JP4325201B2 - Transparent conductive layer forming coating liquid and transparent conductive film - Google Patents
Transparent conductive layer forming coating liquid and transparent conductive film Download PDFInfo
- Publication number
- JP4325201B2 JP4325201B2 JP2003018253A JP2003018253A JP4325201B2 JP 4325201 B2 JP4325201 B2 JP 4325201B2 JP 2003018253 A JP2003018253 A JP 2003018253A JP 2003018253 A JP2003018253 A JP 2003018253A JP 4325201 B2 JP4325201 B2 JP 4325201B2
- Authority
- JP
- Japan
- Prior art keywords
- transparent conductive
- fine particles
- conductive layer
- silver
- transparent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Pigments, Carbon Blacks, Or Wood Stains (AREA)
- Paints Or Removers (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Non-Insulated Conductors (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、ブラウン管(CRT)、プラズマディスプレイパネル(PDP)、蛍光表示管(VFD)、液晶ディスプレイ(LCD)等の表示装置の前面板等に適用される透明導電膜、及びその形成に用いる透明導電層形成用塗液に関する。
【0002】
【従来の技術】
近年、オフィスオートメーション(OA)化により多くのOA機器が導入され、OA機器のディスプレイと向き合って終日作業することも珍しくない。このようなOA機器の代表例としてコンピュータがあるが、その陰極線管(ブラウン管とも称する:CRT)等では、表示画面が見やすく、視覚疲労を感じさせないことの外に、帯電による埃の付着や電撃ショックがないこと等が要求されている。
【0003】
最近では、これ等に加えて、CRT等から発生する低周波電磁波の人体に対する悪影響が懸念され、電磁波が外部に漏洩しないことが望まれている。このような電磁波は偏向コイルやフライバックトランスから発生し、ディスプレイの大型化に伴って益々大量の電磁波が周囲に漏洩する傾向にある。ところで、磁界の漏洩は、偏向コイルの形状を変えるなどの工夫で大部分を防止することができる。一方、電界の漏洩も、CRT等の前面ガラス表面に透明導電層を形成することにより防止することが可能である。
【0004】
このような電界の漏洩に対する防止方法は、近年において帯電防止のために取られてきた対策と原理的には同一である。しかし、電界漏洩防止用の透明導電層は、帯電防止用に形成されていた導電層よりもはるかに高い導電性が求められる。即ち、帯電防止用には表面抵抗で108Ω/□程度で十分とされているが、漏洩電界を防ぐため(電界シールド)には少なくとも106Ω/□以下、好ましくは5×103Ω/□以下、更に好ましくは103Ω/□以下の低抵抗の透明導電層が望まれている。
【0005】
そこで、上記要求に対処するため、従来から幾つかの提案がなされているが、その中でも低コストで且つ低い表面抵抗を実現できる方法として、導電性微粒子をアルキルシリケート等の無機バインダーと共に溶媒中に分散した透明導電層形成用塗液を用い、これをCRT等の前面ガラス等の透明基板上に塗布・乾燥した後、200℃程度の温度で焼成する方法が知られている。この透明導電層形成用塗液を用いる方法は、真空蒸着やスパッタ法等の他の透明導電層形成方法に比べてはるかに簡便であり、製造コストも低いため、極めて有利な方法である。
【0006】
この方法に用いられる透明導電層形成用塗液として、導電性微粒子にインジウム錫酸化物(ITO)を用いたものが知られている。しかし、得られる膜の表面抵抗が104〜106Ω/□と高いため、漏洩電界を十分に遮蔽するには電界キャンセル用の補正回路が必要となり、その分製造コストが割高となる問題があった。一方、導電性微粒子に金属粉を用いた透明導電層形成用塗液では、ITOを用いた塗液に比べ、膜の透過率が若干低くなるものの、102〜103Ω/□という低抵抗の透明導電膜が得られる。従って、上述した補正回路が必要なくなるためコスト的に有利となり、今後主流になるものと思われる。
【0007】
上記透明導電層形成用塗液に適用される金属微粒子として、空気中で酸化され難い貴金属、例えば銀、金、白金、ロジウム、パラジウム等が提案されている(特許文献1〜2参照)。貴金属以外の金属微粒子、例えば鉄、ニッケル、コバルト等も適用可能であるが、実際には大気雰囲気下で表面に酸化物皮膜が形成されるため、透明導電層として良好な導電性を得ることが難しい。また、貴金属の電気抵抗を比較すると、白金、ロジウム、パラジウムの比抵抗はそれぞれ10.6、5.1、10.8μΩ・cmであり、銀及び金の1.62及び2.2μΩ・cmに比べて高いため、表面抵抗の低い透明導電層を形成するには銀又は金の微粒子を用いることが有利である。
【0008】
しかし、銀微粒子を適用した場合、硫化や酸化、食塩水や紫外線等による劣化が激しく、耐候性に問題がある。他方、金微粒子を適用した場合、耐候性の問題はなくなるが、白金微粒子、ロジウム微粒子、パラジウム微粒子等と同様に、コスト上の問題を有している。これらの問題を解決する方法として、銀微粒子上に金や白金などの貴金属をコーティングする方法が示されている(特許文献3参照)。
【0009】
また、CRT等の表示画面を見易くするために、フェイスパネル表面に防眩処理を施して、画面の反射を抑えることも行われている。この防眩処理は、微細な凹凸を設けて表面の拡散反射を増加させる方法によっても可能であるが、この方法では解像度が低下して画質が落ちるため好ましくない。従って、むしろ反射光が入射光に対して破壊的干渉を生ずるように、透明皮膜の屈折率と膜厚とを制御する干渉法によって防眩処理を行うことが好ましい。
【0010】
このような干渉法により低反射効果を得るため、一般的には高屈折率膜と低屈折率膜の光学的膜厚を、それぞれ1/4λと1/4λ、あるいは1/2λと1/4λに設定した二層構造膜が採用されている。前述のインジウム錫酸化物(ITO)微粒子の透明導電膜は、この種の高屈折率膜として用いられている。尚、金属微粒子においては、光学定数(n−ik、ここでn:屈折率、i2=−1、k:消衰係数)のうち、nの値は小さいが、kの値がITO等と比べ極端に大きいため、金属微粒子からなる透明導電膜においても、ITOの高屈折率膜と同様に、二層構造膜で光の干渉による反射防止効果が得られる。
【0011】
【特許文献1】
特開平8−77832号公報
【特許文献2】
特開平9−55175号公報
【特許文献3】
特開2000−268639号公報
【0012】
【発明が解決しようとする課題】
上記した透明導電層形成用塗液を用いて透明導電層を形成する方法において、実際にCRT等を量産する場合には、塗液中の金属微粒子が長期にわたって凝集しないような保存安定性が求められる。しかし、従来の銀微粒子又は金や白金などの貴金属でコーティングした銀微粒子を用いた透明導電層形成用塗液では、室温保存では僅かに数日、冷凍庫保存でも1ヶ月程度で銀含有微粒子が凝集してしまうため、実用上その保存安定性に大きな問題があった。
【0013】
本発明は、このような従来の事情に鑑み、銀含有微粒子を用いた保存安定性に優れた透明導電層形成用塗液、及びその塗液を用いて形成される透明導電膜、並びにその透明導電膜を備えた表示装置を提供することを目的とする。
【0014】
【課題を解決するための手段】
上記目的を達成するため、本発明が提供する透明導電層の形成に用いる透明導電層形成用塗液は、溶媒に分散された平均粒径1〜100nmの銀含有微粒子を主成分とし、該銀含有微粒子の表面に銀含有微粒子100重量部に対して0.2〜15重量部のハロゲンイオンが吸着していることを特徴とする。
【0015】
上記本発明の透明導電層形成用塗液において、前記銀含有微粒子は、銀微粒子の表面を金若しくは白金の単体又は金と白金の複合体でコーティングした貴金属コート銀微粒子であって、金及び/又は白金の合計コーティング量が銀100重量部に対して5〜1900重量部の範囲にあることが好ましい。
【0016】
また、本発明は、透明基板上に形成された透明導電層からなり、上記透明導電層形成用塗液を用いて形成されたことを特徴とする透明導電膜を提供する。この透明導電層は、その上に形成された透明コート層と共に透明2層膜を構成していることを特徴とする。
【0017】
更に、本発明は、上記透明導電膜が前面板に形成されていることを特徴とする表示装置を提供するものである。
【0018】
【発明の実施の形態】
コロイドを安定化させる要因として、DLVO(Derjagunin−Landau−Verway−Overbeek)理論で知られるファンデルワールス力と電気的斥力の和、高分子ポリマーの吸着による立体障害が知られている。しかしながら、高分子ポリマーを多量に投入すると、コロイドを安定化することができるが、膜を形成したときに金属微粒子同士の接触が阻害され、充分な導電性が得られないという問題が発生する。
【0019】
従って、金属微粒子を溶媒中で安定化させるためには、その微粒子の表面を改質して電気的斥力が大きくなるような工夫をしなければならない。このような観点から様々な検討を行った結果、金属微粒子の表面に適量のハロゲンを吸着させることにより、その凝集を防ぐことができ、保存安定性が高められることを見出した。
【0020】
即ち、本発明の透明導電層形成用塗液は、銀含有微粒子(例えば、金や白金などの1種以上の貴金属でコーティングした銀微粒子)の表面がハロゲンで修飾されており、室温保存で10日間以上凝集せず、冷凍保存では3ヶ月以上凝集することがない、極めて保存安定性に優れたものである。
【0021】
ハロゲンの吸着(以下、修飾とも言う)により銀含有微粒子の安定性が向上するメカニズムは明らかではないが、例えば、ハロゲンイオンが銀含有微粒子の銀元素部分に吸着することで、銀含有微粒子に強いマイナス電荷を与えていることが考えられる。尚、貴金属コート銀微粒子の場合、銀微粒子表面に金や白金をコートする過程において、一部の銀元素がハロゲンで修飾されながら貴金属のコーティングが進行する結果、貴金属コート銀微粒子の表面に少量の銀元素が存在し、その銀元素にハロゲンが吸着されるのではないかと考えられる。
【0022】
銀含有微粒子を修飾しているハロゲン量は、銀含有微粒子100重量部に対して0.2〜15重量部、好ましくは0.5〜5重量部とする。ハロゲン量が0.2重量部より少ないと所望の保存安定性が得られず、逆に15重量部を超えても、銀含有微粒子に対するハロゲンの吸着量に限界があるため、保存安定性の更なる向上は得られない。また、ハロゲン元素については、塗液の安定性のみを考えた場合には特に著しい差異は見られないが、透明導電層の導電性を考慮すると塩素(Cl)を用いることが好ましい。
【0023】
銀含有微粒子については、その平均粒径が1〜100nmであることを要する。平均粒径が1nm未満の微粒子の製造は困難であり、また塗液中で凝集し易く実用的でない。平均粒径が100nmを超えると、形成された透明導電層の可視光線透過率が低くなり過ぎ、仮に膜厚を薄く設定して可視光線透過率を高くした場合でも、表面抵抗が高くなり過ぎるため実用的ではないからである。尚、平均粒径とは、透過電子顕微鏡(TEM)で観察したときの微粒子の平均粒径を言う。
【0024】
また、貴金属コート銀微粒子の場合、金及び/又は白金の合計コーティング量が銀100重量部に対して5〜1900重量部の範囲に設定されていることが好ましい。上記合計コーティング量が5重量部未満では貴金属コート銀微粒子の耐候性が得られず、また1900重量部を超えるとコストの上昇を招く。
【0025】
次に、本発明における透明導電層形成用塗液の製造方法を具体的に説明するが、これに限定されるものではない。まず、既知の方法[例えば、Carey−Lea法:Am. J. Sci.,37,47(1889)、Am. J. Sci.,38(1889)参照]により、銀微粒子のコロイド分散液を調製する。即ち、硝酸銀水溶液に硫酸鉄(II)水溶液とクエン酸ナトリウム水溶液の混合液を加えて反応させ、沈降物を濾過・洗浄した後、純水を加えることによって、簡単に銀微粒子のコロイド分散液が得られる。尚、銀微粒子コロイド分散液の調製方法は、平均粒径1〜100nmの銀微粒子が分散されたものであれば任意であり、上記方法に限定されるものではない。
【0026】
この銀微粒子コロイド分散液にヒドラジン等の還元剤溶液と金酸塩等の任意の金属塩溶液等とを加えることにより、貴金属コート銀微粒子(銀含有微粒子)の分散液が得られる。銀含有微粒子のハロゲンによる修飾は、ハロゲンを上記還元剤溶液及び/又は金属塩溶液に添加して行うことができる。
【0027】
尚、このようにして得られる銀含有微粒子のコロイド分散液中に含まれるハロゲンの量は、銀含有微粒子100重量部に対して0.2〜15重量部であることが望ましい。ハロゲン量が0.2重量部未満では、銀含有微粒子を安定化させることができない。しかし、銀含有微粒子を修飾できるハロゲン量は決まっているので、あまり過剰に添加しても意味はなく、かえってイオン濃度が高くなると銀含有微粒子が凝集し易くなるため、15重量部以下とすることが好ましい。
【0028】
その後、得られた銀含有微粒子のコロイド分散液は、透析、電気透析、イオン交換、限外濾過等の脱塩処理方法により、分散液内の電解質濃度を下げることが好ましい。電解質濃度を下げないと、コロイドは電解質により一般的に凝集してしまうからであり、この現象はSchulze−Hardy則として知られている。
【0029】
次に、電解質濃度を下げた銀含有微粒子分散液を、減圧エバポレーター、限外濾過等の方法で濃縮処理して、銀含有微粒子の分散濃縮液を得る。この分散濃縮液に、有機溶剤単独、あるいは無機バインダーが含まれた有機溶剤を添加し、成分調整(微粒子濃度、水分濃度等)を行い、本発明に係る透明導電層形成用塗液が得られる。
【0030】
上記有機溶剤としては特に制限はなく、塗布方法や製膜条件により、適宜に選定される。好ましい有機溶媒としては、例えば、メタノール、エタノール(EA)、イソプロパノール、ブタノール、ベンジルアルコール、ジアセトンアルコール(DAA)等のアルコール系溶媒、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)、シクロヘキサノン、イソホロン等のケトン系溶媒、プロピレングリコールメチルエーテル(PGM)、プロピレングリコールエチルエーテル等のグリコール誘導体、フォルムアミド、N−メチルフォルムアミド、ジメチルホルムアミド(DMF)、ジメチルアセトアミド、ジメチルスルフォキシド(DMSO)、N−メチル−2−ピロリドン(NMP)等が挙げられるが、これらに限定されるものではない。
【0031】
本発明に係る透明導電層形成用塗液を用いて、従来と同様の方法により、透明導電層を形成することができる。例えば、透明導電層形成用塗液を用いて透明基板上に平均粒径1〜100nmの貴金属含有微粒子とバインダーマトリックスを主成分とする透明導電層を形成し、その上に更に透明コート層を設けることによって、透明2層膜を形成することができる。
【0032】
具体的には、上記透明2層膜の形成は、以下の方法でこれを行うことができる。即ち、本発明の透明導電層形成用塗液を、ガラス基板、プラスチック基板等の透明基板上に、スプレーコート、スピンコート、ワイヤーバーコート、ドクターブレードコート等の手法にて塗布し、必要に応じて乾燥した後、例えばシリカゾル等を主成分とする透明コート層形成用塗布液を同様の手法によりオーバーコートする。次に、例えば50〜350℃程度の温度で加熱処理を施し、全体を硬化させて透明2層膜を形成する。
【0033】
本発明の透明導電層形成用塗液を用いて形成された透明導電層、及び透明2層膜は、高強度、高透過率であり、優れた耐候性、耐紫外線性を有し、且つ従来と同様に優れた反射防止効果と平坦な透過光線プロファイルを有し、高い電界シールド効果を備えている。
【0034】
従って、本発明に係わる透明導電膜又は透明2層膜を形成した透明基板は、例えば、ブラウン管(CRT)、プラズマディスプレイパネル(PDP)、蛍光表示管(VFD)、フィールドエミッションディスプレイ(FED)、エレクトロルミネッセンスディスプレイ(ELD)、液晶ディスプレイ(LCD)等の表示装置における前面板として、好適に用いることができる。
【0035】
【実施例】
以下、本発明の実施例を具体的に説明するが、本発明はこれら実施例に限定されるものではない。尚、実施例中の「%」は透過率、反射率、ヘイズ値を除いて「重量%」を意味し、また「部」は「重量部」を意味する。
【0036】
実施例1
前述のCarey−Lea法により、銀微粒子のコロイド分散液を調製した。具体的には、9.1%硝酸銀水溶液33gに、23%硫酸鉄(II)水溶液39gと37.5%クエン酸ナトリウム水溶液48gの混合液を加え、沈降物を濾過・洗浄した後、純水を加えて、銀微粒子のコロイド分散液(Ag:0.1%)を調製した。
【0037】
この銀微粒子のコロイド分散液120gに、ヒドラジン1水和物(N2H4・H2O)の1%水溶液10.0gと、塩化ナトリウム0.02gに水を加えて320gにした水溶液と、金酸カリウム[KAu(OH)4]水溶液(Au:0.15%)320gを加えることにより、塩素で修飾された金コート銀微粒子のコロイド分散液を得た。
【0038】
この金コート銀微粒子のコロイド分散液を、イオン交換樹脂(三菱化学(株)製、商品名ダイヤイオンSK1B、SA20AP)で脱塩した後、限外濾過により濃縮した。得られた濃縮液に各種有機溶媒などを加え、試料1の透明導電層形成用塗液(Ag:0.08%、Au:0.32%、水:12.1%、EA:51.4%、PGM:25.0%、DAA:10.0%、Cl:0.004%)を得た。この透明導電層形成用塗液を透過電子顕微鏡で観察したところ、塩素で修飾された金コート銀微粒子の平均粒径は6.6nmであった。
【0039】
次に、塩素で修飾された金コート銀微粒子を含む上記試料1の透明導電層形成用塗液を、35℃に加熱されたガラス基板(厚さ3mmのソーダライムガラス)上にスピンコート(150rpm、60秒間)し、引き続いてシリカゾル液をスピンコート(150rpm、60秒間)した。その後、200℃にて20分間硬化させ、金コート銀微粒子を含む透明導電層と、酸化ケイ素を主成分とするシリケート膜から成る透明コート層とで構成された透明2層膜付きのガラス基板、即ち試料1に係る透明導電性基材を得た。
【0040】
尚、上記透明コート層の形成に用いたシリカゾル液は、メチルシリケート(コルコート社製、商品名メチルシリケート51)19.6部、エタノール57.8部、1%硝酸水溶液7.9部、純水14.7部を用いて、SiO2(酸化ケイ素)固形分濃度が10%で、重量平均分子量が2850のものを調製し、最終的にSiO2固形分濃度が0.8%となるようにイソプロピルアルコール(IPA)とn−ブタノール(NBA)の混合物(IPA/NBA=3/1)により希釈して得られたものである。
【0041】
ガラス基板上に形成された透明2層膜の膜特性(表面抵抗、可視光線透過率、ヘイズ値、ボトム反射率、ボトム波長)を下記表1に示した。表1に示した透過率は、可視光線波長域(380〜780nm)における透明基板(ガラス基板)を含まない透明2層膜だけの可視光線透過率であり、以下のようにして求められている。即ち、透明基板を含まない透明2層膜だけの透過率(%)=[(透明基板ごと測定した透過率)/(透明基板の透過率)]×100
【0042】
上記透明2層膜の膜特性の評価において、表面抵抗は三菱化学(株)製の表面抵抗計(ロレスタAP、MCP−T400)を用いて測定した。ヘイズ値と可視光線透過率は、透明基板ごと、村上色彩技術研究所製のヘイズメーター(HR−200)を用いて測定した。反射率は、日立製作所(株)製の分光光度計(U−4000)を用いて測定した。尚、ボトム反射率とは透明導電性基材の反射プロファイルにおいて極小の反射率をいい、ボトム波長とは反射率が極小における波長を意味している。
【0043】
また、上記試料1の透明導電層形成用塗液の保存安定性を評価したところ、室温(25℃)で1ヶ月保存した時点、及び冷凍庫(−15℃)で3ヶ月保存した時点で、いずれも金コート銀微粒子の凝集は見られなかった。また、それらの時点での透明導電層形成用塗液を用い、成膜した膜特性についても変化は認められなかった。これらの結果を、下記表2に示した。
【0044】
実施例2
実施例1と同様に調整した銀微粒子のコロイド分散液120gに、ヒドラジン1水和物(N2H4・H2O)の1%水溶液10.0gに水を加えて320gにした水溶液と、金酸カリウム[KAu(OH)4]水溶液(Au:0.15%)320gに1%塩酸を1.15g添加した水溶液を加え、塩素で修飾された金コート銀微粒子のコロイド分散液を得た。
【0045】
この金コート銀微粒子のコロイド分散液について、実施例1と同様の処理を行うことにより、塩素で修飾された平均粒径6.7nmの金コート銀微粒子が分散した試料2に係る透明導電層形成用塗液(Ag:0.08%、Au:0.32%、水:12.0%、EA:51.6%、PGM:25.0%、DAA:10.0%、Cl:0.005%)を得た。
【0046】
得られた試料2の透明導電層形成用塗液を用い、それ以外は実施例1と同様にして、金コート銀微粒子を含む透明導電層と、酸化ケイ素を主成分とするシリケート膜から成る透明コート層とで構成された透明2層膜付きのガラス基板、即ち試料2に係る透明導電性基材を得た。この試料2における透明2層膜の膜特性を下記表1に示した。
【0047】
また、上記試料2の透明導電層形成用塗液の保存安定性を評価したところ、室温で1ヶ月保存、冷凍庫で3ヶ月保存した時点でも、金コート銀微粒子の凝集は見られず、それらの時点で成膜したときの膜特性にも変化は認められなかった。これらの結果を、下記表2に示した。
【0048】
実施例3
実施例1と同様に調整した銀微粒子のコロイド分散液120gに、ヒドラジン1水和物(N2H4・H2O)の1%水溶液10.0gに水を加えて320gにした水溶液と、金酸カリウム[KAu(OH)4]水溶液(Au:0.15%)320gに臭化カリウム0.04gを添加した水溶液を加え、臭素で修飾された金コート銀微粒子のコロイド分散液を得た。
【0049】
この金コート銀微粒子のコロイド分散液について、実施例1と同様の処理を行うことにより、臭素で修飾された平均粒径6.4nmの金コート銀微粒子が分散した試料3に係る透明導電層形成用塗液(Ag:0.08%、Au:0.32%、水:12.1%、EA:51.5%、PGM:25.0%、DAA:10.0%、Br:0.012%)を得た。
【0050】
得られた試料3の透明導電層形成用塗液を用い、それ以外は実施例1と同様にして、金コート銀微粒子を含む透明導電層と、酸化ケイ素を主成分とするシリケート膜から成る透明コート層とで構成された透明2層膜付きのガラス基板、即ち試料3に係る透明導電性基材を得た。この試料3の透明2層膜の膜特性を下記表1に示した。
【0051】
また、上記試料3の透明導電層形成用塗液の保存安定性を評価したところ、室温で1ヶ月保存、冷凍庫で3ヶ月保存した時点でも、金コート銀微粒子の凝集は見られず、それらの時点で成膜したときの膜特性にも変化は認められなかった。これらの結果を、下記表2に示した。
【0052】
比較例1
実施例1と同様に調整した銀微粒子のコロイド分散液120gに、ヒドラジン1水和物(N2H4・H2O)の1%水溶液10.0gに水を加えて320gにした水溶液と、金酸カリウム[KAu(OH)4]水溶液(Au:0.15%)320gに硝酸カリウム0.05gを添加した水溶液を加え、更に実施例1と同様の処理を行ったところ、金コート銀微粒子のコロイド分散液は凝集してしまい、透明導電層形成用塗液は得られなかった。
【0053】
比較例2
実施例1と同様に調整した銀微粒子のコロイド分散液120gに、ヒドラジン1水和物(N2H4・H2O)の1%水溶液10.0gに水を加えて320gにした水溶液と、金酸カリウム[KAu(OH)4]水溶液(Au:0.15%)320gを加え、金コート銀微粒子(ハロゲンで修飾されていない)のコロイド分散液を得た。
【0054】
この金コート銀微粒子のコロイド分散液について、実施例1と同様の処理を行うことにより、平均粒径6.2nmの金コート銀微粒子が分散した試料4に係る透明導電層形成用塗液(Ag:0.08%、Au:0.32%、水:12.2%、EA:51.4%、PGM:25.0%、DAA:10.0%)を得た。
【0055】
この比較例の試料4に係わる透明導電層形成用塗液を用い、それ以外は実施例1と同様にして、金コート銀微粒子を含む透明導電層と、酸化ケイ素を主成分とするシリケート膜から成る透明コート層とで構成された透明2層膜付きのガラス基板、即ち試料4の透明導電性基材を得た。この試料4の透明2層膜の膜特性を下記表1に併せて示した。
【0056】
また、比較例である上記試料4の透明導電層形成用塗液の保存安定性を評価したところ、室温では翌日に金コート銀微粒子が凝集し、冷凍庫でも1ヶ月保存した時点で金コート銀微粒子の凝集が見られた。これらの結果を、下記表2に併せて示した。
【0057】
【表1】
【0058】
【表2】
【0059】
上記表1に示された結果から明らかなように、本発明の試料1〜3に係る各透明導電層形成用塗液を用いて得られた透明導電膜は、比較例である試料4の透明導電層形成用塗液を用いて得られた透明導電膜と比較すると、良好な導電性と共に、優れた可視光線透過率及び反射防止機能を有していることが判る。尚、試料3では幾分高めの表面抵抗となっているが、実用性を損なう程ではない。
【0060】
また、上記表2に示された結果から明らかなように、比較例である試料4に係る透明導電層形成用塗液は極めて短時間で銀含有微粒子が凝集しているのに対し、本発明の試料1〜3のハロゲンで修飾された銀含有微粒子を含む透明導電層形成用塗液は保存安定性が著しく向上していることが確認できる。尚、上述したように、比較例1においては、ハロゲン以外のアニオンを用いたため金コート銀微粒子が凝集してしまい、透明導電層形成用塗液及び透明導電膜を得ることができなかった。
【0061】
【発明の効果】
本発明によれば、銀含有微粒子をハロゲンで修飾することにより、室温保存で10日間以上及び冷凍保存では3ヶ月以上凝集しない、保存安定性に優れた透明導電層形成用塗液を得ることができる。また、この透明導電層形成用塗液を用いて形成される透明導電膜は、高透過率で、優れた反射防止効果と平坦な透過光線プロファイルを有すると同時に、優れた耐候性、耐紫外線性、高い電界シールド効果を備えており、CRT等の表示装置における前面板として極めて好適である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a transparent conductive film applied to a front panel of a display device such as a cathode ray tube (CRT), a plasma display panel (PDP), a fluorescent display tube (VFD), and a liquid crystal display (LCD), and a transparent film used for forming the transparent conductive film. The present invention relates to a coating liquid for forming a conductive layer.
[0002]
[Prior art]
In recent years, many office automation (OA) devices have been introduced, and it is not uncommon to work all day while facing the display of office automation equipment. A typical example of such an OA device is a computer. In a cathode ray tube (also referred to as a cathode ray tube: CRT), a display screen is easy to see and visual fatigue is not felt. It is required that there is no.
[0003]
In recent years, in addition to these, there is concern about the adverse effects of low frequency electromagnetic waves generated from CRT and the like on the human body, and it is desired that electromagnetic waves do not leak to the outside. Such electromagnetic waves are generated from deflection coils and flyback transformers, and a large amount of electromagnetic waves tend to leak to the surroundings as the display becomes larger. By the way, most of the leakage of the magnetic field can be prevented by changing the shape of the deflection coil. On the other hand, leakage of an electric field can be prevented by forming a transparent conductive layer on the surface of a front glass such as a CRT.
[0004]
The method for preventing the leakage of the electric field is in principle the same as a measure taken for preventing charging in recent years. However, the transparent conductive layer for preventing electric field leakage is required to have a much higher conductivity than the conductive layer formed for preventing charging. That is, a surface resistance of about 10 8 Ω / □ is sufficient for antistatic purposes, but at least 10 6 Ω / □ or less, preferably 5 × 10 3 Ω, to prevent a leakage electric field (electric field shield). A transparent conductive layer having a low resistance of not more than / □, more preferably not more than 10 3 Ω / □ is desired.
[0005]
Thus, several proposals have been made in the past to cope with the above requirements. Among them, as a method capable of realizing low cost and low surface resistance, conductive fine particles are placed in a solvent together with an inorganic binder such as an alkyl silicate. There is known a method in which a dispersed coating liquid for forming a transparent conductive layer is applied and dried on a transparent substrate such as a front glass such as a CRT and then baked at a temperature of about 200 ° C. The method using the coating liquid for forming the transparent conductive layer is an extremely advantageous method because it is much simpler than other transparent conductive layer forming methods such as vacuum deposition and sputtering, and the manufacturing cost is low.
[0006]
As a coating liquid for forming a transparent conductive layer used in this method, one using indium tin oxide (ITO) as conductive fine particles is known. However, since the surface resistance of the obtained film is as high as 10 4 to 10 6 Ω / □, a correction circuit for electric field cancellation is required to sufficiently shield the leakage electric field, and the manufacturing cost is increased accordingly. there were. On the other hand, the coating liquid for forming a transparent conductive layer using metal powder as the conductive fine particles has a low resistance of 10 2 to 10 3 Ω / □, although the transmittance of the film is slightly lower than that of the coating liquid using ITO. A transparent conductive film is obtained. Accordingly, the above-described correction circuit is not necessary, which is advantageous in terms of cost and is expected to become mainstream in the future.
[0007]
As the metal fine particles applied to the coating liquid for forming the transparent conductive layer, noble metals that are not easily oxidized in air, such as silver, gold, platinum, rhodium, palladium, and the like have been proposed (see Patent Documents 1 and 2). Metal fine particles other than noble metals, such as iron, nickel, cobalt, etc., can also be applied, but since an oxide film is actually formed on the surface in an air atmosphere, good conductivity can be obtained as a transparent conductive layer. difficult. In addition, comparing the electrical resistance of noble metals, the specific resistances of platinum, rhodium, and palladium are 10.6, 5.1, 10.8 μΩ · cm, respectively, and 1.62 and 2.2 μΩ · cm for silver and gold. Since it is relatively high, it is advantageous to use fine particles of silver or gold to form a transparent conductive layer having a low surface resistance.
[0008]
However, when silver fine particles are applied, the deterioration due to sulfidation, oxidation, saline solution, ultraviolet rays, etc. is severe and there is a problem in weather resistance. On the other hand, when gold fine particles are applied, the problem of weather resistance is eliminated, but there is a problem in cost as with platinum fine particles, rhodium fine particles, palladium fine particles and the like. As a method for solving these problems, a method of coating a noble metal such as gold or platinum on silver fine particles has been shown (see Patent Document 3).
[0009]
In addition, in order to make a display screen such as a CRT easy to see, anti-glare treatment is performed on the face panel surface to suppress screen reflection. This anti-glare treatment is also possible by a method of increasing the surface diffuse reflection by providing fine irregularities, but this method is not preferable because the resolution is lowered and the image quality is lowered. Accordingly, it is preferable to perform the antiglare treatment by an interference method that controls the refractive index and the film thickness of the transparent film so that the reflected light causes destructive interference with the incident light.
[0010]
In order to obtain a low reflection effect by such an interference method, generally, the optical film thicknesses of the high refractive index film and the low refractive index film are set to 1 / 4λ and 1 / 4λ, or 1 / 2λ and 1 / 4λ, respectively. The two-layer structure film set in (1) is adopted. The aforementioned transparent conductive film of indium tin oxide (ITO) fine particles is used as this type of high refractive index film. In the metal fine particles, the optical constant (n−ik, where n: refractive index, i 2 = −1, k: extinction coefficient) has a small value of n, but the value of k is ITO or the like. Since it is extremely large as compared with the transparent conductive film made of metal fine particles, the antireflection effect due to the interference of light can be obtained with the two-layer structure film, similarly to the ITO high refractive index film.
[0011]
[Patent Document 1]
JP-A-8-77832 [Patent Document 2]
JP-A-9-55175 [Patent Document 3]
JP 2000-268639 A
[Problems to be solved by the invention]
In the above-described method for forming a transparent conductive layer using a coating liquid for forming a transparent conductive layer, when mass-producing CRT or the like in practice, storage stability is required so that metal fine particles in the coating liquid do not aggregate over a long period of time. It is done. However, with the conventional coating solution for forming a transparent conductive layer using silver fine particles or silver fine particles coated with a noble metal such as gold or platinum, the silver-containing fine particles aggregate in just a few days when stored at room temperature and within a month even when stored in a freezer. Therefore, there has been a big problem in storage stability in practical use.
[0013]
In view of such conventional circumstances, the present invention provides a coating liquid for forming a transparent conductive layer excellent in storage stability using silver-containing fine particles, a transparent conductive film formed using the coating liquid, and the transparent It is an object to provide a display device including a conductive film.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, a transparent conductive layer-forming coating solution used for forming a transparent conductive layer provided by the present invention is composed mainly of silver-containing fine particles having an average particle diameter of 1 to 100 nm dispersed in a solvent. It is characterized in that 0.2 to 15 parts by weight of halogen ions are adsorbed on the surface of the containing fine particles with respect to 100 parts by weight of the silver-containing fine particles.
[0015]
In the coating liquid for forming a transparent conductive layer according to the present invention, the silver-containing fine particles are precious metal-coated silver fine particles in which the surface of the silver fine particles is coated with a simple substance of gold or platinum or a composite of gold and platinum. Or it is preferable that the total coating amount of platinum is in the range of 5 to 1900 parts by weight with respect to 100 parts by weight of silver.
[0016]
The present invention also provides a transparent conductive film comprising a transparent conductive layer formed on a transparent substrate and formed using the transparent conductive layer forming coating liquid. This transparent conductive layer constitutes a transparent two-layer film together with a transparent coating layer formed thereon.
[0017]
Furthermore, the present invention provides a display device characterized in that the transparent conductive film is formed on a front plate.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
As factors for stabilizing the colloid, the sum of van der Waals force and electric repulsive force known from DLVO (Derjagunin-Landau-Verway-Overbeek) theory, and steric hindrance due to adsorption of a polymer are known. However, when a large amount of the polymer is added, the colloid can be stabilized, but when the film is formed, the contact between the metal fine particles is hindered, resulting in a problem that sufficient conductivity cannot be obtained.
[0019]
Therefore, in order to stabilize the metal fine particles in the solvent, it is necessary to devise such that the surface of the fine particles is modified to increase the electric repulsion. As a result of various examinations from such a viewpoint, it was found that the aggregation can be prevented and the storage stability can be improved by adsorbing an appropriate amount of halogen on the surface of the metal fine particles.
[0020]
That is, in the coating liquid for forming a transparent conductive layer of the present invention, the surface of silver-containing fine particles (for example, silver fine particles coated with one or more kinds of noble metals such as gold and platinum) is modified with halogen, and is 10 when stored at room temperature. It does not agglomerate for more than a day and does not agglomerate for 3 months or more in frozen storage, and is extremely excellent in storage stability.
[0021]
Although the mechanism by which the stability of silver-containing fine particles is improved by the adsorption of halogen (hereinafter also referred to as modification) is not clear, for example, the halogen ions are adsorbed to the silver element part of the silver-containing fine particles, thereby being strong against the silver-containing fine particles. It can be considered that a negative charge is applied. In the case of noble metal coated silver fine particles, in the process of coating gold or platinum on the surface of the silver fine particles, the coating of the noble metal proceeds while a part of the silver element is modified with halogen. It is thought that silver element exists and halogen is adsorbed to the silver element.
[0022]
The halogen amount modifying the silver-containing fine particles is 0.2 to 15 parts by weight, preferably 0.5 to 5 parts by weight, based on 100 parts by weight of the silver-containing fine particles. If the halogen content is less than 0.2 parts by weight, the desired storage stability cannot be obtained. Conversely, if the halogen content exceeds 15 parts by weight, the amount of halogen adsorbed on the silver-containing fine particles is limited. No improvement is obtained. Further, with regard to the halogen element, when considering only the stability of the coating liquid, no significant difference is observed, but chlorine (Cl) is preferably used in consideration of the conductivity of the transparent conductive layer.
[0023]
The silver-containing fine particles are required to have an average particle diameter of 1 to 100 nm. It is difficult to produce fine particles having an average particle diameter of less than 1 nm, and they are not practical because they easily aggregate in the coating liquid. When the average particle size exceeds 100 nm, the visible light transmittance of the formed transparent conductive layer becomes too low, and even if the visible light transmittance is increased by setting the film thickness thin, the surface resistance becomes too high. This is because it is not practical. The average particle diameter means the average particle diameter of fine particles when observed with a transmission electron microscope (TEM).
[0024]
In the case of noble metal-coated silver fine particles, the total coating amount of gold and / or platinum is preferably set in the range of 5 to 1900 parts by weight with respect to 100 parts by weight of silver. When the total coating amount is less than 5 parts by weight, the weather resistance of the noble metal-coated silver fine particles cannot be obtained, and when it exceeds 1900 parts by weight, the cost increases.
[0025]
Next, although the manufacturing method of the coating liquid for transparent conductive layer formation in this invention is demonstrated concretely, it is not limited to this. First, a colloidal dispersion of silver fine particles is prepared by a known method [for example, Carey-Lea method: Am. J. Sci., 37, 47 (1889), Am. J. Sci., 38 (1889)]. To do. That is, a mixed solution of an iron (II) sulfate aqueous solution and a sodium citrate aqueous solution is added to a silver nitrate aqueous solution to cause a reaction, and after the precipitate is filtered and washed, pure water is added to easily produce a colloidal dispersion of silver fine particles. can get. The method for preparing the silver fine particle colloidal dispersion is arbitrary as long as silver fine particles having an average particle diameter of 1 to 100 nm are dispersed, and is not limited to the above method.
[0026]
A dispersion of noble metal-coated silver fine particles (silver-containing fine particles) can be obtained by adding a reducing agent solution such as hydrazine and an arbitrary metal salt solution such as gold salt to the silver fine particle colloid dispersion. The silver-containing fine particles can be modified with halogen by adding halogen to the reducing agent solution and / or the metal salt solution.
[0027]
The amount of halogen contained in the thus obtained colloidal dispersion of silver-containing fine particles is preferably 0.2 to 15 parts by weight with respect to 100 parts by weight of the silver-containing fine particles. If the halogen content is less than 0.2 parts by weight, the silver-containing fine particles cannot be stabilized. However, since the amount of halogen that can modify the silver-containing fine particles is determined, there is no point in adding too much. On the contrary, if the ion concentration becomes high, the silver-containing fine particles are likely to aggregate. Is preferred.
[0028]
Thereafter, the obtained colloidal dispersion of silver-containing fine particles is preferably reduced in the electrolyte concentration by a desalting method such as dialysis, electrodialysis, ion exchange, and ultrafiltration. This is because if the electrolyte concentration is not lowered, colloids generally aggregate due to the electrolyte, and this phenomenon is known as the Schulze-Hardy law.
[0029]
Next, the silver-containing fine particle dispersion with the electrolyte concentration lowered is concentrated by a method such as a vacuum evaporator or ultrafiltration to obtain a silver-containing fine particle dispersion. An organic solvent alone or an organic solvent containing an inorganic binder is added to the dispersion concentrate, and component adjustment (fine particle concentration, water concentration, etc.) is performed to obtain a coating liquid for forming a transparent conductive layer according to the present invention. .
[0030]
There is no restriction | limiting in particular as said organic solvent, According to the coating method and film forming conditions, it selects suitably. Preferred organic solvents include, for example, alcohol solvents such as methanol, ethanol (EA), isopropanol, butanol, benzyl alcohol, diacetone alcohol (DAA), acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), cyclohexanone, Ketone solvents such as isophorone, glycol derivatives such as propylene glycol methyl ether (PGM) and propylene glycol ethyl ether, formamide, N-methylformamide, dimethylformamide (DMF), dimethylacetamide, dimethylsulfoxide (DMSO), Examples thereof include N-methyl-2-pyrrolidone (NMP), but are not limited thereto.
[0031]
Using the coating liquid for forming a transparent conductive layer according to the present invention, a transparent conductive layer can be formed by the same method as in the prior art. For example, a transparent conductive layer mainly composed of noble metal-containing fine particles having an average particle diameter of 1 to 100 nm and a binder matrix is formed on a transparent substrate using a coating liquid for forming a transparent conductive layer, and a transparent coating layer is further provided thereon. Thus, a transparent two-layer film can be formed.
[0032]
Specifically, the transparent two-layer film can be formed by the following method. That is, the transparent conductive layer forming coating liquid of the present invention is applied to a transparent substrate such as a glass substrate or a plastic substrate by a technique such as spray coating, spin coating, wire bar coating, doctor blade coating, or the like. After being dried, for example, a coating liquid for forming a transparent coating layer mainly containing silica sol or the like is overcoated by the same method. Next, for example, heat treatment is performed at a temperature of about 50 to 350 ° C., and the whole is cured to form a transparent two-layer film.
[0033]
The transparent conductive layer and the transparent two-layer film formed using the coating liquid for forming a transparent conductive layer of the present invention have high strength and high transmittance, have excellent weather resistance and ultraviolet resistance, and have been conventionally used. Like the above, it has an excellent antireflection effect and a flat transmitted light profile, and has a high electric field shielding effect.
[0034]
Accordingly, the transparent substrate on which the transparent conductive film or the transparent two-layer film according to the present invention is formed is, for example, a cathode ray tube (CRT), a plasma display panel (PDP), a fluorescent display tube (VFD), a field emission display (FED), an electro It can be suitably used as a front plate in a display device such as a luminescence display (ELD) or a liquid crystal display (LCD).
[0035]
【Example】
Examples of the present invention will be specifically described below, but the present invention is not limited to these examples. In the examples, “%” means “% by weight” excluding transmittance, reflectance, and haze value, and “part” means “part by weight”.
[0036]
Example 1
A colloidal dispersion of silver fine particles was prepared by the aforementioned Carey-Lea method. Specifically, a mixed solution of 39 g of a 23% iron (II) sulfate aqueous solution and 48 g of a 37.5% sodium citrate aqueous solution was added to 33 g of a 9.1% silver nitrate aqueous solution, and the precipitate was filtered and washed. Was added to prepare a colloidal dispersion of silver fine particles (Ag: 0.1%).
[0037]
120 g of the colloidal dispersion of silver fine particles, 10.0 g of a 1% aqueous solution of hydrazine monohydrate (N 2 H 4 .H 2 O), an aqueous solution obtained by adding water to 0.02 g of sodium chloride to 320 g, A colloidal dispersion of gold-coated silver fine particles modified with chlorine was obtained by adding 320 g of an aqueous solution of potassium goldate [KAu (OH) 4 ] (Au: 0.15%).
[0038]
This colloidal dispersion of gold-coated silver fine particles was desalted with an ion exchange resin (trade name Diaion SK1B, SA20AP, manufactured by Mitsubishi Chemical Corporation), and then concentrated by ultrafiltration. Various organic solvents and the like were added to the concentrated solution, and the transparent conductive layer forming coating solution for sample 1 (Ag: 0.08%, Au: 0.32%, water: 12.1%, EA: 51.4). %, PGM: 25.0%, DAA: 10.0%, Cl: 0.004%). When this transparent conductive layer-forming coating solution was observed with a transmission electron microscope, the average particle size of the gold-coated silver fine particles modified with chlorine was 6.6 nm.
[0039]
Next, the transparent conductive layer forming coating solution of Sample 1 containing gold-coated silver fine particles modified with chlorine is spin-coated (150 rpm) on a glass substrate (3 mm thick soda lime glass) heated to 35 ° C. 60 seconds), followed by spin coating of silica sol solution (150 rpm, 60 seconds). Then, a glass substrate with a transparent two-layer film that is cured at 200 ° C. for 20 minutes and is composed of a transparent conductive layer containing gold-coated silver fine particles and a transparent coat layer composed of a silicate film containing silicon oxide as a main component, That is, a transparent conductive substrate according to Sample 1 was obtained.
[0040]
The silica sol solution used for the formation of the transparent coating layer was 19.6 parts of methyl silicate (trade name: methyl silicate 51, manufactured by Colcoat Co.), 57.8 parts of ethanol, 7.9 parts of 1% nitric acid aqueous solution, pure water Using 14.7 parts, prepare a SiO 2 (silicon oxide) solid content concentration of 10% and a weight average molecular weight of 2850 so that the final SiO 2 solid content concentration is 0.8%. It was obtained by diluting with a mixture of isopropyl alcohol (IPA) and n-butanol (NBA) (IPA / NBA = 3/1).
[0041]
The film properties (surface resistance, visible light transmittance, haze value, bottom reflectance, bottom wavelength) of the transparent two-layer film formed on the glass substrate are shown in Table 1 below. The transmittance shown in Table 1 is the visible light transmittance of only the transparent two-layer film not including the transparent substrate (glass substrate) in the visible light wavelength region (380 to 780 nm), and is determined as follows. . That is, the transmittance (%) of only the transparent two-layer film not including the transparent substrate = [(transmittance measured for each transparent substrate) / (transmittance of the transparent substrate)] × 100
[0042]
In the evaluation of the film characteristics of the transparent two-layer film, the surface resistance was measured using a surface resistance meter (Loresta AP, MCP-T400) manufactured by Mitsubishi Chemical Corporation. The haze value and visible light transmittance were measured using a haze meter (HR-200) manufactured by Murakami Color Research Laboratory for each transparent substrate. The reflectance was measured using a spectrophotometer (U-4000) manufactured by Hitachi, Ltd. The bottom reflectance means a minimum reflectance in the reflection profile of the transparent conductive substrate, and the bottom wavelength means a wavelength at which the reflectance is a minimum.
[0043]
Moreover, when the storage stability of the coating liquid for forming the transparent conductive layer of Sample 1 was evaluated, it was found that when stored for 1 month at room temperature (25 ° C.) and when stored for 3 months in a freezer (−15 ° C.), No aggregation of gold-coated silver fine particles was observed. In addition, no change was observed in the film characteristics of the film formed using the transparent conductive layer forming coating liquid at that time. These results are shown in Table 2 below.
[0044]
Example 2
An aqueous solution prepared by adding water to 10.0 g of a 1% aqueous solution of hydrazine monohydrate (N 2 H 4 .H 2 O) to 120 g of a colloidal dispersion of silver fine particles prepared in the same manner as in Example 1, An aqueous solution obtained by adding 1.15 g of 1% hydrochloric acid to 320 g of an aqueous solution of potassium goldate [KAu (OH) 4 ] (Au: 0.15%) was added to obtain a colloidal dispersion of gold-coated silver fine particles modified with chlorine. .
[0045]
This gold-coated silver fine particle colloidal dispersion is treated in the same manner as in Example 1 to form a transparent conductive layer according to Sample 2 in which gold-coated silver fine particles having an average particle diameter of 6.7 nm modified with chlorine are dispersed. Coating liquid (Ag: 0.08%, Au: 0.32%, water: 12.0%, EA: 51.6%, PGM: 25.0%, DAA: 10.0%, Cl: 0.3% 005%).
[0046]
Using the obtained coating liquid for forming a transparent conductive layer of Sample 2, except that the transparent conductive layer containing gold-coated silver fine particles and a silicate film mainly composed of silicon oxide were used in the same manner as in Example 1. A glass substrate with a transparent two-layer film composed of a coat layer, that is, a transparent conductive substrate according to Sample 2 was obtained. The film characteristics of the transparent two-layer film in Sample 2 are shown in Table 1 below.
[0047]
Moreover, when the storage stability of the coating liquid for forming the transparent conductive layer of Sample 2 was evaluated, the gold-coated silver fine particles were not aggregated even when stored for 1 month at room temperature and for 3 months in a freezer. There was no change in the film characteristics when the film was formed at that time. These results are shown in Table 2 below.
[0048]
Example 3
An aqueous solution prepared by adding water to 10.0 g of a 1% aqueous solution of hydrazine monohydrate (N 2 H 4 .H 2 O) to 120 g of a colloidal dispersion of silver fine particles prepared in the same manner as in Example 1, An aqueous solution in which 0.04 g of potassium bromide was added to 320 g of an aqueous solution of potassium goldate [KAu (OH) 4 ] (Au: 0.15%) was added to obtain a colloidal dispersion of gold-coated silver fine particles modified with bromine. .
[0049]
This gold-coated silver fine particle colloidal dispersion is treated in the same manner as in Example 1 to form a transparent conductive layer according to Sample 3 in which gold-coated silver fine particles having an average particle size of 6.4 nm modified with bromine are dispersed. Coating liquid (Ag: 0.08%, Au: 0.32%, water: 12.1%, EA: 51.5%, PGM: 25.0%, DAA: 10.0%, Br: 0.0 012%).
[0050]
Using the obtained coating liquid for forming a transparent conductive layer of Sample 3, except that the transparent conductive layer containing gold-coated silver fine particles and a silicate film mainly composed of silicon oxide were used in the same manner as in Example 1. A glass substrate with a transparent two-layer film composed of a coat layer, that is, a transparent conductive substrate according to Sample 3 was obtained. The film properties of the transparent two-layer film of Sample 3 are shown in Table 1 below.
[0051]
In addition, when the storage stability of the coating liquid for forming the transparent conductive layer of Sample 3 was evaluated, the gold-coated silver fine particles were not aggregated even when stored for 1 month at room temperature and for 3 months in a freezer. There was no change in the film characteristics when the film was formed at that time. These results are shown in Table 2 below.
[0052]
Comparative Example 1
An aqueous solution prepared by adding water to 10.0 g of a 1% aqueous solution of hydrazine monohydrate (N 2 H 4 .H 2 O) to 120 g of a colloidal dispersion of silver fine particles prepared in the same manner as in Example 1, When an aqueous solution in which 0.05 g of potassium nitrate was added to 320 g of an aqueous solution of potassium goldate [KAu (OH) 4 ] (Au: 0.15%) was added, and the same treatment as in Example 1 was further performed, The colloidal dispersion was agglomerated and a coating liquid for forming a transparent conductive layer could not be obtained.
[0053]
Comparative Example 2
An aqueous solution prepared by adding water to 10.0 g of a 1% aqueous solution of hydrazine monohydrate (N 2 H 4 .H 2 O) to 120 g of a colloidal dispersion of silver fine particles prepared in the same manner as in Example 1, 320 g of an aqueous solution of potassium goldate [KAu (OH) 4 ] (Au: 0.15%) was added to obtain a colloidal dispersion of gold-coated silver fine particles (not modified with halogen).
[0054]
The colloidal dispersion of gold-coated silver fine particles is treated in the same manner as in Example 1 to thereby form a transparent conductive layer forming coating solution (Ag) according to Sample 4 in which gold-coated silver fine particles having an average particle diameter of 6.2 nm are dispersed. : 0.08%, Au: 0.32%, water: 12.2%, EA: 51.4%, PGM: 25.0%, DAA: 10.0%).
[0055]
Using the transparent conductive layer-forming coating solution according to Sample 4 of this comparative example, and otherwise, in the same manner as in Example 1, from the transparent conductive layer containing gold-coated silver fine particles and the silicate film mainly composed of silicon oxide A glass substrate with a transparent two-layer film composed of the transparent coating layer formed, that is, a transparent conductive substrate of Sample 4 was obtained. The film characteristics of the transparent two-layer film of Sample 4 are also shown in Table 1 below.
[0056]
Further, when the storage stability of the coating liquid for forming a transparent conductive layer of Sample 4 as a comparative example was evaluated, the gold-coated silver fine particles aggregated on the next day at room temperature, and the gold-coated silver fine particles were stored for one month in a freezer. Aggregation was observed. These results are also shown in Table 2 below.
[0057]
[Table 1]
[0058]
[Table 2]
[0059]
As is clear from the results shown in Table 1 above, the transparent conductive film obtained using each of the transparent conductive layer forming coating liquids according to Samples 1 to 3 of the present invention is transparent to Sample 4 which is a comparative example. Compared with the transparent conductive film obtained by using the coating liquid for forming the conductive layer, it can be seen that it has excellent visible light transmittance and antireflection function as well as good conductivity. Sample 3 has a slightly higher surface resistance, but it does not impair practicality.
[0060]
Further, as apparent from the results shown in Table 2, the transparent conductive layer forming coating liquid according to Sample 4 as a comparative example has silver-containing fine particles aggregated in a very short time, whereas the present invention It can be confirmed that the storage stability of the coating liquid for forming a transparent conductive layer containing silver-containing fine particles modified with halogen of Samples 1 to 3 is remarkably improved. As described above, in Comparative Example 1, since an anion other than halogen was used, the gold-coated silver fine particles aggregated, and a transparent conductive layer forming coating liquid and a transparent conductive film could not be obtained.
[0061]
【The invention's effect】
According to the present invention, it is possible to obtain a coating solution for forming a transparent conductive layer excellent in storage stability by modifying silver-containing fine particles with a halogen so as not to aggregate for 10 days or more when stored at room temperature and for 3 months or more when stored frozen. it can. In addition, the transparent conductive film formed using the coating liquid for forming the transparent conductive layer has high transmittance, excellent antireflection effect and flat transmitted light profile, and at the same time, excellent weather resistance and ultraviolet resistance. It has a high electric field shielding effect and is extremely suitable as a front plate in a display device such as a CRT.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003018253A JP4325201B2 (en) | 2003-01-28 | 2003-01-28 | Transparent conductive layer forming coating liquid and transparent conductive film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003018253A JP4325201B2 (en) | 2003-01-28 | 2003-01-28 | Transparent conductive layer forming coating liquid and transparent conductive film |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004231675A JP2004231675A (en) | 2004-08-19 |
JP4325201B2 true JP4325201B2 (en) | 2009-09-02 |
Family
ID=32948436
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003018253A Expired - Fee Related JP4325201B2 (en) | 2003-01-28 | 2003-01-28 | Transparent conductive layer forming coating liquid and transparent conductive film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4325201B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5332625B2 (en) * | 2008-01-22 | 2013-11-06 | 三菱マテリアル株式会社 | Metal nanoparticle dispersion and method for producing the same |
JP2009302020A (en) * | 2008-06-17 | 2009-12-24 | Idemitsu Kosan Co Ltd | Conductive particle and its manufacturing method |
JP5690180B2 (en) * | 2011-03-22 | 2015-03-25 | 三菱製紙株式会社 | Method for producing composition containing ultrafine metal particles |
JP6011809B2 (en) * | 2013-11-29 | 2016-10-19 | 住友金属鉱山株式会社 | Method for producing gold powder with high bulk density |
JP6983186B2 (en) * | 2019-01-30 | 2021-12-17 | 株式会社神鋼環境ソリューション | Storage method of dispersion in which alkali metal is dispersed in a dispersion solvent |
-
2003
- 2003-01-28 JP JP2003018253A patent/JP4325201B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004231675A (en) | 2004-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0911859B1 (en) | Transparent electro-conductive structure, process for its production, transparent electro-conductive layer forming coating fluid used for its production, and process for preparing the coating fluid | |
US6673142B2 (en) | Transparent conductive layered structure and method of producing the same, and transparent coat layer forming coating liquid used in the method of producing the same, and display device to which transparent conductive layered structure is applied | |
KR100630595B1 (en) | Transparent conductive layered structure and method of producing the same, and coating liquid for forming transparent conductive layer used in production of transparent conductive layered structure and method of producing the same | |
JP2002083518A (en) | Transparent conductive substrate, its manufacturing method, display device using this transparent conductive substrate, coating solution for forming transparent conductive layer, and its manufacturing method | |
JP4232480B2 (en) | Method for producing noble metal-coated silver fine particle dispersion, coating liquid for forming transparent conductive layer, transparent conductive substrate and display device | |
JP4035934B2 (en) | Transparent conductive substrate, method for producing the same, coating solution for forming transparent conductive layer used for production of transparent conductive substrate, and method for producing the same | |
JP4411672B2 (en) | Coating liquid for forming transparent conductive layer and method for producing the same | |
JP2002038053A (en) | Coating fluid for forming transparent conductive layer | |
JP3876811B2 (en) | Production method of coating liquid for forming transparent conductive layer | |
JP4325201B2 (en) | Transparent conductive layer forming coating liquid and transparent conductive film | |
JP2006032197A (en) | Transparent bilayer film and its manufacturing method | |
JP3750461B2 (en) | Transparent conductive layer forming coating liquid, transparent conductive layer and transparent conductive substrate | |
JP3975310B2 (en) | Transparent conductive substrate, method for producing the same, and display device to which the substrate is applied | |
JP2005154453A (en) | Coating liquid for forming transparent conductive layer and transparent conductive base material | |
JP4225156B2 (en) | Transparent conductive film forming coating liquid, transparent conductive film and display device | |
JP4232575B2 (en) | Transparent conductive layer forming coating liquid, transparent conductive film and transparent conductive substrate | |
JP2004335410A (en) | Forming method of transparent electric conductive layer | |
JP4258281B2 (en) | Coating liquid for forming transparent conductive layer and method for producing the same | |
JP2005135722A (en) | Coating liquid for forming transparent conductive layer and transparent conductive substrate | |
JP2003132734A (en) | Coating solution for forming transparent electroconductive layer | |
JP2005100721A (en) | Manufacturing method of transparent conductive substrate and substrate and display device | |
JP2004071309A (en) | Transparent conductive substrate and its manufacturing method and coating liquid for transparent coating layer formation used for manufacturing this transparent conductive substrate and display device applying the same | |
JP2002069335A (en) | Coating liquid for forming transparent electroconductive layer | |
JP3870669B2 (en) | Transparent conductive substrate, method for producing the same, coating liquid for forming transparent coat layer used for production of transparent conductive substrate, and display device to which transparent conductive substrate is applied | |
JP2003020420A (en) | Coating liquid containing gold fine particle and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050909 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081209 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090206 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090303 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090519 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090601 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120619 Year of fee payment: 3 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |