JPH11228942A - Water-repellent fluid and production of water-repellent film - Google Patents

Water-repellent fluid and production of water-repellent film

Info

Publication number
JPH11228942A
JPH11228942A JP3078898A JP3078898A JPH11228942A JP H11228942 A JPH11228942 A JP H11228942A JP 3078898 A JP3078898 A JP 3078898A JP 3078898 A JP3078898 A JP 3078898A JP H11228942 A JPH11228942 A JP H11228942A
Authority
JP
Japan
Prior art keywords
water
repellent
repellent liquid
liquid
dimer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3078898A
Other languages
Japanese (ja)
Other versions
JP3599998B2 (en
Inventor
Yoshinori Akamatsu
佳則 赤松
Shigeo Hamaguchi
滋生 濱口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP3078898A priority Critical patent/JP3599998B2/en
Priority to EP99102682A priority patent/EP0947478B1/en
Priority to DE1999626093 priority patent/DE69926093T2/en
Priority to US09/248,994 priority patent/US6235833B1/en
Publication of JPH11228942A publication Critical patent/JPH11228942A/en
Priority to US09/811,588 priority patent/US6461670B2/en
Application granted granted Critical
Publication of JP3599998B2 publication Critical patent/JP3599998B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Glass (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
  • Paints Or Removers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a water-repellent fluid which can form a water-repellent film having high strengths, high adhesive properties, durability, and abrasion resistance by controlling the degree of polycondensation of a fluoroalkylated silane compd. as a water-repellent agent and by causing the fluoroalkylated silane compd. in the water-repellent fluid to at least contain a dimer and a trimer. SOLUTION: Pref., at least a dimer and a trimer are formed in the water- repellent fluid by controlling the dehydration time in the polycondensation after the hydrolysis of starting materials comprising a fluoroalkylated silane compd., a diluting solvent, and an acidic water soln. Pref., the ratio (η) of the trimer to the dimer in the polymer is 0.06-0.5. The polymer in the fluid may comprise a monomer, a dimer, a trimer, and a tetramer and higher and pref. comprises at least 60 wt.% monomer, 1-25 wt.% dimer, 0.06-12.5 wt.% trimer, and up to 5 wt.% tetramer and higher.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガラス基板等表面
に撥水性被膜を形成するための撥水液および撥水性被膜
の製造方法に関し、建築用、自動車用、船舶用或いは航
空機用等の各種窓材、浴室用或いは自動車用等のミラ
ー、さらにはその他産業用など種々の分野の各種透明物
品等に利用できる撥水液および撥水性被膜の製造方法を
提供するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water-repellent liquid for forming a water-repellent film on a surface of a glass substrate or the like, and a method for producing the water-repellent film. An object of the present invention is to provide a method for producing a water-repellent liquid and a water-repellent film which can be used for window materials, mirrors for bathrooms or automobiles, and various other transparent articles in various fields such as industrial use.

【0002】[0002]

【従来の技術】最近、より優れた耐久性と撥水性を併せ
持ち、優れた撥水性能をより長く持続する透明な撥水性
被膜が望まれてきている。これらのニ−ズに答えるため
には、例えば高い耐摩耗性(耐トラバ−ス性)を有する
撥水性薄膜を備える撥水性基材とする必要がある。
2. Description of the Related Art In recent years, a transparent water-repellent coating which has both excellent durability and water repellency and maintains excellent water repellency for a long time has been desired. To meet these needs, for example, it is necessary to provide a water-repellent substrate provided with a water-repellent thin film having high abrasion resistance (traverse resistance).

【0003】そこで、本出願人が既に出願した特願平7
−294106号(特開平9−132433号公報)等
に記載している発明は、ガラス表面に高硬度で高機械的
強度、かつ耐久性に優れた高い比表面積で制御した特異
で微細な凹凸形状表層表面を有するベ−ス膜を形成し、
該ベ−ス膜を被覆する撥水膜を形成することで、該撥水
膜の付着効率と密着性を高め、さらに耐光性能を向上す
るようにしたものである。
[0003] In view of this, Japanese Patent Application No. Hei.
-294106 (Japanese Unexamined Patent Publication No. 9-132433) discloses a unique and fine uneven shape controlled on a glass surface with a high hardness, a high mechanical strength, and a high specific surface area excellent in durability. Forming a base film having a surface layer surface,
By forming a water-repellent film covering the base film, the adhesion efficiency and adhesion of the water-repellent film are improved, and the light resistance is further improved.

【0004】また、本出願人が既に出願した特願平8−
131595号(特開平9−309746号公報)等に
記載している発明は、ガラス基板の表面に撥水膜を形成
する際に、ガラス基板の温度が90〜200℃程度にあ
る状態でガラス基板表面(場合によっては方向性をもつ
筋状の疵をつけた微細な凹凸状ガラス基板表面)に撥水
膜層を形成することとし、耐候性、耐摩耗性、耐擦傷性
ならびに耐久性に格段に優れた撥水性能を発揮するよう
にしたものである。
[0004] Further, Japanese Patent Application No. Hei.
No. 131595 (Japanese Unexamined Patent Publication No. 9-309746) discloses a method of forming a water-repellent film on the surface of a glass substrate while keeping the temperature of the glass substrate at about 90 to 200 ° C. A water-repellent film layer is to be formed on the surface (in some cases, the surface of a finely uneven glass substrate with streak-like scratches having directionality), and it is remarkably excellent in weather resistance, abrasion resistance, scratch resistance and durability. It is designed to exhibit excellent water repellency.

【0005】また、特開平3−247537号公報に
は、撥水性ガラスの製造方法として、ガラス基板の表面
を研磨粉を用いて研磨洗浄をおこなう前処理工程と、ポ
リジアルキルシロキサンのアルキル基の水素を5%以上
フッ素原子に置換したシリコ−ン系撥水剤を前処理され
たガラス基板に塗布して塗布膜を形成する塗布工程と、
該塗布膜を硬化させてガラス基板に密着し膜厚が0.1
〜2μmの撥水性硬化皮膜を形成する硬化工程と、から
なる方法が記載され、該前処理工程で、アルミナや酸化
セリウム(1μm以下)などの微細な研磨粉を用いて研
磨洗浄することにより、撥水塗膜は、まずガラス表面に
存在するシラノ−ル基と反応して密着皮膜を形成し、次
いで表面の厚み方向への硬化を進行させることが記載さ
れている。
Japanese Patent Application Laid-Open No. 3-24737 discloses a pretreatment step in which the surface of a glass substrate is polished and cleaned by using a polishing powder, and a method for producing water-repellent glass. Coating a silicon-based water repellent, which has been replaced with fluorine atoms by 5% or more, on a pre-treated glass substrate to form a coating film;
The coated film is cured and adhered to a glass substrate to have a thickness of 0.1
And a curing step of forming a water-repellent cured film of about 2 μm. In the pretreatment step, polishing and washing are performed by using fine abrasive powder such as alumina or cerium oxide (1 μm or less). It is described that a water-repellent coating film first reacts with a silanol group present on the glass surface to form an adhesion film, and then proceeds to cure the surface in the thickness direction.

【0006】また、特開昭58−122979号公報や
特開昭58−129082号公報には、ガラス表面の撥
水撥油剤が記載されており、洗浄及びアセトンで洗浄
し、1%塩酸溶液に浸漬後乾燥したガラス板(ソ−ダ石
灰ガラス)を用意して、表面に調製済みの撥水撥油剤溶
剤溶液をアプリケ−タ−で塗布し、100%相対湿度
中、120℃あるいは160℃、20分間キュアリング
を行ったことが記載されている。
Japanese Patent Application Laid-Open Nos. 58-122797 and 58-129082 describe water- and oil-repellents for glass surfaces, which are washed and washed with acetone, and then washed with a 1% hydrochloric acid solution. Prepare a glass plate (soda-lime glass) dried after immersion, apply the prepared water / oil repellent solvent solution to the surface with an applicator, and apply it at 120 ° C or 160 ° C in 100% relative humidity. It is described that curing was performed for 20 minutes.

【0007】[0007]

【発明が解決しようとする課題】上述した例えば、本出
願人が既に出願している特願平7−294106号に記
載の撥水性のガラスは、前述したニ−ズに充分に答えう
るものであるものの、特異なベ−ス膜と撥水膜の2層構
造の膜構成と複雑であり、単純で簡便な単層膜であっ
て、より高性能を有する撥水性ガラスも望まれていると
ころである。
For example, the water-repellent glass described in Japanese Patent Application No. 7-294106 filed by the present applicant can sufficiently respond to the above-mentioned needs. However, there is a demand for a water-repellent glass which has a complicated and simple two-layer structure of a unique base film and a water-repellent film, is a simple and simple single-layer film, and has higher performance. is there.

【0008】また、本出願人が既に出願した特願平8−
131595号等に記載の撥水性ガラスは、単層膜でそ
の性能が向上し前記撥水性のガラスにより近づくような
性能を有する撥水性ガラスであるものの、製造時におけ
る作業性、特にその取り扱いが充分に簡便で高効率であ
るとは言い難い場合がある。
[0008] Japanese Patent Application No. Hei 8-
The water-repellent glass described in, for example, No. 131595 is a water-repellent glass whose performance is improved by a single-layer film and has a performance closer to the water-repellent glass, but the workability at the time of production, particularly the handling is sufficient. It is difficult to say that the method is simple and efficient.

【0009】また、特開平3−247537号に記載の
撥水性ガラスの製造方法におけるガラス基板表面を研磨
する前処理では、耐摩耗性については向上がみられるも
のの長期的な安定性には充分満足できるものとは言い難
いものである。
In the pretreatment for polishing the glass substrate surface in the method for producing water-repellent glass described in Japanese Patent Application Laid-Open No. Hei 3-247375, although the abrasion resistance is improved, the long-term stability is sufficiently satisfied. It is hard to say what you can do.

【0010】また、特開昭58−122979号公報や
特開昭58−129082号公報に記載のガラス表面の
撥水撥油剤に開示されている洗浄と塩酸による前処理も
上記と同様に、耐摩耗性の長期的な安定性には充分満足
できるものとは言い難いものである。
The washing and pretreatment with hydrochloric acid disclosed in Japanese Patent Application Laid-Open Nos. 58-122979 and 58-129082, which are disclosed in Japanese Patent Application Laid-Open Nos. 58-129082, are the same as described above. It is hard to say that the long-term stability of wear properties is sufficiently satisfactory.

【0011】すなわち、従来耐久性能を向上させるため
に下地膜を形成させるものは、複雑な管理条件と工程を
要しコスト高になっており、一方下地膜のないもので
は、一般的に撥水剤成分とガラス表面との反応性が不十
分であり、フルオロアルキル基含有シラン化合物を単に
希釈または加水分解しただけの撥水液を用いている限
り、満足した耐久性が得られていなかった。
That is, the conventional method of forming a base film to improve the durability performance requires complicated management conditions and steps and is costly. On the other hand, the structure without the base film is generally water-repellent. The reactivity between the agent component and the glass surface is insufficient, and satisfactory durability has not been obtained as long as a water-repellent liquid obtained by simply diluting or hydrolyzing a fluoroalkyl group-containing silane compound is used.

【0012】[0012]

【課題を解決するための手段】本発明は、従来のかかる
課題に鑑みてなしたものであって、フルオロアルキル基
含有シラン化合物の縮重合の程度を制御し、フルオロア
ルキル基含有シラン化合物が少なくとも2量体および3
量体よりなる重合度を含有する撥水液により得られた撥
水性被膜は、格段に優れた耐摩耗性(耐トラバ−ス性)
を有する。この撥水性被膜は、高硬度かつ高密着性であ
って耐久性や耐摩耗性とを併せ持ち、より長期的に優れ
た撥水性能を維持することができる。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and is intended to control the degree of polycondensation of a fluoroalkyl group-containing silane compound so that the fluoroalkyl group-containing silane compound has at least Dimer and 3
The water-repellent coating obtained by the water-repellent liquid containing the polymerization degree composed of the monomer has remarkably excellent abrasion resistance (traverse resistance).
Having. This water-repellent coating has high hardness and high adhesion, has both durability and abrasion resistance, and can maintain excellent water-repellent performance over a longer period of time.

【0013】すなわち本発明は、フルオロアルキル基含
有シラン化合物を有効成分とする撥水液を基材表面に塗
布し、該フルオロアルキル基を基材表面に固定化し撥水
性被膜を成膜するのに用いる撥水液において、撥水液中
のフルオロアルキル基含有シラン化合物は、少なくとも
2量体および3量体よりなる重合体を含有してなる撥水
液に関し、該撥水液はフルオロアルキル基含有シラン化
合物を加水分解および縮重合させることが好ましい。
That is, the present invention provides a method for applying a water-repellent liquid containing a fluoroalkyl group-containing silane compound as an active ingredient to a substrate surface and fixing the fluoroalkyl group on the substrate surface to form a water-repellent film. In the water-repellent liquid used, the fluoroalkyl group-containing silane compound in the water-repellent liquid relates to a water-repellent liquid containing a polymer composed of at least a dimer and a trimer, wherein the water-repellent liquid contains a fluoroalkyl group-containing liquid. Preferably, the silane compound is hydrolyzed and polycondensed.

【0014】なお、重合体における2量体に対する3量
体の割合(η=3量体/2量体)が0.06〜0.5で
あることが好ましく、さらに、該重合体の形成割合は2
量体が1〜25重量%、3量体が0.06〜12.5重
量%であるようにすると良い。
The ratio of the trimer to the dimer (η = trimer / dimer) in the polymer is preferably 0.06 to 0.5, and the ratio of the formation of the polymer is more preferable. Is 2
It is preferable that the content of the monomer is 1 to 25% by weight and the content of the trimer is 0.06 to 12.5% by weight.

【0015】また、撥水液中の重合体が、単量体、2量
体、3量体および4量体以上からなってもよく、その形
成割合が、単量体が60重量%以上、2量体が1〜25
重量%、3量体が0.06〜12.5重量%、4量体以
上が5重量%以下であることが好ましい。
Further, the polymer in the water-repellent liquid may be composed of a monomer, a dimer, a trimer and a tetramer or more. 1 to 25 dimers
It is preferable that the content by weight of trimers is 0.06 to 12.5% by weight, and that of tetramers or more is 5% by weight or less.

【0016】また、撥水液中のフルオロアルキル基含有
シラン化合物の含有量が、2重量%以上20重量%以下
であることが好ましい。また本発明は、フルオロアルキ
ル基含有シラン化合物を有効成分とする溶液を加水分解
および縮重合して調製してなる撥水液を基材表面に塗布
する工程と、次いで該撥水液に含まれるフルオロアルキ
ル基を該基材表面に固定化し撥水性被膜を形成する硬化
工程とからなる撥水性被膜の製造方法に関する。
The content of the fluoroalkyl group-containing silane compound in the water-repellent liquid is preferably from 2% by weight to 20% by weight. Further, the present invention includes a step of applying a water-repellent liquid prepared by hydrolyzing and condensation-polymerizing a solution containing a fluoroalkyl group-containing silane compound as an active ingredient to a substrate surface, and then included in the water-repellent liquid. And a curing step of forming a water-repellent film by fixing a fluoroalkyl group on the surface of the base material.

【0017】なお、フルオロアルキル基含有シラン化合
物、希釈溶剤、酸性水溶液からなる出発原料を加水分解
した後に縮重合する際の脱水時間を制御することによ
り、撥水液中に少なくとも2量体および3量体を形成さ
せることが好ましい。
By controlling the dehydration time during the condensation polymerization after hydrolyzing the starting material comprising the fluoroalkyl group-containing silane compound, the diluting solvent and the acidic aqueous solution, at least the dimer and trimer are contained in the water-repellent liquid. It is preferable to form a monomer.

【0018】また、希釈溶剤として、撥水剤のアルコキ
シ基含有シラン化合物中のアルコキシ基の種類に相当す
るアルコール以外の溶剤を用いることが好ましい。さら
に、基材がガラスの場合に、ガラス基板表面を研摩およ
び酸処理をすることにより表面を改質した面に撥水液を
塗布することが好ましい。
As the diluting solvent, it is preferable to use a solvent other than the alcohol corresponding to the type of the alkoxy group in the alkoxy group-containing silane compound of the water repellent. Further, when the substrate is glass, it is preferable to apply a water-repellent liquid to the surface whose surface has been modified by polishing and acid-treating the surface of the glass substrate.

【0019】さらにまた、撥水膜層を形成する面はフロ
ート法で製造されるガラスのトップ面またはロールアウ
ト法で製造される火作り面であることが好ましく、研摩
および酸処理をすることにより表面を改質したガラス表
面に撥水液を塗布することもできる。
Further, the surface on which the water-repellent film layer is formed is preferably a top surface of glass produced by a float method or a fire-making surface produced by a roll-out method. A water-repellent liquid can be applied to the glass surface whose surface has been modified.

【0020】[0020]

【発明の実施の形態】本発明の高耐久性撥水性被膜を形
成する撥水液は、フルオロアルキル基含有シラン化合物
からなる撥水剤と、希釈用の溶媒と、触媒としての酸性
水溶液を所定量混合したのち、所定時間撹拌して加水分
解反応を終結させ、次いで該溶液に脱水剤を添加し、所
定時間脱水処理を行って縮重合させることにより得るこ
とができる。
BEST MODE FOR CARRYING OUT THE INVENTION The water repellent for forming the highly durable water repellent film of the present invention comprises a water repellent comprising a fluoroalkyl group-containing silane compound, a solvent for dilution, and an acidic aqueous solution as a catalyst. After mixing quantitatively, the mixture is stirred for a predetermined time to terminate the hydrolysis reaction, and then a dehydrating agent is added to the solution, followed by a dehydration treatment for a predetermined time to perform condensation polymerization.

【0021】上記の出発原料としては、撥水剤としてフ
ルオロアルキルアルコキシシラン系化合物或いはフルオ
ロアルキルハロゲン化シラン系化合物であり、その化合
物としては、例えばCF3CH2CH2Si(OR)3
CF3(CF25CH2CH2Si(OR)3 、CF
3(CF25CH2CH2SiR(OR)2 、CF3(C
27CH2CH2Si(OR)3 、CF3(CF27
2CH2SiR(OR)2、CF3CH2CH2SiCl3
、CF3(CF25CH2CH2SiCl3 、CF 3(C
25CH2CH2SiRCl2 、CF3(CF27CH
2CH2SiCl3、CF3(CF27CH2CH2SiRC
2等を用いることが出来る。なお、上記化学式におけ
るRはCH3、C25、C37を示す。
As the above-mentioned starting materials, water repellents
Fluoroalkylalkoxysilane-based compound or fluoro
Polyalkylhalogenated silane compounds
For example, CFThreeCHTwoCHTwoSi (OR)Three ,
CFThree(CFTwo)FiveCHTwoCHTwoSi (OR)Three , CF
Three(CFTwo)FiveCHTwoCHTwoSiR (OR)Two , CFThree(C
F Two)7CHTwoCHTwoSi (OR)Three , CFThree(CFTwo)7C
HTwoCHTwoSiR (OR)Two, CFThreeCHTwoCHTwoSiClThree 
 , CFThree(CFTwo)FiveCHTwoCHTwoSiClThree , CF Three(C
FTwo)FiveCHTwoCHTwoSiRClTwo , CFThree(CFTwo)7CH
TwoCHTwoSiClThree, CFThree(CFTwo)7CHTwoCHTwoSiRC
lTwoEtc. can be used. In the above chemical formula,
R is CHThree, CTwoHFive, CThreeH7Is shown.

【0022】また、希釈溶媒としては、イソプロピルア
ルコ−ル(以下、「i−PA」と略す)の他に、メタノ
−ル、エタノ−ルなど炭素数が5以下の低級アルコ−ル
溶媒であってもよく、アルコ−ル以外にエ−テル類やケ
トン類を用いることができ、ことにイソプロピルアルコ
ールを主成分としてなるアルコールがコ−ティング溶液
の調製における希釈溶媒として好ましい。
Examples of the diluting solvent include isopropyl alcohol (hereinafter abbreviated as "i-PA") and lower alcohol solvents having 5 or less carbon atoms such as methanol and ethanol. Ethers and ketones can be used in addition to alcohols. In particular, alcohol containing isopropyl alcohol as a main component is preferable as a diluting solvent in preparing a coating solution.

【0023】また、触媒としての酸性水溶液は、0.0
1N以上、好ましくは0.1N〜13N程度の濃度の硝
酸、塩酸、硫酸などの無機酸あるいは、酢酸、クエン酸
などの有機酸を使用することができる。
The acidic aqueous solution as a catalyst is 0.0
An inorganic acid such as nitric acid, hydrochloric acid, sulfuric acid or the like, or an organic acid such as acetic acid or citric acid having a concentration of 1N or more, preferably about 0.1N to 13N can be used.

【0024】なお、撥水剤:希釈溶剤:酸性水溶液は、
重量割合で1:5〜40:0.09〜1.0の範囲が好
ましいが、これらの範囲に限定されるものではない。次
に、フルオロアルキル基含有シラン化合物の加水分解お
よび縮重合反応について説明する。
The water repellent: diluting solvent: acidic aqueous solution
The weight ratio is preferably in the range of 1: 5 to 40: 0.09 to 1.0, but is not limited to these ranges. Next, the hydrolysis and polycondensation reaction of the fluoroalkyl group-containing silane compound will be described.

【0025】(1)加水分解反応 フルオロアルキル(Rf)基含有シラン化合物(次式は
アルコキシシラン化合物の例)は次式に示すように、酸
触媒下で水と反応して比較的容易に加水分解される。な
お、加水分解反応については、加水分解反応(攪拌)の
終結を得るには約90分程度、好ましくは約120分程
度の時間が必要であるが、これに限定されるものではな
い。
(1) Hydrolysis Reaction A fluoroalkyl (Rf) group-containing silane compound (the following formula is an example of an alkoxysilane compound) is relatively easily hydrolyzed by reacting with water under an acid catalyst as shown in the following formula. Decomposed. The hydrolysis reaction requires about 90 minutes, preferably about 120 minutes, to complete the hydrolysis reaction (stirring), but is not limited thereto.

【0026】[0026]

【化1】 Embedded image

【0027】なお、上記反応における加水分解物の縮重
合反応は、撥水剤濃度が約20%以下では他の多くのア
ルコキシシラン化合物(例えば、テトラエトキシシラ
ン、メチルトリエトキシシラン等)に比べて非常に遅
く、多くは単量体であり、ゲル化し難い。
The polycondensation reaction of the hydrolyzate in the above reaction has a water repellent concentration of about 20% or less, compared with many other alkoxysilane compounds (eg, tetraethoxysilane, methyltriethoxysilane, etc.). Very slow, mostly monomeric and difficult to gel.

【0028】上式により得られたフルオロアルキル基含
有シラン化合物(FAS)の加水分解物(単量体)は、
ガラス表面のシラノール基(−SiOH)と次式のよう
な脱水縮重合反応をし、ガラス基板上へ固定化または高
重合体(多分子)化する。
The hydrolyzate (monomer) of the fluoroalkyl group-containing silane compound (FAS) obtained by the above formula is
A silanol group (-SiOH) on the glass surface undergoes a dehydration-condensation polymerization reaction as shown in the following formula, and is immobilized on a glass substrate or becomes a high polymer (multi-molecule).

【0029】しかし、フルオロアルキル(Rf)基の嵩
高さや剛直さにより、FAS同士の縮重合反応は進みに
くく、基本的には単量体が選択的にガラス基材と反応す
ることとなる。これは、Rf基が長鎖になるほどその傾
向が強い。
However, due to the bulkiness and rigidity of the fluoroalkyl (Rf) group, the polycondensation reaction between FASs does not easily proceed, and basically the monomer selectively reacts with the glass substrate. This tendency is stronger as the Rf group becomes longer.

【0030】ガラスとの反応Reaction with glass

【0031】[0031]

【化2】 Embedded image

【0032】(2)縮重合反応 FAS同士の反応 FAS同士の反応により重合度が増加する。(2) Polycondensation reaction Reaction between FASs Reaction between FASs increases the degree of polymerization.

【0033】・2量化・ Dimerization

【0034】[0034]

【化3】 Embedded image

【0035】・3量化・ Trimerization

【0036】[0036]

【化4】 Embedded image

【0037】なお、撥水液中の含有水分量は、通常約4
000ppm以下が好ましく、その水分量の測定は、例
えばカ−ルフィッシャ−電量滴定法を用いることによっ
て測定し求めている。
The water content of the water-repellent liquid is usually about 4
The water content is preferably measured by, for example, a Karl Fisher coulometric titration method.

【0038】なお、脱水剤としては、シリカゲル、合成
ゼオライト、活性アルミナ等を用いることが出来るが、
これに限定するものではない。また本発明は、加水分解
終結後に縮重合する場合あるいは加水分解の途中で縮重
合が開始する場合等、特に限定するものではない。
As the dehydrating agent, silica gel, synthetic zeolite, activated alumina and the like can be used.
It is not limited to this. Further, the present invention is not particularly limited to a case where condensation polymerization is carried out after termination of hydrolysis or a case where condensation polymerization is started during hydrolysis.

【0039】基材としては、表面に水酸基(−OH)等
の活性水素が含まれているガラス、プラスチック、セラ
ミックス等の材料であれば何でも用いることが出来、ま
た、表面に活性水素を含まない場合に、プラズマ処理あ
るいはコロナ処理等で基材表面に水酸基を導入したもの
でも適用できる。
As the base material, any material such as glass, plastic, ceramics, etc., whose surface contains active hydrogen such as hydroxyl group (-OH) can be used, and the surface does not contain active hydrogen. In this case, a material in which a hydroxyl group has been introduced to the surface of a substrate by a plasma treatment or a corona treatment can be applied.

【0040】代表的基材の一つであるガラス基材として
は、建築用窓ガラスや自動車用窓ガラス等に通常使用さ
れているフロ−トガラスあるいはロ−ルアウト法で製造
されたガラス等無機質の透明性がある板ガラスが好まし
く、無色または着色、ならびにその種類あるいは色調、
他の機能性膜との組み合わせ、形状等に特に限定される
ものではなく、さらに曲げ板ガラスとしてはもちろん各
種強化ガラスや強度アップガラスであり、平板や単板で
使用できるとともに、複層ガラスあるいは合せガラスと
しても使用できる。また、被膜はガラス基板の両面に成
膜しても構わない。
As a glass substrate, which is one of the representative substrates, inorganic glass such as float glass or glass produced by a roll-out method, which is generally used for architectural window glass and automotive window glass, is used. Transparent plate glass is preferred, colorless or colored, and its type or color,
The combination with other functional films, the shape, etc. are not particularly limited. Further, as a bent sheet glass, various tempered glasses and strength-up glasses can be used. Can also be used as glass. The coating may be formed on both surfaces of the glass substrate.

【0041】さらに、撥水液をガラス基板の表面上に塗
布する条件は、通常雰囲気湿度が約75%RH以下15
%RH以上程度が好ましいが、これらに限定されるもの
ではない。
Further, the conditions for applying the water-repellent liquid on the surface of the glass substrate are usually such that the atmospheric humidity is about 75% RH or less.
% RH or more is preferable, but not limited thereto.

【0042】さらに、ガラス基板の表面状態について、
例えばフロートガラスの場合、該ガラスのトップ面とボ
トム面において明らかに差異があり、フロ−トガラスの
火造り面であるトップ面に被膜することが好ましく、同
様にロールアウト法で製造されるガラスについても、搬
送ロール等と接触していない火造り面に被覆することが
好ましいが、場合によっては、ボトム面あるいは非火造
り面でも被覆できる。
Further, regarding the surface state of the glass substrate,
For example, in the case of float glass, there is a clear difference between the top surface and the bottom surface of the glass, and it is preferable to coat the top surface of the float glass as a fire-making surface. It is also preferable to cover the flaming surface that is not in contact with the transport rolls, etc., but it is also possible to cover the bottom surface or the non-firing surface in some cases.

【0043】撥水液を塗布するガラス基板の表面を予め
研摩処理し、酸処理することにより表面改質すると、被
膜の強度等が増し好ましいが、その方法は以下のように
して行う。
If the surface of the glass substrate to which the water-repellent liquid is applied is polished in advance and the surface is modified by an acid treatment, the strength of the coating film and the like are preferably increased, but the method is carried out as follows.

【0044】ガラス基板の表面改質のための研摩処理
は、錫の混入が少ないフロ−トガラストップ面、ロ−ル
アウトガラス面もしくはこれらの曲げまたは/および強
化ガラス面等を、酸化セリウム(セリア)または/およ
び酸化アルミニウム(アルミナ)または/および酸化珪
素等の無機金属酸化物を主成分とする微細粉体(平均粒
径が約5μm以下、好ましくは約1μm以下)である表
面研摩剤を用い、湿式あるいは乾式でブラシ、スポンジ
または布などの研摩面にて、使用する粉体の種類とその
粒径、研摩面の材質およびガラス基板との接触圧などを
適宜変えることで、前記ガラス基板面の表面疵状態や研
摩状態を制御しつつ研摩することが好ましい。
In the polishing treatment for modifying the surface of the glass substrate, the top surface of the float glass, the roll-out glass surface, or the bent or / and tempered glass surface containing little tin is removed by cerium oxide (ceria). And / or a surface abrasive that is a fine powder (average particle size of about 5 μm or less, preferably about 1 μm or less) containing an inorganic metal oxide such as aluminum oxide (alumina) or / and silicon oxide as a main component, On a polishing surface such as a brush, sponge or cloth in a wet or dry system, by appropriately changing the type and size of powder used, the material of the polishing surface and the contact pressure with the glass substrate, etc. It is preferable to perform polishing while controlling the surface flaw state and the polishing state.

【0045】次いで、該研磨処理したガラス面を、塩
酸、硫酸、硝酸等の無機酸或いは酢酸、ギ酸もしくは蓚
酸等の有機酸を、たとえばpH4濃度以下になるように
添加調整した水溶液でなる酸処理液を用い、例えば酸処
理液の温度が5℃〜70℃以下、処理時間10秒〜10
分以下の条件下で酸処理することで、研摩処理したガラ
ス表面のナトリウムイオンの抽出やシロキサン結合の切
断によりシラノ−ル基を効率的に生成するようにし、該
シラノ−ル基が後工程の撥水処理において撥水性フルオ
ロアルキル基の固定化に寄与するものとすることができ
る。
Next, the polished glass surface is treated with an aqueous solution prepared by adding an inorganic acid such as hydrochloric acid, sulfuric acid or nitric acid or an organic acid such as acetic acid, formic acid or oxalic acid so as to have a pH of 4 or less, for example. For example, the temperature of the acid treatment liquid is 5 ° C. to 70 ° C., and the treatment time is 10 seconds to 10 seconds.
The acid treatment is carried out under the condition of not more than 1 minute so as to efficiently generate silanol groups by extracting sodium ions from the polished glass surface and breaking siloxane bonds. In the water-repellent treatment, it can contribute to fixation of the water-repellent fluoroalkyl group.

【0046】なお酸処理は、酸溶液中に浸漬して行う
が、他にスプレ−法、フロ−法等、浸漬法と同等あるい
は近似した酸処理効果が得られる方法であれば特に限定
するものではなく採用できる。
The acid treatment is carried out by immersion in an acid solution, but is not particularly limited as long as an acid treatment effect equivalent or similar to the immersion method can be obtained, such as a spray method or a flow method. Can be adopted instead.

【0047】またさらに、ガラス基板への膜付け法とし
ては、手塗り(ラビング法)、ノズルフロ−コ−ト法、
ディッピング法、スプレー法、リバ−スコ−ト法、フレ
キソ法、印刷法、フローコート法あるいはスピンコート
法、ならびにそれらの併用等既知の塗布手段、さらに本
出願人が出願提案した各種塗布法等が適宜採用し得るも
のである。また成膜の条件としては、例えば80℃以上
350℃以下で1分間乃至60分間の乾燥とキュアリン
グを行い成膜するのが好ましい。
Further, as a method of applying a film to a glass substrate, a hand coating (rubbing method), a nozzle flow coating method,
Known coating methods such as dipping method, spray method, reverse coating method, flexo method, printing method, flow coating method or spin coating method, and a combination thereof, as well as various coating methods proposed by the present applicant. It can be appropriately adopted. As for the film forming conditions, for example, it is preferable to form a film by drying and curing at 80 ° C. or more and 350 ° C. or less for 1 minute to 60 minutes.

【0048】[0048]

【作用】本発明は、撥水液の加水分解反応をより完全に
終結せしめ、その後脱水剤等を用いて含有水分量を調整
し、縮重合度を高め、少なくとも2量体および3量体を
形成するよう制御した撥水液とし、制御した被覆環境下
で基材表面に被覆し薄膜を成膜することにより、撥水剤
成分と基材表面との反応性が効率化され、基材の単位面
積当たりのフルオロアルキル基の存在密度を最適化する
ことが可能となる。得られた撥水性膜は、格段に優れた
耐摩耗性を有し、高硬度かつ高密着性であって耐久性を
併せ持ち、より長期的に優れた撥水性能、例えば接触角
が約95°程度以上を維持することができる。
According to the present invention, the hydrolysis reaction of the water-repellent liquid is more completely terminated, and thereafter the water content is adjusted by using a dehydrating agent or the like to increase the degree of polycondensation, and at least dimer and trimer are formed. By controlling the water-repellent liquid to form and coating the substrate surface under a controlled coating environment to form a thin film, the reactivity between the water-repellent component and the substrate surface is made more efficient, It is possible to optimize the existing density of the fluoroalkyl group per unit area. The obtained water repellent film has remarkably excellent abrasion resistance, has high hardness and high adhesion and has durability, and has a long-term excellent water repellency, for example, a contact angle of about 95 °. Or more can be maintained.

【0049】[0049]

【実施例】以下、実施例により本発明を具体的に説明す
る。但し、本発明は係る実施例に限定されるものではな
い。
The present invention will be described below in detail with reference to examples. However, the present invention is not limited to such an embodiment.

【0050】実施例1 撥水液の調合は以下のようにして行った。撥水性被膜を
形成するための撥水液組成の原料として、フルオロアル
キルアルコキシシラン〔CF3(CF27CH2CH2
i(OCH33(以下、「FAS」と略す)、東芝シリ
コ−ン製;TSL8233〕と、希釈溶媒であるイソプ
ロピルアルコ−ル〔(以下、「i−PA」と略す);キ
シダ化学製〕と、酸触媒である0.1N−硝酸〔キシダ
化学製〕を用い、その配合割合をFAS:i−PA:
0.1N−HNO3=1:25:0.3(単位:g)と
し、室温で約2時間攪拌し加水分解反応を終結させた。
Example 1 A water-repellent liquid was prepared as follows. As a raw material of a water-repellent liquid composition for forming a water-repellent film, a fluoroalkylalkoxysilane [CF 3 (CF 2 ) 7 CH 2 CH 2 S
i (OCH 3 ) 3 (hereinafter abbreviated as “FAS”), manufactured by Toshiba Silicone; TSL8233], and isopropyl alcohol as a diluting solvent (hereinafter abbreviated as “i-PA”); manufactured by Kishida Chemical And 0.1N-nitric acid (manufactured by Kishida Chemical Co., Ltd.), which is an acid catalyst, and the mixing ratio thereof is FAS: i-PA:
0.1N-HNO3 = 1: 25: 0.3 (unit: g), and the mixture was stirred at room temperature for about 2 hours to terminate the hydrolysis reaction.

【0051】次いで、該加水分解反応を終結させた溶液
に脱水剤である合成ゼオライト〔モレキュラ−シ−ブ4
A、キシダ化学製〕を5g添加し、18時間(脱水時
間)浸漬・放置し縮重合反応をさせつつ脱水を完了した
後、濾紙(アドバンテック製、NO.7)を用いて濾過
しモレキュラ−シ−ブ4Aを分離除去して塗布用撥水液
とした。
Next, a synthetic zeolite [Molecular Sieve 4] as a dehydrating agent was added to the solution after the completion of the hydrolysis reaction.
A, manufactured by Kishida Chemical Co., Ltd.], and immersion and standing for 18 hours (dehydration time) to complete the dehydration while allowing the polycondensation reaction to take place, followed by filtration using a filter paper (manufactured by Advantech, No. 7) to remove the molecular weight. -But 4A was separated and removed to obtain a coating water-repellent liquid.

【0052】続いて、撥水性基材の作製は以下のように
して行った。200mm×300mm×3.5mmサイズのフ
ロートガラス基板の表面を、研磨液とブラシポリッシャ
ーを用いて研磨し、十分に研摩剤を除去した後、35℃
の0.1N硫酸水溶液中に1分間浸漬した。その後、市
販のガラス洗浄機にて水洗および乾燥して、温度と湿度
を23℃,45%RHに保った環境下で、ガラス基板1
枚当たり2ml/枚の撥水液を滴下し、綿布(商品名ベ
ンコット)でガラス全面に十分引き伸ばした後、5分程
度風乾した。続いて、マッフル炉内にガラス基板を投入
し、該ガラス基板の温度が5分間で140℃に達するよ
うな熱処理(以下、キュアリングと呼ぶ)を行ったのち
炉内より取出し、ガラス基板表面に白濁して残っている
余剰な撥水剤をi−PAを含ませた綿布で拭き上げて透
明な撥水性ガラス基板を得た。なお、上記の研磨液は、
ミレーク(A+B)(三井金属工業製):水=1:100
(重量%)なる懸濁液を用いた。
Subsequently, the production of the water-repellent substrate was carried out as follows. The surface of a float glass substrate having a size of 200 mm × 300 mm × 3.5 mm is polished using a polishing liquid and a brush polisher to sufficiently remove the abrasive, and then at 35 ° C.
In a 0.1N aqueous sulfuric acid solution for 1 minute. After that, the glass substrate 1 is washed with water and dried with a commercially available glass washing machine, and the temperature and the humidity are kept at 23 ° C. and 45% RH.
2 ml / sheet of a water-repellent liquid was dropped per sheet, and the entire surface of the glass was sufficiently stretched with a cotton cloth (trade name: Bencott), and then air-dried for about 5 minutes. Subsequently, the glass substrate is put into a muffle furnace, and a heat treatment (hereinafter, referred to as “curing”) is performed so that the temperature of the glass substrate reaches 140 ° C. in 5 minutes. Excessive water repellent remaining clouded was wiped with a cotton cloth impregnated with i-PA to obtain a transparent water repellent glass substrate. In addition, the above polishing liquid is
MIRAKE (A + B) (Mitsui Metals): Water = 1: 100
(% By weight) of the suspension was used.

【0053】次に、撥水液の重合度の測定及び撥水性基
材の撥水性試験及び耐摩耗性(耐トラバース)試験は下
記の方法で行った。 〔重合度測定〕 測定方法 :ゲルパーミューションクロマトグラフィー法(以下、「G PC」と略す) 測定機器 :高速GPC装置HLC-8020(東ソー製) カラム :TSKgelG4000H-HR、G3000H-HR、G 2000H-HRおよびG2000H-HR(何れも東ソー 製)の4つのカラム(各30cm)を直列に繋いだもの (カラムの温度は、40℃に保持) 検出器 :示差屈折計 (検出器の温度は、38℃に保持) 溶出液 :テトラヒドロフラン (流量は1l/分) 撥水液の注入量 :50μl なお、GPC測定用の撥水液試料は、シラノール基を不
活性化するために撥水液中のFASの加水分解および縮
重合をTMS(トリメチルシリル)化剤の一つである、
トリメチルクロロシラン((CH3)3SiCl:TMC
S)を用いて、撥水液中のFASの加水分解物および縮
重合物をTMS化したのち、孔径0.5μmのフィルタ
ーで試料(撥水液)をろ過した。TMS化のための反応
条件は、5gの試料(撥水液)に対し、0.57gのT
MCSを加えて、室温で1h撹拌した。得られたGPC
チャートにおける各ピークから、脱水撥水液中にはFA
Sの単量体(Monomer)、2量体(Dime
r)、3量体(Trimer)および4〜5量体が存在
することを確認し、それぞれの保持時間を、32.5、
30.8、29.9および29.3〜28.5分と同定でき
た。
Next, the measurement of the degree of polymerization of the water-repellent liquid, the water-repellency test of the water-repellent substrate and the abrasion resistance (traverse resistance) test were carried out by the following methods. [Measurement of degree of polymerization] Measurement method: Gel permeation chromatography (hereinafter abbreviated as “GPC”) Measurement equipment: High-speed GPC device HLC-8020 (manufactured by Tosoh) Column: TSKgelG4000H-HR, G3000H-HR, G2000H -HR and G2000H-HR (both manufactured by Tosoh Corporation) connected in series with four columns (each 30 cm) (column temperature is maintained at 40 ° C) Detector: Differential refractometer (Detector temperature is (Hold at 38 ° C) Eluent: tetrahydrofuran (flow rate: 1 l / min) Injection amount of water-repellent liquid: 50 μl The water-repellent liquid sample for GPC measurement contains water-repellent liquid in order to inactivate silanol groups. The hydrolysis and condensation polymerization of FAS is one of the TMS (trimethylsilyl) agents,
Trimethylchlorosilane ((CH 3 ) 3 SiCl: TMC
The hydrolyzate and polycondensate of FAS in the water-repellent liquid were converted to TMS using S), and then the sample (water-repellent liquid) was filtered through a filter having a pore size of 0.5 μm. The reaction conditions for TMS conversion were as follows: 0.57 g of T
MCS was added and the mixture was stirred at room temperature for 1 h. GPC obtained
From each peak in the chart, FA
S monomer (Monomer), dimer (Dime)
r) The presence of trimers and trimers was confirmed, and the respective retention times were 32.5,
30.8, 29.9 and 29.3 to 28.5 minutes could be identified.

【0054】また、それぞれの重合体の存在比は、ピー
ク面積の比により求めた。例えば、2量体に対する3量
体の存在比(η)は、η=(3量体によるピーク面積)
/(2量体によるピーク面積)から求めた。(但し、単
量体、2量体、3量体、4量体以上などの屈折率は変化
しないと仮定した)。
The abundance ratio of each polymer was determined from the ratio of the peak areas. For example, the abundance ratio (η) of the trimer to the dimer is η = (peak area by trimer)
/ (Peak area by dimer). (However, it was assumed that the refractive index of a monomer, a dimer, a trimer, a tetramer or more does not change).

【0055】 〔撥水性試験〕 測定機器 :協和界面科学製CA−X200型 測定環境 :大気中(約25℃) 水 :純水(2μl)の水滴 評価 :ガラス面上に上記の水滴を落とし、該ガラスと水 滴のなす角度(°)(すなわち、接触角と呼ぶ) を測定 なお、試験前の接触角はθ0(°)、各試験後の 接触角はθ(°)で示す。[Water repellency test] Measuring equipment: CA-X200 type manufactured by Kyowa Interface Science Measurement environment: in the air (about 25 ° C.) Water: water drop of pure water (2 μl) Evaluation: drop the above water drop on a glass surface, Measure the angle (°) between the glass and the water droplet (namely, the contact angle). The contact angle before the test is indicated by θ 0 (°), and the contact angle after each test is indicated by θ (°).

【0056】 〔耐磨耗性試験〕 試験機 :トラバ−ス式摺動試験機(当社製作機) 試料サイズ :約200mm×300mm 摩擦布への荷重 :キャンバス布に0.1kg/cm2(JIS L 3102−1206) ストロ−ク :100mmの往復摺動(摺動回数は往復の回数) 摺動速度 :30往復/分 評価 :摺動回数3500回後の接触角θ(°)の測定。[Abrasion resistance test] Test machine: Traverse type sliding test machine (manufactured by our company) Sample size: about 200 mm × 300 mm Load on friction cloth: 0.1 kg / cm 2 on canvas cloth (JIS L 3102-1206) Stroke: 100 mm reciprocal sliding (the number of reciprocations is the number of reciprocations) Sliding speed: 30 reciprocations / min Evaluation: Measurement of contact angle θ (°) after 3,500 times of sliding.

【0057】結果、表1(各脱水時間における撥水液中
の水分量とGPCで得られたη値(撥水液中のFASの
2量体に対する3量体の存在比、η=3量体のピーク面
積/2量体のピーク面積)および、得られた撥水ガラス
の耐摩耗性を示す)に示すようにη値は0.25であ
り、耐摩耗性(耐トラバース性)は、試験後の接触角が
95°以上を示し極めて良好であった。なお、表1にお
ける耐トラーバース性の欄の(◎印)は、試験後の接触
角が95°以上の極めて良好な値のものを示し、(○
印)は試験後の接触角が90°〜95°と良好な値のも
のを示し、(×印)は試験後の接触角が90°未満の不
合格の値のものを示す。なお、撥水液中の水分量は66
0ppmであった。
The results are shown in Table 1 (moisture content in water-repellent liquid at each dehydration time and η value obtained by GPC (existence ratio of trimer to dimer of FAS in water-repellent liquid, η = 3 (The peak area of the body / the peak area of the dimer) and the abrasion resistance of the obtained water-repellent glass), the η value is 0.25, and the abrasion resistance (traverse resistance) is as follows: The contact angle after the test was 95 ° or more, which was extremely good. In Table 1, (◎) in the column of traverse resistance indicates an extremely good value of the contact angle after the test of 95 ° or more.
(Mark) indicates a good value of the contact angle after test of 90 ° to 95 °, and (x mark) indicates a rejected value where the contact angle after the test is less than 90 °. The water content in the water-repellent liquid is 66
It was 0 ppm.

【0058】実施例2 実施例1と比較して、脱水時間を6時間にしたものであ
る。なお、その他の条件は、実施例1と同じで行った。
結果、表1に示すようにηの値は0.17であり、耐摩
耗性(耐トラバース性)は、試験後の接触角が95°以
上を示し極めて良好であった。なお、撥水液中の水分量
は1420ppmであった。
Example 2 Compared with Example 1, the dehydration time was set to 6 hours. The other conditions were the same as in Example 1.
As a result, as shown in Table 1, the value of η was 0.17, and the abrasion resistance (traverse resistance) was extremely good because the contact angle after the test was 95 ° or more. The water content of the water repellent liquid was 1420 ppm.

【0059】実施例3 実施例1と比較して、脱水時間を4時間にしたものであ
る。なお、その他の条件は、実施例1と同じで行った。
結果、表1に示すようにηの値は0.11であり、耐摩
耗性(耐トラバース性)は、試験後の接触角が95°以
上を示し極めて良好であった。なお、撥水液中の水分量
は2210ppmであった。
Example 3 In comparison with Example 1, the dehydration time was set to 4 hours. The other conditions were the same as in Example 1.
As a result, as shown in Table 1, the value of η was 0.11, and the abrasion resistance (traverse resistance) was extremely good, with the contact angle after the test being 95 ° or more. The water content of the water repellent liquid was 22,10 ppm.

【0060】実施例4 実施例1と比較して、脱水時間を2.5時間にしたもの
である。なお、その他の条件は、実施例1と同じで行っ
た。結果、表1に示すようにηの値は0.08であり、
耐摩耗性(耐トラバース性)は試験後の接触角が90°
〜95°であり合格であった。なお、撥水液中の水分量
は2780ppmであった。
Example 4 In comparison with Example 1, the dehydration time was set to 2.5 hours. The other conditions were the same as in Example 1. As a result, as shown in Table 1, the value of η was 0.08,
Abrasion resistance (traverse resistance) is 90 ° after test.
9595 °, which was a pass. The water content of the water-repellent liquid was 2,780 ppm.

【0061】比較例1 実施例1と比較して、脱水時間を0時間にしたものであ
る。なお、その他の条件は、実施例1と同じで行った。
結果、表1に示すようにηの値は0であり、耐摩耗性
(耐トラバース性)は試験後の接触角が90°未満であ
り不合格であった。なお、撥水液中の水分量は9770
ppmであった。
Comparative Example 1 Compared with Example 1, the dewatering time was set to 0 hour. The other conditions were the same as in Example 1.
As a result, as shown in Table 1, the value of η was 0, and the abrasion resistance (traverse resistance) was unacceptable because the contact angle after the test was less than 90 °. The water content of the water-repellent liquid was 9770.
ppm.

【0062】比較例2 実施例1と比較して、脱水時間を0.75時間にしたも
のである。なお、その他の条件は、実施例1と同じで行
った。結果、表1に示すようにηの値は0.02であ
り、耐摩耗性(耐トラバース性)は試験後の接触角が9
0°未満であり不合格であった。なお、撥水液中の水分
量は5240ppmであった。
Comparative Example 2 Compared with Example 1, the dewatering time was 0.75 hours. The other conditions were the same as in Example 1. As a result, as shown in Table 1, the value of η was 0.02, and the abrasion resistance (traverse resistance) was 9 degrees after the test.
It was less than 0 ° and was rejected. The water content in the water-repellent liquid was 5,240 ppm.

【0063】比較例3 実施例1と比較して、脱水時間を1.5時間にしたもの
である。なお、その他の条件は、実施例1と同じで行っ
た。結果、表1に示すようにηの値は0.05であり、
耐摩耗性(耐トラバース性)は試験後の接触角が90°
未満であり不合格であった。なお、撥水液中の水分量は
3600ppmであった。
Comparative Example 3 The dehydration time was changed to 1.5 hours as compared with Example 1. The other conditions were the same as in Example 1. As a result, as shown in Table 1, the value of η was 0.05,
Abrasion resistance (traverse resistance) is 90 ° after test.
And was rejected. The water content in the water-repellent liquid was 3,600 ppm.

【0064】また、図1に上記実施例1〜4及び比較例
1〜3の各脱水時間でサンプリングした撥水液をTMS
化後に測定したGPCチャートを示す。以上、脱水時間
と耐摩耗性(耐トラバース性)との関係では次の傾向が
示されていることが判った。結果、脱水処理しないも
の、あるいは脱水時間が1.5hと短い場合は、RT=
29.9分(RT=保持時間)のFASの3量体起因や
RT=28.5〜29.3分のFASの4量体以上のポリ
マー起因のピークは殆ど見られなかった。一方、耐摩耗
性(耐トラバース性)試験後に接触角が90°以上とな
る、脱水時間が2.5h以上のものでは3量体起因のピ
ークが現れ始め、脱水時間の経過とともに3量体のピー
クは増加し、さらに4次以上の高次重合体起因のピーク
が現れた。このことから、耐摩耗性(耐トラバース性)
を満足する(接触角が90以上)ためには、FASの高
次重合体の形成が必要であり、特に3量体の形成につい
ては、少なくともη(撥水液中のFASの2量体に対す
る3量体の存在比、η=3量体のピーク面積/2量体の
ピーク面積)≧0.06の条件が必要なことが分かる。
FIG. 1 shows the water-repellent liquid sampled at each of the dehydration times in Examples 1 to 4 and Comparative Examples 1 to 3 as TMS.
2 shows a GPC chart measured after the formation. As described above, it was found that the following tendency was exhibited in the relationship between the dehydration time and the wear resistance (traverse resistance). As a result, when no dehydration treatment is performed, or when the dehydration time is as short as 1.5 hours, RT =
Almost no peak was observed due to the trimer of FAS at 29.9 minutes (RT = retention time) or the polymer at least equal to the tetramer of FAS at 28.5 to 29.3 minutes. On the other hand, when the contact angle becomes 90 ° or more after the abrasion resistance (traverse resistance) test and the dehydration time is 2.5 hours or more, a peak due to trimers starts to appear, and as the dehydration time elapses, the trimers become The peak increased, and a peak due to a higher order polymer of the fourth or higher order appeared. From this, wear resistance (traverse resistance)
(The contact angle is 90 or more), it is necessary to form a higher-order polymer of FAS. In particular, for the formation of a trimer, at least η (with respect to the dimer of FAS in the water-repellent liquid) It can be seen that the condition of trimer abundance, η = peak area of trimer / peak area of dimer) ≧ 0.06 is required.

【0065】実施例5 実施例1と比較して、撥水液を3日間保管したものであ
る。その保管した撥水液を用いて撥水性ガラスを作製し
た。なお、その他の条件は、実施例1と同じで行った。
結果、表1に示すようにηの値は0.29であり、耐摩
耗性(耐トラバース性)は、試験後の接触角が95°以
上を示し極めて良好であった。なお、撥水液中の水分量
は1250ppmであった。
Example 5 In comparison with Example 1, the water-repellent liquid was stored for 3 days. Using the stored water-repellent liquid, a water-repellent glass was produced. The other conditions were the same as in Example 1.
As a result, as shown in Table 1, the value of η was 0.29, and the abrasion resistance (traverse resistance) was extremely good, showing a contact angle of 95 ° or more after the test. The water content in the water-repellent liquid was 1250 ppm.

【0066】実施例6 実施例1と比較して、撥水液を6日間保管したものであ
る。なお、その他の条件は、実施例1と同じで行った。
結果、表1に示すようにηの値は0.41であり、試験
後の耐摩耗性(耐トラバース性)は接触角が90°〜9
5°であり合格であった。なお、撥水液中の水分量は1
570ppmであった。
Example 6 In comparison with Example 1, the water-repellent liquid was stored for 6 days. The other conditions were the same as in Example 1.
As a result, as shown in Table 1, the value of η was 0.41, and the contact angle of the wear resistance (traverse resistance) after the test was 90 ° to 9 °.
5 °, which was a pass. The water content in the water-repellent liquid is 1
It was 570 ppm.

【0067】比較例4 実施例1と比較して、撥水液を9日間保管したものであ
る。なお、その他の条件は、実施例1と同じで行った。
結果、表1に示すようにηの値は0.52であり、試験
後の耐摩耗性(耐トラバース性)は接触角が90°未満
であり不合格であった。なお、撥水液中の水分量は23
60ppmであった。また、図2に上記実施例5乃至6
及び比較例4を各保管日数でサンプリングした撥水液を
TMS化後測定したGPCチャートを示す。なお、図2
には保管日数が0日の例として、実施例1も併せて掲載
した。
Comparative Example 4 In comparison with Example 1, the water-repellent liquid was stored for 9 days. The other conditions were the same as in Example 1.
As a result, as shown in Table 1, the value of η was 0.52, and the abrasion resistance (traverse resistance) after the test was not acceptable because the contact angle was less than 90 °. The water content of the water-repellent liquid is 23
It was 60 ppm. FIG. 2 shows the fifth and sixth embodiments.
7 shows a GPC chart of a water-repellent liquid sampled in Comparative Example 4 and stored for each number of storage days after TMS conversion. Note that FIG.
In Example 1, the number of storage days is 0, and Example 1 is also described.

【0068】以上、保管日数と耐摩耗性(耐トラバース
性)との関係では次の傾向が示されていることが判っ
た。結果、保管日数が増加するにつれて、FASの高次
重合体起因のピークが徐々に増加した。これは、撥水液
中の水分量も増加しており、保管とともに縮重合反応が
徐々に進んでいることを示し、脱水剤の添加による縮重
合反応の促進が、脱水剤除去後もなお続いていることを
示している。一方、耐摩耗性(耐トラバース性)は保管
日数が9日間以上で大きく劣化しており、FASの縮重
合度は耐摩耗性(耐トラバース性)に対しては適切な範
囲、すなわち、0.06≦η≦0.5に制御する必要の
あることが分かる。
As described above, it was found that the following tendency was exhibited in the relationship between the storage days and the abrasion resistance (traverse resistance). As a result, as the number of storage days increased, the peak of the FAS caused by the higher polymer gradually increased. This indicates that the water content in the water-repellent liquid is also increasing, and the condensation polymerization reaction is gradually progressing with storage, and the acceleration of the condensation polymerization reaction by the addition of the dehydrating agent continues even after the removal of the dehydrating agent. It indicates that. On the other hand, the abrasion resistance (traverse resistance) is significantly degraded when the storage days are 9 days or more, and the degree of polycondensation of FAS is in an appropriate range for the abrasion resistance (traverse resistance), that is, 0.1%. It can be seen that the control needs to be performed so that 06 ≦ η ≦ 0.5.

【0069】実施例7 実施例1と比較して、溶媒の種類をエタノール(EtO
H)に変更したものである。なお、その他の条件は、実
施例1と同じで行った。結果、表1に示すようにηの値
は0.18であり、耐摩耗性(耐トラバース性)は、試
験後の接触角が95°以上を示し極めて良好であった。
Example 7 Compared to Example 1, the type of solvent was ethanol (EtO
H). The other conditions were the same as in Example 1. As a result, as shown in Table 1, the value of η was 0.18, and the abrasion resistance (traverse resistance) was extremely good, with a contact angle of 95 ° or more after the test.

【0070】実施例8 実施例1と比較して、溶媒の種類をブタノール(n−B
uOH)に変更したものである。なお、その他の条件
は、実施例1と同じで行った。結果、表1に示すように
ηの値は0.26であり、耐摩耗性(耐トラバース性)
は、試験後の接触角が95°以上を示し極めて良好であ
った。
Example 8 Compared to Example 1, the solvent was butanol (n-B
uOH). The other conditions were the same as in Example 1. As a result, as shown in Table 1, the value of η was 0.26, and abrasion resistance (traverse resistance) was obtained.
Was very good, showing a contact angle of 95 ° or more after the test.

【0071】実施例9 実施例1と比較して、溶媒の種類をアセトンに変更した
ものである。なお、その他の条件は、実施例1と同じで
行った。結果、表1に示すようにηの値は0.30であ
り、耐摩耗性(耐トラバース性)は、試験後の接触角が
95°以上を示し極めて良好であった。
Example 9 In comparison with Example 1, the solvent was changed to acetone. The other conditions were the same as in Example 1. As a result, as shown in Table 1, the value of η was 0.30, and the abrasion resistance (traverse resistance) was extremely good, with a contact angle of 95 ° or more after the test.

【0072】比較例5 実施例1と比較して、溶媒の種類をメタノール(MeO
H)に変更したものである。なお、その他の条件は、実
施例1と同じで行った。結果、表1に示すようにηの値
は0.02であり、耐摩耗性(耐トラバース性)は不合
格であった。以上の実施例7乃至9及び比較例5につい
て、図3にそれぞれの撥水液をTMS化後GPC測定し
たチャートを示す。なお、図3には溶媒のイソプロピル
アルコール(i−PA)を用いた実施例1も併せて掲載
した。
Comparative Example 5 Compared with Example 1, the solvent was changed to methanol (MeO
H). The other conditions were the same as in Example 1. As a result, as shown in Table 1, the value of η was 0.02, and the wear resistance (traverse resistance) was unacceptable. FIG. 3 is a chart showing the results of GPC measurement of each of the water-repellent liquids after TMS conversion for Examples 7 to 9 and Comparative Example 5. FIG. 3 also shows Example 1 using isopropyl alcohol (i-PA) as a solvent.

【0073】以上、溶媒の種類と耐摩耗性(耐トラバー
ス性)との関係では次の傾向が示されていることが判っ
た。結果、溶媒がメタノール以外の場合、GPCチャー
トには、RT=29.9分前後の3量体やRT=28.5
〜29.3分の4量体以上の重合体起因のピークが明瞭
に見られ、η値は0.06〜0.5の範囲であった。一
方、溶媒をメタノールとしたときには3量体以上のピー
クは殆ど見られず、η=0.02であった。また、溶媒
がメタノール以外では、耐摩耗性(耐トラバース性)は
101〜106と良好であったが、メタノールの場合は
78〜104と大きく低下した。これらからも、高い耐
摩耗性(耐摩耗性)を確保するためには、FASの高次
重合体の形成が必要であり、特に3量体の形成について
は、0.06≦η≦0.5に制御する必要のあることが
分かる。
As described above, it was found that the following tendency was exhibited in the relationship between the type of the solvent and the abrasion resistance (traverse resistance). As a result, when the solvent was other than methanol, the GPC chart showed that the trimer around RT = 29.9 minutes or RT = 28.5.
A peak due to a polymer of 429.3 / tetramer or more was clearly seen, and the η value was in the range of 0.06 to 0.5. On the other hand, when methanol was used as the solvent, almost no trimer or higher peak was observed, and η was 0.02. When the solvent was other than methanol, the abrasion resistance (traverse resistance) was as good as 101 to 106, but was significantly reduced to 78 to 104 in the case of methanol. From these, it is necessary to form a higher-order polymer of FAS in order to secure high abrasion resistance (abrasion resistance). In particular, for the formation of a trimer, 0.06 ≦ η ≦ 0. It turns out that it is necessary to control to 5.

【0074】実施例10 実施例1と比較して、撥水剤の種類をヘプタデカフルオ
ロデシルトリイソプロポキシシラン(CF3(CF2)7
2CH2Si(OC37)3:東芝シリコーン製XC95-
A9715)を用い、溶媒の種類をエタノール(EtO
H)に、脱水時間を16時間にそれぞれ変更したもので
ある。なお、その他の条件は、実施例1と同じで行っ
た。結果、表1に示すようにηの値は0.21であり、
耐摩耗性(耐トラバース性)は、試験後の接触角が95
°以上を示し極めて良好であった。
Example 10 In comparison with Example 1, the type of water repellent was changed to heptadecafluorodecyltriisopropoxysilane (CF 3 (CF 2 ) 7 C
H 2 CH 2 Si (OC 3 H 7 ) 3 : Toshiba Silicone XC95-
A9715) and the solvent type was ethanol (EtO
In (H), the dehydration time was changed to 16 hours. The other conditions were the same as in Example 1. As a result, as shown in Table 1, the value of η was 0.21,
The abrasion resistance (traverse resistance) was such that the contact angle after the test was 95%.
° or higher, which was extremely good.

【0075】実施例11 実施例1と比較して、撥水剤の種類を実施例10と同様
にヘプタデカフルオロデシルトリイソプロポキシシラン
に溶媒の種類をブタノール(n−BuOH)に、さらに
脱水時間を16時間にそれぞれ変更したものである。な
お、その他の条件は、実施例1と同じで行った。結果、
表1に示すようにηの値は0.38であり、耐摩耗性
(耐トラバース性)は、試験後の接触角が95°以上を
示し極めて良好であった。
Example 11 Compared to Example 1, the type of water repellent was heptadecafluorodecyltriisopropoxysilane, the type of solvent was butanol (n-BuOH) and the dehydration time was the same as in Example 10. Was changed to 16 hours, respectively. The other conditions were the same as in Example 1. result,
As shown in Table 1, the value of η was 0.38, and the abrasion resistance (traverse resistance) showed a contact angle of 95 ° or more after the test, which was extremely good.

【0076】比較例6 実施例1と比較して、撥水剤の種類を実施例8と同様に
ヘプタデカフルオロデシルトリイソプロポキシシラン
に、溶媒の種類をイソプロピルアルコール(i−PA)
に、脱水時間を16時間にそれぞれ変更したものであ
る。なお、その他の条件は、実施例1と同じで行った。
結果、表1に示すようにηの値は0であり、耐摩耗性
(耐トラバース性)は不合格であった。なお、図4に上
記実施例10乃至11及び比較例6のそれぞれの撥水液
をTMS化後GPC測定したチャートを示す。
Comparative Example 6 In comparison with Example 1, the type of water repellent was heptadecafluorodecyltriisopropoxysilane and the type of solvent was isopropyl alcohol (i-PA) in the same manner as in Example 8.
In addition, the dehydration time was changed to 16 hours. The other conditions were the same as in Example 1.
As a result, as shown in Table 1, the value of η was 0, and the wear resistance (traverse resistance) was unacceptable. FIG. 4 is a chart showing the results of GPC measurement of each of the water-repellent liquids of Examples 10 to 11 and Comparative Example 6 after TMS conversion.

【0077】以上、撥水剤の種類/溶媒の種類と耐摩耗
性(耐トラバース性)との関係では次の傾向が示されて
いることが判った。結果、溶媒がイソプロピルアルコー
ル(すなわち、撥水剤に用いたフルオロアルコキシ基含
有シラン化合物中のアルコキシ基と同一の基を有する溶
媒としてのアルコール)を用いた場合には、GPCチャ
ートには、RT=32.5分の単量体によるピークしか
見られず、RT=29.9分の3量体やRT=28.5〜
29.3分の4量体以上の重合体起因のピークは見られ
なかった。一方、溶媒をエタノールまたはn-ブタノー
ルとしたときには3量体以上のピークが見られ、2量体
に対する3量体の存在比(η)は、それぞれ、η=0.
21および0.38であった。また、溶媒がイソプロピ
ルアルコールの場合には、耐摩耗性(耐トラバース性)
は58〜92と大きく低下したが、エタノールやn-ブ
タノールを用いた場合には、耐摩耗性(耐トラバース
性)は103〜106、または、95〜105と良好で
あった。これらからも、高い耐摩耗性(耐トラバース
性)を確保するためには、FASの高次重合体の形成が
必要であり、特に3量体の形成については、0.06≦
η≦0.5に制御する必要のあることが分かる。
As described above, it was found that the following tendency was exhibited in the relationship between the type of the water repellent / the type of the solvent and the abrasion resistance (traverse resistance). As a result, when isopropyl alcohol was used as the solvent (that is, alcohol as a solvent having the same group as the alkoxy group in the fluoroalkoxy group-containing silane compound used as the water repellent), RT = Only a peak due to the monomer at 32.5 min was observed, and a trimer of RT = 29.9 / RT = 28.5-
No peak due to a polymer of 29.3 times tetramer or more was observed. On the other hand, when the solvent is ethanol or n-butanol, a peak of trimer or more is observed, and the abundance ratio (η) of trimer to dimer is η = 0.
21 and 0.38. When the solvent is isopropyl alcohol, abrasion resistance (traverse resistance)
However, when ethanol or n-butanol was used, the abrasion resistance (traverse resistance) was as good as 103 to 106 or 95 to 105. From these, in order to ensure high abrasion resistance (traverse resistance), it is necessary to form a higher-order polymer of FAS. In particular, for formation of a trimer, 0.06 ≦
It is understood that it is necessary to control η ≦ 0.5.

【0078】さらに、溶媒としてi-PA(実施例1)
とアセトン(実施例9)を用いて調製した脱水撥水液中
のFASの単量体、2量体、3量体および4量体以上の
各重合体の存在比をGPC測定の各ピーク面積から見積
もった結果を表2に示す。これより、高い耐摩耗性(耐
トラバース性)を確保するための脱水撥水液中のFAS
の単量体、2量体、3量体、4量体以上の存在割合は、
それぞれ、60重量%以上、25重量%以下、12.5
重量%以下、および5重量%以下であった。
Further, i-PA was used as a solvent (Example 1).
The abundance ratio of each polymer of FAS monomer, dimer, trimer and tetramer or more in the dewatered water-repellent liquid prepared by using water and acetone (Example 9) was determined by GPC measurement. Table 2 shows the results estimated from the above. Thus, the FAS in the dewatered water-repellent liquid for ensuring high abrasion resistance (traverse resistance)
The monomer, dimer, trimer, tetramer or higher proportion of
60% by weight or more, 25% by weight or less, 12.5%
Wt% or less, and 5 wt% or less.

【0079】[0079]

【表1】 [Table 1]

【0080】[0080]

【表2】 [Table 2]

【0081】[0081]

【発明の効果】以上前述したように、本発明によれば、
極めて優れた耐摩耗性(耐トラバース性)を示し、量産
下で安定かつ確実に優れた撥水性能を維持し耐久性が高
いガラス等の撥水性基材が、簡便に効率よく得られ、品
質の均質化を向上し、光学特性を損なうことがないの
で、建築用はもとより自動車用窓材、船舶や航空機の窓
材、浴室用あるいは自動車用などのミラ−、産業用ガラ
ス等各種の物品に広く採用できる利用価値の高い、有用
な撥水液を提供することができる。
As described above, according to the present invention,
Highly durable water-repellent substrates such as glass exhibiting extremely excellent abrasion resistance (traverse resistance) and maintaining high water-repellent performance stably and reliably in mass production. It improves the homogeneity of the glass and does not impair the optical characteristics, so it can be used not only for architectural purposes but also for automotive window materials, ship and aircraft window materials, bathroom and automotive mirrors, industrial glass, and various other products. It is possible to provide a useful water-repellent liquid that can be widely used and has high utility value.

【図面の簡単な説明】[Brief description of the drawings]

【図1】各脱水時間における撥水液のGPCチャートFIG. 1 is a GPC chart of a water-repellent liquid at each dehydration time.

【図2】各保管日数における撥水液のGPCチャートFIG. 2 is a GPC chart of a water-repellent liquid for each storage period.

【図3】各種溶媒で調製した撥水液のGPCチャート
(1)
FIG. 3 is a GPC chart of a water-repellent liquid prepared with various solvents (1).

【図4】各種溶媒で調製した撥水液のGPCチャート
(2)
FIG. 4 is a GPC chart of a water-repellent liquid prepared with various solvents (2).

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】フルオロアルキル基含有シラン化合物を有
効成分とする撥水液を基材表面に塗布し、該フルオロア
ルキル基を基材表面に固定化し撥水性被膜を成膜するの
に用いる撥水液において、撥水液中のフルオロアルキル
基含有シラン化合物は、少なくとも2量体および3量体
よりなる重合体を含有してなることを特徴とする撥水
液。
1. A water-repellent liquid comprising a water-repellent liquid containing a fluoroalkyl group-containing silane compound as an active ingredient, which is applied to the surface of a substrate to fix the fluoroalkyl group on the surface of the substrate and form a water-repellent film. The water-repellent liquid, wherein the fluoroalkyl group-containing silane compound in the liquid-repellent liquid contains at least a polymer composed of a dimer and a trimer.
【請求項2】重合体における2量体に対する3量体の割
合(η=3量体/2量体)が0.06〜0.5であるこ
とを特徴とする請求項1記載の撥水液。
2. The water-repellent material according to claim 1, wherein the ratio of trimer to dimer (η = trimer / dimer) in the polymer is 0.06 to 0.5. liquid.
【請求項3】撥水液中の重合体の形成割合が、2量体が
1〜25重量%、3量体が0.06〜12.5重量%で
あることを特徴とする請求項1乃至2記載の撥水液。
3. The method according to claim 1, wherein the formation ratio of the polymer in the water-repellent liquid is 1 to 25% by weight for the dimer and 0.06 to 12.5% by weight for the trimer. 3. The water repellent liquid according to any one of claims 1 to 2.
【請求項4】撥水液中の重合体が、単量体、2量体、3
量体および4量体以上からなるものであることを特徴と
する請求項1乃至3記載の撥水液。
4. The polymer in the water-repellent liquid is a monomer, dimer,
The water-repellent liquid according to any one of claims 1 to 3, wherein the water-repellent liquid comprises a monomer and a tetramer or more.
【請求項5】撥水液中の重合体の形成割合が、単量体が
60重量%以上、2量体が1〜25重量%、3量体が
0.06〜12.5重量%、4量体以上が5重量%以下
であることを特徴とする請求項1乃至4記載の撥水液。
5. A method for forming a polymer in a water-repellent liquid, wherein a proportion of a monomer is 60% by weight or more, a dimer is 1 to 25% by weight, a trimer is 0.06 to 12.5% by weight, The water-repellent liquid according to any one of claims 1 to 4, wherein the content of the tetramer or more is 5% by weight or less.
【請求項6】撥水液は、フルオロアルキル基含有シラン
化合物を加水分解および縮重合してなることを特徴とす
る請求項1乃至5記載の撥水液。
6. The water-repellent liquid according to claim 1, wherein the water-repellent liquid is obtained by hydrolyzing and polycondensing a silane compound containing a fluoroalkyl group.
【請求項7】撥水液中のフルオロアルキル基含有シラン
化合物の含有量が、2〜20重量%であることを特徴と
する請求項1乃至6記載の撥水液。
7. The water-repellent liquid according to claim 1, wherein the content of the fluoroalkyl group-containing silane compound in the water-repellent liquid is 2 to 20% by weight.
【請求項8】フルオロアルキル基含有シラン化合物を有
効成分とする溶液を加水分解および縮重合して調製して
なる撥水液を基材表面に塗布する工程と、次いで該撥水
液に含まれるフルオロアルキル基を該基材表面に固定化
し撥水性被膜を形成する硬化工程とからなることを特徴
とする撥水性被膜の製造方法。
8. A step of applying a water-repellent liquid prepared by hydrolyzing and polycondensing a solution containing a fluoroalkyl group-containing silane compound as an active ingredient to the surface of a substrate, and then contained in the water-repellent liquid. A method for producing a water-repellent coating, comprising: a curing step of fixing a fluoroalkyl group to the surface of the substrate to form a water-repellent coating.
【請求項9】フルオロアルキル基含有シラン化合物、希
釈溶剤、酸性水溶液からなる出発原料を加水分解した後
に縮重合する際の脱水時間を制御することにより、撥水
液中に少なくとも2量体および3量体を形成させてなる
ことを特徴とする請求項8記載の撥水性被膜の製造方
法。
9. A water-repellent liquid comprising at least a dimer and a trimer in a water-repellent liquid by controlling the dehydration time in hydrolyzing a starting material comprising a fluoroalkyl group-containing silane compound, a diluting solvent and an acidic aqueous solution and then conducting condensation polymerization. The method for producing a water-repellent coating according to claim 8, wherein a monomer is formed.
【請求項10】希釈溶剤として、撥水剤のアルコキシ基
含有シラン化合物中のアルコキシ基の種類に相当するア
ルコール以外の溶剤を用いることを特徴とする請求項8
乃至9記載の撥水性被膜の製造方法
10. A solvent other than alcohol corresponding to the type of alkoxy group in the alkoxy group-containing silane compound of the water repellent is used as the diluting solvent.
10. A method for producing a water-repellent coating according to any one of claims 9 to 9.
【請求項11】基材がガラスであり、研摩および酸処理
をすることにより表面を改質したガラス表面に撥水液を
塗布することを特徴とする請求項8乃至10記載の撥水
性被膜の製造方法。
11. The water-repellent coating according to claim 8, wherein the base material is glass, and a water-repellent liquid is applied to the surface of the glass whose surface has been modified by polishing and acid treatment. Production method.
【請求項12】基材表面がフロート法で製造されるガラ
ス基板のトップ面またはロールアウト法で製造されるガ
ラス基板の火作り面であることを特徴とする請求項8乃
至11記載の撥水性被膜の製造方法。
12. The water-repellent material according to claim 8, wherein the surface of the substrate is a top surface of a glass substrate manufactured by a float method or a fired surface of a glass substrate manufactured by a roll-out method. Manufacturing method of coating.
JP3078898A 1998-02-13 1998-02-13 Method for producing water-repellent liquid and water-repellent coating Expired - Fee Related JP3599998B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3078898A JP3599998B2 (en) 1998-02-13 1998-02-13 Method for producing water-repellent liquid and water-repellent coating
EP99102682A EP0947478B1 (en) 1998-02-13 1999-02-12 Water-repellent solution and method of forming water-repellent film on substrate by using the solution
DE1999626093 DE69926093T2 (en) 1998-02-13 1999-02-12 Water-repellent solution and method for producing a water-repellent layer on a substrate by means of this solution
US09/248,994 US6235833B1 (en) 1998-02-13 1999-02-12 Water-repellent solution and method of forming water-repellent film on substrate by using the solution
US09/811,588 US6461670B2 (en) 1998-02-13 2001-03-20 Water-repellent solution and method of forming water-repellent film on substrate by using the solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3078898A JP3599998B2 (en) 1998-02-13 1998-02-13 Method for producing water-repellent liquid and water-repellent coating

Publications (2)

Publication Number Publication Date
JPH11228942A true JPH11228942A (en) 1999-08-24
JP3599998B2 JP3599998B2 (en) 2004-12-08

Family

ID=12313424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3078898A Expired - Fee Related JP3599998B2 (en) 1998-02-13 1998-02-13 Method for producing water-repellent liquid and water-repellent coating

Country Status (1)

Country Link
JP (1) JP3599998B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004091810A1 (en) * 2003-04-15 2004-10-28 Nippon Soda Co., Ltd. Method for producing organic thin film
WO2006009202A1 (en) * 2004-07-22 2006-01-26 Nippon Soda Co., Ltd. Method for organic thin film formation, assistant for organic thin film formation, and solution for organic thin film formation
JP2006256951A (en) * 2005-02-21 2006-09-28 Central Glass Co Ltd Method for manufacturing glass article having waterdrop slidable property
WO2008059840A1 (en) 2006-11-13 2008-05-22 Nippon Soda Co., Ltd. Method for forming organic thin film
CN100451054C (en) * 2003-04-15 2009-01-14 日本曹达株式会社 Method for producing organic thin film
WO2009104424A1 (en) 2008-02-22 2009-08-27 日本曹達株式会社 Solution for formation of organic thin film, and method for production thereof
EP2366521A2 (en) 2004-12-28 2011-09-21 Nippon Soda Co., Ltd. Molding die or master pattern for electroforming each having release layer
WO2012063767A1 (en) * 2010-11-11 2012-05-18 日本曹達株式会社 Process for producing organic thin film laminate using solid or oily material for organic thin film formation applications
CN102627410A (en) * 2012-04-24 2012-08-08 奇瑞汽车股份有限公司 Hydrophobic glass preparation method and hydrophobic glass
WO2013057945A1 (en) 2011-10-18 2013-04-25 日本曹達株式会社 Surface-covered inorganic powder
WO2014006885A1 (en) 2012-07-05 2014-01-09 日本曹達株式会社 Organosilicon compound, thin film forming composition using same, and organic thin film
JP2020514466A (en) * 2016-12-30 2020-05-21 ドンジン セミケム カンパニー リミテッドDongjin Semichem Co., Ltd. Water repellent coating composition and water repellent coating substrate coated with the same

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8197906B2 (en) 2003-04-15 2012-06-12 Nippon Soda Co., Ltd. Method for producing organic thin film
JPWO2004091810A1 (en) * 2003-04-15 2006-07-06 日本曹達株式会社 Organic thin film manufacturing method
US8426019B2 (en) 2003-04-15 2013-04-23 Nippon Soda Co., Ltd. Method for producing organic thin film
CN100451054C (en) * 2003-04-15 2009-01-14 日本曹达株式会社 Method for producing organic thin film
JP2009090288A (en) * 2003-04-15 2009-04-30 Nippon Soda Co Ltd Method of manufacturing organic thin film
WO2004091810A1 (en) * 2003-04-15 2004-10-28 Nippon Soda Co., Ltd. Method for producing organic thin film
EP2140945A2 (en) 2003-04-15 2010-01-06 Nippon Soda Co., Ltd. Method for producing organic thin film
US7776403B2 (en) 2003-04-15 2010-08-17 Nippon Soda Co., Ltd. Method for producing organic thin film
EP2275211A1 (en) 2003-04-15 2011-01-19 Nippon Soda Co., Ltd. Method for producing organic thin film
JP4684889B2 (en) * 2003-04-15 2011-05-18 日本曹達株式会社 Manufacturing method of organic thin film
WO2006009202A1 (en) * 2004-07-22 2006-01-26 Nippon Soda Co., Ltd. Method for organic thin film formation, assistant for organic thin film formation, and solution for organic thin film formation
US8568836B2 (en) 2004-07-22 2013-10-29 Nippon Soda Co., Ltd. Organic thin film forming method, auxiliary agent for forming an organic thin film, and solution for forming an organic thin film
US8361375B2 (en) 2004-12-28 2013-01-29 Nippon Soda Co., Ltd. Forming mold or electroforming mother die having release layer and method for manufacturing the same
EP2366521A2 (en) 2004-12-28 2011-09-21 Nippon Soda Co., Ltd. Molding die or master pattern for electroforming each having release layer
JP2006256951A (en) * 2005-02-21 2006-09-28 Central Glass Co Ltd Method for manufacturing glass article having waterdrop slidable property
US9416283B2 (en) 2006-11-13 2016-08-16 Nippon Soda Co., Ltd. Method for forming organic thin film
US8864896B2 (en) 2006-11-13 2014-10-21 Nippon Soda Co., Ltd. Method for forming organic thin film
WO2008059840A1 (en) 2006-11-13 2008-05-22 Nippon Soda Co., Ltd. Method for forming organic thin film
US9303124B2 (en) 2008-02-22 2016-04-05 Nippon Soda Co., Ltd. Solution for formation of organic thin film, and method for production thereof
WO2009104424A1 (en) 2008-02-22 2009-08-27 日本曹達株式会社 Solution for formation of organic thin film, and method for production thereof
WO2012063767A1 (en) * 2010-11-11 2012-05-18 日本曹達株式会社 Process for producing organic thin film laminate using solid or oily material for organic thin film formation applications
US9309416B2 (en) 2010-11-11 2016-04-12 Nippon Soda Co., Ltd. Process for producing organic thin film laminate using solid or oily material for organic thin film formation applications
KR20150111371A (en) 2010-11-11 2015-10-05 닛뽕소다 가부시키가이샤 Process for producing organic thin film laminate using solid or oily material for organic thin film formation applications
JP5793504B2 (en) * 2010-11-11 2015-10-14 日本曹達株式会社 Method for producing organic thin film laminate, and method for producing solid or oily material for forming organic thin film
CN103201049B (en) * 2010-11-11 2016-01-20 日本曹达株式会社 Use the organic film laminated body making method of organic film formation solids or grease
CN103201049A (en) * 2010-11-11 2013-07-10 日本曹达株式会社 Process for producing organic thin film laminate using solid or oily material for organic thin film formation applications
KR20140068168A (en) 2011-10-18 2014-06-05 닛뽕소다 가부시키가이샤 Surface-covered inorganic powder
WO2013057945A1 (en) 2011-10-18 2013-04-25 日本曹達株式会社 Surface-covered inorganic powder
CN102627410A (en) * 2012-04-24 2012-08-08 奇瑞汽车股份有限公司 Hydrophobic glass preparation method and hydrophobic glass
KR20150011385A (en) 2012-07-05 2015-01-30 닛뽕소다 가부시키가이샤 Organosilicon compound, thin film forming composition using same, and organic thin film
US9353288B2 (en) 2012-07-05 2016-05-31 Nippon Soda Co., Ltd. Organosilicon compound, thin film forming composition using same, and organic thin film
WO2014006885A1 (en) 2012-07-05 2014-01-09 日本曹達株式会社 Organosilicon compound, thin film forming composition using same, and organic thin film
US9481801B2 (en) 2012-07-05 2016-11-01 Nippon Soda Co., Ltd. Organosilicon compound, thin film forming composition using same, and organic thin film
JP2020514466A (en) * 2016-12-30 2020-05-21 ドンジン セミケム カンパニー リミテッドDongjin Semichem Co., Ltd. Water repellent coating composition and water repellent coating substrate coated with the same

Also Published As

Publication number Publication date
JP3599998B2 (en) 2004-12-08

Similar Documents

Publication Publication Date Title
US6461670B2 (en) Water-repellent solution and method of forming water-repellent film on substrate by using the solution
EP0825157B1 (en) Water-repellent glass pane and method for producing same
US8092913B2 (en) Hydrophobic coating comprising a priming including a bis-silane and a hydrophobic layer including a fluorinated alkysilane
EP0842908B1 (en) Water repellant glass plate and method for manufacturing the same
US6340502B1 (en) Hydrophobic coating for glazing sheet
JPH0597478A (en) Water repellent glass article and its production
JPH0853650A (en) Nonwettable coating composition
US20080026163A1 (en) Treatment For Forming Waterdrop Slidable Films And Process For Forming Waterdrop Slidable Films
JPH11228942A (en) Water-repellent fluid and production of water-repellent film
JPH10194784A (en) Water-repellent glass
JP3649585B2 (en) Water repellent coating solution
JP2002012452A (en) High water slip substrate and its manufacturing method
JP4876424B2 (en) Manufacturing method for water slidable articles
JP4826226B2 (en) Treatment agent for obtaining water slidable film and method for producing water slidable film
JP2001205187A (en) Method for manufacturing silica-base film coated article and silica-base film coated article
JP3385165B2 (en) Method for preparing coating solution for water-repellent film, method for producing water-repellent glass, and water-repellent glass
EP0891953A1 (en) Glass plate with water-repellent film and method for producing same
JPH05171111A (en) Solution for forming water-repellent coating film having high durability
JP2001205747A (en) Base material having surface treatment layer and method of manufacturing the same
JP3628881B2 (en) Manufacturing method of water repellent liquid and water repellent substrate
JP3672688B2 (en) Water repellent glass manufacturing method
JPH05319868A (en) Water repellent for glass substrate and treatment for water repellency
JP4152769B2 (en) Method for producing highly durable water slidable coating
JP3744736B2 (en) Highly slidable base material and method for producing the same
JP3623108B2 (en) Water repellent glass manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040915

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees