JP3623108B2 - Water repellent glass manufacturing method - Google Patents

Water repellent glass manufacturing method Download PDF

Info

Publication number
JP3623108B2
JP3623108B2 JP25617598A JP25617598A JP3623108B2 JP 3623108 B2 JP3623108 B2 JP 3623108B2 JP 25617598 A JP25617598 A JP 25617598A JP 25617598 A JP25617598 A JP 25617598A JP 3623108 B2 JP3623108 B2 JP 3623108B2
Authority
JP
Japan
Prior art keywords
glass
water
repellent
underlayer
water repellent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25617598A
Other languages
Japanese (ja)
Other versions
JP2000086293A (en
Inventor
佳則 赤松
泰夫 森口
滋生 濱口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP25617598A priority Critical patent/JP3623108B2/en
Publication of JP2000086293A publication Critical patent/JP2000086293A/en
Application granted granted Critical
Publication of JP3623108B2 publication Critical patent/JP3623108B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3405Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of organic materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/42Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating of an organic material and at least one non-metal coating

Description

【0001】
【発明の属する技術分野】
本発明は、フロートガラス等のガラス基板表面に撥水性被膜が形成された撥水性ガラスおよびその製法に関し、建築用、自動車用、船舶用或いは航空機用等の各種窓材、の他産業用など種々の分野の各種透明物品等に利用できる撥水性ガラスおよびその製法を提供するものである。
【0002】
【従来の技術】
最近、優れた撥水性能をより長く持続する透明な撥水性被膜が望まれてきている。これらのニ−ズに答えるための代表的な性能として、例えば高い耐摩耗性(耐トラバ−ス性)を有する撥水性被膜を備える撥水性ガラスとする必要がある。この撥水性被膜を得るためにフルオロアルキル基含有シラン化合物をガラス基板表面に処理した撥水性ガラスについて、非常に多くの提案が報告されている。
【0003】
例えば、本出願人が既に出願した特願平4−16688号(特開平5−213633号公報)および特開平9−132433号公報等に記載している発明は、ガラス表面に微細な凹凸形状表層表面を有するベ−ス膜を形成し、該ベ−ス膜を被覆する撥水膜を形成することで、撥水性被膜の付着効率と密着性を高め、さらに耐光性能を向上するようにしたものである。
また、本出願人が既に出願した特願平8−217510号に記載している発明は、フルオロアルキル(Rf)基含有シラン化合物の重縮合の程度(FAS重合度)を制御して(脱水撥水液)、耐トラバース性を改善するようにしたものである。
さらに、特開平9−268031号公報にはフロートガラスのトップ面を選択してフルオロアルキル基含有シラン化合物を処理することにより、耐久性を向上するようにしたものが知られている。
さらにまた、特開平3−232747号公報にはフロートガラス面にシリカよりなる下地層を形成し、フロートガラスのトップ面とボトム面との性能の差異を解消し、同等な撥水性を有するガラスが開示されている。
【0004】
【発明が解決しようとする課題】
しかしながら、上述した例えば、特願平4−16688号(特開平5−213633号公報)および特開平9−132433号公報に記載の撥水性ガラスは、前述したニ−ズに充分に答えうるものであるものの、特異なベ−ス膜と撥水性被膜の2層構造の膜構成であり複雑であるという問題がある。
また、特願平8−217510号や特開平9−268031号公報については、ガラス基板としてフロートガラスのトップ面を使用する必要があり、例えば自動車用ガラスの場合には必然的にボトム面(車外面)が撥水処理面となるなど、所望の性能を得ることができない場合がある。
さらに、特開平3−232747号公報の場合は、下地層の厚みは100〜300nmと非常に厚く、耐摩耗性を充分に満足出来るものではない。
【0005】
【課題を解決するための手段】
本発明は、従来のかかる課題に鑑みてなしたものであって、フロートガラスのトップ面、ボトム面を区別することなく同等の性能を有する撥水性被膜を簡単に形成できる高性能の撥水性ガラスおよびその製法に関するものである。
【0006】
すなわち本発明は、膜厚が20〜45nmである下地層が形成されたフロートガラス表面に、フルオロアルキル(Rf)基含有シラン化合物を有効成分とする塗布液が塗布され、Rf基が下地層表面に撥水性被膜が形成されてなる撥水性ガラスに関する。
また、フロートガラスのボトム面に撥水性被膜が形成された撥水性ガラスのトップ面と他のフロートガラスのトップ面同士を合わせフィルムを介して積層させることも可能である。
【0007】
さらに本発明は フロートガラス表面に膜厚20〜45nmの下地層を形成する工程と、該下地層の上面にフルオロアルキル基含有シラン化合物を有効成分とする溶液を加水分解および重縮合して調製してなる撥水液を塗布する工程と、次いで該撥水液に含まれるフルオロアルキル基含有シランを該下地層表面に撥水性被膜を形成する硬化工程とからなる撥水性ガラスの製法に関するものであり、その下地層は、撥水液を塗布する前に酸性水溶液に浸漬して酸処理すると良い。
【0008】
【発明の実施の形態】
次に本発明の実施の態様について説明する。
ガラス基板としては、建築用窓ガラスや自動車用窓ガラス等に通常使用されているフロ−トガラスあるいはロ−ルアウト法で製造されたガラス基板を用いることが出来、無色または着色ならびにその種類あるいは形状等に特に限定されるものではなく、さらに曲げ板ガラスとしてはもちろん各種強化ガラスや強度アップガラス、平板や単板で使用できるとともに、複層ガラスあるいは合せガラスとしても使用できる。
汎用ガラスとして一般に用いられているフロートガラスは、ガラスを形成する工程において、溶融錫上を浮遊して製造されるために、該溶融錫と接触する面(以下、ボトム面と呼ぶ)と溶融錫と接触しない面(以下、トップ面と呼ぶ)とで、その表面性能に差異が生じる。また、フルオロアルキル(Rf)基含有シラン化合物を有効成分とする塗布液を、フロートガラスのガラス面に塗布してRf基をガラス表面に固定化する撥水性ガラスでは、処理されるガラス基板の表面のシラノール基の濃度が製品の品質を左右する極めて重要な因子であり、該フロートガラスを基板ガラスとして用いる場合には、トップ面とボトム面ではシラノール基の濃度が異なる。
【0009】
本発明では、上記フロートガラスのトップ面とボトム面との表面性能の差異をなくすために、該フロートガラス面に20〜45nmの範囲にある薄い膜厚の下地層を形成し、その上面に撥水性被膜を被覆させることにより、撥水性能とともに耐久性能の重要な因子である耐候性および耐摩耗性(耐トラバース性)も併せて向上させることが出来る。
【0010】
下地層は、その膜組成は限定されるものではなく、シリカ、アルミナ、チタニア、酸化スズ、酸化ジルコニウム等の金属酸化物を単独あるいは組み合わせて用いる事が出来、さらに窒化物、炭化物、それらの組み合わせ等も用いることが出来る。なお下地層としては、ガラス中に含有されているアルカリイオンの拡散防止および被膜の形成の容易性、コスト等の面から、特にシリカを主成分とする下地層とするのが良い。
下地層の膜厚は、ボトム面の錫の影響を無視でき、かつ耐摩耗性に富んだものとする必要があり、これを満足するためには20〜45nmの膜厚範囲に制御することが重要である。すなわち、ボトム面の影響を受けなくするには膜厚を大きくする必要があり、一方下地層の耐摩耗性を高めるためには膜厚をできる限り小さくすることが有利であるので、両者を共に満足する最適な膜厚が20〜45nmの範囲である。なお、膜厚を23〜40nmの範囲にすると、耐摩耗性(耐トラバース性)がより向上し長期耐久性において特に優れたものとなる。
【0011】
また、この下地層を形成後、シラノール基の濃度を増大させて、フルオロアルキル(Rf)基含有シラン化合物との反応性を活性化させるために、撥水処理前に0.1〜13Nの濃度の酸性水溶液に浸漬して酸処理すると膜の耐久性能が向上する。
【0012】
撥水性被膜を形成する撥水液は、フルオロアルキル基含有シラン化合物からなる撥水剤と、希釈用の溶媒と、触媒としての酸性水溶液を所定量混合したのち、所定時間撹拌して加水分解反応を終結させ、次いで該溶液に脱水剤を添加し、所定時間脱水処理を行って重縮合させることにより得ることができる。
【0013】
上記の出発原料としては、撥水剤としてフルオロアルキルアルコキシシラン系化合物或いはフルオロアルキルハロゲン化シラン系化合物であり、その化合物としては、例えばCF(CF11CHCHSi(OR)、CF(CFCHCHSi(OR)、CF(CFCHCHSi(OR)、CF(CFCHCHSi(OR)、CF(CF11CHCHSiR(OR)、CF(CFCHCHSiR(OR)、CF(CFCHCHSiR(OR)、CF(CF)5CHCHSiR(OR)、CFCHCHSiCl、CF(CFCHCHSiCl、CF(CFCHCHSiRCl2、CF(CFCHCHSiCl、CF(CFCHCHSiRCl等を用いることが出来る。
なお、上記化学式におけるRはCH、C、Cを示す。
【0014】
希釈溶媒としては、イソプロピルアルコ−ル(以下、「i−PA」と略す)の他に、メタノ−ル、エタノ−ルなど炭素数が5以下の低級アルコ−ル溶媒であってもよく、アルコ−ル以外にエ−テル類やケトン類を用いることができ、ことにイソプロピルアルコールを主成分としてなるアルコールがコ−ティング溶液の調製における希釈溶媒として好ましい。
【0015】
触媒としての酸性水溶液は、0.01N以上、好ましくは0.1N〜13N程度の濃度の硝酸、塩酸、硫酸などの無機酸あるいは、酢酸、クエン酸などの有機酸を使用することができる。
なお、撥水剤:希釈溶剤:酸性水溶液は、重量割合で1:5〜50:0.09〜1.0の範囲が好ましいが、これらの範囲に限定されるものではない。
【0016】
脱水剤としては、シリカゲル、合成ゼオライト、活性アルミナ等を用いることが出来るが、これに限定するものではない。
また本発明は、加水分解終結後に重縮合する場合あるいは加水分解の途中で重縮合が開始する場合等、特に限定するものではない。
さらに、撥水液をガラス基板の表面上に塗布する条件は、撥水剤成分のシラノール基と基材表面の水酸基との反応を活性化させるために、通常雰囲気湿度が約75%RH以下が好ましいが、これらに限定されるものではない。
【0017】
撥水液を塗布するガラス基板の表面を予め酸処理することにより表面改質すると、被膜の強度等が増し好ましい。
さらに、ガラス基板表面に凹凸の下地層を形成すると耐久性がより向上するので特に好ましく、その方法としては、例えば金属アルコキシド系化合物或いは金属アセチルアセトネート系化合物の中から少なくとも1種以上選択し、しかも該選択した2つ以上の化合物は4官能および3官能のアルコキシドであって、該2つ以上の化合物を溶剤とともに混合してコーティング溶液とし、該溶液を被覆・加熱成膜してマイクロピット状の表層をつくる方法等が採用できるがこれに限定されるものではない。
【0018】
ガラス基板への下地層及び撥水層の膜付け法としては、手塗り(ラビング法)、ノズルフロ−コ−ト法、ディッピング法、スプレー法、リバ−スコ−ト法、フレキソ法、印刷法、フローコート法あるいはスピンコート法、ならびにそれらの併用等既知の塗布手段等各種の塗布法が適宜採用し得るものである。
【0019】
撥水性ガラスの応用例として、例えば合わせガラスに撥水性被膜を形成する場合、積層された合わせガラスの性能は、フロートガラスのトップ面同志を該中間膜側に接着させることがトップ面とボトム面或いはボトム面同志を合わせた合わせガラスよりも耐衝撃性能等の面より好ましいので、一般に採用されている。このような場合に撥水性被膜を形成させるには、撥水性被膜はフロートガラスのボトム面に形成せざるをえず、本発明を適用してボトム面に設けた下地層の上面に撥水性被膜を形成できるので、合わせ性能および撥水性能ともに良好な性能を得ることができる利点を有する。
【0020】
また、他の一例としてフロートガラスの片面に熱線反射膜を形成し、その反対側のガラス面に撥水膜を形成させる熱線反射膜付き撥水性ガラスを製造する場合には、一般に該熱線反射膜はフロート法のオンラインで該ガラスのトップ面に被覆される。このような場合、撥水性被膜はボトム面に被覆せざるを得ないような場合にも、本発明のボトム面に下地層を形成し撥水膜を形成出来る利点もある。なお、上記例に限定せず目的に応じて適宜適用できることは言うまでもない。
【0021】
【作用】
下地層を形成する目的は、フロートガラスのボトム面あるいはトップ面の表面性能の差異を解消するためとその上面に被覆した撥水性被膜を耐候性および耐摩耗性に富んだものとするものであり、その膜厚は20nm〜45nmの範囲に制御することが本発明のポイントである。
すなわち、ボトム面の影響を受けなくするには、膜厚を大きくする必要があり、一方下地層の耐摩耗性を高めるためには、膜厚をできる限り小さくすることが有利であるので、両者を共に満足する最適な膜厚が20〜45nmの範囲である。
【0022】
【実施例】
以下、実施例により本発明を具体的に説明する。但し、本発明は係る実施例に限定されるものではない。
【0023】
実施例1
▲1▼下地層の作製
200×300×3.5mmサイズのフロートガラスのボトム面に、シリカゾル(チッソ製CSG−DI−0600(シリカ溶質濃度6wt%))をエキネンでシリカ溶質濃度が4wt%になるように希釈した下地層用溶液をリバースロールコート法で成膜した(成膜時のロールの速度は6m/分とした)。
成膜後、250℃で乾燥したのち、ガラスの曲げ加工温度である650℃で焼成して、膜厚が20nmである透明なシリカ下地膜を得た。
なお、得られたシリカ下地膜の膜厚は接触式膜厚計(Sloan tech.製Dektak−3030)或いはエリプソメーター(溝尻光学工業製DVA−36VW−S)を用いて測定した。
▲2▼撥水液の調合
撥水液は、撥水剤としてフルオロアルキルアルコキシシラン系のヘプタデカフルオロデシルトリメトキシシラン(CF(CFCHCHSi(OCH:信越化学工業製KBM−7803、以下「FAS」と称す)を用い、希釈溶媒であるイソプロピルアルコール(i−PA)と酸触媒を含む水(0.1N硝酸(HNO)水溶液)を所定量(FAS:i−PA:0.1N−硝酸=1:25:0.3(g))混合し、室温で2h撹拌して加水分解反応を終結させた。
次いで、該加水分解反応を終結させた溶液に脱水剤である合成ゼオライト〔モレキュラ−シ−ブ4A〕を添加し(添加量は重量比で撥水剤の5倍)、16時間(脱水時間)浸漬・放置し脱水させつつ重縮合反応を完了したのち、濾紙(NO.7)を用いて濾過しモレキュラ−シ−ブ4Aを分離除去して塗布用撥水液とした。
▲3▼撥水性ガラスの作製
下地層を形成したガラスを水洗した後、35℃の0.1N硫酸水溶液中に1分間浸漬した。その後市販のガラス洗浄機(当所製作品)にて水洗および乾燥して、温度と湿度を23℃,45%RHに保った環境下で、2ml/枚の撥水液を該下地層上に滴下し、綿布(商品名ベンコット)でガラス全面に十分引き伸ばした後、5分程度風乾した。その後マッフル炉でガラス温度が5分で140℃に達するような熱処理(以下、キュアリングと呼ぶ)を行い、白濁して残った余剰な撥水剤をi−PAで拭き上げて透明な撥水性ガラスを得た。
【0024】
得られた撥水性ガラスの品質の評価は、下記に示す初期接触角試験(初期撥水性)、トラバース試験(耐摩耗性)およびスーパーUV試験(耐光性)の3項目について行った。

Figure 0003623108
【0025】
得られた撥水性ガラスの品質評価を行った結果、表1に示す通り初期接触角は目標値100°に対して109〜111°と良好な値を示した。
また耐摩耗性(耐トラバース性)においては目標値95°に対して96〜105°と高い値が保持されており、さらに耐光性については目標70°に対して71°であり、全ての評価において目標値をクリアー出来、良好な結果を示した。
【0026】
【表1】
Figure 0003623108
【0027】
実施例2
下地層成膜時のロール速度を7m/分とした以外は全て実施例1と同一の方法で行った。なお、下地層の膜厚は25nmであった。
品質評価した結果、表1に示す通り耐トラバース性は106〜108°および耐光性75°と全ての品質において目標値をクリアーし良好な結果を示した。特に、耐トラバース性能は100°以上と高い値を示した。
【0028】
実施例3
下地層成膜時のロール速度を8m/分とした以外は全て実施例1と同一の方法で行った。なお、下地層の膜厚は32nmであった。
品質評価した結果、表1に示す通り耐トラバース性は101〜104°および耐光性75°と全ての品質において目標値をクリアーし良好な結果を示した。特に、耐トラバース性能は100°以上と高い値を示した。
【0029】
実施例4
ディッピング法により下地層を成膜した以外は、実施例1と同じ方法で行った。なお、下地層成膜時の引き上げ速度は1.0mm/秒とした。
焼成後の下地層の膜厚は40nmであった。
品質評価した結果、表1に示す通り耐トラバース性は100〜104°および耐光性75°と全ての品質において目標値をクリアーし良好な結果を示した。特に、耐トラバース性能は100°以上と高い値を示した。
【0030】
実施例5
成膜時の引き上げ速度を0.5mm/秒とした以外は、実施例4と同じ方法で行った。
なお、焼成後の下地層の膜厚は30nmであった。
品質評価した結果、表1に示す通り耐トラバース性は100〜105°および耐光性75°と全ての品質において目標値をクリアーし良好な結果を示した。特に、耐トラバース性能は100°以上と高い値を示した。
【0031】
実施例6
成膜時の引き上げ速度は1.5mm/秒とした以外は、実施例4と同じ方法で行った。
なお、焼成後の下地層の膜厚は45nmであった。
品質評価した結果、表1に示す通り耐トラバース性は95〜103°、耐光性75°と全ての品質において目標値をクリアーし良好な結果を示した。
【0032】
比較例1
下地層を形成しないで、フロートガラスのボトム面に実施例1と同様な方法で直接撥水処理した。
なお、この場合は酸処理前にセリア懸濁液とブラシポリッシャーで研磨して同様に酸処理後、撥水処理した。なお、ここで用いた研磨液は、三井金属工業製ミレーク(A+B):水=1:100(wt%)なる懸濁液を用いた。
結果、耐トラバース性は90〜105゜と良好であったが、耐光性は57゜と目標を大きく下回わり、接触角が70に低下するまでの時間はトップ面品の約650hに対して、約400hと耐光性寿命は約2/3に低下した。
【0033】
比較例2
下地層成膜時のロール速度を5m/分とした以外は、実施例1と同じ方法で行った。なお、下地層の膜厚は10nmであった。
品質評価を行った結果、耐トラバース性は83〜105°、耐光性は60°と目標を大きく下回わり、実用耐久性の低いものであった。
【0034】
比較例3
下地層成膜時(ディッピング法)の引き上げ速度を2mm/秒とした以外は、実施例4と同じ方法で行った。なお、下地層の膜厚は55nmであった。
品質評価を行った結果、耐光性は72°で高い耐久性を示したが、耐トラバース性は58〜100°とバラツキが大きく、目標の95゜を満足できなかった。
【0035】
比較例4
下地層成膜時の引き上げ速度を3mm/秒とした以外は、実施例4と同じ方法で行った。なお、下地層の膜厚は70nmであった。
品質評価を行った結果、耐光性は72°で高い耐久性を示したが、耐トラバース性75〜93°とバラツキが大きく、目標の95゜を満足できなかった。
【0036】
比較例5
下地層成膜時の引き上げ速度を4mm/秒とした以外は、実施例4と同じ方法で行った。なお、下地層の膜厚は85nmであった。
品質評価を行った結果、耐光性は74°で高い耐久性を示したが、耐トラバース性77〜99°とバラツキが大きく、目標の95゜を満足できなかった。
【0037】
比較例6
下地層成膜時の引き上げ速度を5mm/秒とした以外は、実施例4と同じ方法で行った。なお、下地層の膜厚は100nmであった。
品質評価を行った結果、耐光性は75°で高い耐久性を示したが、耐トラバース性89〜104°とバラツキが大きく、目標の95°を満足できなかった。
【0038】
比較例7
下地層成膜時の引き上げ速度を6mm/秒とした以外は、実施例4と同じ方法で行った。なお、下地層の膜厚は110nmであった。
品質評価を行った結果、耐光性は74°で高い耐久性を示したが、耐トラバース性89〜103°とバラツキが大きく、目標の95゜を満足できなかった。
【0039】
比較例8
下地層成膜時の引き上げ速度を7mm/秒とした以外は、実施例4と同じ方法で行った。なお、下地層の膜厚は120nmであった。
品質評価を行った結果、耐光性は75°で高い耐久性を示したが、耐トラバース性74〜89°とバラツキが大きく、目標の95°を満足できなかった。
【0040】
比較例9
下地層成膜時の引き上げ速度を8mm/秒とした以外は、実施例4と同じ方法で行った。なお、下地層の膜厚は150nmであった。
品質評価を行った結果、耐光性は75°で高い耐久性を示したが、耐トラバース性70〜102°とバラツキが大きく、目標の95゜を満足できなかった。
【0041】
【発明の効果】
本発明は、フロートガラスのトップ面とボトム面を区別せずに双方に対して同等又は同等以上の撥水性能が得られるとともに耐久性にも優れた撥水性ガラスを、簡単な方法で安価に製造することができ、各種のニーズに応じて自由に選択でき広範囲の撥水ガラスに適用できるという効果を有する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water-repellent glass and a process for their preparation water repellent coating formed on the glass substrate surface, such as a float glass, architectural, automotive, various window materials, such as for marine or aircraft, such as for other industries of their The present invention provides a water-repellent glass that can be used for various transparent articles in various fields and a method for producing the same.
[0002]
[Prior art]
Recently, there has been a demand for a transparent water-repellent coating that lasts longer for excellent water repellency. As a typical performance for answering these needs, for example, it is necessary to use a water-repellent glass provided with a water-repellent coating having high abrasion resistance (traverse resistance). Many proposals have been reported for water-repellent glass obtained by treating a glass substrate surface with a fluoroalkyl group-containing silane compound in order to obtain this water-repellent coating.
[0003]
For example, the invention described in Japanese Patent Application No. Hei 4-16688 (Japanese Patent Laid-Open No. Hei 5-213633) and Japanese Patent Laid-Open No. Hei 9-132433, which has already been filed by the present applicant, has a fine uneven surface layer on the glass surface. By forming a base film having a surface and forming a water-repellent film covering the base film, the adhesion efficiency and adhesion of the water-repellent film are improved and the light resistance is further improved. It is.
In addition, the invention described in Japanese Patent Application No. 8-217510 filed by the present applicant controls the degree of polycondensation (degree of FAS polymerization) of a silane compound containing a fluoroalkyl (Rf) group (dehydration repellent property). Water solution) and traverse resistance is improved.
Furthermore, Japanese Patent Application Laid-Open No. 9-268031 discloses a technique in which durability is improved by selecting a top surface of a float glass and treating a fluoroalkyl group-containing silane compound.
Furthermore, JP-A-3-232747 discloses a glass having equivalent water repellency by forming a base layer made of silica on the float glass surface, eliminating the difference in performance between the top surface and the bottom surface of the float glass. It is disclosed.
[0004]
[Problems to be solved by the invention]
However, for example, the water-repellent glass described in Japanese Patent Application No. Hei 4-16688 (Japanese Patent Laid-Open No. Hei 5-213633) and Japanese Patent Laid-Open No. Hei 9-132433 can sufficiently satisfy the above-mentioned needs. However, there is a problem that it is complicated because it has a two-layer structure of a unique base film and a water-repellent film.
Further, in Japanese Patent Application No. 8-217510 and Japanese Patent Application Laid-Open No. 9-268031, it is necessary to use a top surface of float glass as a glass substrate. For example, in the case of glass for automobiles, the bottom surface (car) The desired performance may not be obtained, for example, the outer surface may be a water repellent surface.
Furthermore, in the case of Japanese Patent Laid-Open No. 3-232747, the thickness of the underlayer is very thick as 100 to 300 nm, and the wear resistance is not sufficiently satisfied.
[0005]
[Means for Solving the Problems]
The present invention has been made in view of such conventional problems, and is a high-performance water-repellent glass that can easily form a water-repellent film having equivalent performance without distinguishing the top surface and the bottom surface of the float glass. And its manufacturing method.
[0006]
That is, in the present invention, a coating liquid containing a fluoroalkyl (Rf) group-containing silane compound as an active ingredient is applied to a float glass surface on which a base layer having a thickness of 20 to 45 nm is formed, and the Rf group is the surface of the base layer. The present invention relates to a water repellent glass having a water repellent coating formed thereon.
In addition, the top surface of the water-repellent glass having a water-repellent coating formed on the bottom surface of the float glass and the top surfaces of other float glasses can be laminated together via a film.
[0007]
The invention further forming a base layer having a thickness 20~45Nm, a solution of the fluoroalkyl group-containing silane compound as an active ingredient to the upper surface of the underlayer hydrolysis and polycondensation prepared float glass surface A process for applying a water repellent liquid, and then a curing process for forming a water repellent film on the surface of the underlying layer with a fluoroalkyl group-containing silane contained in the water repellent liquid. The base layer may be acid-treated by immersing it in an acidic aqueous solution before applying the water repellent liquid.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described.
As the glass substrate, it is possible to use a float glass or a glass substrate manufactured by a roll-out method, which is usually used for architectural window glass, automobile window glass, etc. In addition to the bent plate glass, various tempered glass, strength-enhanced glass, flat plate and single plate can be used as well as multi-layer glass or laminated glass.
Float glass generally used as general-purpose glass is manufactured by floating on molten tin in the step of forming glass, so that a surface that contacts the molten tin (hereinafter referred to as a bottom surface) and molten tin There is a difference in surface performance between the surface that does not come into contact with the surface (hereinafter referred to as the top surface). In the case of water-repellent glass in which a coating solution containing a fluoroalkyl (Rf) group-containing silane compound as an active ingredient is applied to the glass surface of float glass and the Rf group is fixed to the glass surface, the surface of the glass substrate to be treated The silanol group concentration is an extremely important factor that affects the quality of the product. When the float glass is used as the substrate glass, the concentration of the silanol group differs between the top surface and the bottom surface.
[0009]
In the present invention, in order to eliminate the difference in surface performance between the top surface and the bottom surface of the float glass, a thin base layer having a thickness of 20 to 45 nm is formed on the float glass surface, and the top surface thereof is repelled. By coating the water-based film, weatherability and abrasion resistance (traverse resistance), which are important factors for durability as well as water repellency, can be improved.
[0010]
The film composition of the underlayer is not limited, and metal oxides such as silica, alumina, titania, tin oxide, and zirconium oxide can be used alone or in combination, and nitrides, carbides, and combinations thereof can be used. Etc. can also be used. The base layer is preferably a base layer mainly composed of silica in terms of prevention of diffusion of alkali ions contained in the glass, ease of film formation, cost, and the like.
The film thickness of the underlayer should be negligible for the influence of tin on the bottom surface and rich in wear resistance. To satisfy this, the film thickness can be controlled within a range of 20 to 45 nm. is important. In other words, it is necessary to increase the film thickness so as not to be affected by the bottom surface, while it is advantageous to reduce the film thickness as much as possible in order to increase the wear resistance of the underlayer. The optimum film thickness to be satisfied is in the range of 20 to 45 nm. In addition, when the film thickness is in the range of 23 to 40 nm, the wear resistance (traverse resistance) is further improved and the long-term durability is particularly excellent.
[0011]
In addition, after forming this underlayer, the concentration of the silanol group is increased to activate the reactivity with the fluoroalkyl (Rf) group-containing silane compound. When immersed in an acidic aqueous solution and acid-treated, the durability of the membrane is improved.
[0012]
The water-repellent liquid that forms the water-repellent film is prepared by mixing a predetermined amount of a water-repellent agent composed of a fluoroalkyl group-containing silane compound, a solvent for dilution, and an acidic aqueous solution as a catalyst, followed by stirring for a predetermined time for hydrolysis reaction. Can then be obtained by adding a dehydrating agent to the solution and subjecting it to dehydration for a predetermined time for polycondensation.
[0013]
The starting material is a fluoroalkylalkoxysilane compound or a fluoroalkyl halogenated silane compound as a water repellent, and examples of the compound include CF 3 (CF 2 ) 11 CH 2 CH 2 Si (OR) 3. , CF 3 (CF 2 ) 9 CH 2 CH 2 Si (OR) 3 , CF 3 (CF 2 ) 7 CH 2 CH 2 Si (OR) 3 , CF 3 (CF 2 ) 5 CH 2 CH 2 Si (OR) 3 , CF 3 (CF 2 ) 11 CH 2 CH 2 SiR (OR) 2 , CF 3 (CF 2 ) 9 CH 2 CH 2 SiR (OR) 2 , CF 3 (CF 2 ) 7 CH 2 CH 2 SiR (OR) ) 2, CF 3 (CF 2 ) 5CH 2 CH 2 SiR (OR) 2, CF 3 CH 2 CH 2 SiCl 3, CF 3 (CF 2) 7 CH 2 C 2 SiCl 3, CF 3 (CF 2) 7 CH 2 CH 2 SiRC l2, CF 3 (CF 2) 9 CH 2 CH 2 SiCl 3, CF 3 (CF 2) be used 9 CH 2 CH 2 SiRCl 2, etc. I can do it.
Incidentally, R in the above formula represents a CH 3, C 2 H 5, C 3 H 7.
[0014]
As a diluent solvent, in addition to isopropyl alcohol (hereinafter abbreviated as “i-PA”), a lower alcohol solvent having 5 or less carbon atoms such as methanol and ethanol may be used. Ethers and ketones can be used in addition to the alcohol, and alcohols containing isopropyl alcohol as the main component are particularly preferred as the diluting solvent in the preparation of the coating solution.
[0015]
As the acidic aqueous solution as the catalyst, an inorganic acid such as nitric acid, hydrochloric acid and sulfuric acid having a concentration of about 0.01 N or more, preferably about 0.1 to 13 N, or an organic acid such as acetic acid or citric acid can be used.
The water repellent: diluting solvent: acidic aqueous solution is preferably in the range of 1: 5 to 50: 0.09 to 1.0 by weight, but is not limited to these ranges.
[0016]
As the dehydrating agent, silica gel, synthetic zeolite, activated alumina, or the like can be used, but is not limited thereto.
In addition, the present invention is not particularly limited, for example, when polycondensation is performed after completion of hydrolysis, or when polycondensation starts in the middle of hydrolysis.
Furthermore, the condition for applying the water repellent liquid on the surface of the glass substrate is that the atmospheric humidity is usually about 75% RH or less in order to activate the reaction between the silanol group of the water repellent component and the hydroxyl group of the substrate surface. Although preferable, it is not limited to these.
[0017]
It is preferable to modify the surface of the glass substrate to which the water repellent liquid is applied in advance by acid treatment because the strength of the coating film is increased.
Further, it is particularly preferable to form an uneven base layer on the surface of the glass substrate because durability is further improved. As the method, for example, at least one or more selected from a metal alkoxide compound or a metal acetylacetonate compound, In addition, the two or more selected compounds are tetrafunctional and trifunctional alkoxides, and the two or more compounds are mixed with a solvent to form a coating solution, and the solution is coated and heated to form a micropit. Although the method etc. which make this surface layer can be employ | adopted, it is not limited to this.
[0018]
As a method for forming a base layer and a water-repellent layer on a glass substrate, hand coating (rubbing method), nozzle flow coating method, dipping method, spray method, river coating method, flexo method, printing method, Various coating methods such as a known coating means such as a flow coating method or a spin coating method and a combination thereof can be appropriately employed.
[0019]
As an application example of water-repellent glass, for example, when forming a water-repellent film on laminated glass, the performance of laminated laminated glass is that the top surface and bottom surface of the float glass can be bonded to the intermediate film side. Alternatively, it is generally adopted because it is more preferable than the laminated glass combined with the bottom surface in terms of impact resistance and the like. In order to form a water-repellent coating in such a case, the water-repellent coating must be formed on the bottom surface of the float glass, and the water-repellent coating is applied on the upper surface of the base layer provided on the bottom surface by applying the present invention. Can be formed, so that both the matching performance and the water repellency can be obtained.
[0020]
As another example, when manufacturing a water repellent glass with a heat ray reflective film in which a heat ray reflective film is formed on one side of a float glass and a water repellent film is formed on the opposite glass surface, the heat ray reflective film is generally used. Is coated on the top surface of the glass online by a float process. In such a case, even when the water repellent coating must be coated on the bottom surface, there is an advantage that a water repellent film can be formed by forming a base layer on the bottom surface of the present invention. Needless to say, the present invention is not limited to the above example and can be appropriately applied depending on the purpose.
[0021]
[Action]
The purpose of forming the underlayer is to eliminate the difference in surface performance between the bottom surface or top surface of the float glass and to make the water-repellent coating coated on the top surface rich in weather resistance and wear resistance. The point of the present invention is to control the film thickness in the range of 20 nm to 45 nm.
In other words, it is necessary to increase the film thickness so as not to be affected by the bottom surface. On the other hand, in order to increase the wear resistance of the underlayer, it is advantageous to reduce the film thickness as much as possible. The optimum film thickness satisfying both is in the range of 20 to 45 nm.
[0022]
【Example】
Hereinafter, the present invention will be described specifically by way of examples. However, the present invention is not limited to the embodiment.
[0023]
Example 1
(1) Preparation of base layer Silica sol (CSG-DI-0600 made by Chisso (silica solute concentration 6 wt%)) is made of echinene to a silica solute concentration of 4 wt% on the bottom surface of a float glass of 200 × 300 × 3.5 mm size. The underlayer solution diluted as described above was formed into a film by a reverse roll coating method (the roll speed during film formation was 6 m / min).
After film formation, the film was dried at 250 ° C. and then fired at 650 ° C., which is the glass bending temperature, to obtain a transparent silica base film having a film thickness of 20 nm.
In addition, the film thickness of the obtained silica base film was measured using a contact-type film thickness meter (Dektak-3030 manufactured by Sloan tech.) Or an ellipsometer (DVA-36VW-S manufactured by Mizojiri Optical Co., Ltd.).
( 2 ) Preparation of water repellent liquid The water repellent liquid is fluoroalkylalkoxysilane-based heptadecafluorodecyltrimethoxysilane (CF 3 (CF 2 ) 7 CH 2 CH 2 Si (OCH 3 ) 3 : Shin-Etsu Chemical industry KBM-7803 (hereinafter referred to as “FAS”) is used, and isopropyl alcohol (i-PA) as a diluting solvent and water containing an acid catalyst (0.1N nitric acid (HNO 3 ) aqueous solution) are added in a predetermined amount (FAS). : I-PA: 0.1N-nitric acid = 1: 25: 0.3 (g)) and stirred at room temperature for 2 h to terminate the hydrolysis reaction.
Next, synthetic zeolite [Molecular Sieve 4A], which is a dehydrating agent, is added to the solution in which the hydrolysis reaction is terminated (addition amount is 5 times the weight of the water repellent agent by weight), and 16 hours (dehydration time) After the polycondensation reaction was completed while being immersed and left to dehydrate, it was filtered using a filter paper (NO. 7) to separate and remove the molecular sieve 4A to obtain a water repellent liquid for coating.
(3) Preparation of water-repellent glass The glass on which the base layer was formed was washed with water and then immersed in a 0.1N sulfuric acid aqueous solution at 35 ° C. for 1 minute. Then, it was washed with water and dried with a commercially available glass washer (produced by our company), and 2 ml / sheet of water repellent liquid was dropped onto the underlayer in an environment where the temperature and humidity were maintained at 23 ° C. and 45% RH. Then, after fully stretching the entire surface of the glass with a cotton cloth (trade name Bencott), it was air-dried for about 5 minutes. After that, a heat treatment (hereinafter referred to as “curing”) is performed in a muffle furnace so that the glass temperature reaches 140 ° C. in 5 minutes. Glass was obtained.
[0024]
The quality of the obtained water repellent glass was evaluated for the following three items: initial contact angle test (initial water repellency), traverse test (abrasion resistance) and super UV test (light resistance).
Figure 0003623108
[0025]
As a result of quality evaluation of the obtained water-repellent glass, as shown in Table 1, the initial contact angle showed a favorable value of 109 to 111 ° with respect to the target value of 100 °.
In addition, the wear resistance (traverse resistance) is maintained at a high value of 96 to 105 ° with respect to the target value of 95 °, and the light resistance is 71 ° with respect to the target of 70 °. The target value could be cleared in, and good results were shown.
[0026]
[Table 1]
Figure 0003623108
[0027]
Example 2
All were performed in the same manner as in Example 1 except that the roll speed at the time of forming the underlayer was 7 m / min. The film thickness of the underlayer was 25 nm.
As a result of the quality evaluation, as shown in Table 1, the traverse resistance was 106 to 108 ° and the light resistance was 75 °, which cleared the target values in all qualities and showed good results. In particular, the traverse resistance performance was as high as 100 ° or more.
[0028]
Example 3
The same method as in Example 1 was performed except that the roll speed at the time of forming the underlayer was 8 m / min. The film thickness of the underlayer was 32 nm.
As a result of quality evaluation, as shown in Table 1, the traverse resistance was 101 to 104 ° and the light resistance was 75 °, which cleared the target values in all qualities and showed good results. In particular, the traverse resistance performance was as high as 100 ° or more.
[0029]
Example 4
The same method as in Example 1 was performed except that the underlayer was formed by the dipping method. In addition, the pulling speed at the time of base layer film-forming was 1.0 mm / sec.
The film thickness of the base layer after firing was 40 nm.
As a result of the quality evaluation, as shown in Table 1, the traverse resistance was 100 to 104 ° and the light resistance was 75 °, which cleared the target values in all qualities and showed good results. In particular, the traverse resistance performance was as high as 100 ° or more.
[0030]
Example 5
The same method as in Example 4 was performed except that the pulling rate during film formation was 0.5 mm / sec.
In addition, the film thickness of the base layer after baking was 30 nm.
As a result of the quality evaluation, as shown in Table 1, the traverse resistance was 100 to 105 ° and the light resistance was 75 °, which cleared the target values in all qualities and showed good results. In particular, the traverse resistance performance was as high as 100 ° or more.
[0031]
Example 6
The same method as in Example 4 was performed except that the pulling rate during film formation was 1.5 mm / sec.
In addition, the film thickness of the base layer after baking was 45 nm.
As a result of the quality evaluation, as shown in Table 1, the traverse resistance was 95 to 103 °, and the light resistance was 75 °.
[0032]
Comparative Example 1
Without forming the underlayer, the bottom surface of the float glass was directly subjected to water repellent treatment in the same manner as in Example 1.
In this case, the ceria suspension and the brush polisher were polished before the acid treatment, and after the acid treatment, the water repellent treatment was performed. In addition, the polishing liquid used here used the suspension liquid made from Mitsui Kinzoku Kogyo (Mirek (A + B): water = 1: 100 (wt%)).
As a result, the traverse resistance was good at 90-105 °, but the light resistance was 57 °, which was far below the target, and the time until the contact angle decreased to 70 was about 650h of the top surface product. About 400 hours, the light-resistant life decreased to about 2/3.
[0033]
Comparative Example 2
The same method as in Example 1 was performed except that the roll speed at the time of forming the underlayer was 5 m / min. The film thickness of the underlayer was 10 nm.
As a result of the quality evaluation, the traverse resistance was 83 to 105 °, the light resistance was 60 °, which was far below the target, and the practical durability was low.
[0034]
Comparative Example 3
The same method as in Example 4 was performed, except that the pulling rate at the time of forming the underlayer (dipping method) was 2 mm / second. The film thickness of the underlayer was 55 nm.
As a result of quality evaluation, the light resistance was 72 ° and high durability was exhibited. However, the traverse resistance was 58 to 100 ° and the variation was large, and the target of 95 ° could not be satisfied.
[0035]
Comparative Example 4
The same method as in Example 4 was performed except that the pulling rate during the formation of the underlayer was 3 mm / sec. The film thickness of the underlayer was 70 nm.
As a result of quality evaluation, the light resistance was 72 ° and high durability was exhibited. However, the traverse resistance was 75 to 93 ° and the variation was so large that the target 95 ° could not be satisfied.
[0036]
Comparative Example 5
The same method as in Example 4 was performed except that the pulling rate during the formation of the underlayer was 4 mm / sec. The underlayer had a thickness of 85 nm.
As a result of quality evaluation, light resistance showed high durability at 74 °. However, the traverse resistance was 77 to 99 ° and the variation was so large that the target of 95 ° could not be satisfied.
[0037]
Comparative Example 6
The same method as in Example 4 was performed except that the pulling rate during the underlayer film formation was set to 5 mm / second. The film thickness of the underlayer was 100 nm.
As a result of the quality evaluation, the light resistance showed high durability at 75 °, but the variation in traverse resistance was 89-104 °, and the target 95 ° could not be satisfied.
[0038]
Comparative Example 7
The same method as in Example 4 was performed except that the pulling rate during the formation of the underlayer was 6 mm / sec. The film thickness of the underlayer was 110 nm.
As a result of quality evaluation, the light resistance was 74 ° and high durability was exhibited. However, the traverse resistance was 89 to 103 ° and the variation was so large that the target 95 ° could not be satisfied.
[0039]
Comparative Example 8
The same method as in Example 4 was performed except that the pulling rate during the underlayer film formation was 7 mm / second. The film thickness of the underlayer was 120 nm.
As a result of quality evaluation, the light resistance showed high durability at 75 °. However, the traverse resistance was 74 to 89 ° and the variation was large, and the target 95 ° could not be satisfied.
[0040]
Comparative Example 9
The same method as in Example 4 was performed, except that the pulling rate during the formation of the underlayer was 8 mm / second. The film thickness of the underlayer was 150 nm.
As a result of quality evaluation, the light resistance showed high durability at 75 °. However, the traverse resistance was 70 to 102 ° and the variation was so large that the target of 95 ° could not be satisfied.
[0041]
【The invention's effect】
The present invention provides a water repellent glass that is equivalent to or equal to or better than both without distinguishing the top surface and bottom surface of the float glass, and that is excellent in durability, and is inexpensive. It can be manufactured, can be freely selected according to various needs, and can be applied to a wide range of water-repellent glass.

Claims (4)

フロートガラスのトップ面にフロート法のオンラインで熱線反射膜を形成し、その反対側に膜厚20〜45nmの下地層を形成する工程と、該下地層の上面にフルオロアルキル基含有シラン化合物からなる撥水剤と、希釈用の溶媒と、酸性水溶液を混合してなる溶液に、該フルオロアルキル基含有シラン化合物の加水分解反応終結後脱水剤を添加し、脱水処理を行って該フルオロアルキル基含有シラン化合物を重縮合して調製してなる撥水液を塗布する工程と、次いで該撥水液に含まれるフルオロアルキル基含有シランを該下地層表面に撥水性被膜を形成する硬化工程とからなることを特徴とする撥水性ガラスの製法。 The heat ray reflective film formed online float to the top surface of the float glass, forming a base layer having a thickness 20~45nm on the opposite side, consisting of a fluoroalkyl group-containing silane compound on the top surface of the underlying layer After the hydrolysis reaction of the fluoroalkyl group-containing silane compound is completed, a dehydrating agent is added to a solution obtained by mixing a water repellent, a diluting solvent, and an acidic aqueous solution, and a dehydration treatment is performed to contain the fluoroalkyl group. It comprises a step of applying a water repellent liquid prepared by polycondensation of a silane compound, and then a curing step of forming a water repellent coating on the surface of the underlayer of the fluoroalkyl group-containing silane contained in the water repellent liquid. A method for producing water-repellent glass, characterized by トップ面同士を中間膜側に接着させてなる合せガラスに積層されるフロートガラスのボトム面に膜厚20〜45nmの下地層を形成する工程と、該下地層の上面にフルオロアルキル基含有シラン化合物を有効成分とする溶液を該フルオロアルキル基含有シラン化合物からなる撥水剤と、希釈用の溶媒と、酸性水溶液を混合してなる溶液に、加水分解反応終結後脱水剤を添加し、脱水処理を行って該フルオロアルキル基含有シラン化合物を重縮合して調製してなる撥水液を塗布する工程と、次いで該撥水液に含まれるフルオロアルキル基含有シランを該下地層表面に撥水性被膜を形成する硬化工程とからなることを特徴とする撥水性ガラスの製法。A step of forming a base layer having a film thickness of 20 to 45 nm on the bottom surface of the float glass laminated on the laminated glass formed by bonding the top surfaces to the intermediate film side, and a fluoroalkyl group-containing silane compound on the top surface of the base layer A dehydrating agent is added to a solution obtained by mixing a water repellent composed of a fluoroalkyl group-containing silane compound, a diluting solvent, and an acidic aqueous solution after the hydrolysis reaction, and a dehydrating treatment. And applying a water repellent liquid prepared by polycondensation of the fluoroalkyl group-containing silane compound, and then applying the fluoroalkyl group-containing silane contained in the water repellent liquid to the surface of the underlayer. A method for producing water-repellent glass, comprising: a curing step for forming a glass. 下地層をガラスの曲げ加工温度で焼成し得ることを特徴と請求項1又は2に記載の撥水性ガラスの製法。The method for producing a water-repellent glass according to claim 1 or 2, wherein the underlayer can be fired at a glass bending temperature. 下地層がシリカを主成分とすることを特徴とする請求項1乃至3のいずれかに記載の撥水性ガラスの製法。The method for producing a water-repellent glass according to any one of claims 1 to 3, wherein the underlayer contains silica as a main component.
JP25617598A 1998-09-10 1998-09-10 Water repellent glass manufacturing method Expired - Fee Related JP3623108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25617598A JP3623108B2 (en) 1998-09-10 1998-09-10 Water repellent glass manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25617598A JP3623108B2 (en) 1998-09-10 1998-09-10 Water repellent glass manufacturing method

Publications (2)

Publication Number Publication Date
JP2000086293A JP2000086293A (en) 2000-03-28
JP3623108B2 true JP3623108B2 (en) 2005-02-23

Family

ID=17288960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25617598A Expired - Fee Related JP3623108B2 (en) 1998-09-10 1998-09-10 Water repellent glass manufacturing method

Country Status (1)

Country Link
JP (1) JP3623108B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007081025A1 (en) * 2006-01-16 2007-07-19 Nippon Sheet Glass Co., Ltd. Glass plate with film for vehicle and process for producing the same
JP6591679B2 (en) * 2016-07-29 2019-10-16 日本板硝子株式会社 Windshield and manufacturing method of windshield

Also Published As

Publication number Publication date
JP2000086293A (en) 2000-03-28

Similar Documents

Publication Publication Date Title
US6235383B1 (en) Glass article having a durable water repellent surface
US5415927A (en) Water-repellant glass products and process for the production thereof
JP2874391B2 (en) Manufacturing method of water-repellent glass
EP0842908B1 (en) Water repellant glass plate and method for manufacturing the same
JP3384284B2 (en) Hydrophilic coating, hydrophilic substrate provided with the same, and methods for producing them
EP0825157B1 (en) Water-repellent glass pane and method for producing same
CN110272211B (en) Method for preparing silicon dioxide/titanium dioxide composite film containing dendritic pore structure on substrate
JP3454110B2 (en) Water repellent glass
JP3599998B2 (en) Method for producing water-repellent liquid and water-repellent coating
JP3649585B2 (en) Water repellent coating solution
JPH11171594A (en) Water repellent glass article and its production
JP2002012452A (en) High water slip substrate and its manufacturing method
JP3623108B2 (en) Water repellent glass manufacturing method
JP3748724B2 (en) Method for producing highly durable water repellent glass
JP3385165B2 (en) Method for preparing coating solution for water-repellent film, method for producing water-repellent glass, and water-repellent glass
JP3473833B2 (en) Automotive partially water-repellent glass and method of manufacturing the same
JP2001233638A (en) Antifogging film-formed substrate and method for producing the same
JP3628881B2 (en) Manufacturing method of water repellent liquid and water repellent substrate
JPH05319867A (en) Water repellent for glass substrate and treatment for water repellency
JP3210045B2 (en) Surface treated substrate
JPH05319868A (en) Water repellent for glass substrate and treatment for water repellency
JPH1111984A (en) Water-repellent glass and its production
KR19990003633A (en) Durable water-repellent glass and its manufacturing method
JP2001152137A (en) Non-fogging film-formed base and its preparation process
JP2895749B2 (en) Water-repellent reflection reducing glass

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees