, but the present invention is not limited to these examples. Examples 1 to 3 and 16 described below are examples, and examples 4 to 15 and 17 are comparative examples.
[例1]
(バインダー前駆体(1)(脱塩ケイ酸ソーダ液)の調製)
 蒸留水の237.5gを撹拌しながら、これにケイ酸ソーダ4号(日本化学工業社製、(SiO:24.0質量%、NaO:7.0質量%。SiO/NaOのモル比:3.5/1)の62.5g、陽イオン交換樹脂(三菱化学社製、ダイヤイオンSK1BH)の180gとをこの順で加え、10分以上撹拌した後、吸引ろ過により陽イオン交換樹脂を分離し、シリカ換算の固形分濃度が5質量%の脱塩ケイ酸ソーダ液として、酸化ケイ素前駆体であるバインダー前駆体(1)を得た。
[Example 1]
(Preparation of binder precursor (1) (desalted sodium silicate solution))
While stirring 237.5 g of distilled water, sodium silicate No. 4 (manufactured by Nippon Chemical Industry Co., Ltd., (SiO 2 : 24.0% by mass, Na 2 O: 7.0% by mass. SiO 2 / Na 2 62.5 g of a molar ratio of O: 3.5 / 1) and 180 g of cation exchange resin (manufactured by Mitsubishi Chemical Corporation, Diaion SK1BH) were added in this order, and the mixture was stirred for 10 minutes or more and then positively filtered by suction filtration. The ion exchange resin was separated, and a binder precursor (1), which is a silicon oxide precursor, was obtained as a desalted sodium silicate solution having a solid content concentration in terms of silica of 5% by mass.
(防汚層形成用組成物の調製)
 2-プロパノール(純正化学社製)の6.58gを撹拌しながら、これに突起体を形成できる粒子として選ばれた10~18nmの球状粒子が80~120nmの長さに結合したパールネックレス状シリカの分散液(日産化学社製、スノーテックスPS-SO、平均一次粒子径15nm、平均二次粒子径88nm)の1.19g、バインダー前駆体(1)の2.18gとをこの順で加え、シリカ換算固形分が2.95質量%、粒子(パールネックレス状シリカ)とバインダー前駆体(脱塩ケイ酸ソーダ液)とのシリカ換算固形分体積比率が60/40である防汚層形成用組成物(A1)を調製した。
(Preparation of antifouling layer forming composition)
A pearl necklace-like silica in which spherical particles of 10 to 18 nm selected as particles capable of forming protrusions are bonded to a length of 80 to 120 nm while stirring 6.58 g of 2-propanol (manufactured by Junsei Kagaku) 1.19 g of a dispersion liquid (manufactured by Nissan Chemical Co., Ltd., Snowtex PS-SO, average primary particle diameter 15 nm, average secondary particle diameter 88 nm) and 2.18 g of the binder precursor (1) were added in this order, Antifouling layer-forming composition having a silica-converted solid content of 2.95% by mass, and a silica-converted solid content volume ratio of particles (pearl necklace-like silica) and binder precursor (desalted sodium silicate liquid) of 60/40. A product (A1) was prepared.
(防汚性物品の製造)
 スピンコータ―に、基体として選ばれた、室温に保持したソーダライムガラス板(旭硝子製、品番FL3.5、縦100mm、横100mm、厚み3.5mm)をセットし、防汚層形成用組成物(A1)をソーダライムガラス板の表面に2.0g滴下し、スピンコートした後、300℃で30分間加熱処理し、防汚層形成組成物層を焼成し、防汚層が形成された防汚性物品を製造した。例1で得られた防汚性物品の、表面および断面の走査型電子顕微鏡写真を、それぞれ、図2および図3に示す。
(Manufacture of antifouling products)
A soda lime glass plate (made by Asahi Glass, product number FL3.5, length 100 mm, width 100 mm, thickness 3.5 mm) selected as a substrate and set at a room temperature is set on a spin coater, and an antifouling layer forming composition ( 2.0 g of A1) was dropped on the surface of a soda lime glass plate, spin-coated, then heat-treated at 300 ° C. for 30 minutes, and the antifouling layer forming composition layer was baked to form an antifouling layer. A product was manufactured. Scanning electron micrographs of the surface and cross section of the antifouling article obtained in Example 1 are shown in FIGS. 2 and 3, respectively.
[例2~例5]
 粒子とバインダー前駆体との体積比(粒子/バインダー前駆体)を表1に示す量に変更した以外は、例1と同様にして、防汚層形成組成物A2~A5を調製した。次いで、防汚層形成組成物A2~A5を用いて、例1と同様にして、防汚性物品を製造した。
[Examples 2 to 5]
Antifouling layer forming compositions A2 to A5 were prepared in the same manner as in Example 1 except that the volume ratio of particles to binder precursor (particle / binder precursor) was changed to the amount shown in Table 1. Subsequently, an antifouling article was produced in the same manner as in Example 1 using the antifouling layer forming compositions A2 to A5.
[例6~例10]
 パールネックレス状シリカ分散液を、平均一次粒子径11nmの球状シリカ分散液(日産化学社製、スノーテックスOS)に変更し、粒子とバインダー前駆体との体積比を表1に示す量に変更した以外は、例1と同様にして、防汚層形成組成物A6~A10を調製した。次いで、防汚層形成組成物A6~A10を用いて、例1と同様にして、防汚性物品を製造した。
[Examples 6 to 10]
The pearl necklace-like silica dispersion was changed to a spherical silica dispersion having an average primary particle diameter of 11 nm (manufactured by Nissan Chemical Co., Snowtex OS), and the volume ratio of the particles to the binder precursor was changed to the amount shown in Table 1. Except for the above, antifouling layer-forming compositions A6 to A10 were prepared in the same manner as in Example 1. Next, an antifouling article was produced in the same manner as in Example 1 using the antifouling layer forming compositions A6 to A10.
[例11~例15]
 パールネックレス状シリカ分散液を平均一次粒子径30nmの球状シリカ分散液(日産化学社製、スノーテックスO-40)に変更し、粒子とバインダー前駆体との体積比を表1に示す量に変更した以外は、例1と同様にして、防汚層形成組成物A11~A15を調製した。次いで、防汚層形成組成物A11~A15を用いて、例1と同様にして、防汚性物品を製造した。
[Examples 11 to 15]
The pearl necklace-like silica dispersion was changed to a spherical silica dispersion (Nissan Chemical Co., Snowtex O-40) with an average primary particle size of 30 nm, and the volume ratio of the particles to the binder precursor was changed to the amount shown in Table 1. Except that, antifouling layer forming compositions A11 to A15 were prepared in the same manner as in Example 1. Subsequently, an antifouling article was produced in the same manner as in Example 1 using the antifouling layer forming compositions A11 to A15.
[例16]
(バインダー前駆体(2)(アルコキシシラン化合物の部分加水分解縮合物の溶液)の調製)
 2-プロパノール(純正化学社製)の16.45gを撹拌しながら、これにメチルシリケート重合体(多摩化学工業社製、Mシリケート51、シリカ換算固形分51%、メタノール溶媒)の1.18g、蒸留水の2.26g、10質量%の硝酸水溶液(関東化学社製)とをこの順で加えた後、25℃で60分撹拌し、シリカ換算固形分濃度が3質量%のアルコキシシラン化合物の部分加水分解縮合物の溶液として、酸化ケイ素前駆体であるバインダー前駆体(2)を得た。
[Example 16]
(Preparation of binder precursor (2) (solution of partially hydrolyzed condensate of alkoxysilane compound))
While stirring 16.45 g of 2-propanol (manufactured by Junsei Kagaku Co., Ltd.), 1.18 g of methyl silicate polymer (manufactured by Tama Chemical Industry Co., Ltd., M silicate 51, solid content 51% in terms of silica, methanol solvent), 2.26 g of distilled water and a 10% by mass nitric acid aqueous solution (manufactured by Kanto Chemical Co., Inc.) were added in this order, and the mixture was stirred at 25 ° C. for 60 minutes to obtain an alkoxysilane compound having a silica-converted solid content concentration of 3% by mass. A binder precursor (2), which is a silicon oxide precursor, was obtained as a solution of the partially hydrolyzed condensate.
(防汚層形成用組成物の調製)
 バインダー前駆体(1)をバインダー前駆体(2)に変更した以外は、例1と同様にして、防汚層形成用組成物A16を調製した。
(Preparation of antifouling layer forming composition)
An antifouling layer-forming composition A16 was prepared in the same manner as in Example 1 except that the binder precursor (1) was changed to the binder precursor (2).
(防汚性物品の製造)
 防汚層形成組成物A16を用いて、例1と同様にして、防汚性物品を製造した。
(Manufacture of antifouling products)
An antifouling article was produced in the same manner as in Example 1 using the antifouling layer forming composition A16.
[例17]
 防汚性組成物を塗布せず、防汚層を有しないガラス板について、そのまま評価を行った。
[Example 17]
The glass plate not coated with the antifouling composition and having no antifouling layer was evaluated as it was.
[防汚性物品の評価]
 各例における防汚性物品の評価は、以下のように行った。
[Evaluation of antifouling products]
The evaluation of the antifouling article in each example was performed as follows.
(粒子の平均一次粒子径)
 防汚性物品の防汚層を有する面に対して、上方から防汚層の表面を走査型電子顕微鏡(日立製作所社製、型式:S-4800)にて観察し得られた画像から、無作為に100個の粒子を抽出し、各粒子の直径の平均値を粒子の平均一次粒子径とした。
(Average primary particle size of particles)
From the image obtained by observing the surface of the antifouling layer from above with a scanning electron microscope (manufactured by Hitachi, Ltd., model: S-4800) with respect to the surface having the antifouling layer of the antifouling article, 100 particles were extracted for the purpose, and the average value of the diameter of each particle was defined as the average primary particle size of the particles.
(表面粗さ(Ra))
 走査型プローブ顕微鏡(SIIナノテクノロジー社製、型式SPA400)を用いて測定した。
<顕微鏡の設定条件>
 カンチレバーはSI-DF40(背面AL有)、XYデータ数256点、走査エリアは10μm×10μmで測定した。
(Surface roughness (Ra))
It measured using the scanning probe microscope (SII nanotechnology company make, type SPA400).
<Microscope setting conditions>
The cantilever was measured with SI-DF40 (with rear surface AL), 256 XY data, and scanning area of 10 μm × 10 μm.
(頂点間距離)
 防汚性物品の断面を走査型電子顕微鏡(日立製作所社製、型式:S-4800)にて観察し、得られた画像から、ガラス板の防汚層を有する面に平行な方向に無作為に抽出された1.5μmの範囲において、ガラス板表面からの高さが最も高い突起体を基準とし、その高さの90%以上の高さを有する突起体について、隣り合う突起体の頂点間の距離を全て測定し、平均値を算出した。
(Vertex distance)
The cross section of the antifouling article is observed with a scanning electron microscope (manufactured by Hitachi, Ltd., model: S-4800), and the obtained image is randomly selected in a direction parallel to the surface of the glass plate having the antifouling layer. In the range of 1.5 μm extracted, the projection having the highest height from the surface of the glass plate is used as a reference, and the projection having a height of 90% or more of the height is between apexes of adjacent projections. All the distances were measured, and the average value was calculated.
(凸部被覆率)
 基体の主面に対し上方から防汚層の表面を走査型電子顕微鏡(日立製作所社製、型式:S-4800)にて観察し、得られた画像から、画像変換ソフト(image J)により、無作為に抽出された1μm×1μmの範囲で粒子が付着している部分の面積比率を算出した。
(Convex coverage)
The surface of the antifouling layer is observed from above with the scanning electron microscope (manufactured by Hitachi, Ltd., model: S-4800) with respect to the main surface of the substrate. From the obtained image, image conversion software (image J) is used. The area ratio of the part to which the particles adhered in the range of 1 μm × 1 μm extracted at random was calculated.
(汚れ付着試験)
 防汚性物品を5cm×5cmにカットし、初期ヘイズ値を測定した。その後、防汚性物品にJIS Z 8901規格の試験粉体1の2種(けい砂)0.5gを、茶漉しを使用して、均等に振りかけた。10秒静置後、防汚性物品を水平面に対して135°傾け、3cmの高さから基体の端部を10cm/秒のスピードで2回地面に接触させ、粉体を落とし、再度ヘイズ値を測定した。これを10回繰り返し、8、9、10回目のヘイズ値を平均した値から初期ヘイズ値を引いた値を、乾燥砂かけ試験後ヘイズ値変化(ΔHaze)とした。
(Stain adhesion test)
The antifouling article was cut into 5 cm × 5 cm, and the initial haze value was measured. Thereafter, 0.5 g of JIS Z 8901 standard test powder 1 (silica sand) 0.5 g was sprinkled evenly on the antifouling article using a tea strainer. After standing for 10 seconds, the antifouling article is tilted 135 ° with respect to the horizontal plane, and the edge of the substrate is brought into contact with the ground twice at a speed of 10 cm / second from a height of 3 cm, the powder is dropped, and the haze value is again measured Was measured. This was repeated 10 times, and the value obtained by subtracting the initial haze value from the average value of the 8th, 9th and 10th haze values was defined as a change in haze value (ΔHaze) after the dry sanding test.
<ヘイズ値の測定条件>
 透光性部材のヘイズは、ヘイズ測定装置(ビックガードナー社製、型名:ヘイズガードプラス)を用いてC光源にて測定した。
<Measurement conditions of haze value>
The haze of the translucent member was measured with a C light source using a haze measuring device (Bic Gardner, model name: haze guard plus).
Figure JPOXMLDOC01-appb-T000001

 なお、表1中において、粒子の欄に記載した記号で示した粒子は、以下の通りである。
  PS-SO:スノーテックス PS―SO(日産化学社製)
  OS:スノーテックス OS(日産化学社製)
  O-40:スノーテックス O―40(日産化学社製)
Figure JPOXMLDOC01-appb-T000001

In Table 1, the particles indicated by the symbols described in the particle column are as follows.
PS-SO: Snowtex PS-SO (manufactured by Nissan Chemical Co., Ltd.)
OS: Snowtex OS (manufactured by Nissan Chemical Co., Ltd.)
O-40: Snowtex O-40 (manufactured by Nissan Chemical Co., Ltd.)
 表1に示されるように、例1~例3および例16の防汚性物品は、乾燥砂かけ試験の結果から防汚性に優れることがわかる。一方、防汚層を有さない例17は、防汚性が十分ではなかった。防汚層表面において粒子が存在する面積の割合が7%未満である例5の防汚性物品は、防汚性が十分ではなかった。防汚層の頂点間距離が100nm未満である、例6~例15の防汚性物品は、防汚性が十分ではなかった。 As shown in Table 1, it can be seen that the antifouling articles of Examples 1 to 3 and Example 16 are excellent in antifouling properties from the results of the dry sanding test. On the other hand, Example 17 having no antifouling layer did not have sufficient antifouling properties. The antifouling article of Example 5 in which the proportion of the area where particles are present on the surface of the antifouling layer was less than 7% did not have sufficient antifouling properties. The antifouling articles of Examples 6 to 15 in which the distance between the vertices of the antifouling layer was less than 100 nm were not sufficiently antifouling.
 本発明の防汚性物品は、従来の防汚性物品と比較して、防汚性により優れる。本発明の防汚性物品は、窓ガラス(例えば、自動車、鉄道、船舶、飛行機等の輸送機器用窓ガラス)、太陽電池用カバーガラス、壁(例えば、間仕切り、道路壁等)、冷蔵ショーケース、鏡(例えば、洗面化粧台用鏡、浴室用鏡等)、光学機器、タイル、便器、浴槽、浴室用壁、洗面化粧台、カーテンウォール、アルミサッシ、水栓金具、建築用ボード、レンズ等に使用できる。
 なお、2014年7月18日に出願された日本特許出願2014-147454号の明細書、特許請求の範囲、図面および要約書の全内容をここに引用し、本発明の開示として取り入れるものである。
The antifouling article of the present invention is superior in antifouling properties as compared with conventional antifouling articles. The antifouling article of the present invention includes window glass (for example, window glass for transportation equipment such as automobiles, railways, ships, airplanes), cover glass for solar cells, walls (for example, partitions, road walls, etc.), refrigerated showcases. , Mirrors (for example, vanity mirrors, bathroom mirrors, etc.), optical equipment, tiles, toilet bowls, bathtubs, bathroom walls, vanity tables, curtain walls, aluminum sashes, faucets, building boards, lenses, etc. Can be used for
It should be noted that the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2014-147454 filed on July 18, 2014 are incorporated herein by reference. .
1:防汚性物品、2:基体、3:粒子、4:バインダー、5:突起体、6:防汚層 1: antifouling article, 2: substrate, 3: particles, 4: binder, 5: protrusion, 6: antifouling layer

Claims (13)

  1.  基体と、該基体上に配置され、粒子の凝集体およびバインダーを含む複数の突起体を表面に有する防汚層とを有し、
     該突起体中、基体面からの最大高さを有する突起体を基準として、90%以上の高さを有する突起体Tについて、隣り合う該突起体Tの頂点間距離の平均値が100~1,000nmであり、
     前記防汚層が配置された基体の面積に対する前記粒子による総被覆面積の割合が12~100%である防汚性物品。
    A base, and an antifouling layer disposed on the base and having a plurality of protrusions containing aggregates of particles and a binder on the surface,
    With respect to the protrusion T having a height of 90% or more with reference to the protrusion having the maximum height from the substrate surface, the average value of the distances between the apexes of the adjacent protrusions T is 100 to 1. , 000 nm,
    The antifouling article, wherein the ratio of the total covered area of the particles to the area of the substrate on which the antifouling layer is disposed is 12 to 100%.
  2.  基体と、該基体上に配置された防汚層とを備えた防汚性物品であって、
     前記防汚層は、粒子の凝集体およびバインダーを含み、
     前記防汚層の表面は、複数の突起体を有し、
     前記防汚層は、JIS試験粉体を振りかけて10秒静置し、水平面に対して135°傾け、3cmの高さから10cm/秒のスピードで2回地面に接触させて前記粉体を落とし、ヘイズ値を測定することを10回繰り返し、その平均値から試験前のヘイズ値を引いた値が1.0以内である防汚性物品。
    An antifouling article comprising a substrate and an antifouling layer disposed on the substrate,
    The antifouling layer comprises an aggregate of particles and a binder,
    The surface of the antifouling layer has a plurality of protrusions,
    The antifouling layer is sprinkled with JIS test powder and allowed to stand for 10 seconds, tilted 135 ° with respect to the horizontal plane, and brought into contact with the ground twice at a speed of 10 cm / second from a height of 3 cm to drop the powder. The antifouling article having a value obtained by repeating the measurement of the haze value 10 times and subtracting the haze value before the test from the average value is within 1.0.
  3.  前記防汚層の表面Raが、5~30nmである、請求項1または2に記載の防汚性物品。 The antifouling article according to claim 1 or 2, wherein the surface Ra of the antifouling layer is 5 to 30 nm.
  4.  前記粒子の平均一次粒子径が、5~300nmである、請求項1~3のいずれか一項に記載の防汚性物品。 The antifouling article according to any one of claims 1 to 3, wherein the average primary particle diameter of the particles is 5 to 300 nm.
  5.  前記粒子が、パールネックレス状粒子または鎖状粒子である、請求項1~4のいずれか一項に記載の防汚性物品。 The antifouling article according to any one of claims 1 to 4, wherein the particles are pearl necklace particles or chain particles.
  6.  前記粒子が、パールネックレス状シリカである、請求項1~5のいずれか一項に記載の防汚性物品。 The antifouling article according to any one of claims 1 to 5, wherein the particles are pearl necklace-like silica.
  7.  前記粒子と前記バインダーとの体積比が、7/93~95/5である、請求項1~6のいずれか一項に記載の防汚性物品。 The antifouling article according to any one of claims 1 to 6, wherein a volume ratio of the particles to the binder is 7/93 to 95/5.
  8.  表面に防汚層を有する太陽電池用カバーガラスであって、前記防汚層は、粒子の凝集体およびバインダーを含み、かつ前記防汚層の表面は、複数の突起体を有しており、前記防汚層は、JIS試験粉体を振りかけて10秒静置し、水平面に対して135°傾け、3cmの高さから10cm/秒のスピードで2回地面に接触させて前記粉体を落とし、ヘイズ値を測定することを10回繰り返し、その平均値から試験前のヘイズ値を引いた値が1.0以内である太陽電池用カバーガラス。 A cover glass for a solar cell having an antifouling layer on the surface, the antifouling layer comprising an aggregate of particles and a binder, and the surface of the antifouling layer has a plurality of protrusions, The antifouling layer is sprinkled with JIS test powder and allowed to stand for 10 seconds, tilted 135 ° with respect to the horizontal plane, and brought into contact with the ground twice at a speed of 10 cm / second from a height of 3 cm to drop the powder. Measure the haze value 10 times and the solar glass cover glass has a value obtained by subtracting the haze value before the test from the average value within 1.0.
  9.  平均一次粒子径が5~300nmであるパールネックレス状シリカとシリカ前駆体とを含み、該パールネックレス状シリカと該シリカ前駆体との、シリカ換算での体積比が、7/93~95/5である防汚層形成組成物。 A pearl necklace-like silica having an average primary particle diameter of 5 to 300 nm and a silica precursor are included, and a volume ratio of the pearl necklace-like silica and the silica precursor in terms of silica is 7/93 to 95/5. An antifouling layer forming composition.
  10.  前記シリカ前駆体は、脱塩ケイ酸、又はアルコキシシランの加水分解物である請求項9に記載の防汚層形成組成物。 The antifouling layer forming composition according to claim 9, wherein the silica precursor is a desalted silicic acid or a hydrolyzate of alkoxysilane.
  11.  基板上に、突起体を形成できる粒子とバインダー前駆体とを含み、該突起体を形成できる粒子と該バインダー前駆体との、金属酸化物換算での体積比が、7/93~95/5である防汚層形成組成物を付与して、防汚層形成組成物層を形成する工程と、
     該防汚層形成組成物層を加熱処理して、防汚層を形成する工程と、
    を含む防汚性物品の製造方法。
    A volume ratio in terms of metal oxide between the particles capable of forming protrusions and a binder precursor on a substrate and the particles capable of forming protrusions and the binder precursor is 7/93 to 95/5. Applying the antifouling layer forming composition, and forming an antifouling layer forming composition layer,
    Heat-treating the antifouling layer forming composition layer to form an antifouling layer;
    A method for producing an antifouling article comprising
  12.  基体上に、平均一次粒子径が5~300nmであるパールネックレス状シリカとシリカ前駆体とを含み、該パールネックレス状シリカと該シリカ前駆体との、シリカ換算での体積比が、7/93~95/5である防汚層形成組成物を付与して、防汚層形成組成物層を形成する工程と、
     該防汚層形成組成物層を加熱処理して、防汚層を形成する工程と、
    を含む防汚性物品の製造方法。
    A pearl necklace-like silica having an average primary particle diameter of 5 to 300 nm and a silica precursor are included on a substrate, and the volume ratio of the pearl necklace-like silica and the silica precursor in terms of silica is 7/93. Applying the antifouling layer-forming composition of ~ 95/5 to form an antifouling layer-forming composition layer;
    Heat-treating the antifouling layer forming composition layer to form an antifouling layer;
    A method for producing an antifouling article comprising
  13.  前記シリカ前駆体が、ケイ酸のアルカリ金属塩からアルカリ金属の一部を除去した脱塩ケイ酸および/またはアルコキシシラン化合物もしくはその部分加水分解縮合物である、請求項12に記載の防汚性物品の製造方法。 The antifouling property according to claim 12, wherein the silica precursor is demineralized silicic acid and / or an alkoxysilane compound or a partially hydrolyzed condensate thereof obtained by removing a part of an alkali metal from an alkali metal salt of silicic acid. Article manufacturing method.
PCT/JP2015/070296 2014-07-18 2015-07-15 Antifouling article, method for producing same, antifouling layer-forming composition and cover glass for solar cells WO2016010080A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014147454A JP2017154899A (en) 2014-07-18 2014-07-18 Antifouling article and method for producing the same
JP2014-147454 2014-07-18

Publications (1)

Publication Number Publication Date
WO2016010080A1 true WO2016010080A1 (en) 2016-01-21

Family

ID=55078567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070296 WO2016010080A1 (en) 2014-07-18 2015-07-15 Antifouling article, method for producing same, antifouling layer-forming composition and cover glass for solar cells

Country Status (2)

Country Link
JP (1) JP2017154899A (en)
WO (1) WO2016010080A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017073726A1 (en) * 2015-10-28 2017-05-04 旭硝子株式会社 Stain-proof article and production method for stain-proof article
WO2018051958A1 (en) * 2016-09-16 2018-03-22 旭硝子株式会社 Antifouling article
WO2022030399A1 (en) * 2020-08-04 2022-02-10 ナガセケムテックス株式会社 Laminate and fabric coating composition
US20220112124A1 (en) * 2018-11-28 2022-04-14 Ut-Battelle, Llc Fused anti-soiling and anti-reflective coatings

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004174498A (en) * 1999-03-17 2004-06-24 Inax Corp Method for reducing rain streak fouling
WO2004052640A1 (en) * 2002-12-10 2004-06-24 Nippon Sheet Glass Co., Ltd. Article having functional coating film thereon, method for manufacture thereof, and applying material for forming functional coating film
JP2012150425A (en) * 2010-07-12 2012-08-09 Central Glass Co Ltd Coating liquid for forming low reflective film, preparation method for the same and low reflective member using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004174498A (en) * 1999-03-17 2004-06-24 Inax Corp Method for reducing rain streak fouling
WO2004052640A1 (en) * 2002-12-10 2004-06-24 Nippon Sheet Glass Co., Ltd. Article having functional coating film thereon, method for manufacture thereof, and applying material for forming functional coating film
JP2012150425A (en) * 2010-07-12 2012-08-09 Central Glass Co Ltd Coating liquid for forming low reflective film, preparation method for the same and low reflective member using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017073726A1 (en) * 2015-10-28 2017-05-04 旭硝子株式会社 Stain-proof article and production method for stain-proof article
WO2018051958A1 (en) * 2016-09-16 2018-03-22 旭硝子株式会社 Antifouling article
US20220112124A1 (en) * 2018-11-28 2022-04-14 Ut-Battelle, Llc Fused anti-soiling and anti-reflective coatings
WO2022030399A1 (en) * 2020-08-04 2022-02-10 ナガセケムテックス株式会社 Laminate and fabric coating composition

Also Published As

Publication number Publication date
JP2017154899A (en) 2017-09-07

Similar Documents

Publication Publication Date Title
JP3303696B2 (en) Photocatalytic hydrophilic coating composition
US9376593B2 (en) Multi-layer coatings
JP6989650B2 (en) A glass substrate with a low-reflection coating, a method for manufacturing a glass substrate with a low-reflection coating, and a photoelectric conversion device.
WO2017073726A1 (en) Stain-proof article and production method for stain-proof article
JP5157143B2 (en) Base with antireflection film
JP2009526638A (en) Coating system
JP5761346B2 (en) Inorganic hydrophilic coating liquid, hydrophilic coating obtained therefrom and member using the same
WO2001042155A1 (en) Low-reflection glass article
WO2016010080A1 (en) Antifouling article, method for producing same, antifouling layer-forming composition and cover glass for solar cells
JPWO2008072707A1 (en) Articles having a water repellent surface
TWI297032B (en) Films or structural exterior materials using coating composition having self-cleaning property and preparation method thereof
JP2002080830A (en) Hydrophilic member and its production method
WO2016204003A1 (en) Glass article and method for producing same
JP2000289134A (en) Article having hydrophilic surface and production thereof
JP6771388B2 (en) Method for manufacturing a glass plate with a low reflection coating and a glass plate with a low reflection coating
JP5553297B2 (en) Coating composition
JP2006076829A (en) Anti-fogging article and its producing method
JP2005350502A (en) Ultra water repellent film-coated article, method for producing the same and coating material for forming ultra water-repellent coated film
WO2018051958A1 (en) Antifouling article
JP2018127366A (en) Glass article and manufacturing method therefor
JP5967604B2 (en) Water-repellent alumina sol, water-repellent alumina film and method for producing the same
JP2009018946A (en) Method for forming transparent super-water-repellent film and glass substrate having transparent super-water-repellent film
JP2002356650A (en) Photocatalytic film-forming composition and photocatalytic member obtained by applying it
JP3298439B2 (en) Photocatalytic hydrophilic coating liquid
JP7083342B2 (en) A method for manufacturing a transparent substrate with a low-reflection film, a photoelectric conversion device, a coating liquid for forming a low-reflection film of a transparent substrate with a low-reflection film, and a transparent substrate with a low-reflection film.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15822785

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15822785

Country of ref document: EP

Kind code of ref document: A1