JP2005209350A - Transparent conductive film and manufacturing method of the same - Google Patents

Transparent conductive film and manufacturing method of the same Download PDF

Info

Publication number
JP2005209350A
JP2005209350A JP2004011307A JP2004011307A JP2005209350A JP 2005209350 A JP2005209350 A JP 2005209350A JP 2004011307 A JP2004011307 A JP 2004011307A JP 2004011307 A JP2004011307 A JP 2004011307A JP 2005209350 A JP2005209350 A JP 2005209350A
Authority
JP
Japan
Prior art keywords
transparent
transparent conductive
layer
fine particles
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004011307A
Other languages
Japanese (ja)
Inventor
Junji Tofuku
淳司 東福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2004011307A priority Critical patent/JP2005209350A/en
Publication of JP2005209350A publication Critical patent/JP2005209350A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a transparent conductive film easily forming network structure of noble metal fine particles more uniformly and developed more than existing one with a coating solution for forming a transparent conductive layer applying the noble metal fine particles, and to provide the transparent conductive film manufactured by this method, and having high transmission factor and high conductivity. <P>SOLUTION: A coating solution for forming a silica sol- containing transparent under coat layer is applied onto a transparent substrate, a coating solution for forming a noble metal fine particle-containing transparent conductive film is applied onto the undercoat layer, and they are baked to form two layered film comprising the transparent conductive layer and the undercoat layer. In the two layered film comprising the transparent conductive layer and the transparent undercoat layer, the transparent conductive film has a thickness of 50 nm or less, and the two layer film has a surface resistance of 100 kΩ/sq. or less, and only the two layer film not containing the transparent substrate has a visible ray transmission factor of 80% or more. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、透明基板上に塗布法によって形成された透明導電膜、特に、ブラウン管、プラズマディスプレイパネル、蛍光表示管、液晶ディスプレイ等の表示装置の前面板等に適用される透明導電膜、及びその製造方法に関する。   The present invention relates to a transparent conductive film formed by a coating method on a transparent substrate, in particular, a transparent conductive film applied to a front panel of a display device such as a cathode ray tube, a plasma display panel, a fluorescent display tube, or a liquid crystal display, and the like It relates to a manufacturing method.

コンピュータディスプレイ等として用いられている陰極線管(CRT:ブラウン管とも称する)、プラズマディスプレイパネル(PDP)、蛍光表示管(VFD)、液晶ディスプレイ(LCD)等の表示装置では、表示画面が見やすく、視覚疲労を感じさせないことが必要である。   In a display device such as a cathode ray tube (CRT: also called a cathode ray tube), a plasma display panel (PDP), a fluorescent display tube (VFD), a liquid crystal display (LCD) used as a computer display, etc., the display screen is easy to see and visual fatigue It is necessary not to feel it.

更に、最近では、CRT等から発生する低周波電磁波の人体に対する悪影響が懸念され、このような電磁波が外部に漏洩しないことが望まれている。かかる漏洩電磁波に対しては、ディスプレイの前面板表面に透明導電層を形成することにより、防止することが可能である。例えば、CRTの漏洩電磁波防止(電界シールド)用として、表面抵抗が少なくとも10Ω/□以下、好ましくは5×10Ω/□以下、更に好ましくは10Ω/□以下である低抵抗の透明導電層を形成することが要求されている。 Furthermore, recently, there are concerns about the adverse effects of low-frequency electromagnetic waves generated from CRT and the like on the human body, and it is desired that such electromagnetic waves do not leak to the outside. Such leakage electromagnetic waves can be prevented by forming a transparent conductive layer on the front plate surface of the display. For example, for preventing leakage electromagnetic waves (electric field shield) of CRT, the surface resistance is at least 10 6 Ω / □ or less, preferably 5 × 10 3 Ω / □ or less, more preferably 10 3 Ω / □ or less. It is required to form a transparent conductive layer.

かかるCRT電界シールド用の低抵抗透明導電層として、これまでに幾つかの提案がなされており、例えば、インジウム錫酸化物(ITO)等の導電性酸化物微粒子や金属微粒子を溶媒中に分散した透明導電層形成用塗布液を、CRTの前面ガラス(前面板)にスピンコート法等で塗布・乾燥した後、200℃程度の温度で焼成して透明導電層を形成する方法がある。この塗布法による透明導電層の形成は、CVD法やスパッタリング法等で形成する方法に較べてはるかに簡便であり且つ製造コストも低いため、極めて有利な方法である。   As a low resistance transparent conductive layer for such a CRT electric field shield, several proposals have been made so far. For example, conductive oxide fine particles such as indium tin oxide (ITO) or metal fine particles are dispersed in a solvent. There is a method in which a transparent conductive layer forming coating solution is applied and dried on a CRT front glass (front plate) by spin coating or the like, and then baked at a temperature of about 200 ° C. to form a transparent conductive layer. The formation of the transparent conductive layer by this coating method is a very advantageous method because it is much simpler and less expensive to manufacture than the method of forming by a CVD method or a sputtering method.

しかしながら、この透明導電層形成用塗布液を用いて形成した透明導電層においては、インジウム錫酸化物(ITO)等の導電性酸化物微粒子を使用する場合、得られる透明導電層の表面抵抗が10〜10Ω/□と高くなり、漏洩電界を遮蔽するには充分でなかった。一方、金属微粒子が適用された透明導電層形成用塗布液では、上記ITOを用いた塗布液に比べ、得られる膜の透過率は低くなるものの、10〜10Ω/□という低抵抗の透明導電層が得られるため、今後とも有望な方法であると思われる。 However, in the transparent conductive layer formed using this coating liquid for forming a transparent conductive layer, when using conductive oxide fine particles such as indium tin oxide (ITO), the surface resistance of the obtained transparent conductive layer is 10 It was as high as 4 to 10 6 Ω / □, which was not sufficient to shield the leakage electric field. On the other hand, the transparent conductive layer forming coating liquid to which the metal fine particles are applied has a low resistance of 10 2 to 10 3 Ω / □, although the transmittance of the obtained film is lower than that of the coating liquid using ITO. Since a transparent conductive layer can be obtained, it will continue to be a promising method.

上記透明導電層形成用塗布液に適用される金属微粒子としては、空気中で酸化され難い貴金属、例えば、銀、金、白金、パラジウム、ロジウム、ルテニウム等が提案されている(特開平8−77832号公報、特開平9−55175号公報参照)。尚、上記公報には、貴金属以外の金属微粒子、例えば、鉄、ニッケル、コバルト等も適用可能と記載されているが、実際には、これ等の金属微粒子は大気雰囲気下で表面に酸化物被膜が必ず形成されるため、透明導電層として良好な導電性を得ることは困難である。   As the metal fine particles applied to the coating liquid for forming the transparent conductive layer, noble metals that are not easily oxidized in air, for example, silver, gold, platinum, palladium, rhodium, ruthenium, and the like have been proposed (JP-A-8-77832). No., JP-A-9-55175). In the above publication, it is described that metal fine particles other than noble metals, such as iron, nickel, cobalt, etc. are applicable, but in actuality, these metal fine particles are coated with an oxide film on the surface in an air atmosphere. Therefore, it is difficult to obtain good conductivity as the transparent conductive layer.

また、銀、金、白金、ロジウム、ルテニウム、パラジウム等の貴金属の比抵抗を比較した場合、白金、ロジウム、ルテニウム、パラジウムの比抵抗は、それぞれ10.6、4.51、7.6、10.8μΩ・cmであり、銀及び金の比抵抗1.62及び2.2μΩ・cmに比べて高い。従って、表面抵抗の低い透明導電層を形成するには、銀微粒子や金微粒子を適用した方が有利であるため、従来から透明導電層形成用塗布液に用いる貴金属微粒子として銀微粒子や金微粒子が主に利用されている。   Further, when comparing the specific resistances of noble metals such as silver, gold, platinum, rhodium, ruthenium, and palladium, the specific resistances of platinum, rhodium, ruthenium, and palladium are respectively 10.6, 4.51, 7.6, 10, and 10. 0.8 μΩ · cm, which is higher than the specific resistances of 1.62 and 2.2 μΩ · cm of silver and gold. Therefore, since it is more advantageous to apply silver fine particles or gold fine particles to form a transparent conductive layer having a low surface resistance, silver fine particles or gold fine particles have been conventionally used as noble metal fine particles used in coating solutions for forming transparent conductive layers. It is mainly used.

ただし、銀微粒子は、硫化や食塩水により劣化しやすいという耐候性に劣る点から、単体での使用が制限される。他方、金、白金、ロジウム、ルテニウム、パラジウム等の微粒子は、上記耐候性の問題はなくなるが、コスト面を考慮すると必ずしも最適とは言い難い。そこで最近では、銀微粒子の表面に金若しくは白金の単体又は金と白金の複合体をコーティングした貴金属コート銀微粒子や、金と金以外の1種又は複数種の貴金属(例えば銀)からなる貴金属合金微粒子等が提案されている(特開平11−228872号公報、特開2000−268639号公報参照)。   However, the silver fine particles are limited in their use from the standpoint of being inferior in weather resistance because they are easily deteriorated by sulfurization or saline. On the other hand, fine particles such as gold, platinum, rhodium, ruthenium, and palladium do not have the above-mentioned weather resistance problem, but are not necessarily optimal in view of cost. Therefore, recently, noble metal-coated silver fine particles in which the surface of silver fine particles is coated with gold or platinum alone or a composite of gold and platinum, or a noble metal alloy composed of one or more kinds of noble metals other than gold and gold (for example, silver). Fine particles and the like have been proposed (see JP-A-11-228872 and JP-A-2000-268639).

また、CRT等の表示装置においては、表示画面を見易くするために、その前面板表面に防眩処理を施して、画面の反射を抑えることも行われている。この防眩処理としては、反射光が入射光に対して破壊的干渉を生ずるように、高屈折率の透明導電層と低屈折率の透明コート層からなる透明2層膜を設け、その屈折率と膜厚とを制御する干渉法による防眩処理が一般的に行われている。尚、金属においては、光学定数(n−ik、n:屈折率,i=−1、k:消衰係数)のうち、n(屈折率)の値は小さいが、kの値が大きい。このため、金属微粒子からなる透明導電層を用いた場合でも、上記透明2層膜において光の干渉による反射防止効果が得られる。 Further, in a display device such as a CRT, in order to make the display screen easy to see, the surface of the front plate is subjected to an antiglare treatment to suppress the reflection of the screen. As this anti-glare treatment, a transparent two-layer film comprising a transparent conductive layer having a high refractive index and a transparent coating layer having a low refractive index is provided so that the reflected light causes destructive interference with the incident light. In general, an antiglare treatment by an interference method for controlling the film thickness is performed. In addition, in the metal, among the optical constants (n−ik, n: refractive index, i 2 = −1, k: extinction coefficient), the value of n (refractive index) is small, but the value of k is large. For this reason, even when a transparent conductive layer made of metal fine particles is used, an antireflection effect due to light interference can be obtained in the transparent two-layer film.

ところで、透明導電層形成用塗布液を用いて塗布法により形成される透明導電層の場合、本来的に金属は可視光線に対して透明でないことから、高透過率と低抵抗を両立させるためには、できるだけ少量の金属微粒子が透明導電層内において効率よく導電パスを形成していることが望ましい。即ち、溶媒と金属微粒子を主成分とする一般的な透明導電層形成用塗布液を基板上に塗布し、乾燥させて得られる透明導電層の構造として、金属微粒子の層に微小な空孔が導入された構造、いわゆるネットワーク(網目状)構造を有することが必要である。   By the way, in the case of a transparent conductive layer formed by a coating method using a coating liquid for forming a transparent conductive layer, since a metal is essentially not transparent to visible light, in order to achieve both high transmittance and low resistance. It is desirable that as little metal fine particles as possible form a conductive path efficiently in the transparent conductive layer. That is, as a structure of a transparent conductive layer obtained by applying a general coating liquid for forming a transparent conductive layer mainly composed of a solvent and metal fine particles on a substrate and drying it, fine pores are formed in the metal fine particle layer. It is necessary to have an introduced structure, a so-called network (network-like) structure.

このような金属微粒子のネットワーク(網目状)構造が形成されることによって、低抵抗で且つ高透過率の透明導電層が得られる。これは、金属微粒子からなる網目状部分が導電パスとして機能する一方、網目状構造において形成された穴の部分が透過率を向上させる機能を果たすためと考えられている。   By forming such a network structure of metal fine particles, a transparent conductive layer having a low resistance and a high transmittance can be obtained. This is thought to be because the mesh portion made of metal fine particles functions as a conductive path, while the hole portion formed in the mesh structure functions to improve the transmittance.

そして、このような金属微粒子のネットワーク(網目状)構造を形成させる手法としては、大別すると以下の2つの方法が挙げられる。
(1)透明導電層形成用塗布液の塗布及び乾燥の成膜過程において、金属微粒子同士を凝集させることでネットワーク構造を形成させる方法。
(2)複数の金属微粒子が凝集した金属微粒子凝集体を分散させた透明導電層形成用塗布液を用い、これを塗布及び乾燥させることにより、金属微粒子のネットワーク構造を形成させる方法。
And as a method of forming such a network (network-like) structure of metal fine particles, the following two methods are roughly classified.
(1) A method of forming a network structure by agglomerating metal fine particles in a film forming process of applying and drying a coating liquid for forming a transparent conductive layer.
(2) A method of forming a network structure of metal fine particles by using a coating liquid for forming a transparent conductive layer in which metal fine particle aggregates in which a plurality of metal fine particles are aggregated are dispersed and applying and drying the same.

上記(1)の方法としては、例えば、金属微粒子は酸化物微粒子等に比べて凝集し易いことを利用して、透明導電層形成用塗布液の溶剤組成等を適宜選定することによって、塗布及び乾燥の成膜過程において必然的にある程度の金属微粒子同士を凝集させることでネットワーク構造が得られる(特開平9−115438号公報参照)。   As the method of (1) above, for example, by utilizing the fact that metal fine particles are more likely to aggregate than oxide fine particles and the like, by appropriately selecting the solvent composition and the like of the coating liquid for forming a transparent conductive layer, A network structure can be obtained by agglomerating a certain amount of metal fine particles inevitably in the dry film formation process (see JP-A-9-115438).

また、透明導電層形成用塗布液に、凝集誘因剤や凝集促進高沸点溶剤等を添加し、積極的に金属微粒子同士の凝集を促進させることもできる(特開平10−110123号公報参照)。更に、金属微粒子層の下側に、予め無機酸化物微粒子からなる凝集促進層を設け、金属微粒子溶液を塗布した際に、下層の無機酸化物微粒子により形成された細孔へ主として溶媒が選択的に浸透することで、金属微粒子の凝集を促進することができる(特開2003−77340号公報参照)。   In addition, an aggregation inducer, an aggregation promoting high boiling point solvent, or the like can be added to the coating liquid for forming a transparent conductive layer to actively promote aggregation between metal fine particles (see JP-A-10-110123). Further, an aggregation promoting layer made of inorganic oxide fine particles is previously provided on the lower side of the metal fine particle layer, and when the metal fine particle solution is applied, the solvent is mainly selected into pores formed by the lower inorganic oxide fine particles. It is possible to promote the aggregation of the metal fine particles by permeating into (see JP 2003-77340 A).

上記(2)の方法としては、例えば、透明導電層形成用塗布液として、1次粒子が均一に分散されず、1次粒子が小さな孔を持つ形で集合した2次粒子の状態で分散されている金属微粒子の分散液を用いる方法(「工業材料」、Vol.44,No.9,1996,p68−71)がある。更に、金属微粒子が鎖状に凝集した金属微粒子群を予め分散させた透明導電層形成用塗布液を用いる方法(特開2000−124662号公報参照)も知られている。   As the method (2), for example, as a coating liquid for forming a transparent conductive layer, primary particles are not uniformly dispersed, but are dispersed in a state of secondary particles in which primary particles are aggregated in a form having small pores. There is a method using a dispersion of fine metal particles ("Industrial Materials", Vol. 44, No. 9, 1996, p68-71). Furthermore, a method using a coating liquid for forming a transparent conductive layer in which metal fine particle groups in which metal fine particles are aggregated in a chain form is dispersed (see Japanese Patent Application Laid-Open No. 2000-124662) is also known.

上記した(1)と(2)の方法を比較すると、(2)の方法は透明導電層形成用塗布液中で金属微粒子の凝集体が予め完成されていることから、金属微粒子の発達したネットワーク構造の形成が容易となる利点を有している。   Comparing the methods (1) and (2) described above, the method (2) is because the aggregates of metal fine particles are preliminarily completed in the coating liquid for forming a transparent conductive layer. This has the advantage that the structure can be easily formed.

特開平8−77832号公報JP-A-8-77832 特開平9−55175号公報JP-A-9-55175 特開平11−228872号公報JP-A-11-228872 特開2000−268639号公報JP 2000-268639 A 特開平9−115438号公報JP-A-9-115438 特開平10−110123号公報JP-A-10-110123 特開2003−77340号公報JP 2003-77340 A 特開2000−124662号公報JP 2000-124662 A 「工業材料」、Vol.44,No.9,1996,p68−71“Industrial Materials”, Vol. 44, No. 9, 1996, p.

従来、一般的な透明導電層形成用塗布液であっても、上述のような手法を用いることによって、ある程度のネットワーク構造を有する透明導電層を形成することは可能であった。しかしながら、透明導電層形成用塗布液の成膜過程における貴金属微粒子のネットワーク化は、実際には多くの条件が影響を及ぼし合うため困難な場合が多かった。そのため、貴金属粒子間の接触抵抗が増大したり、若しくはネットワークの部分的な切断が起こったりし易く、透明導電層の導電性の低下をもたらす結果となっていた。   Conventionally, even with a general coating liquid for forming a transparent conductive layer, it has been possible to form a transparent conductive layer having a certain degree of network structure by using the above-described method. However, networking of noble metal fine particles in the film forming process of the coating liquid for forming a transparent conductive layer is often difficult because many conditions actually affect each other. For this reason, the contact resistance between the noble metal particles is likely to increase, or the network is likely to be partially cut, resulting in a decrease in the conductivity of the transparent conductive layer.

例えば、上記特開2000−124662号公報に記載されるように、予め連鎖状に凝集させた貴金属微粒子を含む透明導電層形成用塗布液を用いる方法においても、塗布液中に含まれる貴金属微粒子の絶対数が少ない、即ち貴金属微粒子濃度が低い場合には、塗布液の塗布・乾燥時に凝集体同士が接合し難いため、十分な導電パスを形成することは困難であった。また、過剰な凝集処理を施した透明導電層形成用塗布液においては、仮に十分な導電パスが得られたとしても、微粒子の分散安定性が悪いため、塗布液の貯蔵安定性や塗布性に重大な問題が生じることが多かった。   For example, as described in JP-A No. 2000-124662, the method using a coating liquid for forming a transparent conductive layer containing noble metal fine particles aggregated in advance in a chain form can also be used for the noble metal fine particles contained in the coating liquid. When the absolute number is small, that is, when the concentration of the noble metal fine particles is low, it is difficult to form a sufficient conductive path because the aggregates are difficult to join when applying and drying the coating solution. In addition, in the coating liquid for forming a transparent conductive layer subjected to excessive aggregation treatment, even if a sufficient conductive path is obtained, the dispersion stability of the fine particles is poor, so that the storage stability and coating properties of the coating liquid are reduced. Serious problems often occurred.

また、上記特開2003−77340号公報に提案されたように、透明基材上に予め一定の粒子径をもった無機酸化物微粒子からなる凝集促進層を設ける方法においても、貴金属コート銀微粒子のような貴金属微粒子を適用した透明導電層形成用塗布液の場合には、無機酸化物微粒子の粒子径にかかわらず透明導電膜の導電性は全く改善されない。そのうえ、凝集促進層から溶出される電解質イオン等の影響により、局部的な貴金属微粒子同士の凝集が生じるため、透明導電層形成用塗布液の塗布性等に問題が生じることが多かった。   Further, as proposed in the above Japanese Patent Application Laid-Open No. 2003-77340, in the method of providing an aggregation promoting layer composed of inorganic oxide fine particles having a predetermined particle diameter on a transparent substrate in advance, noble metal-coated silver fine particles In the case of such a coating liquid for forming a transparent conductive layer to which noble metal fine particles are applied, the conductivity of the transparent conductive film is not improved at all regardless of the particle diameter of the inorganic oxide fine particles. In addition, local noble metal fine particles are aggregated due to the influence of electrolyte ions and the like eluted from the aggregation promoting layer, which often causes problems in the coating properties of the coating liquid for forming a transparent conductive layer.

本発明は、この様な従来の問題点に着目してなされたものであり、貴金属微粒子を適用した透明導電層形成用塗布液を用いて、従来よりも均一且つ発達した貴金属微粒子のネットワーク構造を容易に形成することができる透明導電膜の製造方法を提供すること、並びにその方法により製造され、高い透過率を維持しながら、同時に低抵抗で導電性に優れた透明導電膜を提供することを目的とする。   The present invention has been made by paying attention to such a conventional problem, and by using a coating liquid for forming a transparent conductive layer to which noble metal fine particles are applied, a network structure of noble metal fine particles that is more uniform and developed than before is provided. To provide a method for producing a transparent conductive film that can be easily formed, and to provide a transparent conductive film that is manufactured by the method and that has low resistance and excellent conductivity while maintaining high transmittance. Objective.

本発明者は、上記した従来の問題点を解決するため鋭意研究を行った結果、貴金属微粒子を適用した透明導電層形成用塗布液を用いて透明導電層を形成する際に、予め透明基材表面に極希薄なシリカゾルの溶液を塗布しておくだけで、高い透過率を維持しながら、導電性に優れた透明導電膜が得られることを見出し、本発明を完成するに至ったものである。   As a result of intensive studies to solve the above-described conventional problems, the present inventor has previously made a transparent base material when forming a transparent conductive layer using a coating liquid for forming a transparent conductive layer to which noble metal fine particles are applied. The inventors have found that a transparent conductive film excellent in conductivity can be obtained while maintaining a high transmittance just by applying an extremely dilute silica sol solution on the surface, and the present invention has been completed. .

即ち、本発明が提供する請求項1に係わる透明導電膜は、透明基材上に形成された透明導電膜であって、透明基材上に形成された酸化ケイ素を主成分とする透明アンダーコート層と、該透明アンダーコート層上に形成された貴金属微粒子を含有する透明導電層とを有することを特徴とする。   That is, the transparent conductive film according to claim 1 provided by the present invention is a transparent conductive film formed on a transparent substrate, and a transparent undercoat mainly composed of silicon oxide formed on the transparent substrate. And a transparent conductive layer containing noble metal fine particles formed on the transparent undercoat layer.

本発明に係わる請求項2の透明導電膜は、上記請求項1の透明導電膜において、前記透明アンダーコート層の厚みが10〜100nmの範囲であることを特徴とする。本発明に係わる請求項3の透明導電膜は、上記請求項1又は2の透明導電膜において、前記貴金属微粒子が、銀微粒子の表面を、金、白金、パラジウム、ロジウム、ルテニウムから選ばれた少なくとも1種の貴金属によりコートした貴金属コート銀微粒子であることを特徴とする。   A transparent conductive film according to a second aspect of the present invention is the transparent conductive film according to the first aspect, wherein the thickness of the transparent undercoat layer is in the range of 10 to 100 nm. A transparent conductive film according to a third aspect of the present invention is the transparent conductive film according to the first or second aspect, wherein the noble metal fine particles have at least the surface of silver fine particles selected from gold, platinum, palladium, rhodium and ruthenium. It is a noble metal-coated silver fine particle coated with one kind of noble metal.

本発明に係わる請求項4の透明導電膜は、上記請求項1〜3のいずれかの透明導電膜において、前記透明導電層の厚みが50nm以下であり、この透明導電層と透明アンダーコート層からなる2層膜は、表面抵抗が100kΩ/□以下であって、透明基板を含まない2層膜だけの可視光透過率が80%以上であることを特徴するものである。   A transparent conductive film according to a fourth aspect of the present invention is the transparent conductive film according to any one of the first to third aspects, wherein the transparent conductive layer has a thickness of 50 nm or less. From the transparent conductive layer and the transparent undercoat layer, The two-layer film is characterized in that the surface resistance is 100 kΩ / □ or less, and the visible light transmittance of only the two-layer film not including the transparent substrate is 80% or more.

また、本発明が提供する請求項5に係わる透明導電膜の製造方法は、透明基材上に透明導電膜を形成する方法であって、透明基材上に、シリカゾルを含有する透明アンダーコート層形成用塗布液を塗布し、その塗布層上に貴金属微粒子を含有する透明導電層形成用塗布液を塗布し、その後焼成することを特徴とする。   Moreover, the manufacturing method of the transparent conductive film concerning Claim 5 which this invention provides is a method of forming a transparent conductive film on a transparent base material, Comprising: The transparent undercoat layer containing a silica sol on a transparent base material A coating liquid for forming is applied, a coating liquid for forming a transparent conductive layer containing noble metal fine particles is applied on the coating layer, and then fired.

本発明に係わる請求項6の透明導電膜の製造方法は、上記請求項5の透明導電膜の製造方法において、前記透明アンダーコート層形成用塗布液のシリカゾルが、アルキルシリケート及び/又はその重合物であることを特徴とする。本発明に係わる請求項7の透明導電膜の製造方法は、上記請求項5又は6の透明導電膜の製造方法において、前記シリカゾルの重合度が重量平均分子量で500以上であることを特徴とする。   The method for producing a transparent conductive film according to claim 6 of the present invention is the method for producing a transparent conductive film according to claim 5, wherein the silica sol of the coating liquid for forming the transparent undercoat layer is an alkyl silicate and / or a polymer thereof. It is characterized by being. The method for producing a transparent conductive film according to claim 7 according to the present invention is the method for producing a transparent conductive film according to claim 5 or 6, wherein the degree of polymerization of the silica sol is 500 or more in weight average molecular weight. .

本発明に係わる請求項8の透明導電膜の製造方法は、上記請求項5〜7のいずれかの透明導電膜の製造方法において、前記透明導電層形成用塗布液中の貴金属コート銀微粒子の濃度が0.05〜0.2重量%の範囲であることを特徴とするものである。   The method for producing a transparent conductive film according to claim 8 of the present invention is the method for producing a transparent conductive film according to any one of claims 5 to 7, wherein the concentration of the noble metal-coated silver fine particles in the coating liquid for forming the transparent conductive layer is used. Is in the range of 0.05 to 0.2% by weight.

本発明によれば、貴金属コート銀微粒子を主成分とする透明導電層を塗布法により形成する際に、予め透明基材表面にシリカゾルの溶液をコーティングした透明アンダーコート層を設けておくだけで、従来よりも均一且つ発達した貴金属微粒子のネットワーク構造を有する透明導電層を容易に形成することができる。その結果、高い透過率で且つ低い表面抵抗を有する透明導電膜を、容易に安定して形成することができる。   According to the present invention, when a transparent conductive layer mainly composed of noble metal-coated silver fine particles is formed by a coating method, it is only necessary to provide a transparent undercoat layer in which a silica sol solution is previously coated on the surface of a transparent substrate. A transparent conductive layer having a network structure of noble metal fine particles that is more uniform and developed than before can be easily formed. As a result, a transparent conductive film having high transmittance and low surface resistance can be easily and stably formed.

しかも、本発明方法によれば、透明導電層形成用塗布液は、主な固形分である貴金属微粒子の濃度が従来に比べて希薄であっても、均一且つ発達したネットワーク構造が安定して得られるため、十分な導電性を発現する透明導電層の製造コストの低減を図ることができる。   Moreover, according to the method of the present invention, the coating solution for forming a transparent conductive layer can stably obtain a uniform and developed network structure even when the concentration of noble metal fine particles, which is the main solid content, is dilute compared to the conventional one. Therefore, the manufacturing cost of the transparent conductive layer exhibiting sufficient conductivity can be reduced.

本発明において、透明導電膜を形成するには、まず、透明基材上に透明アンダーコート層形成用塗布液を塗布し、必要に応じて常温乾燥し、その塗布層上に更に透明導電層形成用塗布液を塗布する。透明アンダーコート層形成用塗布液及び透明導電層形成用塗布液の塗布方法としては、スプレーコート、スピンコート、ワイヤーバーコート、ドクターブレードコート等のコーティング手法を用いることができる。次に、上記のごとく2つの塗布層を塗布積層した後、例えば50〜350℃程度の温度での加熱焼成処理により塗布層の硬化を行って、透明アンダーコート層と透明導電層とからなる透明導電膜とする。   In the present invention, in order to form a transparent conductive film, first, a coating solution for forming a transparent undercoat layer is applied on a transparent substrate, dried at room temperature as necessary, and further a transparent conductive layer is formed on the coating layer. Apply the coating solution. As a coating method of the coating solution for forming the transparent undercoat layer and the coating solution for forming the transparent conductive layer, a coating method such as spray coating, spin coating, wire bar coating, doctor blade coating, or the like can be used. Next, after coating and laminating the two coating layers as described above, the coating layer is cured by, for example, heating and baking at a temperature of about 50 to 350 ° C., and a transparent undercoat layer and a transparent conductive layer are formed. A conductive film is formed.

尚、得られた本発明の透明導電膜の透明導電層上には、必要に応じて、透明オーバーコート層を形成することができる。また、透明アンダーコート層形成用塗布液を塗布し、この状態で加熱焼成処理により硬化させ、その後、その上に透明導電層及び透明オーバーコート層を形成した場合には、焼成された透明アンダーコート層上への透明導電層形成用塗布液の塗布性が悪化するばかりか、得られる透明導電層の表面抵抗が増加するため好ましくない。   In addition, on the transparent conductive layer of the obtained transparent conductive film of this invention, a transparent overcoat layer can be formed as needed. Also, when a transparent undercoat layer-forming coating solution is applied and cured in this state by heating and baking treatment, and then a transparent conductive layer and a transparent overcoat layer are formed thereon, a baked transparent undercoat This is not preferable because the coating property of the coating liquid for forming a transparent conductive layer on the layer is deteriorated and the surface resistance of the transparent conductive layer to be obtained is increased.

上記透明アンダーコート層形成用塗布液はシリカゾルを含有する。また、シリカゾルとしては、アルキルシリケート及び/又はその重合物であることが好ましい。具体的なシリカゾルとして、例えば、アルキルシリケートに水や酸触媒を加えて加水分解し、脱水縮重合を進ませた重合物、あるいは既に4〜5量体まで重合を進ませた市販のアルキルシリケート溶液を更に加水分解と脱水縮重合を進行させた重合物等を利用することができる。これらのアルキルシリケート加水分解重合物は、加熱焼成時に脱水縮重合反応がほぼ完結して、高い表面平滑性をもった硬いシリケート膜(酸化ケイ素を主成分とする膜)を形成する。   The coating liquid for forming the transparent undercoat layer contains silica sol. The silica sol is preferably an alkyl silicate and / or a polymer thereof. Specific examples of the silica sol include, for example, a polymer obtained by adding water or an acid catalyst to an alkyl silicate, hydrolyzing it, and dehydrating polycondensation, or a commercially available alkyl silicate solution that has already been polymerized to a tetramer to pentamer. Further, a polymer obtained by further hydrolysis and dehydration condensation polymerization can be used. These alkyl silicate hydrolyzed polymers almost complete the dehydration condensation polymerization reaction during heating and baking, and form a hard silicate film (film mainly composed of silicon oxide) having high surface smoothness.

透明アンダーコート層形成用塗布液に用いるシリカゾルの重合度に関しては、重量平均分子量で500以上であることが好ましい。重量平均分子量が500未満の場合、その透明アンダーコート層上に形成した透明導電層に貴金属微粒子の均一で発達したネットワーク構造を得ることが難しく、十分な導電性が得られない。また、脱水縮重合が過度に進行したシリカゾルの場合は、やはり透明導電層の十分な導電性が得られないばかりか、透明アンダーコート層形成用塗布液の粘度が上昇して塗布性が悪化してしまうため、脱水縮重合の度合は透明基板上に塗布可能な上限粘度以下に調整する必要がある。従って、透明導電層の膜特性、透明アンダーコート層形成用塗布液の塗布性や貯蔵安定性等を考慮すると、シリカゾルの重合度は重量平均分子量で1500〜3000程度が更に好ましい。   Regarding the degree of polymerization of the silica sol used in the coating liquid for forming the transparent undercoat layer, it is preferable that the weight average molecular weight is 500 or more. When the weight average molecular weight is less than 500, it is difficult to obtain a uniform and developed network structure of noble metal fine particles in the transparent conductive layer formed on the transparent undercoat layer, and sufficient conductivity cannot be obtained. In addition, in the case of silica sol in which dehydration condensation polymerization has proceeded excessively, not only sufficient conductivity of the transparent conductive layer cannot be obtained, but also the viscosity of the coating liquid for forming the transparent undercoat layer increases and the coating property deteriorates. Therefore, it is necessary to adjust the degree of dehydration condensation polymerization below the upper limit viscosity that can be applied on the transparent substrate. Therefore, in consideration of the film characteristics of the transparent conductive layer, the applicability of the coating solution for forming the transparent undercoat layer, storage stability, and the like, the polymerization degree of the silica sol is more preferably about 1500 to 3000 in terms of weight average molecular weight.

透明基材と透明導電層の間に透明アンダーコート層を介在させることにより、貴金属微粒子を適用した透明導電層形成用塗布液を用いて、その塗布液中の貴金属微粒子濃度が低くても、透明導電層の貴金属微粒子同士が局在化することなく均一に連結し、発達したネットワーク構造を安定して形成することができる。即ち、透明導電層形成用塗布液の貴金属微粒子濃度が極めて希薄な場合であっても、例えば貴金属微粒子濃度が0.3重量%未満、更に好ましくは0.05〜0.2重量%程度であっても、漏洩電磁波防止に必要な十分に低い表面抵抗を有する透明導電層を得ることができる。一方、従来のごとく透明基材上に透明導電層を直接形成した場合には、貴金属微粒子濃度が希薄な塗布液では、貴金属微粒子の連結が進まず、発達したネットワーク構造を安定して得ることができないため、透明導電層の表面抵抗は高いものになってしまい、漏洩電磁波の防止効果を得ることはできない。   By interposing a transparent undercoat layer between the transparent substrate and the transparent conductive layer, the transparent conductive layer forming coating liquid to which the noble metal fine particles are applied can be used even if the noble metal fine particle concentration in the coating liquid is low. The noble metal fine particles of the conductive layer are uniformly connected without being localized, and the developed network structure can be stably formed. That is, even when the concentration of the noble metal fine particles in the coating liquid for forming the transparent conductive layer is extremely dilute, for example, the concentration of the noble metal fine particles is less than 0.3% by weight, more preferably about 0.05 to 0.2% by weight. However, a transparent conductive layer having a sufficiently low surface resistance necessary for preventing leakage electromagnetic waves can be obtained. On the other hand, when a transparent conductive layer is directly formed on a transparent substrate as in the past, in a coating solution with a low concentration of noble metal fine particles, the connection of noble metal fine particles does not proceed and a developed network structure can be stably obtained. Therefore, the surface resistance of the transparent conductive layer becomes high, and the effect of preventing leakage electromagnetic waves cannot be obtained.

尚、透明アンダーコート層の介在により、その上に形成される透明導電層に、貴金属微粒子の均一で且つ発達したネットワーク構造が安定して形成されるメカニズムは明らかではない。しかし、透明導電層形成用塗布液の塗布面の表面エネルギ−は、透明アンダーコート層の存在によって大きく変化することが分っており、その濡れ性から貴金属微粒子同士の不均一な凝集が抑制されるためと考えられる。また、透明アンダーコート層が介在することで、乾燥収縮時の膜内部応力が大幅に増大することから、貴金属微粒子同士の接触を促すことも一因と推測される。   The mechanism by which the uniform and developed network structure of the noble metal fine particles is stably formed in the transparent conductive layer formed thereon by the transparent undercoat layer is not clear. However, it is known that the surface energy of the coating surface of the coating liquid for forming the transparent conductive layer varies greatly depending on the presence of the transparent undercoat layer, and the non-uniform aggregation of the noble metal fine particles is suppressed due to its wettability. It is thought to be for this purpose. In addition, the presence of the transparent undercoat layer significantly increases the internal stress of the film at the time of drying shrinkage. Therefore, it is estimated that the contact between the noble metal fine particles is promoted.

このようにして形成される本発明の透明導電膜は、透明基材上に形成された透明アンダーコート層と、透明アンダーコート層上に形成された貴金属微粒子を含有する透明導電層とから構成される。透明導電層については、上述したように貴金属微粒子濃度が極めて希薄な透明導電層形成用塗布液を用いて形成した場合でも良好な導電性が得られるため、その厚みを従来に比べて薄くでき、従って高い透過率を達成することができる。   The transparent conductive film of the present invention thus formed is composed of a transparent undercoat layer formed on a transparent substrate and a transparent conductive layer containing noble metal fine particles formed on the transparent undercoat layer. The For the transparent conductive layer, as described above, even when formed using a coating solution for forming a transparent conductive layer with a very dilute noble metal fine particle concentration, good conductivity can be obtained. Therefore, high transmittance can be achieved.

また、透明アンダーコート層は、透明基材上に塗布された透明アンダーコート層形成用塗布液中のシリカゾルが加熱焼成時に脱水縮重合して形成されたシリケートの層、即ち酸化ケイ素を主成分とする層である。この透明アンダーコート層の厚みは、10nm未満では十分な導電性の透明導電膜が得られず、100nmを超えた場合も十分な導電性が得られないばかりか、膜強度や塗布性の低下につながるため、10〜100nmの範囲とすることが好ましい。   The transparent undercoat layer is a silicate layer formed by dehydration condensation polymerization of a silica sol in a coating solution for forming a transparent undercoat layer applied on a transparent substrate during heating and baking, that is, silicon oxide as a main component. It is a layer to do. If the thickness of the transparent undercoat layer is less than 10 nm, a sufficiently conductive transparent conductive film cannot be obtained, and if it exceeds 100 nm, sufficient conductivity cannot be obtained, and film strength and applicability are reduced. Since it connects, it is preferable to set it as the range of 10-100 nm.

本発明の透明アンダーコート層と透明導電層とからなる透明導電膜は、上記のごとく透明導電層に均一且つ発達した貴金属微粒子のネットワーク構造を容易に形成できる結果、高い透過率を維持しながら、同時に低抵抗で導電性に優れた透明導電膜となる。即ち、透明導電層の厚みが50nm以下であるとき、透明導電層と透明アンダーコート層からなる2層膜の表面抵抗が100kΩ/□以下、透明基板を含まない上記2層膜だけの可視光透過率が80%以上である透明導電膜を得ることができる。   The transparent conductive film comprising the transparent undercoat layer and the transparent conductive layer of the present invention can easily form a uniform and developed noble metal fine particle network structure in the transparent conductive layer as described above, while maintaining high transmittance, At the same time, a transparent conductive film having low resistance and excellent conductivity is obtained. That is, when the thickness of the transparent conductive layer is 50 nm or less, the surface resistance of the two-layer film composed of the transparent conductive layer and the transparent undercoat layer is 100 kΩ / □ or less, and only the above-mentioned two-layer film not including the transparent substrate transmits visible light. A transparent conductive film having a rate of 80% or more can be obtained.

尚、本発明において用いる透明基材は、CRTフェイスパネルのようなガラス基材に限定されるものではなく、ポリエチレン、ポリカーボネート、アクリルをはじめとする、公知の透明プラスチックフィルムやシート等から便宜選択して用いることができる。   The transparent base material used in the present invention is not limited to a glass base material such as a CRT face panel, but can be conveniently selected from known transparent plastic films and sheets such as polyethylene, polycarbonate, and acrylic. Can be used.

また、透明導電層形成用塗布液及び透明導電層の貴金属微粒子としては、銀微粒子の表面を、金、白金、パラジウム、ロジウム、ルテニウムから選ばれた少なくとも1種の貴金属でコートした貴金属コート銀微粒子が好ましい。金、白金、パラジウム、ロジウム、若しくはルテニウムで銀微粒子の表面をコートすることによって、銀微粒子の耐候性を向上させることができる。尚、上記の貴金属コート銀微粒子以外にも、金、白金、パラジウム、ロジウム、ルテニウムの貴金属単体微粒子、又はこれらの貴金属と銀との貴金属合金微粒子も、本発明における貴金属微粒子として用いることができる。   Further, as the noble metal fine particles of the transparent conductive layer forming coating liquid and the transparent conductive layer, the noble metal coated silver fine particles obtained by coating the surface of the silver fine particles with at least one kind of noble metal selected from gold, platinum, palladium, rhodium and ruthenium. Is preferred. By coating the surface of the silver fine particles with gold, platinum, palladium, rhodium, or ruthenium, the weather resistance of the silver fine particles can be improved. In addition to the above-mentioned noble metal-coated silver fine particles, noble metal simple particles of gold, platinum, palladium, rhodium and ruthenium, or noble metal alloy fine particles of these noble metals and silver can also be used as the noble metal fine particles in the present invention.

次に、本発明における貴金属コート銀微粒子を含む透明導電層形成用塗布液の製造方法について、貴金属微粒子が金コート銀微粒子である場合を例に説明する。まず、既知の方法[例えば、Carey−Lea法:Am. J. Sci.,37,38,47(1889)参照]により、銀微粒子のコロイド分散液を調製する。具体的には、硝酸銀水溶液に硫酸鉄(II)水溶液とクエン酸ナトリウム水溶液の混合液を加えて反応させ、沈降物を濾過・洗浄した後、純水を加えることによって銀微粒子のコロイド分散液が得られる。次に、この銀微粒子コロイド分散液に、ヒドラジン等の還元剤溶液と金酸塩溶液を加えることにより、金コート銀微粒子の分散液が得られる。   Next, a method for producing a coating liquid for forming a transparent conductive layer containing noble metal-coated silver fine particles in the present invention will be described by taking an example in which the noble metal fine particles are gold-coated silver fine particles. First, a colloidal dispersion of silver fine particles is prepared by a known method [for example, Carey-Lea method: see Am. J. Sci., 37, 38, 47 (1889)]. Specifically, a mixed solution of an iron (II) sulfate aqueous solution and an aqueous sodium citrate solution is added to a silver nitrate aqueous solution to react, and after the precipitate is filtered and washed, pure water is added to obtain a colloidal dispersion of silver fine particles. can get. Next, a dispersion solution of gold-coated silver fine particles is obtained by adding a reducing agent solution such as hydrazine and a gold salt solution to the silver fine particle colloid dispersion.

尚、必要に応じて、上記金コーティング工程で、銀微粒子のコロイド分散液か金酸塩溶液の片方又は両方に、少量の分散剤を加えてもよい。また、上記銀微粒子コロイド分散液及び金コート銀微粒子分散液の調整方法は、最終的に平均粒径1〜100nmの金コート銀微粒子の分散液が得られれば任意の方法でよく、上記方法に限定されるものではない。   If necessary, a small amount of a dispersant may be added to one or both of the colloidal dispersion of silver fine particles and the gold salt solution in the gold coating step. The silver fine particle colloid dispersion and the gold coated silver fine particle dispersion may be prepared by any method as long as a dispersion of gold coated silver fine particles having an average particle diameter of 1 to 100 nm is finally obtained. It is not limited.

得られた金コート銀微粒子分散液は、その後、透析、電気透析、イオン交換、限外濾過等の方法で、分散液内の電解質濃度を下げることが好ましい。電解質濃度を下げないと、一般にコロイドは電解質で凝集してしまうからであり、この現象はSchulze−Hardy則として知られている。このように電解質濃度を下げた金コート銀微粒子分散液は、減圧エバポレーター、限外濾過等の方法で濃縮処理して、金コート銀微粒子の分散濃縮液とする。更に、有機溶剤等の添加による成分調整(微粒子濃度、水分濃度等)等を行い、金コート銀微粒子の分散濃縮液が調製される。   It is preferable to lower the electrolyte concentration in the dispersion of the obtained gold-coated silver fine particle dispersion by a method such as dialysis, electrodialysis, ion exchange, or ultrafiltration. This is because colloids generally aggregate in the electrolyte unless the electrolyte concentration is lowered, and this phenomenon is known as the Schulze-Hardy law. The gold-coated silver fine particle dispersion having a reduced electrolyte concentration is concentrated by a method such as a vacuum evaporator or ultrafiltration to obtain a gold-coated silver fine particle dispersion. Furthermore, component adjustment (fine particle concentration, water concentration, etc.) by addition of an organic solvent or the like is performed to prepare a dispersion concentrate of gold-coated silver fine particles.

ここで、好ましくは、金コート銀微粒子を予め連鎖状に凝集させる。即ち、金コート銀微粒子の分散濃縮液を撹拌しながら、ヒドラジン溶液を少量ずつ添加し、例えば室温で数分から数時間程度保持して金コート銀微粒子を鎖状に凝集させた後、過酸化水素溶液を添加してヒドラジンを分解することによって、鎖状凝集金コート銀微粒子の分散(濃縮)液を得ることができる。   Here, preferably, the gold-coated silver fine particles are aggregated in advance in a chain form. That is, while stirring the dispersion concentrate of gold-coated silver fine particles, a hydrazine solution is added little by little. For example, the gold-coated silver fine particles are agglomerated in chains by holding at room temperature for several minutes to several hours. By adding a solution to decompose hydrazine, a dispersion (concentration) solution of chain-aggregated gold-coated silver fine particles can be obtained.

得られた鎖状凝集金コート銀微粒子分散(濃縮)液に、有機溶剤等を添加して微粒子濃度、水分濃度、高沸点有機溶剤濃度等の成分調整を行い、鎖状凝集金コート銀微粒子を含有する透明導電層形成用塗布液とする。また、金コート銀微粒子の分散安定性を向上させ、最終的な透明導電層形成用塗布液のポットライフを延長させるために、高分子樹脂等を添加することも可能である。ただし、高分子樹脂を添加すると、得られる透明導電膜の強度、耐候性が若干悪くなる傾向があるので注意を要する。   An organic solvent or the like is added to the obtained chain-aggregated gold-coated silver fine particle dispersion (concentration) liquid to adjust the components such as the fine particle concentration, water concentration, and high-boiling organic solvent concentration. Let it be a coating liquid for forming a transparent conductive layer. Further, in order to improve the dispersion stability of the gold-coated silver fine particles and extend the pot life of the final coating liquid for forming a transparent conductive layer, a polymer resin or the like can be added. However, when adding a polymer resin, the strength and weather resistance of the resulting transparent conductive film tend to be slightly deteriorated, so care should be taken.

尚、ここでは貴金属微粒子が金コート銀微粒子である透明導電層形成用塗布液の製造方法について説明したが、金以外の貴金属、即ち、白金、パラジウム、ロジウム、ルテニウム等の貴金属でコートされた貴金属コート銀微粒子の場合についても、上記と同様に透明導電層形成用塗布液を製造することができる。また、貴金属コート銀微粒子以外の貴金属微粒子を適用した透明導電層形成用塗布液についても、貴金属によるコーティング工程を除いて、上記と同様に調整することができる。   In addition, although the manufacturing method of the coating liquid for transparent conductive layer formation whose noble metal fine particles are gold coat silver fine particles was demonstrated here, noble metals other than gold, ie, noble metals coated with noble metals such as platinum, palladium, rhodium, ruthenium, etc. Also in the case of coated silver fine particles, a coating liquid for forming a transparent conductive layer can be produced in the same manner as described above. Moreover, the coating liquid for forming a transparent conductive layer to which noble metal fine particles other than the noble metal-coated silver fine particles are applied can be adjusted in the same manner as described above except for the coating step with noble metal.

透明導電層形成用塗布液に用いる有機溶剤としては、特に制限はなく、塗布方法や製膜条件により適宜に選定される。例えば、メタノール(MA)、エタノール(EA)、1−プロパノール(NPA)、イソプロパノール(IPA)、ブタノール、ペンタノール、ベンジルアルコール、ジアセトンアルコール等のアルコール系溶媒、アセトン、メチルエチルケトン(MEK)、メチルプロピルケトン、メチルイソブチルケトン(MIBK)、シクロヘキサノン、イソホロン等のケトン系溶媒、エチレングリコールモノメチルエーテル(MCS)、エチレングリコールモノエチルエーテル(ECS)、エチレングリコールイソプロピルエーテル(IPC)、プロピレングリコールメチルエーテル(PGM)、プロピレングリコールエチルエーテル(PE)、プロピレングリコールメチルエーテルアセテート(PGM−AC)、プロピレングリコールエチルエーテルアセテート(PE−AC)等のグリコール誘導体、ホルムアミド(FA)、N−メチルホルムアミド、ジメチルホルムアミド(DMF)、ジメチルアセトアミド、ジメチルスルフォキシド(DMSO)、N−メチル−2−ピロリドン(NMP)等が挙げられるが、これらに限定されるものではない。   There is no restriction | limiting in particular as an organic solvent used for the coating liquid for transparent conductive layer formation, According to the coating method and film forming conditions, it selects suitably. For example, alcohol solvents such as methanol (MA), ethanol (EA), 1-propanol (NPA), isopropanol (IPA), butanol, pentanol, benzyl alcohol, diacetone alcohol, acetone, methyl ethyl ketone (MEK), methylpropyl Ketone solvents such as ketone, methyl isobutyl ketone (MIBK), cyclohexanone, isophorone, ethylene glycol monomethyl ether (MCS), ethylene glycol monoethyl ether (ECS), ethylene glycol isopropyl ether (IPC), propylene glycol methyl ether (PGM) , Propylene glycol ethyl ether (PE), propylene glycol methyl ether acetate (PGM-AC), propylene glycol ethyl ether Glycol derivatives such as acetate (PE-AC), formamide (FA), N-methylformamide, dimethylformamide (DMF), dimethylacetamide, dimethylsulfoxide (DMSO), N-methyl-2-pyrrolidone (NMP), etc. Although it is mentioned, it is not limited to these.

また、上記透明導電層形成用塗布液には、他の成分として、塗布適正及び塗膜強度を向上させる観点から、バインダー及び/又はバインダー前駆体モノマーを含ませることができる。バインダー及びバインダー前駆体モノマーとしては、アルキルシランモノマーやそれらを脱水縮重合させた重合物、ポリビニルアルコールやポリエチレングリコールなどの水溶性高分子、熱硬化性樹脂や光硬化性樹脂及びそれらの前駆体モノマー等が挙げられるが、これらに限定されるものではない。尚、透明導電層形成用塗布液中のバインダー及びバインダー前駆体モノマーは、含有量が多過ぎると貴金属微粒子間の接触が阻害されて導電性が低下し、少ないと塗布適正及び塗膜強度を向上がみられないので、貴金属微粒子100重量部に対して1〜100重量部の範囲が好ましく、2〜20重量部の範囲が更に好ましい。   In addition, the coating liquid for forming the transparent conductive layer may contain a binder and / or a binder precursor monomer as other components from the viewpoint of improving coating suitability and coating strength. Examples of binders and binder precursor monomers include alkylsilane monomers, polymers obtained by dehydration condensation polymerization thereof, water-soluble polymers such as polyvinyl alcohol and polyethylene glycol, thermosetting resins and photocurable resins, and precursor monomers thereof. However, it is not limited to these. In addition, the binder and binder precursor monomer in the coating liquid for forming the transparent conductive layer are excessively impeded, the contact between the noble metal fine particles is hindered and the conductivity is lowered. Therefore, the range of 1 to 100 parts by weight with respect to 100 parts by weight of the noble metal fine particles is preferable, and the range of 2 to 20 parts by weight is more preferable.

更に、本発明における透明基板上に形成された透明導電膜は、透明アンダーコート層と透明導電層と共に、その上に更に積層された透明オーバーコート層との透明3層膜で構成することもできる。透明オーバーコート層は、保護機能及び反射防止機能を果たすものとして既に知られており、その目的に応じて厚みを適宜選定することができる。特に、バインダー成分を含まないか又はその量が少ない透明導電層形成用塗布液を用いて形成された透明導電層の場合、透明オーバーコート層の保護機能は有用である。尚、透明オーバーコート層は、前記透明アンダーコート層と同様に、硬いシリケート膜(酸化ケイ素を主成分とする膜)で構成されている。   Furthermore, the transparent conductive film formed on the transparent substrate in the present invention can be composed of a transparent three-layer film including a transparent undercoat layer and a transparent conductive layer, and a transparent overcoat layer further laminated thereon. . The transparent overcoat layer is already known as a protective function and an antireflection function, and the thickness can be appropriately selected according to the purpose. In particular, in the case of a transparent conductive layer formed using a coating solution for forming a transparent conductive layer that does not contain or has a small amount of a binder component, the protective function of the transparent overcoat layer is useful. The transparent overcoat layer is composed of a hard silicate film (a film containing silicon oxide as a main component), like the transparent undercoat layer.

この透明オーバーコート層の形成は、シリカゾルを含有する透明オーバーコート層形成用塗布液を用いた塗布法による。具体的には、前述したように透明基材上に透明アンダーコート層形成用塗布液及び透明導電層形成用塗布液を順次塗布し、必要に応じて乾燥した後、同じくスプレーコート、スピンコート、ワイヤーバーコート、ドクターブレードコート等により透明オーバーコート層形成用塗布液を塗布し、その後、例えば50〜350℃程度の温度で加熱焼成処理を施し、塗布層の硬化を行って透明3層膜を形成する。   This transparent overcoat layer is formed by a coating method using a coating liquid for forming a transparent overcoat layer containing silica sol. Specifically, as described above, a transparent undercoat layer-forming coating solution and a transparent conductive layer-forming coating solution are sequentially applied onto a transparent substrate, and after drying as necessary, spray coating, spin coating, Apply a coating solution for forming a transparent overcoat layer by wire bar coating, doctor blade coating, etc., and then heat and bake at a temperature of, for example, about 50 to 350 ° C. to cure the coating layer to form a transparent three-layer film. Form.

透明オーバーコート層形成用塗布液としては、アルキルシリケート及び/又はその重合物であるシリカゾルの溶液を用いる。具体的なシリカゾルとしては、例えば、アルキルシリケートに水や酸触媒を加えて加水分解し、脱水縮重合を進ませた重合物、あるいは既に4〜5量体まで重合を進ませた市販のアルキルシリケート溶液を更に加水分解と脱水縮重合を進行させた重合物等を利用することができる。脱水縮重合の度合は、透明基板上に塗布可能な上限粘度以下に調整する必要があり、膜強度や耐候性等を考慮すると重量平均分子量で1000〜3000程度が好ましい。   As a coating liquid for forming a transparent overcoat layer, a solution of alkyl silicate and / or a silica sol that is a polymer thereof is used. Specific examples of the silica sol include, for example, a polymer obtained by hydrolyzing an alkyl silicate by adding water or an acid catalyst to promote dehydration condensation polymerization, or a commercially available alkyl silicate that has already been polymerized to a tetramer to a pentamer. A polymer obtained by further hydrolysis and dehydration condensation polymerization of the solution can be used. The degree of dehydration condensation polymerization needs to be adjusted below the upper limit viscosity that can be applied on the transparent substrate, and is preferably about 1000 to 3000 in terms of weight average molecular weight in consideration of film strength, weather resistance and the like.

例えば、バインダー成分を含まないか又はその量が少ない透明導電層形成用塗布液の場合、塗布・乾燥段階では透明アンダーコート層上に貴金属微粒子がネットワーク構造を形成した状態で、且つ相互に高い密着性を持たない状態で積層されている。その上に透明オーバーコート層形成用塗布液が連続塗布されると、透明オーバーコート層形成用塗布液の一部は貴金属微粒子で形成されたネットワーク(網目状)構造の穴の部分を通り、導電層に含浸しながら透明アンダーコート層表面にまで到達し、余剰部分は表面にオーバーコートされる。その後の加熱焼成処理により、透明アンダーコート層/透明導電層/透明オーバーコート層の3層構造が形成される。その結果、透明導電層の導電性が向上すると共に、ネットワーク構造の穴の部分を通して透明基材と酸化ケイ素等のバインダーマトリックスとの接触面積が増大するため、透明基材とバインダーマトリックスの結合強度の向上も図られる。   For example, in the case of a coating solution for forming a transparent conductive layer that does not contain a binder component or has a small amount, a noble metal fine particle forms a network structure on the transparent undercoat layer at the coating / drying stage, and has high mutual adhesion. It is laminated in a state that does not have the property. When the coating solution for forming the transparent overcoat layer is continuously applied thereon, a part of the coating solution for forming the transparent overcoat layer passes through the hole portion of the network (network-like) structure formed of noble metal fine particles, and becomes conductive. The layer reaches the surface of the transparent undercoat layer while impregnating the layer, and the surplus portion is overcoated on the surface. A three-layer structure of transparent undercoat layer / transparent conductive layer / transparent overcoat layer is formed by the subsequent heating and baking treatment. As a result, the conductivity of the transparent conductive layer is improved, and the contact area between the transparent substrate and the binder matrix such as silicon oxide is increased through the hole portion of the network structure. Improvement is also achieved.

更に、透明オーバーコート層と透明導電層の透明2層膜において、屈折率と膜厚とを制御する干渉法による反射防止効果が得られる。貴金属微粒子を含有する透明導電層は、その光学定数(n−ik)において、屈折率nはさほど大きくないが消衰係数kが大きいため、透明オーバーコート層との積層構造により、透明導電膜全体の反射率を大幅に低下することができる。尚、透明基材がガラスの場合、酸化ケイ素を主成分とする透明アンダーコート層の屈折率は基材と同等レベルであるから、反射防止については通常の透明オーバーコート層と透明導電層からなる透明2層膜と同様に扱うことができる。   Further, in the transparent two-layer film of the transparent overcoat layer and the transparent conductive layer, an antireflection effect can be obtained by an interference method that controls the refractive index and the film thickness. The transparent conductive layer containing the noble metal fine particles has an optical constant (n-ik) whose refractive index n is not so large but extinction coefficient k is large. Therefore, the entire transparent conductive film is formed by a laminated structure with the transparent overcoat layer. The reflectance can be greatly reduced. When the transparent substrate is glass, the refractive index of the transparent undercoat layer mainly composed of silicon oxide is the same level as that of the substrate. Therefore, for antireflection, it consists of a normal transparent overcoat layer and a transparent conductive layer. It can be handled in the same manner as the transparent two-layer film.

本発明の透明導電膜は、優れた電界シールド効果と高い可視光透過性を有しており、必要に応じて良好な反射防止効果を備えることができるため、ブラウン管(CRT)、プラズマディスプレイパネル(PDP)、蛍光表示管(VFD)、液晶ディスプレイ(LCD)等の表示装置の前面板として好適である。   The transparent conductive film of the present invention has an excellent electric field shielding effect and high visible light transmittance, and can have a good antireflection effect as required. Therefore, a cathode ray tube (CRT), a plasma display panel ( It is suitable as a front plate of a display device such as a PDP), a fluorescent display tube (VFD), and a liquid crystal display (LCD).

以下、本発明の実施例を具体的に説明するが、本発明はこれら実施例に限定されるものではない。また、本文中の「%」は、透過率、反射率、ヘイズ値の(%)を除いて「重量%」を示し、また「部」は「重量部」を示している。   Examples of the present invention will be specifically described below, but the present invention is not limited to these examples. Further, “%” in the text indicates “% by weight” excluding (%) of transmittance, reflectance, and haze value, and “part” indicates “part by weight”.

[実施例1]
まず、透明アンダーコート層形成用塗布液を以下のとおり調整した。即ち、アルキルシリケートの重合物としてメチルシリケート51(コルコート社製商品名)19.6部、エタノール57.8部、1%硝酸水溶液7.9部、純水14.7部を用いて、SiO(酸化ケイ素)固形分濃度が10%で、重量平均分子量が1850のシリカゾル液を調製し、最終的にSiO固形分濃度が0.1%となるようにイソプロピルアルコール(IPA)とn−ブタノール(NBA)の混合物(IPA/NBA=3/1)により希釈後、濾過精度(ポアサイズ)5μmのフィルターで濾過し、実施例1の透明アンダーコート層形成用塗布液を得た。
[Example 1]
First, the coating liquid for forming a transparent undercoat layer was prepared as follows. That is, the polymerization product as methyl silicate 51 (Colcoat Co., Ltd. trade name) 19.6 parts alkyl silicate, ethanol 57.8 parts, 7.9 parts of a 1% aqueous solution of nitric acid, with pure water 14.7 parts SiO 2 (Silicon oxide) A silica sol solution having a solid content concentration of 10% and a weight average molecular weight of 1850 was prepared, and isopropyl alcohol (IPA) and n-butanol were finally adjusted to have a SiO 2 solid content concentration of 0.1%. After dilution with a mixture of (NBA) (IPA / NBA = 3/1), the mixture was filtered through a filter having a filtration accuracy (pore size) of 5 μm to obtain a coating solution for forming a transparent undercoat layer of Example 1.

次に、透明導電層形成用塗布液を以下のとおり調整した。まず、Carey−Lea法により、銀微粒子のコロイド分散液を調製した。具体的には、9%硝酸銀水溶液330gに、23%硫酸鉄(II)水溶液390gと37.5%クエン酸ナトリウム水溶液480gの混合液を加えて反応させ、沈降物を濾過・洗浄した後、純水を加えて、銀微粒子のコロイド分散液(Ag:0.15%)(A液)を調製した。この銀微粒子のコロイド分散液(A液)を透過電子顕微鏡で観察したところ、銀微粒子の平均粒径は4.8nmであった。   Next, the coating liquid for forming a transparent conductive layer was prepared as follows. First, a colloidal dispersion of silver fine particles was prepared by the Carey-Lea method. Specifically, a mixture of 390 g of a 23% iron (II) sulfate aqueous solution and 480 g of a 37.5% sodium citrate aqueous solution was added to 330 g of a 9% silver nitrate aqueous solution, reacted, and the precipitate was filtered and washed. Water was added to prepare a colloidal dispersion of silver fine particles (Ag: 0.15%) (solution A). When this colloidal dispersion (liquid A) of silver fine particles was observed with a transmission electron microscope, the average particle diameter of the silver fine particles was 4.8 nm.

この銀微粒子コロイド分散液(A液)600gに、ヒドラジン1水和物(N・HO)の1%水溶液80.0gを加え、撹拌しながら金酸カリウム[KAu(OH)]水溶液(Au:0.075%)4800gと1%高分子分散剤水溶液2.0gの混合液を加え、銀微粒子表面を金単体でコーティングした金コート銀微粒子のコロイド分散液を得た。 80.0 g of a 1% aqueous solution of hydrazine monohydrate (N 2 H 4 .H 2 O) is added to 600 g of this silver fine particle colloid dispersion (liquid A), and potassium metal hydrate [KAu (OH) 4 is added with stirring. A mixed solution of 4800 g of an aqueous solution (Au: 0.075%) and 2.0 g of a 1% polymer dispersant aqueous solution was added to obtain a colloidal dispersion of gold-coated silver fine particles in which the surface of the silver fine particles was coated with simple gold.

この金コート銀微粒子のコロイド分散液を、イオン交換樹脂(三菱化学社製、商品名ダイヤイオンSK1B,SA20AP)で脱塩した後、限外濾過を行い、金コート銀微粒子の濃縮を行った。得られた液にエタノール(EA)を加えて、金コート銀微粒子分散(濃縮)液(Ag−Au:1.6%、水:20.0%、EA:78.4%、)(B液)を得た。この金コート銀微粒子分散(濃縮)液(B液)を透過電子顕微鏡で観察したところ、金コート銀微粒子の平均粒径は6.2nmであった。   The gold-coated silver fine particle colloidal dispersion was desalted with an ion exchange resin (trade name: Diaion SK1B, SA20AP, manufactured by Mitsubishi Chemical Corporation), and then ultrafiltered to concentrate the gold-coated silver fine particles. Ethanol (EA) was added to the resulting liquid, and gold-coated silver fine particle dispersion (concentrated) liquid (Ag-Au: 1.6%, water: 20.0%, EA: 78.4%) (liquid B ) When this gold-coated silver fine particle dispersion (concentration) liquid (liquid B) was observed with a transmission electron microscope, the average particle size of the gold-coated silver fine particles was 6.2 nm.

この金コート銀微粒子分散(濃縮)液(B液)60gを撹拌しながら、0.75%ヒドラジン水溶液(N・HO:)0.8g(1.6%のAg−Au分散液に対して100ppm)を1分間かけて添加した後、室温で15分間保持して金コート銀微粒子を鎖状に凝集させた。次に、1.5%過酸化水素水溶液(H)0.6gを1分間かけて添加することでヒドラジンを分解させ、鎖状凝集金コート銀微粒子分散(濃縮)液(C液)を得た。この鎖状凝集金コート銀微粒子分散(濃縮)液(C液)を透過電子顕微鏡で観察した結果、金コート銀微粒子は数珠状に連なり、且つ一部分岐した形状(長さ:20〜100μm[個々の凝集金コート銀微粒子における長さの最大値])を有していた。 While stirring 60 g of this gold-coated silver fine particle dispersion (concentration) liquid (B liquid), 0.8 g of 0.75% hydrazine aqueous solution (N 2 H 4 .H 2 O :) (1.6% Ag-Au dispersion) After adding 100 ppm to the liquid over 1 minute, the mixture was kept at room temperature for 15 minutes to aggregate the gold-coated silver fine particles in a chain. Next, 0.6 g of 1.5% aqueous hydrogen peroxide solution (H 2 O 2 ) is added over 1 minute to decompose hydrazine, and chain-aggregated gold-coated silver fine particle dispersion (concentration) solution (solution C) Got. As a result of observing this chain-aggregated gold-coated silver fine particle dispersion (concentration) liquid (liquid C) with a transmission electron microscope, the gold-coated silver fine particles are arranged in a bead shape and partially branched (length: 20 to 100 μm [individual]. The maximum length of the aggregated gold-coated silver fine particles]).

尚、上記金コート銀微粒子の分散(濃縮)液(B液)にヒドラジン溶液を添加した際の金コート銀微粒子の安定性低下、及び鎖状凝集させた金コート銀微粒子の分散(濃縮)液(C液)に過酸化水素溶液を添加した際の安定性向上は、それら分散(濃縮)液のゼータ電位の測定値から科学的に確認することができた。   In addition, the dispersion | distribution (concentration) liquid of the gold coat silver fine particle which carried out the aggregation fall of the gold coat silver fine particle at the time of adding a hydrazine solution to the dispersion | distribution (concentration) liquid (B liquid) of the said gold coat silver fine particle The stability improvement when the hydrogen peroxide solution was added to (C solution) could be scientifically confirmed from the measured zeta potential of these dispersion (concentrated) solutions.

この鎖状凝集金コート銀微粒子分散(濃縮)液(C液)に、エタノール(EA)、プロピレングリコールモノメチルエーテル(PGM)、ジアセトンアルコール(DAA)、ホルムアミド(FA)を加え、濾過精度(ポアサイズ)5μmのフィルターで濾過し、透明導電層形成用塗布液(AuコートAg微粒子:0.15%、水:4.79%、PGM:20.00%、DAA:10.00%、FA:0.1%、EA:64.96%)を得た。   Ethanol (EA), propylene glycol monomethyl ether (PGM), diacetone alcohol (DAA), formamide (FA) are added to this chain-aggregated gold-coated silver fine particle dispersion (concentration) liquid (liquid C), and filtration accuracy (pore size) ) Filtration through a 5 μm filter, and transparent conductive layer forming coating solution (Au-coated Ag fine particles: 0.15%, water: 4.79%, PGM: 20.00%, DAA: 10.00%, FA: 0) 0.1%, EA: 64.96%).

更に、実施例1の透明オーバーコート層形成用塗布液を、以下のとおり調整した。即ち、メチルシリケート51(コルコート社製商品名)19.6部、エタノール57.8部、1%硝酸水溶液7.9部、純水14.7部を用いて、SiO(酸化ケイ素)固形分濃度が10%で、重量平均分子量が1050のシリカゾル液を調製し、最終的に、SiO固形分濃度が0.8%となるようにイソプロピルアルコール(IPA)とn−ブタノール(NBA)の混合物(IPA/NBA=3/1)により希釈して、透明オーバーコート層形成用塗布液とした。 Furthermore, the coating liquid for forming a transparent overcoat layer of Example 1 was prepared as follows. That is, 19.6 parts of methyl silicate 51 (trade name, manufactured by Colcoat Co.), 57.8 parts of ethanol, 7.9 parts of 1% nitric acid aqueous solution, and 14.7 parts of pure water were used to obtain SiO 2 (silicon oxide) solid content. A silica sol solution having a concentration of 10% and a weight average molecular weight of 1,050 was prepared, and finally a mixture of isopropyl alcohol (IPA) and n-butanol (NBA) so that the SiO 2 solid content concentration was 0.8%. The solution was diluted with (IPA / NBA = 3/1) to obtain a coating liquid for forming a transparent overcoat layer.

上記透明アンダーコート層形成用塗布液を、35℃に加熱したガラス基板(厚さ3mmのソーダライムガラス)上に、スピンコート(150rpmで60秒間)し、続けて上記透明導電膜形成用塗布液をスピンコート(90rpmで10秒間、引き続き130rpmで80秒間)し、更に続けて上記透明オーバーコート層形成用塗布液をスピンコート(150rpmで60秒間)した。尚、上記ガラス基板は、使用前に酸化セリウム系研磨剤で研磨処理し、純水での洗浄・乾燥後、35℃に加熱して用いた。その後、180℃で20分間加熱焼成して硬化させ、酸化ケイ素を主成分とする透明アンダーコート層と、その上層の金コート銀微粒子を含有する透明導電層と、更にその上層の酸化ケイ素を主成分とする透明オーバーコート層とで構成された透明3層膜付きのガラス基板、即ち実施例1の透明導電性基材を得た。   The transparent undercoat layer forming coating solution is spin-coated (150 rpm for 60 seconds) on a glass substrate (3 mm thick soda lime glass) heated to 35 ° C., and then the transparent conductive film forming coating solution. Was spin-coated (at 90 rpm for 10 seconds, and subsequently at 130 rpm for 80 seconds), and then the above-mentioned coating solution for forming a transparent overcoat layer was spin-coated (at 150 rpm for 60 seconds). The glass substrate was polished with a cerium oxide-based abrasive before use, washed with pure water and dried, and then heated to 35 ° C. for use. After that, it is heated and fired at 180 ° C. for 20 minutes to be cured, and a transparent undercoat layer mainly composed of silicon oxide, a transparent conductive layer containing gold-coated silver fine particles as an upper layer, and a silicon oxide as a further upper layer are mainly formed. A glass substrate with a transparent three-layer film composed of a transparent overcoat layer as a component, that is, a transparent conductive substrate of Example 1 was obtained.

下記表1に、実施例1の透明アンダーコート層形成用塗布液におけるシリカゾルの重量平均分子量と酸化ケイ素(SiO)換算濃度を示すと共に、透明導電膜(3層)形成後の透明アンダーコート層、透明導電層及び透明オーバーコート層の厚みを示した。また、下記表2には、実施例1の透明導電基材における透明3層膜の膜特性、即ち表面抵抗、可視光透過率、ヘイズ値、ボトム反射率/ボトム波長を示した。 Table 1 below shows the weight average molecular weight of the silica sol and the silicon oxide (SiO 2 ) equivalent concentration in the coating liquid for forming the transparent undercoat layer of Example 1, and the transparent undercoat layer after the formation of the transparent conductive film (three layers). The thicknesses of the transparent conductive layer and the transparent overcoat layer are shown. Table 2 below shows film characteristics of the transparent three-layer film in the transparent conductive substrate of Example 1, that is, surface resistance, visible light transmittance, haze value, bottom reflectance / bottom wavelength.

本発明における透過率とは、特に言及しない限り、透明基材を含まない透明導電膜(透明3層膜)だけの可視光透過率である。尚、下記表2に示す透明基材(ガラス基板)を含まない透明導電膜だけの可視光透過率は、次の計算式により求めることができる。即ち、透明基材を含まない透明導電膜だけの透過率(%)=[(透明基材ごと測定した透過率)/(透明基材の透過率)]×100   The transmittance in the present invention is a visible light transmittance of only a transparent conductive film (transparent three-layer film) that does not contain a transparent substrate unless otherwise specified. In addition, the visible light transmittance | permeability of only the transparent conductive film which does not contain the transparent base material (glass substrate) shown in following Table 2 can be calculated | required with the following formula. That is, the transmittance (%) of only the transparent conductive film not containing the transparent substrate = [(transmittance measured for each transparent substrate) / (transmittance of the transparent substrate)] × 100

また、透明導電膜の表面抵抗は、三菱化学(株)製の表面抵抗計ロレスタAP(MCP−T400)を用い測定した。可視光透過率とヘイズ値は、村上色彩技術研究所製のヘイズメーター(HR−200)を用いて測定した。反射率は、日立製作所(株)製の分光光度計(U−4000)を用いて測定した。シリカゾルの重量平均分子量は、島津製作所製の高速液体クロマトグラフ(LC−10A)を用いて、ゲル浸透クロマトグラフ法(GPC法)により測定した。この時の使用カラムは、Waters製ウルトラスタイラジェル10及びShodex製KF−801である。 The surface resistance of the transparent conductive film was measured using a surface resistance meter Loresta AP (MCP-T400) manufactured by Mitsubishi Chemical Corporation. The visible light transmittance and haze value were measured using a haze meter (HR-200) manufactured by Murakami Color Research Laboratory. The reflectance was measured using a spectrophotometer (U-4000) manufactured by Hitachi, Ltd. The weight average molecular weight of the silica sol was measured by gel permeation chromatography (GPC method) using a high performance liquid chromatograph (LC-10A) manufactured by Shimadzu Corporation. Column used at this time is from Waters Ultra Styler Gel 10 4 and Shodex manufactured KF-801.

[実施例2]
実施例2の透明アンダーコート層形成用塗布液を、以下のとおり調整した。即ち、メチルシリケート51(コルコート社製商品名)19.6部、エタノール57.8部、1%硝酸水溶液7.9部、純水14.7部を用いて、SiO(酸化ケイ素)固形分濃度が10%で、重量平均分子量が1850のシリカゾル液を調製し、最終的にSiO固形分濃度が0.05%となるようにイソプロピルアルコール(IPA)とn−ブタノール(NBA)の混合物(IPA/NBA=3/1)により希釈した後、濾過精度(ポアサイズ)5μmのフィルターで濾過し、実施例2の透明アンダーコート層形成用塗布液を得た。
[Example 2]
The coating liquid for forming the transparent undercoat layer of Example 2 was prepared as follows. That is, 19.6 parts of methyl silicate 51 (trade name, manufactured by Colcoat Co.), 57.8 parts of ethanol, 7.9 parts of 1% nitric acid aqueous solution, and 14.7 parts of pure water were used to obtain SiO 2 (silicon oxide) solid content. A silica sol solution having a concentration of 10% and a weight average molecular weight of 1850 was prepared, and finally a mixture of isopropyl alcohol (IPA) and n-butanol (NBA) so that the SiO 2 solid content concentration was 0.05% ( After dilution with IPA / NBA = 3/1), the solution was filtered through a filter having a filtration accuracy (pore size) of 5 μm to obtain a coating liquid for forming a transparent undercoat layer of Example 2.

この透明アンダーコート層形成用塗布液を用いた以外は上記実施例1と同様にして、酸化ケイ素を主成分とする透明アンダーコート層と、その上層の金コート銀微粒子を含有する透明導電層と、更にその上層の酸化ケイ素を主成分とする透明オーバーコート層とで構成された透明3層膜付きのガラス基板、即ち実施例2の透明導電性基材を得た。   A transparent undercoat layer containing silicon oxide as a main component and a transparent conductive layer containing gold-coated silver fine particles as an upper layer in the same manner as in Example 1 except that this coating solution for forming a transparent undercoat layer was used. Furthermore, a glass substrate with a transparent three-layer film composed of a transparent overcoat layer mainly composed of silicon oxide as an upper layer, that is, a transparent conductive substrate of Example 2 was obtained.

下記表1に、実施例2の透明アンダーコート層形成用塗布液におけるシリカゾルの重量平均分子量と酸化ケイ素(SiO)換算濃度を示すと共に、透明導電膜(3層)形成後の透明アンダーコート層、透明導電層及び透明オーバーコート層の厚みを示した。また、下記表2には、実施例2の透明導電基材における透明3層膜の膜特性を、実施例1と同様に評価して示した。 Table 1 below shows the weight average molecular weight of silica sol and the equivalent concentration of silicon oxide (SiO 2 ) in the coating solution for forming the transparent undercoat layer of Example 2, and the transparent undercoat layer after forming the transparent conductive film (three layers). The thicknesses of the transparent conductive layer and the transparent overcoat layer are shown. In Table 2, the film characteristics of the transparent three-layer film in the transparent conductive substrate of Example 2 were evaluated and shown in the same manner as in Example 1.

[実施例3]
実施例3の透明アンダーコート層形成用塗布液を、以下のとおり調整した。即ち、メチルシリケート51(コルコート社製商品名)19.6部、エタノール57.8部、1%硝酸水溶液7.9部、純水14.7部を用いて、SiO(酸化ケイ素)固形分濃度が10%で、重量平均分子量が500のシリカゾル液を調製し、最終的にSiO固形分濃度が0.1%となるようにイソプロピルアルコール(IPA)とn−ブタノール(NBA)の混合物(IPA/NBA=3/1)により希釈した後、濾過精度(ポアサイズ)5μmのフィルターで濾過し、実施例3の透明アンダーコート層形成用塗布液を得た。
[Example 3]
The coating liquid for forming the transparent undercoat layer of Example 3 was prepared as follows. That is, 19.6 parts of methyl silicate 51 (trade name, manufactured by Colcoat Co.), 57.8 parts of ethanol, 7.9 parts of 1% nitric acid aqueous solution, and 14.7 parts of pure water were used to obtain SiO 2 (silicon oxide) solid content. A silica sol solution having a concentration of 10% and a weight average molecular weight of 500 was prepared, and finally a mixture of isopropyl alcohol (IPA) and n-butanol (NBA) so that the SiO 2 solid content concentration was 0.1% ( After dilution with IPA / NBA = 3/1), the solution was filtered through a filter having a filtration accuracy (pore size) of 5 μm to obtain a coating liquid for forming a transparent undercoat layer of Example 3.

この透明アンダーコート層形成用塗布液を用いた以外は上記実施例1と同様にして、酸化ケイ素を主成分とする透明アンダーコート層と、その上層の金コート銀微粒子を含有する透明導電層と、更にその上層の酸化ケイ素を主成分とする透明オーバーコート層とで構成された透明3層膜付きのガラス基板、即ち実施例3の透明導電性基材を得た。   A transparent undercoat layer containing silicon oxide as a main component and a transparent conductive layer containing gold-coated silver fine particles as an upper layer in the same manner as in Example 1 except that this coating solution for forming a transparent undercoat layer was used. Furthermore, a glass substrate with a transparent three-layer film composed of a transparent overcoat layer mainly composed of silicon oxide as an upper layer, that is, a transparent conductive substrate of Example 3 was obtained.

下記表1に、実施例3の透明アンダーコート層形成用塗布液におけるシリカゾルの重量平均分子量と酸化ケイ素(SiO)換算濃度を示すと共に、透明導電膜(3層)形成後の透明アンダーコート層、透明導電層及び透明オーバーコート層の厚みを示した。また、下記表2には、実施例3の透明導電基材における透明3層膜の膜特性を、実施例1と同様に評価して示した。 Table 1 below shows the weight average molecular weight of silica sol and the silicon oxide (SiO 2 ) equivalent concentration in the coating liquid for forming the transparent undercoat layer of Example 3, and the transparent undercoat layer after the formation of the transparent conductive film (three layers). The thicknesses of the transparent conductive layer and the transparent overcoat layer are shown. In Table 2 below, the film properties of the transparent three-layer film in the transparent conductive substrate of Example 3 were evaluated and shown in the same manner as in Example 1.

[実施例4]
実施例4の透明アンダーコート層形成用塗布液を、以下のとおり調整した。即ち、メチルシリケート51(コルコート社製商品名)19.6部、エタノール57.8部、1%硝酸水溶液7.9部、純水14.7部を用いて、SiO(酸化ケイ素)固形分濃度が10%で、重量平均分子量が470のシリカゾル液を調製し、最終的にSiO固形分濃度が0.1%となるようにイソプロピルアルコール(IPA)とn−ブタノール(NBA)の混合物(IPA/NBA=3/1)により希釈した後、濾過精度(ポアサイズ)5μmのフィルターで濾過し、実施例4の透明アンダーコート層形成用塗布液を得た。
[Example 4]
The coating solution for forming the transparent undercoat layer of Example 4 was prepared as follows. That is, 19.6 parts of methyl silicate 51 (trade name, manufactured by Colcoat Co.), 57.8 parts of ethanol, 7.9 parts of 1% nitric acid aqueous solution, and 14.7 parts of pure water were used to obtain SiO 2 (silicon oxide) solid content. A silica sol solution having a concentration of 10% and a weight average molecular weight of 470 was prepared, and finally a mixture of isopropyl alcohol (IPA) and n-butanol (NBA) so that the SiO 2 solid content concentration was 0.1% ( After dilution with IPA / NBA = 3/1), the solution was filtered through a filter having a filtration accuracy (pore size) of 5 μm to obtain a coating liquid for forming a transparent undercoat layer of Example 4.

この透明アンダーコート層形成用塗布液を用いた以外は上記実施例1と同様にして、酸化ケイ素を主成分とする透明アンダーコート層と、その上層の金コート銀微粒子を含有する透明導電層と、更にその上層の酸化ケイ素を主成分とする透明オーバーコート層とで構成された透明3層膜付きのガラス基板、即ち実施例4の透明導電性基材を得た。   A transparent undercoat layer containing silicon oxide as a main component and a transparent conductive layer containing gold-coated silver fine particles as an upper layer in the same manner as in Example 1 except that this coating solution for forming a transparent undercoat layer was used. Furthermore, a glass substrate with a transparent three-layer film composed of a transparent overcoat layer mainly composed of silicon oxide as an upper layer, that is, a transparent conductive substrate of Example 4 was obtained.

下記表1に、実施例4の透明アンダーコート層形成用塗布液におけるシリカゾルの重量平均分子量と酸化ケイ素(SiO)換算濃度を示すと共に、透明導電膜(3層)形成後の透明アンダーコート層、透明導電層及び透明オーバーコート層の厚みを示した。また、下記表2には、実施例4の透明導電基材における透明3層膜の膜特性を、実施例1と同様に評価して示した。 Table 1 below shows the weight average molecular weight of the silica sol and the silicon oxide (SiO 2 ) equivalent concentration in the coating liquid for forming the transparent undercoat layer of Example 4, and the transparent undercoat layer after the formation of the transparent conductive film (three layers). The thicknesses of the transparent conductive layer and the transparent overcoat layer are shown. In Table 2 below, the film characteristics of the transparent three-layer film in the transparent conductive substrate of Example 4 were evaluated and shown in the same manner as in Example 1.

[実施例5]
実施例1で得られた鎖状凝集金コート銀微粒子分散(濃縮)液(C液)に、エタノール(EA)、プロピレングリコールモノメチルエーテル(PGM)、ジアセトンアルコール(DAA)、ホルムアミド(FA)、及びバインダー成分としてメチルトリメトキシシランを加え、濾過精度(ポアサイズ)5μmのフィルターで濾過し、透明導電層形成用塗布液(AuコートAg微粒子:0.15%、水:4.79%、PGM:20.00%、DAA:10.00%、FA:0.1%、メチルトリメトキシシラン:0.015%、EA:64.945%)を得た。
[Example 5]
In the chain-aggregated gold-coated silver fine particle dispersion (concentration) liquid (C liquid) obtained in Example 1, ethanol (EA), propylene glycol monomethyl ether (PGM), diacetone alcohol (DAA), formamide (FA), Then, methyltrimethoxysilane is added as a binder component, and the mixture is filtered through a filter having a filtration accuracy (pore size) of 5 μm. A coating solution for forming a transparent conductive layer (Au-coated Ag fine particles: 0.15%, water: 4.79%, PGM: 20.00%, DAA: 10.00%, FA: 0.1%, methyltrimethoxysilane: 0.015%, EA: 64.945%).

次に、実施例1で得られた透明アンダーコート層形成用塗布液を、35℃に加熱したガラス基板(厚さ3mmのソーダライムガラス)上に、スピンコート(150rpmで60秒間)し、続けて上記透明導電膜形成用塗布液をスピンコート(90rpmで10秒間、引き続き130rpmで80秒間)した。その後、180℃で20分間加熱焼成して硬化させ、酸化ケイ素を主成分とする透明アンダーコート層と、その上層の金コート銀微粒子を含有する透明導電層とで構成された透明2層膜付きのガラス基板、即ち実施例5の透明導電性基材を得た。   Next, the transparent undercoat layer-forming coating solution obtained in Example 1 was spin-coated (150 rpm for 60 seconds) on a glass substrate (3 mm thick soda lime glass) heated to 35 ° C., and continued. The transparent conductive film forming coating solution was spin-coated (at 90 rpm for 10 seconds, and subsequently at 130 rpm for 80 seconds). Thereafter, it is cured by heating and baking at 180 ° C. for 20 minutes, and a transparent two-layer film comprising a transparent undercoat layer mainly composed of silicon oxide and a transparent conductive layer containing gold-coated silver fine particles as an upper layer is provided. A transparent conductive substrate of Example 5 was obtained.

下記表1に、実施例5の透明アンダーコート層形成用塗布液におけるシリカゾルの重量平均分子量と酸化ケイ素(SiO)換算濃度を示すと共に、透明導電膜(2層)形成後の透明アンダーコート層と透明導電層の厚みを示した。また、下記表2には、実施例5の透明導電基材における透明2層膜の膜特性を、実施例1と同様に評価して示した。 Table 1 below shows the weight average molecular weight of silica sol and the equivalent concentration of silicon oxide (SiO 2 ) in the coating solution for forming the transparent undercoat layer of Example 5, and the transparent undercoat layer after forming the transparent conductive film (two layers). And the thickness of the transparent conductive layer. In Table 2, the film characteristics of the transparent two-layer film in the transparent conductive substrate of Example 5 were evaluated and shown in the same manner as in Example 1.

[参考例1]
参考例1の透明アンダーコート層形成用塗布液を、以下のとおり調整した。即ち、メチルシリケート51(コルコート社製商品名)19.6部、エタノール57.8部、1%硝酸水溶液7.9部、純水14.7部を用いて、SiO(酸化ケイ素)固形分濃度が10%で、重量平均分子量が1850のシリカゾル液を調製し、最終的にSiO固形分濃度が0.9%となるようにイソプロピルアルコール(IPA)とn−ブタノール(NBA)の混合物(IPA/NBA=3/1)により希釈した後、濾過精度(ポアサイズ)5μmのフィルターで濾過し、参考例1の透明アンダーコート層形成用塗布液を得た。
[Reference Example 1]
The coating solution for forming the transparent undercoat layer of Reference Example 1 was prepared as follows. That is, 19.6 parts of methyl silicate 51 (trade name, manufactured by Colcoat Co.), 57.8 parts of ethanol, 7.9 parts of 1% nitric acid aqueous solution, and 14.7 parts of pure water were used to obtain SiO 2 (silicon oxide) solid content. A silica sol solution having a concentration of 10% and a weight average molecular weight of 1850 was prepared, and finally a mixture of isopropyl alcohol (IPA) and n-butanol (NBA) so that the SiO 2 solid content concentration was 0.9% ( After dilution with IPA / NBA = 3/1), the solution was filtered through a filter having a filtration accuracy (pore size) of 5 μm to obtain a coating liquid for forming a transparent undercoat layer of Reference Example 1.

この透明アンダーコート層形成用塗布液を用いた以外は上記実施例1と同様にして、酸化ケイ素を主成分とする透明アンダーコート層と、その上層の金コート銀微粒子を含有する透明導電層と、更にその上層の酸化ケイ素を主成分とする透明オーバーコート層とで構成された透明3層膜付きのガラス基板、即ち参考例1の透明導電性基材を得た。この参考例1についても、下記表1に、透明アンダーコート層形成用塗布液におけるシリカゾルの重量平均分子量と酸化ケイ素(SiO)換算濃度を示すと共に、透明導電膜(3層)形成後の透明アンダーコート層、透明導電層及び透明オーバーコート層の厚みを示した。また、下記表2には、参考例1の透明導電基材における透明3層膜の膜特性を、実施例1と同様に評価して示した。 A transparent undercoat layer containing silicon oxide as a main component and a transparent conductive layer containing gold-coated silver fine particles as an upper layer in the same manner as in Example 1 except that this coating solution for forming a transparent undercoat layer was used. Furthermore, a glass substrate with a transparent three-layer film composed of a transparent overcoat layer mainly composed of silicon oxide as an upper layer, that is, a transparent conductive substrate of Reference Example 1 was obtained. Also for this Reference Example 1, the following Table 1 shows the weight average molecular weight of silica sol and the equivalent concentration of silicon oxide (SiO 2 ) in the coating solution for forming the transparent undercoat layer, and the transparent after the formation of the transparent conductive film (three layers). The thicknesses of the undercoat layer, the transparent conductive layer and the transparent overcoat layer are shown. In Table 2, the film characteristics of the transparent three-layer film in the transparent conductive substrate of Reference Example 1 were evaluated and shown in the same manner as in Example 1.

[参考例2]
実施例1で調整した透明アンダーコート層形成用塗布液を、35℃に加熱したガラス基板(厚さ3mmのソーダライムガラス)上に、スピンコート(150rpmで60秒間)し、180℃で20分間加熱焼成処理して硬化させた。その後、35℃まで冷却してから、上記実施例1の透明導電膜形成用塗布液をスピンコート(90rpmで10秒間、引き続き130rpmで80秒間)し、続けて実施例1の透明オーバーコート層形成用塗布液をスピンコート(150rpmで60秒間)した。その後、再度180℃で20分間加熱焼成処理して硬化させ、酸化ケイ素を主成分とする透明アンダーコート層と、その上層の金コート銀微粒子を含有する透明導電層、更にその上層の酸化ケイ素を主成分とする透明オーバーコート層とで構成された透明3層膜付きのガラス基板、即ち参考例2の透明導電性基材を得た。
[Reference Example 2]
The coating solution for forming the transparent undercoat layer prepared in Example 1 is spin-coated (150 rpm for 60 seconds) on a glass substrate (3 mm thick soda lime glass) heated to 35 ° C., and then at 180 ° C. for 20 minutes. It was cured by heating and baking. Then, after cooling to 35 ° C., the transparent conductive film-forming coating solution of Example 1 was spin coated (90 rpm for 10 seconds, then 130 rpm for 80 seconds), and then the transparent overcoat layer of Example 1 was formed. The coating solution was spin coated (at 150 rpm for 60 seconds). After that, it is cured by heating and baking again at 180 ° C. for 20 minutes, and a transparent undercoat layer mainly composed of silicon oxide, a transparent conductive layer containing gold-coated silver fine particles as an upper layer, and further an upper layer of silicon oxide are obtained. A glass substrate with a transparent three-layer film composed of a transparent overcoat layer as a main component, that is, a transparent conductive substrate of Reference Example 2 was obtained.

下記表1に、参考例2の透明アンダーコート層形成用塗布液におけるシリカゾルの重量平均分子量と酸化ケイ素(SiO)換算濃度を示すと共に、透明導電膜(3層)形成後の透明アンダーコート層、透明導電層及び透明オーバーコート層の厚みを示した。また、下記表2には、参考例2の透明導電基材における透明3層膜の膜特性を、実施例1と同様に評価して示した。 Table 1 below shows the weight average molecular weight of silica sol and the equivalent concentration of silicon oxide (SiO 2 ) in the coating liquid for forming the transparent undercoat layer of Reference Example 2, and the transparent undercoat layer after the formation of the transparent conductive film (three layers). The thicknesses of the transparent conductive layer and the transparent overcoat layer are shown. In Table 2, the film characteristics of the transparent three-layer film in the transparent conductive substrate of Reference Example 2 were evaluated and shown in the same manner as in Example 1.

[比較例1]
実施例1で調整した透明導電層形成用塗布液を、35℃に加熱したガラス基板(厚さ3mmのソーダライムガラス)上に、スピンコート(90rpmで10秒間、引き続き130rpmで80秒間)し、続けて実施例1の透明オーバーコート層形成用塗布液をスピンコート(150rpmで60秒間)した。その後、180℃で20分間加熱焼成処理して硬化させ、金コート銀微粒子を含有する透明導電層と、その上層の酸化ケイ素を主成分とする透明オーバーコート層とで構成された透明2層膜付きのガラス基板、即ち比較例1の透明導電性基材を得た。
[Comparative Example 1]
The coating liquid for forming a transparent conductive layer prepared in Example 1 was spin-coated on a glass substrate (3 mm thick soda lime glass) heated to 35 ° C. (90 rpm for 10 seconds, then 130 rpm for 80 seconds), Subsequently, the coating liquid for forming the transparent overcoat layer of Example 1 was spin-coated (at 150 rpm for 60 seconds). Thereafter, a transparent two-layer film comprising a transparent conductive layer containing gold-coated silver fine particles and a transparent overcoat layer mainly composed of silicon oxide as an upper layer is cured by heating and baking at 180 ° C. for 20 minutes. A transparent glass substrate with a glass substrate, that is, Comparative Example 1, was obtained.

比較例1について、下記表1に各層の厚みを示すと共に、下記表2に透明導電基材における透明2層膜の膜特性を実施例1と同様に評価して示した。   Regarding Comparative Example 1, the thickness of each layer is shown in Table 1 below, and the film characteristics of the transparent two-layer film in the transparent conductive substrate are evaluated and shown in Table 2 below in the same manner as in Example 1.

[比較例2]
比較例2の透明アンダーコート層形成用塗布液を、以下のとおり調整した。即ち、日産化学工業(株)製のコロイダルシリカ(商品名スノーテックスO、SiO分20%、コロイダルシリカ粒子径10〜20nm)0.5部、エタノール59.5部、イソプロピルアルコール(IPA)30部、n−ブタノール(NBA)10部を用いて、SiO固形分濃度が0.1%となるよう混合し、30分間撹拌した後、濾過精度(ポアサイズ)5μmのフィルターで濾過し、比較例2の透明アンダーコート層形成用塗布液を得た。
[Comparative Example 2]
The coating liquid for forming the transparent undercoat layer of Comparative Example 2 was prepared as follows. That is, colloidal silica (trade name Snowtex O, SiO 2 min 20%, colloidal silica particle size 10 to 20 nm) 0.5 part, ethanol 59.5 parts, isopropyl alcohol (IPA) 30 manufactured by Nissan Chemical Industries, Ltd. Part, n-butanol (NBA) 10 parts, mixed so that the solid content concentration of SiO 2 is 0.1%, stirred for 30 minutes, and then filtered with a filter having a filtration accuracy (pore size) of 5 μm. A coating solution for forming a transparent undercoat layer 2 was obtained.

この透明アンダーコート層形成用塗布液を用いた以外は上記実施例1と同様にして、酸化ケイ素を主成分とする透明アンダーコート層と、その上層の金コート銀微粒子を含有する透明導電層と、更にその上層の酸化ケイ素を主成分とする透明オーバーコート層とで構成された透明3層膜付きのガラス基板、即ち比較例2の透明導電性基材を得た。   A transparent undercoat layer containing silicon oxide as a main component and a transparent conductive layer containing gold-coated silver fine particles as an upper layer in the same manner as in Example 1 except that this coating solution for forming a transparent undercoat layer was used. Further, a glass substrate with a transparent three-layer film composed of a transparent overcoat layer mainly composed of silicon oxide as an upper layer, that is, a transparent conductive substrate of Comparative Example 2 was obtained.

比較例2について、下記表1に、透明アンダーコート層形成用塗布液における酸化ケイ素(SiO)換算濃度と、各層の厚みを示すと共に、下記表2に透明導電基材における透明3層膜の膜特性を実施例1と同様に評価して示した。 Regarding Comparative Example 2, the following Table 1 shows the silicon oxide (SiO 2 ) equivalent concentration in the transparent undercoat layer forming coating solution and the thickness of each layer, and Table 2 below shows the transparent three-layer film of the transparent conductive substrate. The film characteristics were evaluated and shown in the same manner as in Example 1.

[比較例3]
比較例3の透明アンダーコート層形成用塗布液を、以下のとおり調整した。即ち、日産化学工業製のアルミナゾル520(Al分20%)0.5部、エタノール59.5部、イソプロピルアルコール(IPA)30部、n−ブタノール(NBA)10部を用いて、Al固形分濃度が0.1%となるよう混合し、30分間撹拌した後、濾過精度(ポアサイズ)5μmのフィルターで濾過し、比較例3の透明アンダーコート層形成用塗布液を得た。
[Comparative Example 3]
The coating solution for forming the transparent undercoat layer of Comparative Example 3 was prepared as follows. That is, using 0.5 parts of alumina sol 520 (Al 2 O 3 min 20%) manufactured by Nissan Chemical Industries, 59.5 parts of ethanol, 30 parts of isopropyl alcohol (IPA), 10 parts of n-butanol (NBA), Al The mixture was mixed so that the 2 O 3 solid content concentration was 0.1%, stirred for 30 minutes, and then filtered through a filter having a filtration accuracy (pore size) of 5 μm to obtain a coating solution for forming a transparent undercoat layer of Comparative Example 3. .

この透明アンダーコート層形成用塗布液を用いた以外は上記実施例1と同様にして、アルミナを主成分とする透明アンダーコート層と、その上層の金コート銀微粒子を含有する透明導電層と、更にその上層の酸化ケイ素を主成分とする透明オーバーコート層とで構成された透明3層膜付きのガラス基板、即ち比較例3の透明導電性基材を得た。   Except for using this coating liquid for forming the transparent undercoat layer, in the same manner as in Example 1 above, a transparent undercoat layer mainly composed of alumina, and a transparent conductive layer containing gold-coated silver fine particles thereon, Further, a glass substrate with a transparent three-layer film composed of a transparent overcoat layer mainly composed of silicon oxide as an upper layer, that is, a transparent conductive substrate of Comparative Example 3 was obtained.

比較例3について、下記表1に、透明アンダーコート層形成用塗布液におけるアルミナ濃度(Al)換算濃度と、各層の厚みを示すと共に、下記表2に透明導電基材における透明3層膜の膜特性を実施例1と同様に評価して示した。 Regarding Comparative Example 3, the following Table 1 shows the alumina concentration (Al 2 O 3 ) equivalent concentration in the coating liquid for forming the transparent undercoat layer and the thickness of each layer, and Table 2 below shows the transparent three layers in the transparent conductive substrate. The film properties of the film were evaluated and shown in the same manner as in Example 1.

Figure 2005209350
Figure 2005209350

Figure 2005209350
Figure 2005209350

上記表1及び表2の結果から、以下のことが分る。まず、従来一般的な透明アンダーコート層を持たない比較例1の透明2層膜の表面抵抗が著しく高いのに対し、透明アンダーコート層を有する実施例1〜3の透明3層膜は、表面抵抗が1.8〜7.5kΩ/□と低く且つ可視光透過率が90.2〜92.1%と高く、高透過率と高導電性が両立している。このことから、実施例1〜3に係る透明3層膜をブラウン管等の表示装置に適用した場合、輝度を損なわずに、従来よりも優れた電磁波シールド特性が得られることが分る。   From the results of Table 1 and Table 2, the following can be seen. First, while the surface resistance of the transparent two-layer film of Comparative Example 1 having no conventional transparent undercoat layer is remarkably high, the transparent three-layer films of Examples 1 to 3 having the transparent undercoat layer are The resistance is as low as 1.8 to 7.5 kΩ / □, the visible light transmittance is as high as 90.2 to 92.1%, and both high transmittance and high conductivity are compatible. From this, it can be seen that when the transparent three-layer film according to Examples 1 to 3 is applied to a display device such as a cathode ray tube, the electromagnetic wave shielding characteristics superior to the conventional one can be obtained without impairing the luminance.

ただし、実施例4では、使用した透明アンダーコート層形成用塗布液におけるシリカゾルの重量平均分子量が500未満であるため、透明3層膜の表面抵抗が13.6kΩ/□まで上昇した。また、実施例5では、透明導電層にバインダー成分を含む代りに透明オーバーコート層を有しないが、可視光透過率が若干低下し且つヘイズ値が多少大きくなった以外は、実施例1〜3の透明3層膜の場合とほぼ同じ膜特性が得られた。   However, in Example 4, since the weight average molecular weight of the silica sol in the used coating solution for forming the transparent undercoat layer was less than 500, the surface resistance of the transparent three-layer film increased to 13.6 kΩ / □. Further, in Example 5, the transparent conductive layer does not have a transparent overcoat layer in place of containing the binder component, but Examples 1 to 3 except that the visible light transmittance is slightly lowered and the haze value is slightly increased. The film characteristics almost the same as those of the transparent three-layer film were obtained.

また、参考例1のように、透明アンダーコート層の厚みが100nmを超えると、得られる透明3層膜の表面抵抗が急激に増加する。参考例2のように、塗布した透明アンダーコート層形成用塗布液を一旦加熱焼成処理により硬化させてから、その上に透明導電層及び透明オーバーコート層を形成した場合、塗布性が悪化するうえに、得られる透明3層膜の表面抵抗は増加傾向であることが分る。更に、比較例2〜3のように、透明アンダーコート層形成用塗布液として、粒子形状を持つ酸化物ゾルを主成分とした分散溶液を用いた場合には、従来の透明アンダーコート層を持たない比較例1に係る透明2層膜と同様に、表面抵抗が著しく高くなることが分る。   Further, as in Reference Example 1, when the thickness of the transparent undercoat layer exceeds 100 nm, the surface resistance of the obtained transparent three-layer film increases rapidly. As in Reference Example 2, when the applied coating solution for forming the transparent undercoat layer is once cured by heating and baking treatment, and then the transparent conductive layer and the transparent overcoat layer are formed thereon, the coatability deteriorates. Further, it can be seen that the surface resistance of the obtained transparent three-layer film tends to increase. Further, as in Comparative Examples 2 to 3, when a dispersion solution mainly composed of an oxide sol having a particle shape is used as a coating liquid for forming a transparent undercoat layer, a conventional transparent undercoat layer is provided. It can be seen that the surface resistance is remarkably increased as in the case of the transparent two-layer film according to Comparative Example 1 that is not present.

尚、上記の各実施例では、金コート銀微粒子を用いた透明導電層形成用塗布液について記載したが、金以外の貴金属、即ち、白金、パラジウム、ロジウム、ルテニウムのいずれか1種又は2種以上でコートされた貴金属コート銀微粒子を用いた透明導電層形成用塗布液、並びに、金、白金、パラジウム、ロジウム、ルテニウムの貴金属単体微粒子、又はこれらの貴金属と銀との貴金属合金微粒子を用いた透明導電層形成用塗布液の場合も、上記各実施例と同様に、可視光透過率及び導電性に優れた透明3層膜を得ることができた。   In each of the above examples, a coating liquid for forming a transparent conductive layer using gold-coated silver fine particles has been described. However, one or two kinds of noble metals other than gold, that is, platinum, palladium, rhodium, and ruthenium are described. A coating solution for forming a transparent conductive layer using noble metal-coated silver fine particles coated as described above, and noble metal simple particles of gold, platinum, palladium, rhodium, ruthenium, or noble metal alloy fine particles of these noble metals and silver were used. Also in the case of the coating liquid for forming a transparent conductive layer, a transparent three-layer film excellent in visible light transmittance and conductivity could be obtained as in the above examples.

Claims (8)

透明基材上に形成された透明導電膜であって、透明基材上に形成された酸化ケイ素を主成分とする透明アンダーコート層と、該透明アンダーコート層上に形成された貴金属微粒子を含有する透明導電層とを有することを特徴とする透明導電膜。 A transparent conductive film formed on a transparent substrate, comprising a transparent undercoat layer mainly composed of silicon oxide formed on the transparent substrate, and noble metal fine particles formed on the transparent undercoat layer And a transparent conductive layer. 前記透明アンダーコート層の厚みが10〜100nmの範囲であることを特徴とする、請求項1に記載の透明導電膜。 The transparent conductive film according to claim 1, wherein the thickness of the transparent undercoat layer is in the range of 10 to 100 nm. 前記貴金属微粒子が、銀微粒子の表面を、金、白金、パラジウム、ロジウム、ルテニウムから選ばれた少なくとも1種の貴金属によりコートした貴金属コート銀微粒子であることを特徴とする、請求項1又は2に記載の透明導電膜。 The noble metal fine particles are noble metal coated silver fine particles obtained by coating the surface of silver fine particles with at least one kind of noble metal selected from gold, platinum, palladium, rhodium and ruthenium. The transparent conductive film as described. 前記透明導電層の厚みが50nm以下であり、この透明導電層と透明アンダーコート層からなる2層膜は、表面抵抗が100kΩ/□以下であって、透明基板を含まない2層膜だけの可視光透過率が80%以上であることを特徴する、請求項1〜3のいずれかに記載の透明導電膜。 The transparent conductive layer has a thickness of 50 nm or less, and the two-layer film composed of the transparent conductive layer and the transparent undercoat layer has a surface resistance of 100 kΩ / □ or less and is only visible as a two-layer film not including a transparent substrate. The transparent conductive film according to claim 1, wherein the light transmittance is 80% or more. 透明基材上に透明導電膜を形成する方法であって、透明基材上に、シリカゾルを含有する透明アンダーコート層形成用塗布液を塗布し、その塗布層上に貴金属微粒子を含有する透明導電層形成用塗布液を塗布し、その後焼成することを特徴とする透明導電膜の製造方法。 A method of forming a transparent conductive film on a transparent substrate, wherein a transparent undercoat layer-forming coating solution containing silica sol is applied on the transparent substrate, and the transparent conductive material containing noble metal fine particles on the coating layer A method for producing a transparent conductive film, comprising applying a layer-forming coating solution, followed by firing. 前記透明アンダーコート層形成用塗布液のシリカゾルが、アルキルシリケート及び/又はその重合物であることを特徴とする、請求項5に記載の透明導電膜の製造方法。 The method for producing a transparent conductive film according to claim 5, wherein the silica sol of the coating liquid for forming the transparent undercoat layer is an alkyl silicate and / or a polymer thereof. 前記シリカゾルの重合度が重量平均分子量で500以上であることを特徴とする、請求項5又は6に記載の透明導電膜の製造方法。 The method for producing a transparent conductive film according to claim 5 or 6, wherein the degree of polymerization of the silica sol is 500 or more in terms of weight average molecular weight. 前記透明導電層形成用塗布液中の貴金属微粒子の濃度が0.05〜0.2重量%の範囲であることを特徴とする、請求項5〜7のいずれかに記載の透明導電膜の製造方法。 The production of a transparent conductive film according to any one of claims 5 to 7, wherein the concentration of the noble metal fine particles in the coating liquid for forming the transparent conductive layer is in the range of 0.05 to 0.2% by weight. Method.
JP2004011307A 2004-01-20 2004-01-20 Transparent conductive film and manufacturing method of the same Pending JP2005209350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004011307A JP2005209350A (en) 2004-01-20 2004-01-20 Transparent conductive film and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004011307A JP2005209350A (en) 2004-01-20 2004-01-20 Transparent conductive film and manufacturing method of the same

Publications (1)

Publication Number Publication Date
JP2005209350A true JP2005209350A (en) 2005-08-04

Family

ID=34898033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004011307A Pending JP2005209350A (en) 2004-01-20 2004-01-20 Transparent conductive film and manufacturing method of the same

Country Status (1)

Country Link
JP (1) JP2005209350A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008031205A (en) * 2006-07-26 2008-02-14 Teijin Dupont Films Japan Ltd Conductive film and touch panel using the film
JP2009113484A (en) * 2007-10-17 2009-05-28 Hitachi Chem Co Ltd Base material with fine particle layered thin film, manufacturing method of the same and optical member using the same
WO2010082652A1 (en) * 2009-01-19 2010-07-22 戸田工業株式会社 Transparent conductive film encapsulating mesh-like structure formed from metal microparticles, substrate on which transparent conductive film is laminated, and method for producing the same
JP2014505969A (en) * 2010-12-21 2014-03-06 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Pickering emulsion for producing conductive coating and method for producing pickering emulsion

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008031205A (en) * 2006-07-26 2008-02-14 Teijin Dupont Films Japan Ltd Conductive film and touch panel using the film
JP2009113484A (en) * 2007-10-17 2009-05-28 Hitachi Chem Co Ltd Base material with fine particle layered thin film, manufacturing method of the same and optical member using the same
WO2010082652A1 (en) * 2009-01-19 2010-07-22 戸田工業株式会社 Transparent conductive film encapsulating mesh-like structure formed from metal microparticles, substrate on which transparent conductive film is laminated, and method for producing the same
JP2010165638A (en) * 2009-01-19 2010-07-29 Toda Kogyo Corp Transparent conductive film encapsulating mesh-like structure formed from metal microparticles, substrate on which transparent conductive film is laminated, and method for producing the same
JP2014505969A (en) * 2010-12-21 2014-03-06 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Pickering emulsion for producing conductive coating and method for producing pickering emulsion

Similar Documents

Publication Publication Date Title
JP4096277B2 (en) Solar shading material, coating liquid for solar shading film, and solar shading film
US6673142B2 (en) Transparent conductive layered structure and method of producing the same, and transparent coat layer forming coating liquid used in the method of producing the same, and display device to which transparent conductive layered structure is applied
JP4232480B2 (en) Method for producing noble metal-coated silver fine particle dispersion, coating liquid for forming transparent conductive layer, transparent conductive substrate and display device
KR100630595B1 (en) Transparent conductive layered structure and method of producing the same, and coating liquid for forming transparent conductive layer used in production of transparent conductive layered structure and method of producing the same
JP2002083518A (en) Transparent conductive substrate, its manufacturing method, display device using this transparent conductive substrate, coating solution for forming transparent conductive layer, and its manufacturing method
JP2004006263A (en) Transparent conductive film, coating liquid for forming this transparent conductive film and transparent conductive laminated structural body and display device
JP2002131531A (en) Heat wave reflecting transparent substrate, method for manufacturing the same and display device for which heat wave reflecting transparent substrate is applied
JP4035934B2 (en) Transparent conductive substrate, method for producing the same, coating solution for forming transparent conductive layer used for production of transparent conductive substrate, and method for producing the same
JP4411672B2 (en) Coating liquid for forming transparent conductive layer and method for producing the same
JP3744188B2 (en) Heat ray shielding film forming coating solution and heat ray shielding film
KR100737923B1 (en) Transparent conductive layered structure and method of producing the same, coating liquid for forming transparent coating layer and coating liquid for forming transparent conductive layer used in the production of transparent conductive layered structure, and display that uses transparent conductive layered structure
JP2002038053A (en) Coating fluid for forming transparent conductive layer
JP2006032197A (en) Transparent bilayer film and its manufacturing method
JP2005209350A (en) Transparent conductive film and manufacturing method of the same
JP4225155B2 (en) Transparent conductive film, method for manufacturing the same, and display device
WO2016121934A1 (en) Heat shielding film, heat shielding glass, and window
JP3750461B2 (en) Transparent conductive layer forming coating liquid, transparent conductive layer and transparent conductive substrate
JP4225156B2 (en) Transparent conductive film forming coating liquid, transparent conductive film and display device
JP2005154453A (en) Coating liquid for forming transparent conductive layer and transparent conductive base material
JP3975310B2 (en) Transparent conductive substrate, method for producing the same, and display device to which the substrate is applied
JP4258281B2 (en) Coating liquid for forming transparent conductive layer and method for producing the same
JP4325201B2 (en) Transparent conductive layer forming coating liquid and transparent conductive film
JP2003132734A (en) Coating solution for forming transparent electroconductive layer
JP2002298665A (en) Manufacturing method of transparent conductive film, transparent conductive film, and optical filter using same
JP2004335410A (en) Forming method of transparent electric conductive layer