JP3628881B2 - Manufacturing method of water repellent liquid and water repellent substrate - Google Patents

Manufacturing method of water repellent liquid and water repellent substrate Download PDF

Info

Publication number
JP3628881B2
JP3628881B2 JP22665398A JP22665398A JP3628881B2 JP 3628881 B2 JP3628881 B2 JP 3628881B2 JP 22665398 A JP22665398 A JP 22665398A JP 22665398 A JP22665398 A JP 22665398A JP 3628881 B2 JP3628881 B2 JP 3628881B2
Authority
JP
Japan
Prior art keywords
water
repellent
group
water repellent
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22665398A
Other languages
Japanese (ja)
Other versions
JP2000063153A (en
Inventor
佳則 赤松
滋生 濱口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP22665398A priority Critical patent/JP3628881B2/en
Priority to DE1999626093 priority patent/DE69926093T2/en
Priority to US09/248,994 priority patent/US6235833B1/en
Priority to EP99102682A priority patent/EP0947478B1/en
Publication of JP2000063153A publication Critical patent/JP2000063153A/en
Priority to US09/811,588 priority patent/US6461670B2/en
Application granted granted Critical
Publication of JP3628881B2 publication Critical patent/JP3628881B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Surface Treatment Of Glass (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
  • Paints Or Removers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ガラス基板等の表面に撥水性被膜を形成した撥水性基板およびその製造方法に関し、建築用、自動車用、船舶用或いは航空機用等の各種窓材、浴室用或いは自動車用等のミラー、さらにはその他産業用など種々の分野の各種透明物品等に利用できる撥水性基板およびその製造方法を提供するものである。
【0002】
【従来の技術】
最近、より優れた耐久性と撥水性を併せ持ち、優れた撥水性能をより長く持続する透明な撥水性被膜が望まれてきている。
これらのニ−ズに答えるためには、例えば高い耐摩耗性(耐トラバ−ス性)を有する撥水性薄膜を備える撥水性基板とする必要がある。
【0003】
高い撥水耐久性(特に、耐摩耗性など)を得るためには、フルオロアルキル基含有シラン化合物を基材表面に処理した撥水性ガラスについて、非常に多くの検討例が報告されている。
【0004】
例えば、本出願人が既に出願した特願平7−294106号(特開平9−132433号公報)等に記載している発明は、ガラス表面に高硬度で高機械的強度、かつ耐久性に優れた高い比表面積で制御した特異で微細な凹凸形状表層表面を有するベ−ス膜を形成し、該ベ−ス膜を被覆する撥水膜を形成することで、該撥水膜の付着効率と密着性を高め、さらに耐光性能を向上するようにしたものである。
【0005】
また、本出願人が既に出願した特願平8−131595号(特開平9−309746号公報)等に記載している発明は、ガラス基板の表面に撥水膜を形成する際に、ガラス基板の温度が90〜200℃程度にある状態でガラス基板表面(場合によっては方向性をもつ筋状の疵をつけた微細な凹凸状ガラス基板表面)に撥水膜層を形成することとし、耐候性、耐摩耗性、耐擦傷性ならびに耐久性に格段に優れた撥水性能を発揮するようにしたものである。
【0006】
また、特許第2500178号には、基材表面の撥水撥油処理方法として、フッ化炭素基とクロル基を複数個含むシラン系化合物を用いてガラス基板などの基材表面に化学吸着単分子層を形成する方法が示されており、フルオロアルキル基含有クロロシラン化合物を非水系の溶媒に溶解した溶液に基板を浸漬する工程と、基材を取り出した後、水分を全く含まないかまたは実質的に含まない雰囲気中で乾燥する工程が示されており、基材表面に形成された単分子層は優れた耐摩耗性を発揮することが示されている。
【0007】
【発明が解決しようとする課題】
上述した例えば、特願平7−294106号に記載の撥水性のガラスは、前述したニ−ズに充分に答えうるものであるものの、特異なベ−ス膜と撥水膜の2層構造の膜構成と複雑であり、単純で簡便な下地層を必要としない層であって、より高性能を有する撥水性ガラスも望まれているところである。
【0008】
また、特願平8−131595号等に記載の撥水性ガラスは、製造時における作業性、特にガラス基板温度を90〜200℃に高めた状態に管理する必要があるため、その取り扱いが充分に簡便で高効率であるとは言い難い場合がある。
【0009】
また、特許第2500178号に記載のガラス表面の撥水撥油剤に開示されている方法では、クロロシラン系化合物が極めて水に対して反応性が高いため、多くの工程を水分のない極めて乾燥した環境下で行う必要があるなど、取り扱いが極めて厄介である。
【0010】
すなわち、従来の単分子層を形成させるものや、耐久性能を向上させるために下地膜を形成させるものは、複雑な管理条件と工程を要しコスト高になっており、一方下地膜のないものでは、一般的に撥水剤成分とガラス表面との反応性が不十分であったり、フルオロアルキル基含有クロロシランのような反応性の高い化合物を取り扱う必要があった。
【0011】
【課題を解決するための手段】
本発明は、従来のかかる課題に鑑みてなしたものであって、フルオロアルキル基含有シラン化合物のフルオロアルキル基の鎖長を制御し、[1]式で示すフルオロアルキル基含有シラン化合物のm=9以上である撥水液により得られた撥水性被膜は、格段に優れた耐摩耗性(耐トラバ−ス性)を有する。この撥水性被膜は、高硬度かつ高密着性であって耐久性や耐摩耗性とを併せ持ち、より長期的に優れた撥水性能を維持することができる。
【0012】
すなわち本発明は、一般式[1]で表される長鎖フルオロアルキル基含有シラン化合物の撥水剤と、希釈用の溶媒と、酸性水溶液を混合してなり、脱水剤で液中から水分を除去することで、フルオロアルキル基含有シラン化合物の脱水重縮合反応を促進させてなることを特徴とする基板表面に撥水性被膜を固定化させるための撥水液
【0013】
CF3(CF2)m(CH2)2SiX3[1]
(式中、11≧m≧9の整数、Xはハロゲン、イソシアネート基またはアルコキシ基であって、アルコキシ基は、メトキシ基(OCH3)、エトキシ基(OC25)およびイソプロポキシ基(OC35)を表す)
また、基板表面形状が凹凸化されていることが好ましい。
【0014】
さらに本発明は、一般式[1]で表されるフルオロアルキル基含有シラン化合物を有効成分とする溶液を加水分解および縮重合して調整してなる撥水液を基板表面に塗布する工程と、次いで該撥水液に含まれる長鎖フルオロアルキル基含有シランを該基板表面に固定化し撥水性被膜を形成する硬化工程とからなることを特徴とする撥水性基板の製造方法。
【0015】
CF3(CF2)m(CH2)2SiX3[1]
(式中、11≧m≧9の整数、Xはハロゲン、イソシアネート基またはアルコキシ基であって、アルコキシ基は、メトキシ基(OCH3)、エトキシ基(OC25)およびイソプロポキシ基(OC35)を表す)
【0016】
【発明の実施の形態】
本発明の高耐久性撥水性被膜を形成する撥水液は、フルオロアルキル基含有シラン化合物からなる撥水剤と、希釈用の溶媒と、触媒としての酸性水溶液を所定量混合したのち、所定時間撹拌して加水分解反応を終結させ、次いで該溶液に脱水剤を添加し、所定時間脱水処理を行って縮重合させることにより得ることができる。
【0017】
上記の出発原料としては、撥水剤としてフルオロアルキルアルコキシシラン系化合物或いはフルオロアルキルハロゲン化シラン系化合物であり、その化合物としては、例えばCF(CHCHCHSi(OR)、CF(CF10CHCHSi(OR)、CF(CH11CHCHSi(OR)、CF(CF12CHCHSi(OR)、CF(CFCHCHSiR(OR)、CF(CF10CHCHSiR(OR)、CF(CF11CHCHSiR(OR)、CF(CF12CHCHSiR(OR)、CFCHCHSiCl、CF(CFCHCHSiCl、CF(CFCHCHSiRCl2、CF(CF10CHCHSiCl、CF(CF10CHCHSiRCl等を用いることが出来る。
なお、上記化学式におけるRはCH、C、Cを示す。
また、一般式[1]におけるmについては、mが大きくなるほど凝固点が下がるので、撥水液の調合や撥水処理を考慮すると、m=11以下が好ましい。
【0018】
また、希釈溶媒としては、イソプロピルアルコ−ル(以下、「i−PA」と略す)の他に、メタノ−ル、エタノ−ルなど炭素数が5以下の低級アルコ−ル溶媒であってもよく、アルコ−ル以外にエ−テル類やケトン類を用いることができ、ことにイソプロピルアルコールを主成分としてなるアルコールがコ−ティング溶液の調製における希釈溶媒として好ましい。
【0019】
また、触媒としての酸性水溶液は、0.01N以上、好ましくは0.1N〜13N程度の濃度の硝酸、塩酸、硫酸などの無機酸あるいは、酢酸、クエン酸などの有機酸を使用することができる。
【0020】
なお、撥水剤:希釈溶剤:酸性水溶液は、重量割合で1:5〜40:0.09〜1.0の範囲が好ましいが、これらの範囲に限定されるものではない。
次に、フルオロアルキル基含有シラン化合物の加水分解および縮重合反応について説明する。
【0021】
(1)加水分解反応
フルオロアルキル(Rf)基含有シラン化合物(次式はアルコキシシラン化合物の例)は次式に示すように、酸触媒下で水と反応して比較的容易に加水分解される。なお、加水分解反応については、加水分解反応(攪拌)の終結を得るには約90分程度、好ましくは約120分程度の時間が必要であるが、これに限定されるものではない。
【0022】
【化1】

Figure 0003628881
【0023】
なお、上記反応における加水分解物の縮重合反応は、撥水剤濃度が約20%以下では他の多くのアルコキシシラン化合物(例えば、テトラエトキシシラン、メチルトリエトキシシラン等)に比べて非常に遅く、多くは単量体であり、ゲル化し難い。
【0024】
上式により得られたフルオロアルキル基含有シラン化合物(FAS)の加水分解物(単量体)は、ガラス表面のシラノール基(−SiOH)と次式のような脱水縮重合反応をし、ガラス基板上へ固定化または高重合体(多分子)化する。
【0025】
しかし、フルオロアルキル(Rf)基の嵩高さや剛直さにより、FAS同士の縮重合反応は進みにくく、基本的には単量体が選択的にガラス基板と反応することとなる。これは、Rf基が長鎖になるほどその傾向が強い。
【0026】
しかし、合成ゼオライトなどの脱水剤で強制的に撥水液中から水分を除去する
【0027】
と、(化2)の化学平衡は右に寄って、その結果、脱水縮合反応が促進されて撥水液中に2量体や3量体の形成が可能である。
▲1▼ガラスとの反応
【0028】
【化2】
Figure 0003628881
【0029】
(2)縮重合反応
▲2▼FAS同士の反応
FAS同士の反応により重合度が増加する。
【0030】
・2量化
【0031】
【化3】
Figure 0003628881
【0032】
・3量化
【0033】
【化4】
Figure 0003628881
【0034】
なお、撥水液中の含有水分量は、通常約4000ppm以下が好ましく、その水分量の測定は、例えばカ−ルフィッシャ−電量滴定法を用いることによって測定し求めている。
【0035】
なお、脱水剤としては、シリカゲル、合成ゼオライト、活性アルミナ等を用いることが出来るが、これに限定するものではない。
また本発明は、加水分解終結後に縮重合する場合あるいは加水分解の途中で縮重合が開始する場合等、特に限定するものではない。
【0036】
基板としては、表面に水酸基(−OH)等の活性水素が含まれているガラス、プラスチック、セラミックス等の材料であれば何でも用いることが出来、また、表面に活性水素を含まない場合に、プラズマ処理あるいはコロナ処理等で基板表面に水酸基を導入したものでも適用できる。
【0037】
代表的基材の一つであるガラス基板としては、建築用窓ガラスや自動車用窓ガラス等に通常使用されているフロ−トガラスあるいはロ−ルアウト法で製造されたガラス等無機質の透明性がある板ガラスが好ましく、無色または着色、ならびにその種類あるいは色調、他の機能性膜との組み合わせ、形状等に特に限定されるものではなく、さらに曲げ板ガラスとしてはもちろん各種強化ガラスや強度アップガラスであり、平板や単板で使用できるとともに、複層ガラスあるいは合せガラスとしても使用できる。
また、被膜はガラス基板の両面に成膜しても構わない。
【0038】
さらに、撥水液をガラス基板の表面上に塗布する条件は、撥水剤成分のシラノール基と基材表面の水酸基との反応を活性化させるために、通常雰囲気湿度が約75%RH以下15%RH以上程度が好ましいが、これらに限定されるものではない。
【0039】
さらに、ガラス基板の表面状態について、例えばフロートガラスの場合、該ガラスのトップ面とボトム面において明らかに差異があり、フロ−トガラスの火造り面であるトップ面に被膜することが好ましく、同様にロールアウト法で製造されるガラスについても、搬送ロール等と接触していない火造り面に被覆することが好ましいが、場合によっては、ボトム面あるいは非火造り面でも被覆できる。
【0040】
撥水液を塗布するガラス基板の表面を予め研摩処理し、酸処理することにより表面改質すると、被膜の強度等が増し好ましいが、その方法は以下のようにして行う。
【0041】
ガラス基板の表面改質のための研摩処理は、錫の混入が少ないフロ−トガラストップ面、ロ−ルアウトガラス面もしくはこれらの曲げまたは/および強化ガラス面等を、酸化セリウム(セリア)または/および酸化アルミニウム(アルミナ)または/および酸化珪素等の無機金属酸化物を主成分とする微細粉体(平均粒径が約5μm以下、好ましくは約1μm以下)である表面研摩剤を用い、湿式あるいは乾式でブラシ、スポンジまたは布などの研摩面にて、使用する粉体の種類とその粒径、研摩面の材質およびガラス基板との接触圧などを適宜変えることで、前記ガラス基板面の表面疵状態や研摩状態を制御しつつ研摩することが好ましい。
【0042】
次いで、該研磨処理したガラス面を、塩酸、硫酸、硝酸等の無機酸或いは酢酸、ギ酸もしくは蓚酸等の有機酸を、たとえばpH4濃度以下になるように添加調整した水溶液でなる酸処理液を用い、例えば酸処理液の温度が5℃〜70℃以下、処理時間10秒〜10分以下の条件下で酸処理することで、研摩処理したガラス表面のナトリウムイオンの抽出やシロキサン結合の切断によりシラノ−ル基を効率的に生成するようにし、該シラノ−ル基が後工程の撥水処理において撥水性フルオロアルキル基の固定化に寄与するものとすることができる。
【0043】
なお酸処理は、酸溶液中に浸漬して行うが、他にスプレ−法、フロ−法等、浸漬法と同等あるいは近似した酸処理効果が得られる方法であれば特に限定するものではなく採用できる。
【0044】
さらに、ガラス基板表面に凹凸の下地層を形成すると耐久性がより向上するので特に好ましく、その方法としては、例えば金属アルコキシド系化合物或いは金属アセチルアセトネート系化合物の中から少なくとも1種以上選択し、しかも該選択した2つ以上の化合物における平均分子量が異なるものであって、該2つ以上の化合物を溶剤とともに混合してコーティング溶液とし、概要液を被覆・加熱成膜してマイクロピット状の表層をつくる方法等が採用できるがこれに限定されるものではない。
【0045】
またさらに、ガラス基板への膜付け法としては、手塗り(ラビング法)、ノズルフロ−コ−ト法、ディッピング法、スプレー法、リバ−スコ−ト法、フレキソ法、印刷法、フローコート法あるいはスピンコート法、ならびにそれらの併用等既知の塗布手段、さらに本出願人が出願提案した各種塗布法等が適宜採用し得るものである。
また成膜の条件としては、例えば80℃以上350℃以下で1分間乃至60分間の乾燥とキュアリングを行い成膜するのが好ましい。
【0046】
【作用】
本発明は、m=9以上のタイプの長鎖フルオロアルキル基を含有するアルコキシ基含有シラン化合物を用いることにより、得られる撥水性基板は、初期接触角には殆ど有意差は認められないものの、実用耐久性(耐トラバース性、耐光性および耐薬品性など)は飛躍的に向上し、この効果は、フルオロアルキル基の鎖長に強く依存した。さらに、表面形状を凹凸化させた下地層(特にシリカ層)を基板表面に形成すると、極めて高い実用耐久性が実現可能となる。
【0047】
【実施例】
以下、実施例により本発明を具体的に説明する。但し、本発明は係る実施例に限定されるものではない。
【0048】
実施例1
▲1▼撥水液の調合
撥水性被膜を形成するための撥水液組成の原料として、m=9であるヘインコサンフルオロドデシルトリメトキシシラン〔CF(CFCHCHSi(OCH(試作品、以下「FAS−9」と略す)〕と、希釈溶媒であるイソプロピルアルコ−ル〔(以下、「i−PA」と略す)〕と、酸触媒である60%硝酸(HNO)用い、その配合割合をC10−FAS:i−PA:60%HNO=1:25:0.3(単位:g)とし、室温で約2時間攪拌し加水分解反応を終結させた。
【0049】
次いで、該加水分解反応を終結させた溶液に脱水剤である合成ゼオライト〔モレキュラ−シ−ブ4A〕を添加し(添加量は重量比で撥水剤の5倍)、16時間(脱水時間)浸漬・放置し縮重合反応をさせつつ脱水を完了した後、濾紙(NO.7)を用いて濾過しモレキュラ−シ−ブ4Aを分離除去して塗布用撥水液とした。
▲2▼ガラス基板の準備
200mm×300mm×3.5mmサイズのフロートガラス基板の表面を、研磨液とブラシポリッシャーを用いて研磨し、十分に研摩剤を除去した後、35℃の0.1N硫酸水溶液中に1分間浸漬した。その後、市販のガラス洗浄機にて水洗および乾燥した。
▲3▼撥水処理方法
撥水処理は、撥水液を手塗りで基材表面に塗布し、風乾後、140℃で10分間キュアリングした。その後、余剰な撥水剤成分をi−PAで拭き取り、撥水性ガラスを得た。なお、撥水液塗布時の雰囲気温度と湿度は、22℃、45%RHとした。
▲4▼評価方法
撥水液の重合度の測定及び撥水性基板の撥水性試験及び耐摩耗性(耐トラバース)試験は下記の方法で評価した。
Figure 0003628881
なお、GPC測定用の撥水液試料は、シラノール基を不活性化するために撥水液中のFASの加水分解および縮重合をTMS(トリメチルシリル)化剤の一つである、トリメチルクロロシラン((CHSiCl:TMCS)を用いて、撥水液中のFASの加水分解物および縮重合物をTMS化したのち、孔径0.5μmのフィルターで試料(撥水液)をろ過した。TMS化のための反応条件は、5gの試料(撥水液)に対し、0.57gのTMCSを加えて、室温で1h撹拌した。得られたGPCチャートにおける各ピークから、脱水撥水液中にはFASの単量体(Monomer)、2量体(Dimer)、3量体(Trimer)および4〜5量体が存在することを確認し、それぞれの保持時間を、32.5、30.8、29.9および29.3〜28.5分と同定できた。
【0050】
なお、実施例1および後述する比較例1、比較例2のGPC測定によるFAS重合体の存在状態を図1に示す。
(図中、▲1▼は実施例1、▲2▼は比較例1、▲3▼は比較例2の各データを示す)
Figure 0003628881
【0051】
なお、下地層を設けない実施例1、比較例1及び比較例2の耐光性の経時変化を図2に示す。
(図中、▲1▼は実施例1、▲2▼は比較例1、▲3▼は比較例2の各データを示す)
また、凹凸状の下地層を設けた実施例2および比較例3の耐光性の経時変化を図3に示す。
(図中、▲1▼は実施例2、▲2▼は比較例3の各データを示す)
Figure 0003628881
▲5▼評価結果
得られた撥水液の重合度をGPCで測定したところ、図1に示しように、単量体、2量体、3量体が存在していた。また、耐摩耗性(耐トラバース性)、耐光性、耐アルカリ性は表1に示す通り、全ての評価において良好な結果を示した。
【0052】
実施例2
ガラス基板表面に凹凸状の下地層を形成した以外は実施例と同じ方法で行った。
なお、凹凸状の下地層は下記の方法で行った。
【0053】
先ず塗布液は、以下のようにして調製した。
テトラエトキシシラン〔Si(OC:TEOS〕の重合ゾル(平均分子量Mw:約1000〜3000)とアセチルアセトンで安定化したテトラブトキシチタン〔Ti(O−Bu)〕との混合ゾル(アセチルアセトンとで安定化したテトラブトキシチタンの合有量は酸化物換算でSiO2に対してモル比で約20mol%である)を、イソプロピルアルコール(iPA)溶媒を加え、固形分濃度として酸化物換算で5wt%になるまで希釈したものをゾル溶液Aとした。メチルトリメトキシシラン〔CHSi(OCH:MTMS〕の重合ゾル(平均分子量Mv=約1,000)にイソプロピルアルコール(iPA)を加え、固形分濃度として酸化物換算で約20wt%になるまで希釈したものをゾル溶液Bとした。上記ゾル溶液Aを20gとゾル溶液Bを20gと、加水分解および脱水縮合反応の速度を調整するためのブタノール(n−BuOH、水分量2000ppm)25gとを約50℃で約3時間密詮状態で混合攪拌したものを溶液Cとした。さらにiPA(90wt%)324gとn−BuOH(10wt%)36gの混合系溶媒約360gで溶液Cを希釈してコーテイング用薬液を得た。
【0054】
塗布方法は、下記に示すスピンコーター法で行った。
先ず、スピンコーター上に被膜用ガラス基板をセットし、先ず塗布被膜域(高速スピン回転)において、スピン回転を開始し、回転速度が150rpmで3秒後、上記塗布液の塗布量としては200ml程度滴下し、18秒回転速度を維持し被膜化した。続いてレベリング域(スピン回転停止)において、被膜化した塗布液が渇きはじめて流動性を失うようになる前に、スピン回転を一旦停止し60秒間静止してレベリングせしめ、乾燥促進域(低速スピン回転)において、再度スピン回転を始め、50rpmの低速回転で40秒間維持し、塗膜の乾燥促進を行い、良好な成膜性のゲル膜を得た。
【0055】
次に、該ゲル膜付きガラス基板を250℃で30分間仮焼成を行い、さらにガラス温度で630℃〜660℃の本焼成を行い、SiO2−TiO2薄膜を得た。なお、凹凸化した上記下地層のRaは6nmであった。
また、塗布時の条件は次のような条件で行った。
【0056】
雰囲気温度、湿度:25℃、50%RH
塗布液の温度:25℃(雰囲気温度と同じ)
結果、表1、および図2に示すように、耐トラバース性は110〜112゜、耐光性(SUV試験600h)は106゜、耐薬品性(耐アルカリ性)は108゜と殆ど劣化が見れられず、良好な結果を示した。特に、耐光性試験ではUV照射1000hにおいても接触角は100゜以上を維持しており、実質上の耐光劣化が見られなくなった。
【0057】
比較例1
実施例1と比較して、撥水剤にm=7タイプのフルオロアルキルアルコキシシランである、ヘプタデカフルオロデシルトリメトキシシラン〔CF(CFCHCHSi(OCH〕(信越化学製KBM−7803、以下「FAS−7」と略す)を用いた以外は、実施例1と同じ方法で行った。
【0058】
結果、表1、および図1に示すように、耐トラバース性は103〜108゜、耐光性(SUV試験600h)は72゜、耐薬品性(耐アルカリ性)は75゜と、実施例1よりかなり実用耐久性は低下した傾向を示した。
【0059】
比較例2
実施例1と比較して、撥水剤にm=5タイプのフルオロアルキルアルコキシシランである、トリデカフルオロオクチルトリメトキシシラン〔CF(CFCHCHSi(OCH〕(東芝シリコーン製TSL8256、以下「FAS−5」と略す)を用いた以外は実施例1と同じ方法で行った。
【0060】
結果、表1、および図1に示すように、耐トラバース性は102〜104゜であったものの、耐光性(SUV試験600h)は60゜、耐薬品性(耐アルカリ性)は50゜と、実用に耐えるものではなかった。
【0061】
比較例3
実施例2と比較して、撥水剤にm=7タイプのフルオロアルキルアルコキシシランである、ヘプタデカフルオロデシルトリメトキシシラン〔CF(CFCHCHSi(OCH〕(信越化学製KBM−7803、「FAS−7」)を用いた以外は実施例2と同じ方法で行った。
【0062】
結果、表1、および図2に示すように、耐トラバース性は103〜108゜と良好であったものの、耐光性(SUV試験600h)は89゜、耐薬品性(耐アルカリ性)は80゜と、実施例2より実用耐久性は大幅に低下した。
【0063】
【表1】
Figure 0003628881
【0064】
【発明の効果】
本発明によれば、耐摩耗性(耐トラバース性)、耐光性及び耐薬品性(耐アルカリ性)等の特性に優れた長期耐久性を有する高品質撥水性基板が、量産下で簡単な方法で安定かつ確実に効率よく得られるので、建築用はもとより自動車用窓材、船舶や航空機の窓材、浴室用あるいは自動車用などのミラ−、産業用ガラス等各種の物品に広く採用できる利用価値の高い、有用な撥水性基板を提供することができる。
【図面の簡単な説明】
【図1】各脱水時間における撥水液のGPCチャート
【図2】下地層のない撥水性ガラスの耐光性試験結果を示すグラフ
【図3】凹凸状下地層を有する撥水性ガラスの耐光性試験結果を示すグラフ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water-repellent substrate having a water-repellent coating formed on the surface of a glass substrate or the like, and a method for producing the same, and various window materials for buildings, automobiles, ships or aircraft, mirrors for bathrooms or automobiles, etc. Furthermore, the present invention provides a water-repellent substrate that can be used for various transparent articles in various fields such as industrial use, and a method for producing the same.
[0002]
[Prior art]
Recently, there has been a demand for a transparent water-repellent coating that has both superior durability and water repellency, and that lasts excellent water repellency.
In order to answer these needs, for example, it is necessary to provide a water-repellent substrate including a water-repellent thin film having high wear resistance (traverse resistance).
[0003]
In order to obtain high water repellency durability (particularly abrasion resistance, etc.), a great many studies have been reported on water-repellent glass obtained by treating a substrate surface with a fluoroalkyl group-containing silane compound.
[0004]
For example, the invention described in Japanese Patent Application No. 7-294106 (Japanese Patent Application Laid-Open No. 9-132433) already filed by the present applicant is high in hardness, high mechanical strength and excellent durability on the glass surface. By forming a base film having a surface with a unique and fine concavo-convex shape controlled by a high specific surface area, and forming a water-repellent film covering the base film, the adhesion efficiency of the water-repellent film is improved. The adhesiveness is improved and the light resistance is further improved.
[0005]
Further, the invention described in Japanese Patent Application No. 8-131595 (Japanese Patent Application Laid-Open No. 9-309746) already filed by the applicant of the present application is applied to a glass substrate when a water repellent film is formed on the surface of the glass substrate. A water-repellent film layer is formed on the surface of the glass substrate (in some cases, the surface of the fine concavo-convex glass substrate with directional streak-like ridges) in a state where the temperature is about 90 to 200 ° C. Water repellent performance that is remarkably excellent in durability, wear resistance, scratch resistance and durability.
[0006]
Japanese Patent No. 2500188 discloses a method for water and oil repellency treatment of a substrate surface by using a silane compound containing a plurality of fluorocarbon groups and chloro groups on a substrate surface such as a glass substrate. A method for forming a layer is shown, and a step of immersing a substrate in a solution in which a fluoroalkyl group-containing chlorosilane compound is dissolved in a non-aqueous solvent, and no or substantially no moisture after removing the substrate. The step of drying in an atmosphere not contained in the substrate is shown, and it is shown that the monomolecular layer formed on the surface of the substrate exhibits excellent wear resistance.
[0007]
[Problems to be solved by the invention]
For example, the water-repellent glass described in Japanese Patent Application No. 7-294106 described above can sufficiently answer the above-mentioned needs, but has a two-layer structure of a specific base film and a water-repellent film. There is also a demand for a water-repellent glass having a high performance, which is a layer having a complicated film structure and does not require a simple and simple underlayer.
[0008]
In addition, the water-repellent glass described in Japanese Patent Application No. 8-131595 etc. needs to be managed in a state where the workability during production, in particular, the glass substrate temperature is increased to 90 to 200 ° C. It may be difficult to say that it is simple and highly efficient.
[0009]
Further, in the method disclosed in the water and oil repellent on the glass surface described in Japanese Patent No. 2500188, since the chlorosilane-based compound is extremely reactive with water, many processes are performed in a very dry environment without moisture. Handling is extremely cumbersome, such as the need to do below.
[0010]
That is, conventional monolayers and those that form a base film in order to improve durability performance require complicated management conditions and processes and are expensive, while those without a base film In general, the reactivity between the water repellent component and the glass surface is insufficient, or it is necessary to handle a highly reactive compound such as a fluoroalkyl group-containing chlorosilane.
[0011]
[Means for Solving the Problems]
The present invention has been made in view of such conventional problems, and controls the chain length of the fluoroalkyl group of the fluoroalkyl group-containing silane compound, and m = of the fluoroalkyl group-containing silane compound represented by the formula [1] A water-repellent film obtained with a water-repellent liquid that is 9 or more has remarkably excellent wear resistance (traverse resistance). This water-repellent coating has high hardness and high adhesion, and has both durability and wear resistance, and can maintain excellent water repellency over a long period of time.
[0012]
That is, the present invention is a mixture of a long-chain fluoroalkyl group-containing silane compound water repellent represented by the general formula [1], a diluting solvent, and an acidic aqueous solution. A water repellent liquid for immobilizing a water repellent coating on a substrate surface, wherein the water repellent polycondensation reaction of the fluoroalkyl group-containing silane compound is promoted by removal .
[0013]
CF 3 (CF 2 ) m (CH 2 ) 2 SiX 3 [1]
(In the formula, an integer of 11 ≧ m ≧ 9, X is a halogen, an isocyanate group or an alkoxy group, and the alkoxy group includes a methoxy group (OCH 3 ), an ethoxy group (OC 2 H 5 ) and an isopropoxy group (OC 3 H 5 )
Moreover, it is preferable that the substrate surface shape is uneven.
[0014]
Furthermore, the present invention comprises a step of applying a water repellent liquid prepared by hydrolysis and condensation polymerization of a solution containing a fluoroalkyl group-containing silane compound represented by the general formula [1] as an active ingredient to the substrate surface; Next, a method for producing a water-repellent substrate comprising: a curing step of fixing a long-chain fluoroalkyl group-containing silane contained in the water-repellent solution to the substrate surface to form a water-repellent coating.
[0015]
CF 3 (CF 2 ) m (CH 2 ) 2 SiX 3 [1]
(In the formula, an integer of 11 ≧ m ≧ 9, X is a halogen, an isocyanate group or an alkoxy group, and the alkoxy group includes a methoxy group (OCH 3 ), an ethoxy group (OC 2 H 5 ) and an isopropoxy group (OC 3 H 5 )
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The water repellent liquid for forming the highly durable water repellent coating of the present invention is prepared by mixing a predetermined amount of a water repellent comprising a fluoroalkyl group-containing silane compound, a solvent for dilution, and an acidic aqueous solution as a catalyst. It can be obtained by stirring to terminate the hydrolysis reaction, then adding a dehydrating agent to the solution, performing dehydration treatment for a predetermined time, and performing condensation polymerization.
[0017]
The starting material is a fluoroalkylalkoxysilane compound or a fluoroalkyl halogenated silane compound as a water repellent, and examples of the compound include CF 3 (CH 2 ) 9 CH 2 CH 2 Si (OR) 3. , CF 3 (CF 2 ) 10 CH 2 CH 2 Si (OR) 3 , CF 3 (CH 2 ) 11 CH 2 CH 2 Si (OR) 3 , CF 3 (CF 2 ) 12 CH 2 CH 2 Si (OR) 3 , CF 3 (CF 2 ) 9 CH 2 CH 2 SiR (OR) 2 , CF 3 (CF 2 ) 10 CH 2 CH 2 SiR (OR) 2 , CF 3 (CF 2 ) 11 CH 2 CH 2 SiR (OR) ) 2, CF 3 (CF 2 ) 12 CH 2 CH 2 SiR (OR) 2, CF 3 CH 2 CH 2 SiCl 3, CF 3 (CF 2) 9 H 2 CH 2 SiCl 3, CF 3 and (CF 2) 9 CH 2 CH 2 SiRC l2, CF 3 (CF 2) 10 CH 2 CH 2 SiCl 3, CF 3 (CF 2) 10 CH 2 CH 2 SiRCl 2 , etc. Can be used.
Incidentally, R in the above formula represents a CH 3, C 2 H 5, C 3 H 7.
As for m in the general formula [1], the freezing point decreases as m increases, and therefore m = 11 or less is preferable in consideration of the preparation of the water repellent liquid and the water repellent treatment.
[0018]
In addition to isopropyl alcohol (hereinafter abbreviated as “i-PA”), the diluent solvent may be a lower alcohol solvent having 5 or less carbon atoms, such as methanol or ethanol. In addition to alcohol, ethers and ketones can be used, and alcohol having isopropyl alcohol as the main component is particularly preferable as a diluting solvent in the preparation of the coating solution.
[0019]
In addition, the acidic aqueous solution as the catalyst can use an inorganic acid such as nitric acid, hydrochloric acid and sulfuric acid, or an organic acid such as acetic acid and citric acid having a concentration of about 0.01N or more, preferably about 0.1N to 13N. .
[0020]
The water repellent: diluting solvent: acidic aqueous solution is preferably in the range of 1: 5 to 40: 0.09 to 1.0 by weight, but is not limited to these ranges.
Next, the hydrolysis and polycondensation reaction of the fluoroalkyl group-containing silane compound will be described.
[0021]
(1) Hydrolysis reaction As shown in the following formula, a fluoroalkyl (Rf) group-containing silane compound (the following formula is an example of an alkoxysilane compound) is relatively easily hydrolyzed by reacting with water under an acid catalyst. . As for the hydrolysis reaction, it takes about 90 minutes, preferably about 120 minutes to obtain the end of the hydrolysis reaction (stirring), but is not limited thereto.
[0022]
[Chemical 1]
Figure 0003628881
[0023]
In addition, the condensation polymerization reaction of the hydrolyzate in the above reaction is very slow compared to many other alkoxysilane compounds (for example, tetraethoxysilane, methyltriethoxysilane, etc.) when the water repellent concentration is about 20% or less. , Many are monomers and difficult to gel.
[0024]
The hydrolyzate (monomer) of the fluoroalkyl group-containing silane compound (FAS) obtained by the above formula undergoes a dehydration condensation polymerization reaction with a silanol group (—SiOH) on the glass surface as shown in the following formula, and a glass substrate Immobilize upward or make high polymer (multi-molecule).
[0025]
However, due to the bulkiness and rigidity of the fluoroalkyl (Rf) group, the condensation polymerization reaction between FASs hardly proceeds, and basically the monomer selectively reacts with the glass substrate. This tendency is stronger as the Rf group becomes a longer chain.
[0026]
However, water is forcibly removed from the water-repellent liquid with a dehydrating agent such as synthetic zeolite.
The chemical equilibrium of (Chemical Formula 2) is shifted to the right, and as a result, the dehydration condensation reaction is promoted, and dimers and trimers can be formed in the water repellent liquid.
(1) Reaction with glass [0028]
[Chemical formula 2]
Figure 0003628881
[0029]
(2) Polycondensation reaction (2) Reaction between FAS The degree of polymerization increases due to the reaction between FAS.
[0030]
・ Dimerization [0031]
[Chemical 3]
Figure 0003628881
[0032]
・ Trimerization [0033]
[Formula 4]
Figure 0003628881
[0034]
The water content in the water repellent liquid is usually preferably about 4000 ppm or less, and the water content is measured and determined by using, for example, a Karl Fischer coulometric titration method.
[0035]
As the dehydrating agent, silica gel, synthetic zeolite, activated alumina or the like can be used, but is not limited thereto.
In addition, the present invention is not particularly limited, for example, in the case of condensation polymerization after completion of hydrolysis, or in the case where condensation polymerization starts in the middle of hydrolysis.
[0036]
As the substrate, any material such as glass, plastic, ceramics or the like whose surface contains active hydrogen such as hydroxyl group (—OH) can be used, and when the surface does not contain active hydrogen, plasma is used. A material in which a hydroxyl group is introduced to the substrate surface by treatment or corona treatment can also be applied.
[0037]
As a glass substrate which is one of the representative base materials, there is an inorganic transparency such as a float glass or a glass manufactured by a roll-out method which is usually used for window glass for buildings, window glass for automobiles, etc. Plate glass is preferable, colorless or colored, and the type or color tone, combination with other functional films, and the shape is not particularly limited, and as a bent plate glass, of course, various tempered glass and strength-up glass, It can be used as a flat plate or a single plate, and can also be used as a multilayer glass or a laminated glass.
The coating may be formed on both sides of the glass substrate.
[0038]
Furthermore, the condition for applying the water repellent liquid on the surface of the glass substrate is that the normal atmospheric humidity is about 75% RH or less 15 in order to activate the reaction between the silanol group of the water repellent component and the hydroxyl group of the substrate surface. % RH or higher is preferable, but not limited thereto.
[0039]
Further, regarding the surface state of the glass substrate, for example, in the case of float glass, there is a clear difference between the top surface and the bottom surface of the glass, and it is preferable to coat the top surface, which is the fire-making surface of the float glass, similarly. The glass produced by the roll-out method is also preferably coated on a fired surface that is not in contact with a transport roll or the like, but depending on the case, it can also be coated on a bottom surface or a non-fired surface.
[0040]
If the surface of the glass substrate to which the water-repellent liquid is applied is preliminarily polished and modified by acid treatment, the strength of the film is increased, which is preferable. The method is performed as follows.
[0041]
The polishing treatment for surface modification of the glass substrate is carried out by using a float glass top surface, a roll-out glass surface or a bent or / and tempered glass surface, etc., in which tin is not mixed, cerium oxide (ceria) or / and Using a surface abrasive that is a fine powder (average particle diameter of about 5 μm or less, preferably about 1 μm or less) mainly composed of aluminum oxide (alumina) and / or inorganic metal oxides such as silicon oxide, wet or dry In the polishing surface such as a brush, sponge or cloth, the surface condition of the glass substrate surface can be changed by appropriately changing the type and particle size of the powder used, the material of the polishing surface, the contact pressure with the glass substrate, etc. It is preferable to perform polishing while controlling the polishing state.
[0042]
Next, an acid treatment solution comprising an aqueous solution prepared by adding and adjusting an inorganic acid such as hydrochloric acid, sulfuric acid or nitric acid or an organic acid such as acetic acid, formic acid or oxalic acid to a pH of 4 or less is used on the polished glass surface. For example, by performing acid treatment under conditions where the temperature of the acid treatment solution is 5 ° C. to 70 ° C. and the treatment time is 10 seconds to 10 minutes or less, the extraction of sodium ions on the polished glass surface and the cleavage of the siloxane bond cause silano It is possible to efficiently generate a hydroxyl group, and the silanol group can contribute to the immobilization of the water-repellent fluoroalkyl group in the subsequent water-repellent treatment.
[0043]
The acid treatment is performed by immersing in an acid solution, but any other method can be used as long as the acid treatment effect is the same as or close to the immersion method, such as a spray method or a flow method. it can.
[0044]
Further, it is particularly preferable to form an uneven base layer on the surface of the glass substrate because durability is further improved. As the method, for example, at least one or more selected from a metal alkoxide compound or a metal acetylacetonate compound, In addition, the two or more selected compounds have different average molecular weights, and the two or more compounds are mixed with a solvent to form a coating solution, and the outline solution is coated and heated to form a micropit-like surface layer. Although the method etc. which make can be employ | adopted, it is not limited to this.
[0045]
Furthermore, as a method of film-forming on a glass substrate, hand coating (rubbing method), nozzle flow coating method, dipping method, spray method, river coating method, flexo method, printing method, flow coating method or Known coating means such as a spin coating method and a combination thereof, and various coating methods proposed by the applicant of the present application can be appropriately employed.
As film formation conditions, for example, it is preferable to perform film formation by drying and curing at 80 ° C. to 350 ° C. for 1 minute to 60 minutes.
[0046]
[Action]
In the present invention, by using an alkoxy group-containing silane compound containing a long-chain fluoroalkyl group of a type of m = 9 or more, the resulting water-repellent substrate has almost no significant difference in the initial contact angle. Practical durability (traverse resistance, light resistance, chemical resistance, etc.) has been dramatically improved, and this effect strongly depends on the chain length of the fluoroalkyl group. Furthermore, when a base layer (particularly a silica layer) having a rough surface is formed on the substrate surface, extremely high practical durability can be realized.
[0047]
【Example】
Hereinafter, the present invention will be described specifically by way of examples. However, the present invention is not limited to the embodiment.
[0048]
Example 1
(1) Preparation of water repellent liquid As a raw material of the water repellent liquid composition for forming a water repellent coating film, heincosanefluorododecyltrimethoxysilane [CF 3 (CF 2 ) 9 CH 2 CH 2 Si (m = 9) OCH 3 ) 3 (prototype, hereinafter abbreviated as “FAS-9”)], isopropyl alcohol as a diluent solvent (hereinafter abbreviated as “i-PA”), and 60% nitric acid as an acid catalyst (HNO 3 ), the mixing ratio is C10-FAS: i-PA: 60% HNO 3 = 1: 25: 0.3 (unit: g), and the mixture is stirred at room temperature for about 2 hours to terminate the hydrolysis reaction. It was.
[0049]
Next, synthetic zeolite [Molecular Sieve 4A], which is a dehydrating agent, is added to the solution in which the hydrolysis reaction is terminated (addition amount is 5 times the weight of the water repellent agent by weight), and 16 hours (dehydration time) After completion of dehydration while dipping and allowing to stand for condensation polymerization reaction, the mixture was filtered using filter paper (NO. 7) to separate and remove the molecular sieve 4A to obtain a water-repellent liquid for coating.
(2) Preparation of glass substrate The surface of a 200 mm × 300 mm × 3.5 mm size float glass substrate was polished using a polishing liquid and a brush polisher, and after sufficiently removing the abrasive, 0.1 ° C. sulfuric acid at 35 ° C. It was immersed in the aqueous solution for 1 minute. Then, it washed with water and dried with the commercially available glass washer.
(3) Water-repellent treatment method In the water-repellent treatment, a water-repellent liquid was applied to the substrate surface by hand, air-dried, and then cured at 140 ° C. for 10 minutes. Thereafter, excess water repellent component was wiped off with i-PA to obtain water-repellent glass. In addition, the atmospheric temperature and humidity at the time of water-repellent liquid application were 22 degreeC and 45% RH.
(4) Evaluation method The measurement of the degree of polymerization of the water repellent liquid, the water repellency test of the water repellent substrate and the abrasion resistance (traverse resistance) test were evaluated by the following methods.
Figure 0003628881
Note that the water repellent liquid sample for GPC measurement is trimethylchlorosilane (((Trimethylsilyl)), which is one of the TMS (trimethylsilyl) agents for hydrolyzing and condensing FAS in the water repellent liquid to inactivate silanol groups. CH 3 ) 3 SiCl: TMCS) was used to TMS the FAS hydrolyzate and condensation polymer in the water repellent liquid, and then the sample (water repellent liquid) was filtered with a filter having a pore size of 0.5 μm. As the reaction conditions for TMS, 0.57 g of TMCS was added to 5 g of a sample (water repellent liquid) and stirred at room temperature for 1 h. From each peak in the obtained GPC chart, it can be seen that FAS monomer (Monomer), dimer (Dimer), trimer (Trimer) and tetramer to pentamer are present in the dehydrated water repellent liquid. As a result, the respective retention times could be identified as 32.5, 30.8, 29.9 and 29.3-28.5 minutes.
[0050]
In addition, the presence state of the FAS polymer by GPC measurement of Example 1 and Comparative Examples 1 and 2 described later is shown in FIG.
(In the figure, (1) indicates the data of Example 1, (2) indicates the data of Comparative Example 1, and (3) indicates the data of Comparative Example 2.)
Figure 0003628881
[0051]
In addition, the time-dependent change of the light resistance of Example 1, the comparative example 1, and the comparative example 2 which does not provide a base layer is shown in FIG.
(In the figure, (1) indicates the data of Example 1, (2) indicates the data of Comparative Example 1, and (3) indicates the data of Comparative Example 2.)
In addition, FIG. 3 shows changes with time in light resistance of Example 2 and Comparative Example 3 provided with an uneven base layer.
(In the figure, (1) indicates the data of Example 2, and (2) indicates the data of Comparative Example 3)
Figure 0003628881
(5) Evaluation result When the degree of polymerization of the water-repellent liquid obtained was measured by GPC, monomers, dimers and trimers were present as shown in FIG. In addition, as shown in Table 1, abrasion resistance (traverse resistance), light resistance, and alkali resistance showed good results in all evaluations.
[0052]
Example 2
The same method as in Example was performed except that an uneven base layer was formed on the surface of the glass substrate.
In addition, the uneven | corrugated base layer was performed with the following method.
[0053]
First, the coating solution was prepared as follows.
A mixed sol of a polymerization sol (average molecular weight Mw: about 1000 to 3000) of tetraethoxysilane [Si (OC 2 H 5 ) 4 : TEOS] and tetrabutoxytitanium [Ti (O—Bu) 4 ] stabilized with acetylacetone. (The total content of tetrabutoxytitanium stabilized with acetylacetone is about 20 mol% in terms of oxide relative to SiO2 in terms of oxide), isopropyl alcohol (iPA) solvent is added, and the solid content concentration is converted to oxide The sol solution A was diluted to 5 wt%. Isopropyl alcohol (iPA) is added to a polymerization sol (average molecular weight Mv = about 1,000) of methyltrimethoxysilane [CH 3 Si (OCH 3 ) 3 : MTMS] to a solid content concentration of about 20 wt% in terms of oxide. The solution diluted to the sol solution B was designated as Sol Solution B. 20 g of the sol solution A, 20 g of the sol solution B, and 25 g of butanol (n-BuOH, water content 2000 ppm) for adjusting the rate of hydrolysis and dehydration condensation reaction at about 50 ° C. for about 3 hours. A solution C was obtained by mixing and stirring the mixture. Further, the solution C was diluted with about 360 g of a mixed solvent of 324 g of iPA (90 wt%) and 36 g of n-BuOH (10 wt%) to obtain a coating chemical.
[0054]
The coating method was the spin coater method shown below.
First, a glass substrate for coating is set on a spin coater, and first, spin rotation is started in the coating film region (high-speed spin rotation). After 3 seconds at a rotation speed of 150 rpm, the coating amount of the coating solution is about 200 ml. The solution was dropped to form a film while maintaining the rotation speed for 18 seconds. Subsequently, in the leveling area (spin rotation stop), the spin coating is temporarily stopped for 60 seconds before leveling until the coated coating solution starts to thirst and loses fluidity. ), Spin rotation was started again and maintained at a low speed of 50 rpm for 40 seconds to accelerate drying of the coating film, and a gel film with good film forming properties was obtained.
[0055]
Next, the glass substrate with the gel film was temporarily fired at 250 ° C. for 30 minutes, and further subjected to main baking at a glass temperature of 630 ° C. to 660 ° C. to obtain a SiO 2 —TiO 2 thin film. In addition, Ra of the above-mentioned uneven | corrugated underlayer was 6 nm.
Moreover, the conditions at the time of application | coating were performed on the following conditions.
[0056]
Atmosphere temperature and humidity: 25 ° C, 50% RH
Coating liquid temperature: 25 ° C. (same as ambient temperature)
As a result, as shown in Table 1 and FIG. 2, the traverse resistance was 110 to 112 °, the light resistance (SUV test 600h) was 106 °, and the chemical resistance (alkali resistance) was 108 °. Showed good results. In particular, in the light resistance test, the contact angle was maintained at 100 ° or more even after 1000 hours of UV irradiation, and no substantial light resistance deterioration was observed.
[0057]
Comparative Example 1
Compared to Example 1, heptadecafluorodecyltrimethoxysilane [CF 3 (CF 2 ) 7 CH 2 CH 2 Si (OCH 3 ) 3 ], which is m = 7 type fluoroalkylalkoxysilane as a water repellent. (Shin-Etsu Chemical KBM-7803, hereinafter abbreviated as “FAS-7”) was used in the same manner as in Example 1.
[0058]
As a result, as shown in Table 1 and FIG. 1, the traverse resistance is 103 to 108 °, the light resistance (SUV test 600h) is 72 °, and the chemical resistance (alkali resistance) is 75 °, which is considerably higher than that of Example 1. The practical durability showed a tendency to decrease.
[0059]
Comparative Example 2
Compared with Example 1, tridecafluorooctyltrimethoxysilane [CF 3 (CF 2 ) 5 CH 2 CH 2 Si (OCH 3 ) 3 ], which is m = 5 type fluoroalkylalkoxysilane as a water repellent. (Toshiba Silicone TSL8256, hereinafter abbreviated as “FAS-5”).
[0060]
As a result, as shown in Table 1 and FIG. 1, the traverse resistance was 102 to 104 °, but the light resistance (SUV test 600h) was 60 °, and the chemical resistance (alkali resistance) was 50 °. It did not endure.
[0061]
Comparative Example 3
Compared to Example 2, hepadecafluorodecyltrimethoxysilane [CF 3 (CF 2 ) 7 CH 2 CH 2 Si (OCH 3 ) 3 ], which is m = 7 type fluoroalkylalkoxysilane as the water repellent. (Shin-Etsu Chemical KBM-7803, “FAS-7”) was used in the same manner as in Example 2.
[0062]
As a result, as shown in Table 1 and FIG. 2, the traverse resistance was as good as 103 to 108 °, but the light resistance (SUV test 600h) was 89 ° and the chemical resistance (alkali resistance) was 80 °. The practical durability was significantly lower than in Example 2.
[0063]
[Table 1]
Figure 0003628881
[0064]
【The invention's effect】
According to the present invention, a high-quality water-repellent substrate having excellent long-term durability such as abrasion resistance (traverse resistance), light resistance and chemical resistance (alkali resistance) can be obtained by a simple method under mass production. Since it can be obtained stably and reliably efficiently, it can be widely used in various articles such as automotive window materials, ship and aircraft window materials, bathroom and automobile mirrors, and industrial glass. A high and useful water-repellent substrate can be provided.
[Brief description of the drawings]
FIG. 1 is a GPC chart of a water repellent liquid at each dehydration time. FIG. 2 is a graph showing the results of a light resistance test of a water repellent glass without an underlayer. FIG. 3 is a light resistance test of a water repellent glass having an uneven base layer. Graph showing results

Claims (2)

一般式[1]で表される長鎖フルオロアルキル基含有シラン化合物の撥水剤と、希釈用の溶媒と、酸性水溶液を混合してなり、脱水剤で液中から水分を除去することで、フルオロアルキル基含有シラン化合物の脱水重縮合反応を促進させてなることを特徴とする基板表面に撥水性被膜を固定化させるための撥水液
CF3(CF2)m(CH2)2SiX3[1]
(式中、11≧m≧9の整数、Xはハロゲン、イソシアネート基またはアルコキシ基であって、アルコキシ基は、メトキシ基(OCH3)、エトキシ基(OC25)およびイソプロポキシ基(OC35)を表す)
By mixing the water-repellent agent of the long-chain fluoroalkyl group-containing silane compound represented by the general formula [1], a solvent for dilution, and an acidic aqueous solution, and removing water from the liquid with a dehydrating agent, A water repellent liquid for immobilizing a water repellent coating on a substrate surface characterized by promoting a dehydration polycondensation reaction of a fluoroalkyl group-containing silane compound .
CF 3 (CF 2 ) m (CH 2 ) 2 SiX 3 [1]
(In the formula, an integer of 11 ≧ m ≧ 9, X is a halogen, an isocyanate group or an alkoxy group, and the alkoxy group includes a methoxy group (OCH 3 ), an ethoxy group (OC 2 H 5 ) and an isopropoxy group (OC 3 represents the H 5))
基板表面に直接または下地層を形成した上面に請求項1に記載の撥水液を塗布する工程と、次いで撥水液中に含まれる長鎖フルオロアルキル基含有シランを該基板表面に固定化し撥水性被膜を形成する硬化工程とからなることを特徴とする撥水性基板の製法。 The step of applying the water-repellent liquid according to claim 1 directly on the substrate surface or the upper surface on which the underlayer is formed , and then fixing the long-chain fluoroalkyl group-containing silane contained in the water-repellent liquid onto the substrate surface. A method for producing a water-repellent substrate, comprising a curing step of forming an aqueous film.
JP22665398A 1998-02-13 1998-08-11 Manufacturing method of water repellent liquid and water repellent substrate Expired - Fee Related JP3628881B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP22665398A JP3628881B2 (en) 1998-08-11 1998-08-11 Manufacturing method of water repellent liquid and water repellent substrate
DE1999626093 DE69926093T2 (en) 1998-02-13 1999-02-12 Water-repellent solution and method for producing a water-repellent layer on a substrate by means of this solution
US09/248,994 US6235833B1 (en) 1998-02-13 1999-02-12 Water-repellent solution and method of forming water-repellent film on substrate by using the solution
EP99102682A EP0947478B1 (en) 1998-02-13 1999-02-12 Water-repellent solution and method of forming water-repellent film on substrate by using the solution
US09/811,588 US6461670B2 (en) 1998-02-13 2001-03-20 Water-repellent solution and method of forming water-repellent film on substrate by using the solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22665398A JP3628881B2 (en) 1998-08-11 1998-08-11 Manufacturing method of water repellent liquid and water repellent substrate

Publications (2)

Publication Number Publication Date
JP2000063153A JP2000063153A (en) 2000-02-29
JP3628881B2 true JP3628881B2 (en) 2005-03-16

Family

ID=16848561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22665398A Expired - Fee Related JP3628881B2 (en) 1998-02-13 1998-08-11 Manufacturing method of water repellent liquid and water repellent substrate

Country Status (1)

Country Link
JP (1) JP3628881B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4513523B2 (en) * 2004-11-19 2010-07-28 パナソニック株式会社 Cooking equipment
JP4522357B2 (en) * 2005-02-21 2010-08-11 セントラル硝子株式会社 Manufacturing method for water slidable glass articles
JP2011166085A (en) * 2010-02-15 2011-08-25 Nitta Corp Metal catalyst carrying chemical filter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3397394B2 (en) * 1993-11-10 2003-04-14 セントラル硝子株式会社 Coating solution for forming sol-gel film and method for forming water-repellent oxide film using sol-gel film as underlayer
JPH08157643A (en) * 1994-12-07 1996-06-18 Asahi Glass Co Ltd Water-repellent/oil-repellent porous silica particle and water-repellent/oil-repellent coating film

Also Published As

Publication number Publication date
JP2000063153A (en) 2000-02-29

Similar Documents

Publication Publication Date Title
JP3735136B2 (en) Non-wetting coating composition
US5413865A (en) Water-repellent metal oxide film and method of forming same on glass substrate
EP0966410B1 (en) A substrate having a treatment surface
KR100894079B1 (en) Treatment for forming waterdrop slidable films and process for forming waterdrop slidable films
JPH0597478A (en) Water repellent glass article and its production
JP3599998B2 (en) Method for producing water-repellent liquid and water-repellent coating
JPH10194784A (en) Water-repellent glass
JP2002012452A (en) High water slip substrate and its manufacturing method
JPH11171594A (en) Water repellent glass article and its production
JP3649585B2 (en) Water repellent coating solution
JP4826226B2 (en) Treatment agent for obtaining water slidable film and method for producing water slidable film
JP3628881B2 (en) Manufacturing method of water repellent liquid and water repellent substrate
JP4876424B2 (en) Manufacturing method for water slidable articles
JP4522357B2 (en) Manufacturing method for water slidable glass articles
JP2687060B2 (en) Forming solution for highly durable water repellent film
JP3385165B2 (en) Method for preparing coating solution for water-repellent film, method for producing water-repellent glass, and water-repellent glass
JP3744736B2 (en) Highly slidable base material and method for producing the same
KR100281993B1 (en) Durable water-repellent glass and its manufacturing method
JP3672688B2 (en) Water repellent glass manufacturing method
JP2000203884A (en) Water-repellent glass having high durability and its production
JP3982426B2 (en) Silica film coated article
JP3623108B2 (en) Water repellent glass manufacturing method
JP2000143296A (en) Water-repellent glass product and its production
JP4152769B2 (en) Method for producing highly durable water slidable coating
JPH1111984A (en) Water-repellent glass and its production

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041209

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees