JP4200424B2 - Manufacturing method of solar shading material, coating liquid for forming solar shading film, solar shading film, and transparent base material for solar shading - Google Patents
Manufacturing method of solar shading material, coating liquid for forming solar shading film, solar shading film, and transparent base material for solar shading Download PDFInfo
- Publication number
- JP4200424B2 JP4200424B2 JP2002281216A JP2002281216A JP4200424B2 JP 4200424 B2 JP4200424 B2 JP 4200424B2 JP 2002281216 A JP2002281216 A JP 2002281216A JP 2002281216 A JP2002281216 A JP 2002281216A JP 4200424 B2 JP4200424 B2 JP 4200424B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- solar
- solar shading
- solar radiation
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Surface Treatment Of Glass (AREA)
- Paints Or Removers (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は車両、ビル、事務所、一般住宅などの窓、電話ボックス、ショーウィンドー、照明用ランプ、透明ケースなどに使用される日射遮蔽機能を有するガラス、プラスチックス、その他の日射遮蔽機能を必要とする透明基材に用いる日射遮蔽材料の製造方法およびこの材料を用いた日射遮蔽膜形成用塗布液並びに日射遮蔽膜に関する。
【0002】
【従来の技術】
従来、太陽光や電球などの外部光源から熱成分を除去・減少する方法として、ガラスなどの透明基 材の表面に、熱効果に大きく寄与する赤外線を反射する材料を含有する膜を形成して熱線反射透明基材とすることが行われていた。その材料にはFeOx、 CoOx、CrOx、TiOxなどの金属酸化物やAg、Au、Cu、Ni、Alなどの自由電子を多量にもつ金属材料が用いられてきた。
しかし、これらの材料では熱効果に大きく寄与する赤外線以外に、可視光も同時に反射もしくは吸収する性質があるため、熱線反射透明基材の可視光透過率が低下する問題があった。
【0003】
建材、乗り物、電話ボックスなどの窓材に用いられるガラスなどの透明基材は、可視光領域における高い透過率が必要とされることから、前記材料を利用する場合は膜厚を非常に薄くしなければならない。従って、前記材料を透明基材上に形成するときはスプレー焼付けやCVD法、あるいはスパッタ法や真空蒸着法などの物理成膜法を用いて10nmレベルの薄膜に成膜して用いられることが通常行われてきた。
【0004】
【特許文献1】
特開昭57−71822号公報
【特許文献2】
特開平3−263705号公報
【0005】
【本発明が解決しようとする課題】
しかし、これらの成膜方法はいずれも大がかりな装置や真空設備を必要とし、生産性や大面積化に問題があり、膜の製造コストが高いといった問題点がある。また、前記材料で日射遮蔽特性(波長域300〜2100nmの光を遮蔽する特性)を高くしようとすると、可視光領域の反射率も同時に高くなってしまう傾向があり、鏡のようなギラギラした外観を与えて美観を損ねてしまうという問題点もある。
【0006】
このような問題点を改善するためには、可視光透過率は高くて、赤外線領域の反射率が高いという、日射遮蔽機能を発揮する膜を透明基材上に形成する必要がある。この可視光透過率は高く、かつ日射遮蔽機能を持つ材料の一つとしてアンチモン錫酸化物(以下、ATOと略す)を用いることが考えられる。しかしながら従来のATOを、前記日射遮蔽機能を発揮する膜へ適用するには問題がある。この従来のATOの例として、特許文献1にはアルコール、塩酸水溶液、アセトンのうちの1種または2種以上の混合液に塩化錫と塩化アンチモンを溶解した溶液と、アルカリ水溶液とを熱水中に加えてpH8以上に調整しながら製造する方法が提案されている。また、特許文献2には塩化錫および塩化アンチモンの溶液とアルカリ水溶液とを並行添加して得た共沈物をアンモニウム塩の存在下で焼成する方法が提案されている。
【0007】
しかし、これらの方法で用いる塩化アンチモンは無水塩であるため、いずれの方法においても塩化錫との混合水溶液調製時点で水酸化アンチモンの沈殿が生成し、沈殿剤との反応時に均一な共沈物が得られず単なる水酸化物同士の混合物となる。また、これらいずれの方法もATOの導電性のみに着目しており、日射遮蔽機能についての記述は皆無である。特に、透明性を必要とする基材に熱線遮蔽材料を用いる場合にはある程度微細なATOが必要となるが、前記方法で製造したATOはこの要件を満たすことができず、これを用いた成膜では膜に曇りが発生し満足な透明性が得られない。この曇りはヘイズと呼ばれ、このヘイズの値は全透過率に対する拡散透過光の割合で定義される。このヘイズの値が高いと人間の目には曇って見えるという指標であり、透明性を要求される窓材などでは1%未満の低いへイズ値が望まれている。
【0008】
そこで本発明は上記従来技術の問題点を解消し80%以上の可視光透過率では、65%未満の低い日射透過率、さらに70%以上の可視光透過率では60%未満の低い日射透過率を有し、さらにヘイズ値が1%未満の日射遮蔽膜を実現できる日射遮蔽材料の製造方法と、この製造方法によって製造された日射遮蔽材料を含有し、簡便な塗布法で成膜できる日射遮蔽膜形成用塗布液および日射遮蔽膜並びに日射遮蔽用透明基材を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するために、本発明者らは錫化合物とアンチモン化合物とをアルカリで共沈させる条件と焼成条件を最適化について検討を重ね、日射遮蔽材料を製造した。そして当該日射遮蔽材料を日射遮蔽膜に適用すると、この日射遮蔽材料は可視光領域に透過率の極大をもつとともに可視光領域に近い近赤外域に強いプラズマ吸収を発現して、80%以上または70%以上の高い可視光透過率において、低い日射透過率と1%未満の低ヘイズ値という光学特性を有する日射遮蔽膜を得ることができ本発明を完成した。
【0010】
第1の発明は、50℃以下の錫化合物の溶液に、アンチモン化合物を溶解したアルコール溶液とアルカリ溶液とを並行滴下して、錫とアンチモンとを含む水酸化物を生成させ、前記水酸化物を焼成することを特徴とする日射遮蔽材料の製造方法である。
第1の発明によれば、透明基材上に成膜され可視光透過率70%以上としたときの波長域300〜2100nmの赤外光に対する日射透過率が高く、かつヘイズ値が低い日射遮蔽膜へ適用される日射遮蔽材料を製造することができる。
【0011】
第2の発明は、前記水酸化物を500℃以上1100℃未満の温度で焼成することを特徴とする第1の発明に記載した日射遮蔽材料の製造方法である。
第2の発明によれば、透明基材上に成膜され可視光透過率70%以上としたときの波長域300〜2100nmの赤外光に対する日射透過率が60%未満で、かつヘイズ値が1%未満である日射遮蔽膜へ適用される日射遮蔽材料を製造することができる。
【0012】
第3の発明は、アンチモン化合物を溶解したアルコール溶液とアルカリ溶液との並行滴下時間を、30分以内とすることを特徴とする第1または第2の発明に記載の日射遮蔽材料の製造方法である。
第3の発明によれば、第1または第2の発明に記載した日射遮蔽材料を短時間で高い生産性をもって製造することができる。
【0013】
第4の発明は、第1〜第3の発明のいずれかに記載の日射遮蔽材料を溶媒中に分散したことを特徴とする日射遮蔽膜形成用塗布液である。
この日射遮蔽膜成膜用塗布液を、適宜な方法で透明基材上に塗布することで、高い可視光透過率と、低い日射透過率を有しながら、ヘイズ値が低いという光学特性を有する膜を成膜することができる。
【0014】
第5の発明は、第4の発明に記載の日射遮蔽膜形成用塗布液であって、前記溶媒中に分散した日射遮蔽材料の分散粒径が120nm以下であることを特徴とする日射遮蔽膜形成用塗布液である。
この日射遮蔽膜成膜用塗布液を、適宜な方法で透明基材上に塗布することで、高い可視光透過率と、低い日射透過率を有しながら、ヘイズ値が低いという光学特性を有する膜を成膜することができる。
【0015】
第6の発明は、バインダーとして、無機バインダーおよび/または樹脂バインダーを含有することを特徴とする第4または第5の発明に記載の日射遮蔽膜形成用塗布液である。
日射遮蔽膜形成用塗布液への無機バインダーおよび/または樹脂バインダーの添加により、ATOの透明基材への密着性を向上させ、さらに成膜の硬度を向上させることができる。
【0016】
第7の発明は、第4〜第6の発明のいずれかに記載の日射遮蔽膜形成用塗布液を用いて形成されたことを特徴とする日射遮蔽膜である。
この日射遮蔽膜は、高い可視光透過率と、低い日射透過率を有しながら、ヘイズ値が低いという優れた光学特性を有する。
【0017】
第8の発明は、可視光透過率80%以上であって波長域300〜2100nmにおける日射透過率が65%未満で、かつヘイズ値が1%未満であることを特徴とする第7の発明に記載の日射遮蔽膜である。
この日射遮蔽膜は、高い可視光透過率と、低い日射透過率を有しながら、ヘイズ値が低いという優れた光学特性を有する。
【0018】
第9の発明は、可視光透過率70%以上のときの波長域300〜2100nmにおける日射透過率が60%未満で、かつヘイズ値が1%未満であることを特徴とする第7の発明に記載の日射遮蔽膜である。
この日射遮蔽膜は、高い可視光透過率と、低い日射透過率を有しながら、ヘイズ値が低いという優れた光学特性を有する。
【0019】
第10の発明は、第7〜第9の発明のいずれかに記載の日射遮蔽膜が形成されていることを特徴とする日射遮蔽用透明基材である。
この日射遮蔽用透明基材は、実用上十分な透明性と日射遮蔽効果とを発揮するので、車両、ビル、事務所、一般住宅などの窓等へ好個に適用することができる。
【0020】
【発明の実施の形態】
以下、本発明の実施の形態について、図1を参照しながら具体的に説明する。
図1は、本発明に係るATOの製造フローを示した図である。
まず、錫化合物の溶液1と、アンチモン化合物のアルコール溶液2と、アルカリ水溶液3とを準備する。
このとき、錫化合物溶液1の液温を50℃以下に設定しておく。溶液の温度が50℃以下であると、好ましい光学特性を有するATOを得ることができる。また、温度下限は特に限定されないが、生産性の観点から冷却装置などを必要としない温度とするのが好ましい。
【0021】
アンチモン化合物のアルコール溶液2中のアンチモン含有量は、酸化錫に対する元素換算で1〜20重量%とするのが好ましく、さらに好ましくは3〜15重量%である。酸化錫に対するアンチモン含有量が、この重量%範囲内であると好ましい光学特性を有するATOを得ることができ、これを原料として形成されるATO膜は所望の光学的特性を発揮する。
用いる錫化合物やアンチモン化合物は特に限定されるものではなく、例えば塩化錫、硝酸錫、硫化錫、塩化アンチモン、臭化アンチモンなどが挙げられる。
【0022】
沈殿剤として用いるアルカリ溶液3は、炭酸水素アンモニウム、アンモニア水、水酸化ナトリウム、水酸化カリウム、等の各水溶液が挙げられるが、特に炭酸水素アンモニウムやアンモニア水が好ましい。
そしてこのアルカリ溶液3のアルカリ濃度は、錫化合物とアンチモン化合物が水酸化物となるのに必要な化学当量以上あればよいが、より好ましくは当量×1〜1.5倍とする。
【0023】
次に、50℃以下に設定された錫化合物の溶液中へ、アンチモン化合物を溶解したアルコール溶液とアルカリ溶液とを並行滴下4する。このときの滴下時間は、沈殿する水酸化物の粒子径と生産性との観点から、30分以内とすることが好ましい。この添加方法をとることで、好ましい光学特性を有するATOの調製に必要とされる均一な錫とアンチモンとの水酸化物を得ることができる。
【0024】
この並行滴下中にも、上述の理由により水溶液の温度が50℃を超えないよう、水溶液温度の調節を行う。滴下終了後も系内の均一化を図るために、水溶液の攪拌を継続して行うが、そのときの水溶液の温度は、共沈の際の温度と同温の50℃以下とすることが好ましい。攪拌の継続時間は特に限定されないが、生産性の観点から30分間以下、好ましくは15分間以下である。これにより、アンチモン錫の共沈物5が沈殿する。
【0025】
得られた共沈物5はデカンテーション6を繰り返し行うことによって十分洗浄する。この洗浄において、例えば、共沈物5中の不純物としての塩素イオンの残留が0.15重量%以下となれば、後述する焼成工程においてアンチモンと錫との固溶を阻害することがなくなり、高いヘイズ値をもたらす要因を削除できるので好ましい。
デカンテーション6後に共沈物5の乾燥7を行うが、このときの温度や時間は、特に限定されるものでない。
乾燥後の共沈物5を、大気雰囲気下にて500℃以上、30分〜5時間焼成8することでATO9を調製する。この焼成8の際、500℃以上に加熱することで十分にアンチモンと錫とを固溶させることができ好ましい。さらに、焼成を1100℃を超えずに行うとATOの粒径の粗大化を回避でき、粗大化を回避することで後述するように、可視光に対して透明性の高い日射遮蔽膜を成膜することができ好ましい。この観点から、焼成温度の範囲を500℃以上1100℃未満とすることが好ましい。
【0026】
次に、得られたATO9を溶媒中に分散すると、日射遮蔽膜形成用塗布液(以下、塗布液と記載する。)を得ることができる。このとき、上述した粗大化を回避したATOを用いることで塗布液の溶媒中に分散したATOの分散粒径を120nm以下とすると、この塗布液を用いて成膜した日射遮蔽膜の可視光に対する透明性が高くなり好ましい。これは、一般に、当該粒子の粒径が当該光の波長の1/2のとき当該光を最も散乱するが、粒径がそれより小さくなると粒径の6乗に比例して急激に小さくなるという現象がある。従って、日射遮蔽膜中のATOの粒径が可視光の波長の1/4以下であれば、光の散乱の程度が急激に小さくなるためであると考えられる。
【0027】
溶媒は特に限定されるものではなく、塗布条件、塗布環境に合わせて適宜選択すれば良い。さらに塗布液へ、後述する無機バインダーや樹脂バインダーを含有させるときは、バインダーに合わせて適宜選択する。例えば、水やエタノール、プロパノール、ブタノール、イソプロピルアルコール、イソブチルアルコール、ジアセトンアルコールなどのアルコール類、メチルエーテル,エチルエーテル,プロピルエーテルなどのエーテル類、エステル類、アセトン、メチルエチルケトン、ジエチルケトン、シクロヘキサノン、イソブチルケトンなどのケトン類といった各種の溶媒が使用可能であり、また必要に応じて酸やアルカリを添加してpH調整してもよい。さらに、塗布液中の粒子の分散安定性を一層向上させるためには、各種の界面活性剤、カップリング剤などの添加も勿論可能である。
【0028】
ATOやバインダーの分散方法は、これらを塗布液中に均一に分散できる方法であれば特に限定されない。例えばビーズミル、ボールミル、サンドミル、ペイントシェーカー、超音波ホモジナイザーなどを用いることができる。そして調製された塗布液を用いて日射遮蔽膜を形成したとき、膜の導電性は、ATO粒子の接触個所を経由した導電パスに沿って確保されるため、例えば、添加する前記界面活性剤やカップリング剤の量を加減することで、導電パスを部分的に切断することができ、膜の表面抵抗値を106Ω/□以上とすることができる。膜の表面抵抗値が概ね106Ω/□以上に制御することにより、日射遮蔽膜の電波に対する反射性を低減し、例えば携帯電話やTV、ラジオなどの電波を反射して受信不能にさせたり、周辺地域に電波障害を引き起こすなどの問題を回避することができる。
【0029】
上述した塗布液を、透明基材上に形成した形成した日射遮蔽膜は、基材上にATO粒子のみが堆積した膜の構造になる。この膜はこのままでも日射遮蔽効果を示すが、上述した粒子の分散時に無機バインダーおよび/または樹脂バインダーを添加するのも好ましい構成である。
塗布液へバインダーを添加することで、形成される日射遮蔽膜において、バインダーの添加量の加減による導電性の制御、基材上へ塗布された膜の硬化後にATO粒子の基材への密着性を向上を実現し、さらに膜の硬度の向上を図る等の効果を与えることができるからである。
【0030】
上記無機バインダーや樹脂バインダーの種類は特に限定されるものではないが、無機バインダーとしては、珪素、ジルコニウム、チタン、もしくはアルミニウムの金属アルコキシドやこれらの部分加水分解縮重合物あるいはオルガノシラザンが、樹脂バインダーとしてはアクリル樹脂などの熱可塑性樹脂、エポキシ樹脂などの熱硬化性樹脂などが適用できる。
【0031】
さらに、このようにして得られた膜上に、珪素、ジルコニウム、チタン、もしくはアルミニウムの金属アルコキシドや、これらの部分加水分解縮重合物を有するコーティング液を塗布した後、加熱して、珪素、ジルコニウム、チタン、もしくはアルミニウムの酸化物を有するコーティング膜を形成して多層膜としてもよい。この構成を採ることにより、コーティング成分が第1層のATO粒子の堆積した間隙を埋めて成膜されるため、膜のヘイズがより低減して可視光透過率が向上し、また粒子の基材への結着性が向上する。
【0032】
ここで、アンチモン錫酸化物粒子単体あるいはアンチモン錫酸化物粒子を主成分とする膜上に、珪素、ジルコニウム、チタン、もしくはアルミニウムの金属アルコキシドやこれらの部分加水分解縮重合物からなるコーティング膜を形成する方法としては、成膜操作の容易さやコストの観点から塗布法が有効である。
コーティング液は、水やアルコール等の溶媒中に、珪素、ジルコニウム、チタン、アルミニウムの金属アルコキシドやこれらの部分加水分解縮重合物を1種もしくは2種以上含むものであり、その含有量は加熱後に得られる酸化物換算で全コーティング液中の40重量%以下が好ましい。また、必要に応じて酸やアルカリを添加してpH調整することも好ましい。このようなコーティング液を、アンチモン錫酸化物粒子を主成分とする膜上へ、第2層として塗布し加熱することで、珪素、ジルコニウム、チタン、アルミニウムなどの酸化物被膜を有するコーティング膜を、容易に形成することが可能である。
さらに加えて、本発明に係る塗布液に使用するバインダー成分またはコーティング液の成分として、オルガノシラザン溶液を用いるのも好ましい。
【0033】
本発明に係る塗布液、および前記コーティング液の塗布方法は特に限定されない。例えば、スピンコート法、バーコート法、スプレーコート法、ディップコート法、スクリーン印刷法、ロールコート法、流し塗りなど、処理液を平坦かつ均一に塗布する方法が好ましく適用できる。
【0034】
本発明に係る、無機バインダーやコーティング膜として、珪素、ジルコニウム、チタン、もしくはアルミニウムの金属アルコキシドおよびその加水分解重合物を含む塗布液の塗布後の基材加熱温度は、100℃以上が好ましく、さらに好ましくは塗布液中の溶媒の沸点以上で基板加熱を行う。この温度で基板加熱をおこなうことにより、塗膜中に含まれるアルコキシドまたはその加水分解重合物の重合反応が未完結で残る場合を減らし、また水や有機溶媒が膜中に残留して加熱後の膜において可視光透過率の低減の原因となることを回避することができる。
【0035】
本発明に係る塗布液へ樹脂バインダーを添加した場合は、それぞれの樹脂の硬化方法に従って硬化させればよい。例えば、紫外線硬化樹脂であれば紫外線を適宜照射すればよく、また常温硬化樹脂であれば塗布後そのまま放置しておけばよい。この構成を採ると、既存の窓ガラス等への現場での塗布が可能である。
【0036】
本発明に係る日射遮蔽膜では、膜中にATO粒子が分散しているため、物理的成膜法により成膜された酸化物薄膜のように結晶が緻密に膜内を埋めた鏡面状表面をもつ膜に比べると、可視光領域での反射が少なくギラギラした外観を呈することが回避できる。それに加えて本発明に係る日射遮蔽膜は、上述したように可視から近赤外域にプラズマ周波数を持つため、これに伴うプラズマ反射が近赤外域で大きくなる。ここで本発明に係る日射遮蔽膜の可視光領域の反射をさらに抑制したい場合には、本発明のATO粒子分散膜の上に、SiO2やMgF2のような低屈折率の膜を成膜することにより、容易に視感反射率1%以下の多層膜を得ることができる。
【0037】
本発明に係るATOを含有する日射遮蔽材料、塗布液、日射遮蔽膜、日射遮蔽用透明基材に、さらなる紫外線遮蔽機能を付与させるため、無機系の酸化チタンや酸化亜鉛、酸化セリウムなどの微粒子、有機系のベンゾフェノンやベンゾトリアゾールなどの1種もしくは2種以上を添加してもよい。
【0038】
また、本発明に係るATOを含有する日射遮蔽材料、塗布液、日射遮蔽膜、日射遮蔽用透明基材に、さらなる熱線遮蔽機能を付与させるため、他の熱線遮蔽性物質と組み合わせて使用してもよい。例えば、赤外領域においてATO単独では比較的遮蔽力の弱いところ、即ち、780〜1200nmの波長付近を遮蔽する六ホウ化物粒子やインジウム錫酸化物粒子などの物質と組み合わせることによってさらに熱線遮蔽性の高い透明体とすることもできる。
【0039】
本発明に係る日射遮蔽膜は、焼成時の熱による塗布成分の分解あるいは化学反応を利用して目的の日射遮蔽膜を形成するものではないため、特性の安定した均一な膜厚の透過膜を形成することができる。
このように本発明によれば、可視光透過率80%としたとき、波長域300〜2100nmの赤外光に対する日射透過率が65%未満で、かつヘイズ値が1%未満であり、可視光透過率70%以上としたときの波長域300〜2100nmの赤外光に対する日射透過率が60%未満で、かつヘイズ値が1%未満である日射遮蔽膜の製造が可能である。
【0040】
また、日射遮蔽膜中に含有されるATO粒子は無機材料であるので有機材料と比べて耐候性は非常に高く、例えば太陽光線(紫外線)の当たる部位に使用しても色や諸機能の劣化はほとんど生じず好ましい。
【0041】
以下の実施例により本発明をさらに詳細に説明する。ただし、本発明は下記実施例に限定されるものでない。
なお、得られた日射遮蔽膜試料の可視光透過率や日射透過率は、日立製作所(株)製の分光光度計U−4000を用いて測定した。ヘイズ値は、村上色彩技術研究所(株)製HR−200を用いて測定した。膜の光学特性評価においては、線径の異なる3種のバーコーターで成膜し、可視光透過率80%、および75%のときの日射透過率およびヘイズ値を前記膜の3点プロットから求めた。
【0042】
(実施例1)
水1485.1mlにSnCl4・5H2O58.1gを溶解した25℃の水溶液へ、メタノール150mlにSbCl35.2gを溶解した溶液と、5NのNH4OH水溶液150mlとを、常温で26分間をかけて並行滴下し、滴下終了後さらに10分間、水溶液を攪拌し、錫とアンチモンの水酸化物を生成させた。
次にこの沈殿物を、デカンテーションにより、1回に付き1000mlのイオン交換水による洗浄を繰り返し行った後、一晩乾燥させた。
得られた乾燥物を乳鉢で粉砕し、これを700℃で1時間焼成することによってATO粉末を得た。
【0043】
得られたATO粉末20重量%、トルエン70重量%、分散剤10重量%、さらに充填率63%相当の0.3mmジルコニアビーズを入れた容器をペイントシェイカーにて12時間の分散処理を行ってATO分散液を得た。このときのATO分散粒径は75.9nmであった。
次に、このATO分散液にバインダーとしてアクリル系UV硬化樹脂(固形分70%)を加えて攪拌し、アンチモン錫酸化物の分散液77.7重量%、バインダー22.3重量%からなる塗布液を調製し、番手60、24、6のバーを用いて、それぞれ50μm厚のPETフィルムに塗布した後、80℃で30秒乾燥し、さらに紫外線を照射して膜Aを得た。
図2に示すように、膜Aの可視光透過率を80%に規格化したときの日射透過率は64.5%、ヘイズ値は0.70%であり、可視光透過率を75%に規格化したときの日射透過率は55.0%、ヘイズ値は0.70%であった。
【0044】
(実施例2)
前記得られた乾燥物の焼成を、600℃で行った以外は実施例1と同様にして膜Bを得た。
このときのATO分散粒径は56.1nmであった。
図2に示すように、膜Bの可視光透過率を75%に規格化したときの日射透過率は56.0%、ヘイズ値は0.79%であった。
【0045】
(実施例3)
前記得られた乾燥物の焼成を、800℃で行った以外は実施例1と同様にして膜Cを得た。
このときのATO分散粒径は64.1nmであった。
図2に示すように、膜Cの可視光透過率を80%に規格化したときの日射透過率は64.8%、ヘイズ値は0.80%であり、可視光透過率を75%に規格化したときの日射透過率は56.4%、ヘイズ値は0.80%であった。
【0046】
(実施例4)
前記得られた乾燥物の焼成を、900℃で行った以外は実施例1と同様にして膜Dを得た。
このときのATO分散粒径は59.7nmであった。
図2に示すように、膜Dの可視光透過率を75%に規格化したときの日射透過率は56.5%、ヘイズ値は0.82%であった。
【0047】
(参考例1)
前記得られた乾燥物の焼成を、400℃で行った以外は実施例1と同様にして膜Eを得た。
このときのATO分散粒径は131.4nmであった。
図2に示すように、膜Eの可視光透過率を80%に規格化したときの日射透過率は67%を超える72.0%、ヘイズ値は0.70%であり、可視光透過率を75%に規格化したときの日射透過率は62.5%、ヘイズ値は0.75%であった。
【0048】
(参考例2)
前記得られた乾燥物の焼成を、480℃で行った以外は実施例1と同様にして膜Fを得た。
図2に示すように、膜Fの可視光透過率を80%に規格化したときの日射透過率は67%を超える70.0%、ヘイズ値は0.77%であった。
【0049】
(参考例3)
前記得られた乾燥物の焼成を、1150℃で行った以外は実施例1と同様にして膜Gを得た。
このときのATO分散粒径は123.6nmであった。
図2に示すように、膜Gの可視光透過率を75%に規格化したときの日射透過率は66.4%、ヘイズ値は2.50%であった。
【0050】
(実施例5)
前記得られた乾燥物の焼成を、500℃で2時間行った以外は実施例1と同様にして膜Hを得た。
このときのATO分散粒径は72.6nmであった。
図2に示すように、膜Hの可視光透過率を80%に規格化したときの日射透過率は64.5%、ヘイズ値は0.74%であり、可視光透過率を75%に規格化したときの日射透過率は57.5%、ヘイズ値は0.78%であった。
【0051】
(実施例6)
前記共沈物を生成させる際の水溶液の温度を43℃とし、得られた乾燥物の焼成を、800℃で行った以外は実施例1と同様にして膜Iを得た。
このときのATO分散粒径は56.1nmであった。
図2に示すように、膜Iの可視光透過率を80%に規格化したときの日射透過率は64.0%、ヘイズ値は0.80%であり、可視光透過率を75%に規格化したときの日射透過率は55.6%、ヘイズ値は0.80%であった。
【0052】
(比較例1)
前記共沈物を生成させる際の水溶液の温度を60℃とした以外は実施例1と同様にして膜Jを得た。
このときのATO分散粒径は70.6nmであった。
図2に示すように、膜Jの可視光透過率を80%に規格化したときの日射透過率は65%未満の64.8%であったが、ヘイズ値は1%を超える1.20%であり、可視光透過率を75%に規格化したときの日射透過率は57.0%、ヘイズ値は1.20%であった。
【0053】
(実施例7)
錫とアンチモンの水酸化物を生成させる際、メタノール150mlにSbCl32.98gを溶解させる以外は実施例1と同様にして膜Kを得た。
このときのATO分散粒径は52.4nmであった。
図2に示すように、膜Kの可視光透過率を75%に規格化したときの日射透過率は55.5%、ヘイズ値は0.80%であった。
【0054】
(実施例8)
錫とアンチモンの水酸化物を生成させる際、メタノール150mlにSbCl34.07gを溶解させる以外は実施例1と同様にして膜Lを得た。
このときのATO分散粒径は57.0nmであった。
図2に示すように、膜Lの可視光透過率を75%に規格化したときの日射透過率は58.0%、ヘイズ値は0.70%であった。
【0055】
(実施例9)
前記得られた乾燥物の焼成時間を、2時間とした以外は実施例1と同様にして膜Mを得た。
図2に示すように、膜Mの可視光透過率を80%に規格化したときの日射透過率は63.1%、ヘイズ値は0.67%であった。
【0056】
(実施例10)
錫化合物の原料をSn(SO4)2.2H2O57.5gとし、それ以外の条件は実施例1と同様にして膜Nを得た。
図2に示すように、膜Nの可視光透過率を80%に規格化したときの日射透過率は64.8%、ヘイズ値は0.92%であった。
【0057】
(実施例11)
アンチモン化合物の原料をSbBr38.2gとし、それ以外の条件は実施例1と同様にして膜Oを得た。
図2に示すように、膜Oの可視光透過率を80%に規格化したときの日射透過率は64.7%、ヘイズ値は0.96%であった。
【0058】
【発明の効果】
以上、詳述したように本発明は、50℃以下の錫化合物の溶液に、アンチモン化合物を溶解したアルコール溶液とアルカリ溶液とを並行滴下して共沈物を生成させ、得られた共沈物を焼成することにより、高い可視光透過率と低い日射透過率と低いヘイズ値とを有する日射遮蔽膜へ適用される日射遮蔽材料を製造した。
【図面の簡単な説明】
【図1】本発明に係るアンチモン錫酸化物の製造フロー図である。
【図2】本発明に係るアンチモン錫酸化物を用いて成膜した日射遮蔽膜試料の光学特性測定結果の一覧表である。[0001]
BACKGROUND OF THE INVENTION
The present invention provides glass, plastics, and other solar shading functions for use in windows, telephone boxes, show windows, lighting lamps, transparent cases, etc. for vehicles, buildings, offices, ordinary houses, etc. The present invention relates to a method for producing a solar shading material used for a required transparent substrate, a coating solution for forming a solar shading film using this material, and a solar shading film.
[0002]
[Prior art]
Conventionally, as a method of removing or reducing thermal components from external light sources such as sunlight and light bulbs, a film containing a material that reflects infrared rays that greatly contributes to the thermal effect is formed on the surface of a transparent substrate such as glass. It has been performed to make a heat ray reflective transparent substrate. The materials include metal oxides such as FeOx, CoOx, CrOx, and TiOx, and metal materials having a large amount of free electrons such as Ag, Au, Cu, Ni, and Al.Has been used.
HoweverThese materials have the property of simultaneously reflecting or absorbing visible light in addition to infrared rays that greatly contribute to the thermal effect, so that the visible light transmittance of the heat ray reflective transparent substrate is lowered.
[0003]
Transparent substrates such as glass used for building materials, vehicles, telephone boxes, and other window materials require high transmittance in the visible light region. Therefore, when using these materials, the film thickness must be very thin. There must be. Therefore, when the material is formed on a transparent substrate, it is usually used by forming a thin film of 10 nm level by spray baking, CVD method, or physical film forming method such as sputtering method or vacuum deposition method. Has been done.
[0004]
[Patent Document 1]
JP-A-57-71822
[Patent Document 2]
JP-A-3-263705
[0005]
[Problems to be solved by the present invention]
However, each of these film forming methods requires a large-scale apparatus and vacuum equipment, has a problem in productivity and an increase in area, and has a problem in that a film manufacturing cost is high. In addition, if it is attempted to increase the solar shading characteristics (characteristics for shielding light in the wavelength range of 300 to 2100 nm) with the material, the reflectance in the visible light range tends to increase at the same time, and the glare appearance like a mirror There is also a problem that the beauty is lost.
[0006]
In order to improve such a problem, it is necessary to form on the transparent substrate a film that exhibits a solar radiation shielding function that has a high visible light transmittance and a high reflectance in the infrared region. It is conceivable to use antimony tin oxide (hereinafter abbreviated as ATO) as one of materials having a high visible light transmittance and a solar radiation shielding function. However, there is a problem in applying the conventional ATO to the film exhibiting the solar radiation shielding function. As an example of this conventional ATO,
[0007]
However, since antimony chloride used in these methods is an anhydrous salt, precipitation of antimony hydroxide is generated at the time of preparation of the mixed aqueous solution with tin chloride in any of the methods, and a uniform coprecipitate is formed during the reaction with the precipitant. Is not obtained and becomes a mixture of mere hydroxides. In addition, any of these methods focuses only on the conductivity of ATO, and there is no description about the solar radiation shielding function. In particular, when a heat ray shielding material is used for a substrate that requires transparency, an ATO that is fine to some extent is required, but the ATO produced by the above method cannot satisfy this requirement. In the film, fogging occurs in the film, and satisfactory transparency cannot be obtained. This haze is called haze, and the haze value is defined by the ratio of diffusely transmitted light to the total transmittance. When this haze value is high, it is an indicator that it appears cloudy to the human eye. For window materials that require transparency, a low haze value of less than 1% is desired.
[0008]
Accordingly, the present invention solves the above-mentioned problems of the prior art and has a low solar transmittance of less than 65% when the visible light transmittance is 80% or higher, and a low solar transmittance of less than 60% when the visible light transmittance is 70% or higher. And a solar shading material capable of realizing a solar shading film having a haze value of less than 1%, and a solar shading material containing the solar shading material produced by this production method and capable of forming a film by a simple coating method An object of the present invention is to provide a coating liquid for film formation, a solar radiation shielding film, and a transparent substrate for solar radiation shielding.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present inventors have repeatedly studied on optimizing the conditions for coprecipitation of tin compounds and antimony compounds with alkali and the firing conditions, and manufactured solar radiation shielding materials. When the solar shading material is applied to the solar shading film, the solar shading material has a maximum transmittance in the visible light region and exhibits strong plasma absorption in the near-infrared region close to the visible light region. A solar radiation shielding film having optical properties of a low solar radiation transmittance and a low haze value of less than 1% at a high visible light transmittance of 70% or more can be obtained, thereby completing the present invention.
[0010]
According to a first aspect of the present invention, an alcohol solution in which an antimony compound is dissolved and an alkali solution are dropped in parallel into a solution of a tin compound at 50 ° C. or lower to produce a hydroxide containing tin and antimony, and the hydroxide Is a method for producing a solar shading material, characterized by firing.
According to the first aspect of the present invention, the solar radiation shielding has a high solar transmittance for infrared light in the wavelength range of 300 to 2100 nm when formed on a transparent substrate and has a visible light transmittance of 70% or more, and has a low haze value. A solar shading material applied to the membrane can be produced.
[0011]
2nd invention is a manufacturing method of the solar shading material described in 1st invention characterized by baking the said hydroxide at the temperature of 500 degreeC or more and less than 1100 degreeC.
According to the second invention, the solar radiation transmittance for infrared light in the wavelength region of 300 to 2100 nm when the film is formed on the transparent substrate and the visible light transmittance is 70% or more is less than 60%, and the haze value is A solar shading material applied to a solar shading film that is less than 1% can be produced.
[0012]
3rd invention is the manufacturing method of the solar radiation shielding material as described in 1st or 2nd invention characterized by the parallel dripping time of the alcohol solution which dissolved the antimony compound, and the alkaline solution being less than 30 minutes. is there.
According to the third invention, the solar radiation shielding material described in the first or second invention can be produced with high productivity in a short time.
[0013]
A fourth invention is a coating solution for forming a solar shading film, characterized in that the solar shading material according to any one of the first to third inventions is dispersed in a solvent.
By applying this solar shading film-forming coating solution on a transparent substrate by an appropriate method, it has an optical characteristic that the haze value is low while having high visible light transmittance and low solar transmittance. A film can be formed.
[0014]
A fifth invention is the solar shading film-forming coating solution according to the fourth invention, wherein the solar shading material dispersed in the solvent has a dispersed particle size of 120 nm or less. This is a forming coating solution.
By applying this solar shading film-forming coating solution on a transparent substrate by an appropriate method, it has an optical characteristic that the haze value is low while having high visible light transmittance and low solar transmittance. A film can be formed.
[0015]
A sixth invention is the coating solution for forming a solar shading film according to the fourth or fifth invention, wherein the binder contains an inorganic binder and / or a resin binder.
By adding an inorganic binder and / or a resin binder to the coating solution for forming a solar radiation shielding film, the adhesion of ATO to a transparent substrate can be improved, and the hardness of the film can be further improved.
[0016]
A seventh invention is a solar shading film formed using the solar shading film forming coating solution according to any one of the fourth to sixth inventions.
This solar shading film has excellent optical properties such as a low haze value while having a high visible light transmittance and a low solar transmittance.
[0017]
The eighth invention is characterized in that the visible light transmittance is 80% or more, the solar radiation transmittance in the wavelength region of 300 to 2100 nm is less than 65%, and the haze value is less than 1%. It is the solar radiation shielding film described.
This solar shading film has excellent optical properties such as a low haze value while having a high visible light transmittance and a low solar transmittance.
[0018]
According to a ninth aspect of the invention, the solar radiation transmittance in the wavelength region of 300 to 2100 nm when the visible light transmittance is 70% or more is less than 60%, and the haze value is less than 1%. It is the solar radiation shielding film described.
This solar shading film has excellent optical properties such as a low haze value while having a high visible light transmittance and a low solar transmittance.
[0019]
A tenth aspect of the present invention is a solar radiation shielding transparent substrate in which the solar radiation shielding film according to any one of the seventh to ninth aspects is formed.
Since the solar shading transparent base material exhibits practically sufficient transparency and solar shading shielding effect, it can be suitably applied to windows and the like of vehicles, buildings, offices, ordinary houses and the like.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to FIG.
FIG. 1 is a view showing a manufacturing flow of ATO according to the present invention.
First, a
At this time, the liquid temperature of the
[0021]
The antimony content of the antimony compound in the
The tin compound and antimony compound to be used are not particularly limited, and examples thereof include tin chloride, tin nitrate, tin sulfide, antimony chloride, and antimony bromide.
[0022]
Examples of the
And the alkali concentration of this
[0023]
Next, an alcohol solution and an alkaline solution in which the antimony compound is dissolved are dropped in parallel 4 into a tin compound solution set at 50 ° C. or lower. The dropping time at this time is preferably within 30 minutes from the viewpoint of the particle size and productivity of the precipitated hydroxide. By adopting this addition method, a uniform hydroxide of tin and antimony required for preparation of ATO having preferable optical properties can be obtained.
[0024]
During the parallel dropping, the temperature of the aqueous solution is adjusted so that the temperature of the aqueous solution does not exceed 50 ° C. for the reason described above. In order to homogenize the system even after completion of the dropping, the aqueous solution is continuously stirred, and the temperature of the aqueous solution at that time is preferably 50 ° C. or less, which is the same temperature as the coprecipitation. . The duration of stirring is not particularly limited, but is 30 minutes or less, preferably 15 minutes or less from the viewpoint of productivity. Thereby, the
[0025]
The
Although the
The ATO 9 is prepared by baking 8 the
[0026]
Next, when the obtained ATO 9 is dispersed in a solvent, a coating solution for forming a solar radiation shielding film (hereinafter referred to as a coating solution) can be obtained. At this time, if the dispersion particle diameter of ATO dispersed in the solvent of the coating solution is 120 nm or less by using ATO that avoids the above-mentioned coarsening, the solar radiation shielding film formed using this coating solution with respect to visible light It is preferable because of high transparency. Generally, the light is most scattered when the particle diameter is ½ of the wavelength of the light. However, when the particle diameter is smaller than that, the particle diameter decreases rapidly in proportion to the sixth power of the particle diameter. There is a phenomenon. Therefore, if the particle size of ATO in the solar radiation shielding film is ¼ or less of the wavelength of visible light, it is considered that the degree of light scattering decreases rapidly.
[0027]
The solvent is not particularly limited and may be appropriately selected according to the application conditions and the application environment. Furthermore, when the coating liquid contains an inorganic binder or a resin binder described later, it is appropriately selected according to the binder. For example, water, ethanol, propanol, butanol, isopropyl alcohol, isobutyl alcohol, diacetone alcohol and other alcohols, ethers such as methyl ether, ethyl ether, propyl ether, esters, acetone, methyl ethyl ketone, diethyl ketone, cyclohexanone, isobutyl Various solvents such as ketones such as ketones can be used, and if necessary, pH may be adjusted by adding acid or alkali. Furthermore, in order to further improve the dispersion stability of the particles in the coating solution, it is of course possible to add various surfactants and coupling agents.
[0028]
The method for dispersing ATO and the binder is not particularly limited as long as they can be uniformly dispersed in the coating solution. For example, a bead mill, ball mill, sand mill, paint shaker, ultrasonic homogenizer, or the like can be used. And when the solar radiation shielding film is formed using the prepared coating liquid, the conductivity of the film is ensured along the conductive path through the contact point of the ATO particles. By adjusting the amount of the coupling agent, the conductive path can be partially cut, and the surface resistance value of the film can be reduced to 106Ω / □ or more. The surface resistance of the film is approximately 106By controlling to Ω / □ or higher, the solar radiation shielding film's reflectivity to radio waves is reduced, for example, radio waves from mobile phones, TVs, radios, etc. are reflected and cannot be received, or radio interference is caused in the surrounding area. The problem can be avoided.
[0029]
The solar radiation shielding film formed by forming the above-described coating solution on a transparent substrate has a film structure in which only ATO particles are deposited on the substrate. Although this film shows a solar radiation shielding effect as it is, it is also preferable to add an inorganic binder and / or a resin binder at the time of dispersing the above-mentioned particles.
In the solar shading film formed by adding a binder to the coating solution, the conductivity is controlled by adjusting the amount of the binder added, and the adhesion of the ATO particles to the substrate after the coating applied on the substrate is cured. This is because it is possible to achieve an effect of improving the hardness and further improving the hardness of the film.
[0030]
The kind of the inorganic binder or the resin binder is not particularly limited. Examples of the inorganic binder include silicon, zirconium, titanium, or aluminum metal alkoxides, partially hydrolyzed polycondensates thereof, or organosilazanes. For example, a thermoplastic resin such as an acrylic resin or a thermosetting resin such as an epoxy resin can be used.
[0031]
Further, a coating liquid containing a metal alkoxide of silicon, zirconium, titanium, or aluminum or a partially hydrolyzed polycondensation product thereof is applied on the film thus obtained, and then heated to form silicon, zirconium Alternatively, a coating film having an oxide of titanium or aluminum may be formed to form a multilayer film. By adopting this configuration, the coating component is formed by filling the gap where the first layer of ATO particles is deposited, so that the haze of the film is further reduced and the visible light transmittance is improved. Improves the binding property.
[0032]
Here, a coating film made of a metal alkoxide of silicon, zirconium, titanium, or aluminum or a partially hydrolyzed polycondensation product thereof is formed on a film containing antimony tin oxide particles alone or antimony tin oxide particles as a main component. As a method for this, a coating method is effective from the viewpoint of ease of film forming operation and cost.
The coating liquid contains one or more kinds of metal alkoxides of silicon, zirconium, titanium, and aluminum and partial hydrolysis-condensation polymers thereof in a solvent such as water or alcohol, and the content thereof is after heating. It is preferably 40% by weight or less in the total coating liquid in terms of oxide obtained. Moreover, it is also preferable to adjust pH by adding an acid and an alkali as needed. A coating film having an oxide film such as silicon, zirconium, titanium, or aluminum is obtained by applying and heating such a coating liquid as a second layer on a film containing antimony tin oxide particles as a main component. It can be easily formed.
In addition, it is also preferable to use an organosilazane solution as a binder component or a coating liquid component used in the coating liquid according to the present invention.
[0033]
The coating liquid which concerns on this invention, and the coating method of the said coating liquid are not specifically limited. For example, a method of applying the processing liquid flatly and uniformly, such as spin coating, bar coating, spray coating, dip coating, screen printing, roll coating, and flow coating, can be preferably applied.
[0034]
As the inorganic binder or coating film according to the present invention, the substrate heating temperature after application of the coating solution containing a metal alkoxide of silicon, zirconium, titanium, or aluminum and a hydrolysis polymer thereof is preferably 100 ° C. or higher. Preferably, the substrate is heated above the boiling point of the solvent in the coating solution. By heating the substrate at this temperature, the number of cases in which the polymerization reaction of the alkoxide contained in the coating film or its hydrolysis polymer remains incomplete is reduced, and water or an organic solvent remains in the film. It can be avoided that the visible light transmittance is reduced in the film.
[0035]
When a resin binder is added to the coating solution according to the present invention, it may be cured according to the curing method of each resin. For example, if it is an ultraviolet curable resin, it may be irradiated with ultraviolet rays as appropriate, and if it is a room temperature curable resin, it may be left as it is after application. If this structure is taken, the application | coating in the field to the existing window glass etc. is possible.
[0036]
In the solar shading film according to the present invention, since ATO particles are dispersed in the film, a mirror-like surface in which crystals are densely embedded in the film like an oxide thin film formed by a physical film forming method is used. Compared to a film having a thin film, reflection in the visible light region is less and it is possible to avoid a glaring appearance. In addition, since the solar radiation shielding film according to the present invention has a plasma frequency from the visible to the near infrared region as described above, the plasma reflection associated therewith increases in the near infrared region. Here, when it is desired to further suppress the reflection in the visible light region of the solar shading film according to the present invention, the SiO film on the ATO particle dispersion film of the present invention is made of SiO.2And MgF2By forming such a low refractive index film, a multilayer film having a luminous reflectance of 1% or less can be easily obtained.
[0037]
Fine particles such as inorganic titanium oxide, zinc oxide, cerium oxide, etc. for imparting further ultraviolet shielding function to the solar radiation shielding material, coating solution, solar radiation shielding film and solar radiation shielding transparent substrate containing ATO according to the present invention One or more of organic benzophenone and benzotriazole may be added.
[0038]
Moreover, in order to give the solar radiation shielding material, coating liquid, solar radiation shielding film, and solar radiation shielding transparent base material containing ATO according to the present invention further heat ray shielding function, it is used in combination with other heat ray shielding substances. Also good. For example, in the infrared region, ATO alone has a relatively weak shielding power, that is, it can be further combined with a substance such as hexaboride particles or indium tin oxide particles that shield around the wavelength of 780 to 1200 nm. High transparency can also be obtained.
[0039]
The solar shading film according to the present invention does not form the desired solar shading film by utilizing the decomposition or chemical reaction of the coating components due to the heat during firing. Can be formed.
As described above, according to the present invention, when the visible light transmittance is 80%, the solar radiation transmittance for infrared light in the wavelength range of 300 to 2100 nm is less than 65%, and the haze value is less than 1%. It is possible to produce a solar shading film having a solar transmittance of less than 60% and an haze value of less than 1% for infrared light in the wavelength range of 300 to 2100 nm when the transmittance is 70% or more.
[0040]
In addition, since ATO particles contained in the solar radiation shielding film are inorganic materials, they have extremely high weather resistance compared to organic materials. For example, even if they are used in areas exposed to sunlight (ultraviolet rays), the color and various functions deteriorate. Hardly occurs.
[0041]
The following examples illustrate the invention in more detail. However, the present invention is not limited to the following examples.
In addition, the visible light transmittance | permeability and solar transmittance of the obtained solar-shielding film | membrane sample were measured using the spectrophotometer U-4000 by Hitachi, Ltd. The haze value was measured using HR-200 manufactured by Murakami Color Research Laboratory Co., Ltd. In the evaluation of the optical properties of the film, the film was formed with three kinds of bar coaters having different wire diameters, and the solar transmittance and haze value when the visible light transmittance was 80% and 75% were obtained from the three-point plot of the film. It was.
[0042]
Example 1
SnCl in 1485.1 ml of waterFour・ 5H2To an aqueous solution at 25 ° C. in which 58.1 g of O was dissolved,ThreeA solution of 5.2 g and 5N NHFour150 ml of an OH aqueous solution was dropped in parallel over 26 minutes at room temperature, and the aqueous solution was stirred for an additional 10 minutes after the completion of the dropping to produce a hydroxide of tin and antimony.
Next, this precipitate was repeatedly washed with 1000 ml of ion-exchanged water per time by decantation, and then dried overnight.
The obtained dried product was pulverized in a mortar and fired at 700 ° C. for 1 hour to obtain ATO powder.
[0043]
The obtained container containing 20% by weight of ATO powder, 70% by weight of toluene, 10% by weight of a dispersant, and 0.3 mm zirconia beads corresponding to a filling rate of 63% was subjected to a dispersion treatment for 12 hours using a paint shaker. A dispersion was obtained. The ATO dispersed particle size at this time was 75.9 nm.
Next, an acrylic UV curable resin (solid content: 70%) as a binder is added to this ATO dispersion and stirred, and a coating solution comprising 77.7% by weight of an antimony tin oxide dispersion and 22.3% by weight of a binder. Was applied to a PET film with a thickness of 50 μm using the bars of counts 60, 24, and 6, respectively, dried at 80 ° C. for 30 seconds, and further irradiated with ultraviolet rays to obtain film A.
As shown in FIG. 2, when the visible light transmittance of the film A is normalized to 80%, the solar radiation transmittance is 64.5%, the haze value is 0.70%, and the visible light transmittance is 75%. When normalized, the solar transmittance was 55.0%, and the haze value was 0.70%.
[0044]
(Example 2)
A membrane B was obtained in the same manner as in Example 1 except that the obtained dried product was calcined at 600 ° C.
The ATO dispersed particle size at this time was 56.1 nm.
As shown in FIG. 2, the solar radiation transmittance was 56.0% and the haze value was 0.79% when the visible light transmittance of the film B was normalized to 75%.
[0045]
(Example 3)
A membrane C was obtained in the same manner as in Example 1 except that the obtained dried product was calcined at 800 ° C.
The ATO dispersed particle size at this time was 64.1 nm.
As shown in FIG. 2, when the visible light transmittance of the film C is normalized to 80%, the solar radiation transmittance is 64.8%, the haze value is 0.80%, and the visible light transmittance is 75%. When normalized, the solar transmittance was 56.4%, and the haze value was 0.80%.
[0046]
Example 4
A membrane D was obtained in the same manner as in Example 1 except that the obtained dried product was fired at 900 ° C.
The ATO dispersed particle size at this time was 59.7 nm.
As shown in FIG. 2, the solar radiation transmittance was 56.5% and the haze value was 0.82% when the visible light transmittance of the film D was normalized to 75%.
[0047]
(Reference Example 1)
A membrane E was obtained in the same manner as in Example 1 except that the obtained dried product was calcined at 400 ° C.
The ATO dispersed particle size at this time was 131.4 nm.
As shown in FIG. 2, when the visible light transmittance of the film E is normalized to 80%, the solar radiation transmittance is 72.0% exceeding 67%, the haze value is 0.70%, and the visible light transmittance is Was normalized to 75%, the solar transmittance was 62.5%, and the haze value was 0.75%.
[0048]
(Reference Example 2)
A membrane F was obtained in the same manner as in Example 1 except that the obtained dried product was fired at 480 ° C.
As shown in FIG. 2, when the visible light transmittance of the film F was normalized to 80%, the solar transmittance was 70.0% exceeding 67%, and the haze value was 0.77%.
[0049]
(Reference Example 3)
A film G was obtained in the same manner as in Example 1 except that the obtained dried product was fired at 1150 ° C.
The ATO dispersed particle size at this time was 123.6 nm.
As shown in FIG. 2, the solar radiation transmittance was 66.4% and the haze value was 2.50% when the visible light transmittance of the film G was normalized to 75%.
[0050]
(Example 5)
A film H was obtained in the same manner as in Example 1 except that the obtained dried product was calcined at 500 ° C. for 2 hours.
The ATO dispersed particle size at this time was 72.6 nm.
As shown in FIG. 2, when the visible light transmittance of the film H is normalized to 80%, the solar radiation transmittance is 64.5%, the haze value is 0.74%, and the visible light transmittance is 75%. When normalized, the solar transmittance was 57.5%, and the haze value was 0.78%.
[0051]
(Example 6)
A membrane I was obtained in the same manner as in Example 1 except that the temperature of the aqueous solution when the coprecipitate was generated was 43 ° C., and the obtained dried product was calcined at 800 ° C.
The ATO dispersed particle size at this time was 56.1 nm.
As shown in FIG. 2, when the visible light transmittance of the film I is normalized to 80%, the solar radiation transmittance is 64.0%, the haze value is 0.80%, and the visible light transmittance is 75%. When normalized, the solar transmittance was 55.6%, and the haze value was 0.80%.
[0052]
(Comparative Example 1)
A film J was obtained in the same manner as in Example 1 except that the temperature of the aqueous solution used to generate the coprecipitate was 60 ° C.
The ATO dispersed particle size at this time was 70.6 nm.
As shown in FIG. 2, the solar transmittance when the visible light transmittance of the film J was normalized to 80% was 64.8%, which is less than 65%, but the haze value is 1.20, which exceeds 1%. When the visible light transmittance was normalized to 75%, the solar radiation transmittance was 57.0%, and the haze value was 1.20%.
[0053]
(Example 7)
When producing hydroxides of tin and antimony, 150 ml of methanol was mixed with SbCl.3A membrane K was obtained in the same manner as in Example 1 except that 2.98 g was dissolved.
The ATO dispersed particle size at this time was 52.4 nm.
As shown in FIG. 2, the solar radiation transmittance was 55.5% and the haze value was 0.80% when the visible light transmittance of the film K was normalized to 75%.
[0054]
(Example 8)
When producing hydroxides of tin and antimony, 150 ml of methanol was mixed with SbCl.3A membrane L was obtained in the same manner as in Example 1 except that 4.07 g was dissolved.
The ATO dispersed particle size at this time was 57.0 nm.
As shown in FIG. 2, the solar light transmittance was 58.0% and the haze value was 0.70% when the visible light transmittance of the film L was normalized to 75%.
[0055]
Example 9
A film M was obtained in the same manner as in Example 1 except that the baking time of the obtained dried product was 2 hours.
As shown in FIG. 2, the solar radiation transmittance was 63.1% and the haze value was 0.67% when the visible light transmittance of the film M was normalized to 80%.
[0056]
(Example 10)
The raw material for tin compounds is Sn (SO4)2. 2H2A film N was obtained in the same manner as in Example 1 except that O was 57.5 g.
As shown in FIG. 2, the solar radiation transmittance was 64.8% and the haze value was 0.92% when the visible light transmittance of the film N was normalized to 80%.
[0057]
(Example 11)
The raw material of the antimony compound is SbBr3A film O was obtained in the same manner as in Example 1 except that the amount was 8.2 g.
As shown in FIG. 2, when the visible light transmittance of the film O was normalized to 80%, the solar transmittance was 64.7% and the haze value was 0.96%.
[0058]
【The invention's effect】
As described above, in the present invention, a coprecipitate is produced by parallelly dropping an alcohol solution and an alkali solution in which an antimony compound is dissolved into a solution of a tin compound at 50 ° C. or lower. The solar shading material applied to the solar shading film having a high visible light transmittance, a low solar light transmittance and a low haze value was produced by baking.
[Brief description of the drawings]
FIG. 1 is a production flow diagram of antimony tin oxide according to the present invention.
FIG. 2 is a list of optical characteristic measurement results of solar shading film samples formed using antimony tin oxide according to the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002281216A JP4200424B2 (en) | 2001-09-27 | 2002-09-26 | Manufacturing method of solar shading material, coating liquid for forming solar shading film, solar shading film, and transparent base material for solar shading |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001298064 | 2001-09-27 | ||
JP2002180510 | 2002-06-20 | ||
JP2002281216A JP4200424B2 (en) | 2001-09-27 | 2002-09-26 | Manufacturing method of solar shading material, coating liquid for forming solar shading film, solar shading film, and transparent base material for solar shading |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004075510A JP2004075510A (en) | 2004-03-11 |
JP4200424B2 true JP4200424B2 (en) | 2008-12-24 |
Family
ID=32034013
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002281216A Expired - Lifetime JP4200424B2 (en) | 2001-09-27 | 2002-09-26 | Manufacturing method of solar shading material, coating liquid for forming solar shading film, solar shading film, and transparent base material for solar shading |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4200424B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1967495B1 (en) | 2007-02-21 | 2012-08-01 | Sumitomo Metal Mining Co., Ltd. | Manufacturing method for antimony-containing tin oxide fine particles for forming solar radiation shielding body, dispersion for forming solar radiation shielding body, solar radiation sheilding body, and solar radiation shielding base material |
JP2008230954A (en) * | 2007-02-21 | 2008-10-02 | Sumitomo Metal Mining Co Ltd | Manufacturing method for antimony-containing tin oxide fine particles for forming solar radiation shielding body, dispersion for forming solar radiation shielding body, solar radiation shielding body, and solar radiation shielding base material |
JP5167557B2 (en) * | 2008-04-30 | 2013-03-21 | 共同印刷株式会社 | Anti-counterfeit ink composition |
DE102009017547B4 (en) * | 2009-03-31 | 2022-06-09 | Schott Ag | Glass or glass-ceramic pane reflecting infrared radiation and method for the production thereof |
KR101568630B1 (en) | 2012-03-29 | 2015-11-11 | 미쓰비시 마테리알 가부시키가이샤 | Infrared cut material |
CN108430925B (en) * | 2015-09-30 | 2020-07-07 | 住友金属矿山株式会社 | Infrared-absorbing fine particles, dispersion liquid, dispersion, transparent interlayer substrate, film, glass using the same, and method for producing the same |
JP6269805B1 (en) * | 2016-12-27 | 2018-01-31 | 住友大阪セメント株式会社 | Dispersion liquid, coating liquid, and heat ray shielding film |
-
2002
- 2002-09-26 JP JP2002281216A patent/JP4200424B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2004075510A (en) | 2004-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4626284B2 (en) | Method for producing tungsten oxide fine particles for forming solar shield, and tungsten oxide fine particles for forming solar shield | |
JP4096277B2 (en) | Solar shading material, coating liquid for solar shading film, and solar shading film | |
EP0943587B1 (en) | Near infra-red shielding single or multilayer film and a coating liquid for forming the same | |
JP2005226008A (en) | Dispersion for forming solar radiation-shielding body, and solar radiation-shielding body and method for producing the same | |
JP3262098B2 (en) | Heat ray shielding material, heat ray shielding equipment using the same, coating liquid and heat ray shielding film | |
JP2003176132A (en) | Antimony-tin oxide particle for shielding insolation, coating solution for forming insolation shielding film and insolation shielding film | |
US20090216492A1 (en) | Solar radiation shielding member and solar radiation shielding member forming fluid dispersion | |
JP4182825B2 (en) | Antimony tin oxide fine particles for sunscreen, dispersion for forming sunscreen using the same, sunscreen and transparent substrate for sunscreen | |
JP3744188B2 (en) | Heat ray shielding film forming coating solution and heat ray shielding film | |
JP2008230954A (en) | Manufacturing method for antimony-containing tin oxide fine particles for forming solar radiation shielding body, dispersion for forming solar radiation shielding body, solar radiation shielding body, and solar radiation shielding base material | |
JP4200424B2 (en) | Manufacturing method of solar shading material, coating liquid for forming solar shading film, solar shading film, and transparent base material for solar shading | |
EP1967495B1 (en) | Manufacturing method for antimony-containing tin oxide fine particles for forming solar radiation shielding body, dispersion for forming solar radiation shielding body, solar radiation sheilding body, and solar radiation shielding base material | |
JP2003215328A (en) | Fine particles for sun protection, coating liquid for forming sun protection film containing the same and sun protection film | |
JP2002194291A (en) | Method for preparing coating fluid for forming insolation shielding film | |
JP4120887B2 (en) | In4Sn3O12 composite oxide fine particles for solar radiation shielding, method for producing the same, coating liquid for solar radiation shielding film formation, solar radiation shielding film, and solar radiation shielding substrate | |
JP6413969B2 (en) | Dispersion for forming solar shading body and solar shading body using the dispersion | |
JP2012082109A (en) | Method for producing tungsten oxide fine particle for forming highly heat-resistant heat ray-shielding material, tungsten oxide fine particle for forming highly heat-resistant heat ray-shielding material and dispersion for forming highly heat-resistant heat ray-shielding material, and highly heat-resistant heat ray-shielding material | |
JP2004284904A (en) | Method of producing sunbeam shielding material, sunbeam shielding material, coating liquid for forming sunbeam shielding film, and sunbeam shielding film | |
JP2002138271A (en) | Manufacturing method of fine particle for heat ray shielding and manufacturing method of coating liquid for forming heat ray shielding film using the fine particle manufactured by the former method | |
JP2003327429A (en) | Fine particle for shielding solar radiation, coating solution for forming solar radiation shielding film containing the fine particle and solar radiation shielding film | |
JP2003327917A (en) | Method for producing sun-shielding material, coating liquid produced by using the sun-shielding material and sun-shielding film | |
JP2002201027A (en) | Ito microparticle for daylight screening, method for producing the same, and coating liquid and daylight screening film using the same | |
JP4737419B2 (en) | Boride particles, production method thereof, boride fine particle dispersion using the boride particles, and solar shield | |
JPH1036774A (en) | Coating liquid for sun light-shading film and sun light-shading film using the same | |
JP2005231974A (en) | Solar radiation screening material, solar radiation screening composite material, and dispersing liquid used for preparing solar radiation screening material or solar radiation screening composite material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050114 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070808 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071011 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071210 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080219 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20080418 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20080423 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080911 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080924 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4200424 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111017 Year of fee payment: 3 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071210 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111017 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121017 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131017 Year of fee payment: 5 |
|
EXPY | Cancellation because of completion of term |