JP4513523B2 - Cooking equipment - Google Patents

Cooking equipment Download PDF

Info

Publication number
JP4513523B2
JP4513523B2 JP2004335639A JP2004335639A JP4513523B2 JP 4513523 B2 JP4513523 B2 JP 4513523B2 JP 2004335639 A JP2004335639 A JP 2004335639A JP 2004335639 A JP2004335639 A JP 2004335639A JP 4513523 B2 JP4513523 B2 JP 4513523B2
Authority
JP
Japan
Prior art keywords
heat
resistant
antifouling
substrate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004335639A
Other languages
Japanese (ja)
Other versions
JP2006143524A (en
JP2006143524A5 (en
Inventor
邦弘 鶴田
幸生 野村
笹部  茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004335639A priority Critical patent/JP4513523B2/en
Publication of JP2006143524A publication Critical patent/JP2006143524A/en
Publication of JP2006143524A5 publication Critical patent/JP2006143524A5/ja
Application granted granted Critical
Publication of JP4513523B2 publication Critical patent/JP4513523B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Surface Treatment Of Glass (AREA)

Description

本発明は、とりわけ耐熱性や耐磨耗性に優れた撥水撥油性を有する耐熱防汚基板を用いた加熱調理機器に関する。 The present invention relates to a cooking device using a heat and antifouling substrate having water and oil repellency excellent in heat resistance and wear resistance.

従来、シロキサン結合を有する有機フッソ化合物の防汚薄膜(以下、フッソ系化学吸着単分子膜と称す)を表面に形成したガラスは、撥水撥油性被膜を有するガラスとして知られている(例えば、特許文献1参照)。同様に、セラミックコ−トやホーロー処理さらに硬質アルマイト処理した母材の表面に、フッソ系化学吸着単分子膜を形成した基板は、撥水撥油性被膜を有する基体として知られている(例えば、特許文献2参照)。一方、耐熱性と撥水撥油性を向上させるために、ガラスの表面にアルミナ薄膜を形成し、このアルミナ薄膜の表面にフッソ系化学吸着単分子膜を形成したガラス基板と、このガラス基板を使用した調理器が知られている(例えば、特許文献3参照)。また同様の発想でアルミナ以外の材料としてシリカなどの金属酸化物系薄膜を使用し、この金属酸化物系薄膜を中間材料として介在させて、シロキサン結合を有するフッソ系化学吸着単分子膜を最上面に形成したガラス基板と、これを使用した調理器もある。
特許第2577204号公報 特許第2921197号公報 特許第3064808号公報
Conventionally, a glass having an antifouling thin film of an organic fluorine compound having a siloxane bond (hereinafter referred to as a fluorine-based chemical adsorption monomolecular film) formed on the surface is known as a glass having a water / oil repellent coating (for example, Patent Document 1). Similarly, a substrate in which a fluorine-based chemical adsorption monomolecular film is formed on the surface of a base material subjected to ceramic coating, enamel treatment or hard alumite treatment is known as a substrate having a water / oil repellent coating (for example, Patent Document 2). On the other hand, in order to improve heat resistance and water / oil repellency, a glass substrate having an alumina thin film formed on the surface of the glass and a fluorine-based chemical adsorption monomolecular film formed on the surface of the alumina thin film is used. A cooker is known (see, for example, Patent Document 3). In the same way, a metal oxide thin film such as silica is used as a material other than alumina, and this metal oxide thin film is interposed as an intermediate material to provide a fluorine-based chemisorption monomolecular film having a siloxane bond as the top surface. There is also a glass substrate formed in the above and a cooker using this.
Japanese Patent No. 2577204 Japanese Patent No. 2921197 Japanese Patent No. 3064808

しかしながら、従来のフッソ系化学吸着単分子膜をガラスやホーロー処理した母材に直接形成した構成は、撥水撥油性を有する利点があるがその耐熱性に関しては、これを形成する基板の材質組成との相性がある。そのため、この従来構成は、この基板材質組成との相性が不明確であるため、母材材質によっては200℃以上の耐熱性が確保できない課題があった。このため、ただ単にガラスやセラミックコ−トやホーロー処理さらに硬質アルマイト処理した母材に、フッソ系化学吸着単分子膜を形成した防汚基板は、200℃以下の比較的緩やかな環境で使用せざるを得なかった。この原因は、フッソ系化学吸着単分子膜の原料である、有機フッソ化合物を含むシラン系界面活性剤が、基板材質を構成する金属酸化物と相性が有り、ただ単に金属酸化物に水酸基が有れば化学反応して強固なシロキサン結合を生成するものではない性質に起因する。そのため、金属酸化物の種別によっては強固なシロキサン結合を生成したり、逆に結合が少し弱いシロキサン結合を生成したりする。   However, the structure in which a conventional fluorine-based chemical adsorption monomolecular film is directly formed on a glass or enameled base material has the advantage of having water and oil repellency, but regarding its heat resistance, the material composition of the substrate on which it is formed It is compatible with. For this reason, this conventional configuration has an unclear compatibility with the substrate material composition, and there is a problem that heat resistance of 200 ° C. or more cannot be secured depending on the base material material. For this reason, an antifouling substrate in which a fluorine-based chemical adsorption monomolecular film is simply formed on a glass, ceramic coating, enameled or hard anodized base material should be used in a relatively mild environment of 200 ° C or lower. I had to. This is because the silane surfactant containing an organic fluorine compound, which is the raw material of the fluorine-based chemical adsorption monomolecular film, is compatible with the metal oxide constituting the substrate material, and simply has a hydroxyl group in the metal oxide. If so, it is caused by a property that does not chemically react to form a strong siloxane bond. Therefore, depending on the type of metal oxide, a strong siloxane bond is generated, or a siloxane bond having a slightly weak bond is generated.

この課題を解決し200℃以上の温度で安心して使用するために、アルミナなどの金属酸化物系薄膜を介在させ、その上に化学吸着単分子膜を形成して密着性を向上させていた。しかしながら、この金属酸化物系薄膜を介在させる技術は、その上に形成するフッソ系化学吸着単分子膜の耐磨耗性を確保するために、金属酸化物系薄膜を母材に強固に固着させる必要が有り、このため、複雑な製法と厳密な品質管理を用いて金属酸化物系薄膜を基板を形成していた。この様に従来の技術は、基板の材質組成との相性が不明確であり、耐熱性を向上させ耐磨耗性を確保するために、アルミナなどの薄膜を介在させるなどの複雑な製法と厳密な品質管理で基板を処理してその表面に水酸基を多く露出させてから、化学吸着単分子膜を形成する必要がある課題があった。   In order to solve this problem and to use it at a temperature of 200 ° C. or higher, a metal oxide thin film such as alumina is interposed, and a chemisorption monomolecular film is formed thereon to improve adhesion. However, this technique of interposing the metal oxide thin film firmly fixes the metal oxide thin film to the base material in order to ensure the wear resistance of the fluorine-based chemical adsorption monomolecular film formed thereon. For this reason, the metal oxide thin film was formed on the substrate using a complicated manufacturing method and strict quality control. In this way, the conventional technology is unclear with the material composition of the substrate, and in order to improve heat resistance and ensure wear resistance, it is strictly strict with complicated manufacturing methods such as interposing a thin film such as alumina. There has been a problem that it is necessary to form a chemisorbed monomolecular film after processing a substrate with proper quality control to expose many hydroxyl groups on its surface.

前記従来の課題に鑑み、本発明が解決しようとする課題は、耐熱性や耐磨耗性に優れた撥水撥油性を有し、かつ容易に製造できる耐熱防汚基板とこれを応用した加熱調理機器を提供することにある。   In view of the above-described conventional problems, the problem to be solved by the present invention is a heat-resistant and antifouling substrate that has water and oil repellency excellent in heat resistance and wear resistance and that can be easily manufactured, and heating using the same. It is to provide cooking equipment.

前記課題を解決するために、本発明の加熱調理機器は、耐熱防汚基板と、前記耐熱防汚基板の下部に配置され前記耐熱防汚基板を保持固定する筐体と、前記筐体と前記耐熱防汚基板との間に設けられた内部空間に収納した調理加熱用部品とを有し、前記耐熱防汚基板が、100〜50wt%の珪素と、アルカリ金属およびアルカリ土類金属からなる合計30wt%以下のアルカリ分と、1〜25wt%のアルミニウム、1〜18wt%のジルコニウム、1〜19wt%のチタンのいずれか1つとを含有し合計100wt%を超えない元素組成を有する珪酸系酸化物を含有し、一方の面にシロキサン結合を有する有機フッソ化合物の防汚薄膜が形成され、他方の面に白金、金、パナジウムのいずれかの耐熱金属と酸化ビスマスとが含有された焼成被膜が形成されたものである。 In order to solve the above-described problems, a cooking device according to the present invention includes a heat-resistant and antifouling substrate, a case that is disposed below the heat-resistant and antifouling substrate, and holds and fixes the heat-resistant and antifouling substrate, the case, and the case A cooking and heating component housed in an internal space provided between the heat-resistant and antifouling substrate, and the heat-resistant and antifouling substrate is composed of 100 to 50 wt% silicon, an alkali metal and an alkaline earth metal Silicic acid-based oxide having an elemental composition not exceeding 100 wt% in total, containing an alkali content of 30 wt% or less, 1 to 25 wt% aluminum, 1 to 18 wt% zirconium, and 1 to 19 wt% titanium An antifouling thin film of an organic fluorine compound having a siloxane bond on one side is formed, and a refractory metal containing any one of platinum, gold and panadium and bismuth oxide is formed on the other side. In which the film is formed.

本発明の耐熱基板は、珪酸系酸化物の表面に存在する水酸基と、有機フッソ化合物に含まれるシラン基が、充分に反応して強固なシロキサン結合が得られて、シロキサン結合を有する有機フッソ化合物の防汚薄膜が耐熱基板に良好に形成され、耐熱性や耐磨耗性に優れた撥水撥油性の耐熱防汚基板が容易に得られる。   The heat-resistant substrate of the present invention is an organic fluorine compound having a siloxane bond in which a hydroxyl group present on the surface of a silicate-based oxide and a silane group contained in the organic fluorine compound sufficiently react to obtain a strong siloxane bond. Thus, a water- and oil-repellent heat-resistant and antifouling substrate excellent in heat resistance and abrasion resistance can be easily obtained.

本発明は、撥水撥油性と耐熱性さらに耐磨耗性をともに有するシロキサン結合を有するフッソ系化学吸着単分子膜の耐熱防汚基板が容易に得られる。また、この耐熱防汚基板を加熱調理機器に応用することで、調理物のこびりつきが発生しても簡単な掃除で容易に剥離し、長期間にわたって美麗さや清潔感が維持できる。   INDUSTRIAL APPLICABILITY According to the present invention, a heat-resistant and antifouling substrate of a fluorine-based chemical adsorption monomolecular film having a siloxane bond having both water and oil repellency, heat resistance and abrasion resistance can be easily obtained. In addition, by applying this heat-resistant and antifouling substrate to a cooking device, even if the food is stuck, it can be easily peeled off by simple cleaning, and the beauty and cleanliness can be maintained over a long period of time.

第1の発明の加熱調理機器は、耐熱防汚基板と、前記耐熱防汚基板の下部に配置され前記耐熱防汚基板を保持固定する筐体と、前記筐体と前記耐熱防汚基板との間に設けられた内部空間に収納した調理加熱用部品とを有し、前記耐熱防汚基板が、100〜50wt%の珪素と、アルカリ金属およびアルカリ土類金属からなる合計30wt%以下のアルカリ分と、1〜25wt%のアルミニウム、1〜18wt%のジルコニウム、1〜19wt%のチタンのいずれか1つとを含有し合計100wt%を超えない元素組成を有する珪酸系酸化物を含有するものである。 A cooking device according to a first aspect of the present invention includes a heat-resistant and antifouling substrate, a housing disposed below the heat and antifouling substrate, and holding and fixing the heat and antifouling substrate, and the housing and the heat and antifouling substrate. A cooking / heating component housed in an internal space provided therebetween, wherein the heat-resistant and antifouling substrate comprises 100 to 50 wt% of silicon, an alkali content of 30 wt% or less made of alkali metal and alkaline earth metal And 1-25 wt% aluminum, 1-18 wt% zirconium, 1-19 wt% titanium, and a silicic acid-based oxide having an elemental composition not exceeding 100 wt% in total. .

有機フッソ化合物を含むシラン系界面活性剤は、金属酸化物と接触させるとその表面に存在する水酸基と化学反応してシロキサン結合を生成して、金属酸化物の表面に撥水撥油性の防汚薄膜を付与する性質がある。金属酸化物として、適正量の珪素酸化物やアルカリ系酸化物とアルミニウムかジルコニウムかチタンが混合された珪酸系酸化物を使用すると、その表面に存在する水酸基と、有機フッソ化合物に含まれるシラン基が、充分に反応して強固なシロキサン結合が得られる。このため、この組成の耐熱基板の表面に、シロキサン結合を有する有機フッソ化合物の防汚薄膜を形成すると、耐熱性や耐磨耗性に優れた撥水撥油性の耐熱防汚基板が、簡単な製法と品質管理によって得られる。   A silane-based surfactant containing an organic fluorine compound, when brought into contact with a metal oxide, chemically reacts with a hydroxyl group present on the surface thereof to form a siloxane bond, and the surface of the metal oxide is water- and oil-repellent and antifouling. It has the property of imparting a thin film. When a silicate-based oxide in which an appropriate amount of silicon oxide or alkali-based oxide and aluminum, zirconium, or titanium are mixed is used as the metal oxide, the hydroxyl group present on the surface and the silane group contained in the organic fluorine compound However, it reacts sufficiently and a strong siloxane bond is obtained. For this reason, when an antifouling thin film of an organic fluorine compound having a siloxane bond is formed on the surface of a heat resistant substrate having this composition, a water and oil repellent heat and antifouling substrate having excellent heat resistance and abrasion resistance can be obtained. Obtained by manufacturing method and quality control.

また、耐熱防汚基板は、その下面に耐熱金属を主成分とする焼成被膜が形成されているものである。 The heat-resistant and antifouling substrate has a fired film mainly composed of a heat-resistant metal formed on the lower surface thereof.

焼成被膜は、耐熱金属を主成分とするため色の付いた金属色となる。そのため、耐熱基板として透明なガラスを用いて、焼成被膜の金属色が、透明な防汚薄膜の表面に付着した
調理残さ物を見えにくくして、長期間にわたって美麗さや清潔感が維持できる。また、焼成被膜は親水性であり、防汚薄膜を構成する極めて微薄の有機フッソ化合物膜が廻りこんでも、主成分である耐熱金属の親水性効果で、親水性を有する様になる。焼成被膜が親水性を有するため水玉ができにくくなって表面に付着する水分が落下しにくくなり、その下部位置に配置された調理加熱用部品に水分が落下しにくくなる。このため、加熱調理機器を業務用調理場などの高温多湿環境で長期間使用しても、耐熱防汚基板から落下する結露水分が減少し、調理用鍋を加熱する調理加熱用部品は、防湿対策で充分対応できる。
The fired film has a colored metal color because the heat-resistant metal is the main component. Therefore, using transparent glass as the heat-resistant substrate, the metal color of the fired coating makes it difficult to see the cooking residue attached to the surface of the transparent antifouling thin film, and the beauty and cleanliness can be maintained over a long period of time. In addition, the fired film is hydrophilic, and even if an extremely thin organic fluorine compound film constituting the antifouling thin film is wound around, the fired film becomes hydrophilic due to the hydrophilic effect of the heat-resistant metal as the main component. Since the fired film has hydrophilicity, it is difficult to form polka dots, and the moisture adhering to the surface does not easily fall, and the moisture hardly falls to the cooking and heating component arranged at the lower position. For this reason, even if the cooking device is used in a hot and humid environment such as a commercial kitchen for a long period of time, the condensation moisture falling from the heat-resistant and antifouling substrate is reduced, and the cooking and heating parts that heat the cooking pan are moisture-proof. We can cope with measures.

また、焼成被膜に含有される耐熱金属は、少なくとも白金または金またはパラジウムのいずれかである。耐熱金属が、これら金属であると、その表面は水玉が一層できにくくなって表面に付着する水分が落下しにくくなり、その下部位置に配置された調理加熱用部品に水分が落下しにくくなる。このため、調理加熱用部品は、一層簡単な防湿対策で対応できる。 The refractory metal contained in the fired film is at least platinum, gold, or palladium. When the refractory metal is such a metal, the surface is more difficult to form polka dots, and the moisture adhering to the surface is less likely to fall, and the moisture is less likely to fall to the cooking and heating component disposed at the lower position. For this reason, the cooking and heating component can cope with a simpler moisture-proof measure.

また、耐熱防汚基板と、耐熱防汚基板の下部に配置してこれを保持固定する筐体と、筐体と耐熱防汚基板との間に設けられた内部空間に収納した調理加熱用部品とを少なくとも有しており、耐熱防汚基板は、その下面に形成した酸化ビスマスと耐熱材料が含有する焼成被膜が形成されているものである。 In addition, a heat-resistant and antifouling substrate, a casing that is disposed below the heat-resistant and antifouling substrate, and holds and fixes it, and a cooking and heating component that is housed in an internal space provided between the casing and the heat and antifouling substrate The heat-resistant and antifouling substrate is formed with a baked film containing bismuth oxide and a heat-resistant material formed on the lower surface thereof.

酸化ビスマスは、焼成により溶融すると体積膨張して多孔質な親水性の着色膜が生成するとともに、その多孔質膜が偏析して散在する性質がある。そのため、着色する酸化ビスマスを混合すると、耐熱材料との相乗効果で綺麗な焼成被膜が形成できる。従って、防汚薄膜を形成する耐熱基板として透明なガラスを用いても、その裏側に存在する色付き焼成被膜が、透明な防汚薄膜の表面に付着した調理残さ物を見えにくくして、長期間にわたって美麗さや清潔感が維持できる。また、防汚薄膜を構成する極めて微薄の有機フッソ化合物は、廻りこんでも多孔質な多孔質な焼成被膜の内部にもぐり込んでしまう。そのため、水玉ができにくくなって表面に付着する水分が落下しにくくなり、その下部位置に配置された調理加熱用部品に水分が落下しにくくなる。さらに、この多孔質な親水性の焼成被膜は、筐体と耐熱防汚基板の接合への妨害を低減させる。そのため、筐体は、簡単に耐熱防汚基板に良好に接合できる。   Bismuth oxide has the property that when it is melted by firing, it expands in volume to form a porous hydrophilic colored film, and the porous film is segregated and scattered. Therefore, when the colored bismuth oxide is mixed, a beautiful fired film can be formed by a synergistic effect with the heat-resistant material. Therefore, even if transparent glass is used as the heat-resistant substrate for forming the antifouling thin film, the colored fired coating existing on the back side makes it difficult to see the cooking residue adhering to the surface of the transparent antifouling thin film. A beautiful and clean feeling can be maintained. In addition, the extremely thin organic fluorine compound constituting the antifouling thin film wraps around inside the porous fired coating film even if it goes around. Therefore, it becomes difficult to form polka dots and the moisture adhering to the surface does not easily fall, and the moisture does not easily fall on the cooking and heating component arranged at the lower position. Furthermore, this porous hydrophilic fired coating reduces interference with the bonding between the housing and the heat-resistant and antifouling substrate. Therefore, the housing can be easily and satisfactorily bonded to the heat-resistant and antifouling substrate.

さらに、第1の発明において、前記焼成被膜の下面に有機シリコーン膜が形成されてい
。焼成被膜のさらに下面に有機シリコーン膜が形成されている耐熱基板を使用すると、有機シリコーン膜を形成している際中に、有機シリコーン樹脂の気相蒸発焼成膜がその裏側の面に自然と形成される。本発明は、この気相蒸発焼成膜の表面に防汚薄膜を形成しているため、耐熱性が向上する利点が生じる。また、有機シリコーン膜が親水性であるため、防汚薄膜を構成する極めて微薄の有機フッソ化合物は、廻りこんでも多孔質な有機シリコーン膜の内部にもぐり込んでしまう。そのため、水玉ができにくくなって表面に付着する水分が落下しにくくなり、その下部位置に配置された調理加熱用部品に水分が落下しにくくなる。さらに、この多孔質な焼成被膜は、筐体と耐熱防汚基板の接合への妨害を低減させる。そのため、筐体は、簡単で耐熱防汚基板に極めて良好に接合できる。
Further, in the first aspect, the organosilicone film is formed on the lower surface of the sintered film Tei
The When using a heat-resistant substrate with an organosilicone film formed on the lower surface of the fired film, a vapor-phase evaporation fired film of organosilicone resin naturally forms on the back side of the organosilicone film. Is done. In the present invention, since the antifouling thin film is formed on the surface of the vapor-phase evaporation fired film, there is an advantage that the heat resistance is improved. In addition, since the organic silicone film is hydrophilic, the extremely thin organic fluorine compound constituting the antifouling thin film wraps around the porous organic silicone film even if it goes around. Therefore, it becomes difficult to form polka dots and the moisture adhering to the surface does not easily fall, and the moisture does not easily fall on the cooking and heating component arranged at the lower position. Furthermore, this porous fired coating reduces interference with the bonding between the housing and the heat-resistant and antifouling substrate. Therefore, the housing is simple and can be bonded to the heat-resistant and antifouling substrate very well.

第2の発明の加熱調理機器は、特に、第1の発明で用いる酸化ビスマスが1〜30wt%含有する焼成被膜である。酸化ビスマスが1〜30wt%含有する焼成被膜であると、多孔質な焼成被膜が得られて筐体と耐熱防汚基板の接合への妨害を低減し、筐体が耐熱防汚基板に一層簡単に良好に接合する。   The cooking device according to the second invention is a fired film containing 1 to 30 wt% of bismuth oxide used in the first invention. A fired coating containing 1 to 30 wt% of bismuth oxide provides a porous fired coating that reduces interference with the housing and the heat-resistant and antifouling substrate. Bond well.

の発明の加熱調理機器は、第1の発明または第2の発明で用いる耐熱防汚基板が、有機シリコーン接着剤を用いて筐体と接合しているものである。有機シリコーン接着剤は、耐熱性に優れた接着剤であり、耐熱防汚基板との親和力があるため馴染みが良くなり、簡単に長期間優れた接合力を保持できる。 Cooking appliances of the third invention, heat antifouling substrate used in the first or second aspect is one that is joined to the housing using an organic silicone adhesive. The organic silicone adhesive is an adhesive excellent in heat resistance, and has an affinity with a heat-resistant and antifouling substrate, so that it becomes familiar and can easily maintain an excellent bonding force for a long period of time.

本発明の目的は、上記発明の要部を実施の形態とすることにより達成できるので、以下実施の形態を、図面を参照しながら詳細に説明する。なお、本発明は本実施の形態により限定されるものではない。また、本実施の形態の説明において、同一構成並びに作用効果を奏するところには同一符号を付して説明する。 An object of the present invention, since it achieved by the embodiment of the essential part of the invention, hereinafter, the embodiments will be described in detail with reference to the drawings. The present invention is not limited to the present embodiment. Further, in the description of the present embodiment, the same reference numerals are given to the portions having the same configuration and effects.

(実施の形態1)
図1(a)は、本発明の実施の形態1における耐熱防汚基板の構成図である。本実施の形態の耐熱防汚基板1は、珪酸系酸化物2が表面に存在する耐熱基板3と、珪酸系酸化物2の表面に形成した少なくともシロキサン結合を有する有機フッソ化合物の防汚薄膜4とで構成されている。一方、珪酸系酸化物2は、その元素組成が、珪素が50wt〜100%で、アルカリ金属とアルカリ土類金属からなるアルカリ分の合計量が30wt%以下とした。
(Embodiment 1)
Fig.1 (a) is a block diagram of the heat-resistant antifouling board | substrate in Embodiment 1 of this invention. The heat-resistant and antifouling substrate 1 of the present embodiment includes a heat-resistant substrate 3 having a silicate oxide 2 on its surface and an antifouling thin film 4 of an organic fluorine compound having at least a siloxane bond formed on the surface of the silicate oxide 2. It consists of and. On the other hand, the silicic acid-based oxide 2 has an elemental composition of 50 wt% to 100% of silicon and a total amount of alkalis composed of alkali metal and alkaline earth metal of 30 wt% or less.

有機フッソ化合物を含むシラン系界面活性剤は、金属酸化物と接触させるとその表面に存在する水酸基と化学反応してシロキサン結合を生成して、金属酸化物の表面に撥水撥油性の防汚薄膜を付与する性質がある。そこで、金属酸化物としてどの材料が、その表面に水酸基を多く保有して、有機フッソ化合物を含むシラン系界面活性剤と化学反応して強固なシロキサン結合を生成し、しかも高温においてもその結合を長期間維持して優れた耐熱性を有するかの選定を行った。この材料選定は、まず、粉末を成型し焼結した塊を研磨して金属酸化物の板材を得た。次に、シロキサン結合を有する有機フッソ化合物の原料として、へプタデカフルオロデシルトリクロロシランを準備し、ヘキサメチルシロキサンで希釈した有機溶液を調合した。そして、金属酸化物の板材を、この有機溶液に窒素雰囲気下で浸漬し、その後に大気中に放置することで、金属酸化物の表面に、シロキサン結合を有する有機フッソ化合物からなる防汚薄膜を得た。この防汚薄膜を形成した金属酸化物系板材を、300℃の電気炉に所定時間放置した際の、防汚薄膜の撥水性で耐熱性の評価を行った。その結果、防汚薄膜を形成する金属酸化物は、珪酸にすると耐熱性が向上し、アルカリ金属やアルカリ土類金属の酸化物にすると耐熱性が低下し、アルミニウムやジルコニウムさらにチタンの酸化物は耐熱性に与える影響がやや小さいことが判明した。   A silane-based surfactant containing an organic fluorine compound, when brought into contact with a metal oxide, chemically reacts with a hydroxyl group present on the surface thereof to form a siloxane bond, and the surface of the metal oxide is water- and oil-repellent and antifouling. It has the property of imparting a thin film. Therefore, any material as a metal oxide has many hydroxyl groups on its surface and chemically reacts with a silane-based surfactant containing an organic fluorine compound to form a strong siloxane bond. Selection was made as to whether it had excellent heat resistance and maintained for a long time. In this material selection, the lump obtained by molding and sintering the powder was first polished to obtain a metal oxide plate. Next, heptadecafluorodecyltrichlorosilane was prepared as a raw material for an organic fluorine compound having a siloxane bond, and an organic solution diluted with hexamethylsiloxane was prepared. Then, the metal oxide plate is immersed in this organic solution under a nitrogen atmosphere, and then left in the air, whereby an antifouling thin film made of an organic fluorine compound having a siloxane bond is formed on the surface of the metal oxide. Obtained. The water repellency and heat resistance of the antifouling thin film were evaluated when the metal oxide plate having the antifouling thin film was left in an electric furnace at 300 ° C. for a predetermined time. As a result, the heat resistance of the metal oxide forming the antifouling thin film is improved when silicic acid is used, and the heat resistance is lowered when the oxide of alkali metal or alkaline earth metal is used. It was found that the effect on heat resistance was somewhat small.

そこで次に、このシロキサン結合を有する有機フッソ化合物の防汚薄膜4に対して、撥水性に関しての優れた耐熱性を長時間維持できる珪酸系酸化物の組成最適化検討を行った。耐熱防汚基板1の製法について説明する。まず、珪酸系酸化物2からなる耐熱基板3の試作を行った。この耐熱基板3は、珪酸と、アルカリ金属およびアルカリ土類金属の酸化
物と、硼酸と酸化鉄と酸化マンガンと酸化コバルトを任意の割合で混合した粉末を用い、これら混合粉末を成型し焼結した塊を研磨して、その組成を異ならせた珪酸系酸化物2とした物である。この耐熱基板3を洗浄して表面に付着している汚れを除去した後、シロキサン結合を有する有機フッソ化合物の原料として、へプタデカフルオロデシルトリクロロシランを準備し、ヘキサメチルシロキサンで希釈した有機溶液を調合した。そして、この有機溶液に耐熱基板3を窒素雰囲気下で浸漬し、その後に大気中に放置することで、少なくともシロキサン結合を有する有機フッソ化合物の防汚薄膜4が形成された耐熱防汚基板1を得た。この耐熱防汚基板1は、製膜直後において水の接触角(室温測定値)が110〜115°の撥水性材料である。
Then, the composition optimization examination of the silicic acid system oxide which can maintain the outstanding heat resistance regarding water repellency for a long time was performed to the antifouling thin film 4 of the organic fluorine compound having a siloxane bond. The manufacturing method of the heat-resistant antifouling substrate 1 will be described. First, the heat-resistant substrate 3 made of the silicate-based oxide 2 was prototyped. This heat-resistant substrate 3 is made by using a powder obtained by mixing silicic acid, an oxide of an alkali metal and an alkaline earth metal, boric acid, iron oxide, manganese oxide, and cobalt oxide in an arbitrary ratio, and molding and sintering the mixed powder. This is a product obtained by polishing the lump to obtain a silicate oxide 2 having a different composition. After the heat-resistant substrate 3 is cleaned to remove the dirt adhering to the surface, heptadecafluorodecyltrichlorosilane is prepared as a raw material for an organic fluorine compound having a siloxane bond, and diluted with hexamethylsiloxane. Was formulated. Then, the heat-resistant antifouling substrate 1 on which the antifouling thin film 4 of at least an organic fluorine compound having a siloxane bond is formed by immersing the heat-resistant substrate 3 in this organic solution under a nitrogen atmosphere and then leaving it in the air. Obtained. The heat-resistant and antifouling substrate 1 is a water-repellent material having a water contact angle (measured at room temperature) of 110 to 115 ° immediately after film formation.

耐熱性は、300℃雰囲気下に耐熱防汚基板1を所定時間放置した際の撥水性を、水の接触角で表現した。この値は、室温測定値であり、所定時間経過すると300℃炉から耐熱防汚基板1を取り出して室温まで冷やし、その表面に水滴を滴下した測定した結果である。検討に用いた珪酸系酸化物2の化学組成と耐熱性の関係を、図1(b)と(c)に示す。図1(b)は、珪酸系酸化物における珪素の含有量と、300℃に所定時間放置した際の接触角(水、室温値)の関係である。図1(c)は、珪酸系酸化物におけるアルカリ金属およびアルカリ土類金属からなるアルカリ分の合計量の含有量と、300℃に所定時間放置した際の接触角(水、室温測定値)の関係である。珪酸系酸化物における各元素の含有量は、X線マイクロアナライザで組成分析して得た結果であり、説明を簡単にするため金属元素で表現しているが、本来、これら元素は酸化物となっている。また、珪酸系酸化物は、珪酸やアルカリ分の酸化物の他に、硼素、鉄、マンガン、コバルトの酸化物を含有している。   For the heat resistance, the water repellency when the heat-resistant and antifouling substrate 1 is left for a predetermined time in an atmosphere of 300 ° C. is expressed by the contact angle of water. This value is a measured value at room temperature, and is a measurement result of taking out the heat-resistant and antifouling substrate 1 from a 300 ° C. furnace after cooling for a predetermined time, cooling it to room temperature, and dropping water droplets on the surface. The relationship between the chemical composition of the silicic acid-based oxide 2 used in the study and the heat resistance is shown in FIGS. 1 (b) and 1 (c). FIG. 1B shows the relationship between the silicon content in the silicate-based oxide and the contact angle (water, room temperature value) when left at 300 ° C. for a predetermined time. FIG. 1 (c) shows the content of the total amount of alkalis consisting of alkali metal and alkaline earth metal in the silicic acid-based oxide and the contact angle (water, measured at room temperature) when left at 300 ° C. for a predetermined time. It is a relationship. The content of each element in the silicic acid-based oxide is a result obtained by analyzing the composition with an X-ray microanalyzer, and is expressed by a metal element for simplicity of explanation. It has become. Silicic oxides contain oxides of boron, iron, manganese, and cobalt in addition to silicic acid and alkali oxides.

図1(b)の結果より、珪素の含有量が50wt%を境にして耐久後の接触角が変化し、50〜100wt%であると接触角が大きく撥水性が長時間維持して優れた耐熱性を有しているが、50wt%未満であると接触角が小さく撥水性がすぐに低下して耐熱性のないことがわかる。これは、珪素の含有量が多いほど、水酸基を多く持つ珪酸が多く含有されるため、この水酸基と有機フッソ化合物に含まれるシラン基が充分に反応して強固なシロキサン結合が得られるためと思われる。逆に、珪素の含有量が少ないほど、水酸基の量が減少するため強固なシロキサン結合が得られなくなると思われる。   From the result of FIG. 1 (b), the contact angle after endurance changes when the silicon content reaches 50 wt%, and when it is 50 to 100 wt%, the contact angle is large and the water repellency is maintained for a long time. Although it has heat resistance, it can be seen that if it is less than 50 wt%, the contact angle is small and the water repellency is immediately reduced, and there is no heat resistance. This is probably because the higher the silicon content, the more silicic acid having more hydroxyl groups, so that the hydroxyl groups and the silane groups contained in the organic fluorine compound react sufficiently to obtain a strong siloxane bond. It is. On the other hand, it seems that the smaller the silicon content, the less the hydroxyl group content, making it impossible to obtain a strong siloxane bond.

また、図1(c)の結果より、アルカリ分合計量の含有量が30wt%を境にして耐久後の接触角が変化し、30wt%以下であると接触角が大きく撥水性が長時間維持して優れた耐熱性を有しているが、30wt%を超えると接触角が小さく撥水性がすぐに低下して耐熱性のないことがわかる。これは、アルカリ分合計量の含有量が多いほど、珪酸系酸化物はアルカリ性を帯びるため、フッソ系化学吸着単分子膜の原料である有機フッソ化合物を含むシラン系界面活性剤が分解して、シロキサン結合が得られなくなるためと思われる。逆に、アルカリ分合計量の含有量が少ないほど、珪酸系酸化物は中性に帯び易いため強固なシロキサン結合が得られると思われる。   Further, from the result of FIG. 1 (c), the contact angle after endurance changes when the total content of alkali content is 30 wt%, and when it is 30 wt% or less, the contact angle is large and the water repellency is maintained for a long time. Although it has excellent heat resistance, when it exceeds 30 wt%, it can be seen that the contact angle is small and the water repellency is immediately reduced, resulting in no heat resistance. This is because the higher the total alkali content, the more silicic acid-based oxides are more alkaline, so the silane-based surfactant containing the organic fluorine compound that is the raw material for the fluorine-based chemical adsorption monomolecular film is decomposed, This is probably because siloxane bonds cannot be obtained. On the contrary, it is considered that the lower the content of the total alkali content, the more easily the silicate-based oxide is neutral, so that a stronger siloxane bond can be obtained.

図2は、耐熱防汚基板1の表面に約2kgの加重をかけた濡れ布巾を置き、1分間に60回のサイクルで所定回数往復運動を行なわせて、その磨耗性を評価した特性図である。図2(a)は、珪酸系酸化物における珪素の含有量と、所定回数の往復運動を行った際の接触角(水、室温値)の関係である。図2(b)は、珪酸系酸化物におけるアルカリ金属およびアルカリ土類金属からなるアルカリ分の合計量の含有量と、所定回数の往復運動を行った際の接触角(水、室温測定値)の関係である。珪酸系酸化物における各元素の含有量は、前述に記載したように、X線マイクロアナライザで組成分析して得た結果であり、説明を簡単にするため金属元素で表現しているが、本来、これら元素は酸化物となっている。また、珪酸系酸化物は、珪酸やアルカリ分の酸化物の他に、硼素、鉄、マンガン、コバルトの酸化物を含有している。   FIG. 2 is a characteristic diagram in which a wet cloth having a weight of about 2 kg is placed on the surface of the heat-resistant and antifouling substrate 1, and the wear resistance is evaluated by performing reciprocating movements a predetermined number of times in 60 cycles per minute. is there. FIG. 2A shows the relationship between the silicon content in the silicate-based oxide and the contact angle (water, room temperature value) when the reciprocating motion is performed a predetermined number of times. FIG. 2 (b) shows the total content of alkali components consisting of alkali metals and alkaline earth metals in silicic acid-based oxides, and contact angles when reciprocating a predetermined number of times (water, room temperature measured values). It is a relationship. The content of each element in the silicic acid-based oxide is a result obtained by analyzing the composition with an X-ray microanalyzer as described above, and is expressed by a metal element for the sake of simplicity. These elements are oxides. Silicic oxides contain oxides of boron, iron, manganese, and cobalt in addition to silicic acid and alkali oxides.

図2(a)の結果より、珪素の含有量が50wt%を境にして耐久後の接触角が変化し、50〜100wt%であると接触角が大きく撥水性が長時間維持して優れた耐磨耗性を有しているが、50wt%未満であると接触角が小さく撥水性がすぐに低下して耐磨耗性のないことがわかる。また、図2(b)の結果より、アルカリ分合計量の含有量が30wt%を境にして耐久後の接触角が変化し、30wt%以下であると接触角が大きく撥水性が長時間維持して優れた耐磨耗性を有しているが、30wt%を超えると接触角が小さく撥水性がすぐに低下して耐磨耗性のないことがわかる。   From the result of FIG. 2 (a), the contact angle after endurance changes when the silicon content reaches 50 wt%, and when it is 50 to 100 wt%, the contact angle is large and the water repellency is maintained for a long time. Although it has abrasion resistance, it can be seen that when it is less than 50 wt%, the contact angle is small and the water repellency is immediately reduced, and there is no abrasion resistance. Further, from the result of FIG. 2B, the contact angle after the durability changes with the total alkali content of 30 wt% as a boundary, and when it is 30 wt% or less, the contact angle is large and the water repellency is maintained for a long time. However, when it exceeds 30 wt%, the contact angle is small and the water repellency is immediately reduced, and it is understood that there is no wear resistance.

各種の材料を用いて行った本発明の詳細な結果例を(表1)に示す。効果は、前述の300℃耐熱試験と耐磨耗性試験を行い、その際の接触角(水、室温測定値)で、判定した。本発明品は、珪素が50〜100wt%でアルカリ分の合計量が30wt以下の珪酸系酸化物からなるガラス製の耐熱基板に、直接にシロキサン結合を有する有機フッソ化合物の防汚薄膜を形成した耐熱防汚基板である。比較例は、珪素が50wt%未満でアルカリ分の合計量が任意の珪酸系酸化物からなるガラス製の耐熱基板に、直接にシロキサン結合を有する有機フッソ化合物の防汚薄膜を形成した耐熱防汚基板である。従来例は、珪素が任意でアルカリ分の合計量が30wt%以下の珪酸系酸化物からなるガラス製の耐熱基板に、珪酸もしくはアルミナのゾルゲルからなる薄膜を形成し、この薄膜の上にシロキサン結合を有する有機フッソ化合物の防汚薄膜を形成した耐熱防汚基板である。   Examples of detailed results of the present invention performed using various materials are shown in Table 1. The effect was determined by the above-mentioned 300 ° C. heat resistance test and abrasion resistance test, and the contact angle (water, room temperature measured value) at that time. In the present invention, an antifouling thin film of an organic fluorine compound having a siloxane bond is directly formed on a glass heat-resistant substrate made of a silicate-based oxide having a silicon content of 50 to 100 wt% and a total alkali content of 30 wt or less. It is a heat-resistant and antifouling substrate. The comparative example is a heat and antifouling antifouling film in which an antifouling thin film of an organic fluorine compound having a siloxane bond is directly formed on a glass heat resistant substrate made of silicic oxide with a total amount of alkali of less than 50 wt% silicon. It is a substrate. In the conventional example, a thin film made of sol-gel of silicic acid or alumina is formed on a glass heat-resistant substrate made of silicic acid-based oxide with an optional alkali content of 30 wt% or less, and a siloxane bond is formed on this thin film. It is a heat-resistant and antifouling substrate on which an antifouling thin film of an organic fluorine compound containing

Figure 0004513523
Figure 0004513523

本発明品は、300℃耐熱試験および耐磨耗性試験を行っても、接触角が大きく耐久性に優れており、しかも、耐熱基板に直接に防汚薄膜を塗布するだけで耐熱防汚基板が簡単に得られる利点があった。一方、比較例は、300℃耐熱試験および耐磨耗性試験を行なうと、接触角が小さく耐久性が劣る問題があった。また、従来例は、300℃耐熱試験および耐磨耗性試験を行うと、接触角が程度に大きく耐久性は良好であるが、耐熱基板に、珪酸もしくはアルミナのゾルゲルからなる薄膜を形成するのに複雑な製法と厳密な品質管理で基板を処理する必要があった。   The product of the present invention has a large contact angle and excellent durability even when subjected to a 300 ° C. heat resistance test and an abrasion resistance test, and it is also possible to apply the antifouling thin film directly to the heat resistant substrate. There was an advantage that can be easily obtained. On the other hand, when the 300 ° C. heat resistance test and the abrasion resistance test were performed, the comparative example had a problem that the contact angle was small and the durability was inferior. In the conventional example, when a 300 ° C. heat resistance test and an abrasion resistance test are performed, the contact angle is large and the durability is good, but a thin film made of sol-gel of silicic acid or alumina is formed on a heat-resistant substrate. However, it was necessary to process substrates with complicated manufacturing methods and strict quality control.

なお、本発明の効果は、撥水性で評価したが、これが撥油性で有っても同様な効果があり、砂糖や醤油さらにミリンの混合液を多数回数焼き付けても、簡単に剥離できた。また、効果の判定は、耐熱基板として、珪酸系酸化物を主成分とするガラス基板を用いておこなっているが、この組成の珪酸系酸化物系ガラスを表面に形成した琺瑯基板や、この組成の珪酸系酸化物のガラスをいずれも用いておりその印刷焼成膜を部分的に形成したガラス基板、セラミックでも、同様な効果がある。そのため、鍋やカップなどの調理容器や、これらを載せる調理皿や調理板に応用できる。さらに、珪酸系酸化物における各元素の含有量は、X線マイクロアナライザで組成分析して得た結果であり、説明を簡単にするため金属元素で表現しているが、本来、これら元素は酸化物となっている。この結果や実施例さらに組成分析法は、以下に記載する各種の実施の形態でも同様である。   The effect of the present invention was evaluated by water repellency, but even if it was oil repellant, the same effect was obtained, and even if a mixed solution of sugar, soy sauce and mirin was baked many times, it could be easily peeled off. In addition, the effect is determined using a glass substrate mainly composed of a silicate-based oxide as a heat-resistant substrate, but a soot substrate formed with a silicate-based oxide glass of this composition on the surface, or this composition The same effect can be obtained by using a glass substrate or ceramic in which any of the above silicate oxide glasses is used and the printed fired film is partially formed. Therefore, it can be applied to cooking containers such as pots and cups, cooking dishes and cooking plates on which these are placed. Furthermore, the content of each element in the silicate-based oxide is a result obtained by composition analysis with an X-ray microanalyzer, and is expressed by a metal element for the sake of simplicity of explanation. It is a thing. The results, examples, and composition analysis methods are the same in various embodiments described below.

さらに、検討した珪酸系酸化物2の化学組成を、さらに詳細に検討すると特に、アルカリ分合計量の含有量が13wt%以下であると接触角がさらに大きくなり、撥水性が長時間維持して一層優れた耐熱性および耐磨耗性を有していることがわかる。この理由は、アルカリ分合計量の含有量が13wt%以下であると、珪酸系酸化物は中性を帯びるため強固なシロキサン結合が一層得られることと、高温下や加湿下において溶出するアルカリ成分が微小であり、防汚薄膜4を結合させているシロキサン結合の劣化が防止されて強固な結合になっていることためと思われる。また、これら材料を使用すると、調理物のこびりつきが発生しても簡単な掃除で容易に剥離できる効果も生じた。   Further, when the chemical composition of the silicic acid-based oxide 2 examined is examined in more detail, the contact angle is further increased and the water repellency is maintained for a long time, particularly when the total alkali content is 13 wt% or less. It can be seen that it has even better heat resistance and wear resistance. The reason for this is that if the total alkali content is 13 wt% or less, the silicate oxide is neutral, so that a stronger siloxane bond can be obtained, and the alkaline component that elutes under high temperature or humidification. This is presumably because the siloxane bond that binds the antifouling thin film 4 is prevented from being deteriorated to form a strong bond. Further, when these materials are used, there is an effect that even if sticking of the cooked food occurs, it can be easily peeled off by simple cleaning.

(実施の形態2)
実施の形態2は、前述の実施の形態1において検討した珪酸系酸化物2の化学組成をさらに詳細に検討したものであり、特に、他の遷移金属の酸化物に比較して耐熱性や耐磨耗性に与える影響が大きいアルミニウムの酸化物の最適含有量について検討したものである。検討に用いた珪酸系酸化物は、珪素が50wt%でアルカリ分が30wt%の複合酸化物を基本としており、アルミニウム酸化物の組成変更にともない、硼素の酸化物や、鉄とマンガンとコバルトの酸化物の組成を変化させることで、組成調整を行ったものである。
(Embodiment 2)
In the second embodiment, the chemical composition of the silicic acid-based oxide 2 studied in the first embodiment is examined in more detail, and in particular, the heat resistance and resistance to resistance are compared with other transition metal oxides. This study examines the optimum content of aluminum oxide, which has a large effect on wear. The silicic acid-based oxide used in the study is based on a composite oxide of 50 wt% silicon and 30 wt% alkali. As the composition of the aluminum oxide changes, boron oxide, iron, manganese and cobalt The composition is adjusted by changing the composition of the oxide.

図3は、この珪酸系酸化物におけるアルミニウムの含有量と、300℃に所定時間放置した際の接触角(水、室温値)の関係である。図3において、アルミニウムの含有量が1〜25wt%であると接触角がさらに大きくなり、撥水性が長時間維持して一層優れた耐熱性を有していることがわかる。   FIG. 3 shows the relationship between the aluminum content in the silicate-based oxide and the contact angle (water, room temperature value) when left at 300 ° C. for a predetermined time. In FIG. 3, it can be seen that when the aluminum content is 1 to 25 wt%, the contact angle is further increased, the water repellency is maintained for a long time, and the heat resistance is further improved.

この理由は、下記のためと思われる。1点目は、アルミニウム酸化物は水酸化基を多くも持っておりその量が多いほど、防汚薄膜を結合させているシロキサン結合が多数生成して強固な結合になっていること。逆に、アルミニウム酸化物の量が少ないほど、水酸化基の量が少ないため防汚薄膜を結合させているシロキサン結合が僅かしか生成せず弱い結合になっていること。2点目は、アルミニウム酸化物は珪酸に対して熱膨張が大きため、その量が多いほど耐熱基板の熱膨張を増大させ、防汚薄膜を結合させているシロキサン結合の熱膨張による剥離が大きくなり弱い結合にしていること。逆に、アルミニウム酸化物の量が少ないと耐熱基板の熱膨張を低減させ、防汚薄膜を結合させているシロキサン結合の熱膨張による剥離を防止して強固な結合にしていること。3点目は、アルミニウム成分の含有量が適正化されているため、水酸化基による強力結合現象と熱膨張による剥離現象がバランスして、強固な結合にしていること。また、これら材料を使用すると、調理物のこびりつきが発生しても簡単な掃除で容易に剥離できる効果も生じた。 The reason seems to be as follows. The first point is that aluminum oxide has many hydroxyl groups, and the greater the amount, the greater the number of siloxane bonds that bind the antifouling thin film and the stronger the bond. On the contrary, the smaller the amount of aluminum oxide, the smaller the amount of hydroxyl groups, so that only a few siloxane bonds that bind the antifouling thin film are formed, resulting in weak bonds. Secondly, since aluminum oxide has a thermal expansion is greater with respect to silicate increases the thermal expansion of the heat-resistant substrate as the amount is large, the peeling due to thermal expansion of the siloxane bond that is bound antifouling film Being bigger and weaker. On the contrary, if the amount of aluminum oxide is small, the thermal expansion of the heat-resistant substrate is reduced, and the siloxane bond that binds the antifouling thin film is prevented from peeling due to thermal expansion to form a strong bond. Third, because the aluminum component content is optimized, the strong bonding phenomenon caused by hydroxyl groups and the peeling phenomenon caused by thermal expansion are balanced to form a strong bond. Further, when these materials are used, there is an effect that even if sticking of the cooked food occurs, it can be easily peeled off by simple cleaning.

(実施の形態3)
実施の形態3は、前述の実施の形態1または2において検討した珪酸系酸化物2の化学組成をさらに詳細に検討したものであり、特に、他の遷移金属の酸化物に比較して耐熱性に与える影響がやや大きいジルコニウムの酸化物の最適含有量について検討したものである。検討に用いた珪酸系酸化物は、珪素が50wt%でアルカリ分が30wt%の複合酸化物を基本とし、ジルコニウムの酸化物の組成変更にともない、硼素の酸化物や、鉄とマンガンとコバルトの酸化物の組成を変化させることで、組成調整を行ったものである。
(Embodiment 3)
In the third embodiment, the chemical composition of the silicate-based oxide 2 studied in the first or second embodiment described above is examined in more detail. In particular, the heat resistance is higher than that of other transition metal oxides. The optimum content of zirconium oxide, which has a slightly large effect on the content, was investigated. The silicic acid-based oxide used in the study is based on a composite oxide of 50 wt% silicon and 30 wt% alkali. As the composition of zirconium oxide changes, boron oxide, iron, manganese and cobalt The composition is adjusted by changing the composition of the oxide.

図4は、この珪酸系酸化物におけるジルコニウムの含有量と、300℃に所定時間放置した際の接触角(水、室温値)の関係である。図4において、ジルコニウムの含有量が1〜18wt%であると接触角がさらに大きくなり、撥水性が長時間維持して一層優れた耐熱性を有していることがわかる。   FIG. 4 shows the relationship between the zirconium content in the silicate-based oxide and the contact angle (water, room temperature value) when left at 300 ° C. for a predetermined time. In FIG. 4, it can be seen that when the zirconium content is 1 to 18 wt%, the contact angle is further increased, the water repellency is maintained for a long time and the heat resistance is further improved.

この理由は、下記のためと思われる。1点目は、ジルコニウム酸化物は再結晶し易いた
め水酸化基を多くも持っておりその量が多いほど、防汚薄膜を結合させているシロキサン結合が多数生成して強固な結合になっていること。逆に、ジルコニウム酸化物の量が少ないほど、水酸化基の量が少ないため防汚薄膜を結合させているシロキサン結合が僅かしか生成せず弱い結合になっていること。2点目は、ジルコニウム酸化物は珪酸に対して熱膨張が大きため、その量が多いほど耐熱基板の熱膨張を増大させ、防汚薄膜を結合させているシロキサン結合の熱膨張による剥離が大きくなり弱い結合にしていること。逆に、ジルコニウム酸化物の量が少ないと耐熱基板の熱膨張を低減させ、防汚薄膜を結合させているシロキサン結合の熱膨張による剥離を防止して強固な結合にしていること。3点目は、ジルコニウム成分の含有量が適正化されているため、水酸化基による強力結合現象と熱膨張による剥離現象がバランスして、強固な結合にしていること。また、これら材料を使用すると、調理物のこびりつきが発生しても簡単な掃除で容易に剥離できる効果や、耐磨耗性に優れる効果も生じた。
The reason seems to be as follows. The first point is that zirconium oxide has many hydroxyl groups because it easily recrystallizes, and the larger the amount, the more siloxane bonds that bind the antifouling thin film are produced and become stronger bonds. Being. On the contrary, the smaller the amount of zirconium oxide, the smaller the amount of hydroxyl groups, so that only a few siloxane bonds that bind the antifouling thin film are formed, resulting in weak bonds. Secondly, since the zirconium oxide thermal expansion is greater with respect to silicate increases the thermal expansion of the heat-resistant substrate as the amount is large, the peeling due to thermal expansion of the siloxane bond that is bound antifouling film Being bigger and weaker. Conversely, if the amount of zirconium oxide is small, the thermal expansion of the heat-resistant substrate is reduced, and peeling due to thermal expansion of the siloxane bond to which the antifouling thin film is bonded is prevented to form a strong bond. Thirdly, since the zirconium component content is optimized, the strong bonding phenomenon caused by hydroxyl groups and the peeling phenomenon caused by thermal expansion are balanced to form a strong bond. In addition, when these materials are used, the effect of being able to be easily peeled off by simple cleaning and the effect of being excellent in wear resistance even when sticking of the cooked food occurs.

また、前述の実施の形態2のように、1〜25wt%のアルミニウムを酸化物としてさらに含有させた組成物で、検討しても同様な効果が生じた。   Moreover, even if it examined with the composition which further contained 1-25 wt% aluminum as an oxide like the above-mentioned Embodiment 2, the same effect produced.

(実施の形態4)
実施の形態4は、前述の実施の形態1または2または3において検討した珪酸系酸化物2の化学組成をさらに詳細に検討したものであり、特に、他の遷移金属の酸化物に比較して耐熱性に与える影響がやや大きいチタンの酸化物の最適含有量について検討したものである。検討に用いた珪酸系酸化物は、珪素が50wt%でアルカリ分が30wt%の複合酸化物を基本としており、チタンの酸化物の組成変更にともない、硼素の酸化物や、鉄とマンガンとコバルトの酸化物の組成を変化させることで、組成調整を行ったものである。
(Embodiment 4)
In the fourth embodiment, the chemical composition of the silicate-based oxide 2 studied in the first, second, or third embodiment described above is examined in more detail, and in particular, compared with other transition metal oxides. This study examines the optimum content of titanium oxide, which has a slight effect on heat resistance. The silicic oxide used in the study is based on a composite oxide of 50 wt% silicon and 30 wt% alkali. Boron oxide, iron, manganese, and cobalt accompanying titanium oxide composition changes. The composition was adjusted by changing the composition of the oxide.

図5は、この珪酸系酸化物におけるチタンの含有量と、300℃に所定時間放置した際の接触角(水、室温値)の関係である。図5において、チタンの含有量が1〜19wt%であると接触角がさらに大きくなり、撥水性が長時間維持して一層優れた耐熱性を有していることがわかる。   FIG. 5 shows the relationship between the titanium content in this silicic acid-based oxide and the contact angle (water, room temperature value) when left at 300 ° C. for a predetermined time. In FIG. 5, it can be seen that when the titanium content is 1 to 19 wt%, the contact angle is further increased, the water repellency is maintained for a long time, and the heat resistance is further improved.

この理由は、下記のためと思われる。1点目は、チタン酸化物は再結晶し易いため水酸化基を多くも持っておりチタン酸化物の量が多いほど、防汚薄膜を結合させているシロキサン結合が多数生成して強固な結合になっていること。逆に、チタン酸化物の量が少ないほど、水酸化基の量が少ないため防汚薄膜を結合させているシロキサン結合が僅かしか生成せず弱い結合になっていること。2点目は、チタン酸化物は珪酸に対して熱膨張が大きため、その量が多いほど耐熱基板の熱膨張を増大させ、防汚薄膜を結合させているシロキサン結合の熱膨張による剥離が大きくなり弱い結合にしていること。逆に、その量が少ないと耐熱基板の熱膨張を低減させ、防汚薄膜を結合させているシロキサン結合の熱膨張による剥離を防止して強固な結合にしていること。3点目は、チタン成分の含有量が適正化されているため、水酸化基による強力結合現象と熱膨張による剥離現象がバランスして、強固な結合にしていること。また、これら材料を使用すると、調理物のこびりつきが発生しても簡単な掃除で容易に剥離できる効果や、耐磨耗性に優れる効果も生じた。 The reason seems to be as follows. The first point is that titanium oxide easily recrystallizes and therefore has many hydroxyl groups. The larger the amount of titanium oxide, the more siloxane bonds that bind the antifouling thin film are produced and the stronger the bond. It has become. Conversely, the smaller the amount of titanium oxide, the smaller the amount of hydroxyl groups, so that only a few siloxane bonds that bind the antifouling thin film are formed, resulting in weak bonds. Secondly, because titanium oxide has a thermal expansion is greater with respect to silicate increases the thermal expansion of the heat-resistant substrate as the amount is large, the peeling due to thermal expansion of the siloxane bond that is bound antifouling film Being bigger and weaker. Conversely, if the amount is small, the thermal expansion of the heat-resistant substrate is reduced, and the siloxane bond that binds the antifouling thin film is prevented from being peeled off due to the thermal expansion to form a strong bond. Third, because the titanium component content is optimized, the strong bonding phenomenon caused by hydroxyl groups and the peeling phenomenon caused by thermal expansion are balanced to form a strong bond. In addition, when these materials are used, the effect of being able to be easily peeled off by simple cleaning and the effect of being excellent in wear resistance even when sticking of the cooked food occurs.

また、前述の実施の形態2のように1〜25wt%のアルミニウムを酸化物としてさらに含有させた組成物、前述の実施の形態3のように1〜18wt%のチタンを酸化物としてさらに含有させた組成物、前述の実施の形態2および3のように1〜25wt%のアルミニウムと1〜18wt%のチタンの両方を酸化物としてさらに含有させた組成物で、検討しても同様な効果が生じた。   Further, a composition further containing 1 to 25 wt% of aluminum as an oxide as in the second embodiment, and further including 1 to 18 wt% of titanium as an oxide as in the third embodiment. A composition that further contains both 1 to 25 wt% aluminum and 1 to 18 wt% titanium as oxides as in Embodiments 2 and 3 described above, and similar effects can be obtained even if studied. occured.

(実施の形態5)
実施の形態5は、前述の実施の形態1〜4において検討した珪酸系酸化物2の表面粗さ
を詳細に検討したものである。検討に用いた珪酸系酸化物は、珪素が50wt%でアルカリ分が13wtの酸化物であり、10wt%ずつのジルコニウムやチタンの酸化物の他に、概略同量ずつ混合したアルミニウムと硼素と鉄とマンガンとコバルトの酸化物が含有されている。
(Embodiment 5)
In the fifth embodiment, the surface roughness of the silicate-based oxide 2 studied in the first to fourth embodiments is examined in detail. The silicic acid-based oxide used in the study is an oxide of 50 wt% silicon and 13 wt% alkali. In addition to 10 wt% of zirconium and titanium oxide, aluminum, boron, and iron mixed in approximately equal amounts. And manganese and cobalt oxides.

図6は、珪酸系酸化物における十点表面粗さと、300℃に所定時間放置した際の接触角(水、室温値)の関係である。十点表面粗さは、以下の方法で得た値である。まず、測定した粗さ曲線から、その平均線の方向に基準長さ2mmを抜き取った。そして、この抜き取り部分の粗さ曲線において、その平均線から縦倍率の方向に測定した多数の山頂および谷底の内、最も高い山頂から5番目までの山頂の標高の絶対値と、最も低い谷底から5番目までの谷底の標高の絶対値を求めた。最後に、前述の最高から5番目までの山頂標高絶対値の平均値と、前述の最低から5番目までの谷底標高絶対値の平均値との、和を求めこれを十点表面粗さと表現した。また、測定した粗さ曲線においてその平均線が、うねっているため凹や凸が観察された場合、凹凸の観察されない平坦線が得られるまで再測定した。これは、うねりによる凹凸のため真値とは大きく異なる偽値が算出されることを防止するためである。また、測定した粗さ曲線においてその平均線が、凹凸は観察されない平坦線であるがその平坦線が上側や下側に傾いている場合、傾いている平坦線を平均線として扱い、この平坦線からの山頂標高絶対値と谷底標高絶対値を求めて、十点表面粗さを算出した。   FIG. 6 shows the relationship between the ten-point surface roughness of the silicate-based oxide and the contact angle (water, room temperature value) when left at 300 ° C. for a predetermined time. The ten-point surface roughness is a value obtained by the following method. First, a reference length of 2 mm was extracted from the measured roughness curve in the direction of the average line. And in the roughness curve of this extracted part, from the average line, the absolute value of the altitude of the highest peak from the highest peak to the fifth peak among the many peaks and valleys measured in the direction of the vertical magnification, and the lowest valley The absolute value of the elevation of the bottom valley up to the fifth was obtained. Finally, the sum of the average value of the absolute value of the peak summit from the highest to the fifth mentioned above and the average value of the absolute value of the valley bottom elevation from the lowest to the fifth mentioned above is obtained and expressed as ten-point surface roughness. . Moreover, since the average line was wavy in the measured roughness curve, when a concave or convex was observed, the measurement was repeated until a flat line with no irregularities observed was obtained. This is to prevent a false value that is significantly different from the true value from being calculated due to unevenness caused by the undulation. In the measured roughness curve, the average line is a flat line where no irregularities are observed, but when the flat line is inclined upward or downward, the inclined flat line is treated as an average line, and this flat line The absolute value of the summit elevation and the absolute value of the valley bottom elevation were obtained, and the 10-point surface roughness was calculated.

図6において、十点表面粗さが0.01〜0.5μmであると、接触角が大きくなり、撥水性が長時間維持して一層優れた耐熱性を有していることがわかる。この理由は、下記のためと思われる。この理由は、下記のためと思われる。1点目は、十点表面粗さが大きな値であるほど、珪酸系酸化物は表面積が大きくなって水酸化基を多く持ち、防汚薄膜を結合させているシロキサン結合が多数生成して強固な結合になっていること。逆に、十点表面粗さが小さな値であるほど、珪酸系酸化物は表面積が小さくなって水酸化基を少ししか持たず、防汚薄膜を結合させているシロキサン結合が僅かしか生成せず弱い結合になっていること。2点目は、十点表面粗さの値が大きいほど表面積が大きいため耐熱基板の熱膨張を増大させ、防汚薄膜を結合させているシロキサン結合の熱膨張による剥離が大きくなり弱い結合にしている。逆に、十点表面粗さの値が小さいほど表面積が小さいため耐熱基板の熱膨張を低減させ、防汚薄膜を結合させているシロキサン結合の熱膨張による剥離を防止して強固な結合にしている。3点目は、十点表面粗さの値が適正化されているため、水酸化基による強力結合現象と熱膨張による剥離現象がバランスして、強固な結合にしていること。また、この十点表面粗さにすると、調理物のこびりつきが発生しても簡単な掃除で容易に剥離できる効果や、耐磨耗性に優れる効果も生じた。   In FIG. 6, it can be seen that when the ten-point surface roughness is 0.01 to 0.5 μm, the contact angle increases, the water repellency is maintained for a long time, and the heat resistance is further improved. The reason seems to be as follows. The reason seems to be as follows. The first point is that the larger the 10-point surface roughness, the larger the surface area of the silicate oxide, the greater the number of hydroxyl groups, and the greater the number of siloxane bonds that bind the antifouling thin film. It must be a simple bond. Conversely, the smaller the 10-point surface roughness, the smaller the surface area of the silicic acid-based oxide, and the smaller the number of hydroxyl groups, the fewer siloxane bonds that bind the antifouling thin film. It must be a weak bond. The second point is that the larger the 10-point surface roughness value, the larger the surface area, so the thermal expansion of the heat-resistant substrate is increased, and the siloxane bond bonding the antifouling thin film is exfoliated due to thermal expansion, making it a weak bond. Yes. Conversely, the smaller the 10-point surface roughness value, the smaller the surface area, so the thermal expansion of the heat-resistant substrate is reduced, and the siloxane bond that binds the antifouling thin film is prevented from peeling off due to the thermal expansion to form a strong bond. Yes. The third point is that the ten-point surface roughness value is optimized, so that the strong bonding phenomenon due to hydroxyl groups and the peeling phenomenon due to thermal expansion are balanced to form a strong bond. Further, when this ten-point surface roughness was used, the effect of being able to be easily peeled off by simple cleaning even if the food was stuck, and the effect of being excellent in wear resistance were also produced.

(実施の形態6)
実施の形態6は、前述の実施の形態1〜5のいずれかで検討した珪酸系酸化物2が表面に存在する耐熱基板3の物性について検討した。
(Embodiment 6)
In the sixth embodiment, the physical properties of the heat-resistant substrate 3 on the surface of which the silicate-based oxide 2 studied in any of the first to fifth embodiments was examined.

結晶化ガラスは、ジルコニウム成分やチタン成分が結晶化した酸化物として9〜4wt%程度混合されているため水酸基を多く持っており、しかも熱膨張係数が1×10−6/℃と他のガラスと比較して極めて小さいので、急熱急冷に強く割れることがない。強化ガラスは、ガラスを軟化温度近くまで加熱した状態で空気を吹き付けて表面を一様に急冷して強度を高めたガラスであり、このことで水酸基を多く持っている。また、一箇所が破壊すると全面にわたって多数の細片に粉砕される性質を有する。一般ガラスは、結晶化ガラスや強化ガラスと言われていないガラスである。これらガラスの耐熱基板に、直接にシロキサン結合を有する有機フッソ化合物の防汚薄膜を形成して耐熱防汚基板とし、本発明の効果を評価した結果を(表2)に示す。効果は、前述の300℃耐熱試験と、前述の耐磨耗性試験で判定した。   Crystallized glass has many hydroxyl groups because it is mixed in an amount of about 9 to 4 wt% as an oxide obtained by crystallizing a zirconium component or a titanium component, and has a thermal expansion coefficient of 1 × 10 −6 / ° C. and other glass. Since it is extremely small compared to the above, it will not crack strongly against rapid heating and quenching. The tempered glass is a glass in which the strength is increased by blowing the air in a state where the glass is heated close to the softening temperature to rapidly cool the surface, and thus has many hydroxyl groups. Moreover, when one place destroys, it has a property which is grind | pulverized into many strips over the whole surface. General glass is glass that is not called crystallized glass or tempered glass. Table 2 shows the results of evaluating the effects of the present invention by forming an antifouling thin film of an organic fluorine compound having a siloxane bond directly on these heat resistant substrates of glass to obtain a heat resistant antifouling substrate. The effect was determined by the aforementioned 300 ° C. heat resistance test and the aforementioned abrasion resistance test.

Figure 0004513523
Figure 0004513523

珪酸系酸化物を表面に有する耐熱基板は、その主構成材料が結晶化ガラスもしくは強化ガラスであると、接触角が大きくなり、撥水性が長時間維持して一層優れた耐熱性を有している。このため、これらガラスにシロキサン結合を有する有機フッソ化合物の防汚薄膜を形成すると、一層の撥水撥油性と耐熱性を同時に有する耐熱防汚基板が、簡単な製法と品質管理によって得られる。また、これら材料を使用すると、調理物のこびりつきが発生しても簡単な掃除で容易に剥離できる効果や、耐磨耗性に優れる効果も生じた。   When the main constituent material is crystallized glass or tempered glass, the heat-resistant substrate having a silicate oxide on the surface has a larger contact angle, water repellency for a long time, and better heat resistance. Yes. For this reason, when an antifouling thin film of an organic fluorine compound having a siloxane bond is formed on these glasses, a heat and antifouling substrate having both water and oil repellency and heat resistance can be obtained by a simple production method and quality control. In addition, when these materials are used, the effect of being able to be easily peeled off by simple cleaning and the effect of being excellent in wear resistance even when sticking of the cooked food occurs.

(実施の形態7)
実施の形態7は、実施の形態1である、少なくともシロキサン結合を有する有機フッソ化合物の防汚薄膜4に用いる材料組成について検討した。
(Embodiment 7)
In the seventh embodiment, the material composition used for the antifouling thin film 4 of an organic fluorine compound having at least a siloxane bond, which is the first embodiment, was examined.

シロキサン結合を有する防汚薄膜は、少なくともアルキル基もしくはフルオロアルキル基を有する材料組成であると、撥水と撥油性と耐熱性に優れた防汚薄膜が簡単に提供できる。また、この材料を用いた防汚薄膜は、単分子膜となるため、膜厚が数ナノメートルの光の干渉が起こらない透明で耐熱性に優れた膜が形成され、基体の色感を損なわない防汚薄膜が形成される。   When the antifouling thin film having a siloxane bond has a material composition having at least an alkyl group or a fluoroalkyl group, an antifouling thin film excellent in water repellency, oil repellency and heat resistance can be easily provided. In addition, since the antifouling thin film using this material is a monomolecular film, a transparent and heat resistant film with a film thickness of several nanometers that does not interfere with light is formed, and the color of the substrate is impaired. No antifouling thin film is formed.

本発明のシラン化合物としては、次のものが有効である。
(1)SiX4 (n=0に相当)
(2)SiX3−O−SiX3 (n=1に相当)
(3)Si(OC2H5)4
(4)Si(OCH3)3−O−Si(OCH3)3
(5)Si(OC2H5)3−O−Si(OCH3)3
(6)Si(OC2H5)3−O−Si(OC2H5)3
(7)Si(NCO)4
(8)Si(NCO)3−O−Si(NCO)3
(9)SiCl4
(10)SiCl3−O−SiCl3
(11)SiYpCl4−p
(12)CH3(CH2)sO(CH2)tSiYqCl3−q
(13)CH3(CH2)u−Si(CH3)2(CH2)v−SiYqCl3−q
(14)CF3COO(CH2)wSiYqCl3−q
但し、pは1〜3の整数、qは0〜2の整数、rは1〜25の整数、sは0〜12の整数、tは1〜20の整数、uは0〜12の整数、vは1〜20の整数、wは1〜25の整数を示す。また、Yは、水素、アルキル基、アルコキシル基、含フッ素アルキル基または含フッ素アルコキシ基である。
(15)CH3CH2O(CH2)15SiCl3
(16)CH3(CH2)2Si(CH3)2(CH2)15SiCl3
(17)CH3(CH2)6Si(CH3)2(CH2)9SiCl3
(18)CH3COO(CH2)15SiCl3
(19)CF3(CF2)7−(CH2)2−SiCl3
(20)CF3(CF2)5−(CH2)2−SiCl3
(21)CF3(CF2)7−C6H4−SiCl3
また、上記クロロシラン系化合物の代わりに、全てのクロロシリル基をイソシアネート基に置き換えたイソシアネート系化合物、例えば下記に示す(22)−(26)を用いてもよい。
(22)SiYp(NCO)4−p
(23)CH3−(CH2)rSiYp(NCO)3−p
(24)CH3(CH2)sO(CH2)tSiYq(NCO)q−P
(25)CH3(CH2)u−Si(CH3)2(CH2)v−SiYq(NCO)3−q
(26)CF3COO(CH2)vSiYq(NCO)3−q
但し、p、q、r、s、t、u、v、wおよびXは、前記と同様である。
The following are effective as the silane compound of the present invention.
(1) SiX4 (equivalent to n = 0)
(2) SiX3-O-SiX3 (corresponding to n = 1)
(3) Si (OC2H5) 4
(4) Si (OCH3) 3-O-Si (OCH3) 3
(5) Si (OC2H5) 3-O-Si (OCH3) 3
(6) Si (OC2H5) 3-O-Si (OC2H5) 3
(7) Si (NCO) 4
(8) Si (NCO) 3-O-Si (NCO) 3
(9) SiCl4
(10) SiCl3-O-SiCl3
(11) SiYpCl4-p
(12) CH3 (CH2) sO (CH2) tSiYqCl3-q
(13) CH3 (CH2) u-Si (CH3) 2 (CH2) v-SiYqCl3-q
(14) CF3COO (CH2) wSiYqCl3-q
However, p is an integer of 1-3, q is an integer of 0-2, r is an integer of 1-25, s is an integer of 0-12, t is an integer of 1-20, u is an integer of 0-12, v represents an integer of 1 to 20, and w represents an integer of 1 to 25. Y is hydrogen, an alkyl group, an alkoxyl group, a fluorine-containing alkyl group or a fluorine-containing alkoxy group.
(15) CH3CH2O (CH2) 15SiCl3
(16) CH3 (CH2) 2Si (CH3) 2 (CH2) 15SiCl3
(17) CH3 (CH2) 6Si (CH3) 2 (CH2) 9SiCl3
(18) CH3COO (CH2) 15SiCl3
(19) CF3 (CF2) 7- (CH2) 2-SiCl3
(20) CF3 (CF2) 5- (CH2) 2-SiCl3
(21) CF3 (CF2) 7-C6H4-SiCl3
Instead of the chlorosilane compound, an isocyanate compound in which all chlorosilyl groups are replaced with isocyanate groups, for example, (22)-(26) shown below may be used.
(22) SiYp (NCO) 4-p
(23) CH3- (CH2) rSiYp (NCO) 3-p
(24) CH3 (CH2) sO (CH2) tSiYq (NCO) q-P
(25) CH3 (CH2) u-Si (CH3) 2 (CH2) v-SiYq (NCO) 3-q
(26) CF3COO (CH2) vSiYq (NCO) 3-q
However, p, q, r, s, t, u, v, w, and X are the same as described above.

また、前記のシラン系化合物に変えて、下記(27)−(33)に具体的に例示するシラン系化合物を用いてもよい。
(27)CH3CH2O(CH2)15Si(NCO)3
(28)CH3(CH2)2Si(CH3)2(CH2)15Si(NCO)3
(29)CH3(CH2)6Si(CH3)2(CH2)9Si(NCO)3
(30)CH3COO(CH2)15Si(NCO)3
(31)CF3(CF2)7−(CH2)2−Si(NCO)3
(32)CF3(CF2)5−(CH2)2−Si(NCO)3
(33)CF3(CF2)7−C6H4−Si(NCO)3
また、シラン系化合物として、一般に、SiYk(OA)4−k(Yは、前記と同様、Aはアルキル基、kは0、1、2または3)で表される物質を用いることが可能である。中でも、CF3−(CF2)n−(R)l−SiYq(OA)3−q(nは1以上の整数、好ましくは1〜22の整数、Rはアルキル基、ビニル基、エチニル基、アリール基、シリコンもしくは酸素原子を含む置換基、lは0または1、Y、Aおよびqは前記と同様)で表される物質を用いると、よりすぐれた防汚性の被膜を形成できるが、これに限定されるものではなく、これ以外にも、 CH3−(CH2)r−SiYq(OA)3−qおよびCH3−(CH2)s−0−(CH2)t−SiYq(OA)3−q、CH3−(CH2)u−Si(CH3)2−(CH2)v−SiYq(OA)3−q、CF3COO−(CH2)v−SiYq(OA)3−q(但し、q、r、s、t、u、v、w、YおよびAは、前記と同様)などが使用可能である。
Moreover, it may replace with the said silane type compound and may use the silane type compound specifically illustrated to following (27)-(33).
(27) CH3CH2O (CH2) 15Si (NCO) 3
(28) CH3 (CH2) 2Si (CH3) 2 (CH2) 15Si (NCO) 3
(29) CH3 (CH2) 6Si (CH3) 2 (CH2) 9Si (NCO) 3
(30) CH3COO (CH2) 15Si (NCO) 3
(31) CF3 (CF2) 7- (CH2) 2-Si (NCO) 3
(32) CF3 (CF2) 5- (CH2) 2-Si (NCO) 3
(33) CF3 (CF2) 7-C6H4-Si (NCO) 3
Further, as the silane-based compound, it is generally possible to use a substance represented by SiYk (OA) 4-k (Y is the same as above, A is an alkyl group, and k is 0, 1, 2, or 3). is there. Among them, CF3- (CF2) n- (R) 1-SiYq (OA) 3-q (n is an integer of 1 or more, preferably an integer of 1-22, R is an alkyl group, vinyl group, ethynyl group, aryl group. , A substituent containing silicon or an oxygen atom, l is 0 or 1, Y, A and q are the same as described above, and a more excellent antifouling film can be formed. In addition, it is not limited, CH3- (CH2) r-SiYq (OA) 3-q and CH3- (CH2) s-0- (CH2) t-SiYq (OA) 3-q, CH3 -(CH2) u-Si (CH3) 2- (CH2) v-SiYq (OA) 3-q, CF3COO- (CH2) v-SiYq (OA) 3-q (where q, r, s, t, u, v, w, Y and A are the same as above) Noh.

さらに、より具体的なシラン系化合物としては、下記に示す(34)〜(57)を挙げることができる。
(34)CH3CH2O(CH2)15Si(OCH3)3
(35)CF3CH2O(CH2)15Si(OCH3)3
(36)CH3(CH2)2Si(CH3)2(CH2)15Si(OCH3)3
(37)CH3(CH2)6Si(CH3)2(CH2)9Si(OCH3)3
(38)CH3COO(CH2)15Si(OCH3)3
(39)CF3(CF2)5(CH2)2Si(OCH3)3
(40)CF3(CF2)7−C6H4−Si(OCH3)3
(41)CH3CH2O(CH2)15Si(OC2H5)3
(42)CH3(CH2)2Si(CH3)2(CH2)15Si(OC2H5)3
(43)CH3(CH2)6Si(CH3)2(CH2)9Si(OC2H5)3
(44)CF3(CH2)6Si(CH3)2(CH2)9Si(OC2H5)3
(45)CH3COO(CH2)15Si(OC2H5)3
(46)CF3COO(CH2)15Si(OC2H5)3
(47)CF3COO(CH2)15Si(OCH3)3
(48)CF3(CF2)9(CH2)2Si(OC2H5)3
(49)CF3(CF2)7(CH2)2Si(OC2H5)3
(50)CF3(CF2)5(CH2)2Si(OC2H5)3
(5l)CF3(CF2)7C6H4Si(OC2H5)3
(52)CF3(CF2)9(CH2)2Si(OCH3)3
(53)CF3(CF2)5(CH2)2Si(OCH3)3
(54)CF3(CF2)7(CH2)2SiCH3(OC2H5)2
(55)CF3(CF2)7(CH2)2SiCH3(OCH3)2
(56)CF3(CF2)7(CH2)2Si(CH3)2OC2H5
(57)CF3(CF2)7(CH2)2Si(CH3)2OCH3
なお、(22)〜(57)の化合物を用いた場合には、塩酸が発生しないため、装置保全および作業上のメリットもある。
Furthermore, specific examples of the silane compound include (34) to (57) shown below.
(34) CH3CH2O (CH2) 15Si (OCH3) 3
(35) CF3CH2O (CH2) 15Si (OCH3) 3
(36) CH3 (CH2) 2Si (CH3) 2 (CH2) 15Si (OCH3) 3
(37) CH3 (CH2) 6Si (CH3) 2 (CH2) 9Si (OCH3) 3
(38) CH3COO (CH2) 15Si (OCH3) 3
(39) CF3 (CF2) 5 (CH2) 2Si (OCH3) 3
(40) CF3 (CF2) 7-C6H4-Si (OCH3) 3
(41) CH3CH2O (CH2) 15Si (OC2H5) 3
(42) CH3 (CH2) 2Si (CH3) 2 (CH2) 15Si (OC2H5) 3
(43) CH3 (CH2) 6Si (CH3) 2 (CH2) 9Si (OC2H5) 3
(44) CF3 (CH2) 6Si (CH3) 2 (CH2) 9Si (OC2H5) 3
(45) CH3COO (CH2) 15Si (OC2H5) 3
(46) CF3COO (CH2) 15Si (OC2H5) 3
(47) CF3COO (CH2) 15Si (OCH3) 3
(48) CF3 (CF2) 9 (CH2) 2Si (OC2H5) 3
(49) CF3 (CF2) 7 (CH2) 2Si (OC2H5) 3
(50) CF3 (CF2) 5 (CH2) 2Si (OC2H5) 3
(5l) CF3 (CF2) 7C6H4Si (OC2H5) 3
(52) CF3 (CF2) 9 (CH2) 2Si (OCH3) 3
(53) CF3 (CF2) 5 (CH2) 2Si (OCH3) 3
(54) CF3 (CF2) 7 (CH2) 2SiCH3 (OC2H5) 2
(55) CF3 (CF2) 7 (CH2) 2SiCH3 (OCH3) 2
(56) CF3 (CF2) 7 (CH2) 2Si (CH3) 2OC2H5
(57) CF3 (CF2) 7 (CH2) 2Si (CH3) 2OCH3
In addition, when the compounds (22) to (57) are used, hydrochloric acid is not generated, and there are also merit in terms of equipment maintenance and work.

シラン化合物を含む原材料溶液を希釈する溶媒は、シラン化合物が水と反応することを防止するため非水溶媒を使用する。特に、非水溶媒がシリコーンであると、シリコーンによりシラン化合物は溶媒和されるので、外部からの水の影響を受けにくく、優れた非水溶媒となる。溶媒としては、活性水素を含まない非水系溶媒を用いるのが好ましく、水を含まない炭化水素系溶媒、フッ化炭素系溶媒、シリコーン系溶媒などを用いることが可能である。   As the solvent for diluting the raw material solution containing the silane compound, a non-aqueous solvent is used in order to prevent the silane compound from reacting with water. In particular, when the non-aqueous solvent is silicone, the silane compound is solvated by the silicone, so that the non-aqueous solvent is hardly affected by water from the outside and becomes an excellent non-aqueous solvent. As the solvent, it is preferable to use a non-aqueous solvent that does not contain active hydrogen, and it is possible to use a hydrocarbon solvent, a fluorocarbon solvent, a silicone solvent, or the like that does not contain water.

なお、石油系の溶剤の他に具体的に使用可能なものは、石油ナフサ、ソルベントナフサ、石油エーテル、石油ベンジン、イソパラフィン、ノルマルパラフィン、デカリン、工業ガソリン、灯油、リグロイン、ジメチルミリコーン、フェニルシリコーン、アルキル変性シリコーン、ポリエステルシリコーンなどを挙げることができる。また、フッ化炭素系溶媒には、フロン系溶媒や、フロリナート(3M社製品)、アフルード(旭ガラス社製品)などがある。なお、これらは1種単独で用いてもよいし、よく混合するものなら2種以上を組み合わせてもよい。   In addition to petroleum-based solvents, petroleum naphtha, solvent naphtha, petroleum ether, petroleum benzine, isoparaffin, normal paraffin, decalin, industrial gasoline, kerosene, ligroin, dimethyl millicorn, phenyl silicone , Alkyl-modified silicone, polyester silicone and the like. In addition, the fluorocarbon solvents include chlorofluorocarbon solvents, Fluorinert (product of 3M), Afludo (product of Asahi Glass). In addition, these may be used individually by 1 type and may mix 2 or more types as long as it mixes well.

次に、シラン化合物を含む溶液を塗布する工程について説明する。シラン化合物を含む溶液の塗布が、湿度35%以下の無水雰囲気下であると、シラン化合物が外気からの水と反応することがないので、表面上にこれらのシラン化合物同士が結合してできるシロキサン結合を有する防汚薄膜が形成される。また、シラン化合物を含む溶液を塗布する工程の後工程に、溶媒を除去する乾燥工程を設けると、乾燥工程においてシラン化合物が濃縮されるため、高密度のシロキサン結合を有する防汚薄膜が形成されて、耐熱性が大幅に向上できる。この乾燥工程が湿度35%以下の無水雰囲気下であり、さらに、この後工程として過剰な未反応のシラン化合物を洗浄する工程を設けると、一層高密度のシロキサン結合を有する防汚薄膜が形成されて、耐熱性が一層大幅に向上できる。また、これら材料を使用すると、調理物のこびりつきが発生しても簡単な掃除で容易に剥離できる効果や、耐磨耗性に優れる効果も生じた。   Next, the process of apply | coating the solution containing a silane compound is demonstrated. When the application of the solution containing the silane compound is in an anhydrous atmosphere with a humidity of 35% or less, the silane compound does not react with water from the outside air, so that the siloxane formed by bonding these silane compounds together on the surface An antifouling thin film having a bond is formed. In addition, if a drying step for removing the solvent is provided in the subsequent step of the step of applying the solution containing the silane compound, the silane compound is concentrated in the drying step, so that an antifouling thin film having a high-density siloxane bond is formed. Thus, the heat resistance can be greatly improved. If this drying step is in an anhydrous atmosphere with a humidity of 35% or less, and further a step of washing excess unreacted silane compound as a subsequent step, an antifouling thin film having a higher density of siloxane bonds is formed. Thus, the heat resistance can be greatly improved. In addition, when these materials are used, the effect of being able to be easily peeled off by simple cleaning and the effect of being excellent in wear resistance even when sticking of the cooked food occurs.

(実施の形態8)
実施の形態8は、前述の実施の形態1または実施の形態7である、少なくともシロキサン結合を有する有機フッソ化合物の防汚薄膜4に用いる材料の原料についての検討内容である。防汚薄膜4に用いる原材料は、ハロゲン化シラン、アルコキシシラン、イソシアネートシラン、アミノシランのいずれかである。これら原材料を使用すると、表面上にこれらのシラン化合物同士が結合してできるシロキサン結合を有する、耐熱性の防汚薄膜が簡
単に形成される。また、これら材料を使用すると、調理物のこびりつきが発生しても簡単な掃除で容易に剥離できる効果や、耐磨耗性に優れる効果も生じた。
(Embodiment 8)
The eighth embodiment is an examination of the raw material of the material used for the antifouling thin film 4 of the organic fluorine compound having at least a siloxane bond, which is the first embodiment or the seventh embodiment. The raw material used for the antifouling thin film 4 is any one of halogenated silane, alkoxysilane, isocyanate silane, and aminosilane. When these raw materials are used, a heat-resistant antifouling thin film having a siloxane bond formed by bonding these silane compounds to each other can be easily formed on the surface. In addition, when these materials are used, the effect of being able to be easily peeled off by simple cleaning and the effect of being excellent in wear resistance even when sticking of the cooked food occurs.

(実施の形態9)
実施の形態9は、前述の実施の形態8である、少なくともシロキサン結合を有する有機フッソ化合物の防汚薄膜4に用いる原料を希釈する溶媒についての検討内容である。溶媒が有機シリコーンであると、有機シリコーンによりシラン化合物は溶媒和されるので、外部からの水の影響を受けにくくなり、耐熱性の防汚薄膜が簡単に形成されることが判明した。また、これら材料を使用すると、調理物のこびりつきが発生しても簡単な掃除で容易に剥離できる効果や、耐磨耗性に優れる効果も生じた。
(Embodiment 9)
The ninth embodiment is the contents of the study on the solvent for diluting the raw material used for the antifouling thin film 4 of the organic fluorine compound having at least a siloxane bond, which is the aforementioned eighth embodiment. It has been found that when the solvent is an organic silicone, the silane compound is solvated by the organic silicone, so that it is not easily affected by water from the outside, and a heat-resistant antifouling thin film is easily formed. In addition, when these materials are used, the effect of being able to be easily peeled off by simple cleaning and the effect of being excellent in wear resistance even when sticking of the cooked food occurs.

(実施の形態10)
実施の形態10は、前述の実施の形態8〜9のいずれかである、少なくともシロキサン結合を有する有機フッソ化合物の防汚薄膜4に用いる原料で、特に耐熱性を有する原料についての検討内容である。ハロゲン化シラン化合物が最適であり、特にクロロシランであると、クロロシラン化合物同士が結合してできるシロキサン結合が耐熱基板と強固に化学結合した、耐熱性の防汚薄膜が簡単に形成されることが判明した。また、これら材料を使用すると、調理物のこびりつきが発生しても簡単な掃除で容易に剥離できる効果や、耐磨耗性に優れる効果も生じた。
(Embodiment 10)
The tenth embodiment is a raw material used for the antifouling thin film 4 of an organic fluorine compound having at least a siloxane bond, which is one of the above-described eighth to ninth embodiments. . It is found that halogenated silane compounds are optimal, especially chlorosilanes, and it is easy to form heat-resistant antifouling thin films in which siloxane bonds formed by bonding of chlorosilane compounds are strongly chemically bonded to heat-resistant substrates. did. In addition, when these materials are used, the effect of being able to be easily peeled off by simple cleaning and the effect of being excellent in wear resistance even when sticking of the cooked food occurs.

(実施の形態11)
実施の形態11は、前述の実施の形態1〜10のいずれかである耐熱防汚基板1を、加熱調理機器に応用したものであり、その構成を図7に示す。加熱調理機器は、防汚薄膜4を上面に形成したガラス製の耐熱基板3からなる耐熱防汚基板1と、耐熱防汚基板1を搭載するためにその下部に配置した筐体5と、筐体5の内部空間に収納した電磁誘導加熱器やガスバーナおよびその制御器などの調理加熱用部品6とを少なくとも有している。
(Embodiment 11)
In the eleventh embodiment, the heat-resistant and antifouling substrate 1 according to any of the first to tenth embodiments is applied to a cooking device, and the configuration is shown in FIG. The cooking device includes a heat-resistant and antifouling substrate 1 made of a glass heat-resistant substrate 3 having an antifouling thin film 4 formed on the upper surface, a case 5 disposed below the heat-resistant and antifouling substrate 1 for mounting the heat-resistant and antifouling substrate 1, It has at least a cooking heating component 6 such as an electromagnetic induction heater, a gas burner, and a controller thereof housed in the internal space of the body 5.

一方、耐熱防汚基板1には、その下面に耐熱金属を主成分とする焼成被膜7が予め形成されており、その上面に防汚薄膜4を後工程で形成している。そして、焼成被膜7を介在させて筐体5と耐熱防汚基板1を接合している。食材などを収納した調理用鍋は、耐熱防汚基板1の上面に形成された防汚薄膜4の上部に配置し、調理加熱用部品6により加熱される。焼成被膜7は、結合材として酸化ビスマスもしくはガラスが少量含有しており、残部は金や白金さらにパラジウム、ニッケル、銅、銀から選択した少なくとも1種の耐熱金属とした。焼成被膜7は、耐熱金属を主成分とするため色の付いた金属色となる。そのため、耐熱基板3として透明なガラスを用いて、焼成被膜7の金属色が、透明な防汚薄膜4の表面に付着した調理残さ物を見えにくくして、長期間にわたって美麗さや清潔感が維持できる。なお、必要によっては美観をさらに良くするために、耐熱基板3の下側にマイカを接着剤で固着させ、その上にさらに焼成被膜7を形成する構成としてもよい。   On the other hand, the heat-resistant and antifouling substrate 1 is preliminarily formed with a fired film 7 mainly composed of a heat-resistant metal on its lower surface, and an antifouling thin film 4 is formed on its upper surface in a subsequent process. And the housing | casing 5 and the heat-resistant antifouling board | substrate 1 are joined with the baking film 7 interposed. The cooking pan containing the ingredients and the like is placed on the antifouling thin film 4 formed on the upper surface of the heat-resistant antifouling substrate 1 and heated by the cooking heating component 6. The fired film 7 contains a small amount of bismuth oxide or glass as a binder, and the balance is at least one heat-resistant metal selected from gold, platinum, palladium, nickel, copper, and silver. The fired film 7 has a colored metal color because it is mainly composed of a heat-resistant metal. Therefore, using transparent glass as the heat-resistant substrate 3, the metal color of the fired coating 7 makes it difficult to see the cooking residue attached to the surface of the transparent antifouling thin film 4, and maintains a beautiful and clean feeling over a long period of time. it can. Note that, if necessary, in order to further improve the aesthetics, mica may be fixed to the lower side of the heat-resistant substrate 3 with an adhesive, and a fired film 7 may be further formed thereon.

防汚薄膜4は、シロキサン結合を有する有機フッソ化合物の液体を原料としており、耐熱基板3の上面に塗布され乾燥工程を経て防汚薄膜となる。この塗布と乾燥の工程において蒸発した有機フッソ化合物は、その下面に予め形成した焼成被膜7まで廻りこみ、極めて微薄の有機フッソ化合物膜が形成される。一方、焼成被膜7は、耐熱金属が主成分であり焼成されているので親水性を有するので、廻りこんだ極めて微薄の有機フッソ化合物膜が焼成被膜7の表面に付着しても、いぜん親水性を有する様になる。耐熱防汚基板1の下面に形成される焼成被膜7が親水性を有すると、水玉ができにくくなったその表面に付着する水分が落下しにくくなり、このことは、その下部位置に配置された調理加熱用部品6に水分が落下しにくくなる効果が得られる。   The antifouling thin film 4 is made of an organic fluorine compound liquid having a siloxane bond as a raw material, and is applied to the upper surface of the heat resistant substrate 3 to become an antifouling thin film through a drying process. The organic fluorine compound evaporated in this coating and drying process travels to the fired film 7 formed in advance on the lower surface thereof to form an extremely thin organic fluorine compound film. On the other hand, the fired film 7 has a hydrophilic property since the heat-resistant metal is a main component and is fired. Therefore, even if a very thin organic fluorine compound film that is wrapped around adheres to the surface of the fired film 7, it is still hydrophilic. It comes to have. When the fired film 7 formed on the lower surface of the heat-resistant and antifouling substrate 1 has hydrophilicity, it becomes difficult for water adhering to the surface where polka dots are difficult to be dropped to fall, which is arranged at the lower position thereof. An effect is obtained in which moisture hardly falls on the cooking heating component 6.

このため、加熱調理機器を業務用調理場などの高温多湿環境で長期間使用しても、調理
用鍋を加熱する調理加熱用部品6は、その上部に配置した耐熱防汚基板1から落下する結露水分が減少し、落下結露水分によるトラブルが無い効果が得られる。また、このことで調理加熱用部品6は、簡単な防湿対策で充分対応できる利点が生じる。一方、焼成被膜7が存在しない耐熱防汚基板1であると、その下面は耐熱基板3として用いたガラス面だけとなる。この耐熱基板3の下面ガラス面に、極めて微薄の有機フッソ化合物膜が廻りこんで付着すると結合して撥水性を有し、その表面に付着する水分が落下し易くなる。従って、加熱調理機器を高温多湿環境で長期間使用する際は、落下結露水分を考慮して調理加熱用部品6は複雑な防湿対策が必要である。
For this reason, even if the cooking device is used for a long time in a hot and humid environment such as a commercial kitchen, the cooking and heating component 6 for heating the cooking pan falls from the heat-resistant and antifouling substrate 1 disposed on the cooking pan. Condensation moisture is reduced, and there is no trouble caused by falling condensation moisture. Moreover, the cooking heating component 6 has an advantage that it can sufficiently cope with a simple moisture-proof measure. On the other hand, if the heat-resistant and antifouling substrate 1 has no fired coating 7, the lower surface thereof is only the glass surface used as the heat-resistant substrate 3. When an extremely thin organic fluorine compound film is attached to the lower glass surface of the heat-resistant substrate 3 and adheres thereto, it bonds and has water repellency, so that moisture adhering to the surface easily falls. Therefore, when the cooking device is used for a long time in a high-temperature and high-humidity environment, the cooking and heating component 6 needs to have a complex moisture-proof measure in consideration of the condensed moisture falling.

なお、調理加熱用部品6は、電磁誘導加熱器やガスバーナさらに電気ヒータなどの熱発生手段とその制御器であり、耐熱防汚基板1は、これらの熱発生手段の構成に応じた構成とすることは言うまでもない。例えば、調理加熱用部品6が電磁誘導加熱器や電気ヒータの熱発生手段とその制御器の場合、耐熱防汚基板1は平板とし、調理加熱用部品6がガスバーナとその制御器の場合、耐熱防汚基板1はガスバーナからの燃焼排気ガスを逃がすための空洞を有する平板とする。また、これら平板は、その上に調理用鍋を載せるため鍋が落ちない様に、部分的に印刷膜を形成するなどしてその表面に小さな凹凸を付ける構成としても良い。   The cooking and heating component 6 is a heat generation means such as an electromagnetic induction heater, a gas burner, and an electric heater, and its controller, and the heat-resistant and antifouling substrate 1 is configured according to the configuration of these heat generation means. Needless to say. For example, when the cooking / heating component 6 is an electromagnetic induction heater or an electric heater heat generating means and its controller, the heat-resistant antifouling substrate 1 is a flat plate, and when the cooking / heating component 6 is a gas burner and its controller, The antifouling substrate 1 is a flat plate having a cavity for releasing combustion exhaust gas from the gas burner. In addition, these flat plates may have a configuration in which small irregularities are formed on the surface thereof by, for example, partially forming a printed film so that the pan does not fall because the cooking pan is placed thereon.

(実施の形態12)
実施の形態12は、前述の実施の形態11における焼成被膜に含有される耐熱金属の材質について検討した結果を、図7を利用して説明する。耐熱金属が少なくとも白金または金またはパラジウムのいずれかであると、その表面は水玉が一層できにくくなって表面に付着する水分が落下しにくくなり、その下部位置に配置された調理加熱用部品6に水分が落下しにくくなった。このため、調理加熱用部品6は、一層簡単な製法と品質管理で得られる防湿対策で対応できる。
(Embodiment 12)
In the twelfth embodiment, the result of studying the material of the refractory metal contained in the fired film according to the eleventh embodiment will be described with reference to FIG. If the refractory metal is at least either platinum, gold or palladium, the surface is more difficult to form polka dots and the water adhering to the surface is less likely to fall. Moisture did not fall easily. For this reason, the cooking and heating component 6 can cope with moisture-proof measures obtained by a simpler manufacturing method and quality control.

(実施の形態13)
実施の形態13は、前述の実施の形態1〜10のいずれかである耐熱防汚基板1を、加熱調理機器に応用したものであり、その構成を図7を利用して説明する。加熱調理機器は、防汚薄膜4を上面に形成した耐熱基板3からなる耐熱防汚基板1と、耐熱防汚基板1を搭載するためにその下部に配置した筐体5と、筐体5の内部空間に収納した電磁誘導加熱器やガスバーナおよびその制御器などの調理加熱用部品6とを少なくとも有している。
(Embodiment 13)
In the thirteenth embodiment, the heat-resistant and antifouling substrate 1 according to any of the first to tenth embodiments is applied to a cooking device, and the configuration thereof will be described with reference to FIG. The cooking device includes a heat-resistant and antifouling substrate 1 composed of a heat-resistant substrate 3 having an antifouling thin film 4 formed on the upper surface, a case 5 disposed below the heat-resistant and antifouling substrate 1 for mounting the heat-resistant and antifouling substrate 1, It has at least a cooking and heating component 6 such as an electromagnetic induction heater, a gas burner and its controller housed in the internal space.

一方、耐熱防汚基板1は、その下面には、酸化ビスマスと耐熱材料が含有する焼成被膜7が予め形成されており、その上面には、防汚薄膜4を後工程で形成している。そして、焼成被膜7を介在させて筐体5と耐熱防汚基板1を接着剤8で接合している。食材などを収納した調理用鍋は、耐熱防汚基板1の上面に形成された防汚薄膜4の上部に配置し、調理加熱用部品6により加熱される。   On the other hand, the heat-resistant and antifouling substrate 1 is preliminarily formed with a fired film 7 containing bismuth oxide and a heat-resistant material on its lower surface, and an antifouling thin film 4 is formed on its upper surface in a subsequent process. And the housing | casing 5 and the heat-resistant antifouling board | substrate 1 are joined with the adhesive agent 8 with the baking film 7 interposed. The cooking pan containing the ingredients and the like is placed on the antifouling thin film 4 formed on the upper surface of the heat-resistant antifouling substrate 1 and heated by the cooking heating component 6.

酸化ビスマスは、焼成により溶融すると体積膨張して多孔質な親水性の着色膜を生成するとともにその多孔質膜が偏析して散在する性質がある。また、着色する酸化ビスマスを使用すると耐熱材料との相乗効果で、焼成被膜7は色付きの綺麗な被膜が形成できる。従って、防汚薄膜4を形成する耐熱基板3として透明なガラスを用いても、その裏側に存在するこの色付き焼成被膜7が、透明な防汚薄膜4の表面に付着した調理残さ物を見えにくくして、長期間にわたって美麗さや清潔感が維持できる。そこで、焼成被膜7は、酸化ビスマスが含有しており、残部は金や白金さらにパラジウムそしてニッケルや銅から選択した少なくとも1種の耐熱金属、もしくは残部がマイカやカーボンとした。   Bismuth oxide has a property that when it is melted by firing, it expands in volume to form a porous hydrophilic colored film, and the porous film is segregated and scattered. Further, when bismuth oxide to be colored is used, the fired film 7 can form a beautiful colored film due to a synergistic effect with the heat-resistant material. Therefore, even if transparent glass is used as the heat-resistant substrate 3 for forming the antifouling thin film 4, the colored fired coating 7 existing on the back side of the antifouling thin film 4 makes it difficult to see cooking residues attached to the surface of the transparent antifouling thin film 4. Thus, the beauty and cleanliness can be maintained for a long time. Therefore, the baked coating 7 contains bismuth oxide, and the balance is at least one heat-resistant metal selected from gold, platinum, palladium, nickel and copper, or the balance is mica or carbon.

一方、防汚薄膜4は、シロキサン結合を有する有機フッソ化合物の液体を原料としており、耐熱基板3の上面に塗布され乾燥工程を経て防汚性の薄膜となる。この塗布と乾燥の
工程において蒸発した有機フッソ化合物は、その下面に予め形成した酸化ビスマスが含有する焼成被膜7まで廻りこみ、極めて微薄の膜が形成される。さて、酸化ビスマスは、焼成により溶融すると体積膨張して多孔質な親水性の膜が生成するとともに、その多孔質膜が偏析して散在する性質がある。そのため、廻りこんだ極めて微薄の有機フッソ化合物の膜は、多孔質な焼成被膜7の内部にもぐり込んでしまい、筐体5と耐熱防汚基板1の接合への妨害を低減させる。これらのことにより、筐体5は、耐熱防汚基板1と良好に接合できる。また、この多孔質な親水性の焼成被膜7は、水玉ができにくくなって表面に付着する水分が落下しにくくなり、その下部位置に配置された調理加熱用部品6に水分が落下しにくくなった。
On the other hand, the antifouling thin film 4 is made of an organic fluorine compound liquid having a siloxane bond as a raw material, and is applied to the upper surface of the heat-resistant substrate 3 to become an antifouling thin film through a drying process. The organic fluorine compound evaporated in this coating and drying process travels to the fired film 7 containing bismuth oxide previously formed on the lower surface thereof, and an extremely thin film is formed. When bismuth oxide is melted by firing, it expands in volume and forms a porous hydrophilic film, and the porous film segregates and is scattered. For this reason, the extremely thin organic fluorine compound film that has wrapped around also penetrates into the porous fired coating 7, thereby reducing interference with the bonding between the housing 5 and the heat-resistant and antifouling substrate 1. By these things, the housing | casing 5 can be favorably joined with the heat-resistant antifouling substrate 1. Further, this porous hydrophilic fired coating 7 makes it difficult for polka dots to be formed, and makes it difficult for moisture adhering to the surface to fall, and makes it difficult for moisture to fall on the cooking heating component 6 disposed at the lower position. It was.

一方、これら材料組成の焼成被膜7が存在しない耐熱防汚基板1であると、廻りこんだ極めて微薄の有機フッソ化合物の膜が、筐体5と耐熱防汚基板1の接合への妨害をして良好な接合が得られにくくなった。さらに、この耐熱基板3の下面ガラス面に、極めて微薄の有機フッソ化合物膜が廻りこんで付着すると結合して撥水性を有し、その表面に付着する水分が落下し易くなる。従って、加熱調理機器を高温多湿環境で長期間使用する際は、落下結露水分を考慮して調理加熱用部品6は複雑な防湿対策が必要である。   On the other hand, when the heat-resistant and antifouling substrate 1 does not have the fired coating 7 having the above material composition, the extremely thin organic fluorine compound film that surrounds the substrate 5 and the heat-resistant and antifouling substrate 1 are obstructed. This makes it difficult to obtain good bonding. Further, when a very thin organic fluorine compound film is attached around the lower glass surface of the heat-resistant substrate 3, it bonds and has water repellency, so that the water adhering to the surface easily falls. Therefore, when the cooking device is used for a long time in a high-temperature and high-humidity environment, the cooking and heating component 6 needs to have a complex moisture-proof measure in consideration of the condensed moisture falling.

(実施の形態14)
実施の形態14は、前述の実施の形態13における加熱調理機器に用いる焼成被膜7に混合する酸化ビスマスの量を検討した。その結果、酸化ビスマスの混合量は、1〜30wt%が最適であった。それは、1wt%未満であると多孔質度が不足して、廻りこんだ極めて微薄の有機フッソ化合物の膜が、筐体5と耐熱防汚基板1の接合への妨害をして良好な接合が得られにくくなるためである。一方、30wt%を超えると、多孔質膜が大き過ぎて極めて脆い膜となり、強固な膜が得られなくなるとともに多孔質度が過ぎてやや平滑的になり、廻りこんだ極めて微薄の有機フッソ化合物の膜が、筐体5と耐熱防汚基板1の接合への妨害をして良好な接合が得られにくくなるためである。これらのことより、焼成被膜7は、酸化ビスマスが1〜30wt%含有しており、残部は金や白金さらにパラジウム、銀、銅、ニッケル等から選択した少なくとも1種の耐熱金属、もしくは残部がマイカやカーボンとした。耐熱金属は、薄黒色をしているため、耐熱基板3に透明なガラスを使用した際に、防汚薄膜4に付着した調理残さ物を見えにくくする効果があるため、使用した。これらのことより以後の検討は、酸化ビスマスが5wt%、残部が白金や金を主成分とする焼成被膜7で行なった。
(Embodiment 14)
In the fourteenth embodiment, the amount of bismuth oxide to be mixed with the fired coating 7 used in the cooking device according to the thirteenth embodiment was examined. As a result, the mixing amount of bismuth oxide was optimally 1 to 30 wt%. If it is less than 1 wt%, the degree of porosity will be insufficient, and the extremely thin organic fluorine compound film that surrounds will interfere with the bonding between the housing 5 and the heat-resistant and antifouling substrate 1, and a good bonding will be achieved. This is because it becomes difficult to obtain. On the other hand, if it exceeds 30 wt%, the porous film is too large and becomes a very fragile film, a strong film cannot be obtained, and the degree of porosity is too smooth and becomes slightly smooth. This is because the film obstructs the bonding between the housing 5 and the heat-resistant and antifouling substrate 1 and makes it difficult to obtain a good bond. Accordingly, the fired film 7 contains 1 to 30 wt% of bismuth oxide, the balance being at least one heat-resistant metal selected from gold, platinum, palladium, silver, copper, nickel, or the like, or the balance being mica. And carbon. Since the heat-resistant metal has a light black color, when transparent glass is used for the heat-resistant substrate 3, it has the effect of making it difficult to see the cooking residue attached to the antifouling thin film 4. From these facts, the following study was conducted on the fired coating 7 containing 5 wt% of bismuth oxide and the balance of platinum or gold as the main component.

(実施の形態15)
実施の形態15は、前述の実施の形態11〜14のいずれかの加熱調理機器をさらに詳細に実施する方法を検討したものである。その結果、図8に示す様に、焼成被膜7のさらに下面に有機シリコーン膜9が予め形成されている耐熱基板3を使用すると、極めて微薄な有機シリコーン樹脂の気相蒸発膜が簡単に耐熱基板3の上面に形成でき、後工程で防汚薄膜4をその上面に形成すれば、耐熱性の優れた防汚薄膜4が得られることを見出した。
(Embodiment 15)
In the fifteenth embodiment, a method for carrying out the cooking device in any one of the above-described first to eleventh embodiments in more detail is examined. As a result, as shown in FIG. 8, when the heat-resistant substrate 3 having the organic silicone film 9 formed in advance on the lower surface of the fired coating 7 is used, a very thin organic silicone resin vapor-phase evaporation film can be easily formed. It was found that the antifouling thin film 4 having excellent heat resistance can be obtained by forming the antifouling thin film 4 on the upper surface thereof in a later step.

具体的製法を説明する。まず、焼成被膜7が予め形成されている耐熱基板3を準備し、焼成被膜7の面に有機シリコーン樹脂の液体塗料を塗布して、乾燥焼成した。これによって、有機シリコーン膜9が焼成被膜7の面に形成されるが、これと同時に、耐熱基板3の焼成被膜7の反対面である未形成面にも、極めて微薄な有機シリコーン樹脂の気相蒸発膜が形成される。次に、これら膜が形成された耐熱基板3を洗浄して表面に付着している汚れを除去した。次に、シロキサン結合を有する有機フッソ化合物の原料として、へプタデカフルオロデシルトリクロロシランを準備し、ヘキサメチルシロキサンで希釈した有機溶液を調合した。そして、この有機溶液に前述の耐熱基板3を窒素雰囲気下で浸漬し、その後に大気中に放置することで、少なくともシロキサン結合を有する有機フッソ化合物の防汚薄膜4が形成された耐熱防汚基板1を得た。その後、この基板で加熱調理機器を組み立
てて完成である。
A specific production method will be described. First, the heat-resistant substrate 3 on which the fired film 7 was formed in advance was prepared, and a liquid paint of an organic silicone resin was applied to the surface of the fired film 7 and dried and fired. As a result, the organic silicone film 9 is formed on the surface of the fired film 7. At the same time, the vapor phase of the extremely thin organic silicone resin is also formed on the non-formed surface of the heat-resistant substrate 3, which is the opposite surface of the fired film 7. An evaporation film is formed. Next, the heat-resistant substrate 3 on which these films were formed was washed to remove dirt adhering to the surface. Next, heptadecafluorodecyltrichlorosilane was prepared as a raw material for an organic fluorine compound having a siloxane bond, and an organic solution diluted with hexamethylsiloxane was prepared. Then, the heat-resistant antifouling substrate on which the antifouling thin film 4 of the organic fluorine compound having at least a siloxane bond is formed by immersing the heat-resistant substrate 3 in this organic solution in a nitrogen atmosphere and then leaving it in the air. 1 was obtained. After that, the cooking device is assembled with this substrate.

焼成被膜7のさらに下面に有機シリコーン膜9が予め形成されている耐熱基板3を使用すると、有機シリコーン樹脂の気相蒸発膜が形成され、この膜に防汚薄膜4が形成されるためその耐熱性が向上する利点と、有機シリコーン膜13が親水性であるため筐体5と耐熱防汚基板1の接着剤8による接合を良好にする利点が得られた。また、有機シリコーン膜9が親水性であるため、防汚薄膜を構成する極めて微薄の有機フッソ化合物は、廻りこんでも多孔質な有機シリコーン膜9の内部にもぐり込んでしまう。そのため、水玉ができにくくなって表面に付着する水分が落下しにくくなり、その下部位置に配置された調理加熱用部品6に水分が落下しにくくなる利点がある。   When the heat-resistant substrate 3 on which the organic silicone film 9 is previously formed on the lower surface of the fired film 7 is used, a vapor-phase evaporation film of an organic silicone resin is formed, and the antifouling thin film 4 is formed on this film. As a result, the organic silicone film 13 is hydrophilic, so that the housing 5 and the heat-resistant and antifouling substrate 1 can be bonded to each other with the adhesive 8. In addition, since the organic silicone film 9 is hydrophilic, the extremely thin organic fluorine compound constituting the antifouling thin film wraps around the porous organic silicone film 9 even if it goes around. Therefore, there is an advantage that polka dots are difficult to be formed, and moisture adhering to the surface does not easily fall, and moisture hardly falls on the cooking heating component 6 disposed at the lower position.

(実施の形態16)
実施の形態16は、図7および図8における筐体5と耐熱防汚基板1を接合する接着剤8の材質を検討した内容である。その結果、有機シリコーン樹脂が最適であることが判明した。これは、接着剤8として用いた有機シリコーン樹脂が耐熱性であること、耐熱防汚基板1の上面に形成された有機フッソ化合物膜またはその改質膜、もしくはその下面に形成された焼成皮膜7さらには有機シリコーン膜9との親和力があるため馴染みが良く、長期間優れた接合力を保持できるためである。なお、耐熱防汚基板1は、その上面もしくは下面の端部で筐体5と接合されており、接合が良好になるように筐体5に冶具などが設けられている。
(Embodiment 16)
In the sixteenth embodiment, the material of the adhesive 8 that joins the housing 5 and the heat-resistant antifouling substrate 1 in FIGS. 7 and 8 is examined. As a result, it was found that an organic silicone resin is optimal. This is because the organic silicone resin used as the adhesive 8 is heat resistant, the organic fluorine compound film formed on the upper surface of the heat-resistant antifouling substrate 1 or its modified film, or the fired film 7 formed on the lower surface thereof. Furthermore, the affinity with the organic silicone film 9 is good, so that the familiarity is good and an excellent bonding force can be maintained for a long time. In addition, the heat-resistant antifouling substrate 1 is bonded to the housing 5 at the end of the upper surface or the lower surface, and a jig or the like is provided on the housing 5 so that the bonding is good.

(実施の形態17)
実施の形態17は、前述の実施の形態1〜10のいずれかにおける耐熱防汚基板1を、他構成の加熱調理機器に応用したものであり、その構成を図9に示す。加熱調理機器は、防汚薄膜4を形成した透明ガラス製の耐熱基板2からなる耐熱防汚基板1と、耐熱防汚基板1がその側面に配置された調理室10と、調理室10の内部もしくは外面に配置した調理加熱用部品11と、調理室10および調理加熱用部品11を収納する筐体12とを少なくとも有し、耐熱防汚基板1は、防汚薄膜4を調理室10の内面側に、錫薄膜13を調理室10の外面側に形成しているとしたものである。
(Embodiment 17)
In the seventeenth embodiment, the heat-resistant and antifouling substrate 1 in any of the first to tenth embodiments described above is applied to a cooking device having another configuration, and the configuration is shown in FIG. The cooking device includes a heat-resistant and antifouling substrate 1 made of a transparent glass heat-resistant substrate 2 on which an antifouling thin film 4 is formed, a cooking chamber 10 in which the heat-resistant and antifouling substrate 1 is arranged on the side surface, and the interior of the cooking chamber 10. Or at least it has the cooking heating component 11 arrange | positioned in the outer surface, and the housing | casing 12 which accommodates the cooking chamber 10 and the cooking heating component 11, and the heat-resistant antifouling board | substrate 1 has the antifouling thin film 4 on the inner surface of the cooking chamber 10. The tin thin film 13 is formed on the outer surface side of the cooking chamber 10 on the side.

錫薄膜13は、調理時に発生する赤外線を反射する効果がある。そのため、耐熱基板3として透明または半透明なガラスを用い、調理室10の外面側に錫薄膜13を形成すると、調理物から発生した赤外線が錫薄膜13で反射されて調理物に再び照射され、調理時間が短縮される効果が生じる。また、調理室10の内面側に形成した防汚薄膜4により、その表面に付着した調理残さ物を簡単に拭き取ることが出来、長期間にわたって美麗さや清潔感が維持できる。   The tin thin film 13 has an effect of reflecting infrared rays generated during cooking. Therefore, when transparent or translucent glass is used as the heat-resistant substrate 3 and the tin thin film 13 is formed on the outer surface side of the cooking chamber 10, infrared rays generated from the cooked food are reflected by the tin thin film 13 and are irradiated again on the cooked food. The effect that cooking time is shortened arises. In addition, the antifouling thin film 4 formed on the inner surface side of the cooking chamber 10 can easily wipe off cooking residues adhering to the surface, so that the beauty and cleanliness can be maintained over a long period of time.

以上のように、本発明の耐熱防汚基板およびこれを使用した加熱調理機器は、その優れた撥水撥油性や耐熱性さらに耐磨耗性により、調理物のこびりつきが発生しても簡単な掃除で容易に剥離し、長期間にわたって美麗さや清潔感が維持できるため、IH調理機器やホットプレート、グリル鍋、フライパン、電子レンジ、電気オーブンなどに応用ができる。   As described above, the heat-resistant and antifouling substrate of the present invention and the cooking device using the same are easy even if the food is stuck due to its excellent water and oil repellency, heat resistance and wear resistance. It can be easily peeled off by cleaning and maintain its beauty and cleanliness over a long period of time, so it can be applied to IH cooking appliances, hot plates, grill pans, frying pans, microwave ovens, electric ovens, etc.

(a)本発明の実施の形態1における耐熱防汚基板の構成図(b)同耐熱防汚基板の珪素成分含有率と耐熱性の関係を示す特性図(c)同耐熱防汚基板のアルカリ成分含有率と耐熱性の関係を示す特性図(A) Configuration diagram of the heat-resistant and antifouling substrate in Embodiment 1 of the present invention (b) Characteristic diagram showing the relationship between the silicon component content of the heat-resistant and antifouling substrate and the heat resistance (c) Alkali of the heat-resistant and antifouling substrate Characteristic diagram showing the relationship between component content and heat resistance (a)同耐熱防汚基板の珪素成分含有率と耐磨耗性の関係を示す特性図(b)同耐熱防汚基板のアルカリ成分含有率と耐磨耗性の関係を示す特性図(A) Characteristic diagram showing the relationship between the silicon component content of the heat-resistant and antifouling substrate and wear resistance (b) Characteristic diagram showing the relationship between the alkali component content of the heat-resistant and antifouling substrate and wear resistance 本発明の実施の形態2における耐熱防汚基板におけるアルミニウム成分含有率と耐久性の関係を示す特性図The characteristic view which shows the relationship between the aluminum component content rate and durability in the heat-resistant antifouling substrate in Embodiment 2 of the present invention 本発明の実施の形態3における耐熱防汚基板におけるジルコニウム成分含有率と耐久性の関係を示す特性図The characteristic view which shows the relationship between the zirconium component content rate and durability in the heat-resistant antifouling substrate in Embodiment 3 of the present invention 本発明の実施の形態4における耐熱防汚基板におけるチタン成分含有率と耐久性の関係を示す特性図The characteristic view which shows the relationship between the titanium component content rate and durability in the heat-resistant antifouling substrate in Embodiment 4 of the present invention 本発明の実施の形態5における耐熱防汚基板における十点表面粗さと耐久性の関係を示す特性図The characteristic view which shows the relationship between ten-point surface roughness and durability in the heat-resistant antifouling substrate in Embodiment 5 of the present invention 本発明の実施の形態11〜14および16における加熱調理機器を示す構成図The block diagram which shows the heating cooking appliance in Embodiment 11-14 and 16 of this invention 本発明の実施の形態15における加熱調理機器を示す構成図The block diagram which shows the heating cooking appliance in Embodiment 15 of this invention 本発明の実施の形態17における加熱調理機器を示す構成図The block diagram which shows the heating cooking appliance in Embodiment 17 of this invention

1 耐熱防汚基板
2 珪酸系酸化物
3 耐熱基板
4 防汚薄膜
5、12 筐体
6、11 調理加熱用部品
7 焼成被膜
8 接着剤
9 有機シリコーン膜
10 調理室
13 錫薄膜
DESCRIPTION OF SYMBOLS 1 Heat-resistant antifouling board | substrate 2 Silicic acid system oxide 3 Heat-resistant board | substrate 4 Antifouling thin film 5, 12 Case 6, 11 Parts for cooking heating 7 Baking coating 8 Adhesive 9 Organosilicone film 10 Cooking room 13 Tin thin film

Claims (3)

耐熱防汚基板と、前記耐熱防汚基板の下部に配置され前記耐熱防汚基板を保持固定する筐体と、前記筐体と前記耐熱防汚基板との間に設けられた内部空間に収納した調理加熱用部品とを有し、
前記耐熱防汚基板が、
耐熱基板と、
前記耐熱基板の上面に存在し、100〜50wt%の珪素と、アルカリ金属およびアルカリ土類金属からなる合計30wt%以下のアルカリ分と、1〜25wt%のアルミニウム、1〜18wt%のジルコニウム、1〜19wt%のチタンのいずれか1つとを含有し合計100wt%を超えない元素組成を有する珪酸系酸化物
前記珪酸系酸化物の上面に形成されシロキサン結合を有する有機フッソ化合物の防汚薄膜
前記耐熱基板の下面に形成され、白金、金、パナジウムのいずれかの耐熱金属と酸化ビスマスと含有する焼成被膜と、
前記焼成被膜の下面に形成された有機シリコーン膜と、
前記珪酸系酸化物と前記防汚薄膜との間に形成された有機シリコーン樹脂の気相蒸発膜とを備えた加熱調理機器。
The heat-resistant and antifouling substrate, a housing disposed under the heat-resistant and antifouling substrate and holding and fixing the heat and antifouling substrate, and an internal space provided between the housing and the heat and antifouling substrate Cooking heating parts,
The heat-resistant and antifouling substrate is
A heat-resistant substrate,
Present on the upper surface of the heat-resistant substrate, 100 to 50 wt% of silicon, an alkali content of 30 wt% or less composed of alkali metal and alkaline earth metal, 1 to 25 wt% of aluminum, 1 to 18 wt% of zirconium, 1 silicate-based oxide having the elemental composition not exceeding a total of 100 wt% and containing any one of ~19Wt% of titanium,
Antifouling thin film of an organic fluorine compound having an upper surface formed in the siloxane bonds of the silicate-based oxide,
Wherein formed on the lower surface of the heat resistant substrate, and baking coating containing platinum, gold, and bismuth oxide and either a refractory metal vanadium,
An organosilicone film formed on the lower surface of the fired coating;
A cooking device provided with a gas phase evaporation film of an organic silicone resin formed between the silicic acid-based oxide and the antifouling thin film .
前記焼成被膜が、1〜30wt%の酸化ビスマスを含有する請求項1に記載の加熱調理機器。 The cooking device according to claim 1, wherein the fired film contains 1 to 30 wt% of bismuth oxide. 前記耐熱防汚基板が、有機シリコーン接着剤を用いて筐体と接合している請求項1または2に記載の加熱調理機器。 The cooking device according to claim 1 or 2 , wherein the heat-resistant and antifouling substrate is bonded to the housing using an organic silicone adhesive.
JP2004335639A 2004-11-19 2004-11-19 Cooking equipment Expired - Fee Related JP4513523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004335639A JP4513523B2 (en) 2004-11-19 2004-11-19 Cooking equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004335639A JP4513523B2 (en) 2004-11-19 2004-11-19 Cooking equipment

Publications (3)

Publication Number Publication Date
JP2006143524A JP2006143524A (en) 2006-06-08
JP2006143524A5 JP2006143524A5 (en) 2007-12-13
JP4513523B2 true JP4513523B2 (en) 2010-07-28

Family

ID=36623642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004335639A Expired - Fee Related JP4513523B2 (en) 2004-11-19 2004-11-19 Cooking equipment

Country Status (1)

Country Link
JP (1) JP4513523B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11446929B2 (en) * 2019-10-29 2022-09-20 Panasonic Intellectual Property Management Co., Ltd. Liquid discharging head and ink-jet apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000063153A (en) * 1998-08-11 2000-02-29 Central Glass Co Ltd Water-repelling substrate and its production
JP2000336334A (en) * 1999-05-31 2000-12-05 Nippon Sheet Glass Co Ltd Production of silicaceous film-coated article and functional film-coated article
JP2003068435A (en) * 2001-06-12 2003-03-07 Nippon Electric Glass Co Ltd Top plate for cooker

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH077288A (en) * 1993-06-17 1995-01-10 Matsushita Electric Ind Co Ltd Optical permeable electromagnetic wave shielding material
JPH09132433A (en) * 1995-11-13 1997-05-20 Central Glass Co Ltd Sol-gel film and water-repellent glass using same
JP3722161B2 (en) * 1995-11-06 2005-11-30 日本電気硝子株式会社 Cookware top plate
JPH09190878A (en) * 1996-01-08 1997-07-22 Matsushita Electric Ind Co Ltd Induction heating cooker

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000063153A (en) * 1998-08-11 2000-02-29 Central Glass Co Ltd Water-repelling substrate and its production
JP2000336334A (en) * 1999-05-31 2000-12-05 Nippon Sheet Glass Co Ltd Production of silicaceous film-coated article and functional film-coated article
JP2003068435A (en) * 2001-06-12 2003-03-07 Nippon Electric Glass Co Ltd Top plate for cooker

Also Published As

Publication number Publication date
JP2006143524A (en) 2006-06-08

Similar Documents

Publication Publication Date Title
US9074778B2 (en) Cooking appliance surfaces having spill containment pattern
JP2004130785A (en) Easily cleanable apparatus which can be easily cleaned and provided with heat resistant surface coating
EP3357876B1 (en) Enamel composition, preparation method of enamel composition, and cooking appliance
KR101411034B1 (en) Composition for enamel and cooking appliance to apply the same
KR101457164B1 (en) Coating composition, and cooking device or cooking receptacle coated said cating composition
US20090304996A1 (en) Article having water-repellent surface
JP6826670B2 (en) Glass composition and cooking equipment
EP3357877A1 (en) Enamel composition, preparation method of enamel composition, and cooking appliance
JP2010013348A (en) Decorative coating for glass or glass-ceramic product
JP5548994B2 (en) Method for producing parts, particularly for high temperature applications, and parts
RU2004110938A (en) CATALYTIC COATING FOR SELF-CLEANING OF OVENS AND COOKERS
JP2007144916A (en) Super-water repellent substrate
JP4517761B2 (en) Heat-resistant and antifouling substrate and cooking device using the same
US20040209072A1 (en) Cleaning-friendly article with an easily cleanable, heat-resistant surface coating
JP4513523B2 (en) Cooking equipment
JP4165941B2 (en) Composite material capable of controlling wettability with surface water, method for controlling wettability with surface water, and functional coating liquid
JP2006143524A5 (en)
JP2002326841A (en) Stain-proof glass
JP2921197B2 (en) Water / oil repellent coating material and method for producing the same
JP3722161B2 (en) Cookware top plate
JP6837795B2 (en) Hydrophilic material, heating equipment
JP2003164379A (en) Member for cooking equipment
JP4014853B2 (en) Article having antifouling coating and method for producing the same
JP2006116766A (en) Heat-resistant base body, its manufacturing method, and cooker and cooking container using the base body
KR102022385B1 (en) Glass composition, coation member and cooking appliance

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071026

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071026

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091118

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100503

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees