JPH11258417A - Coating liquid for forming heat-ray-shielding film and heat-ray-shielding film - Google Patents

Coating liquid for forming heat-ray-shielding film and heat-ray-shielding film

Info

Publication number
JPH11258417A
JPH11258417A JP6490898A JP6490898A JPH11258417A JP H11258417 A JPH11258417 A JP H11258417A JP 6490898 A JP6490898 A JP 6490898A JP 6490898 A JP6490898 A JP 6490898A JP H11258417 A JPH11258417 A JP H11258417A
Authority
JP
Japan
Prior art keywords
film
shielding film
heat ray
ray shielding
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6490898A
Other languages
Japanese (ja)
Inventor
Hiroko Kuno
裕子 久野
Hiromitsu Takeda
広充 武田
Kenji Adachi
健治 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP6490898A priority Critical patent/JPH11258417A/en
Publication of JPH11258417A publication Critical patent/JPH11258417A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a coating liquid from which a film having high transmittance and low reflectance in the visible light region and low transmittance and high reflectance in the near infrared region and film conductivity controllable to be about 10<6> Ω/(square) or higher can be formed by a simple coating method without requiring a costly physical film formation method and to provide a heat-ray shielding film produced from the coating liquid. SOLUTION: This coating liquid contains dispersed fine particles of carbides of one or more metals selected from Ti, V, Zr, Hf, Nb, Ta, W, and B with an average particle diameter of 100 nm or smaller and further a fine particle of ruthenium oxide or iridium oxide with an average particle diameter of 100 nm or smaller. This heat ray-shielding film is obtained by applying any of such a coating liquid to a substrate and then drying the substrate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、車両、ビル、事務
所、一般住宅などの窓、電話ボックス、ショーウインド
ー、照明用ランプなど、ガラス、プラスチックスその他
の各種熱線遮蔽機能を必要とする透明もしくは半透明基
材に塗布して熱線遮蔽膜とするための塗布液、及び、こ
れにより得られる熱線遮蔽膜に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transparent or transparent glass or plastics or any other heat ray shielding function, such as a window for a vehicle, a building, an office or a general house, a telephone box, a show window, a lighting lamp and the like. The present invention relates to a coating liquid for applying to a translucent substrate to form a heat ray shielding film, and a heat ray shielding film obtained by the application liquid.

【0002】[0002]

【従来の技術】従来、太陽光や電球などの外部光源から
熱成分を除去・減少する方法として、ガラス表面に可視
・赤外域の波長を反射する材料を利用して熱線反射ガラ
スとすることが行なわれていた。そして、熱線反射のた
めの材料には、FeOX、CoOX、CrOX、TiOX
の金属酸化物や、Ag、Au、Cu、Ni、Alなどの
自由電子を多量にもつ金属材料が選択されてきた。
2. Description of the Related Art Conventionally, as a method of removing or reducing a heat component from an external light source such as sunlight or a light bulb, a heat ray reflecting glass using a material which reflects a visible / infrared wavelength on a glass surface is used. Was being done. As materials for heat ray reflection, metal oxides such as FeO x , CoO x , CrO x , and TiO x and metal materials having a large amount of free electrons such as Ag, Au, Cu, Ni, and Al are selected. It has been.

【0003】しかし、これらの材料では熱効果に大きく
寄与する近赤外線以外に、可視光領域の光も同時に反射
もしくは吸収する性質があり、可視光透過率が低下して
しまう欠点があった。建材、乗り物、電話ボックスなど
に用いられる透明基材では、可視光領域の高い透過率が
必要とされ、これらの材料を利用する場合は可視光透過
率を高くするため膜厚を非常に薄くしなければならず、
従ってスプレー焼き付けやCVD法、或いはスパッタ法
や真空蒸着法などの物理成膜法を用いて10nmレベル
の極めて薄い薄膜に成膜して用いられることが通常行な
われてきた。
However, these materials have the property of simultaneously reflecting or absorbing light in the visible light region in addition to near infrared rays which greatly contribute to the thermal effect, and have a drawback that the visible light transmittance is reduced. Transparent base materials used for building materials, vehicles, telephone boxes, etc., require high transmittance in the visible light region, and when using these materials, the thickness must be extremely thin to increase the visible light transmittance. Must be
Therefore, it has been generally practiced to form an extremely thin film having a thickness of 10 nm using a physical film forming method such as spray baking, a CVD method, or a sputtering method or a vacuum evaporation method.

【0004】これらの成膜方法は大がかりな装置や真空
設備を必要とし、生産性、大面積化に問題があり、ま
た、膜の製造コストが高かった。
[0004] These film forming methods require large-scale equipment and vacuum equipment, have problems in productivity and increase in area, and have a high film manufacturing cost.

【0005】また、これらの膜は膜厚を薄くして透過率
を高くしようとすると熱線遮蔽特性が低下し、逆に膜厚
を厚くして熱線遮蔽特性を高くすると膜が暗くなってし
まう。さらに、これらの材料熱線遮蔽特性を高くしよう
とすると可視光領域の反射率も同時に高くなってしまう
傾向があり、鏡のようなギラギラした外観を与えて美観
を損ねてしまった。
[0005] Further, when these films are made thinner to increase the transmittance, the heat ray shielding characteristics are degraded. Conversely, when the film thickness is increased to increase the heat ray shielding characteristics, the films become darker. Further, when the heat ray shielding properties of these materials are to be enhanced, the reflectance in the visible light region tends to be increased at the same time, giving a glare-like appearance like a mirror and impairing the aesthetic appearance.

【0006】さらに、これらの材料では膜の導電性が高
くなるものが多い。膜の導電性が高いと携帯電話やT
V、ラジオなどの電波を反射して受信不能になったり、
周辺地域に電波障害を引き起こすなどの欠点があった。
Further, many of these materials have high conductivity of the film. If the conductivity of the film is high, mobile phones and T
V, radio and other radio waves are reflected and become unreceivable,
There were drawbacks such as causing radio interference in the surrounding area.

【0007】上記従来の欠点を改善するためには、膜の
物理特性として、可視光領域の光の反射率が低く、近赤
外領域の光の反射率が高く、かつ、膜の導電性が概ね1
6Ω/□以上に制御可能な膜を形成する必要があっ
た。しかしながら従来このような膜、或いはこのような
膜を形成する材料は知られていなかった。
[0007] In order to improve the above-mentioned drawbacks, the physical properties of the film are such that the reflectance of light in the visible light region is low, the reflectance of light in the near infrared region is high, and the conductivity of the film is low. Generally 1
0 6 Ω / □ has been necessary to form a controllable membrane above. However, conventionally, such a film or a material for forming such a film has not been known.

【0008】可視光透過率が高く、かつ熱線遮蔽機能を
もつ材料としては、アンチモン含有酸化錫(ATO)
や、錫含有酸化インジウム(ITO)が知られている。
これらの材料は可視光反射率が比較的低く、ギラギラし
た外観を与えることはないが、プラズマ波長が近赤外域
の比較的長波長側にあり、可視光に近い近赤外域におけ
るこれらの膜の反射・吸収効果は十分でなかった。ま
た、物理成膜法でこれらの膜を形成した場合には、膜の
導電性が上がって電波を反射してしまう欠点があった。
As a material having a high visible light transmittance and a heat ray shielding function, antimony-containing tin oxide (ATO)
Also, tin-containing indium oxide (ITO) is known.
Although these materials have a relatively low visible light reflectance and do not give a glare-like appearance, the plasma wavelength is relatively long in the near infrared region, and these films have a near-infrared region close to visible light. The reflection and absorption effects were not sufficient. Further, when these films are formed by a physical film forming method, there is a disadvantage that the conductivity of the films is increased and radio waves are reflected.

【0009】[0009]

【発明が解決しようとする課題】本発明は、上記従来技
術の問題点を解決し、可視光領域の光の透過率が高くて
反射率が低く、近赤外領域の光の透過率が低くて反射率
が高く、膜の導電性が概ね106Ω/□以上に制御可能
な膜を、高コストの物理成膜法を用いずに簡便な塗布法
で成膜できる塗布液と、これを用いた熱線遮蔽膜とを提
供することを目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, and has a high transmittance of light in the visible light region, a low reflectance, and a low transmittance of light in the near infrared region. A coating solution that can form a film having high reflectivity and a film conductivity of approximately 10 6 Ω / □ or more by a simple coating method without using an expensive physical film forming method; It is an object to provide a heat ray shielding film used.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明者らは、材料そのものの特性として自由電子
を多量に保有する炭化物に着目し、種々検討の結果、こ
れを超微粒子化し、かつ高度に分散した膜を得ることに
より、可視光領域に透過率の極大をもつとともに、可視
光領域に近い近赤外域に強いプラズマ反射を発現して透
過率の極小をもつようになるという現象を見出し、本発
明を完成した。
Means for Solving the Problems In order to achieve the above object, the present inventors have focused on a carbide having a large amount of free electrons as a characteristic of the material itself, and as a result of various studies, have found that this is converted into ultrafine particles. In addition, by obtaining a highly dispersed film, it has a maximum transmittance in the visible light region and a strong plasma reflection in the near infrared region near the visible light region to have a minimum transmittance. After finding the phenomenon, the present invention was completed.

【0011】すなわち、本発明の熱線遮蔽膜用塗布液
は、Ti、V、Zr、Hf、Nb、Ta、W、および、
Bの群から選択される1種または2種以上の金属の炭化
物からなる平均粒径100nm以下の微粒子が分散され
たことを特徴とする。
That is, the coating liquid for a heat ray shielding film of the present invention comprises Ti, V, Zr, Hf, Nb, Ta, W, and
Fine particles having an average particle diameter of 100 nm or less made of carbide of one or more metals selected from the group B are dispersed.

【0012】また、本発明の他の熱線遮蔽膜形成用塗布
液は、Ti、V、Zr、Hf、Nb、Ta、W、およ
び、Bの群から選択される1種または2種以上の金属の
炭化物からなる平均粒径100nm以下の微粒子と、平
均粒径100nm以下の酸化ルテニウム微粒子、もしく
は、平均粒径100nm以下の酸化イリジウム微粒子の
うち少なくとも1種とを含有することを特徴とする。
Further, another coating liquid for forming a heat ray shielding film according to the present invention may include one or more metals selected from the group consisting of Ti, V, Zr, Hf, Nb, Ta, W, and B. And fine particles of an average particle size of 100 nm or less, and at least one kind of ruthenium oxide particles with an average particle size of 100 nm or less or iridium oxide particles with an average particle size of 100 nm or less.

【0013】また、本発明の他の熱線遮蔽膜形成用塗布
液は、上記いずれかの構成で更に、珪素、ジルコニウ
ム、チタン、もしくは、アルミニウムの金属アルコキシ
ド、または、金属アルコキシドの部分加水分解重合物の
うちの1種または2種以上を含有することを特徴とす
る。
[0013] In another aspect of the present invention, the coating solution for forming a heat ray shielding film further comprises a metal alkoxide of silicon, zirconium, titanium or aluminum or a partially hydrolyzed polymer of metal alkoxide. Characterized in that it contains one or more of these.

【0014】上記いずれかの構成の熱線遮蔽膜形成用塗
布液は、樹脂バインダーを含有していても良い。
The coating solution for forming a heat ray shielding film having any one of the above constitutions may contain a resin binder.

【0015】また、本発明の熱線遮蔽膜は、上記いずれ
かの熱線遮蔽膜形成用塗布液を基材に塗布後加熱して得
た微粒子分散膜であって、熱線遮蔽特性を示す主成分
が、Ti、V、Zr、Hf、Nb、Ta、W、および、
Bのうちの1種または2種以上の金属の炭化物微粒子で
あり、該微粒子が樹脂バインダー中、または、珪素、ジ
ルコニウム、チタン、および、アルミニウムの金属酸化
物のうちの1種または2種以上を含有する酸化物のバイ
ンダー中に分散されたことを特徴とする。
Further, the heat ray shielding film of the present invention is a fine particle dispersion film obtained by applying any one of the above-mentioned coating solutions for forming a heat ray shielding film to a substrate and then heating the substrate. , Ti, V, Zr, Hf, Nb, Ta, W, and
B is carbide fine particles of one or more kinds of metals in B, and the fine particles are one or more kinds of metal oxides of silicon, zirconium, titanium, and aluminum in a resin binder. It is characterized by being dispersed in a binder of an oxide to be contained.

【0016】また、上記熱線遮蔽膜上に更に、珪素、ジ
ルコニウム、チタン、および、アルミニウムのいずれか
の金属酸化物のうちの1種または2種以上を含有する酸
化物膜を被膜して、または、上記熱線遮蔽膜上に更に、
樹脂膜を被膜して多層熱線遮蔽膜としてもよい。
Further, the heat ray shielding film is further coated with an oxide film containing one or more of metal oxides of silicon, zirconium, titanium and aluminum, or , On the heat ray shielding film,
A multilayer heat ray shielding film may be formed by coating a resin film.

【0017】上記いずれかの熱線遮蔽膜は、透過率が、
波長400〜700nmに極大値を、波長700〜18
00nmに極小値をもち、かつ、極大値と極小値との差
が百分率で15ポイント以上であることを特徴とし、ま
た、表面抵抗値が106Ω/□以上であることを特徴と
する。
Any one of the above heat ray shielding films has a transmittance of
A maximum value at a wavelength of 400 to 700 nm and a wavelength of 700 to 18
It is characterized in that it has a minimum value at 00 nm, the difference between the maximum value and the minimum value is 15 points or more in percentage, and the surface resistance value is 10 6 Ω / □ or more.

【0018】[0018]

【発明の実施の形態】本発明に使用される炭化物微粒子
としては、炭化チタン(TiC)、炭化ジルコニウム
(ZrC)、炭化ハフニウム(HfC)、炭化バナジウ
ム(VC)、炭化ニオブ(NbC)、炭化タンタル(T
aC)、炭化タングステン(WC)、炭化硼素(B
4C)などの微粒子がその代表的なものとして挙げられ
る。また、本発明に使用される炭化物微粒子は、その表
面が酸化していないことが好ましいが、通常は僅かに酸
化していることが多く、また微粒子の分散工程で表面の
酸化が起こることはある程度避けられない。しかしその
場合でも熱線遮蔽効果を発現する有効性に変わりはな
い。またこれらの炭化物微粒子は、結晶としての完全性
が高いほど大きい熱線遮蔽効果が得られるが、結晶性が
低くX線回折で極めてブロードな回折ピークを生じるよ
うなものであっても、微粒子内部の基本的な結合が各金
属と炭素の結合から成り立っているものであるならば熱
線遮蔽効果を発現する。
BEST MODE FOR CARRYING OUT THE INVENTION The fine carbide particles used in the present invention include titanium carbide (TiC), zirconium carbide (ZrC), hafnium carbide (HfC), vanadium carbide (VC), niobium carbide (NbC), and tantalum carbide. (T
aC), tungsten carbide (WC), boron carbide (B
4 C) fine particles such as are mentioned as a representative. In addition, the carbide fine particles used in the present invention are preferably not oxidized on the surface, but are usually slightly oxidized, and the surface is oxidized in the fine particle dispersion step to some extent. Unavoidable. However, even in that case, there is no change in the effectiveness of exhibiting the heat ray shielding effect. In addition, these carbide fine particles can obtain a large heat ray shielding effect as the crystal perfection is high. However, even if such carbide fine particles have a low crystallinity and cause an extremely broad diffraction peak in X-ray diffraction, the inside of the fine particles can be reduced. If the basic bond is composed of the bond between each metal and carbon, a heat ray shielding effect is exhibited.

【0019】また、本発明に使用される酸化ルテニウム
または酸化イリジウムの微粒子としては、二酸化ルテニ
ウム(RuO2)、ルテニウム酸鉛(Pb2Ru
26.5)、ルテニウム酸ビスマス(Bi2Ru27)、
二酸化イリジウム(IrO2)、イリジウム酸ビスマス
(Bi2Ir27)、イリジウム酸鉛(Pb2Ir
26.5)などの微粒子がその代表的な例として挙げられ
る。これらの微粒子は酸化物として安定であり、また多
量の自由電子を保持しており極めて有効な熱線遮蔽機能
をもっている。
The fine particles of ruthenium oxide or iridium oxide used in the present invention include ruthenium dioxide (RuO 2 ) and lead ruthenate (Pb 2 Ru).
2 O 6.5 ), bismuth ruthenate (Bi 2 Ru 2 O 7 ),
Iridium dioxide (IrO 2 ), bismuth iridate (Bi 2 Ir 2 O 7 ), lead iridate (Pb 2 Ir)
Fine particles such as 2 O 6.5 ) are typical examples. These fine particles are stable as oxides, retain a large amount of free electrons, and have an extremely effective heat ray shielding function.

【0020】これらの炭化物微粒子、酸化ルテニウム微
粒子、酸化イリジウム微粒子は灰黒色、茶黒色、緑黒色
などに着色した粉末であるが、粒径が可視光波長に比べ
て十分小さく、薄膜中に分散された状態においては膜に
可視光透過性が生じる。しかし、赤外光遮蔽能は十分強
く保持できる。
These fine particles of carbide, fine particles of ruthenium oxide and fine particles of iridium oxide are powders colored in gray black, brown black, green black or the like, but have a particle size sufficiently smaller than the wavelength of visible light, and are dispersed in a thin film. In this state, the film has visible light transmittance. However, the infrared light shielding ability can be maintained sufficiently strong.

【0021】この理由は詳細には理解されていないが、
これら微粒子中の自由電子の量が多く、微粒子内部及び
表面の自由電子プラズモンによるプラズマ周波数がちょ
うど、可視〜近赤外の付近にあるために、この波長領域
の熱線が選択的に反射・吸収されると考えられる。実験
によれば、これら微粒子を十分細かくかつ均一に分散さ
れた膜では、透過率が波長400〜700nmに極大値
をもち、かつ、波長700〜1800nmに極小値をも
ち、さらに透過率の極大値と極小値との差が百分率で1
5ポイント以上であることが観察される。可視光波長が
380〜780nmであり、視感度が550nm付近を
ピークとする釣鐘型であることを考慮すると、このよう
な膜では可視光を有効に透過し、それ以外の熱線を有効
に反射・吸収することが理解できる。
Although the reason for this is not understood in detail,
Since the amount of free electrons in these fine particles is large and the plasma frequency due to free electron plasmons inside and on the fine particles is just in the vicinity of visible to near infrared, heat rays in this wavelength region are selectively reflected and absorbed. It is thought that. According to experiments, in a film in which these fine particles are sufficiently finely and uniformly dispersed, the transmittance has a maximum value at a wavelength of 400 to 700 nm, a minimum value at a wavelength of 700 to 1800 nm, and a maximum value of the transmittance. The difference between the minimum value and the minimum value is 1
It is observed that more than 5 points. Considering that the visible light wavelength is 380 to 780 nm and that the visibility is a bell-shaped peak with a peak around 550 nm, such a film effectively transmits visible light and effectively reflects other heat rays. It can be understood that it is absorbed.

【0022】本発明において、塗布液中の炭化物微粒
子、酸化ルテニウム微粒子、酸化イリジウム微粒子の平
均粒径は、100nm以下が好ましい。粒子径が100
nmよりも大きくなると、上に述べたような特有の透過
率プロファイル、すなわち透過率が波長400〜700
nmに極大値をもち、かつ、波長700〜1800nm
に極小値をもち、かつ、極大値と極小値との差が百分率
で15ポイント以上であるようなプロファイルが得られ
ず、単調に透過率の減少した灰色っぽい膜になる。
In the present invention, the average particle size of the carbide fine particles, ruthenium oxide fine particles, and iridium oxide fine particles in the coating solution is preferably 100 nm or less. Particle size 100
When it is larger than nm, the specific transmittance profile as described above, that is, the transmittance is 400 to 700 wavelengths
nm with a maximum value and a wavelength of 700 to 1800 nm
A profile having a minimum value and a difference between the maximum value and the minimum value of 15 points or more in percentage cannot be obtained, and a grayish film having a monotonously reduced transmittance is obtained.

【0023】また、粒子径が100nmよりも大きい場
合には、分散液中の微粒子同士の凝集傾向が強くなり、
微粒子の沈降原因となる。さらに100nm以上の微粒
子もしくはそれらの凝集した粗大粒子は光散乱源となっ
て膜に曇り(ヘイズ)を生じたり、可視光透過率が減少
する原因となる。従って、上記無機微粒子の平均粒径は
100nm以下とする必要がある。なお、経済的に入手
可能な最低の粒径は2nm程度であるが、下限をこれに
限定するものではない。
When the particle diameter is larger than 100 nm, the tendency of the fine particles in the dispersion to agglomerate becomes stronger,
It causes sedimentation of fine particles. Further, the fine particles having a size of 100 nm or more or the aggregated coarse particles serve as a light scattering source, causing clouding (haze) in the film and causing a decrease in visible light transmittance. Therefore, the average particle size of the inorganic fine particles needs to be 100 nm or less. The lowest particle size economically available is about 2 nm, but the lower limit is not limited to this.

【0024】塗布液中の微粒子の分散媒は特に限定され
るものではなく、塗布条件や塗布環境、塗布液中のアル
コキシド、合成樹脂バインダーなどに合わせて選択可能
であり、例えば、水や、アルコール、エーテル、エステ
ル、ケトンなどの有機溶媒の各種が使用可能であり、ま
た必要に応じて酸やアルカリを添加してpHを調整して
も良い。更に塗布液中微粒子の分散安定性を一層向上さ
せるために、各種の界面活性剤、カップリング剤などを
添加することも可能である。そのときのそれぞれの添加
量は、無機微粒子に対して30重量%以下、好ましくは
5重量%以下である。
The dispersion medium of the fine particles in the coating solution is not particularly limited, and can be selected in accordance with the coating conditions and coating environment, the alkoxide in the coating solution, the synthetic resin binder, and the like. Various organic solvents such as ethers, ethers, esters and ketones can be used, and the pH may be adjusted by adding an acid or an alkali as needed. Further, in order to further improve the dispersion stability of the fine particles in the coating liquid, it is possible to add various surfactants, coupling agents and the like. The amount of each addition at that time is 30% by weight or less, preferably 5% by weight or less based on the inorganic fine particles.

【0025】この塗布液を用いて膜としたときの膜の導
電性は、微粒子の接触箇所を経由した導電パスに沿って
行われるため、例えば界面活性剤やカップリング剤の量
を加減することで導電パスを部分的に切断することがで
き、106Ω/□以上の表面抵抗値へ膜の導電性を低下
させることは容易に可能である。また、珪素、ジルコニ
ウム、チタン、アルミニウムの金属アルコキシド、もし
くは、これら金属の部分加水分解重合物、または合成樹
脂バインダーの含有量を加減することによっても導電性
のコントロールが可能である。
When the film is formed by using this coating solution, the conductivity of the film is formed along the conductive path passing through the contact portion of the fine particles. Therefore, for example, the amount of the surfactant or the coupling agent is adjusted. , The conductive path can be partially cut, and the conductivity of the film can be easily reduced to a surface resistance value of 10 6 Ω / □ or more. The conductivity can also be controlled by adjusting the content of a metal alkoxide of silicon, zirconium, titanium, or aluminum, or a partially hydrolyzed polymer of these metals, or a synthetic resin binder.

【0026】上記微粒子の分散方法は、微粒子が均一に
溶液中に分散する方法であれば任意に選択できるが、例
としては、ビーズミル、ボールミル、サンドミル、超音
波分散などの方法を挙げることができる。
The method for dispersing the fine particles can be arbitrarily selected as long as the fine particles are uniformly dispersed in the solution. Examples of the method include a bead mill, a ball mill, a sand mill, and an ultrasonic dispersion method. .

【0027】本発明における熱線遮蔽膜は、基材上に上
記微粒子が高密度に堆積し膜を形成するものであり、塗
布液中に含まれる珪素、ジルコニウム、チタン、アルミ
ニウムの金属アルコキシド、もしくはこれら金属の部分
加水分解重合物、または合成樹脂バインダーは、塗布、
硬化後、微粒子の基材への結着性を向上させ、更に膜の
硬度を向上させる効果がある。またこのようにして得ら
れた膜上に、さらに珪素、ジルコニウム、チタン、アル
ミニウムなどの金属アルコキシドまたはこれら金属アル
コキシドの加水分解重合物または合成樹脂を含有する被
膜を第2層として被着することで、微粒子を主成分とす
る膜の基材への結着力や、膜の硬度及び耐候性を一層向
上させることも可能となる。
The heat ray shielding film in the present invention is a film in which the above-mentioned fine particles are deposited at a high density on a substrate to form a film, and a metal alkoxide of silicon, zirconium, titanium or aluminum contained in a coating solution or The metal partially hydrolyzed polymer or synthetic resin binder is applied,
After curing, there is an effect of improving the binding property of the fine particles to the base material and further improving the hardness of the film. Further, a film containing a metal alkoxide such as silicon, zirconium, titanium, and aluminum or a hydrolyzed polymer of these metal alkoxides or a synthetic resin is further applied as a second layer on the film thus obtained. In addition, it is possible to further improve the binding force of the film containing fine particles as a main component to the substrate, and the hardness and weather resistance of the film.

【0028】塗布液中に珪素、ジルコニウム、チタン、
アルミニウムの金属アルコキシド、もしくはこれら金属
の加水分解重合物、または合成樹脂バインダーを含まな
い場合、この塗布液を基材に塗布後に得られる膜は、基
材上に上記微粒子のみが堆積した膜構造になる。このま
までも熱線遮蔽効果を示すが、この膜に上記と同様に更
に珪素、ジルコニウム、チタン、アルミニウムの金属ア
ルコキシド、もしくはこれら金属の加水分解重合物、ま
たは合成樹脂バインダーを含む塗布液を塗布して被膜を
形成し多層膜とすることにより、塗布液成分が第1層の
微粒子の堆積した間隙を埋めて成膜されるため、膜のヘ
イズが低減し可視光透過率が向上し、また微粒子の基材
への結着性が向上する。
Silicon, zirconium, titanium,
When a metal alkoxide of aluminum, or a hydrolyzed polymer of these metals, or a synthetic resin binder is not contained, a film obtained after applying this coating solution to a substrate has a film structure in which only the fine particles are deposited on the substrate. Become. Although it shows a heat ray shielding effect as it is, a coating solution containing a metal alkoxide of silicon, zirconium, titanium, aluminum, or a hydrolyzed polymer of these metals, or a synthetic resin binder is further applied to the film as described above. By forming a multi-layered film, the coating solution components are formed to fill the gaps where the fine particles of the first layer are deposited, so that the haze of the film is reduced, the visible light transmittance is improved, and the base of the fine particles is reduced. The binding to the material is improved.

【0029】上記微粒子を主成分とする膜を、珪素、ジ
ルコニウム、チタン、もしくはアルミニウムの金属アル
コキシド、またはこれら金属の加水分解重合物からなる
被膜で結着する方法としては、スパッタ法や蒸着法も可
能であるが、成膜工程の容易さやコストが低いなどの利
点から塗布法が有効である。この被膜用塗布液は、水や
アルコール中に珪素、ジルコニウム、チタン、アルミニ
ウムの金属アルコキシド、またはこれら金属の加水分解
重合物を1種もしくは2種以上含むものであり、その含
有液は加熱後に得られる酸化物換算で全溶液中の40重
量%以下が好ましい。また必要に応じて酸やアルカリを
添加してpHを調整することも可能である。このような
液を上記微粒子を主成分とする膜上に更に第2層として
塗布し加熱することで、珪素、ジルコニウム、チタン、
アルミニウムなどの酸化物被膜を容易に作製することが
可能である。
As a method of bonding a film containing the above fine particles as a main component with a film made of a metal alkoxide of silicon, zirconium, titanium, or aluminum, or a hydrolyzed polymer of these metals, a sputtering method and a vapor deposition method are also available. Although it is possible, the coating method is effective because of advantages such as easiness of the film forming process and low cost. The coating liquid for coating contains one or more kinds of metal alkoxides of silicon, zirconium, titanium, and aluminum, or a hydrolyzed polymer of these metals in water or alcohol, and the liquid containing the alkoxide is obtained after heating. It is preferably 40% by weight or less in the total solution in terms of oxides to be obtained. If necessary, the pH can be adjusted by adding an acid or an alkali. Such a liquid is further applied as a second layer on a film containing the fine particles as a main component, and heated, so that silicon, zirconium, titanium,
An oxide film of aluminum or the like can be easily formed.

【0030】塗布液及び被膜用の塗布液の塗布方法とし
ては特に限定されるものではなく、スピンコート法、ス
プレーコート法、ディップコート法、スクリーン印刷
法、ロールコート法、流し塗りなど、処理液を平坦かつ
薄く均一に塗布できる方法であれば如何なる方法でも適
宜採用することができる。
The method of applying the coating liquid and the coating liquid for forming a coating film is not particularly limited, and treatment liquids such as spin coating, spray coating, dip coating, screen printing, roll coating, and flow coating can be used. Any method can be used as appropriate as long as it is a method that can be applied uniformly and thinly.

【0031】上記金属アルコキシド及びその加水分解重
合物を含む塗布液の塗布後の基材加熱温度は、100℃
未満では塗膜中に含まれるアルコキシドまたはその加水
分解重合物の重合反応が未完結で残る場合が多く、また
水や有機溶媒が膜中に残留し、加熱後の膜の可視光透過
率が低減する原因となるので、100℃以上が好まし
く、更に好ましくは塗布液中の溶媒の沸点以上で加熱を
実施する。
The substrate heating temperature after application of the coating solution containing the metal alkoxide and its hydrolyzed polymer is 100 ° C.
If it is less than 1, the polymerization reaction of the alkoxide or its hydrolyzed polymer contained in the coating film often remains uncompleted, and water and organic solvents remain in the film, reducing the visible light transmittance of the film after heating. Therefore, the heating is preferably carried out at a temperature of 100 ° C. or higher, more preferably at a temperature higher than the boiling point of the solvent in the coating solution.

【0032】また合成樹脂バインダーを使用した場合
は、それぞれの硬化方法に従って硬化させれば良く、例
えば紫外線硬化樹脂であれば紫外線を適宜照射すれば良
く、また常温硬化樹脂であれば塗布後そのまま放置して
おけばよいため、既存の窓ガラスなどへの現場での塗布
が可能であり、汎用性が広がる。
When a synthetic resin binder is used, it may be cured according to the respective curing method. For example, an ultraviolet curable resin may be appropriately irradiated with ultraviolet rays, and a room temperature curable resin may be left as it is after application. Since it is sufficient to apply it, it can be applied to an existing window glass or the like on site, and the versatility is expanded.

【0033】本発明の塗布液に使用するバインダー成分
として、或いはオーバーコート用の塗布液としては、オ
ルガノシラザン溶液を用いても良い。オルガノシザラン
溶液としては、側鎖基の修正や酸化触媒の添加で重合硬
化温度が100℃以下のものも市販されており、これら
を用いることによって成膜温度をかなり低くすることが
できる。常温硬化性バインダーとしては、市販のシリケ
ート系のものを用いることも可能である。どちらも硬化
後はSiO2の無機膜を形成し、耐候性や膜強度におい
て樹脂膜よりも優れている。
An organosilazane solution may be used as a binder component used in the coating solution of the present invention or as a coating solution for overcoating. As organosizaran solutions, those having a polymerization curing temperature of 100 ° C. or less due to modification of a side chain group or addition of an oxidation catalyst are commercially available. By using these, the film forming temperature can be considerably lowered. As the room temperature curable binder, a commercially available silicate-based binder can be used. In both cases, an inorganic film of SiO 2 is formed after curing, and is superior to a resin film in weather resistance and film strength.

【0034】本発明の膜では上記超微粒子が分散された
膜であるために、物理成膜法により製造された酸化物薄
膜のように結晶が緻密に膜内を埋めた鏡面状表面をもつ
膜に比べると、可視光領域での反射が少なく、ギラギラ
した外観を呈することが回避できる。その一方で、上記
のように可視〜近赤外域にプラズマ周波数をもつため
に、これに伴うプラズマ反射が近赤外域で大きくなる、
という非常に好ましい特性をもっている。また可視光領
域の反射をさらに抑制したい場合は、本微粒子分散膜の
上に、SiO2やMgFのような低屈折率の膜を成膜す
ることにより、容易に視感反射率1%以下の多層膜が製
造可能である。
Since the film of the present invention is a film in which the above-mentioned ultrafine particles are dispersed, a film having a mirror-like surface in which crystals are densely filled like a thin oxide film produced by a physical film-forming method. The reflection in the visible light region is less than that of the above, and it is possible to avoid giving a glare-like appearance. On the other hand, since the plasma frequency is in the visible to near-infrared region as described above, the accompanying plasma reflection increases in the near-infrared region,
It has very favorable characteristics. When it is desired to further suppress the reflection in the visible light region, a film having a low refractive index such as SiO 2 or MgF can be easily formed on the fine particle dispersion film to have a luminous reflectance of 1% or less. Multilayer films can be manufactured.

【0035】本発明の塗布液には、透過率を向上させる
ために、さらにATOやITOやアルミニウム添加酸化
亜鉛などの超微粒子を混合することも可能である。これ
らの透明超微粒子は添加量を増すと可視光に近い近赤外
線領域での吸収が増加するため、可視光透過率の高い熱
線遮蔽膜とすることが可能である。また逆にATOやI
TOやアルミニウム添加酸化亜鉛などの超微粒子を分散
した液に本発明の塗布液を添加して、膜に着色すると同
時にその熱線遮蔽効果を補助することも可能である。こ
の場合、主体となるITOなどに対してほんの僅かの添
加量で熱線遮蔽効果を補助できるため、ITOの必要量
の大幅な減少が可能となり、液のコストを下げられると
いう利点がある。
The coating liquid of the present invention may further contain ultrafine particles such as ATO, ITO and aluminum-added zinc oxide in order to improve the transmittance. As the amount of these transparent ultrafine particles increases, the absorption in the near infrared region close to visible light increases, so that a heat ray shielding film having high visible light transmittance can be obtained. And ATO and I
It is also possible to add the coating liquid of the present invention to a liquid in which ultrafine particles such as TO or aluminum-added zinc oxide are dispersed, to color the film and at the same time assist its heat ray shielding effect. In this case, since the heat ray shielding effect can be assisted with a very small addition amount to ITO or the like as a main component, the required amount of ITO can be greatly reduced, and there is an advantage that the cost of the liquid can be reduced.

【0036】本発明の塗布液には、また、膜になったと
きの赤外線の遮蔽能と同時に、人体に有害な紫外線の遮
蔽機能を向上させるために、無機系の酸化チタンや酸化
亜鉛、酸化セリウムなどの微粒子や、有機系のベンゾフ
ェノンやベンゾトリアゾールなどの1種または2種以上
を添加することも可能である。
The coating solution of the present invention also contains inorganic titanium oxide, zinc oxide, and inorganic oxide in order to improve the function of shielding ultraviolet rays harmful to the human body at the same time as the ability to shield infrared rays when the coating film is formed. Fine particles such as cerium and one or more kinds of organic benzophenone and benzotriazole can be added.

【0037】本発明による塗布液は、上記無機微粒子を
分散したものであり、焼成時の熱による塗布成分の分解
或いは化学反応を利用して目的の熱線遮蔽膜を形成する
ものではないため、特性の安定した均一な膜厚の透過膜
を形成することができる。
The coating liquid according to the present invention is a dispersion in which the above-mentioned inorganic fine particles are dispersed, and does not form a target heat ray shielding film by utilizing decomposition or a chemical reaction of coating components due to heat during baking. A permeable film having a stable and uniform film thickness can be formed.

【0038】本発明における微粒子分散膜は、基材上に
微粒子が高密度に堆積し膜を形成するものであり、塗布
液中に含まれる珪素、ジルコニウム、チタン、アルミニ
ウムの金属アルコキシドまたはこれらの加水分解重合
物、または合成樹脂バインダーは、塗膜の硬化後、微粒
子の基材上への結着性を向上させ、さらに膜の強度を向
上させる効果がある。
The fine particle-dispersed film of the present invention is a film in which fine particles are deposited at a high density on a substrate to form a film, and a metal alkoxide of silicon, zirconium, titanium, or aluminum contained in a coating solution or a hydrate thereof. The decomposed polymer or the synthetic resin binder has an effect of improving the binding property of the fine particles to the substrate after the coating film is cured, and further improving the strength of the film.

【0039】このように本発明によれば上記無機微粒子
の材料を適当に混合することで、熱線遮蔽効果を有する
膜の製造が可能であるが、これらの微粒子材料は無機材
料であるので、有機材料と比べて耐候性は非常に高く、
例えば太陽光線(紫外線)の当たる部位に使用しても、
色や諸機能の劣化はほとんど生じない。
As described above, according to the present invention, it is possible to produce a film having a heat ray shielding effect by appropriately mixing the above-mentioned inorganic fine particles. Weather resistance is very high compared to materials,
For example, even if it is used in the area where sunlight (ultraviolet rays) hits,
Deterioration of color and functions hardly occurs.

【0040】[0040]

【実施例】以下本発明の実施例を比較例と共に説明す
る。
EXAMPLES Examples of the present invention will be described below together with comparative examples.

【0041】(実施例1) 平均粒径72nmのTaC
微粒子8g、ジアセトンアルコール(DAA)80g、
水及び分散剤適量を混合し、直径4mmのジルコニアボ
ールを用いて100時間ボールミル混合して、TaC分
散液100gを作製した。これをA液とする。平均重合
度で4〜5量体である多摩化学工業株式会社製エチルシ
リケート40を6g、エタノール31g、5%塩酸水溶
液8g、水5gで調製したエチルシリケート溶液50g
と、水800g、及びエタノール300gを良く混合・
攪拌して、エチルシリケート混合液1150gを調製し
た。これをB液とする。
Example 1 TaC having an average particle size of 72 nm
8 g of fine particles, 80 g of diacetone alcohol (DAA),
An appropriate amount of water and a dispersant were mixed, and the mixture was ball-milled using zirconia balls having a diameter of 4 mm for 100 hours to prepare 100 g of a TaC dispersion. This is designated as solution A. 50 g of an ethyl silicate solution prepared from 6 g of ethyl silicate 40 (manufactured by Tama Chemical Industry Co., Ltd.) having an average degree of polymerization of 4 to pentamer, 31 g of ethanol, 8 g of 5% aqueous hydrochloric acid, and 5 g of water
Well mixed with 800 g of water and 300 g of ethanol
The mixture was stirred to prepare 1150 g of an ethyl silicate mixed solution. This is designated as solution B.

【0042】A液とB液を、TaC濃度が1.0%、T
aC/SiO2比が4:1となるような割合で混合・攪
拌し、塗布液を作製した。これをC液とする。この溶液
15gを145rpmで回転する200×200×3m
mのソーダライム板ガラス基板上にビーカから滴下し、
そのまま3分間振り切った後、回転を止めた。これを1
80℃の電気炉に入れて30分間加熱し目的とする膜を
得た。
The solution A and the solution B were mixed at a TaC concentration of 1.0%
The mixture was mixed and stirred at a ratio such that the aC / SiO 2 ratio was 4: 1 to prepare a coating solution. This is designated as liquid C. Rotate 15 g of this solution at 145 rpm 200 × 200 × 3m
m from a beaker onto a soda lime glass substrate,
After shaking for 3 minutes, the rotation was stopped. This one
The resultant was heated in an electric furnace at 80 ° C. for 30 minutes to obtain a target film.

【0043】形成された膜の分光特性は日立製作所製の
分光光度計を用いて測定した。TaC微粒子を用いた本
実施例の膜の透過プロファイルを図1に示す。透過率の
極大値が497nm、極小値が864nmにあり、極大
値と極小値の差が27ポイントと十分大きく、またJI
S−R−3106に基づいて、膜正味の値として可視光
透過率53.5%が得られた。
The spectral characteristics of the formed film were measured using a spectrophotometer manufactured by Hitachi, Ltd. FIG. 1 shows a transmission profile of the film of this example using TaC fine particles. The maximum value of the transmittance is 497 nm and the minimum value is 864 nm, the difference between the maximum value and the minimum value is sufficiently large as 27 points, and JI
Based on SR-3106, a visible light transmittance of 53.5% was obtained as a net value of the film.

【0044】本実施例による膜の透過色は美しい青紫色
であった。また可視光反射率は4.6%と低く、市販の
熱線反射ガラスのような膜面のギラツキ感はまったく感
じられなかった。
The transmission color of the film according to this example was a beautiful blue-violet color. Further, the visible light reflectance was as low as 4.6%, and no glare was observed on the film surface as in a commercially available heat ray reflective glass.

【0045】更にこの膜の表面抵抗値を、三菱化学製の
表面抵抗計を用いて測定したところ2.7×1013Ω/
□が得られ、膜抵抗値が十分高いために電波透過性には
全く問題がないことが分かった。
Further, the surface resistance value of this film was measured using a surface resistance meter manufactured by Mitsubishi Chemical Corporation and found to be 2.7 × 10 13 Ω /.
□ was obtained, and it was found that there was no problem in radio wave transmission because the film resistance was sufficiently high.

【0046】(比較例1) 塗布法に比べて高コストの
物理成膜法により作製された市販の熱線反射ブロンズガ
ラスについて、340〜1800nmの分光透過率を測
定し、JIS−R−3106に従って可視光透過率を求
めたところ、38.8%となった。また可視光反射率は
34.2%と非常に高く、外観もギラギラしたミラー状
の外観を呈していた。また膜面の表面抵抗値は83Ω/
□と低く、電波透過性及び反射性には問題があることが
明らかである。
(Comparative Example 1) A commercially available heat-reflective bronze glass produced by a physical film forming method which is more expensive than the coating method was measured for a spectral transmittance of 340 to 1800 nm, and was visible according to JIS-R-3106. The light transmittance was determined to be 38.8%. Further, the visible light reflectance was as high as 34.2%, and the appearance was a mirror-like appearance. The surface resistance of the film surface is 83Ω /
It is clear that there is a problem in radio wave transmission and reflection, as low as □.

【0047】(実施例2) 実施例1で作製したC液を
板ガラスの1層目としてスピンコートした後、そのまま
3分間回転を続け、続いてB液をSiO2固形分換算で
0.9%になるようにエタノールで希釈したシリケート
液15gを板ガラス上にビーカから滴下してさらに回転
を3分間続けた後、回転を止めた。このようにして塗布
した2層膜のガラス基板を180℃の電気炉に入れ、3
0分間加熱して目的とする2層膜を得た。
(Example 2) After spin-coating the liquid C prepared in Example 1 as the first layer of the sheet glass, the rotation was continued for 3 minutes, and then the liquid B was 0.9% in terms of SiO 2 solid content. Then, 15 g of a silicate solution diluted with ethanol was dropped from a beaker onto a plate glass, and the rotation was further continued for 3 minutes. Then, the rotation was stopped. The glass substrate of the two-layer film coated in this manner is placed in an electric furnace at 180 ° C.
After heating for 0 minutes, the desired two-layer film was obtained.

【0048】形成された膜の分光特性を実施例1と同様
にして評価した。可視光透過率は57.6%と上昇した
反面、可視光反射率は2.8%となって反射光がさらに
抑えられた。さらに裏面に黒テープを貼って裏面からの
反射を無くして測定すると可視光反射率は0.6%とな
り、無反射ガラスに近い外観になった。この膜の透過率
の極大・極小値の位置は、実施例1での単層膜とほぼ同
じであり、同様の熱線遮蔽効果をもつことは明らかであ
る。
The spectral characteristics of the formed film were evaluated in the same manner as in Example 1. Although the visible light transmittance increased to 57.6%, the visible light reflectance became 2.8%, and the reflected light was further suppressed. Further, when a black tape was stuck on the back surface and the measurement was performed without reflection from the back surface, the visible light reflectance was 0.6%, and the appearance was close to that of non-reflective glass. The positions of the maximum value and the minimum value of the transmittance of this film are almost the same as those of the single-layer film in Example 1, and it is apparent that the film has the same heat ray shielding effect.

【0049】以下の実施例3〜13及び比較例2〜3に
おいて成膜された膜の可視光透過率と透過率の極大・極
小値、及び表面抵抗値は、実施例1に述べたと同様な方
法で評価し、実施例1、2の結果も含めてまとめて表1
に示した。
In the films formed in Examples 3 to 13 and Comparative Examples 2 to 3 below, the visible light transmittance, the maximum and minimum values of the transmittance, and the surface resistance were the same as those described in Example 1. Table 1 shows the results of Examples 1 and 2
It was shown to.

【0050】(実施例3) 平均粒径72nmのTaC
微粒子8g、イソホロン80g、水及び分散剤適量を混
合し、ジルコニアボールを用いて100時間ボールミル
混合して、TaCイソホロン分散液100gを作製し
た。これえをD液とする。バインダーとして、エポキシ
樹脂50重量%をイソホロンに溶解して、エポキシ樹脂
バインダー溶液を作製した。これをE液とする。D液と
E液とエタノールを強力に混合・攪拌して、TaCとエ
ポキシ樹脂の固形分が全体の1.4重量%、TaCとエ
ポキシ樹脂の重量比が70:30となるようにして、塗
布液を作製し、実施例1と同様にして塗布液を作製し、
成膜・加熱して膜を得た。
Example 3 TaC having an average particle size of 72 nm
8 g of the fine particles, 80 g of isophorone, water and an appropriate amount of a dispersant were mixed, and the mixture was ball-milled using zirconia balls for 100 hours to prepare 100 g of a TaC isophorone dispersion. This is designated as solution D. As a binder, 50% by weight of an epoxy resin was dissolved in isophorone to prepare an epoxy resin binder solution. This is designated as solution E. The solution D, the solution E and the ethanol were mixed and stirred vigorously so that the solid content of TaC and the epoxy resin was 1.4% by weight and the weight ratio of TaC to the epoxy resin was 70:30 and applied. A liquid was prepared, and a coating liquid was prepared in the same manner as in Example 1.
The film was formed and heated to obtain a film.

【0051】(実施例4) バインダーとして、信越シ
リコーン製常温硬化型シリケート液X−40−9740
をB液の代わりに用いて、実施例1と同様にして塗布液
を作製し、成膜して膜を得た。ただし加熱はせずに、2
5℃の室温内2日間放置で乾燥膜となったものを評価し
た。
(Example 4) As a binder, a cold-setting silicate liquid X-40-9740 manufactured by Shin-Etsu Silicone Co., Ltd.
Was used in place of the B solution to prepare a coating solution in the same manner as in Example 1, and formed into a film. However, without heating, 2
A film that was dried at room temperature of 5 ° C. for 2 days was evaluated.

【0052】(実施例5) バインダーとして、NEケ
ムキャット(株)製低温硬化型ポリペルヒドロシラザン
溶液をE液の代わりに用いて、実施例3に示したTaC
イソホロン分散液(D液)及びキシレンを混合・攪拌し
て、TaC濃度が1.0%、TaC/SiO2比が4:
1となるようにして、これを塗布液とした。これを用い
て実施例1と同様にして成膜し、80℃の電気炉で加熱
して膜を得た。
Example 5 A low-temperature-curable polyperhydrosilazane solution manufactured by NE Chemcat Co., Ltd. was used as a binder in place of the solution E, and the TaC shown in Example 3 was used.
The isophorone dispersion (D solution) and xylene were mixed and stirred to obtain a TaC concentration of 1.0% and a TaC / SiO 2 ratio of 4:
This was used as a coating liquid so as to be 1. Using this, a film was formed in the same manner as in Example 1, and heated in an electric furnace at 80 ° C. to obtain a film.

【0053】(実施例6) A液調製において、TaC
の代わりに平均粒径81nmのWC微粒子を用いた他
は、実施例1と全く同様にして塗布液を調製し、これを
成膜・加熱して目的の膜を得た。
Example 6 In the preparation of solution A, TaC
Was used in the same manner as in Example 1 except that WC fine particles having an average particle size of 81 nm were used, and a coating film was formed and heated to obtain a target film.

【0054】(実施例7) A液調製において、TaC
の代わりに平均粒径64nmのTiC微粒子を用いた他
は、実施例1と全く同様にして塗布液を調製し、これを
成膜・加熱して目的の膜を得た。
Example 7 In the preparation of solution A, TaC
Was used in the same manner as in Example 1 except that TiC fine particles having an average particle diameter of 64 nm were used in place of the above, and a coating film was prepared and heated to obtain a target film.

【0055】(実施例8) A液調製において、TaC
の代わりに平均粒径53nmのZrC微粒子を用いた他
は、実施例1と全く同様にして塗布液を調製し、これを
成膜・加熱して目的の膜を得た。
Example 8 In the preparation of solution A, TaC
Was used in the same manner as in Example 1 except that ZrC fine particles having an average particle size of 53 nm were used in place of the above, and a coating film was prepared and heated to obtain a target film.

【0056】(実施例9) A液調製において、TaC
の代わりに平均粒径70nmのHfC微粒子を用いた他
は、実施例1と全く同様にして塗布液を調製し、これを
成膜・加熱して目的の膜を得た。
Example 9 In the preparation of solution A, TaC
Was used in the same manner as in Example 1 except that HfC fine particles having an average particle size of 70 nm were used in place of the above, and a coating film was prepared and heated to obtain a target film.

【0057】(実施例10) A液調製において、Ta
Cの代わりに平均粒径82nmのNbC微粒子を用いた
他は、実施例1と全く同様にして塗布液を調製し、これ
を成膜・加熱して目的の膜を得た。
Example 10 In the preparation of solution A, Ta was used.
A coating solution was prepared in exactly the same manner as in Example 1 except that NbC fine particles having an average particle size of 82 nm were used instead of C, and this was formed and heated to obtain a target film.

【0058】(実施例11) A液調製において、Ta
Cの代わりに平均粒径54nmのVC微粒子を用いた他
は、実施例1と全く同様にして塗布液を調製し、これを
成膜・加熱して目的の膜を得た。
Example 11 In the preparation of solution A, Ta was used.
A coating solution was prepared in exactly the same manner as in Example 1 except that VC fine particles having an average particle size of 54 nm were used instead of C, and a coating film was formed and heated to obtain a target film.

【0059】(実施例12) 平均粒径30nmの酸化
ルテニウム(RuO2)微粒子15g、N−メチル−2
−ピロリドン(NMP)23g、ジアセトンアルコール
(DAA)57g、水及び分散剤適量を混合し、直径4
mmのジルコニアボールを用いて100時間ボールミル
混合して、RuO2分散液100gを作製した。このR
uO2分散液に、RuO2濃度が1%、RuO2:SiO2
=4:1となるようにB液のシリケート液を混合・攪拌
してRuO2分散シリケート液とした。これをF液とす
る。F液に、RuO2:TaC=1.0:1.0の重量
比になるようにA液を混合して十分攪拌し、塗布液を調
製した。この塗布液を用いて、実施例1と全く同様にし
て成膜・加熱して目的の膜を得た。
(Example 12) 15 g of ruthenium oxide (RuO 2 ) fine particles having an average particle diameter of 30 nm, N-methyl-2
-Mix 23 g of pyrrolidone (NMP), 57 g of diacetone alcohol (DAA), water and an appropriate amount of dispersant,
Using a zirconia ball having a diameter of 100 mm, ball mill mixing was carried out for 100 hours to prepare 100 g of a RuO 2 dispersion. This R
In the uO 2 dispersion, a RuO 2 concentration of 1%, RuO 2 : SiO 2
= 4: 1, and the silicate liquid of the liquid B was mixed and stirred to obtain a RuO 2 dispersed silicate liquid. This is designated as solution F. The solution A was mixed with the solution F so that the weight ratio of RuO 2 : TaC was 1.0: 1.0, and the mixture was sufficiently stirred to prepare a coating solution. Using this coating solution, a film was formed and heated in exactly the same manner as in Example 1 to obtain a target film.

【0060】(実施例13) 平均粒径28nmのIr
2微粒子を用いた他は、実施例11と全く同様にし
て、IrO2:TaC=1:1の混合分散シリケート塗
布液を作製し、これを成膜・加熱して目的の膜を得た。
Example 13 Ir having an average particle size of 28 nm
A mixed dispersion silicate coating liquid of IrO 2 : TaC = 1: 1 was prepared in the same manner as in Example 11 except that O 2 fine particles were used, and this was formed and heated to obtain a target film. .

【0061】以上の実施例1〜13では全ての膜につい
て、透過率の極大が波長400〜700nmの間にあ
り、極小値が波長700〜1800nmの間にあってか
つ極大値と極小値との差が百分率で15ポイント以上で
あることが観測され、これらの膜が熱線遮蔽膜として有
用であることが確認された。また全ての膜は可視光領域
での反射率が8%以下であってミラー状のギラツキが無
く、さらに表面抵抗値が6×1011Ω/□以上であって
電波透過性において問題のないことが確かめられた。
In the above Examples 1 to 13, for all the films, the transmittance maximum is between 400 and 700 nm, the minimum value is between 700 and 1800 nm, and the difference between the maximum value and the minimum value is It was observed that the percentage was 15 points or more, and it was confirmed that these films were useful as heat ray shielding films. In addition, all the films have a reflectance of 8% or less in the visible light region, no glare in a mirror shape, and a surface resistance value of 6 × 10 11 Ω / □ or more, so that there is no problem in radio wave transmission. Was confirmed.

【0062】(比較例2) 平均粒径157nmのTa
Cを用いた他は、実施例1と全く同様にして、TaC分
散シリケート塗布液を作製し、これを成膜・加熱して目
的の膜を得た。しかしこの膜は微粒子径が大きすぎるた
めに、曇りが大きくて(ヘイズ値23%)透明性に欠
き、またやや緑みを帯びた灰色となり、さらに極大値と
極小値の差が8%と小さく、熱線遮蔽膜として実用に供
することは困難と判断された。
Comparative Example 2 Ta having an average particle size of 157 nm
Except for using C, a TaC-dispersed silicate coating solution was prepared in exactly the same manner as in Example 1, and this was formed and heated to obtain a target film. However, since this film has too large a particle diameter, the film has a large haze (haze value of 23%), lacks transparency, becomes slightly greenish gray, and has a small difference of 8% between the maximum value and the minimum value. Therefore, it was judged that it was difficult to practically use as a heat ray shielding film.

【0063】(比較例3) 平均粒径22nmのITO
超微粒子を用いた他は、実施例1と全く同様にして、I
TO分散シリケート塗布液を作製し、これを成膜・加熱
して目的の膜を得た。しかしこの膜は透過率が、可視光
域から1500nmの赤外域に至るまで90%以上であ
り、近赤外線を遮蔽するという目的にはこの濃度(1
%)では使用できないことが分かった。
Comparative Example 3 ITO having an average particle size of 22 nm
Except for using ultrafine particles, I
A TO-dispersed silicate coating solution was prepared, formed into a film, and heated to obtain a target film. However, this film has a transmittance of 90% or more from the visible light region to the infrared region of 1500 nm.
%) Cannot be used.

【0064】[0064]

【表1】 [Table 1]

【0065】[0065]

【発明の効果】以上の実施例に示されるように、本発明
によれば、可視光領域の光の透過率が高くて反射率が低
く、近赤外領域の光の透過率が低くて反射率が高く、膜
の導電性が概ね106Ω/□以上に制御可能な膜を、高
コストの物理成膜法を用いずに簡便な塗布法で成膜でき
る塗布液と、これを用いた熱線遮蔽膜とが提供できた。
本発明の膜は、従来膜に比べて表面のギラツキ感が無
く、また電波透過性にも優れた熱線遮蔽膜である。また
本発明の塗布液を用いることにより、コスト面や大面積
膜の面から工業的有用性が高い。
As shown in the above embodiments, according to the present invention, the transmittance of light in the visible light region is high and the reflectance is low, and the transmittance of light in the near infrared region is low and the reflection is low. A coating solution that can form a film having a high rate and a film conductivity of approximately 10 6 Ω / □ or more by a simple coating method without using a high-cost physical film forming method; A heat ray shielding film could be provided.
The film of the present invention is a heat ray shielding film which has less glare on the surface and is excellent in radio wave permeability as compared with the conventional film. The use of the coating liquid of the present invention has high industrial utility in terms of cost and large-area film.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1、比較例2の透過率を示すグ
ラフである。
FIG. 1 is a graph showing transmittance of Example 1 and Comparative Example 2 of the present invention.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 Ti、V、Zr、Hf、Nb、Ta、
W、および、Bの群から選択される1種または2種以上
の金属の炭化物からなる平均粒径100nm以下の微粒
子が分散された熱線遮蔽膜形成用塗布液。
1. Ti, V, Zr, Hf, Nb, Ta,
A coating liquid for forming a heat ray shielding film, in which fine particles having an average particle diameter of 100 nm or less made of a carbide of one or more metals selected from the group consisting of W and B are dispersed.
【請求項2】 Ti、V、Zr、Hf、Nb、Ta、
W、および、Bの群から選択される1種または2種以上
の金属の炭化物からなる平均粒径100nm以下の微粒
子と、平均粒径100nm以下の酸化ルテニウム微粒
子、もしくは、平均粒径100nm以下の酸化イリジウ
ム微粒子のうち少なくとも1種とを含有する熱線遮蔽膜
形成用塗布液。
2. Ti, V, Zr, Hf, Nb, Ta,
W and a fine particle having an average particle diameter of 100 nm or less made of a carbide of one or more metals selected from the group of B and ruthenium oxide fine particles having an average particle diameter of 100 nm or less, or an average particle diameter of 100 nm or less A coating solution for forming a heat ray shielding film, comprising at least one of iridium oxide fine particles.
【請求項3】 請求項1または請求項2に記載の熱線遮
蔽膜形成用塗布液であって、更に、珪素、ジルコニウ
ム、チタン、もしくは、アルミニウムの金属アルコキシ
ド、または、金属アルコキシドの部分加水分解重合物の
うちの1種または2種以上を含有する熱線遮蔽膜形成用
塗布液。
3. The coating solution for forming a heat ray shielding film according to claim 1, further comprising a metal alkoxide of silicon, zirconium, titanium, or aluminum, or a partial hydrolysis polymerization of a metal alkoxide. A coating liquid for forming a heat ray shielding film, which contains one or more of the above-mentioned materials.
【請求項4】 樹脂バインダーを含有する請求項1〜請
求項3いずれかに記載の熱線遮蔽膜形成用塗布液。
4. The coating solution for forming a heat ray shielding film according to claim 1, further comprising a resin binder.
【請求項5】 請求項1〜請求項4いずれかに記載の熱
線遮蔽膜形成用塗布液を基材に塗布後加熱して得た微粒
子分散膜であって、熱線遮蔽特性を示す主成分が、T
i、V、Zr、Hf、Nb、Ta、W、および、Bのう
ちの1種または2種以上の金属の炭化物微粒子であり、
該微粒子が樹脂バインダー中、または、珪素、ジルコニ
ウム、チタン、および、アルミニウムの金属酸化物のう
ちの1種または2種以上を含有する酸化物のバインダー
中に分散された熱線遮蔽膜。
5. A fine particle dispersed film obtained by applying the coating solution for forming a heat ray shielding film according to any one of claims 1 to 4 to a substrate, followed by heating. , T
i, V, Zr, Hf, Nb, Ta, W, and B are carbide fine particles of one or more of metals.
A heat ray shielding film in which the fine particles are dispersed in a resin binder or a binder of an oxide containing one or more of metal oxides of silicon, zirconium, titanium, and aluminum.
【請求項6】 請求項1〜請求項4いずれかに記載の熱
線遮蔽膜形成用塗布液を基材に塗布後加熱して得た熱線
遮蔽膜の上に、更に、珪素、ジルコニウム、チタン、お
よび、アルミニウムのいずれかの金属酸化物のうちの1
種または2種以上を含有する酸化物膜が被膜された多層
熱線遮蔽膜。
6. A heat ray shielding film obtained by applying the coating solution for forming a heat ray shielding film according to any one of claims 1 to 4 to a substrate and then heating, further comprising silicon, zirconium, titanium, And one of the metal oxides of aluminum
A multilayer heat ray shielding film coated with an oxide film containing one or more species.
【請求項7】 請求項1〜請求項4いずれかに記載の熱
線遮蔽膜形成用塗布液を基材に塗布後加熱して得た熱線
遮蔽膜の上に、更に、樹脂膜が被膜された多層熱線遮蔽
膜。
7. A resin film is further coated on the heat ray shielding film obtained by applying the heat ray shielding film forming coating liquid according to any one of claims 1 to 4 to a substrate and heating the same. Multilayer heat ray shielding film.
【請求項8】 透過率が、波長400〜700nmに極
大値を、波長700〜1800nmに極小値をもち、か
つ、極大値と極小値との差が百分率で15ポイント以上
である請求項5〜請求項7いずれかに記載の熱線遮蔽
膜。
8. The transmittance has a maximum value at a wavelength of 400 to 700 nm, a minimum value at a wavelength of 700 to 1800 nm, and a difference between the maximum value and the minimum value is 15 points or more in percentage. The heat ray shielding film according to claim 7.
【請求項9】 表面抵抗値が106Ω/□以上である請
求項5〜請求項8いずれかに記載の熱線遮蔽膜。
9. The heat ray shielding film according to claim 5, which has a surface resistance value of 10 6 Ω / □ or more.
JP6490898A 1998-03-16 1998-03-16 Coating liquid for forming heat-ray-shielding film and heat-ray-shielding film Pending JPH11258417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6490898A JPH11258417A (en) 1998-03-16 1998-03-16 Coating liquid for forming heat-ray-shielding film and heat-ray-shielding film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6490898A JPH11258417A (en) 1998-03-16 1998-03-16 Coating liquid for forming heat-ray-shielding film and heat-ray-shielding film

Publications (1)

Publication Number Publication Date
JPH11258417A true JPH11258417A (en) 1999-09-24

Family

ID=13271634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6490898A Pending JPH11258417A (en) 1998-03-16 1998-03-16 Coating liquid for forming heat-ray-shielding film and heat-ray-shielding film

Country Status (1)

Country Link
JP (1) JPH11258417A (en)

Similar Documents

Publication Publication Date Title
JP4096277B2 (en) Solar shading material, coating liquid for solar shading film, and solar shading film
US6277187B1 (en) Film for cutting off heat rays and a coating liquid for forming the same
JP4626284B2 (en) Method for producing tungsten oxide fine particles for forming solar shield, and tungsten oxide fine particles for forming solar shield
JP3262098B2 (en) Heat ray shielding material, heat ray shielding equipment using the same, coating liquid and heat ray shielding film
JP2005226008A (en) Dispersion for forming solar radiation-shielding body, and solar radiation-shielding body and method for producing the same
JP3744188B2 (en) Heat ray shielding film forming coating solution and heat ray shielding film
JPH0841441A (en) Indium-tin oxide powder for shielding ultraviolet and near infrared rays, ultraviolet and near-infrared ray-shielding glass and production thereof
US20090216492A1 (en) Solar radiation shielding member and solar radiation shielding member forming fluid dispersion
JP2002131531A (en) Heat wave reflecting transparent substrate, method for manufacturing the same and display device for which heat wave reflecting transparent substrate is applied
JP2003176132A (en) Antimony-tin oxide particle for shielding insolation, coating solution for forming insolation shielding film and insolation shielding film
JP4182825B2 (en) Antimony tin oxide fine particles for sunscreen, dispersion for forming sunscreen using the same, sunscreen and transparent substrate for sunscreen
JP3473272B2 (en) Coating liquid for conductive film formation and conductive film
JP2003215328A (en) Fine particles for sun protection, coating liquid for forming sun protection film containing the same and sun protection film
JP2001049190A (en) Coating liquid for forming solar radiation filter film
JP4200424B2 (en) Manufacturing method of solar shading material, coating liquid for forming solar shading film, solar shading film, and transparent base material for solar shading
JP2002265236A (en) Producing method for fine particle for forming insolation shielding film and application liquid for forming insolation shielding film using the fine particle obtained by the producing method
JPH10182190A (en) Transparent black electroconducive film
JPH11258417A (en) Coating liquid for forming heat-ray-shielding film and heat-ray-shielding film
JPH11258418A (en) Coating liquid for forming heat-ray-shielding film and heat-ray-shielding film
JP2002201027A (en) Ito microparticle for daylight screening, method for producing the same, and coating liquid and daylight screening film using the same
JP3451808B2 (en) Low reflective transparent conductive film and method for forming the same
JP4194121B2 (en) Coating liquid for heat ray reflective film and heat ray reflective film using the same
JP2003327429A (en) Fine particle for shielding solar radiation, coating solution for forming solar radiation shielding film containing the fine particle and solar radiation shielding film
JP2012082109A (en) Method for producing tungsten oxide fine particle for forming highly heat-resistant heat ray-shielding material, tungsten oxide fine particle for forming highly heat-resistant heat ray-shielding material and dispersion for forming highly heat-resistant heat ray-shielding material, and highly heat-resistant heat ray-shielding material
JP2005209350A (en) Transparent conductive film and manufacturing method of the same