JP4096277B2 - Solar shading material, coating liquid for solar shading film, and solar shading film - Google Patents

Solar shading material, coating liquid for solar shading film, and solar shading film Download PDF

Info

Publication number
JP4096277B2
JP4096277B2 JP26781198A JP26781198A JP4096277B2 JP 4096277 B2 JP4096277 B2 JP 4096277B2 JP 26781198 A JP26781198 A JP 26781198A JP 26781198 A JP26781198 A JP 26781198A JP 4096277 B2 JP4096277 B2 JP 4096277B2
Authority
JP
Japan
Prior art keywords
film
solar radiation
radiation shielding
fine particles
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26781198A
Other languages
Japanese (ja)
Other versions
JP2000096034A (en
Inventor
広充 武田
裕子 久野
健治 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP26781198A priority Critical patent/JP4096277B2/en
Publication of JP2000096034A publication Critical patent/JP2000096034A/en
Application granted granted Critical
Publication of JP4096277B2 publication Critical patent/JP4096277B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/008Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character comprising a mixture of materials covered by two or more of the groups C03C17/02, C03C17/06, C03C17/22 and C03C17/28
    • C03C17/009Mixtures of organic and inorganic materials, e.g. ormosils and ormocers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/44Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the composition of the continuous phase
    • C03C2217/445Organic continuous phases
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • C03C2217/476Tin oxide or doped tin oxide

Description

【0001】
【発明の属する技術分野】
本発明は、車両、ビル、事務所、一般住宅の窓、電話ボックス、ショーウィンドー、プラスチックフィルム、照明用ランプなど、ガラス、プラスチックスその他の各種日射遮蔽機能を必要とする基材に塗布して日射遮蔽膜とするための塗布液、これに用いる日射遮蔽材料、及び、これにより得られた単層または多層の日射遮蔽膜に関する。
【0002】
【従来の技術】
従来、太陽光などからの熱成分を除去・減少させる方法として、ガラス表面に可視・赤外域の波長を反射する薄膜を形成して熱線反射ガラスとすることが行なわれていた。ここで用いられる薄膜の材料としては、FeOX、CoOX、CrOX、TiOX等の金属酸化物や、Ag、Au、Cu、Ni、Al等の自由電子を多量にもつ金属材料が選択された。
【0003】
しかしこれらの材料は、特に太陽光線で熱効果に大きく寄与する近赤外線以外に、可視光領域の光も同時に反射もしくは吸収する性質があり、可視光透過率が低下してしまう欠点があった。
【0004】
そのため、建材、乗り物、電話ボックスなどにおける透明基材にこれらの材料を利用する場合は可視光領域の高い透過率が必要とされ、膜厚を非常に薄くする操作が必要であった。そして、スプレー焼き付けやCVD法、或いはスパッタ法や真空蒸着法などの物理成膜法を用いて10nmレベルの極めて薄い薄膜に成膜して用いられてきた。これらの成膜方法は大がかりな装置や真空設備を必要とし、生産性、大面積化に問題があり、更に膜の製造コストが高かった。
【0005】
また、これらの材料では、可視光透過率を高くしようとすると日射遮蔽特性が低下し、逆に日射遮蔽特性を高くすると可視光透過率が低下して膜を施した内部空間が暗くなる、といった性質を抱えていた。
【0006】
また、これらの材料では可視光領域の反射率も同時に高くなってしまう傾向があり、鏡のようなギラギラした外観を与えて美観を損ねてしまう欠点があった。
【0007】
また更に、これらの材料では膜の導電性が高くなるものが多く、この場合携帯電話やTV受信の電波を反射して受信不能になったり、周辺地域に電波障害を引き起こすなどの欠点があった。
【0008】
以上のような欠点を改善するためには、膜の物理特性として、可視光領域の光の透過率が高く、近赤外領域の光の透過率が低く、可視光領域の光の反射率が低く、近赤外領域の光の反射率が高く、かつ膜の導電性がおおよそ10Ω/□以上に制御可能な膜を形成する必要があった。
【0009】
しかしながら従来このような膜、或いはこのような膜を形成する材料は知られていなかった。
【0010】
可視光透過率が高く、かつ熱線遮蔽機能をもつ材料には、アンチモン含有酸化錫(ATO)や、錫含有酸化インジウム(ITO)、アルミニウム含有酸化亜鉛(AZO)が知られている。これらの材料は可視光反射率が比較的低く、ギラギラした外観を与えることはないが、プラズマ波長が比較的長波長側にあり、可視光に近い近赤外域におけるこれらの膜の反射・吸収効果は十分ではなかった。また、物理成膜法でこれらの膜を形成した場合には、膜の導電性が上がり、上記の電波の反射妨害を引き起こす欠点があった。
【0011】
【発明が解決しようとする課題】
そこで本発明は、上記従来技術の問題点を解決し、可視光領域の光の透過率が高く反射率が低く、近赤外領域の光の透過率が低く反射率が高く、かつ膜の導電性がおおよそ10Ω/□以上に制御可能な膜を、高コストの物理成膜法を用いずに簡便な塗布法で成膜できるための塗布液と、これに用いる日射遮蔽材料と、これを用いた日射遮蔽膜とを提供することを目的とする。
【0012】
【課題を解決するための手段】
上記目的を達成するために、本発明者らは、材料そのものの特性として、自由電子を多量に保有する6ホウ化物に着目し、種々検討の結果、これを超微粒子化し、かつ高度に分散した膜を作製することにより、可視光領域に透過率の極大をもつとともに、可視光領域に近い近赤外域に強い吸収および反射を発現して透過率の極小をもつようになるという現象を見出し、更にこれらの特性は6ホウ化物に顕著にみられ、膜の表面抵抗を10Ω/□以上に制御可能な膜を、高コストの物理成膜法を用いずに簡単な塗布法で成膜できることを見いだし本発明に至った。
【0013】
すなわち、本発明の日射遮蔽膜用塗布液は、粒径が200nm以下の6ホウ化物微粒子(XB、Xが、Ce、Gd、Tb、Dy、Ho、Y、Eu、Er、Tm、Lu、Sr、Caのうちの1種以上)を、バインダーとともに溶液中に混合分散しした日射遮蔽膜用塗布液であって、前記6ホウ化物微粒子を0.8〜2.0重量%含有し、且つ、該6ホウ化物微粒子の重量割合が前記微粒子とバインダー成分を合わせた固形分量に対して9.1〜71.4重量%混合分散していることを特徴とするものである。
また、本発明の日射遮蔽膜用塗布液は、6ホウ化物微粒子に加え、更に、アンチモン含有酸化錫(ATO)微粒子、錫含有酸化インジウム微粒子(ITO)、アルミニウム含有酸化亜鉛微粒子(AZO)の少なくとも1種以上を含有することを特徴とするものである。
また、本発明の他の日射遮蔽膜用塗布液は、前記バインダーとして、ケイ素、チタン、ジルコニウム、アルミニウムのアルコキシド、若しくは、アルミニウムのアルコキシドの部分加水分解重合物の少なくとも1種以上を含有することを特徴とし、更に、前記バインダーとして、紫外線硬化樹脂、常温硬化樹脂、若しくは、熱可塑性樹脂の少なくとも1種以上を含有することを特徴とするものである。
【0014】
また、本発明の日射遮蔽膜は、上記記載の日射遮蔽膜用塗布液を基材に塗布して得た日射遮蔽膜であって、膜の透過率プロファイルが、400〜700nmに極大値を、700〜1800nmに極小値をもち、且つ、その極大値と極小値との差が15ポイント以上であることを特徴とするものである。
【0015】
更に、本発明の日射遮蔽多層膜は、上記日射遮蔽膜に、更に、該日射遮蔽膜と屈折率の異なる膜を1種以上重ねた日射遮蔽多層膜であって、膜の透過率プロファイルが、400〜700nmに極大値を、700〜1800nmに極小値をもち、且つ、その極大値と極小値との差が15ポイント以上であることを特徴とするものである。
また、本発明の他の日射遮蔽多層膜は、上記記載の日射遮蔽多層膜の最上層がオーバーコート層であることを特徴とするものである。
【0016】
更に、本発明の日射遮蔽膜は、表面抵抗値が10Ω/□以上であることを特徴とするものである。
【0017】
また、本発明の日射遮蔽多層膜は、表面抵抗値が10Ω/□以上であることを特徴とするものである。
【0018】
更に、本発明の透明基材は、上記記載の日射遮蔽膜又は日射遮蔽多層膜が形成された日射遮蔽機能を有することを特徴とするものである。
【0019】
【発明の実施の形態】
本発明に用いられる6ホウ化物微粒子を「XB」で表記した場合、Xが、Ce、Gd、Tb、Dy、Ho、Y、Eu、Er、Tm、Lu、Sr、Caである6ホウ化物微粒子がその代表的なものとして挙げられるが、これら2種以上の混合物や、これら以外の6ホウ化物であっても日射遮蔽効果が得られる。
【0020】
6ホウ化物微粒子はその表面が酸化していないことが好ましいが、通常は僅かに酸化していることが多く、また微粒子の分散工程で表面の酸化が起こることはある程度避けられない。しかしその場合でも日射遮蔽効果を発現する有効性に変わりはない。
【0021】
また、これらの6ホウ化物微粒子は、結晶性が低くX線回折で極めてブロードな回折ピークを生じるようなものであっても、微粒子内部の基本的な結合が立方晶CaBタイプの構造を有するものであるならば日射遮蔽効果を発現する。
【0022】
これらの6ホウ化物微粒子は、暗い青紫などに着色した粉末であるが、粒径が可視光波長に比べて十分小さく、薄膜中に分散した状態においては、膜に可視光透過性が生じる。しかし赤外光遮蔽能は十分強く保持できる。この理由は詳細には理解されていないが、これら材料は自由電子を比較的多く保有し、4f−5d間のバンド間遷移や電子−電子、電子−フォノン相互作用による吸収が近赤外領域に存在することに由来すると考えられる。
【0023】
実験によれば、これら微粒子を十分細かく且つ均一に分散した膜では、透過率が波長400〜700nmの間に極大値をもち、かつ波長700〜1800nmの間に極小値をもつことが観察される。可視光波長が380〜780nmであり、視感度が550nm付近をピークとする釣鐘型であることを考慮すると、このような膜では可視光を有効に透過し、それ以外の日射を有効に吸収・反射することが理解できる。
【0024】
場合により使用されるITO微粒子、ATO微粒子、及びAZO微粒子は、可視光領域で光の吸収がほとんど無く、1000nm以上の領域でプラズモンに由来する反射・吸収が大きい。従って、上記の6ホウ化物微粒子と合わせて使用することで、可視光透過率をさほど減少させずに、近赤外領域の太陽光線や、地表に吸収された熱エネルギーの再放射を効率よく遮蔽することが可能となり、熱線遮蔽特性を向上させる効果が得られる。
【0025】
塗布液中の6ホウ化物微粒子の粒径は200nm以下が良く、好ましくは100nm以下が良い。粒子径が200nmよりも大きくなると、上に述べたような特有の透過率プロファイル、すなわち透過率が波長400〜700nmの間に極大値をもち、かつ波長700〜1800nmの間に極小値をもつようなプロファイルの山と谷の差が小さくなり、可視光透過率を十分保ったまま、効率よく日射透過率を低下させることが難しくなるからである。また粒子径が200nmよりも大きい場合には、分散液中の微粒子同士の凝集傾向が強くなり、微粒子の沈降原因となるからである。
【0026】
更に200nmを超える微粒子もしくはそれらの凝集した粗大粒子は、光散乱源となって膜に曇り(ヘイズ)を生じたり可視光透過率が減少する原因となるので好ましくない。なお、現状の技術で経済的に入手可能な最低の粒径は2nm程度である。
【0027】
場合により使用されるITO微粒子、ATO微粒子、またはAZO微粒子の粒径も、200nm以下が良く、好ましくは100nm以下が良い。粒子径が200nmよりも大きくなると分散液中の微粒子同士の凝集傾向が強くなり、微粒子の沈降原因となるからである。また前記同様、200nmを超える微粒子もしくはそれらの凝集した粗大粒子は、光散乱源となって膜に曇り(ヘイズ)を生じたり可視光透過率が減少する原因となるので好ましくない。なお、現状の技術で経済的に入手可能な最低の粒径は2nm程度である。
【0028】
塗布液中の微粒子の分散媒は特に限定されるものではなく、塗布条件や塗布環境、塗布液中のアルコキシド、合成樹脂バインダーなどに合わせて選択可能であり、例えば水、アルコール、エーテル、エステル、ケトンなどの有機溶媒の各種が使用可能である。また必要に応じて酸やアルカリを添加してpHを調整しても良い。更に、塗布液中微粒子の分散安定性を一層向上させるために、各種の界面活性剤、カップリング剤などを添加することも可能である。そのときのそれぞれの添加量は、無機微粒子に対して30重量%以下、好ましくは5重量%以下である。
【0029】
この塗布液を用いた膜の導電性は、微粒子の接触箇所を経由した導電パスに沿って行われるため、例えば、界面活性剤やカップリング剤の量を加減することで導電パスを部分的に切断することができ、10Ω/□以上の表面抵抗値へ膜の導電性を容易に低下させることができる。また珪素、ジルコニウム、チタン、アルミニウムの各金属のアルコキシド、もしくはこれらの部分加水分解重合物、または合成樹脂バインダーの含有量を加減することによっても導電性の制御が可能である。
【0030】
上記微粒子の分散方法は、微粒子が均一に溶液中に分散する方法であれば任意に選択できる。例として、ビーズミル、ボールミル、サンドミル、超音波分散などの方法を挙げることができる。
【0031】
本発明の日射遮蔽膜は、基材上に上記微粒子が高密度に堆積して膜を形成するものである。塗布液中に、珪素、ジルコニウム、チタン、アルミニウムの各金属のアルコキシド、もしくはこれら金属の部分加水分解重合物、または合成樹脂バインダーを含ませると、塗布液を塗布、硬化後、微粒子の基材への結着性が向上し、更に膜の硬度が向上する。またこのようにして得られた膜上に、更に珪素、ジルコニウム、チタン、アルミニウムなどの各金属アルコキシドもしくはこれら金属アルコキシドの加水分解重合物または合成樹脂を含有する層を重ねて形成することで、微粒子を主成分とする膜の基材への結着力や、膜の硬度及び耐候性を一層向上させることができる。
【0032】
塗布液中に珪素、ジルコニウム、チタン、アルミニウムの各金属のアルコキシド、もしくはこれら金属の加水分解重合物、または合成樹脂バインダーを含ませない場合、この塗布液を基材に塗布後に得られる膜は、基材上に上記微粒子のみが堆積した膜構造になる。このままでも日射遮蔽効果を示すが、この膜に上記と同様に更に、珪素、ジルコニウム、チタン、アルミニウムの各金属のアルコキシド、もしくはこれら金属の加水分解重合物、または合成樹脂バインダーを含む塗布液を塗布して被膜を形成し多層膜とすることにより、塗布液成分が第1層の微粒子の堆積した間隙を埋めて成膜されるため、膜のヘイズが低減し可視光透過率が向上し、また微粒子の基材への結着性が向上する。
【0033】
上記微粒子を主成分とする膜を、珪素、ジルコニウム、チタン、アルミニウムの各金属のアルコキシド、もしくはこれら金属の加水分解重合物からなる被膜で結着する方法としては、スパッタ法や蒸着法も可能であるが、成膜工程の容易さやコストが低いなどの利点から塗布法が有効である。この被膜用塗布液は、水やアルコール中に、珪素、ジルコニウム、チタン、アルミニウムの各金属のアルコキシド、もしくはこれら金属の加水分解重合物を1種もしくは2種以上含むものであり、その含有液は加熱後に得られる酸化物換算で全溶液中の40重量%以下が好ましい。また必要に応じて酸やアルカリを添加してpHを調整することも可能である。
【0034】
このような液を上記微粒子を主成分とする膜上に更に第2層として塗布し加熱することで、珪素、ジルコニウム、チタン、アルミニウムなどの酸化物被膜を容易に作製することができる。また、これらアルコキシド以外に、一般に使用されている熱可塑性樹脂や、常温硬化樹脂、紫外線硬化樹脂を用いて、上記微粒子を主成分とする膜上に更に第2層として塗布し硬化させ、樹脂被膜を容易に作製することもできる。
【0035】
また、微粒子分散膜の屈折率と異なる屈折率をもつ膜を多層に重ねて塗布することにより、各膜の界面での屈折率差による光の干渉効果を利用して、目的とする日射遮蔽特性を更に向上させることが可能である。
【0036】
塗布液及び被膜用の塗布液の塗布方法としては、特に限定されるものではなく、スピンコート法、スプレーコート法、ディップコート法、スクリーン印刷法、ロールコート法、流し塗りなど、処理液を平坦且つ薄く均一に塗布できる方法であれば如何なる方法でも適宜採用することができる。
【0037】
上記各金属アルコキシド及びその加水分解重合物を含む塗布液の塗布後の基材加熱温度は、100℃未満では塗膜中に含まれるアルコキシド及びその加水分解重合物の重合反応が未完結で残る場合が多く、また水や有機溶媒が膜中に残留し、加熱後の膜の可視光透過率の低減の原因となるので、100℃以上が好ましく、更に好ましくは塗布液中の溶媒の沸点以上で加熱を実施するとよい。
【0038】
また合成樹脂バインダーを使用した場合はそれぞれ最適な硬化方法に従って硬化させれば良く、例えば紫外線硬化樹脂であれば紫外線を適宜照射すれば良い。また常温硬化樹脂であれば塗布後そのまま放置しておけばよいため、既存の窓ガラスなどへの現場での塗布が可能であり、汎用性が広がる。
【0039】
本発明の塗布液に使用するバインダー成分として、或いはオーバーコート用の塗布液としては、オルガノシラザン溶液を用いても良い。オルガノシザラン溶液としては、側鎖基の修正や酸化触媒の添加で重合硬化温度が100℃以下のものも市販されており、これらを用いることによって成膜温度をかなり低くすることができる。
【0040】
本発明の膜では上記微粒子の分散した膜であるために、物理成膜法により製造された酸化物薄膜のように結晶が緻密に膜内を埋めた鏡面状表面をもつ膜に比べると、可視光領域での反射が少なく、ギラギラした外観を呈することが回避できる。また可視光領域の反射を更に抑制したい場合は、本微粒子分散膜の上に、SiOやMgFのような低屈折率の膜を成膜することにより、容易に視感反射率1%以下の多層膜を製造可能である。
【0041】
塗布液には更に、ATOやITOやAZOなどの微粒子を混合することも可能である。これらの透明微粒子は添加量を増すと可視光に近い近赤外線領域での吸収が増加するため、可視光透過率の高い日射遮蔽膜とすることが可能である。また逆にATOやITOやAZOなどの微粒子分散した液に本発明の塗布液を添加して、膜に着色すると同時にその熱線遮蔽効果を補助することも可能である。この場合、主体となるITOなどに対して奔の僅かの添加量で日射遮蔽効果を補助できる。
【0042】
本発明による塗布液は無機微粒子を分散したものであり、焼成時の熱による塗布成分の分解或いは化学反応を利用して目的の熱線遮蔽膜を形成するものではないため、特性の安定した均一な膜厚の透過膜を形成することができる。
【0043】
本発明における微粒子分散膜は、基材上に微粒子が高密度に堆積して膜を形成するものであり、塗布液中に含まれる珪素、ジルコニウム、チタン、アルミニウムの各金属のアルコキシド、もしくはこれらの加水分解重合物、もしくは合成樹脂バインダーは、塗膜の硬化後、微粒子の基材上への結着性を向上させ、更に膜の強度を向上させる効果がある。
【0044】
このように本発明によれば上記無機微粒子の材料を適当に混合することで、熱線遮蔽効果を有する膜の製造が可能であるが、これらの微粒子材料は無機材料であるので、有機材料と比べて耐候性は非常に高く、例えば太陽光線(紫外線)の当たる部位に使用しても、色や諸機能の劣化はほとんど生じない。
【0045】
【実施例】
以下、本発明を実施例によってより詳細に説明する。
実施例1 ・・・ CeB微粒子(平均粒径90nm)20g、ジアセトンアルコール(DAA)78g、および微粒子分散用カップリング剤2.0gを混合し、直径4mmのジルコニアボールを用いて150時間ボールミル混合し、CeB微粒子の分散液100gを作製した(A液)。
【0046】
次に、平均重合度で4〜5量体であるエチルシリケート40(多摩化学工業株式会社製)を25g、エタノール32g、5%塩酸水溶液8g、水5gで調整したエチルシリケート溶液70gに、エタノール30gを良く混合してエチルシリケート混合液100gを調整し、これをバインダーとして使用した(B液)。
【0047】
A液とB液とを表1の組成になるようにエタノールで希釈して十分混合し、この溶液15gを150rpmで回転する200×200×2mmのソーダライム系板硝子基板上にビーカーから滴下し、そのまま5分間振り切った後回転を止めた。これを180℃の電気炉に入れて30分加熱し、目的とする膜を得た。
【0048】
形成された膜の透過率は日立製作所製の分光光度計を用いて、200〜1800nmの透過率を測定し、JISR 3106に従って日射透過率(τe)、可視光透過率(τv)を算出した。これらの結果を表1に示す。表1には実施例2〜16、比較例1で得られた膜の特性についても併せて示した。またこの膜の代表的なプロファイルを図1に示す。
【0049】
実施例2・・・ 実施例1のA液のCeB微粒子をGdB微粒子(平均粒径85nm)とした以外は実施例1と同様の方法で塗布液調整及びスピンコートし、これを180℃の電気炉に入れて30分加熱し、目的とする膜を得た。この膜の光学特性を表1に示す。
【0050】
実施例3・・・ 実施例1のA液のCeB微粒子をTbB微粒子(平均粒径90nm)とした以外は実施例1と同様の方法で塗布液を調整し、これを、微粒子濃度が2.0重量%になるまでエタノールで希釈し、この溶液15gを200rpmで回転する200×200×3mmのソーダライム系板硝子基板上にビーカーから滴下し、そのまま5分間振り切った後回転を止めた。この上に更に、B液のSiO濃度を2.0%までエタノールで希釈した溶液15gを、150rpmで回転する上記塗布基板上にビーカーから滴下し、そのまま5分間振り切った後回転を止めた。これを180℃の電気炉に入れて30分加熱し、目的とする膜を得た。この膜の光学特性を表1に示す。
【0051】
実施例4・・・ 実施例1のA液のCeB微粒子をDyB微粒子(平均粒径95nm)とした以外は実施例1と同様の方法で塗布液調整及びスピンコートし、これを180℃の電気炉に入れて30分加熱し、目的とする膜を得た。この膜の光学特性を表1に示す。
【0052】
実施例5・・・ 実施例1のA液のCeB微粒子をHoB微粒子(平均粒径85nm)とした以外は実施例1と同様の方法で塗布液調整及びスピンコートし、これを180℃の電気炉に入れて30分加熱し、目的とする膜を得た。この膜の光学特性を表1に示す。
【0053】
実施例6・・・ 実施例1のA液のCeB微粒子をYB微粒子(平均粒径90nm)とした以外は実施例1と同様の方法で塗布液調整及びスピンコートし、これを180℃の電気炉に入れて30分加熱し、目的とする膜を得た。この膜の光学特性を表1に示す。
0054
実施例8・・・ 実施例1のA液のCeB微粒子をEuB微粒子(平均粒径90nm)とし、B液の代わりに、三井化学社製のウレタンラッカーをバインダーとして使用し、スピン回転数を200rpmとした以外は実施例1と同様の方法で塗布液調整及びスピンコートし、これを室温で放置し溶媒を蒸発させ、目的とする膜を得た。この膜の光学特性を表1に示す。
0055
実施例9・・・実施例1のA液のCeB微粒子をErB微粒子(平均粒径120nm)とし、B液の代わりに、信越シリコーン社製の常温硬化樹脂をバインダーとして使用し、スピン回転数を200rpmとした以外は実施例1と同様の方法で塗布液調整及びスピンコートし、これを室温で放置し溶媒を蒸発させ、目的とする膜を得た。この膜の光学特性を表1に示す。
0056
実施例10・・・ 実施例1のA液のCeB微粒子をTmB微粒子(平均粒径110nm)とした以外は実施例1と同様の方法で塗布液調整及びスピンコートし、これを180℃の電気炉に入れて30分加熱し、目的とする膜を得た。この膜の光学特性を表1に示す。
0057
実施例11・・・ 実施例1のA液のCeB微粒子をLuB微粒子(平均粒径95nm)とした以外は実施例1と同様の方法で塗布液調整及びスピンコートし、これを180℃の電気炉に入れて30分加熱し目的とする膜を得た。この膜の光学特性を表1に示す。
0058
実施例12・・・ 実施例1のA液のCeB微粒子をSrB微粒子(平均粒径95nm)とした以外は実施例1と同様の方法で塗布液調整及びスピンコートし、これを180℃の電気炉に入れて30分加熱し目的とする膜を得た。この膜の光学特性を表1に示す。
0059
実施例13・・・ 実施例1のA液のCeB微粒子をCaB微粒子(平均粒径80nm)とした以外は実施例1と同様の方法で塗布液調整及びスピンコートし、これを180℃の電気炉に入れて30分加熱し目的とする膜を得た。この膜の光学特性を表1に示す。
0060
実施例15・・・ ITO微粒子(平均粒径55nm)35g、ジアセトンアルコール(DAA)61g、および微粒子分散用カップリング剤4.0gを混合し、直径4mmのジルコニアボールを用いて12時間ボールミル混合してITO微粒子の分散液100gを作製した(C液)。このC液と、実施例1のA液と信越シリコーン社製のシリコーン系UV硬化樹脂を表1の実施例15の組成になるようにエタノールで希釈して十分混合し、この溶液15gを200rpmで回転する200×200×3mmのソーダライム系板硝子基板上にビーカーから滴下し、そのまま5分間振り切った後回転を止めた。これを100℃の電気炉に入れて2分乾燥し溶媒を蒸発させた後、高圧水銀灯を使用して2分間紫外線照射し、目的とする膜を得た。この膜の光学特性を表1に示す。
0061
実施例16 ・・・ ATO微粒子(平均粒径50nm)35g、ジアセトンアルコール(DAA)61g、および微粒子分散用カップリング剤4.0gを混合し、直径4mmのジルコニアボールを用いて12時間ボールミル混合してATO微粒子の分散液100gを作製した(D液)。このD液と、実施例1のA液と信越シリコーン社製のシリコーン系UV硬化樹脂を表1の実施例16の組成になるようにエタノールで希釈して十分混合し、この溶液15gを200rpmで回転する200×200×3mmのソーダライム系板硝子基板上にビーカーから滴下し、そのまま5分間振り切った後回転を止めた。これを100℃の電気炉に入れて2分乾燥し溶媒を蒸発させた後、高圧水銀灯を使用して2分間紫外線照射し、目的とする膜を得た。この膜の光学特性を表1に示す。
0062
以上の実施例1〜6、8〜13、15、16では、全ての膜について、可視光透過率よりも日射透過率が百分率で15ポイント以上低く、明るさを保ちながら、効率よく日射を遮蔽していることがよくわかり、日射遮蔽膜として有用であることがわかる。また、実施例の全ての膜は可視光領域での反射率が8%以下であって、ミラー状のギラツキが無く、更に表面抵抗値が全ての膜で8×1010Ω/□以上であって、電波透過性において問題の無いことが確かめられた。
0063
比較例1 ・・・ 塗布法に比べて高コストの物理成膜法により作製された市販の熱線反射ガラスについて、340〜1800nmの分光透過率を測定し、JISR 3106に従って光学特性を調べたところ、可視光透過率61.8%、日射透過率63.4%となった。これは、上記6ホウ化物塗布膜と比較して可視光透過率と日射透過率の差が小さく、日射遮蔽効率が悪い。また可視光反射率は30以上%と非常に高く、外観もギラギラしたミラー状の外観を呈していた。また膜面の表面抵抗値は83Ω/□と低く、電波透過性及び反射性には問題があることが明らかであった。
0064
【表1】
0065
【発明の効果】
以上示したように、本発明によれば、可視光領域の光の透過率が高くて、近赤外領域の光の透過率が低いために、明るさを損なわずに日射の熱エネルギーを効率よく遮蔽でき、可視光反射率が低いのでギラツキが無く、膜の導電性が10Ω/□以上に制御可能なので電波透過性に優れた日射遮蔽膜であり、これを、高コストの物理成膜法を用いずに簡便な塗布法で成膜できる塗布液と、これを用いた日射遮蔽膜とが提供できた。
0066
この膜を、例えばビル等の窓ガラスに使用することで、夏場の冷房負荷を低減する効果があり、省エネルギーにも役立ち、環境的にも有用性の高い工業製品である。
【図面の簡単な説明】
【図1】実施例1の膜による、横軸を波長(nm)、縦軸を透過率(%)とした代表的なプロファイルである。
[0001]
BACKGROUND OF THE INVENTION
The present invention is applied to glass, plastics and other base materials that require various solar shading functions, such as windows of vehicles, buildings, offices, ordinary houses, telephone boxes, show windows, plastic films, and lighting lamps. The present invention relates to a coating solution for forming a solar radiation shielding film, a solar radiation shielding material used therefor, and a single-layer or multilayer solar radiation shielding film obtained thereby.
[0002]
[Prior art]
Conventionally, as a method for removing and reducing a heat component from sunlight or the like, a heat ray reflective glass has been formed by forming a thin film that reflects visible and infrared wavelengths on the glass surface. As the material of the thin film used here, FeO X CoO X , CrO X TiO X And metal materials having a large amount of free electrons such as Ag, Au, Cu, Ni and Al were selected.
[0003]
However, these materials have the property of reflecting or absorbing light in the visible light region at the same time, in addition to the near infrared rays that greatly contribute to the thermal effect, particularly with sunlight, and have the drawback of reducing the visible light transmittance.
[0004]
Therefore, when these materials are used as a transparent base material in building materials, vehicles, telephone boxes, etc., high transmittance in the visible light region is required, and an operation for reducing the film thickness is necessary. And it has been used by forming a very thin thin film of 10 nm level by using a physical film forming method such as spray baking, CVD method, sputtering method or vacuum deposition method. These film forming methods require large-scale equipment and vacuum equipment, have problems in productivity and area increase, and the film manufacturing cost is high.
[0005]
In addition, in these materials, when the visible light transmittance is increased, the solar shading property is lowered, and conversely, when the solar shading property is increased, the visible light transmittance is lowered and the inner space where the film is applied becomes dark. Had nature.
[0006]
In addition, these materials have a tendency to increase the reflectance in the visible light region at the same time, and have a drawback of giving a lustrous appearance like a mirror and deteriorating the appearance.
[0007]
Furthermore, many of these materials have high film conductivity, and in this case, there are drawbacks such as reflection of radio waves received from mobile phones and TVs and reception failure, and radio interference in surrounding areas. .
[0008]
In order to improve the above drawbacks, the physical properties of the film are high light transmittance in the visible light region, low light transmittance in the near infrared region, and light reflectance in the visible light region. Low, high reflectivity of light in the near-infrared region, and film conductivity of about 10 6 It was necessary to form a film that could be controlled to Ω / □ or more.
[0009]
However, such a film or a material for forming such a film has not been known.
[0010]
Antimony-containing tin oxide (ATO), tin-containing indium oxide (ITO), and aluminum-containing zinc oxide (AZO) are known as materials having a high visible light transmittance and a heat ray shielding function. These materials have a relatively low visible light reflectivity and do not give a glaring appearance, but the plasma wavelength is on the relatively long wavelength side, and the reflection and absorption effects of these films in the near infrared region close to visible light. Was not enough. In addition, when these films are formed by a physical film forming method, there is a drawback that the conductivity of the film is increased and the above-described interference of radio waves is caused.
[0011]
[Problems to be solved by the invention]
Therefore, the present invention solves the above-mentioned problems of the prior art, and has high light transmittance and low reflectance in the visible light region, low light transmittance and high reflectance in the near infrared region, and conductivity of the film. About 10 sex 6 Coating liquid that can form a film that can be controlled to Ω / □ or more by a simple coating method without using a high-cost physical film forming method, a solar shading material used therefor, and a solar shading using the coating liquid The object is to provide a membrane.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the present inventors focused on hexaboride which possesses a large amount of free electrons as a characteristic of the material itself, and as a result of various studies, it was made into ultrafine particles and highly dispersed. By creating a film, we found the phenomenon that the maximum of transmittance in the visible light region and the minimum of transmittance by expressing strong absorption and reflection in the near infrared region close to the visible light region, Furthermore, these characteristics are noticeable in hexaboride, and the surface resistance of the film is 10%. 6 The present inventors have found that a film that can be controlled to Ω / □ or more can be formed by a simple coating method without using a high-cost physical film forming method.
[0013]
That is, the coating solution for solar shading film of the present invention has hexaboride fine particles (XB 6 , X is Ce, Gd, Tb, Dy, Ho, Y , Eu , Er, Tm , Lu , One or more of Sr, Ca) and a binder, and a dispersion solution for solar radiation shielding film containing 0.8 to 2.0% by weight of the hexaboride fine particles. The weight ratio of the hexaboride fine particles is 9.1 to 71.4% by weight mixed and dispersed with respect to the solid content of the fine particles and the binder component.
In addition to the hexaboride fine particles, the coating solution for solar radiation shielding film of the present invention further includes at least antimony-containing tin oxide (ATO) fine particles, tin-containing indium oxide fine particles (ITO), and aluminum-containing zinc oxide fine particles (AZO). It is characterized by containing 1 or more types.
Moreover, the other coating solution for solar shading film of the present invention contains, as the binder, at least one kind of silicon, titanium, zirconium, aluminum alkoxide, or partially hydrolyzed polymer of aluminum alkoxide. Further, the binder further includes at least one of an ultraviolet curable resin, a room temperature curable resin, and a thermoplastic resin as the binder.
[0014]
Moreover, the solar radiation shielding film of the present invention is a solar radiation shielding film obtained by applying the above-described solar radiation shielding film coating solution to a substrate, and the transmittance profile of the film has a maximum value at 400 to 700 nm. It has a minimum value at 700 to 1800 nm, and the difference between the maximum value and the minimum value is 15 points or more.
[0015]
Furthermore, the solar radiation-shielding multilayer film of the present invention is a solar radiation-shielding multilayer film obtained by further laminating one or more films having a refractive index different from that of the solar radiation-shielding film, wherein the transmittance profile of the film is The maximum value is 400 to 700 nm, the minimum value is 700 to 1800 nm, and the difference between the maximum value and the minimum value is 15 points or more.
Another solar radiation shielding multilayer film of the present invention is characterized in that the uppermost layer of the solar radiation shielding multilayer film described above is an overcoat layer.
[0016]
Furthermore, the solar radiation shielding film of the present invention has a surface resistance value of 10 6 It is characterized by being Ω / □ or more.
[0017]
Moreover, the solar radiation shielding multilayer film of the present invention has a surface resistance value of 10 6 It is characterized by being Ω / □ or more.
[0018]
Furthermore, the transparency of the present invention Base material Has a solar shading function in which the solar shading film or the solar shading multilayer film described above is formed. That It is a feature.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
The hexaboride fine particles used in the present invention are designated as “XB”. 6 ", X is Ce, Gd, Tb, Dy, Ho, Y , Eu , Er, Tm , Lu A typical example is hexaboride fine particles such as Sr and Ca. However, a solar radiation shielding effect can be obtained by using a mixture of two or more of these and hexaborides other than these.
[0020]
It is preferable that the surface of hexaboride fine particles is not oxidized, but usually the surface is often slightly oxidized, and it is inevitable that oxidation of the surface occurs in the fine particle dispersion process to some extent. However, even in that case, there is no change in the effectiveness of the solar radiation shielding effect.
[0021]
Even if these hexaboride fine particles have low crystallinity and generate extremely broad diffraction peaks by X-ray diffraction, the basic bonds inside the fine particles are cubic CaB. 6 If it has a structure of the type, it will exhibit solar radiation shielding effect.
[0022]
These hexaboride fine particles are a powder colored dark blue-violet, but the particle size is sufficiently smaller than the visible light wavelength, and in the state dispersed in the thin film, visible light permeability is generated in the film. However, the infrared light shielding ability can be kept strong enough. Although the reason for this is not understood in detail, these materials have a relatively large number of free electrons, and the interband transition between 4f-5d and the absorption due to the electron-electron and electron-phonon interaction are in the near infrared region. It is thought to be derived from the existence.
[0023]
According to experiments, it is observed that a film in which these fine particles are sufficiently finely and uniformly dispersed has a maximum value in the wavelength range of 400 to 700 nm and a minimum value in the wavelength range of 700 to 1800 nm. . Considering that the visible light wavelength is 380 to 780 nm and the visibility is a bell-shaped peak with a peak near 550 nm, such a film effectively transmits visible light and effectively absorbs other solar radiation. It can be understood that it reflects.
[0024]
The ITO fine particles, ATO fine particles, and AZO fine particles used in some cases have almost no light absorption in the visible light region and large reflection / absorption due to plasmons in the region of 1000 nm or more. Therefore, when used in combination with the above hexaboride fine particles, the visible light transmittance is not significantly reduced, and the solar radiation in the near infrared region and the re-radiation of the thermal energy absorbed by the ground surface are effectively shielded. It is possible to obtain the effect of improving the heat ray shielding characteristics.
[0025]
The particle size of the hexaboride fine particles in the coating solution is preferably 200 nm or less, and preferably 100 nm or less. When the particle diameter is larger than 200 nm, it seems that the characteristic transmittance profile as described above, that is, the transmittance has a maximum value in the wavelength range of 400 to 700 nm and a minimum value in the wavelength range of 700 to 1800 nm. This is because the difference between the peaks and valleys of a simple profile becomes small, and it becomes difficult to efficiently reduce solar radiation transmittance while maintaining sufficient visible light transmittance. Further, when the particle diameter is larger than 200 nm, the tendency of aggregation of the fine particles in the dispersion becomes strong, which causes sedimentation of the fine particles.
[0026]
Further, fine particles exceeding 200 nm or aggregated coarse particles are not preferable because they become a light scattering source and cause clouding (haze) in the film or a decrease in visible light transmittance. The minimum particle size that is economically available with the current technology is about 2 nm.
[0027]
The particle size of the ITO fine particles, ATO fine particles, or AZO fine particles used in some cases is preferably 200 nm or less, and preferably 100 nm or less. This is because if the particle diameter is larger than 200 nm, the tendency of aggregation of the fine particles in the dispersion becomes strong, which causes sedimentation of the fine particles. Further, as described above, fine particles exceeding 200 nm or aggregated coarse particles are not preferable because they become a light scattering source and cause clouding (haze) in the film or a decrease in visible light transmittance. The minimum particle size that is economically available with the current technology is about 2 nm.
[0028]
The dispersion medium of the fine particles in the coating liquid is not particularly limited, and can be selected according to the coating conditions and coating environment, the alkoxide in the coating liquid, the synthetic resin binder, and the like, for example, water, alcohol, ether, ester, Various organic solvents such as ketones can be used. Moreover, you may adjust pH by adding an acid and an alkali as needed. Furthermore, in order to further improve the dispersion stability of the fine particles in the coating solution, it is possible to add various surfactants, coupling agents and the like. The amount of each added at that time is 30% by weight or less, preferably 5% by weight or less based on the inorganic fine particles.
[0029]
Since the conductivity of the film using this coating solution is performed along the conductive path that passes through the contact point of the fine particles, for example, the amount of the surfactant or the coupling agent is adjusted to partially change the conductive path. Can be cut 10 6 The conductivity of the film can be easily reduced to a surface resistance value of Ω / □ or more. The conductivity can also be controlled by adjusting the content of silicon, zirconium, titanium, and aluminum alkoxides, partially hydrolyzed polymers thereof, or synthetic resin binders.
[0030]
The method for dispersing the fine particles can be arbitrarily selected as long as the fine particles are uniformly dispersed in the solution. Examples include methods such as bead mill, ball mill, sand mill, and ultrasonic dispersion.
[0031]
The solar shading film of the present invention forms a film by depositing the fine particles on a base material at a high density. If the coating solution contains an alkoxide of each metal of silicon, zirconium, titanium, or aluminum, or a partially hydrolyzed polymer of these metals, or a synthetic resin binder, the coating solution is applied, cured, and then applied to the fine particle substrate. The binding property is improved, and the hardness of the film is further improved. Further, fine particles can be formed by layering a layer containing each metal alkoxide such as silicon, zirconium, titanium, and aluminum, a hydrolysis polymer of these metal alkoxides, or a synthetic resin on the film thus obtained. It is possible to further improve the binding strength of the film having the main component to the base material, the hardness and weather resistance of the film.
[0032]
When the coating solution does not contain silicon, zirconium, titanium, aluminum alkoxide, or a hydrolysis polymer of these metals, or a synthetic resin binder, the film obtained after coating this coating solution on a substrate is: A film structure in which only the fine particles are deposited on the substrate is obtained. Although the solar radiation shielding effect is exhibited as it is, a coating liquid containing an alkoxide of each metal of silicon, zirconium, titanium, and aluminum, a hydrolysis polymer of these metals, or a synthetic resin binder is further applied to this film in the same manner as described above. By forming a coating film to form a multilayer film, the coating liquid component fills the gap where the fine particles of the first layer are deposited, so that the haze of the film is reduced and the visible light transmittance is improved. The binding property of the fine particles to the base material is improved.
[0033]
Sputtering and vapor deposition can also be used as a method of binding the film containing the fine particles as a main component with a coating made of silicon, zirconium, titanium, aluminum alkoxide or a hydrolysis polymer of these metals. However, the coating method is effective because of the advantages such as the ease of the film forming process and low cost. This coating solution for coating contains one or more kinds of alkoxides of metals such as silicon, zirconium, titanium, and aluminum or hydrolyzed polymers of these metals in water or alcohol. It is preferably 40% by weight or less in the total solution in terms of oxide obtained after heating. Moreover, it is also possible to adjust pH by adding an acid and an alkali as needed.
[0034]
By applying such a liquid as a second layer on the film containing the fine particles as a main component and heating, an oxide film of silicon, zirconium, titanium, aluminum, or the like can be easily produced. In addition to these alkoxides, commonly used thermoplastic resins, room-temperature curable resins, and ultraviolet curable resins are further applied and cured as a second layer on the film containing the fine particles as a main component, and the resin film Can also be easily manufactured.
[0035]
In addition, by applying multiple layers of films with different refractive indexes from those of the fine particle dispersion film, the desired solar shading characteristics can be obtained by utilizing the light interference effect due to the difference in refractive index at the interface of each film. Can be further improved.
[0036]
The application method of the coating solution and the coating solution for coating is not particularly limited, and the processing solution is flattened by spin coating, spray coating, dip coating, screen printing, roll coating, flow coating, etc. In addition, any method can be appropriately employed as long as it can be applied thinly and uniformly.
[0037]
When the base material heating temperature after application of the coating solution containing each metal alkoxide and its hydrolysis polymer is less than 100 ° C., the polymerization reaction of the alkoxide and its hydrolysis polymer contained in the coating film remains incomplete. In many cases, water or an organic solvent remains in the film and causes a reduction in visible light transmittance of the film after heating. Therefore, the temperature is preferably 100 ° C. or higher, and more preferably the boiling point of the solvent in the coating liquid. Heating may be performed.
[0038]
Further, when a synthetic resin binder is used, it may be cured according to an optimum curing method. For example, in the case of an ultraviolet curable resin, ultraviolet rays may be appropriately irradiated. In addition, since a room temperature curable resin can be left as it is after application, it can be applied on-site to an existing window glass or the like, and versatility is widened.
[0039]
An organosilazane solution may be used as a binder component used in the coating solution of the present invention or as a coating solution for overcoat. As organosizaran solutions, those having a polymerization curing temperature of 100 ° C. or lower are also commercially available by correcting the side chain groups or adding an oxidation catalyst. By using these solutions, the film forming temperature can be considerably lowered.
[0040]
Since the film of the present invention is a film in which the fine particles are dispersed, it is more visible than a film having a mirror-like surface in which crystals are densely filled, such as an oxide thin film manufactured by a physical film forming method. There is little reflection in the light region, and it can be avoided that it has a glaring appearance. In addition, when it is desired to further suppress the reflection in the visible light region, SiO 2 is formed on the fine particle dispersion film. 2 By forming a low refractive index film such as MgF, a multilayer film having a luminous reflectance of 1% or less can be easily manufactured.
[0041]
Further, fine particles such as ATO, ITO, and AZO can be mixed into the coating solution. Since the absorption of these transparent fine particles increases in the near-infrared region close to visible light when the addition amount is increased, it is possible to form a solar radiation shielding film having a high visible light transmittance. Conversely, the coating liquid of the present invention can be added to a liquid in which fine particles are dispersed, such as ATO, ITO, or AZO, to color the film and simultaneously assist the heat ray shielding effect. In this case, the solar radiation shielding effect can be assisted with a slight addition amount of soot to the main ITO or the like.
[0042]
The coating liquid according to the present invention is a dispersion of inorganic fine particles, and does not form a target heat ray shielding film by utilizing the decomposition or chemical reaction of the coating component due to heat during firing, so that the characteristics are uniform and stable. A permeable membrane having a film thickness can be formed.
[0043]
The fine particle-dispersed film in the present invention is a film in which fine particles are deposited at a high density on a substrate to form a film. The alkoxide of each metal of silicon, zirconium, titanium, and aluminum contained in the coating solution, or these The hydrolysis polymer or the synthetic resin binder has an effect of improving the binding property of the fine particles on the substrate after the coating film is cured, and further improving the strength of the film.
[0044]
As described above, according to the present invention, it is possible to produce a film having a heat ray shielding effect by appropriately mixing the above inorganic fine particle materials. However, since these fine particle materials are inorganic materials, they are compared with organic materials. The weather resistance is very high. For example, even if it is used in a part exposed to sunlight (ultraviolet rays), the color and various functions hardly deteriorate.
[0045]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
Example 1 ... CeB 6 20 g of fine particles (average particle size 90 nm), 78 g of diacetone alcohol (DAA), and 2.0 g of a coupling agent for dispersing fine particles were mixed and ball mill mixed for 150 hours using a zirconia ball having a diameter of 4 mm. 6 100 g of a fine particle dispersion was prepared (liquid A).
[0046]
Next, 25 g of ethyl silicate 40 (manufactured by Tama Chemical Co., Ltd.) having an average degree of polymerization of 4 to 5 is 25 g, ethanol 32 g, 5% hydrochloric acid aqueous solution 8 g, water 70 g and ethyl silicate solution 70 g, ethanol 30 g Were mixed well to prepare 100 g of an ethyl silicate mixed solution, which was used as a binder (liquid B).
[0047]
A solution and B solution were diluted with ethanol so as to have the composition shown in Table 1 and mixed well, and 15 g of this solution was dropped from a beaker onto a 200 × 200 × 2 mm soda-lime plate glass substrate rotating at 150 rpm, The rotation was stopped after shaking for 5 minutes. This was put in an electric furnace at 180 ° C. and heated for 30 minutes to obtain a target film.
[0048]
The transmittance of the formed film was measured with a transmittance of 200 to 1800 nm using a spectrophotometer manufactured by Hitachi, Ltd., and the solar transmittance (τe) and the visible light transmittance (τv) were calculated according to JIS R 3106. These results are shown in Table 1. Table 1 also shows the characteristics of the films obtained in Examples 2 to 16 and Comparative Example 1. A typical profile of this film is shown in FIG.
[0049]
Example 2 CeB of liquid A of Example 1 6 Fine particles are GdB 6 A coating solution was prepared and spin-coated in the same manner as in Example 1 except that fine particles (average particle size 85 nm) were used, and this was placed in an electric furnace at 180 ° C. and heated for 30 minutes to obtain the desired film. The optical properties of this film are shown in Table 1.
[0050]
Example 3 CeB of liquid A of Example 1 6 Fine particles in TbB 6 A coating solution was prepared in the same manner as in Example 1 except that the fine particles (average particle size 90 nm) were used, and this was diluted with ethanol until the fine particle concentration became 2.0% by weight. The solution was dropped from a beaker onto a rotating 200 × 200 × 3 mm soda-lime-based plate glass substrate, shaken off for 5 minutes, and then stopped rotating. In addition to this, the B liquid SiO 2 15 g of a solution diluted with ethanol to a concentration of 2.0% was dropped from a beaker onto the coated substrate rotating at 150 rpm, shaken off for 5 minutes, and then stopped rotating. This was put in an electric furnace at 180 ° C. and heated for 30 minutes to obtain a target film. The optical properties of this film are shown in Table 1.
[0051]
Example 4 CeB of liquid A of Example 1 6 DyB fine particles 6 A coating solution was prepared and spin-coated in the same manner as in Example 1 except that fine particles (average particle size 95 nm) were used, and this was placed in an electric furnace at 180 ° C. and heated for 30 minutes to obtain the desired film. The optical properties of this film are shown in Table 1.
[0052]
Example 5 ... CeB of liquid A of Example 1 6 Fine particles to HoB 6 A coating solution was prepared and spin-coated in the same manner as in Example 1 except that fine particles (average particle size 85 nm) were used, and this was placed in an electric furnace at 180 ° C. and heated for 30 minutes to obtain the desired film. The optical properties of this film are shown in Table 1.
[0053]
Example 6 ... CeB of liquid A of Example 1 6 Fine particles YB 6 The coating solution was adjusted and spin-coated in the same manner as in Example 1 except that the fine particles (average particle size 90 nm) were used, and this was placed in an electric furnace at 180 ° C. and heated for 30 minutes to obtain the desired film. The optical properties of this film are shown in Table 1.
[ 0054 ]
Example 8 ... CeB of liquid A of Example 1 6 Fine particles from EuB 6 Coating liquid adjustment and spin were performed in the same manner as in Example 1 except that fine particles (average particle size of 90 nm) were used, urethane lacquer made by Mitsui Chemicals was used as a binder instead of B liquid, and the spin rotation speed was 200 rpm. This was coated and allowed to stand at room temperature to evaporate the solvent to obtain the desired film. The optical properties of this film are shown in Table 1.
[ 0055 ]
Example 9: CeB of liquid A of Example 1 6 Fine particles from ErB 6 In the same manner as in Example 1 except that fine particles (average particle size 120 nm) were used, instead of the B solution, a room temperature curable resin manufactured by Shin-Etsu Silicone was used as a binder, and the spin rotation speed was 200 rpm. Spin coating was performed, and this was allowed to stand at room temperature to evaporate the solvent, whereby a desired film was obtained. The optical properties of this film are shown in Table 1.
[ 0056 ]
Example 10: CeB of liquid A of Example 1 6 Fine particles in TmB 6 The coating solution was adjusted and spin-coated in the same manner as in Example 1 except that the fine particles (average particle size 110 nm) were used, and this was placed in an electric furnace at 180 ° C. and heated for 30 minutes to obtain the desired film. The optical properties of this film are shown in Table 1.
[ 0057 ]
Example 11 ... CeB of liquid A of Example 1 6 Fine particles LuB 6 The coating solution was adjusted and spin-coated in the same manner as in Example 1 except that the fine particles (average particle size 95 nm) were used, and this was placed in an electric furnace at 180 ° C. and heated for 30 minutes to obtain the desired film. The optical properties of this film are shown in Table 1.
[ 0058 ]
Example 12 ... CeB of liquid A of Example 1 6 Fine particles in SrB 6 The coating solution was adjusted and spin-coated in the same manner as in Example 1 except that the fine particles (average particle size 95 nm) were used, and this was placed in an electric furnace at 180 ° C. and heated for 30 minutes to obtain the desired film. The optical properties of this film are shown in Table 1.
[ 0059 ]
Example 13 ... CeB of liquid A of Example 1 6 Fine particles are CaB 6 A coating solution was prepared and spin-coated in the same manner as in Example 1 except that the fine particles (average particle size 80 nm) were used, and this was placed in an electric furnace at 180 ° C. and heated for 30 minutes to obtain the desired film. The optical properties of this film are shown in Table 1.
[ 0060 ]
Example 15: 35 g of ITO fine particles (average particle size 55 nm), 61 g of diacetone alcohol (DAA), and 4.0 g of a coupling agent for dispersing fine particles were mixed and ball mill mixed for 12 hours using a zirconia ball having a diameter of 4 mm. Thus, 100 g of a dispersion of ITO fine particles was prepared (C solution). This C liquid, the A liquid of Example 1 and the silicone-based UV curable resin manufactured by Shin-Etsu Silicone Co., Ltd. were diluted with ethanol so as to have the composition of Example 15 in Table 1 and sufficiently mixed, and 15 g of this solution was mixed at 200 rpm. The solution was dropped from a beaker onto a rotating 200 × 200 × 3 mm soda-lime-based plate glass substrate, shaken off for 5 minutes, and then stopped rotating. This was put in an electric furnace at 100 ° C. and dried for 2 minutes to evaporate the solvent, and then irradiated with ultraviolet rays for 2 minutes using a high-pressure mercury lamp to obtain the intended film. The optical properties of this film are shown in Table 1.
[ 0061 ]
Example 16 ... 35 g of ATO fine particles (average particle size 50 nm), 61 g of diacetone alcohol (DAA), and 4.0 g of a coupling agent for dispersing fine particles were mixed and ball mill mixed for 12 hours using zirconia balls having a diameter of 4 mm. do it ATO fine particles 100 g of a dispersion liquid (D liquid) was prepared. The solution D, the solution A of Example 1 and a silicone UV curable resin manufactured by Shin-Etsu Silicone Co., Ltd. were diluted with ethanol so as to have the composition of Example 16 of Table 1 and mixed well, and 15 g of this solution was mixed at 200 rpm. The solution was dropped from a beaker onto a rotating 200 × 200 × 3 mm soda-lime-based plate glass substrate, shaken off for 5 minutes, and then stopped rotating. This was put in an electric furnace at 100 ° C. and dried for 2 minutes to evaporate the solvent, and then irradiated with ultraviolet rays for 2 minutes using a high-pressure mercury lamp to obtain the intended film. The optical properties of this film are shown in Table 1.
[ 0062 ]
Examples 1 to above 6, 8-13, 15, 16 In all the films, the solar radiation transmittance is 15 points or more lower than the visible light transmittance, and it is well understood that the solar radiation is effectively shielded while maintaining the brightness, which is useful as a solar radiation shielding film. I understand that. Further, all the films of the examples have a reflectance in the visible light region of 8% or less, no mirror-like glare, and a surface resistance value of 8 × 10 8 for all films. 10 It was confirmed that there was no problem in radio wave transmission because it was Ω / □ or more.
[ 0063 ]
Comparative Example 1 For a commercially available heat ray reflective glass produced by a physical film formation method that is more expensive than the coating method, the spectral transmittance of 340 to 1800 nm was measured, and the optical characteristics were examined according to JIS R 3106. The visible light transmittance was 61.8% and the solar radiation transmittance was 63.4%. This has a smaller difference between the visible light transmittance and the solar radiation transmittance as compared with the hexaboride coating film, and the solar radiation shielding efficiency is poor. Further, the visible light reflectance was as high as 30% or more, and the appearance was glaring and mirror-like. Further, the surface resistance value of the film surface was as low as 83Ω / □, and it was clear that there were problems with radio wave transmission and reflection.
[ 0064 ]
[Table 1]
[ 0065 ]
【The invention's effect】
As described above, according to the present invention, since the light transmittance in the visible light region is high and the light transmittance in the near-infrared region is low, the heat energy of solar radiation is efficiently reduced without impairing the brightness. Can be well shielded and has low visible light reflectivity, so there is no glare, and the conductivity of the film is 10 6 It is a solar radiation shielding film excellent in radio wave transmission because it can be controlled to Ω / □ or more, and a coating liquid that can be formed by a simple coating method without using a high-cost physical film forming method, and this A solar shading film could be provided.
[ 0066 ]
This film is an industrial product that has an effect of reducing a cooling load in summer by using this film for a window glass of a building or the like, is useful for energy saving, and is highly useful in terms of environment.
[Brief description of the drawings]
FIG. 1 is a typical profile of the film of Example 1 with the horizontal axis representing wavelength (nm) and the vertical axis representing transmittance (%).

Claims (10)

粒径が200nm以下の6ホウ化物微粒子(XB、Xが、Ce、Gd、Tb、Dy、Ho、Y、Eu、Er、Tm、Lu、Sr、Caのうちの1種以上)を、バインダーとともに溶液中に混合分散した日射遮蔽膜用塗布液であって、前記6ホウ化物微粒子を0.8〜2.0重量%含有し、且つ、該6ホウ化物微粒子の重量割合が前記微粒子とバインダー成分を合わせた固形分量に対して9.1〜71.4重量%混合分散していることを特徴とする日射遮蔽膜用塗布液。A hexaboride fine particle (XB 6 , X is one or more of Ce, Gd, Tb, Dy, Ho, Y , Eu , Er, Tm , Lu , Sr, and Ca) having a particle size of 200 nm or less, and a binder And a coating solution for solar radiation shielding film mixed and dispersed in the solution, containing 0.8 to 2.0% by weight of the hexaboride fine particles, wherein the weight ratio of the hexaboride fine particles is the fine particles and the binder. A coating solution for solar radiation shielding film, characterized by being mixed and dispersed in an amount of 9.1 to 71.4% by weight based on the combined solid content. 更に、アンチモン含有酸化錫(ATO)微粒子、錫含有酸化インジウム微粒子(ITO)、アルミニウム含有酸化亜鉛微粒子(AZO)の少なくとも1種以上を含有することを特徴とする請求項1記載の日射遮蔽膜用塗布液。  The solar radiation shielding film according to claim 1, further comprising at least one of antimony-containing tin oxide (ATO) fine particles, tin-containing indium oxide fine particles (ITO), and aluminum-containing zinc oxide fine particles (AZO). Coating liquid. 前記バインダーとして、ケイ素、チタン、ジルコニウム、アルミニウムのアルコキシド、若しくは、アルミニウムのアルコキシドの部分加水分解重合物の少なくとも1種以上を含有することを特徴とする請求項1又は2記載の日射遮蔽膜用塗布液。  3. The solar shading film coating according to claim 1, wherein the binder contains at least one of silicon, titanium, zirconium, aluminum alkoxide, or a partially hydrolyzed polymer of aluminum alkoxide. liquid. 前記バインダーとして、紫外線硬化樹脂、常温硬化樹脂、若しくは、熱可塑性樹脂の少なくとも1種以上を含有することを特徴とする請求項1から3記載の日射遮蔽膜用塗布液。  The coating solution for solar radiation shielding film according to claim 1, wherein the binder contains at least one of an ultraviolet curable resin, a room temperature curable resin, and a thermoplastic resin. 請求項1〜4のいずれか1項に記載の日射遮蔽膜用塗布液を基材に塗布して得た日射遮蔽膜であって、膜の透過率プロファイルが、400〜700nmに極大値を、700〜1800nmに極小値をもち、且つ、その極大値と極小値との差が15ポイント以上であることを特徴とする日射遮蔽膜。  It is a solar radiation shielding film obtained by apply | coating the coating liquid for solar radiation shielding films of any one of Claims 1-4 to a base material, Comprising: The transmittance | permeability profile of a film | membrane has a maximum value in 400-700 nm, A solar radiation shielding film having a minimum value at 700 to 1800 nm and a difference between the maximum value and the minimum value being 15 points or more. 請求項5の日射遮蔽膜に、更に、該日射遮蔽膜と屈折率の異なる膜を1種以上重ねた日射遮蔽多層膜であって、膜の透過率プロファイルが、400〜700nmに極大値を、700〜1800nmに極小値をもち、且つ、その極大値と極小値との差が15ポイント以上であることを特徴とする日射遮蔽多層膜。  A solar radiation shielding multilayer film in which the solar radiation shielding film of claim 5 is further laminated with one or more kinds of films different in refractive index from the solar radiation shielding film, and the transmittance profile of the film has a maximum value at 400 to 700 nm. A solar radiation-shielding multilayer film having a minimum value at 700 to 1800 nm and a difference between the maximum value and the minimum value being 15 points or more. 日射遮蔽多層膜の最上層がオーバーコート層であることを特徴とする請求項6に記載の日射遮蔽多層膜。  7. The solar radiation shielding multilayer film according to claim 6, wherein the uppermost layer of the solar radiation shielding multilayer film is an overcoat layer. 表面抵抗値が10 Ω/□以上であることを特徴とする請求項5記載の日射遮蔽膜。The solar radiation shielding film according to claim 5, wherein the surface resistance value is 10 6 Ω / □ or more. 表面抵抗値が10Ω/□以上であることを特徴とする請求項6又は7記載の日射遮蔽多層膜。8. The solar radiation shielding multilayer film according to claim 6, wherein the surface resistance value is 10 6 Ω / □ or more. 請求項1〜9のいずれか1項に記載の日射遮蔽膜又は日射遮蔽多層膜が形成された日射遮蔽機能を有すること特徴とする透明基材。  The transparent base material which has the solar radiation shielding function in which the solar radiation shielding film or solar radiation shielding multilayer film of any one of Claims 1-9 was formed.
JP26781198A 1998-09-22 1998-09-22 Solar shading material, coating liquid for solar shading film, and solar shading film Expired - Lifetime JP4096277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26781198A JP4096277B2 (en) 1998-09-22 1998-09-22 Solar shading material, coating liquid for solar shading film, and solar shading film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26781198A JP4096277B2 (en) 1998-09-22 1998-09-22 Solar shading material, coating liquid for solar shading film, and solar shading film

Publications (2)

Publication Number Publication Date
JP2000096034A JP2000096034A (en) 2000-04-04
JP4096277B2 true JP4096277B2 (en) 2008-06-04

Family

ID=17449942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26781198A Expired - Lifetime JP4096277B2 (en) 1998-09-22 1998-09-22 Solar shading material, coating liquid for solar shading film, and solar shading film

Country Status (1)

Country Link
JP (1) JP4096277B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101222936B1 (en) 2010-09-29 2013-01-17 (주)디오 Water-soluble Coating Agent For Selective Blocking Infrared and Ultraviolet Rays Including Aminosilane And Coating Film Using The Same
CN107429098A (en) * 2015-01-27 2017-12-01 住友金属矿山株式会社 Near-infrared absorbing particle dispersion liquid and its manufacture method, the anti-forgery ink composition of near-infrared absorbing particle dispersion liquid is used and has used the Antiforge printed matter of near-infrared absorbing particulate
WO2018159029A1 (en) 2017-02-28 2018-09-07 住友金属鉱山株式会社 Heat-ray-shielding microparticles, heat-ray-shielding microparticle liquid dispersion, coating liquid for heat-ray-shielding film, and heat-ray-shielding film, heat-ray-shielding resin film, and heat-ray-shielding microparticle dispersion body that use said microparticles, liquid dispersion, or coating liquid

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4096278B2 (en) * 1998-12-10 2008-06-04 住友金属鉱山株式会社 Solar shading film coating solution and solar shading film using the same
JP4250953B2 (en) * 2002-01-18 2009-04-08 住友金属鉱山株式会社 6 boride particles, a dispersion in which the 6 boride particles are dispersed, and an article using the 6 boride particles or the dispersion
JP4187999B2 (en) * 2002-05-13 2008-11-26 住友金属鉱山株式会社 Heat ray shielding resin sheet material and manufacturing method thereof
JP4349779B2 (en) 2002-07-31 2009-10-21 住友金属鉱山株式会社 Heat ray shielding transparent resin molding and heat ray shielding transparent laminate
JP3982466B2 (en) * 2002-09-25 2007-09-26 住友金属鉱山株式会社 Heat ray shielding component dispersion, method for producing the same, heat ray shielding film forming coating solution, heat ray shielding film and heat ray shielding resin molding obtained by using this dispersion
JP2004244613A (en) * 2003-01-23 2004-09-02 Sumitomo Metal Mining Co Ltd Solar radiation screening material and dispersion for forming the solar radiation screening material
US7258923B2 (en) 2003-10-31 2007-08-21 General Electric Company Multilayered articles and method of manufacture thereof
JP4700276B2 (en) * 2003-12-19 2011-06-15 帝人化成株式会社 Polycarbonate resin molded body having a hard coat layer
US7399571B2 (en) 2005-05-06 2008-07-15 General Electric Company Multilayered articles and method of manufacture thereof
US8900693B2 (en) 2005-07-13 2014-12-02 Sabic Global Technologies B.V. Polycarbonate compositions having infrared absorbance, method of manufacture, and articles prepared therefrom
JP4737419B2 (en) * 2006-01-20 2011-08-03 住友金属鉱山株式会社 Boride particles, production method thereof, boride fine particle dispersion using the boride particles, and solar shield
JP4958451B2 (en) * 2006-03-01 2012-06-20 アキレス株式会社 Heat shielding sheet
JP5224229B2 (en) * 2006-08-10 2013-07-03 公立大学法人高知工科大学 Transparent electromagnetic shielding film
JP5168445B2 (en) 2007-01-11 2013-03-21 住友金属鉱山株式会社 CONNECTED BODY AND METHOD FOR PRODUCING THE SAME
JP2009007434A (en) * 2007-06-27 2009-01-15 Nagoya Institute Of Technology Thermo-optic conversion system of rare earth compound
WO2009017104A1 (en) * 2007-07-30 2009-02-05 Yohei Tanaka Protective agent against damage of biological tissue caused by near-infrared ray, and product comprising the same
JP5675312B2 (en) * 2010-12-10 2015-02-25 株式会社ブリヂストン Heat ray shielding glass and multilayer glass using the same
JP5942466B2 (en) 2012-02-22 2016-06-29 住友金属鉱山株式会社 Composite tungsten oxide fine particle dispersed polycarbonate resin composition, heat ray shielding molded article and heat ray shielding laminate using the same
EP2873993A4 (en) * 2012-07-13 2016-03-09 Konica Minolta Inc Infrared-shielding film
CA2902014C (en) * 2013-02-25 2018-09-11 Saint-Gobain Glass France Pane arrangement with infrared-damping coating
JP6488575B2 (en) * 2014-07-10 2019-03-27 Agc株式会社 Near-infrared absorbing structure
KR102501213B1 (en) 2014-08-29 2023-02-17 스미토모 긴조쿠 고잔 가부시키가이샤 Aggregate of hexaboride microparticles, hexaboride microparticle dispersion, hexaboride microparticle-dispersed body, laminated transparent base material with hexaboride microparticle-dispersed body, infrared-absorptive film, and infrared-absorptive glass
WO2016084009A1 (en) 2014-11-25 2016-06-02 Sabic Global Technologies B.V. Method and article for emitting radiation from a surface
WO2016084008A1 (en) 2014-11-25 2016-06-02 Sabic Global Technologies B.V. Method and device for heating a surface
US20180022945A1 (en) 2015-01-27 2018-01-25 Sumitomo Metal Mining Co., Ltd. Near infrared absorbing fine particle dispersion liquid and method for producing the same, anti-counterfeit ink composition using near infrared absorbing fine particle dispersion liquid, and anti-counterfeit printed matter using near infrared absorbing fine particles
WO2016121842A1 (en) 2015-01-27 2016-08-04 住友金属鉱山株式会社 Near-infrared ray absorbing microparticle dispersion solution, production method thereof, counterfeit-preventing ink composition using said near-infrared ray absorbing microparticle dispersion solution, and anti-counterfeit printed matter using said near-infrared ray absorbing microparticles
JP6497128B2 (en) * 2015-02-26 2019-04-10 住友金属鉱山株式会社 Donor sheet
KR101666350B1 (en) 2015-09-01 2016-10-17 한국화학연구원 Insulation Film including fluorocarbon thin film and Method of Manufacturing The Same
WO2017119394A1 (en) 2016-01-04 2017-07-13 住友金属鉱山株式会社 Boride particles, boride particle dispersed liquid, infrared light shielding transparent base, infrared light shielding optical member, infrared light shielding particle dispersed body, infrared light shielding laminated transparent base, infrared light shielding particle dispersed powder, and master batch
IL260353B (en) 2016-01-04 2022-08-01 Sumitomo Metal Mining Co Boride particles, boride particle dispersed liquid, infrared light shielding transparent base, infrared light shielding optical member, infrared light shielding particle dispersed body, infrared light shielding laminated transparent base, infrared light shielding particle dispersed powder, and master batch
JP6544299B2 (en) * 2016-06-10 2019-07-17 住友金属鉱山株式会社 Method of selecting elements in boride particles and method of producing boride particles
WO2019021992A1 (en) * 2017-07-24 2019-01-31 住友金属鉱山株式会社 Infrared absorbing fine particle dispersion powder, dispersion liquid containing infrared absorbing fine particle dispersion powder, ink containing infrared absorbing fine particle dispersion powder, anti-counterfeit ink, and printed matter for anti-counterfeiting
CN109501396B (en) * 2017-09-14 2021-06-22 东莞市荣腾纳米科技有限公司 Light guide and heat insulation film and preparation method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS521407B2 (en) * 1972-03-01 1977-01-14
JPS6111250A (en) * 1984-06-27 1986-01-18 株式会社豊田中央研究所 Method of forming transparent conductive film
JPH036015Y2 (en) * 1985-04-22 1991-02-15
JPH04243913A (en) * 1991-01-25 1992-09-01 Sumitomo Metal Mining Co Ltd Production of fine boride powder
JPH0641723A (en) * 1992-07-27 1994-02-15 Tonen Corp Electric conductive transparent film
JPH06144874A (en) * 1992-10-30 1994-05-24 Asahi Glass Co Ltd Heat ray reflective film and its production
JPH0841441A (en) * 1994-05-25 1996-02-13 Sumitomo Metal Mining Co Ltd Indium-tin oxide powder for shielding ultraviolet and near infrared rays, ultraviolet and near-infrared ray-shielding glass and production thereof
JPH08325034A (en) * 1995-05-29 1996-12-10 Asahi Glass Co Ltd Heat ray reflecting glass body
JPH1025200A (en) * 1996-07-11 1998-01-27 Nippon Sanso Kk Film-forming substrate and electric element
JPH10101375A (en) * 1996-09-30 1998-04-21 Sumitomo Metal Mining Co Ltd Solar radiation shielding coating solution and solar radiation shielding film using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101222936B1 (en) 2010-09-29 2013-01-17 (주)디오 Water-soluble Coating Agent For Selective Blocking Infrared and Ultraviolet Rays Including Aminosilane And Coating Film Using The Same
CN107429098A (en) * 2015-01-27 2017-12-01 住友金属矿山株式会社 Near-infrared absorbing particle dispersion liquid and its manufacture method, the anti-forgery ink composition of near-infrared absorbing particle dispersion liquid is used and has used the Antiforge printed matter of near-infrared absorbing particulate
CN107429098B (en) * 2015-01-27 2021-03-09 住友金属矿山株式会社 Near-infrared absorbing fine particle dispersion, method for producing same, forgery-preventing ink composition, and forgery-preventing printed matter
WO2018159029A1 (en) 2017-02-28 2018-09-07 住友金属鉱山株式会社 Heat-ray-shielding microparticles, heat-ray-shielding microparticle liquid dispersion, coating liquid for heat-ray-shielding film, and heat-ray-shielding film, heat-ray-shielding resin film, and heat-ray-shielding microparticle dispersion body that use said microparticles, liquid dispersion, or coating liquid
KR20190125980A (en) 2017-02-28 2019-11-07 스미토모 긴조쿠 고잔 가부시키가이샤 Hot wire shielding fine particle, hot wire shielding fine particle dispersion, coating liquid for hot wire shielding film, and hot wire shielding film, hot wire shielding resin film, hot wire shielding fine particle dispersion using these
US11136241B2 (en) 2017-02-28 2021-10-05 Sumitomo Metal Mining Co., Ltd. Heat ray shielding fine particles, heat ray shielding fine particle dispersion liquid, coating liquid for heat ray shielding layer, and heat ray shielding layer, heat ray shielding resin film, heat ray shielding dispersion body using them

Also Published As

Publication number Publication date
JP2000096034A (en) 2000-04-04

Similar Documents

Publication Publication Date Title
JP4096277B2 (en) Solar shading material, coating liquid for solar shading film, and solar shading film
JP4096278B2 (en) Solar shading film coating solution and solar shading film using the same
JP4626284B2 (en) Method for producing tungsten oxide fine particles for forming solar shield, and tungsten oxide fine particles for forming solar shield
AU736327B2 (en) Film for cutting off heat rays and a coating liquid for forming the same
CN102781868A (en) Heat ray-blocking multilayered glass
JP3262098B2 (en) Heat ray shielding material, heat ray shielding equipment using the same, coating liquid and heat ray shielding film
JP2005226008A (en) Dispersion for forming solar radiation-shielding body, and solar radiation-shielding body and method for producing the same
US20090216492A1 (en) Solar radiation shielding member and solar radiation shielding member forming fluid dispersion
JP3744188B2 (en) Heat ray shielding film forming coating solution and heat ray shielding film
JP2003176132A (en) Antimony-tin oxide particle for shielding insolation, coating solution for forming insolation shielding film and insolation shielding film
JP2002131531A (en) Heat wave reflecting transparent substrate, method for manufacturing the same and display device for which heat wave reflecting transparent substrate is applied
JP4058850B2 (en) Coating solution for solar filter film formation
JP2002194291A (en) Method for preparing coating fluid for forming insolation shielding film
JP4182825B2 (en) Antimony tin oxide fine particles for sunscreen, dispersion for forming sunscreen using the same, sunscreen and transparent substrate for sunscreen
JP2003215328A (en) Fine particles for sun protection, coating liquid for forming sun protection film containing the same and sun protection film
JPH10101375A (en) Solar radiation shielding coating solution and solar radiation shielding film using the same
JP4200424B2 (en) Manufacturing method of solar shading material, coating liquid for forming solar shading film, solar shading film, and transparent base material for solar shading
JP5999361B2 (en) Infrared shielding material, infrared shielding material fine particle dispersion, infrared shielding material fine particle dispersion, and infrared shielding material
JP2003327429A (en) Fine particle for shielding solar radiation, coating solution for forming solar radiation shielding film containing the fine particle and solar radiation shielding film
WO2022107717A1 (en) Glass substrate with thermal barrier film
JP2012082109A (en) Method for producing tungsten oxide fine particle for forming highly heat-resistant heat ray-shielding material, tungsten oxide fine particle for forming highly heat-resistant heat ray-shielding material and dispersion for forming highly heat-resistant heat ray-shielding material, and highly heat-resistant heat ray-shielding material
JP2002201027A (en) Ito microparticle for daylight screening, method for producing the same, and coating liquid and daylight screening film using the same
JP2005209350A (en) Transparent conductive film and manufacturing method of the same
JPH11258417A (en) Coating liquid for forming heat-ray-shielding film and heat-ray-shielding film
JPH1036774A (en) Coating liquid for sun light-shading film and sun light-shading film using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

EXPY Cancellation because of completion of term