JP4626284B2 - Method for producing tungsten oxide fine particles for forming solar shield, and tungsten oxide fine particles for forming solar shield - Google Patents

Method for producing tungsten oxide fine particles for forming solar shield, and tungsten oxide fine particles for forming solar shield Download PDF

Info

Publication number
JP4626284B2
JP4626284B2 JP2004352052A JP2004352052A JP4626284B2 JP 4626284 B2 JP4626284 B2 JP 4626284B2 JP 2004352052 A JP2004352052 A JP 2004352052A JP 2004352052 A JP2004352052 A JP 2004352052A JP 4626284 B2 JP4626284 B2 JP 4626284B2
Authority
JP
Japan
Prior art keywords
fine particles
solar radiation
tungsten
tungsten oxide
oxide fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004352052A
Other languages
Japanese (ja)
Other versions
JP2005187323A (en
Inventor
武 長南
健治 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2004352052A priority Critical patent/JP4626284B2/en
Publication of JP2005187323A publication Critical patent/JP2005187323A/en
Application granted granted Critical
Publication of JP4626284B2 publication Critical patent/JP4626284B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cosmetics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Surface Treatment Of Glass (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

本発明は、可視光領域においては透明で、赤外線領域においては吸収を持つ日射遮蔽体形成用タングステン酸化物微粒子の製造方法、日射遮蔽体形成用タングステン酸化物微粒子および該日射遮蔽体形成用タングステン酸化物微粒子が分散されてなる日射遮蔽体形成用分散液並びに日射遮蔽体に関する。   The present invention relates to a method for producing a tungsten oxide fine particle for forming a solar radiation shield that is transparent in the visible light region and has an absorption in the infrared region, a tungsten oxide fine particle for forming the solar radiation shield, and the tungsten oxide for forming the solar radiation shield. The present invention relates to a dispersion for forming a solar radiation shielding body in which fine particles are dispersed, and a solar radiation shielding body.

陽光や電球などの外部光源から熱成分を除去、減少する方法として、従来、ガラス表面等に赤外線を反射する材料からなる被膜を形成して熱線反射ガラスとし、当該熱線反射ガラスを用いて外部光源から熱成分を除去、減少することが行われていた。そして、その赤外線反射材料には、FeOx、CoOx、CrOx、TiOxなどの金属酸化物や、Ag、Au、Cu、Ni、Alなどの金属材料が選択されてきた。   As a method for removing and reducing the heat component from an external light source such as sunlight or a light bulb, conventionally, a coating made of a material that reflects infrared rays is formed on the glass surface or the like to form a heat ray reflective glass, and the heat ray reflective glass is used as an external light source. The heat component was removed and reduced from this. As the infrared reflecting material, metal oxides such as FeOx, CoOx, CrOx, and TiOx, and metal materials such as Ag, Au, Cu, Ni, and Al have been selected.

ところが、これら金属酸化物や金属材料には、熱効果に大きく寄与する赤外線以外に可視光も同時に反射もしくは吸収する性質があるため、当該熱線反射ガラスの可視光透過率が低下してしまう問題があった。特に、建材、乗り物、電話ボックスなどに用いられる基材においては可視光領域で高い透過率が必要とされることから、上記金属酸化物などの材料を利用する場合には、その膜厚を非常に薄くしなければならなかった。このため、スプレー焼付けやCVD法、あるいはスパッタリング法や真空蒸着法などの物理成膜法を用いて、膜厚10nmレベルの薄膜として成膜して用いる方法が採られている。   However, since these metal oxides and metal materials have the property of simultaneously reflecting or absorbing visible light in addition to infrared rays that greatly contribute to the thermal effect, there is a problem that the visible light transmittance of the heat ray reflective glass is lowered. there were. In particular, base materials used for building materials, vehicles, telephone boxes, etc. require high transmittance in the visible light region. Therefore, when using materials such as the above metal oxides, the film thickness is extremely low. I had to make it thinner. For this reason, a method of forming a thin film having a thickness of 10 nm using a physical film forming method such as spray baking, CVD method, sputtering method or vacuum vapor deposition method is employed.

しかし、これらの成膜方法は大がかりな装置や真空設備を必要とし、生産性や大面積化に難点があり、膜の製造コストが高くなる問題点がある。また、これらの材料を用いて日射遮蔽特性を高くしようとすると、可視光領域の反射率も同時に高くなってしまう傾向があり、鏡のようなギラギラした外観を与えて、美観を損ねてしまう欠点もあった。更に、これらの材料で成膜された膜は、電気抵抗値が比較的低くなって電波に対する反射が高くなり、例えば携帯電話やテレビ、ラジオなどの電波を反射して受信不能になったり、周辺地域に電波障害を引き起こしたりするなどの問題点もあった。   However, these film formation methods require a large-scale apparatus and vacuum equipment, and there are problems in productivity and increase in area, and there is a problem in that the manufacturing cost of the film increases. In addition, if these materials are used to increase the solar shading characteristics, the reflectance in the visible light region tends to increase at the same time, giving a glimmery appearance like a mirror and detracting from aesthetics. There was also. Furthermore, the film formed with these materials has a relatively low electrical resistance value and high reflection with respect to radio waves. For example, the radio waves of mobile phones, televisions, radios, etc. are reflected and cannot be received. There were also problems such as causing radio interference in the area.

このような問題点を改善するためには、膜の物理特性として可視光領域の光の反射率が低くて赤外線領域の反射率が高く、かつ膜の表面抵抗値が概ね106Ω/□以上に制御可能な膜が必要であると考えられる。 In order to improve such problems, the physical properties of the film are such that the light reflectance in the visible light region is low, the reflectance in the infrared region is high, and the surface resistance value of the film is approximately 10 6 Ω / □ or more. It is considered that a controllable membrane is necessary.

また、可視光透過率が高く、しかも優れた日射遮蔽機能を持つ材料として、アンチモン錫酸化物(以下、ATOと略す)や、インジウム錫酸化物(以下、ITOと略す)が知られている。これらの材料は、可視光反射率が比較的低いためギラギラした外観を与えることはない。しかし、プラズマ周波数が近赤外線領域にあるために、可視光により近い近赤外域において反射・吸収効果が未だ十分でない。更に、これらの材料は、単位重量当たりの日射遮蔽力が低いため、高遮蔽機能を得るには使用量が多くなって原料コストが割高となるという問題を有していた。   Further, antimony tin oxide (hereinafter abbreviated as ATO) and indium tin oxide (hereinafter abbreviated as ITO) are known as materials having high visible light transmittance and excellent solar radiation shielding function. These materials do not give a glaring appearance due to their relatively low visible light reflectivity. However, since the plasma frequency is in the near infrared region, the reflection / absorption effect is not yet sufficient in the near infrared region closer to visible light. Furthermore, since these materials have a low solar radiation shielding power per unit weight, there is a problem that the amount used is increased and the raw material cost is expensive in order to obtain a high shielding function.

さらに、日射遮蔽機能を有する赤外線遮蔽膜材料として、酸化タングステン、酸化モリブデン、酸化バナジウムをわずかに還元した膜が挙げられる。これらの膜はいわゆるエレクトロクロミック材料として用いられる材料であるが、充分に酸化された状態では透明であり、電気化学的な方法で還元すると長波長の可視光領域から近赤外領域にかけて吸収を生じるようになる。   Furthermore, as an infrared shielding film material having a solar radiation shielding function, a film obtained by slightly reducing tungsten oxide, molybdenum oxide, or vanadium oxide can be given. Although these films are materials used as so-called electrochromic materials, they are transparent in a sufficiently oxidized state, and when they are reduced by an electrochemical method, absorption occurs from the long wavelength visible light region to the near infrared region. It becomes like this.

特許文献1では、透明なガラス基板上に、基板側より第1層として周期律表のIIIa族、IVa族、Vb族、VIb族及びVIIb族から成る群から選ばれた少なくとも1種の金属イオンを含有する複合酸化タングステン膜を設け、前記第1層上に第2層として透明誘電体膜を設け、該第2層上に第3層として周期律表のIIIa族、IVa族、Vb族、VIb族及びVIIb族から成る群から選ばれた少なくとも1種の金属イオンを含有する複合酸化タングステン膜を設け、かつ前記第2層の透明誘電体膜の屈折率が前記第1層及び前記第3層の複合酸化タングステン膜の屈折率よりも低くする熱線遮蔽ガラスが提案されている。また、当該文献によれば、金属イオンを含有する複合酸化タングステン膜は、特に大面積化及び生産性等の観点からスパッタリング法によって成膜する旨記載されている。   In Patent Document 1, on a transparent glass substrate, at least one metal ion selected from the group consisting of Group IIIa, Group IVa, Group Vb, Group VIb and Group VIIb of the periodic table as the first layer from the substrate side. A composite tungsten oxide film containing, a transparent dielectric film as a second layer on the first layer, a third layer on the second layer as a group IIIa, IVa group, Vb group of the periodic table, A composite tungsten oxide film containing at least one metal ion selected from the group consisting of group VIb and group VIIb is provided, and the refractive index of the transparent dielectric film of the second layer is the first layer and the third layer. There has been proposed a heat-shielding glass having a refractive index lower than that of the composite tungsten oxide film of the layer. Further, according to the document, it is described that the composite tungsten oxide film containing metal ions is formed by a sputtering method particularly from the viewpoint of increasing the area and productivity.

また、特許文献2では、特許文献1と同様の方法で、透明なガラス基板上に、基板側より第1層として第1の誘電体膜を設け、該第1層上に第2層として酸化タングステン膜を設け、該第2層上に第3層として第2の誘電体膜を設けた熱線遮蔽ガラスが提案されている。   In Patent Document 2, a first dielectric film is provided as a first layer from the substrate side on a transparent glass substrate in the same manner as in Patent Document 1, and oxidized as a second layer on the first layer. There has been proposed a heat ray shielding glass in which a tungsten film is provided and a second dielectric film is provided as a third layer on the second layer.

また、特許文献3では、特許文献1と同様な方法で、透明な基板上に、基板側より第1層として同様の金属元素を含有する複合酸化タングステン膜を設け、前記第1層上に第2層として透明誘電体膜を設けた熱線遮蔽ガラスが提案されている。   In Patent Document 3, a composite tungsten oxide film containing the same metal element is provided as a first layer from the substrate side on the transparent substrate in the same manner as in Patent Document 1, and the first layer is formed on the first layer. A heat ray shielding glass provided with a transparent dielectric film as two layers has been proposed.

また、特許文献4では、タングステンからなるターゲットを用い、二酸化炭素を含む雰囲気中でスパッタリングすることで、高遮熱性を有し、面内における光学特性が均一な酸化タングステン膜を安定して生産できる、電波透過型熱線遮蔽膜の成膜方法が提案されている。   Further, in Patent Document 4, a tungsten oxide film having high heat shielding properties and uniform in-plane optical characteristics can be stably produced by sputtering in an atmosphere containing carbon dioxide using a target made of tungsten. A method of forming a radio wave transmission type heat ray shielding film has been proposed.

特開平8−59300号公報JP-A-8-59300 特開平8−12378号公報JP-A-8-12378 特開平8−283044号公報JP-A-8-283044 特開平10−183334号公報Japanese Patent Laid-Open No. 10-183334

例えば、特許文献1〜特許文献4に記載されているように、従来、タングステン化合物を含む赤外線遮蔽層の製造方法としては、スパッタリング法が用いられてきた。しかし、このような物理成膜法では、大がかりな装置や真空設備を必要とし生産性の観点から課題があり、大面積化を行うことは技術的には可能であっても膜の製造コストが高くなるという課題もあった。また、日射遮蔽体としての観点からは、赤外域や近赤外域の遮蔽性能を落とすことなく、より可視光線域での光透過性を向上させるという課題がある。また、生産性の観点より当該赤外線遮蔽層を単層膜とした場合、当該赤外線遮蔽層が酸化し易く、傷つき易いという耐久性の弱さも問題となっていた。   For example, as described in Patent Documents 1 to 4, a sputtering method has conventionally been used as a method for manufacturing an infrared shielding layer containing a tungsten compound. However, such a physical film formation method requires a large-scale apparatus and vacuum equipment, and has a problem from the viewpoint of productivity. Even though it is technically possible to increase the area, the manufacturing cost of the film is low. There was also a problem of becoming higher. In addition, from the viewpoint of a solar radiation shield, there is a problem that the light transmittance in the visible light region is further improved without deteriorating the shielding performance in the infrared region and near infrared region. From the viewpoint of productivity, when the infrared shielding layer is a single layer film, the durability of the infrared shielding layer is likely to be oxidized and easily damaged.

そこで、本発明の課題とするところは、可視光透過率を高く保ったまま、赤外線の透過率を低くできる日射遮蔽体に用いるタングステン酸化物微粒子とその製造方法、当該タングステン酸化物微粒子を用いた日射遮蔽体形成用分散液および日射遮蔽体を提供することである。   Then, the place made into the subject of this invention used the tungsten oxide microparticles | fine-particles used for the solar radiation shielding body which can make the transmittance | permeability of infrared rays low, maintaining visible light transmittance | permeability high, its manufacturing method, and the said tungsten oxide microparticles | fine-particles. The object is to provide a dispersion for forming a sunscreen and a sunscreen.

発明者等は、鋭意研究の結果、可視光透過率を高く保ったまま、赤外線の透過率を低くした日射遮蔽体へ好個に適用できるタングステン酸化物の微粒子を得た。そして、当該タングステン酸化物の微粒子分散液を作製したところ、高コストの物理成膜法を用いずに、簡便な塗布法等で日射遮蔽膜を形成して日射遮蔽体を製造でき、従来問題となっていた赤外域や近赤外域の遮蔽性能を落とすことなく、可視光線域での光透過性をより向上させること、また、日射遮蔽層の酸化し易さや傷つき易さに伴う耐久性の改善を図ることが可能であることを見出した。さらに、当該タングステン酸化物の微粒子は、適宜な樹脂への練り込み法等の簡便な方法で、赤外域や近赤外域の遮蔽性能を落とすことなく、可視光線域での光透過性に優れた日射遮蔽体を形成可能であることを見出し本発明に至った。   As a result of intensive studies, the inventors have obtained tungsten oxide fine particles that can be applied to solar radiation shields with low infrared transmittance while maintaining high visible light transmittance. Then, when a fine particle dispersion of the tungsten oxide was prepared, a solar shading film could be produced by forming a solar shading film by a simple coating method, etc. without using a high-cost physical film forming method. Improve the light transmittance in the visible light range without degrading the shielding performance in the infrared and near infrared regions, and also improve the durability due to the ease of oxidation and scratching of the solar radiation shielding layer It was found that it is possible to plan. Furthermore, the fine particles of the tungsten oxide are excellent in light transmittance in the visible light region without reducing the shielding performance in the infrared region and near infrared region by a simple method such as kneading into an appropriate resin. The inventors have found that a solar radiation shielding body can be formed, and have reached the present invention.

すなわち、本発明の第1の発明は、タングステン酸(H2WO4)、または、タングステン酸(H2WO4) と三酸化タングステン微粒子との混合物を、不活性ガスまたは不活性ガスと還元性ガスとの混合ガス雰囲気下で焼成することにより、一般式WyOz(但し、W はタングステン、Oは酸素、2.2≦z/y≦2.999)で表され1nm〜800nmの粒子径を有するタングステン酸化物微粒子を生成させることを特徴とする日射遮蔽体形成用タングステン酸化物微粒子の製造方法である。 That is, according to the first aspect of the present invention, tungstic acid (H 2 WO 4 ) or a mixture of tungstic acid (H 2 WO 4 ) and tungsten trioxide fine particles is converted into an inert gas or an inert gas and a reducing property. By firing in a mixed gas atmosphere with a gas, it is represented by the general formula WyOz (where W is tungsten, O is oxygen, 2.2 ≦ z / y ≦ 2.999) and has a particle diameter of 1 nm to 800 nm. thereby generating a tungsten oxide microparticles you is a manufacturing method for forming a solar radiation-shielding body for tungsten oxide nanoparticles, wherein.

本発明の第2の発明は、タングステン酸(H2WO4)、または、タングステン酸(H2WO4) と三酸化タングステン微粒子との混合物と、M元素の酸化物または/および水酸化物(但し、Mは、アルカリ金属、アルカリ土類金属、希土類元素、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Reのうちから選択される1種類以上の元素)とを、混合した混合粉、
または/および
タングステン酸(H2WO4)、または、タングステン酸(H2WO4) と三酸化タングステン微粒子との混合物と、前記M元素の、金属塩の水溶液、金属酸化物のコロイド溶液、アルコキシ溶液のうちから選択される1種以上とを、混合して乾燥した乾燥粉を、不活性ガス、または不活性ガスと還元性ガスとの混合ガス雰囲気下で焼成することにより、一般式MxWyOz(但し、Mは前記M元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.2≦z/y≦3.0)で表され1nm〜800nmの粒子径を有するタングステン酸化物微粒子を生成させることを特徴とする日射遮蔽体形成用タングステン酸化物微粒子の製造方法である。
According to a second aspect of the present invention, tungstic acid (H 2 WO 4 ), a mixture of tungstic acid (H 2 WO 4 ) and tungsten trioxide fine particles, an oxide of M element and / or a hydroxide ( Where M is alkali metal, alkaline earth metal, rare earth element, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, One or more types selected from Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re A mixed powder of
Or / and tungstic acid (H 2 WO 4 ), or a mixture of tungstic acid (H 2 WO 4 ) and tungsten trioxide fine particles, and an aqueous solution of a metal salt, a colloidal solution of a metal oxide of the M element, alkoxy A dry powder obtained by mixing and drying at least one selected from solutions is baked in an atmosphere of an inert gas or a mixed gas of an inert gas and a reducing gas to obtain a general formula MxWyOz ( Where M is the element M, W is tungsten, O is oxygen, 0.001 ≦ x / y ≦ 1, 2.2 ≦ z / y ≦ 3.0), and has a particle diameter of 1 nm to 800 nm. The production method of the tungsten oxide fine particles for forming a solar shading body is characterized by producing tungsten oxide fine particles.

本発明の第3の発明は、第2の発明に記載の日射遮蔽体形成用タングステン酸化物微粒子の製造方法により製造され、その粉体色が、国際照明委員会(CIE)が推奨しているL表色系(JIS Z8729)における粉体色において、Lが25〜80、aが−10〜10、bが−15〜15の範囲内にあり1nm〜800nmの粒子径を有することを特徴とする日射遮蔽体形成用タングステン酸化物微粒子である。 The third invention of the present invention is manufactured by the method for manufacturing the tungsten oxide fine particles for forming a solar radiation shield described in the second invention, and its powder color is recommended by the International Commission on Illumination (CIE). In the powder color in the L * a * b * color system (JIS Z8729), L * is in the range of 25-80, a * is in the range of -10 to 10, and b * is in the range of -15 to 15 , and 1 nm to 800 nm. It is a tungsten oxide fine particle for solar radiation shielding body characterized by having a particle diameter .

本発明の第4の発明は、第3の発明に記載の日射遮蔽体形成用タングステン酸化物微粒子であって、その粉体色が、国際照明委員会(CIE)が推奨しているL***表色系(JIS Z8729)における粉体色において、L*が25〜80、a*が−10〜10、b*が−15〜15の範囲内にあることを特徴とする日射遮蔽体形成用タングステン酸化物微粒子である。 A fourth invention of the present invention is a tungsten oxide fine particle for forming a solar radiation shield as described in the third invention, and its powder color is L * a recommended by the International Commission on Illumination (CIE). * b * In the powder color in the color system (JIS Z8729), L * is 25 to 80, a * is in the range of -10 to 10, and b * is in the range of -15 to 15. It is a tungsten oxide fine particle for body formation.

本発明の第5の発明は、第3または第4の発明記載の日射遮蔽体形成用タングステン酸化物微粒子が、溶媒中に分散されていることを特徴とする日射遮蔽体形成用分散液である。   According to a fifth aspect of the present invention, there is provided a dispersion for forming a solar shading material, characterized in that the tungsten oxide fine particles for forming the solar shading material according to the third or fourth invention are dispersed in a solvent. .

本発明の第6の発明は、第3または第4の発明記載の日射遮蔽体形成用タングステン酸化物微粒子が、樹脂中に分散されていることを特徴とする日射遮蔽体である。   According to a sixth aspect of the present invention, there is provided a solar shading body characterized in that the tungsten oxide fine particles for forming the solar shading body described in the third or fourth aspect are dispersed in a resin.

本発明によれば、可視光透過率を高く保ったまま、赤外線の透過率を低くできるという、日射遮蔽膜、日射遮蔽体として優れた機能を発揮するタングステン酸化物微粒子を容易に製造できる。そして、当該タングステン酸化物微粒子を用いてタングステン酸化物微粒子分散液を作製し、さらに、当該タングステン酸化物微粒子分散液を用いて、高コストな物理成膜法を用いること無く、簡便な塗布法等で日射遮蔽膜を形成し、赤外域や近赤外域の遮蔽性能を落とすことなく、可視光線域での光透過性が優れた日射遮蔽体を、安価な生産コストで製造することができる。さらに、当該タングステン酸化物微粒子を適宜な樹脂へ練り込み法等により分散させることで、赤外域や近赤外域の遮蔽性能を落とすことなく、可視光線域での光透過性が優れた日射遮蔽体を安価な生産コストで製造することができる。   According to the present invention, it is possible to easily produce tungsten oxide fine particles exhibiting an excellent function as a solar radiation shielding film and a solar radiation shielding body, in which infrared transmittance can be lowered while keeping visible light transmittance high. Then, a tungsten oxide fine particle dispersion is prepared using the tungsten oxide fine particles, and a simple coating method or the like is used without using an expensive physical film forming method using the tungsten oxide fine particle dispersion. Thus, a solar radiation shielding film having excellent light transmittance in the visible light region can be produced at a low production cost without forming a solar radiation shielding film and reducing the shielding performance in the infrared region and near infrared region. Furthermore, by dispersing the tungsten oxide fine particles in an appropriate resin by a kneading method or the like, the solar radiation shielding body is excellent in light transmittance in the visible light range without deteriorating the shielding performance in the infrared region or near infrared region. Can be manufactured at a low production cost.

以下、本発明の実施の形態について、具体的に説明する。
本発明者らは、可視光透過率を高く保ったまま、赤外線の透過率を低くできるタングステン酸化物として、
(A)タングステン酸(H2WO4)または/および三酸化タングステン微粒子を、不活性ガスまたは不活性ガスと還元性ガスとの混合ガス雰囲気下で焼成することにより得られる一般式WyOz(但し、Wはタングステン、Oは酸素、2.2≦z/y≦2.999)で表されるタングステン酸化物微粒子、
(B)タングステン酸(H2WO4)または/および三酸化タングステン微粒子と、M元素の酸化物または/および水酸化物(但し、Mは、アルカリ金属、アルカリ土類金属、希土類元素、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Reのうちから選択される1種類以上の元素(本明細書においてM元素と記載する。))とを、混合した混合粉、
または/および、
タングステン酸(H2WO4)または/および三酸化タングステン微粒子と、前記M元素の、金属塩の水溶液、金属酸化物のコロイド溶液、アルコキシ溶液のうちから選択される1種以上とを、混合して乾燥した乾燥粉を、不活性ガス、または、不活性ガスと還元性ガスとの混合ガス雰囲気下で焼成することにより、一般式MxWyOz(但し、Mは前記M元素、W:タングステン、O:酸素、0.001≦x/y≦1、2.2≦z/y≦3.0)で表されるタングステン酸化物微粒子、に想到した。
Hereinafter, embodiments of the present invention will be specifically described.
As the tungsten oxide that can reduce the transmittance of infrared rays while keeping the visible light transmittance high,
(A) General formula WyOz (provided by firing tungstic acid (H 2 WO 4 ) or / and tungsten trioxide fine particles in an inert gas or a mixed gas atmosphere of an inert gas and a reducing gas, W is tungsten, O is oxygen, and tungsten oxide fine particles represented by 2.2 ≦ z / y ≦ 2.999),
(B) Tungstic acid (H 2 WO 4 ) or / and tungsten trioxide fine particles and oxide or / and hydroxide of M element (where M is an alkali metal, alkaline earth metal, rare earth element, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, One or more elements selected from F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, and Re (referred to as M elements in this specification)). Mixed powder,
Or / and
Tungstic acid (H 2 WO 4 ) or / and tungsten trioxide fine particles are mixed with one or more selected from an aqueous solution of a metal salt, a colloidal solution of a metal oxide, and an alkoxy solution of the M element. The dried dry powder is calcined in an inert gas or a mixed gas atmosphere of an inert gas and a reducing gas to obtain a general formula MxWyOz (where M is the M element, W: tungsten, O: Oxygen, tungsten oxide fine particles represented by 0.001 ≦ x / y ≦ 1, 2.2 ≦ z / y ≦ 3.0) have been conceived.

上記(A)(B)にて説明したタングステン酸化物微粒子や、当該タングステン酸化物微粒子を用い製造したタングステン酸化物微粒子分散液を用いて、高コストの物理成膜法を用いず、簡便な塗布法または練り込み法を用いて、日射遮蔽膜や、日射遮蔽体を形成することができる。当該日射遮蔽膜や、日射遮蔽体は、従来問題となっていた赤外域や近赤外域の遮蔽性能を落とすことなくより可視光線域での光透過性を向上させること、また、酸化し易さや、傷つき易さに伴う耐久性の改善を図ることができたが、これを工程順に説明する。   Using the tungsten oxide fine particles described in the above (A) and (B) and the tungsten oxide fine particle dispersion produced by using the tungsten oxide fine particles, simple coating without using a high-cost physical film forming method. The solar shading film or the solar shading body can be formed by using the method or the kneading method. The solar shading film and the solar shading body improve the light transmittance in the visible light region without degrading the shielding performance in the infrared region and near infrared region, which has been a problem in the past, and are easy to oxidize. Durability was improved with the ease of scratching, and this will be described in the order of steps.

1.タングステン酸化物微粒子の製造
1−(A).一般式WyOz(但し、Wはタングステン、Oは酸素、2.2≦z/y≦2.999)で表されるタングステン酸化物微粒子の製造
タングステン酸(H2WO4)または/および三酸化タングステン微粒子を、不活性ガス単独または不活性ガスと還元性ガスとの混合ガス雰囲気下で焼成することにより、一般式WyOz(但し、Wはタングステン、Oは酸素、2.2≦z/y≦2.999)で表されるタングステン酸化物微粒子を得る工程について説明する。
1. Production of tungsten oxide fine particles 1- (A). Production of tungsten oxide fine particles represented by the general formula WyOz (W is tungsten, O is oxygen, 2.2 ≦ z / y ≦ 2.999) Tungstic acid (H 2 WO 4 ) and / or tungsten trioxide By firing the fine particles in an inert gas alone or in a mixed gas atmosphere of an inert gas and a reducing gas, the general formula WyOz (W is tungsten, O is oxygen, 2.2 ≦ z / y ≦ 2) .999) will be described.

原料として用いるタングステン酸(H2WO4)は、焼成によって酸化物となるものであれば特に制限は無い。また、原料として用いる三酸化タングステンは、前記タングステン酸(H2WO4)を焼成して三酸化タングステン微粒子としたものを用いてもよいし、市販品を用いてもよい。ここで、製造される日射遮蔽用タングステン酸化物微粒子の光学的特性の観点からは、原料として用いるタングステン酸(H2WO4)の焼成によって得られる酸化物を用いることが好ましいが、コスト、生産性の観点からは市販品等の三酸化タングステン微粒子を用いることもでき、同様の観点より、両者の混合物を使用しても良い。 The tungstic acid (H 2 WO 4 ) used as a raw material is not particularly limited as long as it becomes an oxide by firing. As the tungsten trioxide used as a raw material, tungsten trioxide fine particles obtained by firing the tungstic acid (H 2 WO 4 ) may be used, or commercially available products may be used. Here, from the viewpoint of the optical properties of the manufactured tungsten-shielding tungsten oxide fine particles, it is preferable to use an oxide obtained by firing tungstic acid (H 2 WO 4 ) used as a raw material. From the viewpoint of properties, tungsten trioxide fine particles such as commercially available products can be used. From the same viewpoint, a mixture of both may be used.

前記タングステン酸(H2WO4)を焼成して三酸化タングステン微粒子として用いる場合、焼成時の処理温度は、望まれる三酸化タングステン微粒子の性状および光学特性の観点から、200℃以上が好ましい。一方、焼成時の処理温度が1000℃を越えると焼成の効果が飽和し、また、1000℃以下であれば、光学特性の低下原因となる粒成長を回避できることから1000℃以下が好ましい。焼成時の処理時間は処理温度に応じて適宜選択すればよいが、10分間以上5時間以下でよい。 When the tungstic acid (H 2 WO 4 ) is fired and used as tungsten trioxide fine particles, the treatment temperature during firing is preferably 200 ° C. or higher from the viewpoint of desired properties and optical characteristics of the tungsten trioxide fine particles. On the other hand, if the treatment temperature during firing exceeds 1000 ° C., the effect of firing is saturated, and if it is 1000 ° C. or less, it is preferable to use 1000 ° C. or less because grain growth that causes a decrease in optical properties can be avoided. The treatment time during firing may be appropriately selected according to the treatment temperature, but may be 10 minutes or more and 5 hours or less.

次に、タングステン酸(H2WO4)または/および三酸化タングステン微粒子に、酸素空孔を生成させるために、不活性ガス単独または不活性ガスと還元性ガスとの混合ガス雰囲気下で当該微粒子を焼成する。この焼成の際の雰囲気は、窒素、アルゴン、ヘリウムなどの不活性ガス、または、前記不活性ガスと、水素やアルコ−ルなどの還元性ガスとの混合ガスを用いることができる。不活性ガスと還元性ガスとの混合ガス雰囲気下で焼成する場合、不活性ガス中の還元性ガスの濃度は焼成温度に応じて適宜選択すれば良く、特に限定されないが、例えば20vol%以下、好ましくは10vol%以下、より好ましくは7vol%以下である。還元性ガスの濃度が20vol%以下であれば、急速な還元による日射遮蔽機能を有しないWO2が生成するのを回避できるからである。 Next, in order to generate oxygen vacancies in tungstic acid (H 2 WO 4 ) and / or tungsten trioxide fine particles, the fine particles are used in an inert gas alone or in a mixed gas atmosphere of an inert gas and a reducing gas. Is fired. As an atmosphere for the firing, an inert gas such as nitrogen, argon, or helium, or a mixed gas of the inert gas and a reducing gas such as hydrogen or alcohol can be used. When firing in a mixed gas atmosphere of an inert gas and a reducing gas, the concentration of the reducing gas in the inert gas may be appropriately selected according to the firing temperature, and is not particularly limited, for example, 20 vol% or less, Preferably it is 10 vol% or less, More preferably, it is 7 vol% or less. This is because if the concentration of the reducing gas is 20 vol% or less, it is possible to avoid the generation of WO 2 that does not have the solar radiation shielding function due to rapid reduction.

焼成の際の処理温度は雰囲気に応じて適宜選択すればよいが、雰囲気が不活性ガス単独の場合は、焼成される日射遮蔽微粒子の粒子としての結晶性や隠ぺい力の観点から650℃を超え1200℃以下、より好ましくは1100℃以下、さらに好ましくは1000℃以下である。また、雰囲気が不活性ガスと還元性ガスとの混合ガスの場合は、当該還元ガスの存在によりWO2が生成することのない温度を適宜選択すればよい。 The treatment temperature at the time of firing may be appropriately selected according to the atmosphere, but when the atmosphere is an inert gas alone, it exceeds 650 ° C. from the viewpoint of crystallinity and hiding power of the particles of the sun-shielding fine particles to be fired. It is 1200 degrees C or less, More preferably, it is 1100 degrees C or less, More preferably, it is 1000 degrees C or less. When the atmosphere is a mixed gas of an inert gas and a reducing gas, a temperature at which WO 2 is not generated due to the presence of the reducing gas may be selected as appropriate.

また、上述したように当該焼成を1ステップの処理温度下で実施してもよいが、焼成途中で雰囲気や焼成温度を変化させる複数ステップとしてもよい。例えば、第1ステップにおいて不活性ガスと還元性ガスとの混合ガス雰囲気下100℃以上650℃以下で焼成し、第2ステップにおいて不活性ガス雰囲気下650℃を超え1200℃以下で焼成することで、日射遮蔽特性に優れた日射遮蔽微粒子を得ることができ好ましい構成である。これらの焼成の処理時間は温度に応じて適宜選択すればよいが、5分間以上5時間以下でよい。   Moreover, although the said baking may be implemented under the process temperature of 1 step as mentioned above, it is good also as multiple steps which change atmosphere and baking temperature in the middle of baking. For example, by firing at 100 ° C. or more and 650 ° C. or less in a mixed gas atmosphere of an inert gas and a reducing gas in the first step, and firing at 650 ° C. and exceeding 1200 ° C. in an inert gas atmosphere in the second step. It is a preferable configuration because it is possible to obtain solar shading fine particles having excellent solar shading characteristics. The firing treatment time may be appropriately selected depending on the temperature, but may be 5 minutes or more and 5 hours or less.

得られたタングステン酸化物微粒子は、国際照明委員会(CIE)が推奨しているL***表色系(JIS Z8729)における粉体色において、L*が25〜80、a*が−10〜10、b*が−15〜15の範囲内にあることが好ましい。 The resulting tungsten oxide particles, in the powder colors in Commission Internationale de I'Eclairage (CIE) recommended to have L * a * b * colorimetric system (JIS Z8729), L * is 25 to 80, a * is -10 to 10 and b * are preferably in the range of -15 to 15.

1−(B).一般式MxWyOz(但し、Mは前記M元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.2≦z/y≦3.0)で表されるタングステン酸化物微粒子の製造
タングステン酸(H2WO4)と、M元素の酸化物または/および水酸化物と、を混合した混合粉、または、三酸化タングステン微粒子と、M元素の酸化物または/および水酸化物と、を
混合した混合粉、または、タングステン酸(H2WO4)と三酸化タングステン微粒子との混合物と、M元素の酸化物または/および水酸化物と、を混合した混合粉、または、タングステン酸(H2WO4)および/または三酸化タングステン微粒子と、M元素の、金属塩の水溶液、金属酸化物のコロイド溶液、アルコキシ溶液のうちから選択される1種以上とを、混合して乾燥した乾燥粉、を、不活性ガスまたは不活性ガスと還元性ガスとの混合ガス雰囲気下で焼成することにより得られる、一般式MxWyOz(但し、Mは前記M元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.2≦z/y≦3.0)で表される日射遮蔽体形成用タングステン酸化物微粒子を得ることを特徴とするものである。尚、焼成条件は、「1.タングステン酸化物微粒子の製造」にて説明した一般式WyOzで表されるタングステン酸化物微粒子の場合と同様である。
1- (B). Tungsten oxide fine particles represented by the general formula MxWyOz (where M is the M element, W is tungsten, O is oxygen, 0.001 ≦ x / y ≦ 1, 2.2 ≦ z / y ≦ 3.0) Production of Tungstic Acid (H 2 WO 4 ) and M Element Oxide and / or Hydroxide Mixed Powder, or Tungsten Trioxide Fine Particles, M Element Oxide and / or Hydroxide Or a mixed powder obtained by mixing tungstic acid (H 2 WO 4 ) and tungsten trioxide fine particles and an oxide or / and hydroxide of M element, or tungsten. Mixing and drying acid (H 2 WO 4 ) and / or tungsten trioxide fine particles and one or more elements selected from an aqueous solution of metal salt, colloidal solution of metal oxide and alkoxy solution of M element Dry Powder is obtained by firing in an inert gas or a mixed gas atmosphere of an inert gas and a reducing gas. The general formula MxWyOz (where M is the M element, W is tungsten, O is oxygen, 0 It is characterized by obtaining tungsten oxide fine particles for forming a solar radiation shielding material represented by .001 ≦ x / y ≦ 1, 2.2 ≦ z / y ≦ 3.0). The firing conditions are the same as those for the tungsten oxide fine particles represented by the general formula WyOz described in “1. Production of tungsten oxide fine particles”.

ここで、本発明において用いるタングステン化合物は、原料コストや排ガス処理の観点からタングステン酸が好ましい。
また、三酸化タングステンを原料とする場合は、「1.タングステン酸化物微粒子の製造」にて説明したものと同様に、タングステン酸(H2WO4)を焼成して三酸化タングステン微粒子として使用してもよいし、市販品を用いてもよい。タングステン酸(H2WO4)を焼成して三酸化タングステン微粒子として使用する場合は、「1.タングステン酸化物微粒子の製造」にて説明したものと同様に製造すればよい。
Here, the tungsten compound used in the present invention is preferably tungstic acid from the viewpoint of raw material costs and exhaust gas treatment.
When tungsten trioxide is used as a raw material, tungstic acid (H 2 WO 4 ) is baked and used as tungsten trioxide fine particles, as described in “1. Production of tungsten oxide fine particles”. Alternatively, a commercially available product may be used. When tungstic acid (H 2 WO 4 ) is fired and used as tungsten trioxide fine particles, it may be produced in the same manner as described in “1. Production of tungsten oxide fine particles”.

添加するときの原料の種類は、酸化物または/および水酸化物が好ましい。このM元素の酸化物、水酸化物とタングステン酸(H2WO4)または/および三酸化タングステン微粒子とを混合する。混合工程は、市販のらいかい機、ニーダー、ボールミル、サンドミル、ペイントシェカー等で行えばよい。 The kind of the raw material when added is preferably an oxide or / and a hydroxide. The M element oxide and hydroxide are mixed with tungstic acid (H 2 WO 4 ) and / or tungsten trioxide fine particles. The mixing step may be performed with a commercially available machine, kneader, ball mill, sand mill, paint shaker or the like.

また、タングステン酸(H2WO4)または/および三酸化タングステン微粒子と、前記M元素の、金属塩の水溶液、金属酸化物のコロイド溶液、アルコキシ溶液のうちから選択される1種以上とを、混合して乾燥した乾燥粉を用いる場合、塩を形成するための相手方のイオンは特に限定されるものでなく、例えば硝酸イオン、硫酸イオン、塩化物イオン、炭酸イオンなどが挙げられる。乾燥温度や時間は特に限定されるものでない。 Also, tungstic acid (H 2 WO 4 ) or / and tungsten trioxide fine particles, and at least one selected from an aqueous solution of a metal salt, a colloidal solution of a metal oxide, and an alkoxy solution of the M element, When using dry powder that has been mixed and dried, the partner ion for forming the salt is not particularly limited, and examples thereof include nitrate ion, sulfate ion, chloride ion, carbonate ion and the like. The drying temperature and time are not particularly limited.

次に、上記混合物または乾燥粉に、酸素空孔を生成させるために、不活性ガス単独または不活性ガスと還元性ガスとの混合ガス雰囲気下で焼成する。この焼成の際の雰囲気は、窒素、アルゴン、ヘリウムなどの不活性ガス、または、前記不活性ガスと、水素やアルコ−ルなどの還元性ガスとの混合ガスを用いることができる。不活性ガスと還元性ガスとの混合ガス雰囲気下で焼成する場合、不活性ガス中の還元性ガスの濃度は焼成温度に応じて適宜選択すれば良く、特に限定されないが、例えば20vol%以下、好ましくは10vol%以下、より好ましくは7vol%以下である。還元性ガスの濃度が20vol%以下であれば、急速な還元による日射遮蔽機能を有しないWO2が生成を回避できるからである。 Next, in order to generate oxygen vacancies in the mixture or dry powder, the mixture is fired in an inert gas alone or in a mixed gas atmosphere of an inert gas and a reducing gas. As an atmosphere for the firing, an inert gas such as nitrogen, argon, or helium, or a mixed gas of the inert gas and a reducing gas such as hydrogen or alcohol can be used. When firing in a mixed gas atmosphere of an inert gas and a reducing gas, the concentration of the reducing gas in the inert gas may be appropriately selected according to the firing temperature, and is not particularly limited, for example, 20 vol% or less, Preferably it is 10 vol% or less, More preferably, it is 7 vol% or less. This is because if the concentration of the reducing gas is 20 vol% or less, the production of WO 2 that does not have a solar radiation shielding function due to rapid reduction can be avoided.

焼成の際の処理温度は、雰囲気に応じて適宜選択すればよいが、雰囲気が不活性ガス単独の場合は、焼成される日射遮蔽用微粒子の粒子としての結晶性や隠ぺい力の観点から650℃を超え1200℃以下、より好ましくは1100℃以下、さらに好ましくは1000℃以下である。また、雰囲気が不活性ガスと還元性ガスとの混合ガスの場合は、当該還元ガスの存在によりWO2が生成することのない温度を適宜選択すればよい。
また、上述したように当該焼成を1ステップの処理温度下で実施してもよいが、焼成途中で雰囲気や焼成温度を変化させる複数ステップとしてもよい。例えば、第1ステップにおいて、不活性ガスと還元性ガスとの混合ガス雰囲気下で100℃以上650℃以下で焼成し、第2ステップにおいて不活性ガス雰囲気下、650℃を超え1200℃以下で焼成することで、日射遮蔽特性に優れた日射遮蔽微粒子を得ることができ好ましい構成である。これらの焼成の処理時間は温度に応じて適宜選択すればよいが、5分間以上5時間以下でよい。
The treatment temperature at the time of firing may be appropriately selected according to the atmosphere. However, when the atmosphere is an inert gas alone, it is 650 ° C. from the viewpoint of crystallinity and hiding power of the particles of the sunscreening fine particles to be fired. Exceeding 1200 ° C., more preferably 1100 ° C. or less, and still more preferably 1000 ° C. or less. When the atmosphere is a mixed gas of an inert gas and a reducing gas, a temperature at which WO 2 is not generated due to the presence of the reducing gas may be selected as appropriate.
Moreover, although the said baking may be implemented under the process temperature of 1 step as mentioned above, it is good also as multiple steps which change atmosphere and baking temperature in the middle of baking. For example, in the first step, firing is performed at 100 ° C. or more and 650 ° C. or less in a mixed gas atmosphere of an inert gas and a reducing gas, and in the second step, firing is performed at 650 ° C. or more and 1200 ° C. or less in an inert gas atmosphere. By doing so, it is possible to obtain solar shading fine particles excellent in solar shading characteristics, which is a preferable configuration. The firing treatment time may be appropriately selected depending on the temperature, but may be 5 minutes or more and 5 hours or less.

得られたタングステン酸化物微粒子は、国際照明委員会(CIE)が推奨しているL***表色系(JIS Z8729)における粉体色において、L*が25〜80、a*が−10〜10、b*が−15〜15の範囲内にあることが好ましい。当該粉体色を有するタングステン酸化物微粒子は、十分な日射遮蔽機能を発揮する。 The resulting tungsten oxide particles, in the powder colors in the International Commission on Illumination (CIE) recommended to have L * a * b * color system (JIS Z8729), L * is 25 to 80, a * is -10 to 10 and b * are preferably in the range of -15 to 15. The tungsten oxide fine particles having the powder color exhibit a sufficient solar radiation shielding function.

2.タングステン酸化物微粒子
上記1−(A).1−(B).の工程によって得られたタングステン酸化物微粒子は、一般式WyOz(但し、Wはタングステン、Oは酸素、2.2≦z/y≦2.999)で表されるタングステン酸化物微粒子、または、一般式MxWyOz(但し、Mは前記M元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.2≦z/y≦3.0)で表されるタングステン酸化物微粒子である。
当該WyOzで表されるタングステン酸化物微粒子は、高い可視光透過率を維持したまま、赤外線を遮蔽する特徴を有している日射遮蔽微粒子であり、z/yの値が2.2以上であれば、日射遮蔽機能を有しないWO2の生成が回避され、2.999以下であれば、十分な伝導電子が生成されるので、十分な日射遮蔽機能を発揮することとなり好ましい。
2. Tungsten oxide fine particles 1- (A). 1- (B). The tungsten oxide fine particles obtained by the step are tungsten oxide fine particles represented by the general formula WyOz (where W is tungsten, O is oxygen, 2.2 ≦ z / y ≦ 2.999), or general Tungsten oxide fine particles represented by the formula MxWyOz (where M is the M element, W is tungsten, O is oxygen, 0.001 ≦ x / y ≦ 1, 2.2 ≦ z / y ≦ 3.0) is there.
The tungsten oxide fine particles represented by WyOz are solar radiation shielding fine particles having a characteristic of shielding infrared rays while maintaining high visible light transmittance, and the value of z / y is 2.2 or more. For example, the generation of WO 2 having no solar radiation shielding function is avoided, and if it is 2.999 or less, sufficient conduction electrons are generated, so that the sufficient solar radiation shielding function is exhibited.

また、当該MxWyOzで表されるタングステン酸化物微粒子は、xの値が0.001以上あれば、十分な伝導電子を生成し、1以下であれば不純物の生成を回避できるので好ましい。即ち、当該範囲において十分な日射遮蔽機能を発揮する。また、z/yの値が2.2以上あれば、日射遮蔽機能を有しないWO2の生成を回避でき、2.999以下であれば、十分な伝導電子を生成する。この結果、当該範囲において十分な日射遮蔽機能を発揮する。ここで、元素Mは、アルカリ金属、アルカリ土類金属、希土類金属、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Reのうちから選択される1種類以上の元素であることが好ましい。また、日射遮蔽特性を向上させる観点からは前記M元素において、アルカリ金属、アルカリ土類金属、遷移金属に属する金属が好ましく、さらに、耐候性を向上させる観点からは、3B族元素、4A族元素、4B族元素や5B族元素に属するものが好ましい。 In addition, the tungsten oxide fine particles represented by MxWyOz is preferable if the value of x is 0.001 or more because sufficient conduction electrons are generated, and if it is 1 or less, generation of impurities can be avoided. That is, a sufficient solar radiation shielding function is exhibited in this range. Moreover, if the value of z / y is 2.2 or more, generation of WO 2 having no solar radiation shielding function can be avoided, and if it is 2.999 or less, sufficient conduction electrons are generated. As a result, a sufficient solar radiation shielding function is exhibited in this range. Here, the element M is alkali metal, alkaline earth metal, rare earth metal, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, 1 selected from Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re It is preferable that it is an element more than a kind. In addition, from the viewpoint of improving the solar radiation shielding characteristics, the metal belonging to the element M is preferably an alkali metal, an alkaline earth metal, or a transition metal. Further, from the viewpoint of improving the weather resistance, a group 3B element or a group 4A element Those belonging to Group 4B elements and Group 5B elements are preferred.

また、本発明のタングステン酸化物微粒子の粒子径は、当該微粒子の使用目的によって適宜選定することができる。例えば、日射遮蔽材の透明性を保持した応用に使用する場合は、粒子径を800nm以下にすることが好ましい。粒子径が800nmよりも小さい粒子は、光を完全に遮蔽することがないため、可視光線領域の視認性を保持し、同時に効率良く透明性を保持することが可能となるからである。   Moreover, the particle diameter of the tungsten oxide fine particles of the present invention can be appropriately selected depending on the purpose of use of the fine particles. For example, when used for an application that maintains the transparency of the solar shading material, the particle diameter is preferably 800 nm or less. This is because particles having a particle diameter smaller than 800 nm do not completely block light, so that visibility in the visible light region can be maintained, and at the same time, transparency can be efficiently maintained.

さらに、可視光領域の透明性を重視する場合は、粒子による光の散乱も考慮する必要がある。透明性を重視したとき、粒子径は200nm以下、好ましくは100nm以下が好ましい。理由は、粒子の粒子径が大きいと幾何学散乱もしくはミー散乱によって、400nm〜780nmの可視光線領域の光が散乱され、日射遮蔽材の外観が曇りガラスのようになり、鮮明な透明性が得られにくくなるからである。粒子径が200nm以下になると、上記散乱が低減し、レイリー散乱領域になる。レイリー散乱領域では、散乱光は粒子径の6乗に反比例して低減するため、粒子径の減少に伴い散乱が低減し透明性が向上する。さらに、100nm以下になると散乱光は非常に少なくなり好ましい。また、粒子径が1nm以上のタングステン酸化物微粒子は工業的な製造が容易である。   Furthermore, when importance is attached to transparency in the visible light region, it is necessary to consider light scattering by particles. When importance is attached to transparency, the particle diameter is 200 nm or less, preferably 100 nm or less. The reason is that if the particle size of the particles is large, light in the visible light region of 400 nm to 780 nm is scattered by geometrical scattering or Mie scattering, and the appearance of the solar shading material becomes like a frosted glass, and clear transparency is obtained. It is because it becomes difficult to be done. When the particle diameter is 200 nm or less, the scattering is reduced and a Rayleigh scattering region is obtained. In the Rayleigh scattering region, the scattered light decreases in inverse proportion to the sixth power of the particle diameter, so that the scattering is reduced and the transparency is improved as the particle diameter decreases. Furthermore, when the thickness is 100 nm or less, the scattered light is preferably very small. Further, the tungsten oxide fine particles having a particle diameter of 1 nm or more are easy to produce industrially.

上述した、粒子径を選択することにより、タングステン酸化物微粒子を媒体中に分散させた日射遮蔽材料微粒子分散体のヘイズ値を、可視光透過率85%以下でヘイズ30%以下とすることができる。ヘイズが30%よりも小さい値であると、鮮明な透明性が得られる。このようにして得られた日射遮蔽体形成用タングステン酸化物微粒子は、上記の特性を有することから、日射遮蔽体微粒子として優れた光学特性を発揮する。   By selecting the particle size described above, the haze value of the solar shading material fine particle dispersion in which the tungsten oxide fine particles are dispersed in the medium can be set to a visible light transmittance of 85% or less and a haze of 30% or less. . If the haze is less than 30%, clear transparency can be obtained. Since the thus obtained tungsten oxide fine particles for forming a sunscreen have the above-mentioned characteristics, they exhibit excellent optical properties as sunscreen fine particles.

3.日射遮蔽体形成用分散液
前記日射遮蔽体形成用タングステン酸化物微粒子を適宜な溶媒中に混合、分散したものが、本発明に係る日射遮蔽体形成用分散液である。当該溶媒は特に限定されるものでなく、塗布・練り込み条件、塗布・練り込み環境、さらに、無機バインダーや樹脂バインダーを含有させたときは、当該バインダーに合わせて適宜選択すればよい。例えば、水、エタノール、プロパノール、ブタノール、イソプロピルアルコール、イソブチルアルコール、ジアセトンアルコールなどのアルコール類、メチルエーテル,エチルエーテル,プロピルエーテルなどのエーテル類、エステル類、アセトン、メチルエチルケトン、ジエチルケトン、シクロヘキサノン、イソブチルケトンなどのケトン類、トルエンなどの芳香族炭化水素類といった各種の有機溶媒が使用可能であり、また必要に応じて酸やアルカリを添加してpH調整してもよい。さらに、分散液中における微粒子の分散安定性を一層向上させるためには、各種の界面活性剤、カップリング剤などの添加も勿論可能である。
3. Sunscreener-forming dispersion The sunscreener-forming dispersion according to the present invention is obtained by mixing and dispersing the sunscreener-forming tungsten oxide fine particles in an appropriate solvent. The said solvent is not specifically limited, What is necessary is just to select suitably according to the said binder, when coating / kneading conditions, application | coating / kneading environment, and also the inorganic binder and the resin binder are contained. For example, water, ethanol, propanol, butanol, isopropyl alcohol, isobutyl alcohol, diacetone alcohol and other alcohols, ethers such as methyl ether, ethyl ether, propyl ether, esters, acetone, methyl ethyl ketone, diethyl ketone, cyclohexanone, isobutyl Various organic solvents such as ketones such as ketones and aromatic hydrocarbons such as toluene can be used. If necessary, pH may be adjusted by adding an acid or an alkali. Furthermore, in order to further improve the dispersion stability of the fine particles in the dispersion, it is of course possible to add various surfactants and coupling agents.

本発明に係る日射遮蔽体形成用分散液の特徴は、タングステン酸化物微粒子を溶媒中に分散したときの、タングステン酸化物微粒子の分散状態を測定することで確認することができる。例えば、本発明に係るタングステン酸化物微粒子が、溶媒中において粒子および粒子の凝集状態として存在する状態の液から試料をサンプリングし、市販されている種々の粒度分布計で測定することで確認することができる。粒度分布計としては、例えば、動的光散乱法を原理とした大塚電子(株)社製ELS−8000を用いることができる。   The characteristics of the dispersion for forming a solar radiation shield according to the present invention can be confirmed by measuring the dispersion state of the tungsten oxide fine particles when the tungsten oxide fine particles are dispersed in a solvent. For example, the sample can be confirmed by sampling a sample from a liquid in which the tungsten oxide fine particles according to the present invention exist in a solvent as particles and agglomerated states of the particles, and measuring with various commercially available particle size distribution analyzers Can do. As the particle size distribution analyzer, for example, ELS-8000 manufactured by Otsuka Electronics Co., Ltd. based on the dynamic light scattering method can be used.

タングステン酸化物微粒子の分散粒子径は、光学特性の観点から400nm以下まで十分細かく、かつ、均一に分散していることが好ましい。400nm以下の粒径であれば、日射遮蔽膜や成形体(板、シートなど)が、単調に透過率の減少した灰色系のものになってしまうのを回避できるからである。また、タングステン酸化物微粒子が凝集して粗大粒子凝集となり、当該粗大粒子が多数存在すると、当該粗大粒子が光散乱源となり、日射遮蔽膜や成形体となったときに曇り(ヘイズ)が大きくなり、可視光透過率が減少する原因となることがあるので、粗大粒子生成を回避することが好ましい。尚、明細書において「分散粒子径」とは「凝集粒子径」を意味するものである。   The dispersed particle diameter of the tungsten oxide fine particles is preferably sufficiently fine and uniformly dispersed to 400 nm or less from the viewpoint of optical characteristics. This is because if the particle size is 400 nm or less, it is possible to prevent the solar shading film and the molded body (plate, sheet, etc.) from becoming a gray type having a monotonously reduced transmittance. In addition, the tungsten oxide fine particles are aggregated to form coarse particles, and if there are a large number of the coarse particles, the coarse particles become a light scattering source, and cloudiness (haze) increases when it becomes a solar shading film or a molded body. Since it may cause a decrease in the visible light transmittance, it is preferable to avoid the generation of coarse particles. In the specification, “dispersed particle size” means “aggregated particle size”.

タングステン酸化物微粒子の溶媒への分散方法は、微粒子を分散液中へ均一に分散する方法であれば特に限定されず、例えば、ビーズミル、ボールミル、サンドミル、ペイントシェーカー、超音波ホモジナイザーなどが挙げられる。これらの器材を用いた分散処理工程によって、タングステン酸化物微粒子の溶媒中への分散と同時にタングステン酸化物粒子同士の衝突等による微粒子化も進行し、タングステン酸化物粒子をより微粒子化して分散させることができる(すなわち、粉砕・分散処理することができる)。   The method for dispersing the tungsten oxide fine particles in the solvent is not particularly limited as long as the fine particles are uniformly dispersed in the dispersion, and examples thereof include a bead mill, a ball mill, a sand mill, a paint shaker, and an ultrasonic homogenizer. Through the dispersion treatment process using these equipments, the tungsten oxide particles are dispersed in the solvent, and at the same time, the fine particles are produced by collision of the tungsten oxide particles, and the tungsten oxide particles are further finely dispersed. (That is, it can be pulverized and dispersed).

4.日射遮蔽体の製造
4−(A).塗布操作による場合
上記日射遮蔽体形成用分散液を、適宜な透明基材上に塗布して被膜を形成する場合の塗布法は、例えばスピンコート法、バーコート法、スプレーコート法、ディップコート法、スクリーン印刷法、ロールコート法、流し塗りなど、分散液を平坦かつ薄く均一に塗布できる方法であればいずれの方法でもよい。
4). Manufacture of solar radiation shield 4- (A). In the case of application operation The application method in the case of forming a film by applying the dispersion for forming a solar shield on an appropriate transparent substrate is, for example, spin coating, bar coating, spray coating, dip coating. Any method may be used as long as the dispersion can be applied flatly, thinly and uniformly, such as screen printing, roll coating, and flow coating.

また、上記日射遮蔽体形成用分散液が、無機バインダーとして、珪素、ジルコニウム、チタン、もしくはアルミニウム等の元素を金属アルコキシドおよびその加水分解重合物として含む分散液である場合、当該分散液の塗布後の基材加熱温度は100℃以上とすることが好ましい。基材温度を100℃以上とすることで、塗膜中に含まれるアルコキシドまたはその加水分解重合物の重合反応を完結させることができ、また水や有機溶媒が膜中に残留して、加熱後の膜における可視光透過率の低減の原因となるのを回避することができるからである。さらに、同様の理由により、当該溶媒の沸点が100℃以上の場合は、当該溶媒の沸点以上で加熱を行うことが望ましい。   Further, when the dispersion for forming the solar radiation shielding body is a dispersion containing an element such as silicon, zirconium, titanium, or aluminum as an inorganic binder as a metal alkoxide and a hydrolysis polymer thereof, after application of the dispersion The substrate heating temperature is preferably 100 ° C. or higher. By setting the substrate temperature to 100 ° C. or higher, the polymerization reaction of the alkoxide or its hydrolysis polymer contained in the coating film can be completed, and water or an organic solvent remains in the film and is heated. This is because it can be avoided that the visible light transmittance of the film is reduced. Furthermore, for the same reason, when the boiling point of the solvent is 100 ° C. or higher, it is desirable to heat at the boiling point or higher of the solvent.

また、上記日射遮蔽体形成用分散液が、樹脂バインダーを含む分散液である場合、当該分散液を基材に塗布後、それぞれの樹脂の硬化方法に従って硬化させればよい。例えば、当該樹脂バインダーが、紫外線硬化樹脂であれば紫外線を適宜照射すればよく、また常温硬化樹脂であれば塗布後そのまま放置しておけばよい。このため、当該構成を有する日射遮蔽体形成用分散液は、既存の窓ガラス等への現場における塗布が可能である。   Moreover, when the said dispersion liquid for solar radiation shielding body is a dispersion liquid containing a resin binder, what is necessary is just to harden | cure according to the hardening method of each resin, after apply | coating the said dispersion liquid to a base material. For example, if the resin binder is an ultraviolet curable resin, ultraviolet rays may be appropriately irradiated. If the resin binder is a room temperature curable resin, the resin binder may be left as it is after application. For this reason, the dispersion for solar radiation shielding body which has the said structure can be apply | coated to the existing window glass etc. on the spot.

4−(B).練り込み操作による場合
上記日射遮蔽体形成用分散液を樹脂に練り込むときは、当該樹脂の融点付近の温度(200〜300℃前後)にて加熱混合する。そして、日射遮蔽体を樹脂に混合した後、これをペレット化し、各方式でファイルやボ−ドを形成することが可能である。形成方法としては、例えば、押し出し成形法、インフレーション成形法、溶液流延法、キャスティング法などが適用可能である。この時のフィルムやボ−ドの厚さは、使用目的に応じて適宜選定すればよい。当該樹脂に対するタングステン酸化物の微粒子の添加量は、基材の厚さや必要とされる光学特性、機械特性に応じて適宜選択することが可能であるが、一般的に、当該樹脂に対して50重量%以下とすることが好ましい。
4- (B). In the case of kneading operation When kneading the dispersion for forming the solar shading body into a resin, it is heated and mixed at a temperature near the melting point of the resin (around 200 to 300 ° C.). And after mixing a solar radiation shielding body with resin, this can be pelletized and a file and a board can be formed by each system. As the forming method, for example, an extrusion molding method, an inflation molding method, a solution casting method, a casting method, or the like can be applied. The thickness of the film or board at this time may be appropriately selected according to the purpose of use. The amount of tungsten oxide fine particles added to the resin can be appropriately selected according to the thickness of the base material, required optical characteristics, and mechanical characteristics. It is preferable to set the weight% or less.

上記日射遮蔽体を練り込む樹脂は、特に限定されるものではなく用途に応じて選択可能であるが、例えばPET樹脂、アクリル樹脂、ポリアミド樹脂、塩化ビニル樹脂、ポリカーボネート樹脂、オレフィン樹脂、エポキシ樹脂、ポリイミド樹脂、フッ素樹脂、ポリエチレン、ポリ塩化ビニリデン樹脂、ポリビニルアルコール樹脂、エチレン酢酸ビニル共重合体、ポリスチレン樹脂、ポロプロピレン樹脂、ポリビニルブチラール樹脂などが挙げられる。   The resin for kneading the solar shading body is not particularly limited and can be selected depending on the application. For example, PET resin, acrylic resin, polyamide resin, vinyl chloride resin, polycarbonate resin, olefin resin, epoxy resin, Examples include polyimide resin, fluororesin, polyethylene, polyvinylidene chloride resin, polyvinyl alcohol resin, ethylene vinyl acetate copolymer, polystyrene resin, polypropylene resin, and polyvinyl butyral resin.

5.日射遮蔽体の日射遮蔽効果
タングステン酸化物微粒子の分散粒子径が800nm以下で十分細かく、かつ均一に分散した日射遮蔽体は、光の透過率において波長350nm〜600nmに極大値を、波長600〜1500nmに極小値を持ち、透過率の極大値と極小値とを百分率で表現したとき、極大値(%)−極小値(%)≧15(ポイント)、即ち、極大値と極小値との差が百分率で5ポイント以上の特性を有する日射遮蔽体が得られる。
5. The solar shading effect of the solar shading body The solar shading body in which the dispersed particle diameter of the tungsten oxide fine particles is sufficiently fine and uniformly dispersed is 800 nm or less, and the light transmittance has a maximum value at a wavelength of 350 nm to 600 nm and a wavelength of 600 to 1500 nm. When the maximum value and minimum value of transmittance are expressed as percentages, the maximum value (%) − minimum value (%) ≧ 15 (points), that is, the difference between the maximum value and the minimum value is A solar shading body having a characteristic of 5 points or more in percentage is obtained.

日射遮蔽体における透過率の極大値と極小値との差は、この差の値が大きいほど日射遮蔽特性が優れる。これは、タングステン酸化物微粒子の透過プロファイルは、波長350nm〜600nmに極大値を、波長600〜1500nmに極小値を持っていること、一方、可視光波長域は380nm〜780nmで、人間の視感度が550nm付近をピ−クとする釣鐘型であることによる。すなわち、当該透過特性を有する本発明に係る日射遮蔽体は、可視光を有効に透過しそれ以外の赤外線を有効に反射・吸収することが理解される。   As for the difference between the maximum value and the minimum value of the transmittance in the solar radiation shielding body, the larger the difference value, the better the solar radiation shielding characteristics. This is because the transmission profile of the tungsten oxide fine particles has a maximum value at a wavelength of 350 nm to 600 nm and a minimum value at a wavelength of 600 to 1500 nm, while the visible light wavelength range is 380 nm to 780 nm, and human visibility. Is a bell shape having a peak near 550 nm. That is, it is understood that the solar radiation shielding body according to the present invention having the transmission characteristics effectively transmits visible light and effectively reflects and absorbs other infrared rays.

6.その他
本発明に係る日射遮蔽体へ更に紫外線遮蔽機能を付与させるため、無機系の酸化チタン、酸化亜鉛、酸化セリウムなどの粒子、有機系のベンゾフェノン、ベンゾトリアゾ−ルなどの1種若しくは2種以上を添加してもよい。
また、本発明に係る日射遮蔽体の透過率を向上させるために、さらにATO、ITO、アルミニウム添加酸化亜鉛などの粒子を混合してもよい。これらの透明粒子を日射遮蔽体へ適宜量添加すると、750nm付近の透過率が増加し、かつ赤外線を遮蔽するため、可視光透過率が高く、かつ日射遮蔽特性のより高い日射遮蔽体が得られる。
6). Other In order to further impart an ultraviolet shielding function to the solar radiation shielding body according to the present invention, particles of inorganic titanium oxide, zinc oxide, cerium oxide, etc., one or more of organic benzophenone, benzotriazole and the like are added. It may be added.
Moreover, in order to improve the transmittance | permeability of the solar radiation shielding body which concerns on this invention, you may mix particles, such as ATO, ITO, and aluminum addition zinc oxide. When an appropriate amount of these transparent particles is added to the solar shading body, the transmittance near 750 nm is increased and the infrared ray is shielded, so that a solar shading body having high visible light transmittance and higher solar shading characteristics can be obtained. .

また、ATO、ITO、アルミニウム添加酸化亜鉛などの粒子を分散した分散液へ、本発明に係る日射遮蔽体形成用分散液を添加すれば、本発明に係る日射遮蔽体を構成するタングステン酸化物の膜色は青色なため、ATO、ITO、アルミニウム添加酸化亜鉛等の膜を着色すると同時に、その日射遮蔽効果を補助することもできる。この場合、主体となるATO、ITO、アルミニウム添加酸化亜鉛などに対し、本発明に係る日射遮蔽体形成用分散液をほんの僅か添加することで日射遮蔽効果を補助できる。この結果、原料コストの高いATOやITO等の必要添加量を、大幅に減少させることが可能となり分散液コストを下げることができる。   Moreover, if the dispersion liquid for forming the solar radiation shield according to the present invention is added to the dispersion liquid in which particles such as ATO, ITO, and aluminum-added zinc oxide are dispersed, the tungsten oxide constituting the solar radiation shield according to the present invention is added. Since the film color is blue, it is possible to color the film of ATO, ITO, aluminum-added zinc oxide, etc., and at the same time assist the solar radiation shielding effect. In this case, the solar radiation shielding effect can be assisted by adding only a slight amount of the solar radiation shielding dispersion according to the present invention to ATO, ITO, aluminum-added zinc oxide or the like as the main component. As a result, the required addition amount of ATO, ITO, etc. with high raw material costs can be significantly reduced, and the dispersion cost can be reduced.

また、本発明に係る日射遮蔽体形成用分散液を用いた日射遮蔽体の形成は、焼成時の熱による液体成分の分解反応、または、化学反応を用いたものではないため、特性の安定した日射遮蔽体を形成することができる。
さらに、上述したような優れた日射遮蔽効果を発揮するタングステン酸化物微粒子は、無機材料であるので有機材料と比べて耐候性に優れており、例えば、太陽光線(紫外線)の当たる部位に使用しても色や諸機能の劣化はほとんど生じない。この結果、車両、ビル、事務所、一般住宅などの窓材や、電話ボックス、ショーウィンドー、照明用ランプ、透明ケースなどに使用される単板ガラス、合わせガラス、プラスチックス、繊維、その他の日射遮蔽機能を必要とする日射遮蔽体などの広汎な分野に用いることができる。
In addition, since the formation of the solar shield using the dispersion for forming the solar shield according to the present invention does not use a decomposition reaction of a liquid component due to heat during firing or a chemical reaction, the characteristics are stable. A solar shading body can be formed.
Furthermore, since the tungsten oxide fine particles that exhibit the excellent solar shading effect as described above are inorganic materials, they are superior in weather resistance compared to organic materials, and are used, for example, in areas exposed to sunlight (ultraviolet rays). However, there is almost no deterioration of color and functions. As a result, solar panels, laminated glass, plastics, textiles and other solar radiation used in window materials for vehicles, buildings, offices, ordinary houses, telephone boxes, show windows, lighting lamps, transparent cases, etc. It can be used in a wide range of fields such as a solar radiation shield that requires a shielding function.

以下、本発明について実施例を挙げて具体的に説明する。但し、本発明は以下の実施例に限定されるものではない。   Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the following examples.

[実施例1]
タングステン酸(H2WO4)50gを入れた石英ボートを箱型電気炉にセットし、大気中600℃の温度で1時間焼成し焼成粉を得た。次に、当該焼成粉20gを入れた石英ボ−トを25mmφの石英管状炉にセットし、N2ガスをキャリアとした5%H2ガスを供給しながら加熱し、600℃の温度で1時間の還元処理を行って微粒子(a)を得た。
次に、当該微粒子(a)5重量%、高分子系分散剤5重量%、トルエン90重量%を秤量し、0.3mmφZrO2ビ−ズを入れたペイントシェーカーで6時間粉砕・分散処理することによって日射遮蔽体形成用分散液(A液)を調製した。ここで、日射遮蔽体形成用分散液(A液)内におけるタングステン酸化物微粒子の分散粒子径を測定したところ、粉砕・分散処理の効果によって69nmとなっていた。
[Example 1]
A quartz boat containing 50 g of tungstic acid (H 2 WO 4 ) was set in a box-type electric furnace and fired in the atmosphere at a temperature of 600 ° C. for 1 hour to obtain a fired powder. Next, the quartz boat containing 20 g of the fired powder is set in a 25 mmφ quartz tubular furnace, heated while supplying 5% H 2 gas with N 2 gas as a carrier, and at a temperature of 600 ° C. for 1 hour. The fine particles (a) were obtained by performing the reduction treatment.
Next, 5% by weight of the fine particles (a), 5% by weight of a polymeric dispersant, and 90% by weight of toluene are weighed and pulverized and dispersed for 6 hours in a paint shaker containing 0.3 mmφZrO 2 beads. A dispersion for forming a solar shading body (Liquid A) was prepared. Here, when the dispersion particle diameter of the tungsten oxide fine particles in the dispersion liquid (A liquid) for solar radiation shielding body measurement was measured, it was 69 nm due to the effect of the pulverization / dispersion treatment.

次に、得られた分散液(A液)1.6g、UV硬化樹脂0.5g、残部トルエンとを秤量し、混合・攪拌して日射遮蔽体形成用分散液(B液)を調製した。そして、バーNo12のバーコーターを用い、膜厚50μmのPET(ポリエチレンテレフタレ−ト)フィルム上へ日射遮蔽体形成用分散液(B液)を塗布した後、70℃、1分間の条件で高圧水銀ランプを照射し、実施例1に係る日射遮蔽体Aを得た。   Next, 1.6 g of the obtained dispersion (Liquid A), 0.5 g of UV curable resin, and the remaining toluene were weighed, mixed and stirred to prepare a dispersion for solar radiation shielding body (Liquid B). Then, using a bar coater of bar No. 12, a dispersion liquid (B liquid) for forming a solar shading body was applied onto a PET (polyethylene terephthalate) film having a thickness of 50 μm, and then high pressure was applied at 70 ° C. for 1 minute. Irradiation with a mercury lamp gave a solar radiation shield A according to Example 1.

ここで、(株)日立製作所製の分光光度計U−4000を用い、日射遮蔽体Aの光学特性として、可視光透過率と日射遮蔽特性とを測定した。尚、当該測定における日射遮蔽特性評価は、日射遮蔽体の透過率を百分率で表現し、その百分率の極大値と極小値との差をポイントとして求めたものである。そして、日射遮蔽体Aの可視光透過率と日射遮蔽特性とを測定した結果、可視光透過率59%、透過率の極大値と極小値との差41.6ポイントの値を得た。この値を図1に示す。   Here, using a spectrophotometer U-4000 manufactured by Hitachi, Ltd., the visible light transmittance and the solar radiation shielding characteristic were measured as the optical characteristics of the solar radiation shielding body A. The solar shading characteristic evaluation in the measurement is obtained by expressing the transmittance of the solar shading body as a percentage and calculating the difference between the maximum value and the minimum value of the percentage as a point. As a result of measuring the visible light transmittance and the solar shading characteristics of the solar shading body A, the visible light transmittance was 59%, and the difference between the local maximum value and the local minimum value was 41.6 points. This value is shown in FIG.

[実施例2]
実施例1において調製した日射遮蔽体形成用分散液(B液)を、バーNo8のバーコーターを用いてPETフィルム上へ塗布した以外は、実施例1と同様にして日射遮蔽体Bを得た。
そして、日射遮蔽体Bに対して、実施例1と同様に可視光透過率と日射遮蔽特性とを測定した。この値を図1に示す。
[Example 2]
The solar shading body B was obtained in the same manner as in Example 1 except that the dispersion liquid for forming the solar shading body (liquid B) prepared in Example 1 was applied onto a PET film using a bar coater of bar No8. .
And with respect to the solar radiation shielding body B, the visible light transmittance and the solar radiation shielding characteristics were measured in the same manner as in Example 1. This value is shown in FIG.

[実施例3]
実施例1と同様のタングステン酸32.3gへ、水酸化バリウムを添加して十分混合した。水酸化バリウムの添加量は、三酸化タングステン中のWの重量に対し水酸化バリウム中のBaの重量比が0.01となるようにした。そして、当該混合物20gを石英管状炉にセットした以外は、実施例1と同様にして微粒子(c)と日射遮蔽体Cとを得た。
そして、日射遮蔽体Cに対して、実施例1と同様に可視光透過率と日射遮蔽特性とを測定した。この値を図1に示す。
[Example 3]
Barium hydroxide was added to 32.3 g of tungstic acid similar to that in Example 1 and mixed well. The amount of barium hydroxide added was set so that the weight ratio of Ba in barium hydroxide to 0.01 in the tungsten trioxide was 0.01. And fine particle (c) and the solar radiation shielding body C were obtained like Example 1 except having set the mixture 20g in the quartz tubular furnace.
And the visible light transmittance | permeability and the solar radiation shielding characteristic were measured with respect to the solar radiation shielding body C like Example 1. FIG. This value is shown in FIG.

[実施例4]
実施例1と同様のタングステン酸32.3gへ、硝酸バリウム水溶液を添加して、攪拌しながら110℃に加熱して蒸発乾固した。硝酸バリウム水溶液の添加量は、三酸化タングステン中のWの重量に対し硝酸バリウム水溶液中のBaの重量比が0.01となるようにした。そして、当該混合物20gを石英管状炉にセットした以外は、実施例1と同様にして微粒子(d)と日射遮蔽体Dとを得た。
そして、日射遮蔽体Dに対して、実施例1と同様に可視光透過率と日射遮蔽特性とを測定した。この値を図1に示す。
[Example 4]
An aqueous barium nitrate solution was added to 32.3 g of tungstic acid similar to that in Example 1, and heated to 110 ° C. with stirring to evaporate to dryness. The addition amount of the barium nitrate aqueous solution was set so that the weight ratio of Ba in the barium nitrate aqueous solution was 0.01 with respect to the weight of W in tungsten trioxide. And fine particle (d) and the solar radiation shield D were obtained like Example 1 except having set the mixture 20g in the quartz tubular furnace.
And the visible light transmittance | permeability and the solar radiation shielding characteristic were measured with respect to the solar radiation shielding body D like Example 1. FIG. This value is shown in FIG.

[実施例5]
実施例1と同様のタングステン酸32.3gへ、硝酸ランタン水溶液を添加して、攪拌しながら110℃に加熱して蒸発乾固した。硝酸バリウム水溶液の添加量は、三酸化タングステン中のWの重量に対し硝酸ランタン水溶液中のLaの重量比が0.01となるようにした。そして、当該混合物20gを石英管状炉にセットした以外は、実施例1と同様にして微粒子(e)と日射遮蔽体Eとを得た。
そして、日射遮蔽体Eに対して、実施例1と同様に可視光透過率と日射遮蔽特性とを測定した。この値を図1に示す。
[Example 5]
A lanthanum nitrate aqueous solution was added to 32.3 g of tungstic acid as in Example 1, and the mixture was heated to 110 ° C. with stirring and evaporated to dryness. The addition amount of the barium nitrate aqueous solution was set such that the weight ratio of La in the lanthanum nitrate aqueous solution to 0.01 wt% of tungsten in the tungsten trioxide was 0.01. Then, fine particles (e) and solar shield E were obtained in the same manner as in Example 1 except that 20 g of the mixture was set in a quartz tube furnace.
And with respect to the solar radiation shielding body E, the visible light transmittance and the solar radiation shielding characteristic were measured in the same manner as in Example 1. This value is shown in FIG.

[実施例6]
実施例1と同様のタングステン酸32.3gへ、塩化銅水溶液を添加して、攪拌しながら110℃に加熱して蒸発乾固した。塩化銅水溶液の添加量は、三酸化タングステン中のWの重量に対し塩化銅水溶液中のCuの重量比が0.01となるようにした。そして、当該混合物20gを石英管状炉にセットした以外は、実施例1と同様にして微粒子(f)と日射遮蔽体Fとを得た。
そして、日射遮蔽体Fに対して、実施例1と同様に可視光透過率と日射遮蔽特性とを測定した。この値を図1に示す。
[Example 6]
An aqueous copper chloride solution was added to 32.3 g of tungstic acid similar to Example 1, and the mixture was heated to 110 ° C. with stirring and evaporated to dryness. The amount of copper chloride aqueous solution added was such that the weight ratio of Cu in the copper chloride aqueous solution was 0.01 with respect to the weight of W in tungsten trioxide. And the fine particle (f) and the solar radiation shielding body F were obtained like Example 1 except having set the said mixture 20g in the quartz tubular furnace.
And with respect to the solar radiation shielding body F, the visible light transmittance and the solar radiation shielding characteristic were measured in the same manner as in Example 1. This value is shown in FIG.

[実施例7]
実施例1と同様のタングステン酸32.3gへ、硝酸セリウム水溶液を添加して、攪拌しながら110℃に加熱して蒸発乾固した。硝酸セリウム水溶液の添加量は、三酸化タングステン中のWの重量に対し硝酸セリウム水溶液中のCeの重量比が0.01となるようにした。そして、当該混合物20gを石英管状炉にセットした以外は、実施例1と同様にして微粒子(g)と日射遮蔽体Gとを得た。
そして、日射遮蔽体Gに対して、実施例1と同様に可視光透過率と日射遮蔽特性とを測定した。この値を図1に示す。
[Example 7]
An aqueous cerium nitrate solution was added to 32.3 g of tungstic acid similar to that in Example 1, and the mixture was heated to 110 ° C. with stirring and evaporated to dryness. The amount of the cerium nitrate aqueous solution added was such that the weight ratio of Ce in the cerium nitrate aqueous solution to 0.01 wt. And the fine particle (g) and the solar radiation shielding body G were obtained like Example 1 except having set the mixture 20g in the quartz tubular furnace.
And with respect to the solar radiation shielding body G, the visible light transmittance and the solar radiation shielding characteristics were measured in the same manner as in Example 1. This value is shown in FIG.

[実施例8]
実施例1と同様のタングステン酸32.3gへ、硝酸マグネシウム水溶液を添加して、攪拌しながら110℃に加熱して蒸発乾固した。硝酸マグネシウム水溶液の添加量は、タングステン酸中のWの重量に対し硝酸マグネシウム水溶液中のMgの重量比が0.01となるようにした。そして、当該混合物20gを石英管状炉にセットした以外は、実施例1と同様にして微粒子(h)と日射遮蔽体Hとを得た。
そして、日射遮蔽体Hに対して、実施例1と同様に可視光透過率と日射遮蔽特性とを測定した。この値を図1に示す。
[Example 8]
Magnesium nitrate aqueous solution was added to 32.3 g of tungstic acid similar to Example 1, and heated to 110 ° C. with stirring to evaporate to dryness. The amount of magnesium nitrate aqueous solution added was such that the weight ratio of Mg in the magnesium nitrate aqueous solution to 0.01 wt. And fine particle (h) and the solar radiation shielding body H were obtained like Example 1 except having set 20 g of the said mixture in the quartz tubular furnace.
And the visible light transmittance | permeability and the solar radiation shielding characteristic were measured with respect to the solar radiation shielding body H like Example 1. FIG. This value is shown in FIG.

[実施例9]
実施例1と同様のタングステン酸32.3gへ、硝酸アルミニウム水溶液を添加して、攪拌しながら110℃に加熱して蒸発乾固した。硝酸アルミニウム水溶液の添加量は、タングステン酸中のWの重量に対し硝酸アルミニウム水溶液中のAlの重量比が0.1となるようにした。そして、当該混合物20gを石英管状炉にセットし、バーNo24のバーコーターを用いた以外は、実施例1と同様にして微粒子(i)と日射遮蔽体Iとを得た。
尚、分散粒子径の測定をおこなったところ150nmであった。そして、日射遮蔽体Iに対して、実施例1と同様に可視光透過率と日射遮蔽特性とを測定した。この値を図1に示す。
[Example 9]
An aluminum nitrate aqueous solution was added to 32.3 g of tungstic acid as in Example 1, and the mixture was heated to 110 ° C. with stirring and evaporated to dryness. The amount of the aluminum nitrate aqueous solution added was such that the weight ratio of Al in the aluminum nitrate aqueous solution to the weight of W in tungstic acid was 0.1. Then, 20 g of the mixture was set in a quartz tubular furnace, and fine particles (i) and a solar shield I were obtained in the same manner as in Example 1 except that a bar coater of bar No. 24 was used.
In addition, it was 150 nm when the dispersion particle diameter was measured. And with respect to the solar radiation shielding body I, the visible light transmittance and the solar radiation shielding characteristic were measured in the same manner as in Example 1. This value is shown in FIG.

[実施例10]
実施例1と同様のタングステン酸32.3gへ、硝酸銀水溶液を添加して、攪拌しながら110℃に加熱して蒸発乾固した。硝酸銀水溶液の添加量は、タングステン酸中のWの重量に対し硝酸銀水溶液中のAgの重量比が0.05となるようにした。そして、当該混合物20gを石英管状炉にセットした以外は、実施例1と同様にして微粒子(j)と日射遮蔽体Jとを得た。
そして、日射遮蔽体Jに対して、実施例1と同様に可視光透過率と日射遮蔽特性とを測定した。この値を図1に示す。
[Example 10]
A silver nitrate aqueous solution was added to 32.3 g of tungstic acid similar to that in Example 1, and the mixture was heated to 110 ° C. with stirring and evaporated to dryness. The amount of silver nitrate aqueous solution added was such that the weight ratio of Ag in the silver nitrate aqueous solution was 0.05 with respect to the weight of W in tungstic acid. And fine particle (j) and the solar radiation shield J were obtained like Example 1 except having set the said mixture 20g in the quartz tubular furnace.
And the visible light transmittance | permeability and the solar radiation shielding characteristic were measured with respect to the solar radiation shielding body J like Example 1. FIG. This value is shown in FIG.

[実施例11]
実施例1において、石英管状炉へ供給するN2ガスをキャリアとした5%H2ガスを、N2ガス単独に代替した以外は実施例1と同様にして微粒子(k)と日射遮蔽体Kとを得た。
そして、日射遮蔽体Kに対して、実施例1と同様に可視光透過率と日射遮蔽特性とを測定した。この値を図1に示す。
[Example 11]
In Example 1, the fine particles (k) and solar shield K are the same as in Example 1 except that 5% H 2 gas using N 2 gas supplied to the quartz tube furnace as a carrier is replaced with N 2 gas alone. And got.
And the visible light transmittance | permeability and the solar radiation shielding characteristic were measured with respect to the solar radiation shielding body K like Example 1. FIG. This value is shown in FIG.

[比較例1]
実施例1において、石英管状炉へ供給するN2ガスをキャリアとした5%H2ガスを、大気に代替した以外は実施例1と同様にして微粒子(l)と日射遮蔽体Lとを得た。
そして、日射遮蔽体Lに対して、実施例1と同様に可視光透過率と日射遮蔽特性とを測定した。この値を図1に示す。
[Comparative Example 1]
In Example 1, the fine particles (l) and the solar radiation shield L were obtained in the same manner as in Example 1 except that 5% H 2 gas using N 2 gas supplied to the quartz tube furnace as a carrier was replaced with air. It was.
And the visible light transmittance | permeability and the solar radiation shielding characteristic were measured with respect to the solar radiation shielding body L like Example 1. FIG. This value is shown in FIG.

[実施例12]
実施例1と同様のタングステン酸を用い、雰囲気としてN2ガスをキャリアーとした5%H2ガスを供給しながら加熱し、600℃の温度で1時間の還元処理を行って微粒子(a)を得た。次に、この微粒子(a)へ、雰囲気をN2ガスとし、800℃の温度で1時間の処理を行い、当該処理の後、得られた被処理物をペイントシェーカーで3時間粉砕・分散処理を行って微粒子(m)を得た。この微粒子(m)を用いた以外は、実施例1と同様にして日射遮蔽体Mを得た。
そして、日射遮蔽体Mに対して、実施例1と同様に可視光透過率と日射遮蔽特性とを測定した。この値を図1に示す。
[Example 12]
Using the same tungstic acid as in Example 1, heating was performed while supplying 5% H 2 gas with N 2 gas as an atmosphere, and a reduction treatment was performed at a temperature of 600 ° C. for 1 hour to obtain fine particles (a). Obtained. Next, the fine particles (a) are treated with N 2 gas at a temperature of 800 ° C. for 1 hour, and after the treatment, the obtained object is pulverized and dispersed with a paint shaker for 3 hours. To obtain fine particles (m). A solar radiation shield M was obtained in the same manner as in Example 1 except that the fine particles (m) were used.
And the visible light transmittance | permeability and the solar radiation shielding characteristic were measured with respect to the solar radiation shielding body M like Example 1. FIG. This value is shown in FIG.

[実施例13]
実施例12において、バーコーターとしてバーNo.8を用いた以外は、実施例12と同様にして日射遮蔽体Nを得た。
そして、日射遮蔽体Nに対して、実施例1と同様に可視光透過率と日射遮蔽特性とを測定した。この値を図1に示す。
[Example 13]
In Example 12, as a bar coater, bar no. Except that 8 was used, a solar radiation shield N was obtained in the same manner as in Example 12.
And with respect to the solar radiation shielding body N, the visible light transmittance and the solar radiation shielding characteristics were measured in the same manner as in Example 1. This value is shown in FIG.

[実施例14]
実施例12において、バーコーターとしてバーNo.16を用いた以外は、実施例12と同様にして日射遮蔽体Oを得た。
そして、日射遮蔽体Oに対して、実施例1と同様に可視光透過率と日射遮蔽特性とを測定した。この値を図1に示す。
[Example 14]
In Example 12, as a bar coater, bar no. Except having used 16, the solar radiation shielding body O was obtained like Example 12. FIG.
Then, the visible light transmittance and the solar radiation shielding characteristics were measured for the solar radiation shielding body O in the same manner as in Example 1. This value is shown in FIG.

[実施例15]
WO54.2gへ、スノ−テックスN(日産化学社製)を2.8g添加して十分攪拌した後、乾燥した。当該乾燥物を、Nガスをキャリア−とした2%Hガスを供給しながら加熱し、800℃の温度で30分間焼成した後、当該ガスをNガスに切り替え、同温度でさらに90分間焼成して微粒子nを得た。微粒子nの粉体色は、L*が35.4446、a*が2.0391、b*が−7.4738であり、粉末X線回折による結晶相の同定の結果、Si0.043WO2.839単相であった。以上のようにして微粒子nを調製し、これを用いた以外は、実施例1と同様にして日射遮蔽体Pを得た。
そして、日射遮蔽体Pに対して、実施例1と同様に可視光透過率と日射遮蔽特性とを測定した。この値を図1に示す。
[Example 15]
2.8 g of Snotex N (manufactured by Nissan Chemical Industries, Ltd.) was added to 54.2 g of H 2 WO 4 and sufficiently stirred, and then dried. The dried product was heated while supplying 2% H 2 gas with N 2 gas as a carrier and baked at a temperature of 800 ° C. for 30 minutes, and then the gas was switched to N 2 gas, and further 90 ° C. at the same temperature. Fine particles n were obtained by baking for a minute. Powder color of the microparticles n is, L * is 35.4446, a * is 2.0391, b * is -7.4738, result of identification of the crystal phase by powder X-ray diffraction, Si 0.043 WO 2 839 single phase. A solar radiation shield P was obtained in the same manner as in Example 1 except that the fine particles n were prepared as described above and used.
And the visible light transmittance | permeability and the solar radiation shielding characteristic were measured with respect to the solar radiation shielding body P like Example 1. FIG. This value is shown in FIG.

[実施例16]
水16.5gへ、CsCO10.8gを溶解し、当該溶液をHWO50gに添加して十分攪拌した後、乾燥した。当該乾燥物を、Nガスをキャリアとした2%Hガスを供給しながら加熱し、800℃の温度で30分間焼成した後、当該ガスNガスに切り替え、同温度でさらに90分間焼成して微粒子oを得た。微粒子oの粉体色は、L*が37.4562、a*が−0.3485、b*が−4.6939であり、粉末X線回折による結晶相の同定の結果、Cs0.33WO3単相であった。以上のようにして微粒子oを調製し、これを用いた以外は、実施例1と同様にして日射遮蔽体Qを得た。
そして、日射遮蔽体Qに対して、実施例1と同様に可視光透過率と日射遮蔽特性とを測定した。この値を図1に示す。
[Example 16]
10.8 g of Cs 2 CO 3 was dissolved in 16.5 g of water, the solution was added to 50 g of H 2 WO 4, and the mixture was sufficiently stirred and then dried. The dried product is heated while supplying 2% H 2 gas using N 2 gas as a carrier, baked at a temperature of 800 ° C. for 30 minutes, then switched to the gas N 2 gas, and baked at the same temperature for another 90 minutes. Thus, fine particles o were obtained. The powder color of the fine particles o is 37.4562 L * , −0.3485 a * , and −4.6939 b *. As a result of identifying the crystal phase by powder X-ray diffraction, Cs 0.33 WO There were 3 single phases. A solar shading body Q was obtained in the same manner as in Example 1 except that the fine particles o were prepared as described above and used.
And the visible light transmittance | permeability and the solar radiation shielding characteristic were measured with respect to the solar radiation shielding body Q like Example 1. FIG. This value is shown in FIG.

[実施例17]
水100gへ、CsCO9.8gを溶解し、さらにスノ−テックスN(日産化学社製)を2.4g添加した溶液を、HWO45.3gへ添加して十分攪拌した後、乾燥した。当該乾燥物を、Nガスをキャリアとした2%Hガスを供給しながら加熱し、800℃の温度で30分間焼成した後、当該ガスをNガスに切り替え、同温度でさらに90分間焼成して微粒子pを得た。微粒子pの粉体色は、L*が41.1780、a*が−1.6699、b*が−8.5722であり、粉末X線回折による結晶相の同定の結果、Cs0.33WO3単相であった。以上のようにして微粒子pを調製し、これを用いた以外は、実施例1と同様にして日射遮蔽体Rを得た。
そして、日射遮蔽体Rに対して、実施例1と同様に可視光透過率と日射遮蔽特性とを測定した。この値を図1に示す。
[Example 17]
After adding 9.8 g of Cs 2 CO 3 to 100 g of water and adding 2.4 g of SNO-TEX N (Nissan Chemical Co., Ltd.) to 45.3 g of H 2 WO 4 and stirring sufficiently , Dried. The dried product was heated while supplying 2% H 2 gas with N 2 gas as a carrier, and baked at a temperature of 800 ° C. for 30 minutes. Then, the gas was switched to N 2 gas, and the temperature was further changed to 90 minutes. The fine particles p were obtained by firing. Powder color of the fine particles p is, L * is 41.1780, a * is -1.6699, b * is -8.5722, result of identification of the crystal phase by powder X-ray diffraction, Cs 0.33 WO There were 3 single phases. A solar radiation shield R was obtained in the same manner as in Example 1 except that the fine particles p were prepared as described above and used.
And with respect to the solar radiation shield R, the visible light transmittance and the solar radiation shielding characteristic were measured in the same manner as in Example 1. This value is shown in FIG.

図1に示した結果から明らかなように、実施例1〜17に係る日射遮蔽体A〜K、M〜Rにおいて、透過率の極大値と極小値との差により評価した日射遮蔽特性は、いずれも百分率で15ポイント以上であった。一方、比較例1に係る日射遮蔽体Lにおいて、当該日射遮蔽特性は15ポイント未満であった。
以上のことより、本発明に係る、容易で生産コストの低い製造方法により得られたタングステン酸化物微粒子より調製した日射遮蔽体は、透過率の極大値と極小値との差がいずれも百分率で15ポイント以上であるという優れた光学特性を有していることが判明した。
As is clear from the results shown in FIG. 1, in the solar shields AK and MR according to Examples 1 to 17, the solar shield characteristics evaluated by the difference between the maximum value and the minimum value of the transmittance are as follows: All were 15 points or more in percentage. On the other hand, in the solar radiation shielding body L which concerns on the comparative example 1, the said solar radiation shielding characteristic was less than 15 points.
From the above, the solar radiation shield prepared from the tungsten oxide fine particles obtained by the production method according to the present invention that is easy and low in production cost is the percentage difference between the maximum value and the minimum value of the transmittance. It was found to have excellent optical properties of 15 points or more.

本発明に係る日射遮蔽体の光学特性の測定結果一覧表である。It is a measurement result table | surface of the optical characteristic of the solar radiation shield which concerns on this invention.

Claims (3)

タングステン酸(HWO)、または、タングステン酸(HWO)と三酸化タングステン微粒子との混合物を、不活性ガスまたは不活性ガスと還元性ガスとの混合ガス雰囲気下で焼成することにより、一般式WyOz(但し、Wはタングステン、Oは酸素、2.2≦z/y≦2.999)で表され1nm〜800nmの粒子径を有するタングステン酸化物微粒子を生成させることを特徴とする日射遮蔽体形成用タングステン酸化物微粒子の製造方法。 Baking tungstic acid (H 2 WO 4 ) or a mixture of tungstic acid (H 2 WO 4 ) and tungsten trioxide fine particles in an inert gas or a mixed gas atmosphere of an inert gas and a reducing gas. According to general formula WyOz (W is tungsten, O is oxygen, 2.2 ≦ z / y ≦ 2.999), tungsten oxide fine particles having a particle diameter of 1 nm to 800 nm are generated. The manufacturing method of the tungsten oxide microparticles | fine-particles for solar radiation shielding body to perform. タングステン酸(HWO)、または、タングステン酸(HWO)と三酸化タングステン微粒子との混合物と、M元素の酸化物または/および水酸化物(但し、Mは、アルカリ金属、アルカリ土類金属、希土類元素、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Reのうちから選択される1種類以上の元素)とを、混合した混合粉、
または/および
タングステン酸(HWO)、または、タングステン酸(HWO)と三酸化タングステン微粒子との混合物と、前記M元素の、金属塩の水溶液、金属酸化物のコロイド溶液、アルコキシ溶液のうちから選択される1種以上とを、混合して乾燥した乾燥粉を、不活性ガス、または不活性ガスと還元性ガスとの混合ガス雰囲気下で焼成することにより、一般式MxWyOz(但し、Mは前記M元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.2≦z/y≦3.0)で表され1nm〜800nmの粒子径を有するタングステン酸化物微粒子を生成させることを特徴とする日射遮蔽体形成用タングステン酸化物微粒子の製造方法。
Tungstic acid (H 2 WO 4 ), or a mixture of tungstic acid (H 2 WO 4 ) and tungsten trioxide fine particles, and an oxide or / and hydroxide of M element (where M is an alkali metal, an alkali Earth metal, rare earth element, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge , Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re)) powder,
Or / and tungstic acid (H 2 WO 4 ), or a mixture of tungstic acid (H 2 WO 4 ) and tungsten trioxide fine particles, and an aqueous solution of a metal salt, a colloidal solution of a metal oxide of the M element, alkoxy A dry powder obtained by mixing and drying at least one selected from solutions is baked in an atmosphere of an inert gas or a mixed gas of an inert gas and a reducing gas to obtain a general formula MxWyOz ( However, M is the M element, W is tungsten, O is oxygen, 0.001 ≦ x / y ≦ 1, 2.2 ≦ z / y ≦ 3.0), and tungsten having a particle diameter of 1 nm to 800 nm A method for producing tungsten oxide fine particles for forming a solar radiation shielding body, characterized by producing oxide fine particles.
請求項2に記載の日射遮蔽体形成用タングステン酸化物微粒子の製造方法により製造され、その粉体色が、国際照明委員会(CIE)が推奨しているL表色系(JIS Z8729)における粉体色において、Lが25〜80、aが−10〜10、bが−15〜15の範囲内にあり1nm〜800nmの粒子径を有することを特徴とする日射遮蔽体形成用タングステン酸化物微粒子。 The L * a * b * color system produced by the method for producing a tungsten oxide fine particle for forming a solar shading body according to claim 2 and whose powder color is recommended by the International Commission on Illumination (CIE) ( In the powder color in JIS Z8729), solar radiation is characterized in that L * is 25 to 80, a * is -10 to 10, b * is -15 to 15 and has a particle diameter of 1 nm to 800 nm. Tungsten oxide fine particles for shielding formation.
JP2004352052A 2003-12-05 2004-12-03 Method for producing tungsten oxide fine particles for forming solar shield, and tungsten oxide fine particles for forming solar shield Active JP4626284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004352052A JP4626284B2 (en) 2003-12-05 2004-12-03 Method for producing tungsten oxide fine particles for forming solar shield, and tungsten oxide fine particles for forming solar shield

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003407070 2003-12-05
JP2004352052A JP4626284B2 (en) 2003-12-05 2004-12-03 Method for producing tungsten oxide fine particles for forming solar shield, and tungsten oxide fine particles for forming solar shield

Publications (2)

Publication Number Publication Date
JP2005187323A JP2005187323A (en) 2005-07-14
JP4626284B2 true JP4626284B2 (en) 2011-02-02

Family

ID=34797645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004352052A Active JP4626284B2 (en) 2003-12-05 2004-12-03 Method for producing tungsten oxide fine particles for forming solar shield, and tungsten oxide fine particles for forming solar shield

Country Status (1)

Country Link
JP (1) JP4626284B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170108104A (en) 2015-01-27 2017-09-26 스미토모 긴조쿠 고잔 가부시키가이샤 Dispersion of Near-Infrared Absorption Fine Particles and Method of Manufacturing the Same
KR20170108103A (en) 2015-01-27 2017-09-26 스미토모 긴조쿠 고잔 가부시키가이샤 Dispersion of Near-Infrared Absorption Fine Particles and Method of Manufacturing the Same
KR20170109005A (en) 2015-01-27 2017-09-27 스미토모 긴조쿠 고잔 가부시키가이샤 Dispersion of Near-Infrared Absorption Fine Particles and Method of Manufacturing the Same
WO2022209712A1 (en) 2021-03-31 2022-10-06 住友金属鉱山株式会社 Infrared absorbing particles, infrared-absorbing particle dispersion liquid, infrared-absorbing particle dispersion material, infrared-absorbing laminate transparent substrate, and infrared-absorbing transparent substrate

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4906283B2 (en) * 2005-07-20 2012-03-28 リンテック株式会社 Infrared absorption film
JP4586761B2 (en) * 2006-03-30 2010-11-24 住友金属鉱山株式会社 Heat ray shielding glass and manufacturing method thereof
JP5050470B2 (en) * 2006-04-24 2012-10-17 住友金属鉱山株式会社 Solar radiation shielding dispersion, solar radiation shielding body, and manufacturing method thereof
JP4735417B2 (en) * 2006-05-25 2011-07-27 住友金属鉱山株式会社 Near-infrared absorption filter for plasma display panel, method for producing the same, and plasma display panel
JP4977553B2 (en) * 2006-08-21 2012-07-18 アキレス株式会社 Heat shielding sheet
JP5176492B2 (en) * 2007-11-06 2013-04-03 住友金属鉱山株式会社 Near-infrared absorbing adhesive, near-infrared absorbing filter for plasma display panel, and plasma display panel
JP5181716B2 (en) * 2008-02-22 2013-04-10 住友金属鉱山株式会社 Infrared shielding material fine particle dispersion, infrared shielding film and infrared shielding optical member, and near infrared absorption filter for plasma display panel
JP5298581B2 (en) * 2008-03-12 2013-09-25 住友金属鉱山株式会社 Infrared shielding material fine particle dispersion, infrared shielding film and infrared shielding optical member, and near infrared absorption filter for plasma display panel
US8598074B2 (en) 2010-02-23 2013-12-03 Ricoh Company, Ltd. Thermosensitive recording medium, image recording method and image processing method
JP5305050B2 (en) * 2011-04-14 2013-10-02 住友金属鉱山株式会社 Manufacturing method of heat ray shielding fine particle-containing composition, heat ray shielding fine particle containing composition, heat ray shielding film using the heat ray shielding fine particle containing composition, and heat ray shielding laminated transparent substrate using the heat ray shielding film
JP5849766B2 (en) * 2012-02-24 2016-02-03 住友金属鉱山株式会社 Composite tungsten oxide fine particles for forming solar radiation shield, composite tungsten oxide fine particle dispersion for forming solar radiation shield, and method for producing solar radiation shield
JP2015193232A (en) 2014-03-18 2015-11-05 株式会社リコー heat-sensitive recording medium and image processing method
CN108779000B (en) * 2015-12-18 2021-03-09 住友金属矿山株式会社 Composite tungsten oxide ultrafine particle and dispersion thereof
EP3412467B1 (en) 2016-02-05 2021-08-04 Ricoh Company, Ltd. Image recording apparatus and image recording method
EP3210790B1 (en) 2016-02-05 2020-04-08 Ricoh Company, Ltd. Recording method and recording device
CN107042699B (en) 2016-02-05 2019-01-18 株式会社理光 Image recorder and image recording process
WO2017135459A1 (en) 2016-02-05 2017-08-10 株式会社リコー Image recording apparatus and image recording method
US9899052B2 (en) 2016-02-05 2018-02-20 Ricoh Company, Ltd. Recording method and recording device
EP3412464B1 (en) 2016-02-05 2020-03-04 Ricoh Company, Ltd. Recording method and recording apparatus
EP3202580B1 (en) 2016-02-05 2019-09-25 Ricoh Company, Ltd. Recording method
WO2017209111A1 (en) 2016-05-30 2017-12-07 Ricoh Company, Ltd. Thermosensitive recording medium
JP6844347B2 (en) 2017-03-15 2021-03-17 株式会社リコー Laser processing equipment
CN108624119A (en) 2017-03-24 2018-10-09 卡西欧计算机株式会社 The manufacturing method of ink, printing equipment, printing process and forming object
CN110770310A (en) * 2017-06-19 2020-02-07 住友金属矿山株式会社 Composition for forgery-preventing ink, forgery-preventing printed matter, and method for producing composition for forgery-preventing ink
US11981808B2 (en) 2018-02-15 2024-05-14 Kyodo Printing Co., Ltd. Infrared absorbing resin composition, and molded article and fiber containing same
JP6835030B2 (en) 2018-04-27 2021-02-24 カシオ計算機株式会社 Method for manufacturing a heat-expandable sheet, a method for manufacturing a heat-expandable sheet, and a method for manufacturing a modeled object
JP7263741B2 (en) 2018-11-19 2023-04-25 株式会社リコー Thermal recording media, thermal recording liquids, and articles
JP7196591B2 (en) 2018-12-21 2022-12-27 株式会社リコー PRINTING DEVICE, PRINTING METHOD AND PRINT CONTROL PROGRAM
CN111547771B (en) * 2019-07-17 2022-05-10 中国科学院上海硅酸盐研究所 Transparent heat-shielding fine particles, fine particle dispersion, process for producing the same, and use thereof
WO2021200748A1 (en) 2020-03-31 2021-10-07 共同印刷株式会社 Infrared-absorbent resin composition and infrared-absorbent fiber
JP2022010821A (en) 2020-06-29 2022-01-17 共同印刷株式会社 Infrared ray-absorbing ultraviolet-ray curable ink and infrared ray-absorbing printed matter
JP2022101126A (en) 2020-12-24 2022-07-06 共同印刷株式会社 Tungsten-based infrared absorptive pigment dispersion, dyeing solution, fiber product, and method for treating fiber product
WO2022163499A1 (en) 2021-01-29 2022-08-04 共同印刷株式会社 Infrared-absorbing ultraviolet-curable ink, and infrared-absorbing printed matter
JP2022146283A (en) 2021-03-22 2022-10-05 株式会社リコー Thermosensitive recording layer forming liquid, thermosensitive recording medium and method for manufacturing the same, and image recording method
EP4313611A1 (en) 2021-03-23 2024-02-07 Ricoh Company, Ltd. Thermosensitive recording layer forming liquid, thermosensitive recording medium and production method thereof, and image recording method
JP2022147650A (en) 2021-03-23 2022-10-06 株式会社リコー Thermosensitive recording medium, laser printing method, and laser printing apparatus
CN116177604B (en) * 2023-05-04 2023-07-21 崇义章源钨业股份有限公司 Preparation process of uniform nano tungstic acid

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11510635A (en) * 1995-06-07 1999-09-14 シラキュース・ユニバーシティ Optical storage media
JP2000233929A (en) * 1998-11-30 2000-08-29 High Frequency Heattreat Co Ltd Superfine particle powder of v(1-x)o2mx composition, its production and ir ray shielding material
JP2000277108A (en) * 1999-03-25 2000-10-06 Sanyo Electric Co Ltd Lithium secondary battery
JP2002522336A (en) * 1998-08-01 2002-07-23 ピルキントン パブリック リミテッド カンパニー Glass coating method
JP2002265236A (en) * 2001-03-05 2002-09-18 Sumitomo Metal Mining Co Ltd Producing method for fine particle for forming insolation shielding film and application liquid for forming insolation shielding film using the fine particle obtained by the producing method
JP2003121884A (en) * 2001-10-17 2003-04-23 Sumitomo Metal Mining Co Ltd Method for manufacturing tungsten oxide fine particle exhibiting elecrochromic characteristic, coating liquid containing the fine particle, and electrochromic element
WO2005037932A1 (en) * 2003-10-20 2005-04-28 Sumitomo Metal Mining Co., Ltd. Infrared shielding material microparticle dispersion, infrared shield, process for producing infrared shielding material microparticle, and infrared shielding material microparticle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2662986B2 (en) * 1988-06-24 1997-10-15 高周波熱錬株式会社 Method for producing ultrafine tungsten or tungsten oxide particles
JPH0337116A (en) * 1989-07-04 1991-02-18 Nippon Shokubai Kagaku Kogyo Co Ltd Production of inorganic oxide
JPH07175417A (en) * 1993-12-17 1995-07-14 Toyo Ink Mfg Co Ltd Electrochromic element material and electrochromic element using the same
JPH0912338A (en) * 1995-06-28 1997-01-14 Nissan Motor Co Ltd Heat-insulating glass
JP3415716B2 (en) * 1996-03-12 2003-06-09 株式会社資生堂 Ultraviolet ray shielding agent and skin external preparation having ultraviolet ray shielding effect

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11510635A (en) * 1995-06-07 1999-09-14 シラキュース・ユニバーシティ Optical storage media
JP2002522336A (en) * 1998-08-01 2002-07-23 ピルキントン パブリック リミテッド カンパニー Glass coating method
JP2000233929A (en) * 1998-11-30 2000-08-29 High Frequency Heattreat Co Ltd Superfine particle powder of v(1-x)o2mx composition, its production and ir ray shielding material
JP2000277108A (en) * 1999-03-25 2000-10-06 Sanyo Electric Co Ltd Lithium secondary battery
JP2002265236A (en) * 2001-03-05 2002-09-18 Sumitomo Metal Mining Co Ltd Producing method for fine particle for forming insolation shielding film and application liquid for forming insolation shielding film using the fine particle obtained by the producing method
JP2003121884A (en) * 2001-10-17 2003-04-23 Sumitomo Metal Mining Co Ltd Method for manufacturing tungsten oxide fine particle exhibiting elecrochromic characteristic, coating liquid containing the fine particle, and electrochromic element
WO2005037932A1 (en) * 2003-10-20 2005-04-28 Sumitomo Metal Mining Co., Ltd. Infrared shielding material microparticle dispersion, infrared shield, process for producing infrared shielding material microparticle, and infrared shielding material microparticle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170108104A (en) 2015-01-27 2017-09-26 스미토모 긴조쿠 고잔 가부시키가이샤 Dispersion of Near-Infrared Absorption Fine Particles and Method of Manufacturing the Same
KR20170108103A (en) 2015-01-27 2017-09-26 스미토모 긴조쿠 고잔 가부시키가이샤 Dispersion of Near-Infrared Absorption Fine Particles and Method of Manufacturing the Same
KR20170109005A (en) 2015-01-27 2017-09-27 스미토모 긴조쿠 고잔 가부시키가이샤 Dispersion of Near-Infrared Absorption Fine Particles and Method of Manufacturing the Same
US10308823B2 (en) 2015-01-27 2019-06-04 Sumitomo Metal Mining Co., Ltd. Near-infrared absorbing fine particle dispersion liquid and method for producing the same
US10370552B2 (en) 2015-01-27 2019-08-06 Sumitomo Metal Mining Co., Ltd. Near-infrared absorbing fine particle dispersion liquid and method for producing the same
US10442948B2 (en) 2015-01-27 2019-10-15 Sumitomo Metal Mining Co., Ltd. Near-infrared absorbing fine particle dispersion liquid and method for producing the same
WO2022209712A1 (en) 2021-03-31 2022-10-06 住友金属鉱山株式会社 Infrared absorbing particles, infrared-absorbing particle dispersion liquid, infrared-absorbing particle dispersion material, infrared-absorbing laminate transparent substrate, and infrared-absorbing transparent substrate

Also Published As

Publication number Publication date
JP2005187323A (en) 2005-07-14

Similar Documents

Publication Publication Date Title
JP4626284B2 (en) Method for producing tungsten oxide fine particles for forming solar shield, and tungsten oxide fine particles for forming solar shield
JP4096277B2 (en) Solar shading material, coating liquid for solar shading film, and solar shading film
KR102371492B1 (en) Near-infrared shielding material fine particles, method for preparing the same, and near-infrared shielding material fine particle dispersion
KR102371493B1 (en) Near-infrared shielding material particle dispersion, near-infrared shielding body and laminated structure for near-infrared shielding, and manufacturing method thereof
KR100701735B1 (en) Infrared shielding material microparticle dispersion, infrared shield, process for producing infrared shielding material microparticle, and infrared shielding material microparticle
JP5070796B2 (en) Solar radiation shielding film forming coating solution, solar radiation shielding film, and substrate having solar radiation shielding function
JP2005226008A (en) Dispersion for forming solar radiation-shielding body, and solar radiation-shielding body and method for producing the same
JP3262098B2 (en) Heat ray shielding material, heat ray shielding equipment using the same, coating liquid and heat ray shielding film
US20090216492A1 (en) Solar radiation shielding member and solar radiation shielding member forming fluid dispersion
JP3744188B2 (en) Heat ray shielding film forming coating solution and heat ray shielding film
JP4826126B2 (en) Solar radiation shielding film forming coating solution, solar radiation shielding film, and substrate having solar radiation shielding function
JP2008230954A (en) Manufacturing method for antimony-containing tin oxide fine particles for forming solar radiation shielding body, dispersion for forming solar radiation shielding body, solar radiation shielding body, and solar radiation shielding base material
JP2006010759A (en) Near-infrared shielding material fine particle dispersion, near-infrared shielding body, and method for adjusting color tone of visible light passing through the near-infrared shielding material
JP4182825B2 (en) Antimony tin oxide fine particles for sunscreen, dispersion for forming sunscreen using the same, sunscreen and transparent substrate for sunscreen
JP2006299086A (en) Particulate dispersion of ir-shielding material, ir-shielding product, method of manufacturing particulate of ir-shielding material and particulate of ir-shielding material
JP4120887B2 (en) In4Sn3O12 composite oxide fine particles for solar radiation shielding, method for producing the same, coating liquid for solar radiation shielding film formation, solar radiation shielding film, and solar radiation shielding substrate
JP3915880B2 (en) Method for producing fine particles for solar radiation shielding film formation
JP2006213576A (en) Boride microparticle for insolation shield, dispersion for forming insolation shield body using the boride microparticle and insolation shield body, and method of manufacturing boride microparticle for insolation shield and method of manufacturing dispersion for forming insolation shield body
JP4200424B2 (en) Manufacturing method of solar shading material, coating liquid for forming solar shading film, solar shading film, and transparent base material for solar shading
JP6413969B2 (en) Dispersion for forming solar shading body and solar shading body using the dispersion
JP2012082109A (en) Method for producing tungsten oxide fine particle for forming highly heat-resistant heat ray-shielding material, tungsten oxide fine particle for forming highly heat-resistant heat ray-shielding material and dispersion for forming highly heat-resistant heat ray-shielding material, and highly heat-resistant heat ray-shielding material
JP5999361B2 (en) Infrared shielding material, infrared shielding material fine particle dispersion, infrared shielding material fine particle dispersion, and infrared shielding material
JP2004284904A (en) Method of producing sunbeam shielding material, sunbeam shielding material, coating liquid for forming sunbeam shielding film, and sunbeam shielding film
JP2002138271A (en) Manufacturing method of fine particle for heat ray shielding and manufacturing method of coating liquid for forming heat ray shielding film using the fine particle manufactured by the former method
JP2004210570A (en) METHOD OF MANUFACTURING SOLAR INSOLATION SHADING In4Sn3O12 MULTIPLE OXIDE FINE PARTICLE AND SOLAR INSOLATION SHADING In4Sn3O12 MULTIPLE OXIDE FINE PARTICLE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4626284

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150