WO2001071394A1 - Antireflection product and production method therefor - Google Patents

Antireflection product and production method therefor Download PDF

Info

Publication number
WO2001071394A1
WO2001071394A1 PCT/JP2001/002234 JP0102234W WO0171394A1 WO 2001071394 A1 WO2001071394 A1 WO 2001071394A1 JP 0102234 W JP0102234 W JP 0102234W WO 0171394 A1 WO0171394 A1 WO 0171394A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
phase
optical thin
thin film
refractive index
Prior art date
Application number
PCT/JP2001/002234
Other languages
French (fr)
Japanese (ja)
Inventor
Shinji Kondoh
Takuji Oyama
Takashige Yoneda
Original Assignee
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Company, Limited filed Critical Asahi Glass Company, Limited
Publication of WO2001071394A1 publication Critical patent/WO2001071394A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/12Optical coatings produced by application to, or surface treatment of, optical elements by surface treatment, e.g. by irradiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings

Definitions

  • the present invention relates to an antireflection article having an optical thin film having one-dimensionally penetrated pores (hereinafter, also referred to as one-dimensionally penetrated pores).
  • the optical thin film of the present invention is suitable for a front glass of a display, a windshield of a vehicle, a window glass of a building, an antireflection film used for a mirror, an optical lens, and the like, and has excellent durability.
  • Glass is used for the display of personal computers and computers, but if a normal glass surface is used, several percent of the light incident on the screen is reflected, so fluorescent lights and surrounding scenery are reflected on the screen and displayed. There was a problem that the contents were hard to see. Similar phenomena are also a problem for architectural and architectural glass such as picture frame glass and show window glass.
  • optical members such as solar cells, cover glasses for solar water heaters, glasses, and cameras preferably have low reflectivity in order to maximize their performance.
  • windshields used for automobiles and railway vehicles have high transmission performance and low reflection performance in order to reduce glare and glare during nighttime driving and to assist safe operation.
  • Materials that have both high transmission performance and low reflection performance are required in a wide range of fields, not only for glass but also for plastics.
  • a film having low reflectivity on the surface of glass or plastic for example, a single-layer low refractive index film or low refractive index film
  • Surface coating of an optical multilayer film in which layers and high-refractive-index layers are alternately stacked has been performed using optical interference.
  • the latter optical multilayer is desirable.
  • this method requires two or three or more films having different compositions to be stacked.
  • any fluoride also withstand moisture as compared with the oxide material such as S I_ ⁇ 2, inferior in terms of oxidation resistance, much as a coating material to the glass surface durability is required not being used.
  • a polymer film having a fluorinated aliphatic ring structure using a cured film obtained by curing an acrylic copolymer together with a cross-linking material as an underlayer Japanese Patent Application Laid-Open No. H02-019801
  • Japanese Patent Application Laid-Open No. H02-019801 A low-reflection multilayer film obtained by forming a film has been studied (JP-A-5-254703).
  • This multilayer film has no problem in adhesion to the substrate when the substrate is plastics, but does not provide sufficient adhesion strength when the substrate is glass.
  • Si 2 reffractive index of a dense body of 1.44 to 1.457
  • a sol-gel method sol-gel method
  • the film formed by the above method is a dense film, and the refractive index is not so different from that of the base glass (for example, the refractive index of soda lime glass is 1.52), so that the low reflection performance is not practically sufficient. . Therefore, an attempt to lower the refractive index of sufficiently introduce small pore membrane than the wavelength of light in the film, such as S I_ ⁇ 2 in some way have been made.
  • Another method is to prepare a ceramic rally containing fine powders such as silica and alumina, apply the slurry to the surface of glass or plastics using a dipping method or a Doc Yuichi blade method, and then heat, dry, or sinter.
  • a method of forming a porous inorganic film by using the method is known.
  • increasing the porosity to lower the refractive index often causes inconsistent characteristics in that the strength of the film itself and the adhesion strength between the film and the substrate are reduced.
  • An object of the present invention is to provide an anti-reflection article which solves the above-mentioned disadvantages of the prior art, has a low refractive index, has a high film strength, and has excellent adhesion to a substrate.
  • the present invention also provides a method for manufacturing an anti-reflective article capable of manufacturing the anti-reflective article without restriction on a substrate. Disclosure of the invention
  • the present invention is formed by removing a one-dimensionally grown columnar phase in a composite film composed of a number of one-dimensionally grown columnar phases and a matrix phase surrounding the columnar phase on a substrate.
  • the refractive index in the present invention means the refractive index at a wavelength of 550 nm.
  • FIG. 1 is a schematic view showing a procedure for forming an optical thin film of the present invention. Explanation of reference numerals
  • the optical thin film according to the present invention is an optical thin film having a large number of one-dimensionally penetrated pores surrounded by a continuous wall from one surface to the other surface of the film. It has a refractive index between the value of the refractive index of the constituent material (dense body) and 1, and has a refractive index according to its porosity.
  • the refractive index N of the optical thin film having one-dimensional through-pores is N n X (1 -R) + 1 XR, which can be roughly expressed as
  • the refractive index of the optical thin film is set to be smaller than the refractive index of the substrate.
  • the optical thin film preferably has a thickness of 60 to 200 nm. If it is less than 60 nm, it is difficult to obtain sufficiently low reflection characteristics, and the strength of the film tends to be insufficient. On the other hand, if it exceeds 200 nm, it is difficult to obtain low reflection characteristics in a wide wavelength range, and the film tends to peel off. For example, if the film thickness is 50 nm, the low reflection characteristics in the visible light region are not sufficient, and the film strength is not sufficient. If the film thickness is 250 nm, the reflection cannot be suppressed over a wide range, and In some cases, peeling occurred partially in the subsequent drying process.
  • the ratio (dZr) of the average pore diameter (r) of the pores to the average thickness (d) of the wall is preferably 0.10.3. If it is less than 0.1, the strength of the film decreases, and if it exceeds 0.3, it is difficult to obtain sufficient low reflection characteristics.
  • the optical thin film of the present invention is composed of at least one selected from the group consisting of oxides, carbides, nitrides, borides and fluorides, and is selected according to the intended use. Oxides are most preferred from the viewpoints of stability, ease of formation, and the like.
  • the average diameter of the one-dimensional through-pores is preferably 1500 nm. 1 nm If it is less than 1, the one-dimensionally extending phase lacks continuity and often remains in the matrix phase without being removed after etching described later. If the phase to be removed remains, problems such as metallic reflection and coloring often occur. In addition, if the average pore diameter exceeds 500 nm, large pores (about 500 to 1000 nm in diameter) exist after etching. This often causes haze (milky white turbidity due to light scattering by large holes).
  • the average pore size is particularly preferably from 1 to 100 nm.
  • a film having both durability and a low refractive index can be obtained, and an antireflection article having only one optical thin film formed on a substrate can be obtained.
  • materials with high durability but not sufficiently low refractive index such as titania, silica, alumina, zirconia, silicon nitride, aluminum nitride, tin oxide, zinc oxide, and tungsten oxide
  • an optical thin film is formed using materials such as nickel oxide, indium-tin oxide (ITO), etc., both durability and a low refractive index can be satisfied with only one layer.
  • a multilayer film can be formed by combining the optical thin film of the present invention with another film.
  • the optical thin film can be used as one of multilayer films such as a multilayer antireflection film, a multilayer heat ray reflection film, and a multilayer conductive film.
  • is the wavelength of light to be anti-reflective.
  • the high refractive index layer and the low refractive index layer have an optical thickness of ⁇ / 2— ⁇ , 4 (or; 2) Antireflection film of 2 layers formed by ⁇ / 4), 2) From the substrate side, a medium refractive index layer, a high refractive index layer and a low refractive index layer were formed with optical thickness ⁇ 4— ⁇ / 2— ⁇ 4.
  • 4 layers with low refractive index layer, middle refractive index layer, high refractive index layer, and low refractive index layer formed with an optical thickness of ⁇ 4— ⁇ / 2— ⁇ 2-4. are known as typical examples.
  • the optical thin film is suitable as a low refractive index layer of these multilayer antireflection films.
  • a two-layer light-absorbing antireflection body called a substrate light-absorbing film and a low-refractive-index film is also known (Japanese Patent Application Laid-Open Nos. 9-1156964 and 10-96801) Etc.).
  • the optical thin film can also be used for the low refractive index film of the light absorbing antireflective body.
  • the reflectance of the optical thin film with respect to incident light from the film side opposite to the film side
  • the reflectance of only the film side surface excluding the reflection by the surface on the side hereinafter also referred to as the film surface reflectance
  • the film surface reflectance is less than the reflectance of a substrate (blank) without an optical thin film at 15 ° incident light.
  • the reflection spectrum of the optical thin film with respect to the incident light of 15 ° from the film side is used.
  • the reflectance is preferably 1% or less in a wavelength region of 400 to 700 nm.
  • the film surface reflectance of 60 ° incident light is 4% less than the reflectance when there is no optical thin film (blank).
  • it is reduced by 0% or more.
  • the optical thin film of the present invention when used for the outermost layer (outermost surface) of the antireflection article of the present invention and a material is selected, another function is exhibited.
  • the use of an optical thin film made of silicon oxide can reduce the contact angle to water to 5 ° or less (expresses hydrophilicity), and has an antifogging function in addition to a low reflection property.
  • an optical thin film made of titanium oxide particularly, titanium oxide containing an anatase crystal phase and / or a rutile crystal phase
  • a self-cleaning action by photocatalytic activity and hydrophilicity are exhibited.
  • the optical thin film made of silicon oxide is provided on the outermost layer (outermost surface) of the antireflection article of the present invention, and a titanium oxide layer (particularly containing an anatase crystal phase and a Z or rutile crystal phase) is provided immediately below the optical thin film.
  • the matrix phase is a material constituting the optical thin film, and the matrix phase is a dense body.
  • the optical thin film in the present invention is formed by, for example, a two-step process. That is, in the first stage, a composite film composed of a large number of columnar phases grown one-dimensionally and a matrix phase surrounding the columnar phase is formed. The grown columnar phase is removed by etching Remain only the matrix phase.
  • a method of directly forming a composite film composed of a one-dimensionally grown columnar phase and a matrix phase surrounding the columnar phase by a physical film forming method (hereinafter, referred to as a composite film).
  • a composite film a method of directly forming a composite film composed of a one-dimensionally grown columnar phase and a matrix phase surrounding the columnar phase by a physical film forming method.
  • an amorphous precursor film is formed on a substrate, and then a eutectic reaction is caused by a heat treatment, whereby a columnar phase grown one-dimensionally and a matrix phase surrounding the columnar phase are formed.
  • a second method of forming a composite film also referred to as a second method of forming a composite film.
  • FIG. 1 is a schematic diagram showing a procedure for forming an optical thin film.
  • a to d show the procedure for forming the optical thin film of the present invention using the first method for forming a composite film.
  • a is a state in which a composite film 4 composed of a columnar phase 2 and a matrix phase 3 is formed on a substrate 1 by a physical film forming method (initial)
  • b is a state in which a composite film 4 is similarly formed (middle)
  • c is “D” indicates a state in which the formation of the composite film 4 is completed
  • “d” indicates a state in which the columnar phase 2 that has grown one-dimensionally by selective etching is removed, and the optical thin film 5 is formed.
  • e to h show procedures for forming an optical thin film using the second method for forming a composite film.
  • e is a state in which an amorphous precursor film 6 containing a transition metal is formed on the substrate 1
  • f is a state in which a eutectic structure is formed on the film surface by heat treatment
  • g is a eutectic reaction interface due to oxygen diffusion from the surface.
  • examples of the physical film forming method for forming the composite film include a sputtering method, an evaporation method, a CVD method, a laser ablation method, and a molecular beam epitaxy method.
  • the sputtering method is particularly preferable because a dense film can be easily obtained, a film having high adhesion to a substrate can be obtained, and mass productivity and large-area film forming property are excellent.
  • the combination of the columnar phase and the matrix phase materials may be any combination that causes the phase separation between the columnar phase material and the matrix phase material during film formation. .
  • the material of the columnar phase is a metal which easily grows in a columnar shape, and Metals or alloys that readily dissolve in force or the like, have low binding energy to the matrix phase material, and are easily reduced are preferred.
  • the 3d transition metal (V, Cr, Mn, Ni, Fe, Co, Cu, Zn or the like, an alloy containing a 3d transition metal, an alkaline earth metal (such as Mg), and an alloy containing an alkaline earth metal.
  • A1, In, Sn, and Pb can also be used.
  • Examples of the matrix phase used as the residual phase include oxides such as silica, alumina, titania, zirconia, mullite, cordierite, spinel, zeolite, and forsterite, silicon carbide, titanium carbide, and zirconium carbide. , Boride such as boron carbide (B 4 C), boride such as titanium boride, zirconium boride, boron carbide, nitride such as silicon nitride, titanium nitride, zirconium nitride, magnesium fluoride, aluminum fluoride, etc. One or more selected from fluorides and. In addition, a small amount of dopant may be contained in the material within the range of the allowable refractive index.
  • the microstructure in which the matrix phase surrounds the one-dimensionally grown columnar phase is controlled by controlling the mixing ratio of the columnar phase and matrix phase materials and the film formation conditions. Is done.
  • the average diameter of the growing columnar phase depends on the volume fraction of the columnar phase and the matrix phase and the film forming conditions (such as Ar gas pressure and substrate temperature during sputtering). Has been confirmed to change.
  • the average diameter of the one-dimensional through-pores of the optical thin film finally obtained after etching is the material of the columnar phase and the matrix phase.
  • Mixing ratio and film forming conditions Ar Gas pressure, substrate temperature, etc.
  • the particle diameter of 2 P a of A r gas C o in the film formed under pressure is 8 nm, 8 It has been confirmed that when the film is formed under the Ar gas pressure of Pa, the particle size of Co becomes about 40 nm.
  • a plurality of one-dimensionally grown columnar phases and a matrix layer surrounding the columnar phases are formed by sputtering a target made of a material forming a columnar phase and a material forming a matrix phase.
  • a target made of a material forming a columnar phase and a material forming a matrix phase After forming a composite film composed of a matrix phase on a substrate, the columnar phase is removed, and a large number of one-dimensionally penetrated walls surrounded by the matrix phase extending from one surface to the other surface of the film are formed.
  • Examples of the target include: 1) a target obtained by mixing a powder of a material forming a columnar phase and a powder of a material forming a matrix phase, and 2) a target formed of a material forming a columnar phase.
  • a composite target in which a number of small pieces of a few mm in size, consisting of a material that forms a matrix phase, are arranged on a composite target.3)
  • a columnar phase is formed on a target that is made of a material that forms a matrix phase.
  • a composite target in which a number of small pieces each having a size of several millimeters made of a material are arranged.
  • Rukoto using material T i 0 2, S i ⁇ 2, Z R_ ⁇ 2, S i 3 N 4 or M g F 2 a is evening one target to form a matrix phase It is preferable to use a target in which the material forming the columnar phase is Co.
  • the ratio (d / r) of the average pore diameter (r) of the aforementioned pores to the average thickness (d) of the wall is 0.
  • a getter composed of a material forming a columnar phase and a material forming a matrix phase is obtained on the target surface of the material forming the columnar phase.
  • the ratio of the area to the total area on the evening-get surface is 0. It is preferable to use a target that is 55 to 0.75.
  • the ratio is v p / (v p + v m ) It is represented by If the ratio is less than 0.55, it is difficult to obtain a one-dimensional columnar structure, and if it exceeds 0.75, the strength of the obtained film decreases.
  • the target can be obtained, for example, by 1) mixing and molding both powders so that the ratio of the powder of the material forming the columnar phase is 0.55 to 0.75 in volume ratio to the whole, or 2) columnar Obtained by arranging a small piece of a material forming a matrix phase on a target made of a material forming a phase so that v p / (v p + v m ) is 0.55 to 0.75 .
  • a method of forming an amorphous precursor film includes physical film formation such as a sputtering method, a vapor deposition method, a CVD method, a laser ablation method, and a molecular beam epitaxy method.
  • Sol-gel method, spray pyrolysis method, solution method such as coating method, and plating method is particularly preferable because it is easy to obtain a dense film and a film having high adhesion to a substrate is obtained, and is excellent in mass productivity and large-area film forming property.
  • the amorphous precursor film is formed by the sputtering method
  • an evening get made of a material forming a columnar phase and a material forming a matrix phase is used.
  • the target is obtained, for example, by mixing powder of a material forming a columnar phase and powder of a material forming a matrix phase. More specifically, the target material for forming a columnar phase consists F e 3 ⁇ 4, also wood charge to form a matrix phase, T I_ ⁇ 2, S I_ ⁇ 2, Z R_ ⁇ 2, S i Target Tsu bets consisting 3 N 4 or M g F 2 and the like.
  • the combination of elements contained in the amorphous precursor film formed first includes a transition metal element, other metal elements, and oxygen.
  • An example of the transition metal element may be any material that separates from the other metal elements contained in the film into a separate compound phase after heat treatment.
  • 3 d Transition metal elements V, Cr, Mn, NiFe, Co, Cu, Zn, etc.
  • alloys containing 3d transition metal elements, and rare earth elements Ce, Nd, Sm, At least one selected from the group consisting of Er
  • Er rare earth elements
  • Metal elements other than the transition metal element become a matrix phase surrounding the columnar phase (transition metal compound needle-like crystals) during heat treatment, and become a component constituting a film having one-dimensional through-pores after etching. To be elected.
  • the metal element other than the transition metal element include S i, A 1, Mg, Z r, Sn, and In.
  • the diameter of the columnar phase that grows one-dimensionally by the heat treatment performed later changes depending on the Ar gas pressure during the sputtering.
  • a film formed at an Ar gas pressure of 2 Pa is heat-treated at 600 ° C.
  • Matthew Bok is precipitated when performing the same process to a diameter of about 2 0 nm.
  • the average diameter of the one-dimensional through-pores in the optical thin film finally obtained after etching is determined by the deposition conditions (sputtering conditions). (Ar gas pressure at that time).
  • a transition metal element and other metal elements and an amorphous precursor film containing oxygen are heat-treated to separate and deposit the transition metal oxide and other metal oxides.
  • the treatment conditions for heating may be any conditions under which a eutectic decomposition reaction occurs.
  • the temperature may be a temperature at which a eutectic decomposition reaction occurs and a temperature at which the reaction proceeds at a sufficient rate. Specifically, a temperature of about 400 to 65 ° C. is preferable.
  • F e 3 0 consists of four (Magunetai g), and materials that form the matrix phase it is preferred that the film with sputtering evening method using a target consisting of S i 0 2 (silica).
  • the second step only the one-dimensionally extended columnar phase is selectively etched and removed from the composite film formed in the first step using an acid or an alkali.
  • the acid used in the etching treatment include sulfuric acid, hydrochloric acid, nitric acid, oxalic acid, and acetic acid.
  • Lmo 1 simply by treatment for several minutes with an aqueous nitric acid solution of L Only Co can be completely removed.
  • the one-dimensionally expanded hematite is soluble in aqueous hydrochloric acid, whereas i 0 2 is because it is insoluble in the solution, it can be selectively etched by immersing the film in aqueous hydrochloric acid of about 6 mo 1 ZL.
  • the substrate on which the optical thin film of the present invention is formed is not particularly limited.
  • a substrate or film of glass, ceramics (including sapphire (alumina single crystal), etc.), metal, plastics, etc. can be used.
  • glass glass, ceramics (including sapphire (alumina single crystal), etc.), refractory metals (eg, Fe, Ni, Cr, V Substrates or films such as stainless steel and oxidation-resistant alloys such as Hastelloy) can be used.
  • refractory metals eg, Fe, Ni, Cr, V Substrates or films such as stainless steel and oxidation-resistant alloys such as Hastelloy
  • the substrate is preferably a transparent substrate (for example, a glass substrate, a single crystal substrate, or a film substrate), and particularly preferably a glass substrate, since the effects of the present invention are particularly remarkably exhibited.
  • the substrate preferably has a refractive index of 1.5 to 1.7.
  • the anti-reflective article of the present invention includes a front glass of a display (such as a CRT panel), a window glass for an automobile (such as a windshield of a vehicle), a window glass for a building, a glass for a mechanical device (a glass for a door of a commercial refrigerator, and the like), Suitable for mirrors and optical lenses.
  • the optical thin film of the present invention has a relatively large porosity because continuous pores extend from the film surface to the inside of the film. Since the pores are sufficiently small compared to the wavelength of light, they do not scatter light, and optically have a refractive index between that of the dense body and that of air (refractive index: 1.00). It becomes a film.
  • the film strength is higher in principle than a conventional porous inorganic film with the same material and porosity. Good adhesion to the substrate.
  • the membrane strength is high because the conventional porous inorganic membrane is formed by loosely binding ceramic particles by sintering, etc., whereas the membrane of the present invention has a completely continuous matrix surrounding the one-dimensional through-pores. This is due to being an integrally molded product.
  • a film having particularly high adhesion can be obtained by forming the first-stage composite film (including the amorphous precursor film by the second forming method) by a sputtering method or the like.
  • the porosity of a conventional porous inorganic film is increased to lower the refractive index, the strength of the film itself and the strength of adhesion between the film and the substrate are reduced, resulting in contradictory problems in characteristics.
  • the optical thin film of the present invention has both a low refractive index, a high film strength, and high adhesion to a substrate, and has both a low refractive index and high durability. .
  • the vacuum chamber was introduced a A r gas After evacuated to 5 XI 0- 4 P a, was generated Burazu Ma by the high-frequency input of the flow rate adjusting 600W as the gas pressure inside the vacuum chamber is 2 P a .
  • the film formation rate was about 0.25 nmZsec, and the substrate was heated to about 200 ° C during film formation.
  • the C o _T i 0 2 composite film having a thickness of 1 2 O nm was formed was observed by TEM (transmission electron microscope), C o crystal particles having an average particle diameter of about 8 nm is grown in a columnar Amorphous Ti 0 2 was precipitated at the grain boundaries.
  • a second step was the C O_T I_ ⁇ 2 soaked to C o particles 5 minutes composite film nitrate aqueous solution of 0. lmo 1 L produced by the above-described method dissolve and remove almost eluted is C o grains child A clear film remained. The average pore size was about 8 nm.
  • C a o-T i 0 2 film after removal of the columnar layer of C o from the composite film was observed with S EM (scanning electron microscope), places the mounting particulate material having a diameter of about several tens of nm No remarkable contrast was seen except that it was worn, and the film was uniform. In the photograph from the cross-sectional direction of the film, a film having a vertical structure remained on the substrate in close contact with the substrate without any gap.
  • the porosity of the optical thin film formed as described above was estimated from the isothermal adsorption / desorption characteristics of N 2 gas to be about 73%.
  • the measurement was performed as follows. An optical thin film (thickness lm) was prepared on both sides of a quartz glass substrate with a thickness of 0.1 mm. A sample was prepared and an automatic specific surface area measuring device ("Au tosorb-1" manufactured by Quanta Chrome) was used. The isothermal adsorption and desorption characteristics of nitrogen gas at the temperature of liquid nitrogen were measured by using, and the porosity was obtained from the pore volume obtained from the amount of adsorption and the film thickness.
  • the optical thin film-formed surface of the silica glass plate on which the above-mentioned optical thin film was formed and the silica glass plate without the film were measured at a reflection angle of 15 ° using a normal reflection spectrum measuring instrument.
  • the glass surface opposite to the film-forming surface was roughened using sandpaper, and further painted with black paint. Then, only the reflection on the film surface side (hereinafter referred to as film surface reflection) was measured.
  • the reflectance at the wavelength of 550 nm of the silica glass plate with the optical thin film formed was about 0.28%, which was lower than that of the blank glass (4.2) (93% anti-reflection). There was an emissivity reduction effect).
  • the refractive index estimated from the minimum reflectance around 550 nm was about 1.30, which was significantly smaller than the refractive index (about 2.5 ) of the dense Ti02 film.
  • Table 1 shows the refractive index of the substrate, the refractive index of the matrix phase, the refractive index of the optical thin film, the ratio (dZr) between the average pore diameter (r) and the average thickness (d) of the wall, the porosity (%), The reflection reduction effect (%) when measured at a reflection angle of 15 ° is shown.
  • Table 1 shows the refractive index of the substrate, the refractive index of the matrix phase, the refractive index of the optical thin film, the ratio (dZr) between the average pore diameter (r) and the average thickness (d) of the wall, the porosity (%), The reflection reduction effect (%) when measured at a reflection angle of 15 ° is shown.
  • Table 1 shows the refractive index of the substrate, the refractive index of the matrix phase, the refractive index of the optical thin film, the ratio (dZr) between the average pore diameter (r) and the average thickness (d) of the wall, the porosity (%), The reflection reduction effect (%) when measured at
  • the durability of the above optical thin film (T i 0 2 film having one-dimensional through-pores of the film thickness 1 20 nm), were examined by Taber abrasion resistance test, 1 00 rotates change in transmittance, etc. also are I could't see it.
  • the Taber abrasion resistance test was conducted using a commercially available CS10 Taber-type abrasion wheel and abrasive paper of the same quality as AA180 abrasive paper specified in JISR 6252. This was done by abrasion of the film at 100 rpm at 100 rpm. The same applies to the Taber abrasion resistance test in the following examples.
  • a Co—Si 2 composite film was formed on a 1.2 mm thick soda lime glass substrate as follows. In sputtering evening, the S I_ ⁇ 2 glass chips 0. 5 mm square on the metal C o evening one target with a diameter of about 1 5 cm, C o and S I_ ⁇ 2 7 glass the area ratio of 0:30 to Composite targets were used. The other sputtering conditions were the same as in Example 1, and the film was formed.
  • the internal structure of the Co—Si 2 composite film thus formed is very similar to the structure of the film obtained in Example 1.
  • the amorphous Si 2 matrix phase surrounds the columnar phase of the Co crystal grains. In this case, the average crystal grain size of the Co crystals was about 1 O nm.
  • T I_ ⁇ 2 film having one-dimensional through pores about 1 20 nm formed.
  • the minimum reflectance in the visible light range was 0.01%, and extremely excellent antireflection performance was obtained.
  • the thickness of 1. a polyethylene film sheet of 8 mm, in the same manner as in Example 3, was S 1_Rei 2 film having one-dimensional through pores about 1 2 O nm formed.
  • the minimum reflectance in the visible light range was 0.07%, and extremely excellent antireflection performance was obtained.
  • the other target conditions were as follows: A film was formed under almost the same conditions as in Example 1.
  • a Co—Si 3 N 4 composite film was formed on a 1.2 mm thick soda lime glass substrate as follows. At the time of spattering, a 0.5 mm square Si 3 N 4 chip is placed on a metal Co with a diameter of about 15 cm and a 60:40 area ratio of Co and Si 3 N 4. Was used. Film formation was performed under almost the same conditions as in Example 1 except for the sputtering conditions.
  • the internal structure of the Co—Si 3 N 4 composite film formed in this manner is very similar to the structure of the film obtained in Example 1, in which the amorphous phase around the columnar phase of the Co crystal grains is formed.
  • the Si 3 N 4 matrix phase is surrounding, but in this case, the average particle size of the Co crystal was about 6 nm.
  • the sample having a thickness of about 120 nm formed by the above method was immersed in an aqueous nitric acid solution to dissolve and remove Co particles.
  • the Co columnar phase was almost eluted, and the Si 3 N 4 matrix phase at the grain boundaries remained.
  • the average pore size was about 6 nm.
  • the thickness of 1. 2 mm soda-lime glass substrate as follows, to form a C o-M g F 2 composite film.
  • a metal 15 cm in diameter C 0-a 1 cm square M g F 2 ceramic chip is placed on the get, and the area ratio of C o to M g F 2 becomes 70: 30. and adjusting the amount of M g F 2 ceramic chip so.
  • the film formation was performed under almost the same conditions as in Example 1 except for the sputtering conditions.
  • the sample having a thickness of about 120 nm formed by the above method was immersed in a 0.1 mo 1 ZL aqueous solution of nitric acid for 5 minutes to dissolve and remove the Co particles.
  • the Co columnar phase was almost eluted, and the MgF 2 matrix phase at the grain boundaries remained.
  • the average pore size was about 12 nm.
  • the vacuum chamber by introducing argon gas vinegar After evacuated to 5 X 1 0 _ 4 P a , and adjusting the flow rate of A r gas so that the gas pressure inside the vacuum chamber is 2 P a, 4. 4W cm 2
  • the high frequency was input to generate plasma. The deposition rate at this time was about 0.2 nm / sec.
  • the film heat-treated by the above method was immersed together with the substrate in an aqueous solution of about 6 mol 1 ZL of hydrochloric acid at room temperature for 48 hours to remove only hematite.
  • T As a result of EM observation, through pores having a diameter of 4 nm, which was almost the same as that of hematite before the acid treatment, were present in the remaining SiO 2 film.
  • the thickness 1. 2 mm soda-lime glass substrate, from the substrate side as follows, S N_ ⁇ 2 / S I_ ⁇ 2 (dense) ZS i 0 2 (film having one-dimensional through-pores), the A three-layer multilayer film was formed.
  • oxygen gas was introduced at a flow rate adjusted to 0.4 Pa and introduced into a Sn target with a diameter of about 15 cm. by introducing a DC sputtering evening power, to form the S N_ ⁇ 2 film of 1 4 nm.
  • the substrate was moved onto a silicon target having a diameter of about 15 cm, and a DC sputtering power of 330 W on which a positive potential pulse of 40 kHz was superimposed was applied to the silicon target.
  • 11111 5 1 0 2 was formed (dense) film.
  • a SiO 2 film having one-dimensional through-pores was formed to a thickness of 123 nm according to Example 2.
  • the glass surface opposite to the film-forming surface is made to be a non-smooth surface using sandpaper, and after applying black paint, the reflection spectrum of the film-forming surface (hereinafter referred to as the film-forming surface reflection spectrum) is obtained. It was measured.
  • the wavelength region where the reflectance is 1% or less is 390 to 720 nm, and the optical multilayer film has an extremely wide antireflection wavelength region.
  • a two-layer multilayer film of S ⁇ 0 2 / ⁇ i 0 2 (a film having one-dimensional through-holes) was formed from the substrate side as follows. That is, the vacuum tank 5 X 1 0- 4 P a to be introduced with a flow rate adjusted such that the oxygen gas to 0. 4 P a after venting, S n target Bok 3 3 0 a diameter of about 1 5 cm by introducing a DC sputtering power of W, to form the S N_ ⁇ 2 film 7. 5 nm. Next, as in Example 1, a Ti ⁇ 2 film having one-dimensional through-pores was formed to a thickness of 109 nm.
  • the wavelength region where the reflectance was 1% or less was measured.
  • the wavelength range was 410 to 700 nm, and the optical multilayer film had an extremely wide antireflection wavelength range.
  • the resulting T I_ ⁇ 2 film-coated glass substrate was placed in an electric furnace, the result was heated for 2 hours at 6 00 ° C in air, the film thickness is reduced by about 1 5% (i.e. a thickness of about 1 20 nm
  • An X-ray diffractometer revealed that it contained two types of crystals, anatase and rutile.
  • the refractive index was 1.3, and the minimum reflectance of the film surface was 0.28%.
  • the T I_ ⁇ 2 film-coated glass substrate of the film surface after heating by applying a Orein acid was about 85 ° was measured contact angle of water. Then the T I_ ⁇ the film 2 film-coated glass board, was irradiated 3 50 nm of light (ultraviolet) at an intensity of 4MWZcm 2 with black line bets, 1 contact angle of water after 240 hours 5 °, the oleic acid was decomposed and the hydrophilicity was restored.
  • Seo one da-lime glass substrate thereby forming a T I_ ⁇ 2 film containing Anata zero film thickness 1 2 0 nm as a crystal phase by the sol-gel method.
  • an SiO 2 film was formed in the same manner as in Example 2 except that the film thickness was changed to 100 nm.
  • a mask was applied to the peripheral portion of the substrate, and neither the Ti 2 film nor the Si 0 2 film was formed.
  • the wavelength region where the reflectance was 1% or less was 410 to 700 nm, and the optical multilayer film having an extremely wide antireflection wavelength region was obtained.
  • a drop of pure water having a diameter of about 1 mm was dropped on the surface of the obtained film, and the contact angle was measured to be about 5 °.
  • the obtained S I_ ⁇ 2 film-coated glass substrate was kept for 1 hour in the refrigerator 5 t: After cooling to a degree, No fogging does not occur in some parts of Toko filtration, film blowing breath removed On the other hand, small water droplets adhered to the glass surface without the film, and became cloudy and opaque. Further, the obtained glass substrate with a film was left in a room for 3 months, and the contact angle of water was examined again. As a result, the contact angle was about 20 °, and the hydrophilicity was reduced.
  • the membrane of the film-coated glass substrate with a hydrophilic drops was irradiated 3 5 0 nm of light (ultraviolet) at an intensity of 4 mWZ cm 2 by using a black line bets, 1 2 0 hour contact angle of water after the It was found that the temperature dropped to 7 ° and the hydrophilicity was restored.
  • a Si 2 film (a film with one-dimensional through-pores) was formed on a 2 mm-thick soda lime glass substrate for automobile windshield as follows. That is, the vacuum chamber was introduced to the flow rate adjusted to the A r gas 1 P a after evacuated to 5 X 1 0- 4 P a, the C o-S i ⁇ 2 target length 2. 5 m by introducing a sputtering evening power of 40 kW, to form a C o-S i ⁇ 2 film having a thickness of 1 34. 5 nm. When the obtained film was immersed in an aqueous 0.1 ml 1 ZL nitric acid solution for 5 minutes to dissolve and remove the Co particles, the Co particles were almost eluted, and a transparent SiO 2 film remained.
  • the reflectance is about 8.2%, which is compared to the value without the film (about 15%).
  • An amorphous precursor film composed of three components of Fe-Si10 was formed on a heat-resistant glass (Corning # 7059) substrate having a thickness of 1 ⁇ Omm by a sputtering method. Sputtering the evening is used was sintered at a ratio of F e O 70% powder and S i 0 2 powder in the volume proportion and 3 0% to evening one Getting Bok.
  • the vacuum chamber by introducing argon gas after evacuated at 5 X 1 0- 4 P a or to adjust the flow rate of the A r gas so that the gas pressure inside the vacuum chamber is 2 P a, 4. 4WZ cm Plasma was generated by inputting a high frequency of 2 . At this time, the film formation rate was about 0.2 nmZ sec.
  • the optical thin film of the present invention has a large number of one-dimensionally penetrated pores surrounded by a continuous wall from one surface to the other surface of the film, has a low refractive index, and has a film strength. And high adhesion to the substrate.
  • substrate with this optical thin film can be provided.
  • the diameter of the pores contained in the optical thin film of the present invention is approximately 1 to 500 nm, and there are no huge pores of about several tens / m. Therefore, fine particles such as various types of dust of tobacco floating in the air do not enter and can be removed by simple washing.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Glass (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

An antireflection product having on a substrate an optical thin film which is formed by removing columnar phases from a composite film consisting of many one-dimensionally grown columnar phases and matrix phases surrounding the former, and in which are formed many pores continuing from one surface to the other of the film, surrounded by walls consisting of the matrix phases, and one-dimensionally penetrating, characterized in that the refractive index of the optical thin film is lower than that of the substrate and between that of the matrix phases and one, whereby providing the antireflection product low in reflective index, high in film strength, and excellent in adhesiveness to the substrate; and a production method therefor.

Description

明 細 書 反射防止物品とその製造方法  Description Anti-reflective article and method of manufacturing the same
技術分野 Technical field
本発明は、 一次元的に貫通する気孔 (以下、 一次元貫通気孔ともいう) を持 つ光学薄膜を有する反射防止物品に関する。 本発明における光学薄膜は、 ディ スプレイの前面ガラス、 車両の風防ガラス、 建築物の窓ガラス、 鏡、 光学レン ズ等に使用される反射防止膜などに好適で耐久性に優れる。 背景技術  The present invention relates to an antireflection article having an optical thin film having one-dimensionally penetrated pores (hereinafter, also referred to as one-dimensionally penetrated pores). The optical thin film of the present invention is suitable for a front glass of a display, a windshield of a vehicle, a window glass of a building, an antireflection film used for a mirror, an optical lens, and the like, and has excellent durability. Background art
パソコンやコンピュータのディスプレイにはガラスが用いられているが、 通 常のガラス表面のままでは画面に入射した光のうち数%が反射するため、 蛍光 灯や周りの風景が画面に映り込み、 表示内容が見づらくなる問題があった。 同 様の現象は、 額縁用ガラス、 ショーウィンドウガラスなどの建築 ·建装用のガ ラスでも問題となる。  Glass is used for the display of personal computers and computers, but if a normal glass surface is used, several percent of the light incident on the screen is reflected, so fluorescent lights and surrounding scenery are reflected on the screen and displayed. There was a problem that the contents were hard to see. Similar phenomena are also a problem for architectural and architectural glass such as picture frame glass and show window glass.
また、 太陽電池、 太陽熱温水器のカバーガラス、 眼鏡、 カメラ等の光学部材 においては、 それらの性能を最大限に引き出すために低反射性を有することが 好ましい。  Further, optical members such as solar cells, cover glasses for solar water heaters, glasses, and cameras preferably have low reflectivity in order to maximize their performance.
自動車、 鉄道車両に用いられる風防ガラスには、 高い透過性能と、 夜間走行 時における反射ゃギラツキ等を減じて安全運行を助けるために低反射性能を有 することが好ましい。 ガラスのみならずプラスチックスなどにおいても高い透 過性能と低反射性能を併せ持つ材料が広い分野で必要とされている。 ところで 、 車両の風防ガラスのように比較的過酷な環境下で使用される場合には低反射 性能のみならず、 その性能を長く維持する耐久性なども同時に要求される。 従来、 表面の反射を抑えて高透光性のガラスやプラスチックスを得るために 、 ガラスやプラスチックスの表面に低反射性を有する膜 (例えば、 単層の低屈 折率膜または低屈折率層と高屈折率層を交互に積層した光学多層膜の表面コー ティング) により、 光干渉を用いて反射防止処理を施すことが行われてきた。 可視光の広い波長範囲で反射率を小さくするためには後者の光学多層膜が望 ましいが、 この方法では組成の異なる膜を 2層または 3層以上積層する必要が あった。 また、 単層の膜で低屈折率とするためには、 ガラスやプラスチックス よりも低屈折率であり、 かつ耐摩耗性、 耐薬品性または耐湿性に優れた高耐久 性の材料を選ぶ必要がある。 しかし、 従来これらの性能を同時に満たしうる材 料は存在しなかった。 It is preferable that windshields used for automobiles and railway vehicles have high transmission performance and low reflection performance in order to reduce glare and glare during nighttime driving and to assist safe operation. Materials that have both high transmission performance and low reflection performance are required in a wide range of fields, not only for glass but also for plastics. By the way, when used in a relatively harsh environment such as a windshield of a vehicle, not only low reflection performance but also durability for maintaining the performance for a long time is required at the same time. Conventionally, in order to obtain highly transmissive glass or plastic by suppressing surface reflection, a film having low reflectivity on the surface of glass or plastic (for example, a single-layer low refractive index film or low refractive index film) Surface coating of an optical multilayer film in which layers and high-refractive-index layers are alternately stacked), and antireflection treatment has been performed using optical interference. In order to reduce the reflectance over a wide wavelength range of visible light, the latter optical multilayer is desirable. Preferably, this method requires two or three or more films having different compositions to be stacked. In addition, in order to obtain a low refractive index with a single-layer film, it is necessary to select a highly durable material that has a lower refractive index than glass and plastics, and is excellent in abrasion resistance, chemical resistance or moisture resistance. There is. However, there has been no material that can simultaneously satisfy these performances.
例えば、 通常よく用いられるソ一ダライムガラス (屈折率 1. 52) よりも 低屈折率の材料としては、 Mg F2 (屈折率 1. 2 2) や A 1 2F3 (屈折率 1 . 36) 等があるが、 いずれのフッ化物も S i〇2等の酸化物材料と比べて耐 湿性、 耐酸化性の点で劣り、 耐久性が要求されるガラス表面へのコーティング 材料としてはあまり使用されていない。 For example, as the material of lower refractive index than the Soviet one da-lime glass generally used frequently (refractive index 1. 52), Mg F 2 (refractive index 1.2 2) or A 1 2 F 3 (refractive index 1. 36), etc. However, any fluoride also withstand moisture as compared with the oxide material such as S I_〇 2, inferior in terms of oxidation resistance, much as a coating material to the glass surface durability is required not being used.
また、 無機膜以外にも、 アクリル系の共重合体を架橋材とともに硬化した硬 化被膜を下地層とし、 含フッ素脂肪族環構造を有する重合体膜 (特開平 2— 0 1980 1号公報) を形成して得られる低反射多層膜が検討されている (特開 平 5— 2 5407 3号公報) 。 この多層膜は、 基材がプラスチックスの場合は 基材との密着性等に問題はないが、 基材がガラスの場合充分な密着強度が得ら れない。  Further, in addition to the inorganic film, a polymer film having a fluorinated aliphatic ring structure using a cured film obtained by curing an acrylic copolymer together with a cross-linking material as an underlayer (Japanese Patent Application Laid-Open No. H02-019801) A low-reflection multilayer film obtained by forming a film has been studied (JP-A-5-254703). This multilayer film has no problem in adhesion to the substrate when the substrate is plastics, but does not provide sufficient adhesion strength when the substrate is glass.
一方、 酸化物などの膜をガラスやプラスチックスなどの表面に密着性良く形 成する技術は従来から存在する。 例えば、 S i〇2 (緻密体の屈折率 1. 44 〜 1. 47) をスパッタ法ゃゾル ·ゲル法で前記基板上に密着性良く形成でき る。 On the other hand, there has been a technique for forming a film such as an oxide on a surface of glass or plastics with good adhesion. For example, Si 2 (refractive index of a dense body of 1.44 to 1.47) can be formed on the substrate with good adhesion by a sputtering method or a sol-gel method.
しかし、 前記方法で形成される膜は緻密な膜であり、 屈折率が基材のガラス とあまり違わないため (例えばソーダライムガラスの屈折率は 1. 52) 、 低 反射性能は実用上十分でない。 そこで、 何らかの方法で S i〇2などの膜中に 光の波長よりも充分に小さな気孔を導入し膜の屈折率を低下させる試みが行わ れてきた。 However, the film formed by the above method is a dense film, and the refractive index is not so different from that of the base glass (for example, the refractive index of soda lime glass is 1.52), so that the low reflection performance is not practically sufficient. . Therefore, an attempt to lower the refractive index of sufficiently introduce small pore membrane than the wavelength of light in the film, such as S I_〇 2 in some way have been made.
光の波長と同程度かそれよりも小さな気孔を膜中に導入して低屈折率膜を得 る方法がいくつか提案されている。 例えば、 ホウケィ酸ガラス基材をスピノー ダル分解させた後に、 フッ化アンモニゥムのフッ化水素酸溶液と硝酸溶液の混 合液でエッチングし、 表面付近のみ多孔化することにより、 低屈折率層を設け る方法 (J . O p t . S o c . Am e r . , 6 6, 5 1 5 ( 1 9 7 6 ) ) が知 られているが、 この場合、 使える基材がホウケィ酸ガラスに限られる。 Several methods have been proposed for obtaining a low refractive index film by introducing pores into the film that are about the same as or smaller than the wavelength of light. For example, after a borosilicate glass substrate is decomposed by spinodal, it is etched with a mixed solution of ammonium fluoride and a solution of hydrofluoric acid and nitric acid, and only the surface is made porous to provide a low refractive index layer. (J. Opt. Soc. Amer., 66, 515 (19776)) is known, but in this case, the usable substrate is limited to borosilicate glass.
また、 別の方法として、 シリカやアルミナなどの微粉末を含むセラミックス ラリーを調製し、 スラリーをデイツプ法ゃドク夕一ブレード法などでガラスや プラスチックスの表面に塗布した後に加熱、 乾燥または焼結して多孔質無機膜 を形成する方法が知られている。 しかし、 低屈折率化するために気孔率を増加 させると、 膜そのものの強度、 および膜と基板との密着強度が低くなる、 とい う特性上相矛盾する問題が生じる場合が多かった。  Another method is to prepare a ceramic rally containing fine powders such as silica and alumina, apply the slurry to the surface of glass or plastics using a dipping method or a Doc Yuichi blade method, and then heat, dry, or sinter. There is known a method of forming a porous inorganic film by using the method. However, increasing the porosity to lower the refractive index often causes inconsistent characteristics in that the strength of the film itself and the adhesion strength between the film and the substrate are reduced.
本発明は、 従来技術が有する前述の欠点を解消し、 屈折率が低く、 膜の強度 が高く、 基体との密着性にも優れる反射防止物品の提供を目的とする。  An object of the present invention is to provide an anti-reflection article which solves the above-mentioned disadvantages of the prior art, has a low refractive index, has a high film strength, and has excellent adhesion to a substrate.
本発明はまた、 基体の制約なく、 前記反射防止物品を製造できる反射防止物 品の製造方法を提供する。 発明の開示  The present invention also provides a method for manufacturing an anti-reflective article capable of manufacturing the anti-reflective article without restriction on a substrate. Disclosure of the invention
本発明は、 基体上に、 一次元的に成長した多数の柱状相と、 それを取り囲む マトリックス相とからなる複合膜中の、 一次元的に成長した柱状相を除去する ことにより形成された、 膜の一方の表面から他方の表面まで連続する壁で取り 囲まれた一次元的に貫通する多数の気孔を有する光学薄膜が形成された反射防 止物品であって、 該光学薄膜の屈折率は、 前記基体の屈折率よりも小さく、 か っ該光学薄膜を構成する材料の屈折率と 1との間の屈折率であることを特徴と する反射防止物品を提供する。  The present invention is formed by removing a one-dimensionally grown columnar phase in a composite film composed of a number of one-dimensionally grown columnar phases and a matrix phase surrounding the columnar phase on a substrate. An antireflection article on which an optical thin film having a large number of one-dimensionally penetrating pores surrounded by a continuous wall from one surface to the other surface of the film is formed, wherein the refractive index of the optical thin film is An anti-reflection article characterized by having a refractive index smaller than the refractive index of the substrate and between 1 and 1 of the material constituting the optical thin film.
本発明における屈折率は、 波長 5 5 0 n mにおける屈折率の意である。 図面の簡単な説明  The refractive index in the present invention means the refractive index at a wavelength of 550 nm. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の光学薄膜を形成する手順を示す模式図である。 符号の説明  FIG. 1 is a schematic view showing a procedure for forming an optical thin film of the present invention. Explanation of reference numerals
1 :基体 1: Substrate
2 :柱状相 3 : マトリックス相 2: Columnar phase 3: Matrix phase
4 :複合膜  4: Composite membrane
5 :光学薄膜  5: Optical thin film
6 : アモルファス前駆体膜 発明を実施するための最良の形態  6: Amorphous precursor film Best mode for carrying out the invention
本発明における光学薄膜は、 膜の一方の表面から他方の表面まで連続する壁 で取り囲まれた一次元的に貫通する多数の気孔を有する光学薄膜であって、 マ トリックス相、 すなわち該光学薄膜を構成する材料 (緻密質体) の屈折率の値 と 1との間の屈折率を有し、 その気孔率に応じた屈折率を有する。  The optical thin film according to the present invention is an optical thin film having a large number of one-dimensionally penetrated pores surrounded by a continuous wall from one surface to the other surface of the film. It has a refractive index between the value of the refractive index of the constituent material (dense body) and 1, and has a refractive index according to its porosity.
気孔率を R, マトリックス相 (緻密質体) の屈折率を nとすると、 空気の屈 折率が 1であることから、 一次元貫通気孔を有する光学薄膜の屈折率 Nは N n X ( 1 - R) + 1 XR、 でおおよそ表すことができる。  Assuming that the porosity is R and the refractive index of the matrix phase (dense body) is n, the refractive index of air is 1, so the refractive index N of the optical thin film having one-dimensional through-pores is N n X (1 -R) + 1 XR, which can be roughly expressed as
本発明においては、 反射防止性能付与の観点から、 光学薄膜の屈折率が基体 の屈折率より小さくなるようにする。  In the present invention, from the viewpoint of imparting antireflection performance, the refractive index of the optical thin film is set to be smaller than the refractive index of the substrate.
前記光学薄膜の膜厚は 60 200 nmであることが好ましい。 60 n m未 満では充分な低反射特性が得られにくく、 膜の強度が充分でない傾向にある。 また、 200 nm超では広い波長域での低反射特性が得られにくく、 膜の剥離 が起こりやすい。 例えば、 50 nmの膜厚では可視光領域での低反射特性が充 分でなく、 膜の強度が充分でなく、 また、 250 nmの膜厚では、 広い範囲で は反射が抑えられず、 エッチング後の乾燥工程で部分的に剥離を起こす場合が めった。  The optical thin film preferably has a thickness of 60 to 200 nm. If it is less than 60 nm, it is difficult to obtain sufficiently low reflection characteristics, and the strength of the film tends to be insufficient. On the other hand, if it exceeds 200 nm, it is difficult to obtain low reflection characteristics in a wide wavelength range, and the film tends to peel off. For example, if the film thickness is 50 nm, the low reflection characteristics in the visible light region are not sufficient, and the film strength is not sufficient.If the film thickness is 250 nm, the reflection cannot be suppressed over a wide range, and In some cases, peeling occurred partially in the subsequent drying process.
本発明においては、 前記気孔の平均孔径 (r) と前記壁の平均厚さ (d) と の比 (dZr) が 0. 1 0. 3であることが好ましい。 0. 1未満では膜の 強度が低下し、 0. 3超では充分な低反射特性が得られにくい。  In the present invention, the ratio (dZr) of the average pore diameter (r) of the pores to the average thickness (d) of the wall is preferably 0.10.3. If it is less than 0.1, the strength of the film decreases, and if it exceeds 0.3, it is difficult to obtain sufficient low reflection characteristics.
本発明の光学薄膜は、 酸化物、 炭化物、 窒化物、 ホウ化物およびフッ化物か らなる群から選ばれた 1種以上からなり、 用途に応じて選択されるが、 耐久性 、 強度、 化学的安定性、 形成しやすさ等の観点から酸化物が最も好ましい。 一次元貫通気孔の平均孔径は 1 5 00 nmであることが好ましい。 1 nm 未満では、 一次元的に伸びる相が連続性を欠き、 後述のエッチング後に取り除 かれずマトリックス相中に残存することが多くなる。 取り除かれるべき相が残 存すると、 金属的な反射が起きる、 着色するなどの不具合が生じる場合が多い また、 平均孔径が 500 nm超では、 エッチング後に大きな孔 (直径 500 〜 1000 nm程度) が存在することが多く、 ヘイズ (大きな孔による光散乱 で膜が乳白色に濁ること) が発生する。 平均孔径は特に 1〜 100 nmである ことが好ましい。 The optical thin film of the present invention is composed of at least one selected from the group consisting of oxides, carbides, nitrides, borides and fluorides, and is selected according to the intended use. Oxides are most preferred from the viewpoints of stability, ease of formation, and the like. The average diameter of the one-dimensional through-pores is preferably 1500 nm. 1 nm If it is less than 1, the one-dimensionally extending phase lacks continuity and often remains in the matrix phase without being removed after etching described later. If the phase to be removed remains, problems such as metallic reflection and coloring often occur. In addition, if the average pore diameter exceeds 500 nm, large pores (about 500 to 1000 nm in diameter) exist after etching. This often causes haze (milky white turbidity due to light scattering by large holes). The average pore size is particularly preferably from 1 to 100 nm.
本発明によれば、 材料および気孔率を適当に選択することにより、 耐久性お よび低屈折率の両方を併せ持つ膜が得られ、 光学薄膜 1層のみが基体上に形成 された反射防止物品を提供することもできる。  According to the present invention, by appropriately selecting a material and a porosity, a film having both durability and a low refractive index can be obtained, and an antireflection article having only one optical thin film formed on a substrate can be obtained. Can also be provided.
例えば、 「耐久性は高いが、 屈折率が充分低くない」 というような材料、 例 えば、 チタニア、 シリカ、 アルミナ、 ジルコニァ、 窒化ケィ素、 窒化アルミ二 ゥム、 酸化スズ、 酸化亜鉛、 酸化タングステン、 酸化ニッケル、 インジウム— スズ酸化物 (I TO) 等の材料を用いて光学薄膜を形成すれば、 1層のみで耐 久性および低屈折率の両方を満足できる。  For example, materials with high durability but not sufficiently low refractive index, such as titania, silica, alumina, zirconia, silicon nitride, aluminum nitride, tin oxide, zinc oxide, and tungsten oxide If an optical thin film is formed using materials such as nickel oxide, indium-tin oxide (ITO), etc., both durability and a low refractive index can be satisfied with only one layer.
また、 本発明における光学薄膜と他の膜とを組み合わせて多層膜を形成する こともできる。 例えば、 多層の反射防止膜、 多層の熱線反射膜、 多層の導電膜 等の多層膜のうちの 1層として前記光学薄膜を用いることができる。  Further, a multilayer film can be formed by combining the optical thin film of the present invention with another film. For example, the optical thin film can be used as one of multilayer films such as a multilayer antireflection film, a multilayer heat ray reflection film, and a multilayer conductive film.
多層の反射防止膜としては、 反射防止をしたい光の波長を λとして、 1) 基 体側より、 高屈折率層一低屈折率層を光学厚さ λ/2— λΖ,4 (または; ΙΖ4 - λ / 4 ) で形成した 2層の反射防止膜、 2) 基体側より、 中屈折率層一高屈 折率層一低屈折率層を光学厚さ λΖ4— λ/2— λΖ4で形成した 3層の反射 防止膜、 3) 基体側より'、 低屈折率層一中屈折率層一高屈折率層一低屈折率層 を光学厚さ λΖ4— λ/2— λΖ2— 4で形成した 4層の反射防止膜、 等 が典型的な例として知られている。 前記光学薄膜は、 これら多層反射防止膜の 低屈折率層として好適である。  As a multilayer anti-reflection film, λ is the wavelength of light to be anti-reflective. 1) From the substrate side, the high refractive index layer and the low refractive index layer have an optical thickness of λ / 2—λΖ, 4 (or; 2) Antireflection film of 2 layers formed by λ / 4), 2) From the substrate side, a medium refractive index layer, a high refractive index layer and a low refractive index layer were formed with optical thickness λΖ4—λ / 2—λΖ4. 3) From the side of the substrate, 4 layers with low refractive index layer, middle refractive index layer, high refractive index layer, and low refractive index layer formed with an optical thickness of λΖ4—λ / 2—λΖ2-4. Are known as typical examples. The optical thin film is suitable as a low refractive index layer of these multilayer antireflection films.
また、 基体 光吸収膜 低屈折率膜、 という 2層の光吸収性反射防止体も知 られている (特開平 9一 156964号公報、 特開平 10— 96801号公報 等参照) 。 該光吸収性反射防止体の低屈折率膜にも前記光学薄膜を使用できる 本発明の反射防止物品においては、 前記光学薄膜の膜側からの入射光に対す る反射率 (膜側とは反対側の面による反射を除いた膜側表面のみの反射率、 以 下、 膜面反射率ともいう) が、 1 5 ° 入射光の場合に光学薄膜がない基体 (ブ ランク) の反射率に対して 4 0 %以上 (特に 6 0 %以上) 低減されていること が好ましい。 また、 前記光学薄膜を有する多層膜が形成された物品については 、 光学薄膜の膜側からの 1 5 ° 入射光に対する反射スペクトル (膜側とは反対 側の面による反射を除いた膜側表面のみの反射スペクトル) を測定して、 波長 領域が 4 0 0〜7 0 0 n mは反射率が 1 %以下であることが好ましい。 また、 光学薄膜付きガラスが別のガラスと中間膜を介して合わされた合わせガラスに ついては、 6 0 ° 入射光の膜面反射率が、 光学薄膜がないとき (ブランク) の 反射率に対して 4 0 %以上低減されていることが好ましい。 In addition, a two-layer light-absorbing antireflection body called a substrate light-absorbing film and a low-refractive-index film is also known (Japanese Patent Application Laid-Open Nos. 9-1156964 and 10-96801) Etc.). The optical thin film can also be used for the low refractive index film of the light absorbing antireflective body. In the antireflection article of the present invention, the reflectance of the optical thin film with respect to incident light from the film side (opposite to the film side) The reflectance of only the film side surface excluding the reflection by the surface on the side (hereinafter also referred to as the film surface reflectance) is less than the reflectance of a substrate (blank) without an optical thin film at 15 ° incident light. Is preferably reduced by 40% or more (especially 60% or more). In the case of an article on which a multilayer film having the optical thin film is formed, the reflection spectrum of the optical thin film with respect to the incident light of 15 ° from the film side (only the film-side surface excluding the reflection by the surface opposite to the film side) is used. The reflectance is preferably 1% or less in a wavelength region of 400 to 700 nm. In the case of laminated glass in which glass with an optical thin film is laminated with another glass via an intermediate film, the film surface reflectance of 60 ° incident light is 4% less than the reflectance when there is no optical thin film (blank). Preferably, it is reduced by 0% or more.
また、 本発明における光学薄膜を本発明の反射防止物品の最外層 (最表面) に用い、 材料を選択すると別の機能も発現する。 例えば、 酸化ゲイ素からなる 光学薄膜を用いれば、 水に対する接触角を 5 ° 以下にでき (親水性が発現し) 、 低反射性と併せて防曇機能も有する。 また、 酸化チタン (特にアナターゼ結 晶相および またはルチル結晶相を含む酸化チタン) からなる光学薄膜を用い れば、 光触媒活性による自浄作用や親水性が発現する。  Further, when the optical thin film of the present invention is used for the outermost layer (outermost surface) of the antireflection article of the present invention and a material is selected, another function is exhibited. For example, the use of an optical thin film made of silicon oxide can reduce the contact angle to water to 5 ° or less (expresses hydrophilicity), and has an antifogging function in addition to a low reflection property. In addition, when an optical thin film made of titanium oxide (particularly, titanium oxide containing an anatase crystal phase and / or a rutile crystal phase) is used, a self-cleaning action by photocatalytic activity and hydrophilicity are exhibited.
また、 本発明の反射防止物品の最外層 (最表面) に酸化ケィ素からなる前記 光学薄膜を設け、 該光学薄膜の直下に酸化チタン層 (特にアナターゼ結晶相お よび Zまたはルチル結晶相を含む酸化チタン層) を設けた構成とすることで、 親水性が持続し、 防曇機能を有する反射防止物品が得られる。  Further, the optical thin film made of silicon oxide is provided on the outermost layer (outermost surface) of the antireflection article of the present invention, and a titanium oxide layer (particularly containing an anatase crystal phase and a Z or rutile crystal phase) is provided immediately below the optical thin film. By providing a structure provided with the (titanium oxide layer), an antireflection article having sustained hydrophilicity and having an antifogging function can be obtained.
次に、 光学薄膜の製造方法について述べる。  Next, a method for manufacturing an optical thin film will be described.
本発明においてはマトリックス相が光学薄膜を構成する材料となり、 該マト リックス相は緻密質体である。 本発明における光学薄膜は、 例えば、 二段階の プロセスで形成される。 すなわち、 第一段階では、 一次元的に成長した多数の 柱状相と、 それを取り囲むマトリックス相とからなる複合膜を形成し、 次に、 第二段階で、 その複合膜中の一次元的に成長した柱状相をエッチングで除去し 、 マトリックス相のみを残留させる。 In the present invention, the matrix phase is a material constituting the optical thin film, and the matrix phase is a dense body. The optical thin film in the present invention is formed by, for example, a two-step process. That is, in the first stage, a composite film composed of a large number of columnar phases grown one-dimensionally and a matrix phase surrounding the columnar phase is formed. The grown columnar phase is removed by etching Remain only the matrix phase.
第一段階において複合膜を形成する方法としては、 一次元的に成長した柱状 相とそれを取り囲むマトリックス相とからなる複合膜を物理的成膜法により直 接形成する方法 (以下、 複合膜の第一形成方法ともいう) と、 まずァモルファ ス前駆体膜を基体上に形成し、 つぎに熱処理によって共晶反応を起こし、 これ により一次元的に成長した柱状相とそれを取り囲むマトリックス相とからなる 複合膜を形成する方法 (以下、 複合膜の第二形成方法ともいう) 、 とが挙げら れる。  As a method of forming a composite film in the first stage, a method of directly forming a composite film composed of a one-dimensionally grown columnar phase and a matrix phase surrounding the columnar phase by a physical film forming method (hereinafter, referred to as a composite film). First, an amorphous precursor film is formed on a substrate, and then a eutectic reaction is caused by a heat treatment, whereby a columnar phase grown one-dimensionally and a matrix phase surrounding the columnar phase are formed. (Hereinafter, also referred to as a second method of forming a composite film).
図 1は、 光学薄膜を形成する手順を示す模式図である。 図中、 a〜dは、 複 合膜の第一形成方法を用いて、 本発明の光学薄膜を形成する手順を示す。 aは 基体 1上に物理的成膜法により柱状相 2とマトリックス相 3とからなる複合膜 4を形成した状態 (初期) 、 bは同様に複合膜 4を形成した状態 (中期) 、 c は複合膜 4の形成が終了した状態、 dは選択エッチングにより一次元的に成長 した柱状相 2を除去し、 光学薄膜 5が形成された状態、 をそれぞれ示す。  FIG. 1 is a schematic diagram showing a procedure for forming an optical thin film. In the figure, a to d show the procedure for forming the optical thin film of the present invention using the first method for forming a composite film. a is a state in which a composite film 4 composed of a columnar phase 2 and a matrix phase 3 is formed on a substrate 1 by a physical film forming method (initial), b is a state in which a composite film 4 is similarly formed (middle), and c is “D” indicates a state in which the formation of the composite film 4 is completed, and “d” indicates a state in which the columnar phase 2 that has grown one-dimensionally by selective etching is removed, and the optical thin film 5 is formed.
また、 e〜hは、 複合膜の第二形成方法を用いて光学薄膜を形成する手順を 示す。 eは遷移金属を含むアモルファス前駆体膜 6を基体 1上に形成した状態 、 f は熱処理によって膜表面に共晶組織が形成された状態、 gは表面からの酸 素拡散によって共晶反応界面が膜 ·基板界面まで移動し、 最終的に一次元的に 成長した柱状相 (遷移金属酸化物結晶) 2とそれを取り囲むマトリックス相 3 からなる共晶組織が形成され、 複合膜 4ができた状態、 hは選択エッチングに より一次元的に成長した柱状相 2を除去し、 光学薄膜 5が形成された状態、 を それぞれ示す。  In addition, e to h show procedures for forming an optical thin film using the second method for forming a composite film. e is a state in which an amorphous precursor film 6 containing a transition metal is formed on the substrate 1, f is a state in which a eutectic structure is formed on the film surface by heat treatment, and g is a eutectic reaction interface due to oxygen diffusion from the surface. A state in which a eutectic structure consisting of a columnar phase (transition metal oxide crystal) 2 and a matrix phase 3 surrounding the columnar phase 2 (transition metal oxide crystal) 2 that has finally moved to the film-substrate interface is formed, forming a composite film 4 And h show the state in which the columnar phase 2 that has grown one-dimensionally by selective etching is removed, and the optical thin film 5 is formed.
以下、 光学薄膜形成の 「第一段階」 について述べる。  Hereinafter, the “first stage” of forming an optical thin film will be described.
まず、 「複合膜の第一形成方法」 を用いた場合を以下に述べる。  First, the case where the “first method for forming a composite film” is used is described below.
複合膜の第一形成方法において、 複合膜を形成する物理的成膜法としては、 スパッ夕法、 蒸着法、 C V D法、 レーザーアブレーシヨン法、 分子線ェピタキ シ一法などが挙げられる。 このなかでもスパッタ法は、 緻密な膜を得やすいこ と、 基体との密着性が高い膜が得られることに加えて量産性ゃ大面積成膜性に 優れており、 特に好ましい。 複合膜の第一形成方法によって複合膜を作製する場合、 柱状相とマトリック ス相の材料の組み合わせとしては、 柱状相の材料とマトリックス相の材料が成 膜時に相分離を起こす組み合わせであればよい。 本発明においては、 柱状相を エッチング後の細孔部分に、 柱状相を取り囲むマトリックス相を残留相として 利用するため、 柱状相の材料としては、 柱状に成長しやすい金属であって、 酸 • アル力リ等に容易に溶解し、 マトリックス相の材料との結合エネルギーが小 さく還元されやすい金属または合金が好ましい。 In the first method of forming a composite film, examples of the physical film forming method for forming the composite film include a sputtering method, an evaporation method, a CVD method, a laser ablation method, and a molecular beam epitaxy method. Among them, the sputtering method is particularly preferable because a dense film can be easily obtained, a film having high adhesion to a substrate can be obtained, and mass productivity and large-area film forming property are excellent. When a composite film is produced by the first method for forming a composite film, the combination of the columnar phase and the matrix phase materials may be any combination that causes the phase separation between the columnar phase material and the matrix phase material during film formation. . In the present invention, since the columnar phase is used in the pore portion after the etching and the matrix phase surrounding the columnar phase is used as a residual phase, the material of the columnar phase is a metal which easily grows in a columnar shape, and Metals or alloys that readily dissolve in force or the like, have low binding energy to the matrix phase material, and are easily reduced are preferred.
柱状相の材料の例としては、 実用的にはスパッタ時の取り扱いの容易さを考 慮し、 3 d遷移金属 (V、 C r 、 M n、 N i 、 F e 、 C o、 C u、 Z nなど) 、 3 d遷移金属を含む合金、 アルカリ土類金属 (M gなど) およびアルカリ土 類金属を含む合金からなる群から選ばれる 1種以上が挙げられる。 その他、 A 1 、 I n、 S nおよび P bなども利用できる。  As an example of the material of the columnar phase, practically considering the ease of handling during sputtering, the 3d transition metal (V, Cr, Mn, Ni, Fe, Co, Cu, Zn or the like, an alloy containing a 3d transition metal, an alkaline earth metal (such as Mg), and an alloy containing an alkaline earth metal. In addition, A1, In, Sn, and Pb can also be used.
残留相として利用するマトリックス相の例としては、 シリカ、 アルミナ、 チ タニア、 ジルコニァ、 ムライ ト、 コーディエライ ト、 スピネル、 ゼォライ ト、 フォルステライ トなどの酸化物、 炭化ケィ素、 炭化チタン、 炭化ジルコニウム 、 炭化ホウ素 (B 4 C ) などの炭化物、 ホウ化チタン、 ホウ化ジルコニウム、 炭化ホウ素などのホウ化物、 窒化ケィ素、 窒化チタン、 窒化ジルコニウムなど の窒化物、 フッ化マグネシウム、 フッ化アルミニウムなどのフッ化物、 から選 ばれる 1種以上が挙げられる。 また、 許容される屈折率の範囲において前記材 料に少量のドーパン卜が含まれていてもよい。 Examples of the matrix phase used as the residual phase include oxides such as silica, alumina, titania, zirconia, mullite, cordierite, spinel, zeolite, and forsterite, silicon carbide, titanium carbide, and zirconium carbide. , Boride such as boron carbide (B 4 C), boride such as titanium boride, zirconium boride, boron carbide, nitride such as silicon nitride, titanium nitride, zirconium nitride, magnesium fluoride, aluminum fluoride, etc. One or more selected from fluorides and. In addition, a small amount of dopant may be contained in the material within the range of the allowable refractive index.
複合膜の第一形成方法においては、 柱状相とマトリックス相の材料の混合比 および成膜条件を制御することにより、 一次元的に成長した柱状相のまわりを マトリックス相が取り囲んだ微細組織が形成される。 例えばスパッタ法で複合 膜を形成する場合、 成長する柱状相の平均直径は、 柱状相とマトリックス相の 体積分率および成膜条件 (スパッ夕時の A rガス圧および基板温度等) によつ て変化することが確認されている。  In the first method of forming a composite film, the microstructure in which the matrix phase surrounds the one-dimensionally grown columnar phase is controlled by controlling the mixing ratio of the columnar phase and matrix phase materials and the film formation conditions. Is done. For example, when forming a composite film by the sputtering method, the average diameter of the growing columnar phase depends on the volume fraction of the columnar phase and the matrix phase and the film forming conditions (such as Ar gas pressure and substrate temperature during sputtering). Has been confirmed to change.
一次元貫通気孔の直径は一次元的に成長する柱状相の直径にほぼ一致するた め、 エッチング後に最終的に得られる光学薄膜の一次元貫通気孔の平均孔径は 、 柱状相とマトリックス相の材料の混合比および成膜条件 (スパッ夕時の A r ガス圧や基板温度等) によって変えることができる。 例えば、 C o— S i 〇2 系については、 基板加熱をしない場合、 2 P aの A rガス圧で成膜した膜中の C oの粒径が 8 n mであるのに対して、 8 P aの A rガス圧で成膜した場合は C oの粒径が約 4 0 n mになることが確認されている。 Since the diameter of the one-dimensional through-pores almost matches the diameter of the columnar phase that grows one-dimensionally, the average diameter of the one-dimensional through-pores of the optical thin film finally obtained after etching is the material of the columnar phase and the matrix phase. Mixing ratio and film forming conditions (Ar Gas pressure, substrate temperature, etc.). For example, whereas for C o-S i 〇 2 system, if no substrate heating, the particle diameter of 2 P a of A r gas C o in the film formed under pressure is 8 nm, 8 It has been confirmed that when the film is formed under the Ar gas pressure of Pa, the particle size of Co becomes about 40 nm.
複合膜の第一形成方法としてスパッ夕法を用いて反射防止物品を製造する例 を以下に述べる。  An example of manufacturing an anti-reflection article using a sputtering method as a first method of forming a composite film will be described below.
本発明は、 柱状相を形成する材料とマトリックス相を形成する材料とからな る夕ーゲッ トをスパッ夕して、 一次元的に成長した多数の柱状相とそれを取り 囲むマ卜リックス相とからなる複合膜を基体上に形成した後に、 該柱状相を除 去し、 膜の一方の表面から他方の表面まで連続する前記マトリックス相からな る壁で取り囲まれた一次元的に貫通する多数の気孔を有する光学薄膜を形成す る反射防止物品の製造方法であって、 該光学薄膜の屈折率を、 前記基体の屈折 率よりも小さく、 かつ該光学薄膜を構成する材料の屈折率と 1との間の屈折率 とすることを特徴とする反射防止物品の製造方法を提供する。  According to the present invention, a plurality of one-dimensionally grown columnar phases and a matrix layer surrounding the columnar phases are formed by sputtering a target made of a material forming a columnar phase and a material forming a matrix phase. After forming a composite film composed of a matrix phase on a substrate, the columnar phase is removed, and a large number of one-dimensionally penetrated walls surrounded by the matrix phase extending from one surface to the other surface of the film are formed. A method of manufacturing an antireflection article for forming an optical thin film having pores, wherein the refractive index of the optical thin film is smaller than the refractive index of the substrate and the refractive index of a material constituting the optical thin film is 1 And a method for producing an antireflection article characterized by having a refractive index between:
前記ターゲッ トとしては、 1 ) 柱状相を形成する材料の粉末とマトリックス 相を形成する材料の粉末とを混合して成形して得られるターゲット、 2 ) 柱状 相を形成する材料からなる夕ーゲッ 卜の上に、 マトリックス相を形成する材料 からなる数 mm程度の大きさの小片を多数配置した複合ターゲッ ト、 3 ) マト リックス相を形成する材料からなる夕ーゲッ 卜の上に、 柱状相を形成する材料 からなる数 mm程度の大きさの小片を多数配置した複合ターゲット、 などが挙 げられる。  Examples of the target include: 1) a target obtained by mixing a powder of a material forming a columnar phase and a powder of a material forming a matrix phase, and 2) a target formed of a material forming a columnar phase. A composite target in which a number of small pieces of a few mm in size, consisting of a material that forms a matrix phase, are arranged on a composite target.3) A columnar phase is formed on a target that is made of a material that forms a matrix phase. And a composite target in which a number of small pieces each having a size of several millimeters made of a material are arranged.
本発明においては、 ターゲッ トとして、 マトリックス相を形成する材料が T i 0 2、 S i 〇2、 Z r〇2、 S i 3 N 4または M g F 2である夕一ゲットを用い ることが好ましく、 また、 柱状相を形成する材料が C oであるターゲッ トを用 いることが好ましい。 In the present invention, as targets, Rukoto using material T i 0 2, S i 〇 2, Z R_〇 2, S i 3 N 4 or M g F 2 a is evening one target to form a matrix phase It is preferable to use a target in which the material forming the columnar phase is Co.
前述の孔の平均孔径 ( r ) と前記壁の平均厚さ (d ) との比 (d / r ) が 0 . :!〜 0 . 3である光学薄膜を得る上では、 柱状相を形成する材料とマトリツ クス相を形成する材料とからなる夕一ゲットであって、 該柱状相を形成する材 料のターゲット表面上の面積の夕ーゲット表面上の全面積に対する割合が 0 . 5 5〜0. 7 5であるターゲットを用いることが好ましい。 柱状相を形成する 材料のターゲット表面上の面積を vp、 マトリックス相を形成する材料の夕一 ゲット表面上の面積を vmとすれぱ、 前記割合は v p/ (v p + vm) で表され る。 前記割合が 0. 5 5未満では一次元的な柱状構造が得られにくく、 また、 0. 7 5超では得られる膜の強度が低下する。 前記ターゲットは、 例えば、 1 ) 柱状相を形成する材料の粉末の割合が全体に対する体積比で 0. 55〜0. 7 5となるように両粉末を混合し成形して得る、 または 2) 柱状相を形成する 材料からなるターゲットの上に、 vp/ (vp+vm) が 0. 5 5〜0. 7 5と なるようにマトリックス相を形成する材料からなる小片を配置して得る。 The ratio (d / r) of the average pore diameter (r) of the aforementioned pores to the average thickness (d) of the wall is 0. In order to obtain an optical thin film having a thickness of about 0.3, a getter composed of a material forming a columnar phase and a material forming a matrix phase is obtained on the target surface of the material forming the columnar phase. The ratio of the area to the total area on the evening-get surface is 0. It is preferable to use a target that is 55 to 0.75. If the area of the material forming the columnar phase on the target surface is v p and the area of the material forming the matrix phase on the target surface is v m , the ratio is v p / (v p + v m ) It is represented by If the ratio is less than 0.55, it is difficult to obtain a one-dimensional columnar structure, and if it exceeds 0.75, the strength of the obtained film decreases. The target can be obtained, for example, by 1) mixing and molding both powders so that the ratio of the powder of the material forming the columnar phase is 0.55 to 0.75 in volume ratio to the whole, or 2) columnar Obtained by arranging a small piece of a material forming a matrix phase on a target made of a material forming a phase so that v p / (v p + v m ) is 0.55 to 0.75 .
C o— T i 〇2系複合膜の成膜において、 vpZ (vp+vm) が 0. 8の夕 一ゲットを用いた場合では、 得られる膜の機械強度が低いため、 エッチング後 の乾燥で膜が収縮破壊する場合があり、 また、 膜の剥離によるヘーズが発生し やすかつた。 また、 v pZ ( V p+ vm) が 0. 5のターゲットを用いた場合で は、 エッチング後も膜中に C o (着色した部分) が残留することがあった。 次に、 「複合膜の第二形成方法」 を用いた場合を以下に述べる。 In the deposition of C o-T i 〇 2 composite film, v in the case where p Z (v p + v m ) was used evening one target of 0.8, for mechanical strength of the resulting film is low, etching In some cases, the film shrinks and breaks during subsequent drying, and haze is liable to occur due to peeling of the film. Further, when a target having a v p Z (V p + v m ) of 0.5 was used, Co (colored portion) sometimes remained in the film even after etching. Next, the case where the “second method for forming a composite film” is used will be described below.
複合膜の第二形成方法において、 アモルファス前駆体膜を形成する方法とし ては、 スパッタ法、 蒸着法、 CVD法、 レーザーアブレーシヨン法、 分子線ェ ピ夕キシ一法などの物理的成膜法や、 ゾル ·ゲル法、 スプレーパイロリシス法 、 塗布法などの溶液法、 さらに、 メツキ法などが利用できる。 なかでもスパッ 夕法は緻密な膜を得やすいこと、 基体との密着性が高い膜が得られることに加 えて量産性ゃ大面積成膜性に優れており、 特に好ましい。  In the second method of forming a composite film, a method of forming an amorphous precursor film includes physical film formation such as a sputtering method, a vapor deposition method, a CVD method, a laser ablation method, and a molecular beam epitaxy method. Sol-gel method, spray pyrolysis method, solution method such as coating method, and plating method. Among them, the sputtering method is particularly preferable because it is easy to obtain a dense film and a film having high adhesion to a substrate is obtained, and is excellent in mass productivity and large-area film forming property.
スパッ夕法によってアモルファス前駆体膜を形成する場合、 例えば、 柱状相 を形成する材料とマトリックス相を形成する材料とからなる夕一ゲットを用い る。 該ターゲットは、 例えば、 柱状相を形成する材料の粉末とマトリックス相 を形成する材料の粉末とを混合して得られる。 より具体的には、 柱状相を形成 する材料が F e 34からなるターゲット、 また、 マトリックス相を形成する材 料が、 T i〇2、 S i〇2、 Z r〇2、 S i 3 N 4または M g F 2からなるターゲ ットが挙げられる。 When the amorphous precursor film is formed by the sputtering method, for example, an evening get made of a material forming a columnar phase and a material forming a matrix phase is used. The target is obtained, for example, by mixing powder of a material forming a columnar phase and powder of a material forming a matrix phase. More specifically, the target material for forming a columnar phase consists F e 34, also wood charge to form a matrix phase, T I_〇 2, S I_〇 2, Z R_〇 2, S i Target Tsu bets consisting 3 N 4 or M g F 2 and the like.
F e - S i一 O系のアモルファス前駆体膜を形成する場合、 F e 304粉末と S i 0 2粉末を混合したものを夕ーゲッ トとして使用できる。 F e - when forming a S i one O amorphous precursor film, and F e 3 0 4 powder A mixture of S i 0 2 powder evening can be used as Ge' bets.
複合膜の第二形成方法において、 最初に形成されるアモルファス前駆体膜に 含まれる元素の組み合わせとしては、 遷移金属元素とそれ以外の金属元素およ び酸素がある。 遷移金属元素の例としては、 熱処理後に、 膜中に含まれる他の 金属元素と分離して別々の化合物相となるものであればよく、 熱処理時の取り 扱いの容易さの観点から、 3 d遷移金属元素 (V、 C r 、 M n、 N i F e 、 C o、 C u、 Z nなど) 、 3 d遷移金属元素を含む合金、 および希土類元素 ( C e 、 N d、 S m、 E rなど) からなる群から選ばれる 1種以上が挙げられる 遷移金属元素以外の金属元素としては、 続いて行われる熱処理時に遷移金属 元素と反応しないものであればよい。 遷移金属元素以外の金属元素は熱処理時 に柱状相 (遷移金属化合物針状結晶) を取り囲むマトリックス相となりエッチ ング後に一次元貫通気孔を持つ膜を構成する成分となるため、 膜の利用目的に よって選ばれる。 遷移金属元素以外の金属元素としては、 例えば、 S i 、 A 1 、 M g、 Z r 、 S n、 I nなどが挙げられる。  In the second method for forming a composite film, the combination of elements contained in the amorphous precursor film formed first includes a transition metal element, other metal elements, and oxygen. An example of the transition metal element may be any material that separates from the other metal elements contained in the film into a separate compound phase after heat treatment.From the viewpoint of ease of handling during heat treatment, 3 d Transition metal elements (V, Cr, Mn, NiFe, Co, Cu, Zn, etc.), alloys containing 3d transition metal elements, and rare earth elements (Ce, Nd, Sm, At least one selected from the group consisting of Er) is used as the metal element other than the transition metal element as long as it does not react with the transition metal element during the subsequent heat treatment. Metal elements other than the transition metal element become a matrix phase surrounding the columnar phase (transition metal compound needle-like crystals) during heat treatment, and become a component constituting a film having one-dimensional through-pores after etching. To be elected. Examples of the metal element other than the transition metal element include S i, A 1, Mg, Z r, Sn, and In.
アモルファス前駆体膜をスパッ夕成膜する場合、 後に行われる加熱処理によ つて一次元的に成長する柱状相の直径は、 スパッ夕時の A rガス圧により変化 する。 例えば F e— S i —〇系の膜の場合、 2 P aの A rガス圧で成膜した膜 を 6 0 0 °Cで熱処理すると約 4 n mの直径のへマ夕イ ト (F e 23 ) が析出す るが、 8 P aの A rガス圧で成膜した場合、 同様の処理を行うと直径約 2 0 n mのへマタイ 卜が析出する。 一次元貫通気孔の直径は一次元的に成長する柱状 相の直径にほぽ一致するため、 エツチング後に最終的に得られる光学薄膜にお ける一次元貫通気孔の平均孔径は成膜条件 (スパッ夕時の A rガス圧) によつ て制御できる。 When the amorphous precursor film is formed by sputtering, the diameter of the columnar phase that grows one-dimensionally by the heat treatment performed later changes depending on the Ar gas pressure during the sputtering. For example, in the case of a Fe—Si—〇 system film, when a film formed at an Ar gas pressure of 2 Pa is heat-treated at 600 ° C., a film having a diameter of about 4 nm (Fe 23) deposited but, 8 when deposited by a r gas pressure P a, Matthew Bok is precipitated when performing the same process to a diameter of about 2 0 nm. Since the diameter of the one-dimensional through-pores almost matches the diameter of the columnar phase that grows one-dimensionally, the average diameter of the one-dimensional through-pores in the optical thin film finally obtained after etching is determined by the deposition conditions (sputtering conditions). (Ar gas pressure at that time).
複合膜の第二形成方法においては、 遷移金属元素とそれ以外の金属元素およ び酸素を含むアモルファス前駆体膜を加熱処理して、 遷移金属酸化物とそれ以 外の金属酸化物が分離析出する、 共晶分解反応を起こさせる。 アモルファス相 からの二相析出は同時に、 しかも膜表面から起こることが重要である。 加熱す るときの処理条件としては共晶分解反応が起こる条件であればよい。 すなわち 、 温度は、 共晶分解反応が起こる温度でなおかつ反応が充分な速度で進行する 温度であればよい。 具体的には 4 0 0〜 6 5 0 °C程度の温度が好ましい。 共晶分解反応を引き起こすためには遷移金属の価数を変化させる必要がある 。 この方法としてアモルファス前駆体膜を酸化性の雰囲気で処理する方法と還 元性の雰囲気で処理する方法の 2つがある。 酸化物の共晶反応の場合、 還元雰 囲気で処理すると均一な共晶組織が形成されない場合がある。 この場合には酸 化雰囲気下で熱処理することにより均一な共晶組織を形成できる。 In the second method for forming a composite film, a transition metal element and other metal elements and an amorphous precursor film containing oxygen are heat-treated to separate and deposit the transition metal oxide and other metal oxides. Cause a eutectic decomposition reaction. It is important that the two-phase precipitation from the amorphous phase occurs simultaneously and from the film surface. The treatment conditions for heating may be any conditions under which a eutectic decomposition reaction occurs. Ie The temperature may be a temperature at which a eutectic decomposition reaction occurs and a temperature at which the reaction proceeds at a sufficient rate. Specifically, a temperature of about 400 to 65 ° C. is preferable. In order to cause the eutectic decomposition reaction, it is necessary to change the valence of the transition metal. There are two methods for treating the amorphous precursor film in an oxidizing atmosphere and a method in a reducing atmosphere. In the case of an eutectic reaction of an oxide, a uniform eutectic structure may not be formed when treated in a reducing atmosphere. In this case, a uniform eutectic structure can be formed by heat treatment in an oxidizing atmosphere.
複合膜の第二形成法において、 基体上に F e— S i—O系のアモルファス膜 を形成する場合、 一次元的に成長した酸化鉄結晶を得る観点からは、 柱状相を 形成する材料が F e 3 0 4 (マグネタイ ト) からなり、 かつマトリックス相を形 成する材料が S i 0 2 (シリカ) からなるターゲットを用いてスパッ夕法で成 膜することが好ましい。 In the second method for forming a composite film, when an Fe—Si—O-based amorphous film is formed on a substrate, from the viewpoint of obtaining a one-dimensionally grown iron oxide crystal, a material that forms a columnar phase is used. F e 3 0 consists of four (Magunetai g), and materials that form the matrix phase it is preferred that the film with sputtering evening method using a target consisting of S i 0 2 (silica).
以下、 光学薄膜形成の 「第二段階」 について述べる。  Hereinafter, the “second stage” of optical thin film formation will be described.
第二段階では、 第一段階で形成された複合膜から、 一次元的に伸びた柱状相 のみを酸やアルカリを用いて選択的にエッチングし、 取り除く。 エッチング処 理で用いる酸としては、 硫酸、 塩酸、 硝酸、 シユウ酸、 酢酸などが挙げられる 。 例えば、 複合膜の第一形成方法により得られた金属 C o · S i 〇2複合膜か ら金属 C oを取り除くには 0 . l m o 1ノ Lの硝酸水溶液で数分間処理するだ けで金属 C oのみを完全に除去できる。 In the second step, only the one-dimensionally extended columnar phase is selectively etched and removed from the composite film formed in the first step using an acid or an alkali. Examples of the acid used in the etching treatment include sulfuric acid, hydrochloric acid, nitric acid, oxalic acid, and acetic acid. For example, the metal to remove the metal C o · S i 〇 2 composite film or al metal C o obtained by the first method of forming a composite membrane 0. Lmo 1 Bruno simply by treatment for several minutes with an aqueous nitric acid solution of L Only Co can be completely removed.
また、 複合膜の第二形成方法によって形成された F e— S i — O系の複合膜 の場合、 一次元的に伸びたへマタイ トは塩酸水溶液に可溶であるのに対して、 S i 0 2は同溶液に不溶であるため、 約 6 m o 1 Z Lの塩酸水溶液に膜を浸漬 することにより選択エッチングできる。 In the case of the Fe—Si—O composite film formed by the second method of forming a composite film, the one-dimensionally expanded hematite is soluble in aqueous hydrochloric acid, whereas i 0 2 is because it is insoluble in the solution, it can be selectively etched by immersing the film in aqueous hydrochloric acid of about 6 mo 1 ZL.
本発明の光学薄膜を形成する基体としては、 特に限定されない。  The substrate on which the optical thin film of the present invention is formed is not particularly limited.
1 ) 複合膜の第一形成方法を用いる場合は、 ガラス、 セラミックス (サファ ィァ (アルミナ単結晶) 等も含む) 、 金属、 プラスチックス等の、 基板または フィルムを使用できる。  1) When the first method for forming a composite film is used, a substrate or film of glass, ceramics (including sapphire (alumina single crystal), etc.), metal, plastics, etc. can be used.
2 ) 複合膜の第二形成方法を用いる場合は、 ガラス、 セラミックス (サファ ィァ (アルミナ単結晶) 等も含む) 、 耐熱金属 (例えば F e、 N i 、 C r 、 V などからなるステンレス鋼やハステロィなどの耐酸化性の合金) 等の、 基板ま たはフィルムを使用できる。 2) When the second method of forming a composite film is used, glass, ceramics (including sapphire (alumina single crystal), etc.), refractory metals (eg, Fe, Ni, Cr, V Substrates or films such as stainless steel and oxidation-resistant alloys such as Hastelloy) can be used.
本発明の作用効果が特に顕著に発現されることから、 基体としては透明基体 (例えば、 ガラス基体、 単結晶基体、 フィルム基体) が好ましく、 特にガラス 基体が好ましい。 基体の屈折率は 1 . 5〜 1 . 7であることが好ましい。 本発明の反射防止物品は、 ディスプレイの前面ガラス (C R Tパネルなど) 、 自動車用窓ガラス (車両の風防ガラスなど) 、 建築用窓ガラス、 機械装置用 ガラス (業務用冷蔵庫のドアのガラスなど) 、 鏡、 光学レンズに好適である。 本発明における光学薄膜は膜表面から連続する気孔が膜内部まで存在するこ とから、 比較的大きな気孔率を持つ膜となっている。 気孔は光の波長に比べて 充分小さいことから光を散乱することはなく、 光学的には緻密質体の屈折率と 空気の屈折率 (屈折率 1 . 0 0 ) の間の屈折率を持つ膜となる。  The substrate is preferably a transparent substrate (for example, a glass substrate, a single crystal substrate, or a film substrate), and particularly preferably a glass substrate, since the effects of the present invention are particularly remarkably exhibited. The substrate preferably has a refractive index of 1.5 to 1.7. The anti-reflective article of the present invention includes a front glass of a display (such as a CRT panel), a window glass for an automobile (such as a windshield of a vehicle), a window glass for a building, a glass for a mechanical device (a glass for a door of a commercial refrigerator, and the like), Suitable for mirrors and optical lenses. The optical thin film of the present invention has a relatively large porosity because continuous pores extend from the film surface to the inside of the film. Since the pores are sufficiently small compared to the wavelength of light, they do not scatter light, and optically have a refractive index between that of the dense body and that of air (refractive index: 1.00). It becomes a film.
さらに、 光学薄膜は一次元貫通気孔のまわりを連続したマトリックス相が取 り囲んでいるため、 同じ材料および気孔率であれば、 従来からある多孔質無機 膜に比べて原理的に膜強度が大きく、 基体との密着性も良い。 膜強度が大きい のは、 従来の多孔質無機膜がセラミック粒子を焼結などで緩く結合したもので あるのに対して、 本発明の膜では一次元貫通気孔を取り囲むマトリックスが完 全に連続した一体成形物であることによる。  Furthermore, since the optical thin film is surrounded by a continuous matrix phase around the one-dimensional through-pores, the film strength is higher in principle than a conventional porous inorganic film with the same material and porosity. Good adhesion to the substrate. The membrane strength is high because the conventional porous inorganic membrane is formed by loosely binding ceramic particles by sintering, etc., whereas the membrane of the present invention has a completely continuous matrix surrounding the one-dimensional through-pores. This is due to being an integrally molded product.
また、 基体との密着性についても、 第一段階の複合膜 (第二形成方法による ァモルファス前駆体膜を含めて) をスパッタ法等で形成すれば特に密着性の高 い膜が得られる。 また、 従来の多孔質無機膜は、 屈折率を下げるため膜の気孔 率を増加させると、 膜そのものの強度、 および、 膜と基板との密着強度が低く なる、 特性上相矛盾する問題が生じる場合が多かったが、 本発明における光学 薄膜では、 低い屈折率を有しつつ、 膜の強度と、 基体との密着性を、 両方とも 高くすることができ、 低屈折率および高耐久性を併せ持つ。  Regarding the adhesion to the substrate, a film having particularly high adhesion can be obtained by forming the first-stage composite film (including the amorphous precursor film by the second forming method) by a sputtering method or the like. In addition, if the porosity of a conventional porous inorganic film is increased to lower the refractive index, the strength of the film itself and the strength of adhesion between the film and the substrate are reduced, resulting in contradictory problems in characteristics. In many cases, the optical thin film of the present invention has both a low refractive index, a high film strength, and high adhesion to a substrate, and has both a low refractive index and high durability. .
実施例 Example
(実施例 1 )  (Example 1)
複合膜の第一形成方法を用いて、 厚さ 1 . 2 mmのシリカガラス (石英) 基 板上に金属 C oと T i 0 2の 2相からなる薄膜を形成した。 スパッ夕に際して は、 直径約 1 5 c mの金属 C oターゲット上に 5mm角の T i〇2結晶 (ルチ ル型) を置いた複合ターゲットを用いた。 金属 C oターゲットのターゲッ ト表 面の全面積に対する割合は 7 1 0とした。 Using the first method of forming a composite membrane, to form a thin film having a thickness of 1. 2 mm silica glass (quartz) Metal C o and T i 0 2 of the two-phase on the base plate. For a spa evening Used a composite target spaced T I_〇 2 crystals 5mm square on a metal C o target having a diameter of about 1 5 cm (Ruchi Le type). The ratio of the metal Co target to the total area of the target surface was set at 710.
真空槽を 5 X I 0—4P aまで排気したのちに A rガスを導入し、 真空槽内部 のガス圧が 2 P aになるように流量調節し 600Wの高周波入力によりブラズ マを発生させた。 成膜速度は約 0. 2 5 nmZs e cであり、 成膜時には基板 を約 200 °Cに加熱した。 このようにして形成した膜厚 1 2 O nmの C o _T i 02複合膜を TEM (透過型電子顕微鏡) で観察したところ、 平均粒径約 8 nmの C o結晶粒子が柱状に成長しており、 粒界にアモルファスの T i 02が 析出していた。 The vacuum chamber was introduced a A r gas After evacuated to 5 XI 0- 4 P a, was generated Burazu Ma by the high-frequency input of the flow rate adjusting 600W as the gas pressure inside the vacuum chamber is 2 P a . The film formation rate was about 0.25 nmZsec, and the substrate was heated to about 200 ° C during film formation. Thus the C o _T i 0 2 composite film having a thickness of 1 2 O nm was formed was observed by TEM (transmission electron microscope), C o crystal particles having an average particle diameter of about 8 nm is grown in a columnar Amorphous Ti 0 2 was precipitated at the grain boundaries.
第二段階として、 上記の方法で作製した C o_T i〇2複合膜を 0. lmo 1 Lの硝酸水溶液に 5分間浸漬して C o粒子を溶解除去したところ、 C o粒 子がほぼ溶出し透明な膜が残留した。 平均孔径は約 8 nmであった。 C o—T i 02複合膜から C oの柱状層を取り除いた後の膜を S EM (走査型電子顕微 鏡) で観察したところ、 ところどころに直径数十 nm程度の粒子状の物質が載 つている以外は際だったコントラストは見られず、 均一な膜であった。 また、 膜断面方向からの写真では基板上に縦方向の構造を持った膜が、 基板と隙間な く密着して残存していた。 A second step, was the C O_T I_〇 2 soaked to C o particles 5 minutes composite film nitrate aqueous solution of 0. lmo 1 L produced by the above-described method dissolve and remove almost eluted is C o grains child A clear film remained. The average pore size was about 8 nm. C a o-T i 0 2 film after removal of the columnar layer of C o from the composite film was observed with S EM (scanning electron microscope), places the mounting particulate material having a diameter of about several tens of nm No remarkable contrast was seen except that it was worn, and the film was uniform. In the photograph from the cross-sectional direction of the film, a film having a vertical structure remained on the substrate in close contact with the substrate without any gap.
以上のようにして形成された光学薄膜の気孔率を N2ガスの等温吸脱着特性 から見積もったところ、 約 7 3 %であった。 なお、 測定は以下のようにして行 つた。 厚さ 0. 1 mmの石英ガラス基板の両面に前記の光学薄膜 (膜厚 l m ) を成膜した試料を準備し、 自動比表面積測定装置 (Qu a n t a Ch r o m e社製 「Au t o s o r b— 1」 ) を用いて、 液体窒素温度での窒素ガスの 等温吸脱着特性を測定し、 吸着量から求めた細孔容積と、 膜厚などから気孔率 を求めた。 The porosity of the optical thin film formed as described above was estimated from the isothermal adsorption / desorption characteristics of N 2 gas to be about 73%. The measurement was performed as follows. An optical thin film (thickness lm) was prepared on both sides of a quartz glass substrate with a thickness of 0.1 mm. A sample was prepared and an automatic specific surface area measuring device ("Au tosorb-1" manufactured by Quanta Chrome) was used. The isothermal adsorption and desorption characteristics of nitrogen gas at the temperature of liquid nitrogen were measured by using, and the porosity was obtained from the pore volume obtained from the amount of adsorption and the film thickness.
また、 上述の光学薄膜を形成したシリカガラス板の光学薄膜形成面と、 膜を つけていないシリカガラス板に関して、 通常の反射スぺクトル測定器により反 射角 1 5° で測定した。 反射スペクトルの測定に際しては、 膜形成面とは反対 側のガラス面をサンドペーパーを用いて粗面とし、 さらに、 黒色ペイントを塗 布して、 膜面側の反射 (以下、 膜面反射という) のみを計測した。 光学薄膜が 形成されたシリカガラス板では波長 5 50 nmでの反射率が約 0. 28 %であ り、 ブランクのガラス (4. 2 ) に比べて低反射化されていた (93 %の反 射率低減効果があった) 。 5 50 nm付近の最低反射率から見積もった屈折率 は約 1. 30であり、 緻密質の T i 02膜の屈折率 (約 2. 5) に比べて著し く小さくなつていた。 なお、 光学薄膜の屈折率 (n f) の見積もりは、 n f> ( ns) 1/2のときは n f= (n s) 1/2X [ 1 + (Rm) 1/2] 1/2/ [ 1一 (R m) 1/2] 1/2、 また n f≤ (n s) 1/2のときは n f= (ns) 1/2x [ 1— ( Rm) 1/2] /2/ [ 1 + (Rm) 1/2] 1/2という式 (nsは基体の屈折率、 R mは 5 50 nm付近の最低反射率) により行った。 In addition, the optical thin film-formed surface of the silica glass plate on which the above-mentioned optical thin film was formed and the silica glass plate without the film were measured at a reflection angle of 15 ° using a normal reflection spectrum measuring instrument. When measuring the reflection spectrum, the glass surface opposite to the film-forming surface was roughened using sandpaper, and further painted with black paint. Then, only the reflection on the film surface side (hereinafter referred to as film surface reflection) was measured. The reflectance at the wavelength of 550 nm of the silica glass plate with the optical thin film formed was about 0.28%, which was lower than that of the blank glass (4.2) (93% anti-reflection). There was an emissivity reduction effect). The refractive index estimated from the minimum reflectance around 550 nm was about 1.30, which was significantly smaller than the refractive index (about 2.5 ) of the dense Ti02 film. The refractive index (n f ) of the optical thin film is estimated as n f = ( ns ) 1/2 X [1 + (R m ) 1/2 ] when n f > ( ns ) 1/2 1/2 / [1 (R m ) 1/2 ] 1/2 , and if n f ≤ (n s ) 1/2 , n f = (n s ) 1/2 x [1— (R m ) 1/2] / 2 / [1 + (R m) 1/2] 1/2 of formula (n s is the substrate index of refraction of, R m was carried out by the minimum reflectance in the vicinity of 5 50 nm).
表 1に、 基体の屈折率、 マトリックス相の屈折率、 光学薄膜の屈折率、 平均 孔径 ( r) と前記壁の平均厚さ (d) との比 (dZr) 、 気孔率 (%) 、 前述 の反射角 1 5° で測定したときの反射低減効果 (%) を示す。 以下の実施例に ついても同様に示す。 ただし、 実施例 9、 1 0、 1 2、 1 3については反射防 止性能について別の評価をした。  Table 1 shows the refractive index of the substrate, the refractive index of the matrix phase, the refractive index of the optical thin film, the ratio (dZr) between the average pore diameter (r) and the average thickness (d) of the wall, the porosity (%), The reflection reduction effect (%) when measured at a reflection angle of 15 ° is shown. The same applies to the following examples. However, in Examples 9, 10, 12, and 13, the antireflection performance was evaluated differently.
上述の光学薄膜 (膜厚 1 20 nmの一次元貫通気孔を有する T i 02膜) の 耐久性を、 テーバー耐摩耗性試験により調べたところ、 1 00回転しても透過 率等に変化は見られなかった。 なお、 テーバー耐摩耗性試験は、 市販の C S 1 0型テーバー型摩耗輪と J I S R 6252に規定する A A 1 80番の研磨紙 と同等の品質の研磨紙を用い、 5 00 gの荷重をかけ、 60 r pmで 1 0 0回 転して膜を摩耗させることによって行った。 以下の例におけるテーバー耐摩耗 性試験も同様である。 The durability of the above optical thin film (T i 0 2 film having one-dimensional through-pores of the film thickness 1 20 nm), were examined by Taber abrasion resistance test, 1 00 rotates change in transmittance, etc. also are I couldn't see it. The Taber abrasion resistance test was conducted using a commercially available CS10 Taber-type abrasion wheel and abrasive paper of the same quality as AA180 abrasive paper specified in JISR 6252. This was done by abrasion of the film at 100 rpm at 100 rpm. The same applies to the Taber abrasion resistance test in the following examples.
(実施例 2)  (Example 2)
厚さ 1. 2mmのソ一ダライムガラス基板上に、 次のようにして、 C o— S i〇2複合膜を形成した。 スパッ夕に際して、 直径約 1 5 cmの金属 C o夕一 ゲットの上に 0. 5 mm角の S i〇2ガラスチップを、 C oと S i〇2ガラスの 面積比で 7 0 : 30になるように置いた複合ターゲットを用いた。 その他のス パッ夕条件は実施例 1とほぼ同じ条件で製膜を行った。 このようにして形成し た C o— S i〇2複合膜内部の構造は、 実施例 1で得られた膜の構造によく似 ており、 C o結晶粒子の柱状相のまわりをアモルファスの S i〇2マトリック ス相が取り囲んでいるが、 この場合には C o結晶の平均粒径が約 1 O nmであ つた。 A Co—Si 2 composite film was formed on a 1.2 mm thick soda lime glass substrate as follows. In sputtering evening, the S I_〇 2 glass chips 0. 5 mm square on the metal C o evening one target with a diameter of about 1 5 cm, C o and S I_〇 2 7 glass the area ratio of 0:30 to Composite targets were used. The other sputtering conditions were the same as in Example 1, and the film was formed. The internal structure of the Co—Si 2 composite film thus formed is very similar to the structure of the film obtained in Example 1. The amorphous Si 2 matrix phase surrounds the columnar phase of the Co crystal grains. In this case, the average crystal grain size of the Co crystals was about 1 O nm.
上記の方法で形成した膜厚約 1 20 nmの試料を実施例 1と同様に硝酸水溶 液でエッチングしたところ、 C 0柱状相がほぼ溶出し粒界の S i 02マトリッ クス相が残留した。 平均孔径は約 1 0 nmであった。 可視光域での最低反射率 は 0. 07 %であり反射防止膜として使用できる。 この光学薄膜の耐久性を、 実施例 1と同様のテーバー耐摩耗性試験により調べたところ、 試験後にも透過 率等に変化は見られなかった。 When a sample with a thickness of about 120 nm formed by the above method was etched with an aqueous nitric acid solution in the same manner as in Example 1, the C 0 columnar phase was almost eluted, and the SiO 2 matrix phase at the grain boundaries remained. . The average pore size was about 10 nm. The minimum reflectance in the visible light range is 0.07%, and it can be used as an anti-reflection film. When the durability of this optical thin film was examined by the same Taber abrasion resistance test as in Example 1, no change was observed in the transmittance and the like after the test.
次に、 得られた膜の表面に直径約 1 mmの純水の水滴を滴下して接触角を測 定したところ約 5° であった。 また、 得られた S i〇2膜付きガラス基板を冷 蔵庫に入れ 1時間保持し 5 程度に冷やした後に、 取り出して呼気を吹きかけ たところ、 膜のある部分には曇が生じないのに対して、 膜のないガラス表面に は微小な水滴が付着して曇が生じ不透明になった。 Next, a drop of pure water having a diameter of about 1 mm was dropped on the surface of the obtained film, and the contact angle was measured to be about 5 °. Also, the S I_〇 2 film-coated glass substrate obtained after cooling to about 5 and held 1 hour put in refrigerator, was sprayed with exhalation removed, the portion of the film to no haze On the other hand, small water droplets adhered to the glass surface without the film, and became cloudy and became opaque.
(実施例 3)  (Example 3)
厚さ 5mmのサファイア (アルミナ単結晶) 基板上に、 実施例 1と同様にし て、 一次元貫通気孔を持つ T i〇2膜を約 1 20 nm形成した。 可視光域での 最低反射率は 0. 0 1 %となり、 極めて優れた反射防止性能が得られた。 5mm thick sapphire (alumina single crystal) substrate, in the same manner as in Example 1, was T I_〇 2 film having one-dimensional through pores about 1 20 nm formed. The minimum reflectance in the visible light range was 0.01%, and extremely excellent antireflection performance was obtained.
この光学薄膜の耐久性を、 実施例 1と同様のテーバー耐摩耗性試験により調 ベたところ、 試験後に透過率等に変化は見られなかった。  The durability of this optical thin film was examined by a Taber abrasion resistance test similar to that in Example 1, and no change was found in the transmittance or the like after the test.
(実施例 4)  (Example 4)
厚さ 1. 8mmのポリエチレンフィルムシート上に、 実施例 3と同様にして 、 一次元貫通気孔を持つ S 1〇2膜を約1 2 O nm形成した。 可視光域での最 低反射率は 0. 07 %となり、 極めて優れた反射防止性能が得られた。 The thickness of 1. a polyethylene film sheet of 8 mm, in the same manner as in Example 3, was S 1_Rei 2 film having one-dimensional through pores about 1 2 O nm formed. The minimum reflectance in the visible light range was 0.07%, and extremely excellent antireflection performance was obtained.
(実施例 5)  (Example 5)
厚さ 1. 2mmのソ一ダライムガラス基板上に、 次のようにして、 C o— Z r〇2複合膜を形成した。 スパッ夕に際して、 直径約 1 5 cmの金属 C oター ゲッ トの上に 0. 511 111角の21" 02チップを、 C oと Z r 02の面積比で 6 0 : 40になるように置いた複合ターゲッ トを用いた。 その他のスパッ夕条件は 実施例 1とほぼ同じ条件で製膜を行った。 このようにして形成した C o— Z r 〇2複合膜内部の構造は、 実施例 1で得られた膜の構造によく似ており、 C o 結晶粒子の柱状相のまわりをアモルファスの Z r 02マトリックス相が取り囲 んでいるが、 この場合には C o結晶の平均粒径が約 7 nmであった。 The thickness 1. 2 mm Seo one da-lime glass substrate, as follows, to form a C o-Z R_〇 2 composite film. In sputtering evening, the 21 "0 2 chips 0.511 111 corners on the metal C o ter rodents bets with a diameter of about 1 5 cm, C o and Z r 0 6 2 area ratio 0: to be the 40 The other target conditions were as follows: A film was formed under almost the same conditions as in Example 1. Thus C o-Z r 〇 2 composite film inside the structure formed by the very similar to the structure of the film obtained in Example 1, C o amorphous around the columnar phase crystal grains Z r Although the 0 2 matrix phase was surrounded, the average particle size of the Co crystal was about 7 nm in this case.
上記の方法で形成した膜厚約 1 2 0 nmの試料を実施例 1と同様に酸処理し たところ、 C 0柱状相がほぼ溶出し粒界の Z r〇2マトリックス相が残留した 。 平均孔径は約 7 nmであった。 この光学薄膜の耐久性を、 実施例 1と同様の テーバー耐摩耗性試験により調べたところ、 試験後に透過率等に変化は見られ なかった。 Was the above method thickness of about 1 2 0 nm formed in the sample was acid-treated in the same manner as in Example 1, C 0 columnar phase substantially eluted Z R_〇 2 matrix phase of the grain boundaries remained. The average pore size was about 7 nm. When the durability of this optical thin film was examined by the same Taber abrasion resistance test as in Example 1, no change in transmittance or the like was observed after the test.
(実施例 6)  (Example 6)
厚さ 1. 2 mmのソ一ダライムガラス基板上に、 次のようにして、 C o— S i 3N4複合膜を形成した。 スパッ夕に際して、 直径約 1 5 c mの金属 C o夕一 ゲットの上に 0. 5 mm角の S i 3N4チップを、 C oと S i 3 N 4の面積比で 6 0 : 4 0になるように置いた複合ターゲットを用いた。 その他のスパッタ条 件は実施例 1とほぼ同じ条件で製膜を行った。 A Co—Si 3 N 4 composite film was formed on a 1.2 mm thick soda lime glass substrate as follows. At the time of spattering, a 0.5 mm square Si 3 N 4 chip is placed on a metal Co with a diameter of about 15 cm and a 60:40 area ratio of Co and Si 3 N 4. Was used. Film formation was performed under almost the same conditions as in Example 1 except for the sputtering conditions.
このようにして形成した C o— S i 3N4複合膜内部の構造は、 実施例 1で得 られた膜の構造によく似ており、 C o結晶粒子の柱状相のまわりをァモルファ スの S i 3N4マトリックス相が取り囲んでいるが、 この場合には C o結晶の平 均粒径が約 6 n mであった。 The internal structure of the Co—Si 3 N 4 composite film formed in this manner is very similar to the structure of the film obtained in Example 1, in which the amorphous phase around the columnar phase of the Co crystal grains is formed. The Si 3 N 4 matrix phase is surrounding, but in this case, the average particle size of the Co crystal was about 6 nm.
上記の方法で形成した膜厚約 1 2 0 nmの試料を硝酸水溶液に浸漬して C o 粒子を溶解除去した。 実施例 1と同様に、 C o柱状相がほぼ溶出し粒界の S i 3N4マトリックス相が残留した。 平均孔径は約 6 nmであった。 この光学薄膜 の耐久性を、 実施例 1と同様のテーバー耐摩耗性試験により調べたところ、 試 験後に透過率等に変化は見られなかった。 The sample having a thickness of about 120 nm formed by the above method was immersed in an aqueous nitric acid solution to dissolve and remove Co particles. As in Example 1, the Co columnar phase was almost eluted, and the Si 3 N 4 matrix phase at the grain boundaries remained. The average pore size was about 6 nm. When the durability of this optical thin film was examined by the same Taber abrasion resistance test as in Example 1, no change was observed in the transmittance and the like after the test.
(実施例 7)  (Example 7)
厚さ 1. 2 mmのソーダライムガラス基板上に、 次のようにして、 C o—M g F 2複合膜を形成した。 スパッ夕に際しては、 直径約 1 5 c mの金属 C 0夕 —ゲットの上に 1 c m角の M g F 2セラミツクスチップを、 C oと M g F 2の面 積比で 7 0 : 3 0になるように M g F 2セラミックスチップの量を調節した。 その他のスパッ夕条件は実施例 1とほぼ同じ条件で製膜を行った。 このよう にして形成した C o _Mg F2複合膜内部の構造は、 実施例 1で得られた膜の 構造によく似ており、 C o結晶粒子の柱状相のまわりをアモルファスの Mg F 2マトリックス相が取り囲んでいるが、 この場合には C 0結晶の平均粒径が約 1 2 nmであった。 The thickness of 1. 2 mm soda-lime glass substrate, as follows, to form a C o-M g F 2 composite film. In the case of a spatter, a metal 15 cm in diameter C 0-a 1 cm square M g F 2 ceramic chip is placed on the get, and the area ratio of C o to M g F 2 becomes 70: 30. and adjusting the amount of M g F 2 ceramic chip so. The film formation was performed under almost the same conditions as in Example 1 except for the sputtering conditions. Thus C o _Mg F 2 composite film inside the structure formed by the closely resembles the structure of the film obtained in Example 1, C o Mg F 2 matrix of amorphous around the columnar phase crystal grain The phase is surrounding, but in this case the average size of the C0 crystals was about 12 nm.
上記の方法で形成した膜厚約 1 2 0 nmの試料を 0. 1 mo 1 ZLの硝酸水 溶液に 5分間浸漬して C o粒子を溶解除去した。 実施例 1と同様に、 C o柱状 相がほぼ溶出し粒界の Mg F 2マトリックス相が残留した。 平均孔径は約 1 2 nmであった。 この光学薄膜の耐久性を、 実施例 1と同様のテーバー耐摩耗性 試験により調べたところ、 試験後に透過率等に変化は見られなかった。 The sample having a thickness of about 120 nm formed by the above method was immersed in a 0.1 mo 1 ZL aqueous solution of nitric acid for 5 minutes to dissolve and remove the Co particles. As in Example 1, the Co columnar phase was almost eluted, and the MgF 2 matrix phase at the grain boundaries remained. The average pore size was about 12 nm. When the durability of this optical thin film was examined by the same Taber abrasion resistance test as in Example 1, no change in transmittance or the like was observed after the test.
(実施例 8)  (Example 8)
厚さ 1. 0mmの耐熱ガラス (コーニング# 7 0 5 9) 基板上に F e— S i 一〇の三成分からなるァモルファス前駆体膜をスパッ夕法で形成した。 スパッ 夕には、 F e 34粉末と5 i 〇2粉末をそれぞれ体積比で 7 0 %および 3 0 % の割合で混合し焼結したもの (すなわち、 v p/ (v p+ vm) = 7/ 1 0) を ターゲットに用いた。 真空槽を 5 X 1 0 _4 P aまで排気したのちにアルゴンガ スを導入し、 真空槽内部のガス圧が 2 P aとなるように A rガスの流量を調節 し、 4. 4W cm2の高周波を入力してプラズマを発生させた。 このときの 成膜速度は約 0. 2 nm/s e cであった。 On a heat-resistant glass (Corning # 75059) having a thickness of 1.0 mm, an amorphous precursor film composed of three components of Fe—Si was formed by a sputtering method. Sputtering the evening is, F e 34 powder and 5 i 〇 2 powder a mixture sintered in a proportion of 70% and 3 0% in the volume proportion (i.e., v p / (v p + v m ) = 7/10) was used as the target. The vacuum chamber by introducing argon gas vinegar After evacuated to 5 X 1 0 _ 4 P a , and adjusting the flow rate of A r gas so that the gas pressure inside the vacuum chamber is 2 P a, 4. 4W cm 2 The high frequency was input to generate plasma. The deposition rate at this time was about 0.2 nm / sec.
成膜したアモルファス前駆体膜の断面構造を S E Mで観察したところ、 ガラ ス基板上に厚さ約 1 2 0 nmのアモルファス膜が形成されていた。 ァモルファ ス膜中にはクラックやポアなどの欠陥が見られず、 非常に緻密な膜が形成され ていた。 引き続き、 このアモルファス膜を空気中 6 0 0 で 2時間、 加熱処理 した。 加熱処理後の膜を TEMで観察したところ、 一次元的に伸びた針状のへ マ夕イ ト (F e 203) 結晶とそのまわりを取り囲むシリカ (S i 〇2) が共晶 組織を形成していた。 へマタイ ト結晶は膜表面から基板との界面に向かって膜 表面に垂直に伸びており、 その直径は約 4 nmであった。 When the cross-sectional structure of the formed amorphous precursor film was observed by SEM, an amorphous film having a thickness of about 120 nm was formed on the glass substrate. No defects such as cracks and pores were found in the amorphous film, and a very dense film was formed. Subsequently, this amorphous film was heated in air at 600 for 2 hours. The film after the heat treatment was observed by TEM, one-dimensionally elongated needle of the Ma evening wells (F e 2 0 3) crystal and silica surrounding around its (S i 〇 2) eutectic structure Had formed. The hematite crystal extended perpendicularly to the film surface from the film surface to the interface with the substrate, and its diameter was about 4 nm.
最後に、 上記の方法で熱処理した膜を基板ごと約 6mo 1 ZLの塩酸水溶液 に室温で 48時間浸潰し、 へマタイ トのみ取り除いた。 膜断面の微細組織を T EM観察したところ、 酸処理前のへマタイ 卜とほぼ同じ 4 nmの直径の貫通気 孔が、 残存する S i 02膜中に存在した。 この光学薄膜の耐久性を、 実施例 1 と同様のテーバー耐摩耗性試験により調べたところ、 試験後に透過率等に変化 は見られなかった。 Finally, the film heat-treated by the above method was immersed together with the substrate in an aqueous solution of about 6 mol 1 ZL of hydrochloric acid at room temperature for 48 hours to remove only hematite. T As a result of EM observation, through pores having a diameter of 4 nm, which was almost the same as that of hematite before the acid treatment, were present in the remaining SiO 2 film. When the durability of this optical thin film was examined by the same Taber abrasion resistance test as in Example 1, no change in transmittance or the like was observed after the test.
(実施例 9 )  (Example 9)
厚さ 1. 2mmのソーダライムガラス基板上に、 次のようにして基板側から 、 S n〇2/S i〇2 (緻密質) ZS i 02 (一次元貫通気孔を有する膜) 、 の 3層多層膜を形成した。 すなわち、 真空槽を 5 X I 0 _4 P aまで排気した後に 酸素ガスを 0. 4 P aになるように流量調整して導入し、 直径約 1 5 c mの S nターゲットに 3 3 0 Wの D Cスパッ夕電力を投入して、 1 4 nmの S n〇2 膜を形成した。 次に、 基板を直径約 1 5 c mのシリコンターゲット上に移動し 、 4 0 kH zの正電位パルスを重畳した 3 3 0Wの D Cスパッタ電力を、 この シリコンターゲッ トに投入して、 1 1 3 11111の5 1 02 (緻密質) 膜を形成し た。 この後、 実施例 2に倣って成膜して、 一次元貫通気孔を持つ S i 02膜を 1 2 3 nm形成した。 The thickness 1. 2 mm soda-lime glass substrate, from the substrate side as follows, S N_〇 2 / S I_〇 2 (dense) ZS i 0 2 (film having one-dimensional through-pores), the A three-layer multilayer film was formed. In other words, after evacuating the vacuum chamber to 5 XI 0 _ 4 Pa, oxygen gas was introduced at a flow rate adjusted to 0.4 Pa and introduced into a Sn target with a diameter of about 15 cm. by introducing a DC sputtering evening power, to form the S N_〇 2 film of 1 4 nm. Next, the substrate was moved onto a silicon target having a diameter of about 15 cm, and a DC sputtering power of 330 W on which a positive potential pulse of 40 kHz was superimposed was applied to the silicon target. 11111 5 1 0 2 was formed (dense) film. Thereafter, a SiO 2 film having one-dimensional through-pores was formed to a thickness of 123 nm according to Example 2.
また、 膜形成面とは反対側のガラス面をサンドペーパーを用いて非平滑面と し、 さらに、 黒色ペイントを塗布した後、 膜形成面の反射スペクトル (以下、 膜形成面反射スペクトルという) を測定した。 反射率が 1 %以下となる波長領 域は 3 9 0〜 7 2 0 nmとなり、 反射防止波長領域の極めて広い光学多層膜で あった。  In addition, the glass surface opposite to the film-forming surface is made to be a non-smooth surface using sandpaper, and after applying black paint, the reflection spectrum of the film-forming surface (hereinafter referred to as the film-forming surface reflection spectrum) is obtained. It was measured. The wavelength region where the reflectance is 1% or less is 390 to 720 nm, and the optical multilayer film has an extremely wide antireflection wavelength region.
(実施例 1 0 )  (Example 10)
厚さ 1. 2mmのソーダライムガラス基板上に、 次のようにして基板側から 、 S η 02/Ύ i 02 (一次元貫通気孔を有する膜) 、 の 2層多層膜を形成した 。 すなわち、 真空槽を 5 X 1 0— 4 P aまで排気した後に酸素ガスを 0. 4 P a になるように流量調整して導入し、 直径約 1 5 c mの S nターゲッ 卜に 3 3 0 Wの D Cスパッタ電力を投入して、 7. 5 nmの S n〇2膜を形成した。 次に 、 実施例 1に倣って成膜して、 一次元貫通気孔を持つ T i〇2膜を 1 0 9 nm 形成した。 On a soda-lime glass substrate having a thickness of 1.2 mm, a two-layer multilayer film of Sη 0 2 / Ύ i 0 2 (a film having one-dimensional through-holes) was formed from the substrate side as follows. That is, the vacuum tank 5 X 1 0- 4 P a to be introduced with a flow rate adjusted such that the oxygen gas to 0. 4 P a after venting, S n target Bok 3 3 0 a diameter of about 1 5 cm by introducing a DC sputtering power of W, to form the S N_〇 2 film 7. 5 nm. Next, as in Example 1, a Ti 一2 film having one-dimensional through-pores was formed to a thickness of 109 nm.
膜形成面反射スぺクトルを測定したところ、 反射率が 1 %以下となる波長領 域は 4 1 0〜700 nmとなり、 反射防止波長領域の極めて広い光学多層膜で あった。 When the reflection spectrum of the film formation surface was measured, the wavelength region where the reflectance was 1% or less was measured. The wavelength range was 410 to 700 nm, and the optical multilayer film had an extremely wide antireflection wavelength range.
(実施例 1 1 )  (Example 11)
膜厚を 140 nmに変更した以外は実施例 1と同様にして C o-T i 02複 合膜を成膜し、 エッチングを行った。 得られた膜の平均孔径は約 8 nmであつ た。 Except for changing the film thickness to 140 nm in the same manner as in Example 1 by forming a C oT i 0 2 double Gomaku was etched. The average pore size of the obtained membrane was about 8 nm.
得られた T i〇2膜付きガラス基板を電気炉中に入れ、 空気中 6 00°Cで 2 時間加熱した結果、 膜厚は約 1 5 %程減少し (すなわち膜厚は約 1 20 nm) 、 X線回折装置で解析したところアナターゼとルチルの 2種類の結晶を含むこ とがわかった。 屈折率は 1. 3であり、 膜面の最低反射率は 0. 28 %であつ た。 The resulting T I_〇 2 film-coated glass substrate was placed in an electric furnace, the result was heated for 2 hours at 6 00 ° C in air, the film thickness is reduced by about 1 5% (i.e. a thickness of about 1 20 nm An X-ray diffractometer revealed that it contained two types of crystals, anatase and rutile. The refractive index was 1.3, and the minimum reflectance of the film surface was 0.28%.
加熱後の T i〇2膜付きガラス基板の膜表面にォレイン酸を塗布して水の接 触角を測定したところ約 85 ° であった。 次いで、 該 T i〇2膜付きガラス基 板の膜に、 ブラックライ トを用いて 3 50 nmの光 (紫外線) を 4mWZcm 2の強度で照射したところ、 240時間後に水の接触角が 1 5 ° まで低下し、 ォレイン酸が分解されて、 親水性が回復することがわかった。 The T I_〇 2 film-coated glass substrate of the film surface after heating by applying a Orein acid was about 85 ° was measured contact angle of water. Then the T I_〇 the film 2 film-coated glass board, was irradiated 3 50 nm of light (ultraviolet) at an intensity of 4MWZcm 2 with black line bets, 1 contact angle of water after 240 hours 5 °, the oleic acid was decomposed and the hydrophilicity was restored.
(実施例 1 2)  (Example 1 2)
ソ一ダライムガラス基板上に、 ゾルゲル法により膜厚 1 2 0 nmのアナター ゼを結晶相として含む T i〇2膜を形成した。 次いで、 膜厚を 1 00 nmに変 更した以外は実施例 2と同様にして S i 02膜を形成した。 なお、 基板周辺部 にはマスクを施して T i〇2膜も S i 02膜も形成しなかった。 Seo one da-lime glass substrate, thereby forming a T I_〇 2 film containing Anata zero film thickness 1 2 0 nm as a crystal phase by the sol-gel method. Next, an SiO 2 film was formed in the same manner as in Example 2 except that the film thickness was changed to 100 nm. Incidentally, a mask was applied to the peripheral portion of the substrate, and neither the Ti 2 film nor the Si 0 2 film was formed.
膜形成面反射スぺク トルを測定したところ、 反射率が 1 %以下となる波長領 域は 4 1 0〜 700 nmとなり、 反射防止波長領域の極めて広い光学多層膜で めった。  When the reflection spectrum of the film formation surface was measured, the wavelength region where the reflectance was 1% or less was 410 to 700 nm, and the optical multilayer film having an extremely wide antireflection wavelength region was obtained.
得られた膜の表面に直径約 1 m mの純水の水滴を滴下して接触角を測定した ところ約 5° であった。 また、 得られた S i〇2膜付きガラス基板を冷蔵庫に 入れ 1時間保持し 5 t:程度に冷やした後に、 取り出して呼気を吹きかけたとこ ろ、 膜のある部分には曇が生じないのに対して、 膜のないガラス表面には微小 な水滴が付着して曇が生じ不透明になった。 さらに、 得られた膜付きガラス基板を室内で 3ヶ月間放置して再び水の接触 角を調べたところ約 2 0 ° となり、 親水性が低下していた。 親水性が低下した 膜付きガラス基板の膜に、 ブラックライ トを用いて 3 5 0 nmの光 (紫外線) を 4 mWZ cm2の強度で照射したところ、 1 2 0時間後に水の接触角が 7 ° まで低下し、 親水性が回復することがわかった。 A drop of pure water having a diameter of about 1 mm was dropped on the surface of the obtained film, and the contact angle was measured to be about 5 °. The obtained S I_〇 2 film-coated glass substrate was kept for 1 hour in the refrigerator 5 t: After cooling to a degree, No fogging does not occur in some parts of Toko filtration, film blowing breath removed On the other hand, small water droplets adhered to the glass surface without the film, and became cloudy and opaque. Further, the obtained glass substrate with a film was left in a room for 3 months, and the contact angle of water was examined again. As a result, the contact angle was about 20 °, and the hydrophilicity was reduced. The membrane of the film-coated glass substrate with a hydrophilic drops was irradiated 3 5 0 nm of light (ultraviolet) at an intensity of 4 mWZ cm 2 by using a black line bets, 1 2 0 hour contact angle of water after the It was found that the temperature dropped to 7 ° and the hydrophilicity was restored.
(実施例 1 3)  (Example 13)
2 mm厚の自動車フロントガラス用のソーダライムガラス基板に次のように して S i 〇2膜 (一次元貫通気孔を有する膜) を成膜した。 すなわち、 真空槽 を 5 X 1 0— 4 P aまで排気した後に A rガスを 1 P aになるように流量調整し て導入し、 長さ 2. 5mの C o— S i 〇2ターゲットに 40 kWのスパッ夕電 力を投入して、 膜厚 1 34. 5 nmの C o— S i 〇2膜を形成した。 得られた 膜を 0. lmo 1 ZLの硝酸水溶液に 5分間浸漬して C o粒子を溶解除去した ところ、 C o粒子がほぼ溶出し透明な S i 02膜が残留した。 A Si 2 film (a film with one-dimensional through-pores) was formed on a 2 mm-thick soda lime glass substrate for automobile windshield as follows. That is, the vacuum chamber was introduced to the flow rate adjusted to the A r gas 1 P a after evacuated to 5 X 1 0- 4 P a, the C o-S i 〇 2 target length 2. 5 m by introducing a sputtering evening power of 40 kW, to form a C o-S i 〇 2 film having a thickness of 1 34. 5 nm. When the obtained film was immersed in an aqueous 0.1 ml 1 ZL nitric acid solution for 5 minutes to dissolve and remove the Co particles, the Co particles were almost eluted, and a transparent SiO 2 film remained.
このようにして得られ S i 02膜付きガラス基板と、 同形状の膜のないガラ ス基板 (2mm厚) とを、 中間膜 (ポリビニルプチラール) を介して S i 〇2 膜が形成されていない面が中間膜と接するように接合し自動車フロント用合わ せガラスを作製した。 Thus the S i 0 2 film-coated glass substrate obtained, a film-free glass substrate of the same shape (2mm thick), S i 〇 2 film through the intermediate film (polyvinyl butyral) is formed The laminated glass for automobile front was manufactured by bonding so that the uncoated surface was in contact with the interlayer film.
得られた自動車フロント用合わせガラスの S i〇2膜がない面をサンドプラ ストで粗面とし、 さらに、 黒色ペイントを塗布して、 S i〇2膜形成面の膜面 反射を測定した。 波長 5 5 0 nmの光をガラス面に対して 6 0 ° の角度で入射 させた場合の反射率は約 8. 2 %であり、 膜がない場合の値 (約 1 5 %) に比 ベて 4 5 %の反射率低減効果があった。 The S I_〇 2 film free surface of automobile front Laminated glass obtained by the rough surface in Sandopura strike, further the black paint was applied to measure the film surface reflection of S I_〇 2 film forming surface. When the light of wavelength 550 nm is incident on the glass surface at an angle of 60 °, the reflectance is about 8.2%, which is compared to the value without the film (about 15%). Thus, there was an effect of reducing the reflectance by 45%.
(実施例 1 4)  (Example 14)
膜の基板への密着性を評価するために上記実施例 1〜 1 3の試料を用いて、 碁盤目テープ法 (J I S K 540 0) に準ずる方法により、 セロハン粘着テ ープで引き剥がし試験を行った。 その結果、 全ての試料で実用上問題になるよ うな剥離は観察されなかった。  In order to evaluate the adhesiveness of the film to the substrate, a peeling test was performed using cellophane adhesive tape using the samples of Examples 1 to 13 according to the cross-cut tape method (JISK5400). Was. As a result, no peeling that would cause a practical problem was observed in any of the samples.
(比較例 1 )  (Comparative Example 1)
厚さ 1. 2mmのシリカガラス基板上に、 プロパノール溶媒にチタニウムィ ソプロボキシドを 0. 5 mo 1 ZLの濃度で溶解させた液を塗布し、 約 45 0 °Cに加熱し、 膜厚 1 20 nmの多孔質 T i〇2膜を形成した。 実施例 1と同様 のテーバー耐摩耗性試験により耐久性を調べたところ、 1 00回転では膜が一 部剥離し、 透明性が損なわれた。 On a silica glass substrate with a thickness of 1.2 mm, use titanium dioxide in a propanol solvent. Sopurobokishido was applied a solution dissolved at a concentration of 0. 5 mo 1 ZL, and heated to about 45 0 ° C, to form a porous T I_〇 2 film having a thickness of 1 20 nm. When the durability was examined by the same Taber abrasion resistance test as in Example 1, at 100 revolutions, the film was partially peeled, and the transparency was impaired.
(比較例 2)  (Comparative Example 2)
厚さ 1 · Ommの耐熱ガラス (コーニング# 705 9) 基板上に F e - S i 一 0の三成分からなるアモルファス前駆体膜をスパッ夕法で形成した。 スパッ 夕には、 F e O粉末と S i 02粉末をそれぞれ体積比で 70 %および 3 0 %の 割合で混合し焼結したものを夕一ゲッ卜に用いた。 真空槽を 5 X 1 0— 4 P aま で排気したのちにアルゴンガスを導入し、 真空槽内部のガス圧が 2 P aとなる ように A rガスの流量を調節し、 4. 4WZ c m2の高周波を入力してプラズ マを発生させた。 このときの成膜速度は約 0. 2 nmZ s e cであった。 An amorphous precursor film composed of three components of Fe-Si10 was formed on a heat-resistant glass (Corning # 7059) substrate having a thickness of 1 · Omm by a sputtering method. Sputtering the evening is used was sintered at a ratio of F e O 70% powder and S i 0 2 powder in the volume proportion and 3 0% to evening one Getting Bok. The vacuum chamber by introducing argon gas after evacuated at 5 X 1 0- 4 P a or to adjust the flow rate of the A r gas so that the gas pressure inside the vacuum chamber is 2 P a, 4. 4WZ cm Plasma was generated by inputting a high frequency of 2 . At this time, the film formation rate was about 0.2 nmZ sec.
成膜したアモルファス前駆体膜の断面構造を S E Mで観察したところ、 ガラ ス基板上に厚さ約 1 20 nmのアモルファス膜が形成されていた。 ァモルファ ス膜中にはクラックゃポアなどの欠陥が見られず、 非常に緻密な膜が形成され ていた。 引き続き、 このアモルファス膜を空気中 600 で 2時間、 加熱処理 した。 加熱処理後の膜を TEMで観察したところ、 直径数ナノメーターの顆粒 状へマタイト (F e 203) 結晶がシリ力 (S i〇2) マトリックス中に分散し た組織が得られ、 一次元的な共晶組織は得られなかった。 When the cross-sectional structure of the formed amorphous precursor film was observed by SEM, an amorphous film having a thickness of about 120 nm was formed on the glass substrate. No defects such as cracks and pores were found in the amorphous film, and a very dense film was formed. Subsequently, this amorphous film was subjected to a heat treatment in air at 600 for 2 hours. When the film after heat treatment was observed by TEM, hematite (F e 2 0 3) having a diameter of several nanometers to granular crystals silica force (S I_〇 2) tissue dispersed in a matrix is obtained, primary The original eutectic structure was not obtained.
表 1 table 1
Figure imgf000025_0001
産業上の利用可能性
Figure imgf000025_0001
Industrial applicability
本発明の光学薄膜は、 膜の一方の表面から他方の表面まで連続する壁で取り 囲まれた一次元的に貫通する多数の気孔を有しており、 低い屈折率を有し、 膜 の強度が高く、 基体との密着性にも優れている。  The optical thin film of the present invention has a large number of one-dimensionally penetrated pores surrounded by a continuous wall from one surface to the other surface of the film, has a low refractive index, and has a film strength. And high adhesion to the substrate.
本発明によれば、 多種類の基体に適用可能な、 様々な組成の光学薄膜と該光 学薄膜付き基体を提供できる。  ADVANTAGE OF THE INVENTION According to this invention, the optical thin film of various compositions applicable to many types of base | substrates and the base | substrate with this optical thin film can be provided.
また、 本発明の光学薄膜中に含まれる気孔の直径は 1 〜 5 0 0 n m程度でほ ぼ揃っており、 数十/ m程度の巨大な孔は存在しない。 したがって、 空気中に 浮遊するタバコのャニゃ各種粉塵などの微粒子がはまりこむことがなく、 簡単 な洗浄でこれらを取り除くことができる。  In addition, the diameter of the pores contained in the optical thin film of the present invention is approximately 1 to 500 nm, and there are no huge pores of about several tens / m. Therefore, fine particles such as various types of dust of tobacco floating in the air do not enter and can be removed by simple washing.

Claims

請求の範囲 The scope of the claims
1 . —次元的に成長した多数の柱状相とそれを取り囲むマ卜リックス相とか らなる複合膜中から該柱状相が除去されて、 膜の一方の表面から他方の表面ま で連続する前記マトリックス相からなる壁で取り囲まれた一次元的に貫通する 多数の気孔が形成された光学薄膜を基体上に有する反射防止物品であって、 該 光学薄膜の屈折率は、 前記基体の屈折率よりも小さく、 かつ前記マトリックス 相の屈折率と 1との間の屈折率であることを特徴とする反射防止物品。 1. —The matrix is continuous from one surface to the other surface of the film by removing the columnar phase from a composite film consisting of a large number of dimensionally grown columnar phases and a matrix layer surrounding them. An antireflection article having, on a substrate, an optical thin film formed with a number of pores penetrating in one dimension surrounded by walls made of a phase, wherein the refractive index of the optical thin film is higher than the refractive index of the substrate. An antireflection article characterized by being small and having a refractive index between the refractive index of the matrix phase and 1.
2 . 前記光学薄膜が、 酸化ケィ素または酸化チタンからなる請求項 1に記載 の反射防止物品。  2. The anti-reflective article according to claim 1, wherein the optical thin film is made of silicon oxide or titanium oxide.
3 . 前記光学薄膜が、 アナターゼ結晶相および またはルチル結晶相を含む 酸化チタンからなる請求項 1に記載の反射防止物品。  3. The antireflection article according to claim 1, wherein the optical thin film is made of titanium oxide containing an anatase crystal phase and / or a rutile crystal phase.
4 . 最外層に酸化ケィ素からなる前記光学薄膜が設けられ、 該光学薄膜の直 下にアナターゼ結晶相および Zまたはルチル結晶相を含む酸化チタン層が設け られた請求項 1に記載の反射防止物品。  4. The anti-reflection method according to claim 1, wherein the optical thin film made of silicon oxide is provided on an outermost layer, and a titanium oxide layer containing an anatase crystal phase and a Z or rutile crystal phase is provided immediately below the optical thin film. Goods.
5 . 記光学薄膜の膜厚が 6 0〜 2 0 0 n mである請求項 1に記載の反射防止 物品。  5. The antireflection article according to claim 1, wherein the thickness of the optical thin film is 60 to 200 nm.
6 . 前記気孔の平均孔径 ( r ) と前記壁の平均厚さ (d ) との比 (d Z r ) が 0 . 1〜 0 . 3である請求項 1に記載の反射防止物品。  6. The antireflection article according to claim 1, wherein a ratio (dZr) of an average pore diameter (r) of the pores to an average thickness (d) of the wall is 0.1 to 0.3.
7 . 柱状相を形成する材料とマトリックス相を形成する材料とからなるター ゲットをスパッ夕して、 一次元的に成長した多数の柱状相とそれを取り囲むマ トリックス相とからなる複合膜を基体上に形成した後に、 該柱状相を除去し、 膜の一方の表面から他方の表面まで連続する前記マトリックス相からなる壁で 取り囲まれた一次元的に貫通する多数の気孔を有する光学薄膜を形成する反射 防止物品の製造方法であって、 該光学薄膜の屈折率を、 前記基体の屈折率より も小さく、 かつ該光学薄膜を構成する材料の屈折率と 1 との間の屈折率とする ことを特徴とする反射防止物品の製造方法。  7. A target composed of a material forming a columnar phase and a material forming a matrix phase is sputtered, and a composite film composed of a large number of one-dimensionally grown columnar phases and a matrix phase surrounding the columnar phase is formed. After being formed on the film, the columnar phase is removed to form an optical thin film having a large number of one-dimensionally penetrated pores surrounded by walls composed of the matrix phase continuous from one surface to the other surface of the film. A method for producing an antireflection article, wherein the refractive index of the optical thin film is smaller than the refractive index of the substrate, and the refractive index is between 1 and the refractive index of the material constituting the optical thin film. A method for producing an antireflection article, comprising:
8 . 前記ターゲッ トとして、 柱状相を形成する材料のターゲット表面上の面 積のターゲッ ト表面上の全面積に対する割合が 0 . 5 5〜 0 . 7 5であるター ゲットを用いる請求項 7に記載の反射防止物品の製造方法。 8. The target whose ratio of the area of the material forming the columnar phase on the target surface to the total area on the target surface is 0.55 to 0.75. 8. The method for producing an antireflection article according to claim 7, wherein a get is used.
9. 前記ターゲッ トとして、 マトリックス相を形成する材料が T i〇2、 S i〇2、 Z r〇2、 S i 3N4または Mg F2である夕一ゲットを用いる請求項 7 に記載の反射防止物品の製造方法。 9. The as targets, according to claim 7 in which the material used T I_〇 2, S I_〇 2, Z R_〇 2, S i 3 N 4 or Mg F 2 a is evening one target to form a matrix phase A method for producing an antireflection article.
1 0. 前記ターゲットとして、 柱状相を形成する材料が C oまたは F e 304 であるターゲットを用いる請求項 7に記載の反射防止物品の製造方法。 As 1 0. the target, method of manufacturing the antireflective article of claim 7, the material forming the columnar phase used target is a C o or F e 3 0 4.
PCT/JP2001/002234 2000-03-21 2001-03-21 Antireflection product and production method therefor WO2001071394A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-78351 2000-03-21
JP2000078351 2000-03-21

Publications (1)

Publication Number Publication Date
WO2001071394A1 true WO2001071394A1 (en) 2001-09-27

Family

ID=18595778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/002234 WO2001071394A1 (en) 2000-03-21 2001-03-21 Antireflection product and production method therefor

Country Status (1)

Country Link
WO (1) WO2001071394A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003266400A (en) * 2002-12-13 2003-09-24 Canon Inc Method of manufacturing silicon oxide nanostructure body
JP2004237431A (en) * 2002-03-15 2004-08-26 Canon Inc Porous body and its manufacturing method
JP2004237430A (en) * 2002-03-15 2004-08-26 Canon Inc Porous body and its manufacturing method
JP2005068558A (en) * 2003-08-07 2005-03-17 Canon Inc Nano-structure and process of production thereof
JP2006521463A (en) * 2003-01-17 2006-09-21 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド Method for producing porous inorganic material or matrix material containing nanoparticles
JP2008096828A (en) * 2006-10-13 2008-04-24 Seiko Epson Corp Manufacturing method of optical article and its optical article
US7387967B2 (en) 2002-12-13 2008-06-17 Canon Kabushiki Kaisha Columnar structured material and method of manufacturing the same
US7393458B2 (en) 2002-03-15 2008-07-01 Canon Kabushiki Kaisha Porous material and production process thereof
JP2010217678A (en) * 2009-03-18 2010-09-30 Toppan Printing Co Ltd Method of manufacturing antireflection laminate
US7879734B2 (en) 2002-03-15 2011-02-01 Canon Kabushiki Kaisha Method of manufacturing porous body
US8435899B2 (en) 2002-12-13 2013-05-07 Canon Kabushiki Kaisha Method for producing columnar structured material
JP2019019390A (en) * 2017-07-19 2019-02-07 日亜化学工業株式会社 Production method of thin film, thin film formation material, optical thin film, and optical member
WO2019240040A1 (en) * 2018-06-14 2019-12-19 コニカミノルタ株式会社 Method for producing optical element and optical element
WO2019240039A1 (en) * 2018-06-14 2019-12-19 コニカミノルタ株式会社 Optical element and optical element production method
JP2020030435A (en) * 2019-11-14 2020-02-27 日亜化学工業株式会社 Thin film forming material, optical thin film, and optical member

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03115139A (en) * 1989-09-29 1991-05-16 Hitachi Ltd Antireflection film and its formation
JPH11295503A (en) * 1998-04-08 1999-10-29 Fuji Photo Film Co Ltd Multilayered antireflection film and image display device using same
JPH11311702A (en) * 1998-02-25 1999-11-09 Hoya Corp High refractive index plastic lens and its production
JPH11310755A (en) * 1998-04-27 1999-11-09 Seiko Epson Corp Coating composition and laminate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03115139A (en) * 1989-09-29 1991-05-16 Hitachi Ltd Antireflection film and its formation
JPH11311702A (en) * 1998-02-25 1999-11-09 Hoya Corp High refractive index plastic lens and its production
JPH11295503A (en) * 1998-04-08 1999-10-29 Fuji Photo Film Co Ltd Multilayered antireflection film and image display device using same
JPH11310755A (en) * 1998-04-27 1999-11-09 Seiko Epson Corp Coating composition and laminate

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7879734B2 (en) 2002-03-15 2011-02-01 Canon Kabushiki Kaisha Method of manufacturing porous body
JP2004237431A (en) * 2002-03-15 2004-08-26 Canon Inc Porous body and its manufacturing method
JP2004237430A (en) * 2002-03-15 2004-08-26 Canon Inc Porous body and its manufacturing method
US7393458B2 (en) 2002-03-15 2008-07-01 Canon Kabushiki Kaisha Porous material and production process thereof
US8435899B2 (en) 2002-12-13 2013-05-07 Canon Kabushiki Kaisha Method for producing columnar structured material
JP2003266400A (en) * 2002-12-13 2003-09-24 Canon Inc Method of manufacturing silicon oxide nanostructure body
US7892979B2 (en) 2002-12-13 2011-02-22 Canon Kabushiki Kaisha Columnar structured material and method of manufacturing the same
US7387967B2 (en) 2002-12-13 2008-06-17 Canon Kabushiki Kaisha Columnar structured material and method of manufacturing the same
US8177901B2 (en) 2003-01-17 2012-05-15 BASF SE Ludwigshafen Porous inorganic materials of silcon and oxygen
JP4751316B2 (en) * 2003-01-17 2011-08-17 チバ ホールディング インコーポレーテッド Method for producing porous inorganic material or matrix material containing nanoparticles
JP2006521463A (en) * 2003-01-17 2006-09-21 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド Method for producing porous inorganic material or matrix material containing nanoparticles
JP2005068558A (en) * 2003-08-07 2005-03-17 Canon Inc Nano-structure and process of production thereof
JP2008096828A (en) * 2006-10-13 2008-04-24 Seiko Epson Corp Manufacturing method of optical article and its optical article
JP2010217678A (en) * 2009-03-18 2010-09-30 Toppan Printing Co Ltd Method of manufacturing antireflection laminate
JP2019019390A (en) * 2017-07-19 2019-02-07 日亜化学工業株式会社 Production method of thin film, thin film formation material, optical thin film, and optical member
US11372136B2 (en) 2017-07-19 2022-06-28 Nichia Corporation Method for producing thin film, thin film forming material, optical thin film, and optical member
WO2019240040A1 (en) * 2018-06-14 2019-12-19 コニカミノルタ株式会社 Method for producing optical element and optical element
WO2019240039A1 (en) * 2018-06-14 2019-12-19 コニカミノルタ株式会社 Optical element and optical element production method
JPWO2019240040A1 (en) * 2018-06-14 2021-07-08 コニカミノルタ株式会社 Manufacturing method of optical element and optical element
JPWO2019240039A1 (en) * 2018-06-14 2021-07-26 コニカミノルタ株式会社 Optical element and manufacturing method of optical element
JP7335556B2 (en) 2018-06-14 2023-08-30 コニカミノルタ株式会社 OPTICAL ELEMENT MANUFACTURING METHOD AND OPTICAL ELEMENT
JP7385178B2 (en) 2018-06-14 2023-11-22 コニカミノルタ株式会社 Optical element and method for manufacturing optical element
JP2020030435A (en) * 2019-11-14 2020-02-27 日亜化学工業株式会社 Thin film forming material, optical thin film, and optical member
JP2022132616A (en) * 2019-11-14 2022-09-08 日亜化学工業株式会社 Thin film forming material, optical thin film, and optical member
JP7410431B2 (en) 2019-11-14 2024-01-10 日亜化学工業株式会社 Thin film forming materials, optical thin films, and optical members

Similar Documents

Publication Publication Date Title
JP6247141B2 (en) Light-induced hydrophilic article and method for producing the same
WO2001071394A1 (en) Antireflection product and production method therefor
EP1080245B1 (en) Coated article comprising a sputter deposited dielectric layer
EP1574881B1 (en) Optical member with an antireflection film having fine irregularities on the surface, production method for the same
JP4626284B2 (en) Method for producing tungsten oxide fine particles for forming solar shield, and tungsten oxide fine particles for forming solar shield
EP1194385B1 (en) Protective layers for sputter coated article
JP3808917B2 (en) Thin film manufacturing method and thin film
EP1211524B1 (en) Method for producing composition for vapor deposition, composition for vapor deposition, and method for producing optical element with antireflection film
JP4976126B2 (en) Preparation of photocatalytic coatings incorporated in glazing heat treatment
WO1991002102A1 (en) Film based on silicon dioxide and production thereof
WO2004034105A1 (en) Hydrophilic reflective article
CN101945832A (en) A glass product and a method for manufacturing a glass product
KR20040044524A (en) Optical coatings and associated methods
JP3904355B2 (en) Hydrophilic photocatalytic member
CN1332763C (en) Photocatalyst element, method and device for preparing the same
WO2004092089A1 (en) Methods of obtaining photoactive coatings and articles made thereby
GB2028376A (en) Electrically Conductive Coatings
JP2008003390A (en) Antireflection film and optical filter
CN113862616A (en) One-step coating forming method of anti-reflection anti-UV vehicle-mounted display panel
JP2001261376A (en) Anti-fogging film, and substrate with anti-fogging film
JP2003098340A (en) Optical multilayer interference film, method for manufacturing the same and filter using optical multilayer interference film
JP3280041B2 (en) Window glass with a thin coating to prevent sunlight
JP3200637B2 (en) Heat shielding glass
JP2576637B2 (en) Heat ray reflective glass
JP3028576B2 (en) Heat shielding glass

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 569528

Kind code of ref document: A

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase