JPH08157643A - Water-repellent/oil-repellent porous silica particle and water-repellent/oil-repellent coating film - Google Patents

Water-repellent/oil-repellent porous silica particle and water-repellent/oil-repellent coating film

Info

Publication number
JPH08157643A
JPH08157643A JP30388994A JP30388994A JPH08157643A JP H08157643 A JPH08157643 A JP H08157643A JP 30388994 A JP30388994 A JP 30388994A JP 30388994 A JP30388994 A JP 30388994A JP H08157643 A JPH08157643 A JP H08157643A
Authority
JP
Japan
Prior art keywords
water
repellent
oil
porous silica
silica particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30388994A
Other languages
Japanese (ja)
Inventor
Fumiaki Gunji
文明 郡司
Kazuya Hiratsuka
和也 平塚
Takeshi Morimoto
剛 森本
Takashige Yoneda
貴重 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP30388994A priority Critical patent/JPH08157643A/en
Publication of JPH08157643A publication Critical patent/JPH08157643A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Paints Or Removers (AREA)

Abstract

PURPOSE: To obtain water-repellent/oil-repellent fine powder excellent in water repellency and oil repellency, physicochemical durability,weatherability, lubricity, dispersibility, nontackiness, etc. CONSTITUTION: The water-repellent/oil-repellent porous silica particles is obtained by chemically binding a perfluorohydrocarbon group-contg. silane derivative onto the surface of spherical porous silica particles each 100-1500m<2> /g in specific surface area, 0.6-3.0ml/g in pore volume, 4-300nm in average pore diameter and 0.01-350μm in particle diameter.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、撥水撥油性多孔性シリ
カ粒子および撥水撥油性塗膜に関する。
FIELD OF THE INVENTION The present invention relates to water- and oil-repellent porous silica particles and a water- and oil-repellent coating film.

【0002】[0002]

【従来の技術】従来、撥水性塗料において分子量が50
0〜20000でかつ末端までフッ素化した低分子量四
フッ化エチレン樹脂微粒子を、撥水性粉体として樹脂中
に混入分散することが知られている(特開平6−122
838号公報、実開平2−78148号公報など参
照)。また、フルオロカーボン系化学吸着膜で表面を覆
われた無機微粒子を、高分子マトリックス樹脂中に分散
させた構造により高分子組成物表面の撥水性を発現する
ことが知られている(特開平6−200074号公報な
ど参照)。あるいは、アセチレンブラックをフッ素ガス
と反応して得られる撥水撥油性のフッ化黒鉛超微粒子が
知られている(特開昭63−210009号公報参
照)。
2. Description of the Related Art Conventionally, a water-repellent paint has a molecular weight of 50.
It is known that low molecular weight tetrafluoroethylene resin fine particles of 0 to 20,000 and fluorinated at the terminal are mixed and dispersed in a resin as a water repellent powder (Japanese Patent Laid-Open No. 6-122).
No. 838, Japanese Utility Model Publication No. 2-78148, etc.). Further, it is known that the surface of a polymer composition exhibits water repellency due to a structure in which inorganic fine particles whose surface is coated with a fluorocarbon-based chemical adsorption film are dispersed in a polymer matrix resin (JP-A-6- See Japanese Patent Publication No. 200074). Alternatively, water- and oil-repellent fluorinated graphite ultrafine particles obtained by reacting acetylene black with fluorine gas are known (see JP-A-63-210009).

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
撥水性粉体や撥水性微粒子あるいはこれらを内包する塗
膜は、撥水撥油性能および耐摩耗性・耐薬品性などの耐
久性能を、同時に十分満足するものはなかった。本発明
は、撥水撥油性に優れ、かつ耐摩耗性・耐薬品性などの
耐久性能の高い撥水撥油性粒子を提供することを目的と
する。
However, the conventional water-repellent powder and water-repellent fine particles or the coating film containing them have the water- and oil-repellent performance and the durability performance such as abrasion resistance and chemical resistance at the same time. There was nothing to be satisfied. An object of the present invention is to provide water and oil repellent particles which are excellent in water and oil repellency and have high durability such as abrasion resistance and chemical resistance.

【0004】[0004]

【課題を解決するための手段】本発明は、比表面積10
0〜1500m2 /g、細孔容積0.6〜3.0ml/
g、平均細孔径4〜300nmの多孔性シリカ粒子の表
面にパーフルオロ炭化水素基含有シラン誘導体が化学的
に結合した撥水撥油性多孔性シリカ粒子を提供するもの
である。
The present invention has a specific surface area of 10
0 to 1500 m 2 / g, pore volume 0.6 to 3.0 ml /
g, a water- and oil-repellent porous silica particle in which a perfluorohydrocarbon group-containing silane derivative is chemically bonded to the surface of the porous silica particle having an average pore diameter of 4 to 300 nm.

【0005】パーフルオロ炭化水素基含有シラン誘導体
は、多孔性シリカ粒子の表面のシラノール基(≡Si−
OH)と化学的に結合できることが必要である。たとえ
ば、ケイ素に直接結合したアルコキシ基(≡Si−O
R)、塩化物基(≡Si−Cl)、イソシアネート基
(≡Si−NCO)、アミノ基(≡Si−NH2 )など
の反応基を有する場合は、これらがシラノール基と縮合
反応して多孔性シリカ表面にパーフルオロ炭化水素基を
付与することができる。すなわち、本発明におけるパー
フルオロ炭化水素基含有シラン誘導体は、パーフルオロ
炭化水素基を含有するクロルシラン、アルコキシシラ
ン、イソシアネートシラン、アミノシランから選ばれる
少なくとも1種の化合物からなることが好ましい。パー
フルオロ炭化水素基を含有する各種シラン誘導体とし
て、次のものが例示される。
The perfluorohydrocarbon group-containing silane derivative is a silanol group (≡Si-) on the surface of porous silica particles.
OH). For example, an alkoxy group directly bonded to silicon (≡Si—O
R), a chloride group (≡Si—Cl), an isocyanate group (≡Si—NCO), an amino group (≡Si—NH 2 ), and the like have a reactive group such as a condensation reaction with a silanol group and become porous. A perfluorohydrocarbon group can be provided on the surface of the crystalline silica. That is, the perfluorohydrocarbon group-containing silane derivative in the present invention is preferably composed of at least one compound selected from chlorosilane, alkoxysilane, isocyanate silane, and aminosilane containing a perfluorohydrocarbon group. Examples of various silane derivatives containing a perfluorohydrocarbon group include the following.

【0006】[0006]

【化1】 Embedded image

【0007】(ただし、Rf は炭素数4〜16のパーフ
ルオロアルキル基、mは1以上の整数、nは4〜16の
整数)などのパーフルオロ炭化水素基含有シラン誘導
体、あるいはパーフルオロ炭化水素基がエーテル結合を
有するシラン誘導体である。さらに、これらのシラン誘
導体の1種または2種以上が加水分解した縮合体、ある
いは、これらの2種以上の混合物を用いることもでき
る。
(Wherein R f is a perfluoroalkyl group having 4 to 16 carbon atoms, m is an integer of 1 or more, and n is an integer of 4 to 16), or a silane derivative containing a perfluorohydrocarbon group, or a perfluorocarbon A hydrogen derivative is a silane derivative having an ether bond. Furthermore, a condensate obtained by hydrolyzing one or more of these silane derivatives, or a mixture of two or more of these can also be used.

【0008】パーフルオロ炭化水素基含有シラン誘導体
として、Rf (CH22 Si(NCO)3 などのイソ
シアネートシランが特に好ましい。これはアルコキシシ
ランはシリカ粒子表面のOH基と脱水縮合して強固なシ
ロキサン結合を形成するためには加熱が必要であるのに
対し、イソシアネートシランは常温でシロキサン結合の
形成ができるためである。また、クロルシランは容易に
シリカ粒子表面のOH基と反応するものの反応速度が早
いため空気中の水分でも急激に反応するため取扱に注意
が必要であり、反応副生成物として塩酸が発生して危険
であるのに対し、イソシアネートシランは反応速度が適
度で反応副生成物はアンモニアと炭酸ガスであり取扱い
が容易で工業的に使用する場合に適しているためであ
る。
Isocyanate silanes such as R f (CH 2 ) 2 Si (NCO) 3 are particularly preferable as the perfluorohydrocarbon group-containing silane derivative. This is because alkoxysilane requires heating to dehydrate-condense with the OH groups on the surface of silica particles to form a strong siloxane bond, whereas isocyanatesilane can form a siloxane bond at room temperature. In addition, chlorosilane easily reacts with OH groups on the surface of silica particles, but the reaction rate is fast, so it reacts rapidly even with moisture in the air, so care must be taken when handling it. On the other hand, isocyanate silane has a moderate reaction rate, and the reaction by-products are ammonia and carbon dioxide gas, which are easy to handle and suitable for industrial use.

【0009】多孔性シリカ粒子は、比表面積100〜1
500m2 /gであることが必要である。比表面積10
0m2 /g未満ではシリカ粒子表面にパーフルオロ炭化
水素基含有シラン誘導体が反応している量が少なく十分
な撥水撥油性能が得られないので不適当である。比表面
積が、1500m2 /gを超えるともはや撥水撥油性能
は向上しなくなり、また粒子表面ではパーフルオロ炭化
水素基含有シラン誘導体が必要以上に多く反応するため
工業的に無駄である。多孔性シリカ粒子の比表面積が3
00〜900m2 /gである場合はさらに好ましい。
The porous silica particles have a specific surface area of 100 to 1
It is necessary to be 500 m 2 / g. Specific surface area 10
When it is less than 0 m 2 / g, the amount of the perfluorohydrocarbon group-containing silane derivative reacting on the surface of the silica particles is small and sufficient water / oil repellency cannot be obtained, which is not suitable. When the specific surface area exceeds 1500 m 2 / g, the water / oil repellency is no longer improved, and the perfluorohydrocarbon group-containing silane derivative reacts more than necessary on the particle surface, which is industrially wasteful. Specific surface area of porous silica particles is 3
It is more preferable if it is from 00 to 900 m 2 / g.

【0010】多孔性シリカ粒子の細孔容積は、0.6〜
3.0ml/gであることが必要である。細孔容積0.
6ml/g未満では担持できるパーフルオロ炭化水素基
含有シラン誘導体の体積量が不足なため耐久性のある撥
水撥油性能が得られないので不適当である。細孔容積が
3.0ml/gを超えるともはや耐久撥水性能は向上し
なくなり、むしろ嵩高な粒子となり粒子の強度が低下し
てくるため硬度改質などの目的には不適当である。多孔
性シリカ粒子の細孔容積が0.9〜2.1ml/gであ
る場合はさらに好ましい。
The pore volume of the porous silica particles is from 0.6 to
It is required to be 3.0 ml / g. Pore volume 0.
If the amount is less than 6 ml / g, the volume of the perfluorohydrocarbon group-containing silane derivative that can be supported is insufficient, so that durable water / oil repellency cannot be obtained, which is unsuitable. If the pore volume exceeds 3.0 ml / g, the durable water repellent performance will no longer be improved, and rather the particles will become bulky and the strength of the particles will decrease, making them unsuitable for purposes such as hardness modification. It is more preferable that the pore volume of the porous silica particles is 0.9 to 2.1 ml / g.

【0011】多孔性シリカ粒子の平均細孔半径は4〜3
00nmであることが必要である。平均細孔径4nm未
満では、パーフルオロ炭化水素基含有シラン誘導体の単
分子膜厚が約2nmとしてシリカ粒子表面に単分子膜と
しても均一に被覆反応が得られないので不適当である。
平均細孔半径が300nmを超えると堆積膜として得ら
れる撥水撥油性能の向上は見られなくなるので不適当で
ある。多孔性シリカ粒子の平均細孔半径が6〜200n
mである場合はさらに好ましい。
The average pore radius of the porous silica particles is 4 to 3
It needs to be 00 nm. When the average pore diameter is less than 4 nm, the perfluorohydrocarbon group-containing silane derivative has a monomolecular film thickness of about 2 nm, and a uniform coating reaction cannot be obtained as a monomolecular film on the silica particle surface, which is not suitable.
If the average pore radius exceeds 300 nm, the water-repellent and oil-repellent performance obtained as a deposited film will not be improved, which is unsuitable. The average pore radius of the porous silica particles is 6 to 200n
It is more preferable that it is m.

【0012】多孔性シリカ粒子は、粒径0.01〜35
0μmで真球状または微粉砕状である場合は、透明性や
着色性が要求される塗料分野の用途からゴム・樹脂の物
性改良フィラーとして、または化粧品の充填剤などの風
合いや機能により広い用途に対応することができるので
好ましい。平均粒径が0.01μm未満では撥水撥油性
能が十分得られず、かつ多孔性シリカ粒子の凝集が起こ
りやすくフィラーとしては均一に分散した撥水撥油性多
孔性シリカ粒子を得ることが難しくなるので好ましくな
い。平均粒径が350μmを超えるとシリカ粒子を充填
材として配合した組成物の成膜性が乏しくなるので好ま
しくない。多孔性シリカ粒子の平均粒径が0.05〜3
0μmである場合はさらに好ましい。シリカ粒子が真球
状である場合は、流動性が向上するので特に好ましい。
The porous silica particles have a particle size of 0.01 to 35.
When it is 0 μm and is spherical or finely pulverized, it can be used widely as a filler for improving the physical properties of rubbers and resins from applications in the field of coatings where transparency and coloring are required, or due to the texture and function of fillers for cosmetics. It is preferable because it can respond. If the average particle size is less than 0.01 μm, the water / oil repellency is not sufficiently obtained, and the porous silica particles are apt to aggregate, and it is difficult to obtain uniformly dispersed water / oil repellent porous silica particles as a filler. Therefore, it is not preferable. If the average particle size exceeds 350 μm, the film-forming property of the composition containing silica particles as a filler becomes poor, which is not preferable. The average particle size of the porous silica particles is 0.05 to 3
It is more preferable if it is 0 μm. When the silica particles are spherical, the fluidity is improved, which is particularly preferable.

【0013】多孔性シリカ粒子は、SiO2 純度で9
9.9重量%以上であることが好ましい。シリカ粒子の
成分中およびその表面にアルカリ分を実質的に含まない
多孔性シリカ粒子であることが好ましい。SiO2 純度
が99.9重量%未満ではアルカリ分の溶出によりシリ
カ表面とパーフルオロ炭化水素基含有シラン誘導体のシ
ロキサン結合が加水分解を受けやすくなり高い耐久性の
撥水撥油性を維持できなくなるので好ましくない。Si
2 純度が99.99重量%以上である場合はさらに好
ましい。
The porous silica particles have a SiO 2 purity of 9
It is preferably 9.9% by weight or more. It is preferable that the silica particles are porous silica particles that do not substantially contain an alkali component in the components thereof or on the surface thereof. If the purity of SiO 2 is less than 99.9% by weight, the silica surface and the siloxane bond of the perfluorohydrocarbon group-containing silane derivative are likely to be hydrolyzed due to the elution of the alkali content, so that the highly durable water and oil repellency cannot be maintained. Not preferable. Si
It is more preferable that the O 2 purity is 99.99% by weight or more.

【0014】本発明の撥水撥油性多孔性シリカ粒子は特
に限定されることなく種々の用途に用いることができ
る。例えば、塗料にフィラーとして配合した場合は、塗
膜の耐久性、撥水撥油性、硬度、表面滑り性、防湿性な
どの物性を改良することができる。ゴム、合成樹脂、油
脂などに配合した場合は、滑性、流動性などを改良する
ことができ、あるいは造粘剤、チクソトロピー性付与
剤、ブロッキング防止剤の機能を有する。撥水撥油剤ま
たは艶消し剤などの表面改質剤として、フィルムや合成
皮革の表面に使用することもできる。情報産業用紙(感
熱記録紙、インクジェット用紙など)、一般塗工紙、裏
抜け防止剤などの製紙用フィラー、化粧品の充填剤(ロ
ーション、パテ、クリーム、口紅、ボディーパウダ
ー)、車両のワックス添加剤、建材の耐透水性多孔質断
熱剤などにも使用できる。その他の分野においても、流
動性改良剤・氷結防止剤・積雪防止剤・固結防止剤・接
着防止剤・潤滑性改良剤・防湿剤などとして使用でき
る。
The water- and oil-repellent porous silica particles of the present invention are not particularly limited and can be used for various purposes. For example, when it is added as a filler to a paint, physical properties such as durability, water / oil repellency, hardness, surface slipperiness, and moisture resistance of the coating film can be improved. When blended with rubber, synthetic resin, fats and oils, etc., it can improve lubricity, fluidity, etc., or has a function as a thickener, a thixotropic agent, and an antiblocking agent. It can also be used as a surface modifier such as a water / oil repellent or a matting agent on the surface of a film or synthetic leather. Information industry paper (thermal recording paper, inkjet paper, etc.), general coated paper, papermaking filler such as strike-through prevention agent, cosmetics filler (lotion, putty, cream, lipstick, body powder), vehicle wax additive It can also be used as a water-permeable porous insulating material for building materials. Also in other fields, it can be used as a fluidity improver, an anti-icing agent, a snow accumulation inhibitor, an anti-caking agent, an anti-adhesion agent, a lubricity improving agent, a moistureproofing agent and the like.

【0015】[0015]

【作用】本発明において、撥水撥油性多孔性シリカ粒子
はパーフルオロ炭化水素基含有シラン誘導体と化学的に
結合した構造を有している。そのため、多孔性シリカ粒
子表面はパーフルオロ炭化水素基で全面覆われ撥水撥油
性が発現する。そのうえ、塗料や樹脂や有機溶剤などに
良く分散し、特に従来添加が困難だったフッ素系の樹
脂、フィルム、ゴム、溶剤に添加する場合に均一に分散
し撥水撥油性能の向上や硬度の向上に寄与できる。パー
フルオロ炭化水素基含有シラン誘導体と多孔性シリカ粒
子の結合は、シリカ粒子の表面にあるシラノール基とパ
ーフルオロ炭化水素基含有シラン誘導体の加水分解性反
応基が化学的に結合してシロキサン結合たものであるか
ら、撥水撥油性能の高い耐久性が発現する。
In the present invention, the water-repellent and oil-repellent porous silica particles have a structure chemically bonded to the perfluorohydrocarbon group-containing silane derivative. Therefore, the surface of the porous silica particles is entirely covered with the perfluorohydrocarbon group, and water and oil repellency is exhibited. In addition, it disperses well in paints, resins, organic solvents, etc., especially when added to fluorine-based resins, films, rubbers, and solvents, which were difficult to add in the past, and evenly disperses it to improve water / oil repellency and hardness. Can contribute to improvement. The binding between the perfluorohydrocarbon group-containing silane derivative and the porous silica particle is a siloxane bond due to the silanol group on the surface of the silica particle and the hydrolyzable reactive group of the perfluorohydrocarbon group-containing silane derivative being chemically bonded. Therefore, high durability of water and oil repellency is exhibited.

【0016】多孔性シリカ粒子は上記細孔特性を有して
いるので、シリカ粒子の表面積が大きく、吸着している
パーフルオロ炭化水素基含有シラン誘導体の吸着密度が
非常に高く、かつ細孔内でのパーフルオロ炭化水素基含
有シラン誘導体の吸着過程における体積効果により含フ
ッ素濃度を非常に高めることが可能になり、耐久性に優
れた撥水撥油性能を実現できる。
Since the porous silica particles have the above-mentioned pore characteristics, the surface area of the silica particles is large, the adsorption density of the adsorbed perfluorohydrocarbon group-containing silane derivative is very high, and Due to the volume effect in the adsorption process of the perfluorohydrocarbon group-containing silane derivative in step 1, the fluorine-containing concentration can be extremely increased, and the water- and oil-repellent performance excellent in durability can be realized.

【0017】[0017]

【実施例】以下、本発明を実施例に基づいて具体的に説
明するが、以下の実施例は本発明の範囲を限定するもの
ではない。なお実施例において、評価方法は次の通りで
ある。
EXAMPLES The present invention will be specifically described below based on examples, but the following examples do not limit the scope of the present invention. In the examples, the evaluation method is as follows.

【0018】撥水性測定:水滴の接触角を用いて評価し
た。接触角の測定は協和界面化学株式会社CA−A型測
定機を用い、重量の影響を避けるため水滴径1.5mm
φで測定した。
Water repellency measurement: Evaluation was made using the contact angle of a water drop. Kyowa Interface Science Co., Ltd. CA-A type measuring instrument was used to measure the contact angle, and the water droplet diameter was 1.5 mm to avoid the influence of weight.
It was measured at φ.

【0019】耐摩耗性測定:ネル布を用い荷重1.0k
g/cm2 の条件で試料表面を擦り、接触角による撥水
性能の変化から耐摩耗性を評価した。
Abrasion resistance measurement: Load of 1.0k using flannel cloth
The sample surface was rubbed under the condition of g / cm 2, and the abrasion resistance was evaluated from the change in water repellency depending on the contact angle.

【0020】耐薬品性測定:0.1規定NaOH溶液に
室温で24時間浸漬放置した後、水洗いして乾燥後、接
触角による撥水性能の変化から耐薬品性を評価した。
Measurement of chemical resistance: After being immersed in a 0.1 N NaOH solution for 24 hours at room temperature, washed with water and dried, the chemical resistance was evaluated from the change in water repellency depending on the contact angle.

【0021】耐光性測定:塗膜に295〜450nmの
波長の光(照射強度90mW/cm2)を1000時間
照射(大日本プラスチックス株式会社製、商品名超促進
耐候試験機アイスーパーUVテスターSUV−F11を
使用)した後、接触角による撥水性能の変化から耐光性
を評価した。
Light resistance measurement: The coating film was irradiated with light having a wavelength of 295 to 450 nm (irradiation intensity 90 mW / cm 2 ) for 1000 hours (manufactured by Dainippon Plastics Co., Ltd., trade name super accelerated weather resistance tester Eye Super UV Tester SUV). After using -F11), the light resistance was evaluated from the change in water repellency depending on the contact angle.

【0022】鉛筆硬度測定:JIS K5651に準拠
し鉛筆引かき試験機(JIS K5401)を使用し鉛
筆(三菱鉛筆株式会社製、商品名ユニ)を用い判定し
た。
Pencil hardness measurement: In accordance with JIS K5651, a pencil scratch tester (JIS K5401) was used to make a judgment using a pencil (Mitsubishi Pencil Co., Ltd., trade name Uni).

【0023】接着性測定:JIS K5400に準拠し
塗膜をクロスカット後、セロハンテープ(ニチバン株式
会社製、商品名セロテープ#405)で塗膜を剥離する
ゴバン目試験で判定した。ゴバン目100枚のうち試験
後剥離せず残存したゴバン目数Xで接着性を評価した。
Adhesion measurement: The coating film was cross-cut in accordance with JIS K5400, and then the coating film was peeled off with cellophane tape (cellophane tape # 405 manufactured by Nichiban Co., Ltd., trade name). The adhesiveness was evaluated based on the number X of goggles, which remained without peeling after the test, out of 100 goggles.

【0024】[合成例1]Rf CH=CH2 (ただし、
f :Cn2n+1、n:6,8,10,12の混合物で
平均値9.0)49.6g(0.1モル)、HSiCl
3 15.9g(0.12モル)、H2 PtCl6 ・6H
2 Oの50%イソプロパノール溶液0.2gを内容積1
00mlのガラス製耐圧アンプルに入れ、振盪しながら
85℃で20時間反応させた。反応終了後、減圧蒸留す
ることにより反応生成物を得た。反応生成物はガスクロ
マトグラフィーで分析するとRf (CH22 SiCl
3 (b.p.85℃〜100℃/3〜5mmHg)であ
ることが確認できた。それへの転化率は95%であっ
た。
[Synthesis Example 1] R f CH = CH 2 (where
R f : C n F 2n + 1 , n: 6,8,10,12, mixture: average value 9.0) 49.6 g (0.1 mol), HSiCl
3 15.9 g (0.12 mol), H 2 PtCl 6・ 6H
0.2 g of 50% isopropanol solution of 2 O in an internal volume of 1
The mixture was placed in a 00 ml glass pressure-resistant ampoule and reacted at 85 ° C. for 20 hours while shaking. After completion of the reaction, a reaction product was obtained by distillation under reduced pressure. When the reaction product is analyzed by gas chromatography, R f (CH 2 ) 2 SiCl
3 (bp 85 ° C. to 100 ° C./3 to 5 mmHg) was confirmed. The conversion rate to it was 95%.

【0025】[合成例2]合成例1の反応生成物である
f (CH22 SiCl3 50.3g(0.08モ
ル)、メタノール15gを混合し、乾燥窒素をバブリン
グして生成するHClを除去しながら反応させた。この
反応の終点は生成したHClを定量して確認した。反応
終了後、過剰のメタノールを留去して反応生成物を得
た。反応生成物はガスクロマトグラフィーで分析すると
f (CH22 Si(OCH33 であることが確認
できた。それへの転化率は100%であった。
[Synthesis Example 2] 50.3 g (0.08 mol) of R f (CH 2 ) 2 SiCl 3 which is the reaction product of Synthesis Example 1 is mixed with 15 g of methanol, and dry nitrogen is bubbled through the mixture. The reaction was carried out while removing HCl. The end point of this reaction was confirmed by quantitatively measuring generated HCl. After completion of the reaction, excess methanol was distilled off to obtain a reaction product. It was confirmed by gas chromatography that the reaction product was R f (CH 2 ) 2 Si (OCH 3 ) 3 . The conversion rate to that was 100%.

【0026】[合成例3]合成例1の反応生成物Rf
(CH22 SiCl3 50.3g(0.08モル)を
50mlのベンゼンに溶かした液を、トリエチルアミン
・メタンスルホン酸塩0.31g(0.0016モル)
とシアン酸ナトリウム18.2g(0.28モル)を5
0mlのベンゼンに溶解・懸濁した液に撹拌しながら滴
下した。滴下終了後、還流下に80℃で2時間反応させ
た後に、冷却して固体を濾別し、濾液からベンゼンを留
去し、残留物を蒸留して反応生成物を得た。反応生成物
は塩素を含まず、その赤外吸収スペクトルで分析する
と、2290cm-1にνNCOの強い吸収を示すことか
らRf (CH22 Si(NCO)3 であることが確認
できた。それへの転化率は80%であった。
[Synthesis Example 3] The reaction product R f of Synthesis Example 1
A solution prepared by dissolving 50.3 g (0.08 mol) of (CH 2 ) 2 SiCl 3 in 50 ml of benzene was added with 0.31 g (0.0016 mol) of triethylamine / methanesulfonate.
And 5.2 g (0.28 mol) of sodium cyanate
It was added dropwise with stirring to a liquid dissolved and suspended in 0 ml of benzene. After completion of dropping, the mixture was reacted under reflux at 80 ° C. for 2 hours, then cooled and solids were separated by filtration, benzene was distilled off from the filtrate, and the residue was distilled to obtain a reaction product. The reaction product did not contain chlorine, and when analyzed by its infrared absorption spectrum, it was confirmed to be R f (CH 2 ) 2 Si (NCO) 3 because it showed strong absorption of νNCO at 2290 cm −1 . The conversion rate to that was 80%.

【0027】[合成例4]SiO2 濃度が23重量%の
3号水ガラス460gに対し、30重量%の硫酸190
gを反応させ、pH2のケイ酸ゾルを生成させた。次い
で、このゾルを−1℃に冷却したところ、90gの硫酸
ナトリウムが析出し、これを濾別した。次に撹拌機とガ
ス吹き込みノズルとを備えた容量2リットルの容器に、
非イオン系界面活性剤のソルビタンモノオレエートを2
500ppm添加したトルエン1.7リットルを入れ、
撹拌強度10000rpmで撹拌しつつ、前記ケイ酸ゾ
ルを滴下し、乳化液を形成した。ここで得られたゾルの
粒径は約18μmの真球に近い形状であった。次いでア
ンモニアガスをガス吹き込みノズルから2リットル/分
の速度で5分間吹き込み、さらに60分間撹拌を続け
た。この間液温を30℃に保持した。次に容器からスラ
リーを取り出し、固形分を濾別し、固形分に付着したト
ルエンを水蒸気処理して除去し、乾燥して多孔性シリカ
粒子を得た。
[Synthesis Example 4] 190 g of 30% by weight sulfuric acid was added to 460 g of No. 3 water glass having a SiO 2 concentration of 23% by weight.
g was reacted to form a silicic acid sol having a pH of 2. Next, when this sol was cooled to -1 ° C, 90 g of sodium sulfate was deposited and filtered off. Next, in a container with a capacity of 2 liters equipped with a stirrer and a gas blowing nozzle,
Nonionic surfactant sorbitan monooleate 2
Add 1.7 liters of toluene added 500 ppm,
While stirring at a stirring intensity of 10,000 rpm, the silicic acid sol was dropped to form an emulsion. The particle size of the sol obtained here was about 18 μm, which was close to a true sphere. Next, ammonia gas was blown through the gas blowing nozzle at a rate of 2 liters / minute for 5 minutes, and stirring was continued for another 60 minutes. During this time, the liquid temperature was maintained at 30 ° C. Next, the slurry was taken out of the container, the solid content was filtered off, the toluene attached to the solid content was treated with steam to be removed, and dried to obtain porous silica particles.

【0028】粉末のSiO2 純度は99.95重量%で
あり、走査型電子顕微鏡による観察の結果、平均粒子径
は5μmであり、ゾル状態時の粒径を保持していること
が認められた。BET法による比表面積は300m2
g、窒素吸着法による細孔容積は1.0ml/g、平均
細孔径は15nmであった。また、同様な方法で、ケイ
酸ゾルのpH、乳化液中のゾルの粒径などを変えて、後
記する種々の物性の多孔性シリカ粉末も合成した。
The SiO 2 purity of the powder was 99.95% by weight, and as a result of observation with a scanning electron microscope, it was found that the average particle diameter was 5 μm and the particle diameter in the sol state was retained. . Specific surface area by BET method is 300m 2 /
g, the pore volume by the nitrogen adsorption method was 1.0 ml / g, and the average pore diameter was 15 nm. Further, by the same method, the pH of the silicic acid sol, the particle size of the sol in the emulsion, and the like were changed, and porous silica powder having various physical properties described below was also synthesized.

【0029】[合成例5]Si(OC254 10
7.14g(0.5モル)、エタノ−ル820.97
g、0.2規定の塩酸71.89g(H2 Oが3.9モ
ル)を撹拌機を装着したフラスコに入れ、室温で24時
間反応させた後、SiO2 勘算で3.0重量%のテトラ
エトキシシラン加水分解縮合物のゾル溶液を得た。
[Synthesis Example 5] Si (OC 2 H 5 ) 4 10
7.14 g (0.5 mol), ethanol 820.97
g, 0.2 N hydrochloric acid 71.89 g (H 2 O 3.9 mol) was placed in a flask equipped with a stirrer and reacted at room temperature for 24 hours, and then 3.0 wt% in consideration of SiO 2. A sol solution of tetraethoxysilane hydrolyzed condensate was obtained.

【0030】[実施例1]合成例1の反応生成物Rf
(CH22 SiCl3 10gを酢酸エチル溶媒で希釈
して100gとした溶液を調製した。次に、この溶液を
撹拌しながら合成例4(物性は表1参照)の多孔性シリ
カ粒子1.0gを加えて、3時間超音波をかけ、さらに
1時間放置した。その後固形分を濾別して、さらにヘキ
サンで洗浄濾過し80℃で乾燥した。このようにして得
られた撥水撥油性多孔性シリカ粒子をガラス基材上に塗
り延ばした塗布層の表面について、水、ヘキサデカンに
対する接触角を測定した。結果を表1に示す。
Example 1 Reaction product R f of Synthesis Example 1
A solution was prepared by diluting 10 g of (CH 2 ) 2 SiCl 3 with an ethyl acetate solvent to 100 g. Next, 1.0 g of the porous silica particles of Synthesis Example 4 (see Table 1 for physical properties) was added to this solution with stirring, ultrasonic waves were applied for 3 hours, and the solution was left standing for 1 hour. Thereafter, the solid content was separated by filtration, washed with hexane, filtered, and dried at 80 ° C. The contact angle of water and hexadecane was measured on the surface of the coating layer obtained by coating the water- and oil-repellent porous silica particles thus obtained on a glass substrate. The results are shown in Table 1.

【0031】[実施例2]合成例2の反応生成物Rf
(CH22 Si(OCH33 10g、イソプロピル
アルコール168g、0.1規定の酢酸溶液2.6gを
撹拌機を装着したフラスコに入れ、室温で48時間反応
させた後、合成例4(物性は表1参照)の多孔性シリカ
粒子1.0gを加えて、3時間超音波をかけさらに24
時間撹拌した。その後固形分を濾別して、さらにエタノ
ールで洗浄濾過し160℃で乾燥キュアリングした。こ
のようにして得られた撥水撥油性多孔性シリカ粒子をガ
ラス基材上に塗り延ばした塗布層の表面について、水、
ヘキサデカンに対する接触角を測定した。結果を表1に
示す。
Example 2 Reaction product R f of Synthesis Example 2
10 g of (CH 2 ) 2 Si (OCH 3 ) 3 , 168 g of isopropyl alcohol, and 2.6 g of a 0.1N acetic acid solution were placed in a flask equipped with a stirrer and reacted at room temperature for 48 hours, and then, Synthesis Example 4 ( For the physical properties, refer to Table 1) and add 1.0 g of porous silica particles, and sonicate for 3 hours.
Stirred for hours. Then, the solid content was separated by filtration, washed with ethanol, filtered, and dried and cured at 160 ° C. The surface of the coating layer obtained by spreading the water- and oil-repellent porous silica particles thus obtained on a glass substrate, water,
The contact angle with hexadecane was measured. The results are shown in Table 1.

【0032】[実施例3]合成例3の反応生成物Rf
(CH22 Si(NCO)3 30gをジクロロペンタ
フルオロプロパン溶媒で希釈して300gとした溶液を
調製した。次に、この溶液を撹拌しながら合成例4(物
性は表1参照)の多孔性シリカ粒子3.0gを加えて、
3時間超音波をかけさらに12時間放置した。その後固
形分を濾別して、さらにジクロロペンタフルオロプロパ
ンで洗浄濾過し80℃で乾燥した。このようにして得ら
れた撥水撥油性多孔性シリカ粒子をガラス基材上に塗り
延ばした塗布層の表面について、水、ヘキサデカンに対
する接触角を測定した。結果を表1に示す。
Example 3 Reaction product R f of Synthesis Example 3
A solution was prepared by diluting 30 g of (CH 2 ) 2 Si (NCO) 3 with a dichloropentafluoropropane solvent to 300 g. Next, 3.0 g of the porous silica particles of Synthesis Example 4 (see Table 1 for physical properties) was added to this solution with stirring,
Ultrasonic waves were applied for 3 hours and left for another 12 hours. Then, the solid content was separated by filtration, washed with dichloropentafluoropropane, filtered, and dried at 80 ° C. The contact angle of water and hexadecane was measured on the surface of the coating layer obtained by coating the water-repellent and oil-repellent porous silica particles thus obtained on a glass substrate. The results are shown in Table 1.

【0033】[実施例4〜7]多孔性シリカ粒子をそれ
ぞれ表1に示す物性のものに代えた以外は実施例3と同
様にして撥水撥油性多孔性シリカを得た。このようにし
て得られた撥水撥油性多孔性シリカ粒子をガラス基材上
に塗り延ばした塗布層の表面について、水、ヘキサデカ
ンに対する接触角を測定した。結果を表1に示す。
[Examples 4 to 7] A water- and oil-repellent porous silica was obtained in the same manner as in Example 3 except that the porous silica particles were changed to those having the physical properties shown in Table 1. The contact angle of water and hexadecane was measured on the surface of the coating layer obtained by coating the water- and oil-repellent porous silica particles thus obtained on a glass substrate. The results are shown in Table 1.

【0034】[0034]

【表1】 [Table 1]

【0035】[実施例8]比較のために多孔性シリカ粒
子を、平均粒径5μm、比表面積7m2 /gの非多孔性
シリカ粒子に代えた以外は実施例3と同様にして撥水撥
油性シリカ粒子を得た。同様にしてガラス表面に塗り延
ばして、水、ヘキサデカンに対する接触角を測定したと
ころはそれぞれ117゜、70゜であった。実施例1〜
8に比較すると接触角が小さかった。
[Example 8] For comparison, the same procedure as in Example 3 was repeated except that the porous silica particles were replaced with non-porous silica particles having an average particle size of 5 µm and a specific surface area of 7 m 2 / g. Oily silica particles were obtained. Similarly, when it was spread on the glass surface and the contact angles with water and hexadecane were measured, they were 117 ° and 70 °, respectively. Example 1
The contact angle was smaller than that of No. 8.

【0036】[実施例9]比較のために、平均粒径7μ
m、融点332℃の低分子量PTFE粉末をガラス基材
上に塗り延ばして、水、ヘキサデカンに対する接触角を
測定したところそれぞれ115゜、61゜であった。実
施例1〜8に比較すると接触角が小さかった。
[Example 9] For comparison, the average particle size is 7 μm.
m and a melting point of 332 ° C., low-molecular-weight PTFE powder was spread on a glass substrate, and the contact angles with water and hexadecane were measured to be 115 ° and 61 °, respectively. The contact angle was small as compared with Examples 1 to 8.

【0037】[実施例10]合成例5のテトラエトキシ
シラン加水分解縮合物の溶液16.7gに、実施例6の
撥水撥油性多孔性シリカ粒子2gを加えてガラス基材上
に塗布し、200℃で30分加熱して撥水撥油性塗膜を
形成した。水に対する接触角により塗膜を評価した結果
を表2に示す。
Example 10 To 16.7 g of the solution of the tetraethoxysilane hydrolyzed condensate of Synthesis Example 5, 2 g of the water- and oil-repellent porous silica particles of Example 6 was added and coated on a glass substrate. It was heated at 200 ° C. for 30 minutes to form a water and oil repellent coating film. Table 2 shows the results of evaluation of the coating film by the contact angle with water.

【0038】[実施例11]実施例10において、テト
ラエトキシシラン加水分解縮合物の溶液の量を33.4
gに変えた以外は同様の実験をして撥水撥油性塗膜を形
成した。水に対する接触角により塗膜を評価した結果を
表2に示す。
[Example 11] In Example 10, the amount of the solution of the tetraethoxysilane hydrolysis condensate was 33.4.
A water- and oil-repellent coating film was formed by the same experiment except that the amount was changed to g. Table 2 shows the results of evaluation of the coating film by the contact angle with water.

【0039】[実施例12]実施例10において、テト
ラエトキシシラン加水分解縮合物の溶液の量を66.8
gに変えた以外は同様の実験をして撥水撥油性塗膜を形
成した。水に対する接触角により塗膜を評価した結果を
表2に示す。
[Example 12] In Example 10, the amount of the solution of the tetraethoxysilane hydrolysis-condensation product was changed to 66.8.
A water- and oil-repellent coating film was formed by the same experiment except that the amount was changed to g. Table 2 shows the results of evaluation of the coating film by the contact angle with water.

【0040】[実施例13]分子量が3000で−(C
2 CF2n −構造を持つPTFEオリゴマーの11
重量%のフッ素化炭化水素溶媒系分散液(旭硝子株式会
社製、商品名AG−Lub G)18.2gに、実施例
6の撥水撥油性多孔性シリカ粒子2gを加えてガラス基
材上に塗布し、200℃で30分加熱して撥水撥油性塗
膜を形成した。水に対する接触角により塗膜を評価した
結果を表2に示す。
Example 13 The molecular weight was 3000 and-(C
11 of PTFE oligomer having F 2 CF 2 ) n -structure
2 g of the water-repellent and oil-repellent porous silica particles of Example 6 was added to 18.2 g of a fluorinated hydrocarbon solvent-based dispersion liquid (manufactured by Asahi Glass Co., Ltd., trade name AG-Lub G) at a weight percentage, and the mixture was placed on a glass substrate. It was applied and heated at 200 ° C. for 30 minutes to form a water and oil repellent coating film. Table 2 shows the results of evaluation of the coating film by the contact angle with water.

【0041】[実施例14]アモルファスフッ素樹脂の
1.6重量%パーフルオロシクロアルカン系溶液(旭硝
子株式会社製、商品名サイトップCTL−102M)1
25gに、実施例6の撥水撥油性多孔性シリカ粒子2g
を加えてガラス基材上に塗布し、200℃で30分加熱
して撥水撥油性塗膜を形成した。水に対する接触角によ
り塗膜を評価した結果を表2に示す。
[Example 14] 1.6 wt% perfluorocycloalkane-based solution of amorphous fluororesin (Asahi Glass Co., Ltd., trade name CYTOP CTL-102M) 1
To 25 g, 2 g of water- and oil-repellent porous silica particles of Example 6
Was added and coated on a glass substrate and heated at 200 ° C. for 30 minutes to form a water / oil repellent coating film. Table 2 shows the results of evaluation of the coating film by the contact angle with water.

【0042】[実施例15]フッ素樹脂塗料(旭硝子株
式会社製、商品名ルミフロンLF−100)100g
に、実施例6の撥水撥油性多孔性シリカ粒子5gを加え
てガラス基材上に塗布し、80℃で30分加熱して撥水
撥油性塗膜を形成した。水に対する接触角により塗膜を
評価した結果を表2に示す。
[Example 15] 100 g of a fluororesin coating (Lumiflon LF-100, manufactured by Asahi Glass Co., Ltd.)
Was added to 5 g of the water- and oil-repellent porous silica particles of Example 6 and coated on a glass substrate, and heated at 80 ° C. for 30 minutes to form a water- and oil-repellent coating film. Table 2 shows the results of evaluation of the coating film by the contact angle with water.

【0043】[実施例16]シリコーン系ハードコート
塗料(信越化学工業株式会社製、商品名X−12−23
21A)100gに、実施例6の撥水撥油性多孔性シリ
カ粒子8gを加えてガラス基材上に塗布し、120℃で
90分加熱して撥水撥油性塗膜を形成した。水に対する
接触角により塗膜を評価した結果を表2に示す。
[Example 16] Silicone type hard coat paint (manufactured by Shin-Etsu Chemical Co., Ltd., trade name X-12-23)
To 100 g of 21A), 8 g of the water- and oil-repellent porous silica particles of Example 6 was added and coated on a glass substrate, and heated at 120 ° C. for 90 minutes to form a water- and oil-repellent coating film. Table 2 shows the results of evaluation of the coating film by the contact angle with water.

【0044】[実施例17]合成フッ素油(旭硝子株式
会社製、商品名フロンルーブFL−900)30gに、
実施例6の撥水撥油性多孔性シリカ粒子1gを加えてガ
ラス基材上に塗布し、撥水撥油性塗膜を形成した。水に
対する接触角により塗膜を評価した結果を表2に示す。
[Example 17] To 30 g of synthetic fluoro oil (manufactured by Asahi Glass Co., Ltd., product name Freonlube FL-900),
1 g of the water- and oil-repellent porous silica particles of Example 6 was added and coated on a glass substrate to form a water- and oil-repellent coating film. Table 2 shows the results of evaluation of the coating film by the contact angle with water.

【0045】[実施例18]四フッ化エチレン/エチレ
ン共重合体(旭硝子株式会社製、商品名アフロンCO
P)1000gと、実施例6の撥水撥油性多孔性シリカ
粒子10gとを加えて加熱混練してフィルムに成形加工
した後、脱脂処理した冷間圧延鋼板に熱融着して撥水撥
油性塗膜を形成した。水に対する接触角により塗膜を評
価した結果を表2に示す。
Example 18 Tetrafluoroethylene / ethylene copolymer (Asahi Glass Co., Ltd., trade name AFLON CO
P) 1000 g and 10 g of the water- and oil-repellent porous silica particles of Example 6 were added, and the mixture was heated and kneaded to form a film, which was then heat-bonded to a degreased cold-rolled steel sheet for water- and oil-repellency. A coating film was formed. Table 2 shows the results of evaluation of the coating film by the contact angle with water.

【0046】[実施例19]比較のため、合成例5のテ
トラエトキシシラン加水分解縮合物の溶液にフィラーを
何も加えず、ガラス基材上に塗布し、200℃で30分
加熱して塗膜を形成した。水に対する接触角により塗膜
を評価した結果を表2に示す。
[Example 19] For comparison, the tetraethoxysilane hydrolysis-condensation solution of Synthesis Example 5 was coated on a glass substrate without adding any filler, and heated at 200 ° C for 30 minutes for coating. A film was formed. Table 2 shows the results of evaluation of the coating film by the contact angle with water.

【0047】[実施例20]比較のため、合成例5のテ
トラエトキシシラン加水分解縮合物の溶液66.8g
に、実施例8の平均粒径1μmの撥水撥油性シリカ粒子
2gを加えてガラス基材上に塗布し、200℃で30分
加熱して撥水撥油性塗膜を形成した。水に対する接触角
により塗膜を評価した結果を表2に示す。なお、塗膜表
面のヘキサデカンに対する接触角は20゜未満であっ
た。
Example 20 For comparison, 66.8 g of a solution of the tetraethoxysilane hydrolyzed condensate of Synthesis Example 5
2 g of the water- and oil-repellent silica particles of Example 8 having an average particle diameter of 1 μm were added to and coated on a glass substrate, and heated at 200 ° C. for 30 minutes to form a water- and oil-repellent coating film. Table 2 shows the results of evaluation of the coating film by the contact angle with water. The contact angle of hexadecane on the surface of the coating film was less than 20 °.

【0048】[実施例21]比較のため、合成例5のテ
トラエトキシシラン加水分解縮合物の溶液66.8g
に、実施例9のPTFE粉末2gを加えて良く分散させ
た後にガラス基材上に塗布し、200℃で30分加熱し
て撥水撥油性塗膜を形成した。水に対する接触角により
塗膜を評価した結果を表2に示す。
[Example 21] For comparison, 66.8 g of a solution of the tetraethoxysilane hydrolyzed condensate of Synthesis Example 5 was compared.
2 g of the PTFE powder of Example 9 was added thereto and well dispersed, and then coated on a glass substrate and heated at 200 ° C. for 30 minutes to form a water / oil repellent coating film. Table 2 shows the results of evaluation of the coating film by the contact angle with water.

【0049】[実施例22]比較のため、実施例13で
用いたPTFEオリゴマーの分散液にフィラーを何も加
えずガラス基材上に塗布し、200℃で30分加熱して
塗膜を形成した。水に対する接触角により塗膜を評価し
た結果を表2に示す。なお、塗膜表面のヘキサデカンに
対する接触角は62゜であった。
[Example 22] For comparison, the PTFE oligomer dispersion used in Example 13 was coated on a glass substrate without adding any filler and heated at 200 ° C for 30 minutes to form a coating film. did. Table 2 shows the results of evaluation of the coating film by the contact angle with water. The contact angle of hexadecane on the surface of the coating film was 62 °.

【0050】[実施例23]比較のため、実施例14で
用いたアモルファスフッ素樹脂の溶液をガラス基材上に
塗布し、200℃で30分加熱して撥水撥油性塗膜を形
成した。水に対する接触角により塗膜を評価した結果を
表2に示す。なお、塗膜表面のヘキサデカンに対する接
触角は60゜であった。
[Example 23] For comparison, the solution of the amorphous fluororesin used in Example 14 was applied onto a glass substrate and heated at 200 ° C for 30 minutes to form a water / oil repellent coating film. Table 2 shows the results of evaluation of the coating film by the contact angle with water. The contact angle of hexadecane on the surface of the coating film was 60 °.

【0051】[実施例24]比較のため、実施例15で
用いたフッ素樹脂塗料をガラス基材上に塗布し、80℃
で30分加熱して撥水撥油性塗膜を形成した。水に対す
る接触角により塗膜を評価した結果を表2に示す。
[Example 24] For comparison, the fluororesin paint used in Example 15 was applied on a glass substrate and heated to 80 ° C.
And heated for 30 minutes to form a water and oil repellent coating film. Table 2 shows the results of evaluation of the coating film by the contact angle with water.

【0052】[0052]

【表2】 [Table 2]

【0053】表2において、比較例として挙げた実施例
19〜24に比べると、実施例10〜18は接触角が大
きくかつそれらの耐久性が良好であることがわかる。
In Table 2, it can be seen that Examples 10 to 18 have large contact angles and good durability as compared with Examples 19 to 24 given as comparative examples.

【0054】[0054]

【発明の効果】本発明の撥水撥油性多孔性シリカ粒子
は、撥水撥油性、防水性、防食性、耐着雪性、耐候性、
潤滑性に優れる。本発明の撥水撥油性多孔性シリカ粒子
をフィラーとして配合することにより撥水撥油性の良好
な塗膜の形成が可能となる。本発明の撥水撥油性多孔性
シリカ粒子は、強い撥水撥油性を持っているので少量で
その効果が発現できる。例えば半導体封止材の添加剤、
各種樹脂、塗料、接着剤の充填剤、化粧品用充填剤とし
て使用された場合でも、少量で高機能な効果を発揮でき
るため安価であり、他の表面処理材料としても広く応用
が可能である。
The water- and oil-repellent porous silica particles of the present invention are water- and oil-repellent, waterproof, anticorrosive, snow-resistant, weather resistant,
Excellent lubricity. By incorporating the water- and oil-repellent porous silica particles of the present invention as a filler, it becomes possible to form a coating film having good water- and oil-repellency. Since the water- and oil-repellent porous silica particles of the present invention have strong water- and oil-repellency, the effect can be exhibited even in a small amount. For example, semiconductor encapsulant additives,
Even when it is used as a filler for various resins, paints, adhesives, and a filler for cosmetics, it is inexpensive because it can exhibit high-performance effects with a small amount, and can be widely applied as other surface treatment materials.

【0055】多孔性シリカ粒子として、SiO2 純度で
99.9重量%以上で、シリカ粒子の成分中およびその
表面にアルカリ分を実質的に含まない多孔性シリカ粒子
を用いた場合は、Na、Fe、Alなどの不純物を含ま
ず純度が高いため、特に電子工業用素材としても十分適
用できるのみならず、化学工業、鉄鋼工業、非鉄金属工
業、ガラス工業、光学用途で使用された場合でも撥水撥
油性能の長期持続耐久性が高いという効果が得られる。
また、本発明の撥水撥油性多孔性シリカ粒子は、高い電
気抵抗と高い誘電特性を持つため、電気絶縁材料や帯電
性を付与したい材料への応用が可能である。
When porous silica particles having a SiO 2 purity of 99.9% by weight or more and having substantially no alkali content in the components of the silica particles or on the surface thereof are used as the porous silica particles, Na, Since it does not contain impurities such as Fe and Al and has a high degree of purity, it can be applied not only as a material for the electronics industry, but also when used in the chemical industry, the steel industry, the non-ferrous metal industry, the glass industry, and optical applications. The effect that water-repellent performance has high long-term durability is obtained.
Further, since the water- and oil-repellent porous silica particles of the present invention have high electric resistance and high dielectric properties, they can be applied to electric insulating materials and materials to which chargeability is desired.

【0056】本発明の撥水撥油性多孔性シリカ粒子は生
産性に優れ、比較的簡単なプロセスと装置でもって容易
に安定した量産が可能であり、工業的価値は非常に高
い。
The water- and oil-repellent porous silica particles of the present invention are excellent in productivity, can be easily mass-produced by a relatively simple process and apparatus, and have an extremely high industrial value.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 米田 貴重 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Rare Yoneda 1150 Hazawa-machi, Kanagawa-ku, Yokohama, Kanagawa Prefecture Asahi Glass Co., Ltd. Central Research Laboratory

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】比表面積100〜1500m2 /g、細孔
容積0.6〜3.0ml/g、平均細孔径4〜300n
mの多孔性シリカ粒子の表面にパーフルオロ炭化水素基
含有シラン誘導体が化学的に結合した撥水撥油性多孔性
シリカ粒子。
1. A specific surface area of 100 to 1500 m 2 / g, a pore volume of 0.6 to 3.0 ml / g, and an average pore diameter of 4 to 300 n.
Water- and oil-repellent porous silica particles in which a perfluorohydrocarbon group-containing silane derivative is chemically bonded to the surface of the porous silica particles of m.
【請求項2】多孔性シリカ粒子が粒径0.01〜350
μmの真球状多孔性シリカ粒子である請求項1の撥水撥
油性多孔性シリカ粒子。
2. A porous silica particle having a particle size of 0.01 to 350.
The water- and oil-repellent porous silica particle according to claim 1, which is a spherical spherical silica particle having a diameter of μm.
【請求項3】多孔性シリカ粒子がSiO2 純度で99.
9重量%以上で、シリカ粒子の成分中およびその表面に
アルカリ分を実質的に含まない多孔性シリカ粒子である
請求項1または2の撥水撥油性多孔性シリカ粒子。
3. Porous silica particles having a SiO 2 purity of 99.
The water- and oil-repellent porous silica particle according to claim 1 or 2, which is 9% by weight or more, and is a porous silica particle which does not substantially contain an alkali component in a component of the silica particle or on a surface thereof.
【請求項4】請求項1〜3いずれか1の撥水撥油性多孔
性シリカ粒子をフィラーとして含む撥水撥油性塗膜。
4. A water and oil repellent coating film comprising the water and oil repellent porous silica particles according to any one of claims 1 to 3 as a filler.
JP30388994A 1994-12-07 1994-12-07 Water-repellent/oil-repellent porous silica particle and water-repellent/oil-repellent coating film Pending JPH08157643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30388994A JPH08157643A (en) 1994-12-07 1994-12-07 Water-repellent/oil-repellent porous silica particle and water-repellent/oil-repellent coating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30388994A JPH08157643A (en) 1994-12-07 1994-12-07 Water-repellent/oil-repellent porous silica particle and water-repellent/oil-repellent coating film

Publications (1)

Publication Number Publication Date
JPH08157643A true JPH08157643A (en) 1996-06-18

Family

ID=17926492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30388994A Pending JPH08157643A (en) 1994-12-07 1994-12-07 Water-repellent/oil-repellent porous silica particle and water-repellent/oil-repellent coating film

Country Status (1)

Country Link
JP (1) JPH08157643A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1129722A (en) * 1996-08-16 1999-02-02 Nippon Telegr & Teleph Corp <Ntt> Water repellent coating material, its manufacture, coating therewith and coated product
JPH11189599A (en) * 1997-12-25 1999-07-13 Chisso Corp Production of alkoxysilane containing fluorine
EP0947478A1 (en) * 1998-02-13 1999-10-06 Central Glass Company, Limited Water-repellent solution and method of forming water-repellent film on substrate by using the solution
WO2000002734A1 (en) * 1998-07-09 2000-01-20 W.R. Grace & Co.-Conn. Formulation suitable for ink receptive coatings
JP2000063153A (en) * 1998-08-11 2000-02-29 Central Glass Co Ltd Water-repelling substrate and its production
GB2355711A (en) * 1999-10-27 2001-05-02 Agilent Technologies Inc Porous silica microsphere scavengers
US6852299B2 (en) 2000-04-28 2005-02-08 Mitsui Chemicals, Inc. Water-repellent porous silica, method for preparation thereof and use thereof
JP2006106507A (en) * 2004-10-07 2006-04-20 Dainippon Printing Co Ltd Antireflection film with improved water repellency/oil repellency and scratch resistance
JP2006131875A (en) * 2004-10-08 2006-05-25 Asahi Glass Si-Tech Co Ltd Method of producing water repellency inorganic fine particle or water repellency resin bead
JP2007146106A (en) * 2006-04-14 2007-06-14 Shin Etsu Chem Co Ltd Composite resin, coating composition containing the same and coated article
WO2007077673A1 (en) * 2005-12-28 2007-07-12 Agc Si-Teck Co., Ltd. Water-repellent inorganic powder and process for production thereof
US20100330373A1 (en) * 2007-05-01 2010-12-30 Kazufumi Ogawa Water repellent glass plates
JP2011506240A (en) * 2007-12-05 2011-03-03 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Hydrophobization of inorganic particles with fluoroalkylsilanes
JP2012508811A (en) * 2008-11-14 2012-04-12 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Fluoropolymer composition and treated substrate
JP2012106420A (en) * 2010-11-17 2012-06-07 Japan Fine Ceramics Center Composite material having water-repellent surface
US20120231898A1 (en) * 2011-03-10 2012-09-13 Sullivan Michael J Golf ball comprising fluorinated silane-treated filler to promote moisture resistance
JP2012214676A (en) * 2011-03-31 2012-11-08 Nisshin Steel Co Ltd Coated metal plate and method of manufacturing the same
JP2018039987A (en) * 2017-08-21 2018-03-15 国立大学法人弘前大学 Fluorine-containing nanocomposite particle and method for producing the same, and coating agent, oil water separation film and resin composition containing the same
JP2018131508A (en) * 2017-02-14 2018-08-23 株式会社ハウステック Coating film composition for water-involving house facility equipment
WO2018221556A1 (en) * 2017-05-31 2018-12-06 日東電工株式会社 Tabular composite material containing polytetrafluoroethylene and filler
JP2019210393A (en) * 2018-06-06 2019-12-12 凸版印刷株式会社 Liquid repellent surface, and manufacturing method therefor
KR20200016230A (en) * 2017-05-31 2020-02-14 닛토덴코 가부시키가이샤 Plate-shaped composite material containing polytetrafluoroethylene and filler
CN113249971A (en) * 2021-05-06 2021-08-13 义乌市中力工贸有限公司 Core-shell type short-chain fluorine-containing acrylate fabric water-repellent and oil-repellent finishing agent and preparation method and application thereof
US11596975B2 (en) 2017-02-14 2023-03-07 Mitsubishi Electric Corporation Water repellent coating film and product provided with same

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1129722A (en) * 1996-08-16 1999-02-02 Nippon Telegr & Teleph Corp <Ntt> Water repellent coating material, its manufacture, coating therewith and coated product
JPH11189599A (en) * 1997-12-25 1999-07-13 Chisso Corp Production of alkoxysilane containing fluorine
EP0947478A1 (en) * 1998-02-13 1999-10-06 Central Glass Company, Limited Water-repellent solution and method of forming water-repellent film on substrate by using the solution
US6235833B1 (en) 1998-02-13 2001-05-22 Central Glass Company, Limited Water-repellent solution and method of forming water-repellent film on substrate by using the solution
US6461670B2 (en) 1998-02-13 2002-10-08 Central Glass Company, Ltd. Water-repellent solution and method of forming water-repellent film on substrate by using the solution
US6841609B2 (en) 1998-07-09 2005-01-11 W. R. Grace & Co.-Conn. Formulation suitable for ink receptive coatings
WO2000002734A1 (en) * 1998-07-09 2000-01-20 W.R. Grace & Co.-Conn. Formulation suitable for ink receptive coatings
US7393571B2 (en) 1998-07-09 2008-07-01 W. R. Grace & Co.-Conn. Formulation suitable for ink receptive coatings
US6780920B2 (en) 1998-07-09 2004-08-24 W. R. Grace & Co.-Conn. Formulation suitable for ink receptive coatings
JP2000063153A (en) * 1998-08-11 2000-02-29 Central Glass Co Ltd Water-repelling substrate and its production
GB2355711A (en) * 1999-10-27 2001-05-02 Agilent Technologies Inc Porous silica microsphere scavengers
GB2355711B (en) * 1999-10-27 2003-12-24 Agilent Technologies Inc Porous silica microsphere scavengers
US6852299B2 (en) 2000-04-28 2005-02-08 Mitsui Chemicals, Inc. Water-repellent porous silica, method for preparation thereof and use thereof
JP2006106507A (en) * 2004-10-07 2006-04-20 Dainippon Printing Co Ltd Antireflection film with improved water repellency/oil repellency and scratch resistance
JP2006131875A (en) * 2004-10-08 2006-05-25 Asahi Glass Si-Tech Co Ltd Method of producing water repellency inorganic fine particle or water repellency resin bead
WO2007077673A1 (en) * 2005-12-28 2007-07-12 Agc Si-Teck Co., Ltd. Water-repellent inorganic powder and process for production thereof
JP5095418B2 (en) * 2005-12-28 2012-12-12 Agcエスアイテック株式会社 Water repellent inorganic powder
JP2007146106A (en) * 2006-04-14 2007-06-14 Shin Etsu Chem Co Ltd Composite resin, coating composition containing the same and coated article
US7842753B2 (en) 2006-04-14 2010-11-30 Shin-Etsu Chemical Co., Ltd. Composite resin, coating composition containing such resin, and coated article
KR101296950B1 (en) * 2006-04-14 2013-08-14 신에쓰 가가꾸 고교 가부시끼가이샤 Composite Resin, Coating Composition Comprising the Same, and Coated Article
US20100330373A1 (en) * 2007-05-01 2010-12-30 Kazufumi Ogawa Water repellent glass plates
US9447284B2 (en) * 2007-05-01 2016-09-20 Empire Technology Development Llc Water repellent glass plates
JP2011506240A (en) * 2007-12-05 2011-03-03 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Hydrophobization of inorganic particles with fluoroalkylsilanes
JP2015131755A (en) * 2007-12-05 2015-07-23 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Inorganic particles hydrophobization with fluoroalkyl silanes
JP2012508811A (en) * 2008-11-14 2012-04-12 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Fluoropolymer composition and treated substrate
JP2012106420A (en) * 2010-11-17 2012-06-07 Japan Fine Ceramics Center Composite material having water-repellent surface
US20120231898A1 (en) * 2011-03-10 2012-09-13 Sullivan Michael J Golf ball comprising fluorinated silane-treated filler to promote moisture resistance
JP2012214676A (en) * 2011-03-31 2012-11-08 Nisshin Steel Co Ltd Coated metal plate and method of manufacturing the same
JP2018131508A (en) * 2017-02-14 2018-08-23 株式会社ハウステック Coating film composition for water-involving house facility equipment
US11596975B2 (en) 2017-02-14 2023-03-07 Mitsubishi Electric Corporation Water repellent coating film and product provided with same
WO2018221556A1 (en) * 2017-05-31 2018-12-06 日東電工株式会社 Tabular composite material containing polytetrafluoroethylene and filler
KR20200016230A (en) * 2017-05-31 2020-02-14 닛토덴코 가부시키가이샤 Plate-shaped composite material containing polytetrafluoroethylene and filler
JPWO2018221556A1 (en) * 2017-05-31 2020-04-02 日東電工株式会社 Plate-like composite material containing polytetrafluoroethylene and filler
US11453762B2 (en) 2017-05-31 2022-09-27 Nitto Denko Corporation Plate-like composite material containing polytetrafluoroethylene and filler
US11884796B2 (en) 2017-05-31 2024-01-30 Nitto Denko Corporation Plate-like composite material containing polytetrafluoroethylene and filler
JP2018039987A (en) * 2017-08-21 2018-03-15 国立大学法人弘前大学 Fluorine-containing nanocomposite particle and method for producing the same, and coating agent, oil water separation film and resin composition containing the same
JP2019210393A (en) * 2018-06-06 2019-12-12 凸版印刷株式会社 Liquid repellent surface, and manufacturing method therefor
CN113249971A (en) * 2021-05-06 2021-08-13 义乌市中力工贸有限公司 Core-shell type short-chain fluorine-containing acrylate fabric water-repellent and oil-repellent finishing agent and preparation method and application thereof
CN113249971B (en) * 2021-05-06 2022-06-14 义乌市中力工贸有限公司 Core-shell type short-chain fluorine-containing acrylate fabric water-repellent and oil-repellent finishing agent and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JPH08157643A (en) Water-repellent/oil-repellent porous silica particle and water-repellent/oil-repellent coating film
JP6197118B2 (en) Curable silsesquioxane polymers, compositions, articles, and methods
AU739635B2 (en) Antisoiling coatings for antireflective surfaces and methods of preparation
US20160333188A1 (en) Hydrophobic fluorinated coatings
KR100370984B1 (en) Curable composition and process for producing the same
JP5730279B2 (en) Modified silica particles and dust-proof polymer composition containing them
CN109642023B (en) Method for producing fluorine-containing ether compound
KR100902529B1 (en) Dispersion of titanium oxide particles, titanium oxide thin film, solution for forming organic functional film, substrate having organic functional film formed thereon and method for producing same
JPH0693121A (en) Water-repellent member and production of thereof
WO1998036016A1 (en) Polyalkoxysiloxane compounds, process for producing the same, and coating composition containing the same
JP2009513741A (en) Silane formulations with high filler content
CN107022084B (en) Fluorosilicone polymer, preparation method thereof and surface treating agent containing polymer
WO2006009202A1 (en) Method for organic thin film formation, assistant for organic thin film formation, and solution for organic thin film formation
CN104245865A (en) Oleophobic coatings
TW415923B (en) Compositions for producing a water-repellent surface on a substrate
Topcu et al. Preparation of stable, transparent superhydrophobic film via one step one pot sol-gel method
JP2002273233A (en) Modified photocatalyst and photocatalytic composition using the same
KR20150023868A (en) Silsesquioxane-like particles
KR101297368B1 (en) Hyhobic polymetylhydrosiloxane based hybrid for coating applications
KR20030043535A (en) Multi Functional Silicon-polymer Composite for Coating
JP2019183110A (en) Composition for forming water-repellent film, and water-repellent film
WO2018042302A1 (en) Curable silsesquioxane polymer comprising inorganic oxide nanoparticles, articles, and methods
JP4325076B2 (en) Method for forming coating film
JP5812368B2 (en) Method for producing fluorine-containing nanocomposite particles
JP2022017640A (en) Liquid composition for forming water- and oil-repellent film and method for producing the same