JP4165941B2 - Composite material capable of controlling wettability with surface water, method for controlling wettability with surface water, and functional coating liquid - Google Patents

Composite material capable of controlling wettability with surface water, method for controlling wettability with surface water, and functional coating liquid Download PDF

Info

Publication number
JP4165941B2
JP4165941B2 JP31412198A JP31412198A JP4165941B2 JP 4165941 B2 JP4165941 B2 JP 4165941B2 JP 31412198 A JP31412198 A JP 31412198A JP 31412198 A JP31412198 A JP 31412198A JP 4165941 B2 JP4165941 B2 JP 4165941B2
Authority
JP
Japan
Prior art keywords
oxide
wettability
water
heat treatment
functional coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31412198A
Other languages
Japanese (ja)
Other versions
JP2000119551A (en
Inventor
雅浩 宮内
光秀 下吹越
俊也 渡部
和仁 橋本
章 中島
昭 藤嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP31412198A priority Critical patent/JP4165941B2/en
Publication of JP2000119551A publication Critical patent/JP2000119551A/en
Application granted granted Critical
Publication of JP4165941B2 publication Critical patent/JP4165941B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、比較的低温の熱処理によって表面における液体の濡れ性を高めたり低くしたりする濡れ制御が可能であることを特徴とする複合材及びこれを得るためのコーティング液を提供するものであり、さらにこの熱処理制御を利用した部材、機器類に関する。
【0002】
【従来の技術】
部材表面について、その使用環境や用途に応じて親水性または疎水性の機能を持たせる検討が種々重ねられてきた。表面を親水性にすることが好適な分野として、防曇、防滴材料、雨水によるセルフクリーニング材料等がある。前記親水性部材は、表面に水との親和性の高い機能を持つ構造を設け、付着した水分をなじませ水滴を広がらせることによって、結露によるガラス等の透明性が損なわれることを防止したり、表面に付着した汚物を雨水によって浮き上がらせて洗い流すことによって自己浄化機能を発揮するといったものである。従来の親水性部材について大別すると、
a)界面活性剤のコーティング:界面活性剤を部材の表面にコーティングし、そこに水滴が付着すると界面活性剤が水滴内に入り込み水滴の表面張力を低下させて水滴を広がらせる。
b)水溶性樹脂のコーティング:例えば、特開平5−263069号には水との親和性が高い水溶性樹脂のポリビニルアルコール系樹脂を主剤とした結露防止性付与組成物が開示されている。
c)多孔体:水との親和性が比較的高いシリカを多孔質状に形成することで比表面積を大きくさせることによって高い親水性機能をもたせる。
d)光触媒を利用する部材:最近になって確立された技術で、例えば、WO96/29375号には基材の表面を光触媒的に親水化させる方法、超親水性の光触媒性表面を備えた基材及びその製造方法が開示されている。光触媒を利用する方法は親水性機能を発現させるためには、励起光として紫外線の照射が必要になる。
一方、部材の表面を疎水性にすることが適している分野として、車のフロントガラス等がある。車のフロントガラス等の強い風があたる部位は表面が親水性であると付着した水分が広がり水滴がなくなるが、強風のために水膜の厚みが不均一になり像が歪んで可視性が損なわれるため、表面を疎水性にして表面の水滴を吹き飛ばした方がより可視性が向上する。従来の疎水性部材で主要なものについては、
e)フッ素系樹脂のコーティング:例えば、表面エネルギーの低いポリテトラフルオロエチレン(PTFE)のような撥水性の材料のコーティングすることによって、水などの極性分子との親和性をなくして水をはじく機能を発現する。
ところが、前記a)〜e)に例記した親水性部材及び疎水性部材の従来技術は、それぞれ耐久性、使用環境の制限等といった問題点を有している。a)界面活性剤、及びb)水溶性樹脂のコーティングによって表面に親水性を付与させる方法は、多湿環境での使用を重ねると表面の親水化への有効成分が溶け出して徐々にその量が減少し、最後には有効成分が消失してしまうために親水性機能を発揮できなくなるといった耐久性の問題があった。また、c)多孔体を利用して表面に親水性を付与する方法、及びe)フッ素系樹脂をコーティングすることによって表面に疎水性を付与する方法は、長期の使用に際しては表面に汚物が付着して親水性機能及び疎水性機能が徐々に劣化してしまい、表面の濡れ性を維持できなくなるといった耐久性に問題があった。d)光触媒を利用することによって表面に親水性を付与させる方法は、紫外線を照射することによって表面が水との親和性が非常に高い状態になる効果、さらに光触媒作用による表面に付着した有機物の分解作用の相乗効果によって、紫外光が照射される環境においては表面の親水性の耐久性が非常に高い技術である。しかし、光触媒を利用した親水性部材は紫外線の照射が必要であるため、使用環境に制限を受けるといった問題点を有している。また、光触媒を利用する場合、紫外線の照射によって表面を親水性にすることはできるが、いったん親水化した部材を疎水性にする制御ができなかった。
【0003】
【発明が解決しようとする課題】
本発明は前記の事実に鑑みてなされたもので、その目的とするところは、紫外線を用いないで表面の水との濡れ性を制御する方法、自己浄化品、可視性向上部材、印刷機器および防曇部材を提供することにある。
【0004】
【課題を解決するための手段】
本発明では、基材の表面に接合された機能性被膜の表面の、水との濡れ性を制御する方法であって、前記機能性被膜は、酸化チタン、酸化鉄、酸化クロム、酸化タングステンからなる群より選択される少なくとも一種類の半導体を含んでなり、前記制御は、前記機能性被膜の熱処理によって、前記機能性被膜の表面の親水性と疎水性とを可逆的に変化させる濡れ性の制御方法を提供する。
【0005】
【発明の実施の形態】
本発明に係る複合材は、酸化チタン、酸化鉄、酸化クロム、酸化スズ、酸化亜鉛、チタン酸ストロンチウム、酸化タングステン、酸化銅からなる群より選択される一種類の半導体を含む機能性被膜、または前記半導体からなる群より選択される二種類以上の半導体を含む機能性被膜、または前記半導体からなる群より選択される少なくとも一種類に、クロム、バナジウム、ニオブ、鉄、銅、コバルト、ニッケル、マンガンからなる群より選択される少なくとも一種類の金属を含む機能性被膜を基材表面に備えたものである。
【0006】
前記機能性被膜の形成方法は例えば、金属アルコキシドを溶媒に希釈したコーティング液を調整し、前記コーティング液をガラス等の基材表面上に、スプレーコーティング、フローコーティング、スピンコーティング、ディップコーティング、ロールコーティング等の方法で塗布後、焼成等の方法で表面層を基材に固定する。基材がナトリウムのようなアルカリ網目修飾イオンを含むガラスの場合、基材と上記表面層との間にシリカ等の中間層を形成しても良い。そうすれば、焼成中にアルカリ網目修飾イオンが基材から表面層へ拡散することを防止される。
【0007】
酸化チタン、酸化鉄、酸化クロム、酸化スズ、酸化亜鉛、チタン酸ストロンチウム、酸化タングステン、酸化銅からなる群より選択される少なくとも一種類の半導体に、クロム、バナジウム、ニオブ、鉄、銅、コバルト、ニッケル、マンガンからなる群より選択される少なくとも一種類の金属を複合する場合、例えば、前記コーティング液に複合させる金属イオンを含む溶液を滴下して得られる液をコーティング剤として好適に利用することができる。また、あらかじめ金属を複合していない機能性被膜を作製した後に、プラズマ処理法、イオン注入法等で金属を複合させることも可能である。前記の機能性被膜は、いずれの場合でも水分が浸透しない程度に緻密であることが望ましい。
【0008】
驚くべきことに、前記機能性被膜を備えた複合材は熱処理温度によって表面の水との濡れ性を制御することができる。より詳しくは25℃から500℃の範囲において、低温域では疎水化、高温域では親水化する。機能性被膜の半導体として酸化鉄を利用した場合、結果として、25℃から200℃の熱処理によって疎水化、200℃から500℃の熱処理によって親水化した。低温域の熱処理によって表面が疎水化するメカニズムは、表面の物理吸着水及び化学吸着水等の吸着水の脱離が原因であると考えられる。また、高温域で親水化するメカニズムは、以下の2つのモデルが考えられている。1)表面に付着した有機物の燃焼による清浄化、2)昇温過程において半導体表面に酸素欠陥が生じ、冷却過程においてその酸素欠陥部分に水が解離吸着し安定化する。
【0009】
熱処理に用いる熱源としては、電気炉、乾燥機、ホットプレート、高周波誘導炉、電熱器、ガス炉、ガスバーナー、摩擦熱等が好適に利用できる。また、熱源として、加熱効果のある光照射を利用することもできる。この場合の光源としては、蛍光灯、白熱電灯、水銀ランプ、キセノンランプ、水銀−キセノンランプ、ハロゲンランプ、メタルハライドランプ、レーザー光、赤外線ランプ、太陽光からなる群より選択される少なくとも一種類を利用したもの、または前記光源からの光を低損失のファイバーで誘導した光源等が好適に利用できる。熱源として光源を利用する場合、被照射物の温度の調節は、光量及び照射波長によって制御可能である。また、熱処理方法として熱源と光源を組み合わせることも可能である。
【0010】
前記機能性被膜を形成する半導体が光触媒機能を有する場合もある。例えば、機能性被膜の半導体として酸化チタンを利用した場合、高温の熱処理によって親水化、低温の熱処理によって疎水化するという機能の他に、紫外線を照射することによって親水化する機能を有する。したがって、前記酸化チタンを親水化させる方法として、高温の熱処理及び表面を高温にさせるような光照射の他に、表面が高温にはならなくても紫外線を含む光の照射によって親水化が起こる。また、前記酸化チタンを疎水化させる方法として、低温の熱処理及び、照射過程では表面温度が比較的低温に保たれるような紫外線を含まない光照射が利用できる。つまり、前記機能性被膜の半導体として酸化チタンを利用した場合、熱源及び光源からの熱処理温度と光源からの光照射波長を適宜調節することによって、表面の水との濡れ性を制御することが可能である。
【0011】
本発明の複合材と熱源及び光源を組み合わせることによって、自己清浄品となる。自己清浄品としては、汚れの種類及び使用する環境によって、親水性が適している場合と疎水性が適している場合が想定される。例えば、屋外建造物の場合、屋根や外壁に堆積した煤塵や粒子を降雨によって洗い流せる親水性部材である方が自己清浄品としては適している。一方、屋内環境などの降雨が期待できない空間においては、粉塵や粒子が付着しにくい疎水性部材の方が適している。前記複合材を備えた自己清浄品は熱処理によって親水性部材にも疎水性部材にも変換することが可能なので、汚れの種類や使用する環境によって適宜表面の水との濡れ性を制御することができる。
【0012】
本発明の複合材と熱源及び光源を組み合わせることにより、防曇性部材及び可視性向上化部材となる。前記複合材は高温での熱処理によって表面を親水化させることができるため、防曇性部材として好適に利用できる。また、前記複合材は低温での熱処理によって表面を疎水化させることができ、疎水化した部材は車のフロントガラス等の強い風があたる部位の可視性向上化部材として好適に利用できる。
【0013】
本発明の複合材と熱源及び光源を備えることにより印刷機器となる。前記複合材の表面に熱処理をおこなうことによって、表面の親水性及び疎水性のパターニングをおこなう。この表面に親水性または疎水性の色素、トナー、インク等の有色材を塗布、スプレー、浸漬等の方法で付着させたものを、被印刷物に密着させて印刷物を得る。前記複合材は、熱処理温度によって親水性と疎水性が可逆的に変化するので、前記複合材を備えた印刷機器は何度でも使用に耐えうる。
【0014】
【実施例】
実施例1
鉄トリイソプロポキシドをイソプロピルアルコールに溶解してコーティング剤を作製した。作製したコーティング剤をシリカコートしたガラス基材にスピンコートで成膜した。スピンコートは毎分1500回転の回転速度で10秒間おこない、コーティングした膜は電気炉中で500℃、30分間の焼成をおこなった。焼成後の膜はX線回折の結果から、コランダム型の結晶構造であるα-Fe2O3であることを確認した。この膜を暗所にて表面の水との接触角が安定するまで保管した後、この膜の表面に加熱効果のある光の照射をおこない、照射時間に対する水との接触角を測定した。また、光照射過程における試料の表面温度を熱電対で測定した。光源は150Wのキセノンランプ(林時計工業、LA-150Xe)を用い、水との接触角の測定は接触角測定器(協和界面科学、CA-X150)により、マイクロシリンジから水滴を滴下して求めた。
その結果、図1に示すように成膜後暗所にて保管した膜の水との接触角は30°であるが、光を照射することによって約60分後には水との接触角が110°まで疎水化した。光照射過程における試料の表面温度は100℃であった。
【0015】
実施例2
実施例1で得た複合材を暗所にて表面の水との接触角が安定するまで保管した後に、200℃と400℃の熱処理を繰り返しおこなった。200℃の熱処理は恒温槽、400℃の熱処理はマッフル炉を利用した。各熱処理工程後の水との接触角を測定した。
その結果、図2に示すように、400℃の熱処理によって表面の水との接触角が約5°まで親水化し、200℃の熱処理によって接触角が70°まで疎水化し、この現象を繰り返し誘起することが可能であった。
【0016】
実施例3
酸化クロムコート剤(高純度化学製SYM-CR015、酸化物濃度0.15mol/l)をシリカコートしたガラス基材にスピンコートで成膜した。スピンコートは毎分1500回転の回転速度で10秒間おこない、コーティングした膜は電気炉中で500℃、30分間の焼成をおこなった。焼成後の膜はX線回折の結果から、コランダム型の結晶構造であるCr2O3であることを確認した。この膜を暗所にて表面の水との接触角が安定するまで保管した後、加熱効果のある光を照射したときの水との接触角を測定した。光照射条件は実施例1と同様である。また、光照射過程における試料の表面温度を測定した。
その結果、図3に示すように光を照射することによって水との接触角が110°まで疎水化した。光照射過程における試料の表面温度は100℃であった。
【0017】
実施例4
実施例3で得られた光触媒機能材を光照射によって水との接触角が110°になるまで疎水化させた後に、500℃で30分の熱処理をおこなった。
その結果、500℃で30分の熱処理によって、110°であった水との接触角が0°まで親水化した。
【0018】
実施例5
タングステンペンタエトキシドをイソプロピルアルコールに溶解してコーティング剤を作製した。このコーティング剤をシリカコートしたガラス基材にスピンコートで成膜した。スピンコートは毎分1500回転の回転速度で10秒間おこない、コーティングした膜は電気炉中で500℃、30分間の焼成をおこなった。焼成後の膜はX線回折の結果から、酸化レニウム型の結晶構造であるWO3であることを確認した。この膜を暗所にて表面の水との接触角が安定するまで保管した後、この膜の表面に200℃および400℃の熱処理を繰り返しおこない、各熱処理工程後における水との接触角を測定した。熱処理条件は、実施例2と同様である。
その結果、図4に示すように、200℃の熱処理によって約40°まで疎水化、400℃の熱処理によって5°以下まで親水化し、この現象を繰り返し誘起することが可能であった。
【0019】
実施例6
チタンテトライソプロポキシドに対して、クロム塩を塩酸に溶解した液を滴下して加水分解をおこなうことによってコーティング剤を作製する。クロムの添加量は酸化チタンに対して重量比で3%となるようにした。作製したコーティング剤をシリカコートしたパイレックスガラス基材にスピンコートで成膜した。スピンコートは毎分1500回転の回転速度で10秒間おこない、コーティングした膜は電気炉中で500℃、30分間の焼成をおこなった。この膜に対して、クロムを添加していないチタンのみのコーティング剤によって、再度同様の条件で成膜をおこない、中間層にあたる部分が酸化チタンとクロムの複合層で、表層が酸化チタンのみの層で形成される2層構造の膜を作製した。この試料の表面に紫外光→可視光の照射をおこない、照射時間に対する水との接触角の変化を測定した。また、光照射過程における試料表面の温度を熱電対によって測定した。紫外光の光源は200Wの水銀−キセノンランプ(林時計工業、LA-210UV)を用い、色ガラスフィルター(東芝硝子、UV-D36B)を介して波長を360nmとした。また、可視光の光源は150Wのキセノンランプ(林時計工業、LA-150Xe)を用い、紫外光カットフィルター(東芝硝子、Y-43)と熱線カットカットフィルター(東芝硝子、IRA-25S)を介して照射波長を430nm〜800nmとした。
その結果、図5に示すように紫外線照射によって水との接触角が5°まで親水化し、可視光照射によって水との接触角が20°まで疎水化した。紫外線照射時の試料の表面温度は28℃、可視光照射時の試料の表面温度は100℃であった。
【0020】
【発明の効果】
本発明によれば、酸化チタン、酸化鉄、酸化クロム、酸化スズ、酸化亜鉛、チタン酸ストロンチウム、酸化タングステン、酸化銅からなる群より選択される少なくとも一種類の半導体、または前記半導体からなる群より選択される少なくとも一種類または複数の膜構造体は、熱処理温度によって任意に表面の水との濡れ性を制御することが可能であり、この複合材と熱源又は加熱効果のある光源を組み合わせることによって、親水性部材、疎水性部材、自己浄化品、防曇性部材、可視性向上化部材、印刷機器を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施例1に係る試料表面の水との接触角と光照射時間の関係を示す図。
【図2】本発明の実施例2に係る熱処理後の試料表面の水との接触角と熱処理温度の関係を示す図。
【図3】本発明の実施例3に係る試料表面の水との接触角と光照射時間の関係を示す図。
【図4】本発明の実施例5に係る熱処理後の試料表面の水との接触角と熱処理温度の関係を示す図。
【図5】本発明の実施例6に係る試料表面の水との接触角と光照射時間の関係を示す図。
[0001]
BACKGROUND OF THE INVENTION
The present invention provides a composite material characterized in that the wettability of the surface can be increased or decreased by heat treatment at a relatively low temperature, and a coating liquid for obtaining the composite material. Further, the present invention relates to members and equipment using this heat treatment control.
[0002]
[Prior art]
Various studies have been made on the surface of a member so as to have a hydrophilic or hydrophobic function depending on the use environment and application. Fields where it is preferable to make the surface hydrophilic include anti-fogging, drip-proof materials, and self-cleaning materials using rainwater. The hydrophilic member is provided with a structure having a function with high affinity for water on the surface, and prevents the transparency of the glass or the like due to condensation from being impaired by allowing the adhering moisture to blend in and spreading water droplets. The filth adhering to the surface is lifted up by rainwater and washed away to exert a self-purifying function. When it divides roughly about the conventional hydrophilic member,
a) Coating of surfactant: A surfactant is coated on the surface of a member, and when a water droplet adheres thereto, the surfactant enters the water droplet to reduce the surface tension of the water droplet and spread the water droplet.
b) Water-soluble resin coating: For example, JP-A-5-263069 discloses a composition for imparting anti-condensation, which is mainly composed of a polyvinyl alcohol-based resin, which is a water-soluble resin having a high affinity for water.
c) Porous material: A silica having a relatively high affinity with water is formed in a porous shape to increase the specific surface area, thereby providing a high hydrophilic function.
d) Member utilizing photocatalyst: A recently established technique, for example, WO96 / 29375 discloses a method of hydrophilizing the surface of a substrate, a group having a superhydrophilic photocatalytic surface. A material and a method for manufacturing the same are disclosed. The method using a photocatalyst requires irradiation with ultraviolet rays as excitation light in order to develop a hydrophilic function.
On the other hand, as a field where it is suitable to make the surface of a member hydrophobic, there is a windshield of a car. If the surface is exposed to strong wind, such as the windshield of a car, the adhering water spreads and water drops disappear when the surface is hydrophilic.However, due to the strong wind, the thickness of the water film becomes uneven and the image is distorted and the visibility is lost. Therefore, visibility is improved more by making the surface hydrophobic and blowing water droplets on the surface. For the main conventional hydrophobic members,
e) Fluorine-based resin coating: For example, by coating a water-repellent material such as polytetrafluoroethylene (PTFE) with low surface energy, it has the function of repelling water by eliminating affinity with polar molecules such as water. Is expressed.
However, the conventional techniques of the hydrophilic member and the hydrophobic member described in the above a) to e) have problems such as durability and restrictions on the use environment. In the method of imparting hydrophilicity to the surface by coating with a) a surfactant and b) a water-soluble resin, the active ingredient for hydrophilizing the surface dissolves and the amount gradually increases when used in a humid environment. There is a problem of durability such that the hydrophilic function cannot be exhibited because the active ingredient disappears in the end and the active ingredient disappears. In addition, c) a method of imparting hydrophilicity to the surface using a porous material, and e) a method of imparting hydrophobicity to the surface by coating with a fluororesin, filth adheres to the surface during long-term use. As a result, the hydrophilic function and the hydrophobic function are gradually deteriorated, and there is a problem in durability that the wettability of the surface cannot be maintained. d) The method of imparting hydrophilicity to the surface by utilizing a photocatalyst is the effect that the surface becomes very high in affinity with water by irradiating with ultraviolet rays, and further, the organic substance adhering to the surface by the photocatalytic action Due to the synergistic effect of the decomposition action, this is a technology with extremely high surface hydrophilic durability in an environment irradiated with ultraviolet light. However, a hydrophilic member using a photocatalyst needs to be irradiated with ultraviolet rays, and thus has a problem of being restricted by the use environment. Further, when using a photocatalyst, the surface can be made hydrophilic by irradiation with ultraviolet rays, but it has not been possible to control the once hydrophilized member to be hydrophobic.
[0003]
[Problems to be solved by the invention]
The present invention has been made in view of the above-mentioned facts, and the object of the present invention is to provide a method for controlling wettability with water on the surface without using ultraviolet rays , a self-purifying product, a visibility improving member, a printing apparatus, and the like. The object is to provide an antifogging member .
[0004]
[Means for Solving the Problems]
The present invention is a method for controlling the wettability of the surface of a functional coating bonded to the surface of a substrate with water, wherein the functional coating is made of titanium oxide, iron oxide, chromium oxide, or tungsten oxide. consisting comprises at least one semiconductor selected from the group, the control, by heat treatment of the functional coating, the wettability to reversibly change the hydrophilicity and hydrophobicity of the surface of the functional coating Provide a control method.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The composite material according to the present invention is a functional film containing one kind of semiconductor selected from the group consisting of titanium oxide, iron oxide, chromium oxide, tin oxide, zinc oxide, strontium titanate, tungsten oxide, copper oxide, or A functional film containing two or more types of semiconductors selected from the group consisting of the semiconductors, or at least one type selected from the group consisting of the semiconductors, chromium, vanadium, niobium, iron, copper, cobalt, nickel, manganese A functional film containing at least one kind of metal selected from the group consisting of:
[0006]
The functional film is formed by, for example, preparing a coating solution obtained by diluting a metal alkoxide in a solvent, and spray coating, flow coating, spin coating, dip coating, roll coating on the surface of the substrate such as glass. After coating by a method such as, the surface layer is fixed to the substrate by a method such as firing. In the case where the substrate is glass containing alkali network modifying ions such as sodium, an intermediate layer such as silica may be formed between the substrate and the surface layer. If it does so, it will prevent that an alkali network modification ion diffuses from a base material to a surface layer during baking.
[0007]
At least one semiconductor selected from the group consisting of titanium oxide, iron oxide, chromium oxide, tin oxide, zinc oxide, strontium titanate, tungsten oxide, copper oxide, chromium, vanadium, niobium, iron, copper, cobalt, When compounding at least one kind of metal selected from the group consisting of nickel and manganese, for example, a liquid obtained by dripping a solution containing metal ions to be complexed with the coating liquid can be suitably used as a coating agent. it can. It is also possible to composite a metal by a plasma treatment method, an ion implantation method, or the like after a functional film not previously combined with a metal is prepared. In any case, the functional coating is desirably dense enough to prevent moisture from penetrating.
[0008]
Surprisingly, the composite material provided with the functional coating can control the wettability of the surface with water by the heat treatment temperature. More specifically, in the range of 25 ° C. to 500 ° C., it is hydrophobized in the low temperature range and hydrophilic in the high temperature range. When iron oxide was used as the semiconductor of the functional coating, as a result, it was hydrophobized by heat treatment at 25 ° C. to 200 ° C. and hydrophilized by heat treatment at 200 ° C. to 500 ° C. The mechanism by which the surface is hydrophobized by heat treatment in a low temperature region is considered to be caused by desorption of adsorbed water such as physical adsorbed water and chemically adsorbed water on the surface. In addition, the following two models are considered for the mechanism of hydrophilization at high temperatures. 1) Cleaning by burning organic substances adhering to the surface, 2) Oxygen defects are generated on the semiconductor surface in the temperature rising process, and water is dissociated and adsorbed on the oxygen defect portions in the cooling process to be stabilized.
[0009]
As a heat source used for the heat treatment, an electric furnace, a dryer, a hot plate, a high-frequency induction furnace, an electric heater, a gas furnace, a gas burner, frictional heat, or the like can be suitably used. Moreover, light irradiation with a heating effect can also be utilized as a heat source. As a light source in this case, use at least one selected from the group consisting of a fluorescent lamp, an incandescent lamp, a mercury lamp, a xenon lamp, a mercury-xenon lamp, a halogen lamp, a metal halide lamp, a laser beam, an infrared lamp, and sunlight. Or a light source in which light from the light source is guided by a low-loss fiber can be suitably used. When a light source is used as a heat source, the temperature of the object to be irradiated can be adjusted by the light amount and the irradiation wavelength. Moreover, it is also possible to combine a heat source and a light source as a heat treatment method.
[0010]
The semiconductor forming the functional film may have a photocatalytic function. For example, when titanium oxide is used as a semiconductor of the functional coating, it has a function of hydrophilizing by irradiating ultraviolet rays in addition to the function of hydrophilizing by high-temperature heat treatment and hydrophobizing by low-temperature heat treatment. Therefore, as a method for hydrophilizing the titanium oxide, in addition to high-temperature heat treatment and light irradiation for increasing the surface, hydrophilicity occurs by irradiation with light including ultraviolet rays even when the surface does not reach a high temperature. As a method for hydrophobizing the titanium oxide, low-temperature heat treatment and light irradiation that does not contain ultraviolet rays that keep the surface temperature relatively low during the irradiation process can be used. In other words, when titanium oxide is used as the semiconductor of the functional coating, the wettability of the surface with water can be controlled by appropriately adjusting the heat treatment temperature from the heat source and the light source and the light irradiation wavelength from the light source. It is.
[0011]
By combining the composite material of the present invention with a heat source and a light source, a self-cleaning product is obtained. As a self-cleaning product, a case where hydrophilicity is suitable and a case where hydrophobicity is suitable are assumed depending on the type of dirt and the environment used. For example, in the case of an outdoor building, it is more suitable as a self-cleaning product if it is a hydrophilic member that can wash away dust and particles accumulated on the roof and outer wall by rain. On the other hand, in a space where rainfall cannot be expected, such as an indoor environment, a hydrophobic member to which dust and particles hardly adhere is more suitable. Since the self-cleaning product including the composite material can be converted into a hydrophilic member or a hydrophobic member by heat treatment, the wettability of the surface with water can be appropriately controlled depending on the type of dirt and the environment used. it can.
[0012]
By combining the composite material of the present invention with a heat source and a light source, an antifogging member and a visibility improving member are obtained. Since the surface of the composite material can be hydrophilized by heat treatment at a high temperature, it can be suitably used as an antifogging member. Further, the surface of the composite material can be hydrophobized by heat treatment at a low temperature, and the hydrophobized member can be suitably used as a member for improving the visibility of a portion exposed to a strong wind such as a windshield of a car.
[0013]
A printing apparatus is provided by including the composite material of the present invention, a heat source, and a light source. By performing heat treatment on the surface of the composite material, hydrophilic and hydrophobic patterning of the surface is performed. A printed material is obtained by adhering a colored material such as a hydrophilic or hydrophobic coloring matter, toner, ink, or the like to the surface by a method such as coating, spraying, or dipping, in close contact with the substrate. Since the composite material reversibly changes its hydrophilicity and hydrophobicity depending on the heat treatment temperature, the printing apparatus including the composite material can withstand use any number of times.
[0014]
【Example】
Example 1
Iron triisopropoxide was dissolved in isopropyl alcohol to prepare a coating agent. A film was formed by spin coating on a glass substrate coated with the prepared coating agent. Spin coating was performed for 10 seconds at a rotational speed of 1500 rpm, and the coated film was baked in an electric furnace at 500 ° C. for 30 minutes. From the result of X-ray diffraction, it was confirmed that the fired film was α-Fe2O3 having a corundum crystal structure. The film was stored in the dark until the contact angle with water on the surface was stabilized, and then the surface of the film was irradiated with light having a heating effect, and the contact angle with water with respect to the irradiation time was measured. Further, the surface temperature of the sample during the light irradiation process was measured with a thermocouple. The light source is a 150W xenon lamp (Hayashi Watch Industry, LA-150Xe), and the contact angle with water is determined by dropping water droplets from a microsyringe using a contact angle measuring instrument (Kyowa Interface Science, CA-X150). It was.
As a result, the contact angle with water of the film stored in the dark place after film formation is 30 ° as shown in FIG. 1, but the contact angle with water becomes 110 hours after about 60 minutes by irradiating light. Hydrophobized to ° C. The surface temperature of the sample during the light irradiation process was 100 ° C.
[0015]
Example 2
The composite material obtained in Example 1 was stored in the dark until the contact angle with the surface water became stable, and then heat treatment at 200 ° C. and 400 ° C. was repeated. A 200 ° C heat treatment was performed using a thermostatic bath, and a 400 ° C heat treatment was performed using a muffle furnace. The contact angle with water after each heat treatment step was measured.
As a result, as shown in FIG. 2, the contact angle with water on the surface is hydrophilized to about 5 ° by heat treatment at 400 ° C., and the contact angle is hydrophobized to 70 ° by heat treatment at 200 ° C., and this phenomenon is repeatedly induced. It was possible.
[0016]
Example 3
A chromium oxide coating agent (SYM-CR015, high purity chemical, oxide concentration 0.15 mol / l) was coated on a silica-coated glass substrate by spin coating. Spin coating was performed for 10 seconds at a rotational speed of 1500 rpm, and the coated film was baked in an electric furnace at 500 ° C. for 30 minutes. From the result of X-ray diffraction, it was confirmed that the fired film was Cr2O3 having a corundum crystal structure. The film was stored in the dark until the contact angle with water on the surface was stabilized, and then the contact angle with water when irradiated with light having a heating effect was measured. The light irradiation conditions are the same as in Example 1. In addition, the surface temperature of the sample during the light irradiation process was measured.
As a result, as shown in FIG. 3, the contact angle with water was made hydrophobic by irradiating with light up to 110 °. The surface temperature of the sample during the light irradiation process was 100 ° C.
[0017]
Example 4
The photocatalytic functional material obtained in Example 3 was hydrophobized by light irradiation until the contact angle with water reached 110 °, and then heat-treated at 500 ° C. for 30 minutes.
As a result, the heat treatment at 500 ° C. for 30 minutes hydrophilized the contact angle with water which was 110 ° to 0 °.
[0018]
Example 5
Tungsten pentaethoxide was dissolved in isopropyl alcohol to prepare a coating agent. A film was formed by spin coating on a silica-coated glass substrate. Spin coating was performed for 10 seconds at a rotational speed of 1500 rpm, and the coated film was baked in an electric furnace at 500 ° C. for 30 minutes. From the result of X-ray diffraction, the fired film was confirmed to be WO3 having a rhenium oxide type crystal structure. After storing this film in the dark until the contact angle with water on the surface becomes stable, repeat the heat treatment at 200 ° C and 400 ° C on the surface of this film and measure the contact angle with water after each heat treatment step. did. The heat treatment conditions are the same as in Example 2.
As a result, as shown in FIG. 4, it was possible to hydrophobize up to about 40 ° by heat treatment at 200 ° C. and to hydrophilize it to 5 ° or less by heat treatment at 400 ° C., and this phenomenon could be induced repeatedly.
[0019]
Example 6
A coating agent is prepared by adding dropwise a solution in which a chromium salt is dissolved in hydrochloric acid to hydrolyze titanium tetraisopropoxide. The amount of chromium added was 3% by weight with respect to titanium oxide. The prepared coating agent was spin-coated on a Pyrex glass substrate coated with silica. Spin coating was performed for 10 seconds at a rotational speed of 1500 rpm, and the coated film was baked in an electric furnace at 500 ° C. for 30 minutes. This film is again formed under the same conditions with a titanium-only coating agent to which chromium is not added. The intermediate layer is a composite layer of titanium oxide and chromium, and the surface layer is a layer of only titanium oxide. A film having a two-layer structure formed by the above was prepared. The surface of this sample was irradiated with ultraviolet light → visible light, and the change in contact angle with water with respect to the irradiation time was measured. Moreover, the temperature of the sample surface in the light irradiation process was measured with a thermocouple. The ultraviolet light source was a 200 W mercury-xenon lamp (Hayashi Watch Industries, LA-210UV), and the wavelength was set to 360 nm through a colored glass filter (Toshiba Glass, UV-D36B). The visible light source is a 150W xenon lamp (Hayashi Watch Industry, LA-150Xe), which passes through an ultraviolet light cut filter (Toshiba Glass, Y-43) and a heat ray cut filter (Toshiba Glass, IRA-25S). The irradiation wavelength was set to 430 nm to 800 nm.
As a result, as shown in FIG. 5, the contact angle with water was hydrophilized to 5 ° by ultraviolet irradiation, and the contact angle with water was hydrophobized to 20 ° by visible light irradiation. The surface temperature of the sample when irradiated with ultraviolet light was 28 ° C., and the surface temperature of the sample when irradiated with visible light was 100 ° C.
[0020]
【The invention's effect】
According to the present invention, at least one semiconductor selected from the group consisting of titanium oxide, iron oxide, chromium oxide, tin oxide, zinc oxide, strontium titanate, tungsten oxide, copper oxide, or the group consisting of the semiconductors At least one kind or a plurality of film structures selected can arbitrarily control the wettability of the surface with water depending on the heat treatment temperature. By combining this composite material with a heat source or a light source having a heating effect, A hydrophilic member, a hydrophobic member, a self-purifying product, an antifogging member, a visibility improving member, and a printing device can be provided.
[Brief description of the drawings]
FIG. 1 is a graph showing a relationship between a contact angle of a sample surface with water and a light irradiation time according to Example 1 of the present invention.
FIG. 2 is a graph showing the relationship between the contact angle with water on the surface of a sample after heat treatment and the heat treatment temperature according to Example 2 of the present invention.
FIG. 3 is a graph showing the relationship between the contact angle between the sample surface and water and the light irradiation time according to Example 3 of the present invention.
FIG. 4 is a graph showing the relationship between the contact angle with water on the sample surface after heat treatment and the heat treatment temperature according to Example 5 of the present invention.
FIG. 5 is a graph showing the relationship between the contact angle of the sample surface with water and the light irradiation time according to Example 6 of the present invention.

Claims (9)

基材の表面に接合された機能性被膜の表面の、水との濡れ性を制御する方法であって、前記機能性被膜は、酸化チタン、酸化鉄、酸化クロム、酸化タングステンからなる群より選択される少なくとも一種類の半導体を含んでなり、前記制御は、前記機能性被膜の熱処理によって、前記機能性被膜の表面の親水性と疎水性とを可逆的に変化させることを特徴とする濡れ性の制御方法。A method for controlling wettability with water on the surface of a functional coating bonded to the surface of a substrate, wherein the functional coating is selected from the group consisting of titanium oxide, iron oxide, chromium oxide, and tungsten oxide At least one kind of semiconductor, wherein the control reversibly changes the hydrophilicity and hydrophobicity of the surface of the functional coating by heat treatment of the functional coating . Control method. 前記半導体が光触媒機能を有することを特徴とする請求項1に記載の濡れ性の制御方法。The wettability control method according to claim 1, wherein the semiconductor has a photocatalytic function. 前記基材がガラスであることを特徴とする請求項1または2に記載の濡れ性の制御方法。The method for controlling wettability according to claim 1 or 2 , wherein the substrate is glass. 前記熱処理の温度が25℃から500℃の範囲であることを特徴とする請求項1〜いずれか一項に記載の濡れ性の制御方法。The wettability control method according to any one of claims 1 to 3, wherein a temperature of the heat treatment is in a range of 25 ° C to 500 ° C. 請求項1〜のいずれか一項に記載された濡れ性の制御方法に用いるための機能性コーティング液であって、
溶媒と、チタン、鉄、クロム、タングステンからなる群より選択される少なくとも一種類と、を成分として含む無定形またはコロイド状のコーティング液であって、基材に塗布した後、熱処理によって表面の濡れ性を制御できる機能を有することを特徴とする機能性コーティング液。
A functional coating liquid for use in the wettability control method according to any one of claims 1 to 4 ,
An amorphous or colloidal coating solution containing a solvent and at least one selected from the group consisting of titanium, iron, chromium, and tungsten as components, which is applied to a substrate and then wetted by heat treatment A functional coating liquid characterized by having a function capable of controlling properties.
請求項1〜のいずれか一項に記載された濡れ性の制御方法を用いてなる自己浄化品であって、
基材と、
前記基材の表面に接合され、酸化チタン、酸化鉄、酸化クロム、酸化タングステンからなる群より選択される少なくとも一種類の半導体を含む機能性被膜とを含んでなる複合材と、熱源とを備え、
前記機能性被膜は熱処理によって、表面の水との濡れ性が制御されることを特徴とする、自己浄化品。
A self-purifying product using the wettability control method according to any one of claims 1 to 4 ,
A substrate;
A composite material that is bonded to the surface of the base material and includes a functional film including at least one semiconductor selected from the group consisting of titanium oxide, iron oxide, chromium oxide, and tungsten oxide, and a heat source. ,
The functional coating is a self-purifying product, wherein the wettability of the surface with water is controlled by heat treatment.
請求項1〜のいずれか一項に記載された濡れ性の制御方法を用いてなる可視性向上化部材であって、
基材と、
前記基材の表面に接合され、酸化チタン、酸化鉄、酸化クロム、酸化タングステンからなる群より選択される少なくとも一種類の半導体を含む機能性被膜とを含んでなる複合材と、熱源とを備え、
前記機能性被膜は熱処理によって、表面の水との濡れ性が制御されることを特徴とする、可視性向上化部材。
A visibility improving member using the wettability control method according to any one of claims 1 to 4 ,
A substrate;
A composite material that is bonded to the surface of the base material and includes a functional film including at least one semiconductor selected from the group consisting of titanium oxide, iron oxide, chromium oxide, and tungsten oxide, and a heat source. ,
The visibility-enhancing member, wherein the functional coating is controlled in its wettability with water by heat treatment.
請求項1〜のいずれか一項に記載された濡れ性の制御方法を用いてなる印刷機器であって、
基材と、
前記基材の表面に接合され、酸化チタン、酸化鉄、酸化クロム、酸化タングステンからなる群より選択される少なくとも一種類の半導体を含む機能性被膜とを含んでなる複合材と、熱源とを備え、
前記機能性被膜は熱処理によって、表面の水との濡れ性が制御されることを特徴とする、印刷機器。
A printing device using the wettability control method according to any one of claims 1 to 4 ,
A substrate;
A composite material that is bonded to the surface of the base material and includes a functional film including at least one semiconductor selected from the group consisting of titanium oxide, iron oxide, chromium oxide, and tungsten oxide, and a heat source. ,
The functional coating is a printing apparatus, wherein wettability with water on the surface is controlled by heat treatment.
請求項1〜のいずれか一項に記載された濡れ性の制御方法を用いてなる防曇部材であって、
基材と、
前記基材の表面に接合され、酸化チタン、酸化鉄、酸化クロム、酸化タングステンからなる群より選択される少なくとも一種類の半導体を含む機能性被膜とを含んでなる複合材と、熱源とを備え、
前記機能性被膜は熱処理によって、表面の水との濡れ性が制御されることを特徴とする、防曇部材。
An anti-fogging member using the wettability control method according to any one of claims 1 to 4 ,
A substrate;
A composite material that is bonded to the surface of the base material and includes a functional film including at least one semiconductor selected from the group consisting of titanium oxide, iron oxide, chromium oxide, and tungsten oxide, and a heat source. ,
The anti-fogging member, wherein the functional coating is controlled in its wettability with water by heat treatment.
JP31412198A 1998-10-16 1998-10-16 Composite material capable of controlling wettability with surface water, method for controlling wettability with surface water, and functional coating liquid Expired - Lifetime JP4165941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31412198A JP4165941B2 (en) 1998-10-16 1998-10-16 Composite material capable of controlling wettability with surface water, method for controlling wettability with surface water, and functional coating liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31412198A JP4165941B2 (en) 1998-10-16 1998-10-16 Composite material capable of controlling wettability with surface water, method for controlling wettability with surface water, and functional coating liquid

Publications (2)

Publication Number Publication Date
JP2000119551A JP2000119551A (en) 2000-04-25
JP4165941B2 true JP4165941B2 (en) 2008-10-15

Family

ID=18049506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31412198A Expired - Lifetime JP4165941B2 (en) 1998-10-16 1998-10-16 Composite material capable of controlling wettability with surface water, method for controlling wettability with surface water, and functional coating liquid

Country Status (1)

Country Link
JP (1) JP4165941B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105887158A (en) * 2016-05-25 2016-08-24 哈尔滨工业大学 Nanocrystalline metal oxide array with under-oil super-hydrophobicity and super-hydrophilicity reversible transition function and preparation method thereof

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4662122B2 (en) * 2004-08-30 2011-03-30 財団法人電力中央研究所 Super hydrophilic thin film and method for forming the same
JP4725990B2 (en) * 2004-08-30 2011-07-13 財団法人電力中央研究所 Method for producing superhydrophilic member
WO2006109583A1 (en) 2005-04-12 2006-10-19 The Furukawa Electric Co., Ltd. Liquid actuator
KR100766792B1 (en) 2006-06-28 2007-10-17 김용성 Zn1-xcoxo thin film and method for manufacturing the same
JP2008184357A (en) * 2007-01-30 2008-08-14 National Institute Of Advanced Industrial & Technology Method of making surface of oxide amphiphilic
JP5597532B2 (en) 2008-03-04 2014-10-01 株式会社東芝 Hydrophilic member and hydrophilic product using the same
JP5740947B2 (en) * 2010-12-07 2015-07-01 日産自動車株式会社 Visible light responsive photocatalyst, hydrophilic member containing the same, and production method thereof
WO2013008718A1 (en) * 2011-07-08 2013-01-17 日産自動車株式会社 Hydrophilic member and method for producing same
JP6432509B2 (en) * 2013-05-27 2018-12-05 Agc株式会社 Aqueous paint composition, aqueous paint kit and article having a coating film
JP6134241B2 (en) * 2013-09-19 2017-05-24 株式会社キャタラー Noble metal carrying device and noble metal carrying method using the same
KR102075074B1 (en) * 2017-02-10 2020-02-07 (주)엘지하우시스 Laminate for self cleaning glass, self cleaning glass and method of preparing self cleaning glass
CN113278970B (en) * 2021-04-22 2022-12-06 华东交通大学 Preparation method of super-hydrophobic tungsten trioxide coating on surface of magnesium alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105887158A (en) * 2016-05-25 2016-08-24 哈尔滨工业大学 Nanocrystalline metal oxide array with under-oil super-hydrophobicity and super-hydrophilicity reversible transition function and preparation method thereof

Also Published As

Publication number Publication date
JP2000119551A (en) 2000-04-25

Similar Documents

Publication Publication Date Title
JP4165941B2 (en) Composite material capable of controlling wettability with surface water, method for controlling wettability with surface water, and functional coating liquid
JP3003593B2 (en) Photocatalytic hydrophilic member
EP0780158B1 (en) Photocatalyst composition and process for its production, and photocatalyst composition attached substrate
WO2012062467A1 (en) Glass or glass-ceramic product with high temperature-stable, low-energy layer
JP2917525B2 (en) Method for photocatalytically hydrophilizing a surface, and composite having photocatalytic hydrophilic surface
JP3264317B2 (en) Photocatalytic hydrophilic member and method for producing the same
JP2001033607A (en) Hydrophilic mirror, its forming composition, and its manufacture
KR100631104B1 (en) Hydrophilic glass coated with metal oxide and method for producing it
KR100572438B1 (en) Coating method of automotive side mirror coated with photocatalyst oxide
JP2000001340A (en) Production of hydrophilic coating
JPH10221504A (en) Plastic lens
JP3024748B2 (en) Hydrophilic member
JPH10182189A (en) Window glass for building
JPH10166495A (en) Hydrophilic and lipophilic member
JP2001079979A (en) Photocatalytic hydrophilic member
JPH10212139A (en) Window glass for construction
JP2000176292A (en) Photo catalytic composite material, and its preparation
JPH10221503A (en) Glass lens
JPH10199311A (en) Lighting system for tunnel
JPH10131134A (en) Road mirror having antifouling property and water droplet adhesion preventing property in combination
JPH10226766A (en) Aircraft
JPH10192110A (en) Mirror for washstand
JPH10170701A (en) Glass lens having water drop adhesion preventive property
JP2004306036A (en) Photocatalytic hydrophilic member
JP2000093812A (en) Production of photocatalyst and its use

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051014

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051014

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20060307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080729

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term