JP4411672B2 - Coating liquid for forming transparent conductive layer and method for producing the same - Google Patents

Coating liquid for forming transparent conductive layer and method for producing the same Download PDF

Info

Publication number
JP4411672B2
JP4411672B2 JP28727098A JP28727098A JP4411672B2 JP 4411672 B2 JP4411672 B2 JP 4411672B2 JP 28727098 A JP28727098 A JP 28727098A JP 28727098 A JP28727098 A JP 28727098A JP 4411672 B2 JP4411672 B2 JP 4411672B2
Authority
JP
Japan
Prior art keywords
fine particles
transparent conductive
conductive layer
silver fine
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28727098A
Other languages
Japanese (ja)
Other versions
JPH11228872A (en
Inventor
雅也 行延
賢二 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP28727098A priority Critical patent/JP4411672B2/en
Publication of JPH11228872A publication Critical patent/JPH11228872A/en
Application granted granted Critical
Publication of JP4411672B2 publication Critical patent/JP4411672B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/44Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the composition of the continuous phase
    • C03C2217/45Inorganic continuous phases
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • C03C2217/476Tin oxide or doped tin oxide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • C03C2217/479Metals

Landscapes

  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Paints Or Removers (AREA)
  • Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、透明基板上に透明導電層を形成するための透明導電層形成用塗布液に係り、特に、ブラウン管(CRT)、プラズマディスプレイパネル(PDP)、蛍光表示管(VFD)、液晶ディスプレイ(LCD)等表示装置の前面板等に適用された場合、良好な反射防止効果と電界シールド効果を付与しかつ可視光線域での透過光線プロファイルと耐候性も良好な透明導電層を形成できる透明導電層形成用塗布液の改良とその製造方法に関するものである。
【0002】
【従来の技術】
近年のオフィスオートメーション(OA)化によりオフィスに多くのOA機器が導入され、OA機器のディスプレイと向き合って終日作業を行わねばならないという環境が最近珍しくない。
【0003】
ところで、OA機器の一例としてコンピュータの陰極線管(上記ブラウン管とも称する:CRT)等に接して仕事を行う場合、表示画面が見やすく、視覚疲労を感じさせないことの外に、CRT表面の帯電によるほこりの付着や電撃ショックがないこと等が要求されている。更に、これ等に加えて最近では、CRTから発生する低周波電磁波の人体に対する悪影響が懸念され、このような電磁波が外部に漏洩しないことがCRTに対して望まれている。
【0004】
そして、上記電磁波は偏向コイルやフライバックトランスから発生し、テレビジョンの大型化に伴って益々大量の電磁波が周囲に漏洩する傾向にある。
【0005】
ところで、磁界の漏洩は偏向コイルの形状を変えるなどの工夫で大部分を防止することができる。一方、電界の漏洩もCRTの前面ガラス表面に透明導電層を形成することにより防止することが可能である。
【0006】
このような電界の漏洩に対する防止方法は、近年、帯電防止のために取られてきた対策と原理的には同一である。しかし、上記透明導電層は、帯電防止用に形成されていた導電層よりもはるかに高い導電性が求められている。すなわち、帯電防止用には表面抵抗で108 Ω/□程度で十分とされているが、漏洩電界を防ぐ(電界シールド)ためには、少なくとも106 Ω/□以下、好ましくは103 Ω/□以下である低抵抗の透明導電層を形成する必要がある。
【0007】
そこで、上記要求に対処するため、従来よりいくつかの提案がなされているが、その中でも低コストでかつ低い表面抵抗を実現できる方法として、導電性微粒子をアルキルシリケート等の無機バインダーと共に溶媒中に分散した透明導電層形成用塗布液を、CRTの前面ガラスに塗布・乾燥後、200℃以下の温度で焼成する方法が知られている。
【0008】
そして、この透明導電層形成用塗布液を用いた方法は、真空蒸着やスパッタ法等の他の透明導電層の形成方法に比べてはるかに簡便であり、製造コストも低く、CRTに処理可能な電界シールドとして極めて有利な方法である。
【0009】
この方法に用いられる上記透明導電層形成用塗布液として、導電性微粒子にインジウム錫酸化物(ITO)を適用したものが知られている。しかし、得られる膜の表面抵抗が104 〜106 Ω/□と高いため、漏洩電界を十分に遮蔽するには電界キャンセル用の補正回路が必要となることから、その分、製造コストが割高となる問題があった。一方、上記導電性微粒子に金属粉を用いた透明導電層形成用塗布液では、ITOを用いた塗布液に比べ、若干、膜の透過率が低くなるものの、102 〜103 Ω/□という低抵抗膜が得られる。従って、上述した補正回路が必要なくなるためコスト的に有利となり、今後主流になると思われる。
【0010】
そして、上記透明導電層形成用塗布液に適用される金属微粒子としては、特開平8−77832号公報や特開平9−55175号公報等に示されるように空気中で酸化され難い、銀、金、白金、ロジウム、パラジウム等の貴金属に限られている。これは、貴金属以外の金属微粒子、例えば、鉄、ニッケル、コバルト等が適用された場合、大気雰囲気下でこれ等金属微粒子の表面に酸化物皮膜が必ず形成されてしまい透明導電層として良好な導電性が得られなくなるからである。
【0011】
また、一方では表示画面を見易くするために、フェイスパネル表面に防眩処理を施して画面の反射を抑えることも行われている。この防眩処理は、微細な凹凸を設けて表面の拡散反射を増加させる方法によってもなされるが、この方法を用いた場合、解像度が低下して画質が落ちるためあまり好ましい方法とはいえない。従って、むしろ反射光が入射光に対して破壊的干渉を生ずるように、透明皮膜の屈折率と膜厚とを制御する干渉法によって防眩処理を行うことが好ましい。このような干渉法により低反射効果を得るため、一般的には高屈折率膜と低屈折率膜の光学的膜厚をそれぞれ1/4λと1/4λ、あるいは1/2λと1/4λに設定した二層構造膜が採用されており、前述のインジウム錫酸化物(ITO)微粒子からなる膜もこの種の高屈折率膜として用いられている。
【0012】
尚、金属においては、光学定数(n−ik,n:屈折率,i2 =−1,k:消衰係数)のうち、nの値は小さいがkの値がITO等と比べ極端に大きいため、金属微粒子からなる透明導電層を用いた場合でも、ITO(高屈折率膜)と同様に、二層構造膜で光の干渉による反射防止効果が得られる。
【0013】
【発明が解決しようとする課題】
ところで、従来の透明導電層形成用塗布液に適用される金属微粒子としては、上述したように銀、金、白金、ロジウム、パラジウムなどの貴金属に限定されているが、これ等の電気抵抗を比較した場合、白金、ロジウム、パラジウムの比抵抗は、それぞれ10.6、5.1、10.8μΩ・cmで、銀、金の1.62、2.2μΩ・cmに比べて高いため、表面抵抗の低い透明導電層を形成するには銀微粒子や金微粒子を適用した方が有利であった。
【0014】
しかし、銀微粒子を適用した場合、硫化や食塩水による劣化が激しく耐候性に問題があり、他方、金微粒子を適用した場合、上記耐候性の問題はなくなるが白金微粒子、ロジウム微粒子、パラジウム微粒子等が適用された場合と同様にコスト上の問題を有していた。更に、金微粒子を適用した場合には、金特有の光学特性により形成された透明導電層自体が可視光線の一部を吸収するため、可視光線全域でフラットな透過光線プロファイルが要求されるCRTなど表示装置の表示面には適用できない問題点を有していた。
【0015】
本発明はこの様な問題点に着目してなされたもので、その課題とするところは、上記CRT等表示装置の前面板等に適用された場合、良好な反射防止効果と電界シールド効果を付与しかつ可視光線域での透過光線プロファイルと耐候性も良好な透明導電層を形成できる透明導電層形成用塗布液を提供し、合わせてこの透明導電層形成用塗布液の製造方法を提供することにある。
【0016】
【課題を解決するための手段】
すなわち、請求項1に係る発明は、
透明基板、および、この透明基板上に順次形成された透明導電層と透明コート層から成る透明2層膜を備える透明導電性基材の上記透明導電層を形成する透明導電層形成用塗布液を前提とし、
溶媒、および、この溶媒に分散されかつ銀微粒子の表面に金単体がコーティングされた平均粒径1〜100nmの貴金属コート銀微粒子を主成分とすることを特徴とし、
また、請求項2に係る発明は、
請求項1記載の発明に係る透明導電層形成用塗布液を前提とし、
上記貴金属コート銀微粒子における金単体のコーティング量が、銀100重量部に対し5〜100重量部の範囲に設定されていることを特徴とするものである。
【0017】
次に、請求項3に係る発明は、
請求項1または2記載の発明に係る透明導電層形成用塗布液を前提とし、
導電性酸化物微粒子が含まれていることを特徴とし、
請求項4に係る発明は、
請求項3記載の発明に係る透明導電層形成用塗布液を前提とし、
上記導電性酸化物微粒子が、酸化錫、錫アンチモン酸化物またはインジウム錫酸化物から選択された1種以上の微粒子であることを特徴とし、
また、請求項5に係る発明は、
請求項1〜4のいずれかに記載の発明に係る透明導電層形成用塗布液を前提とし、
無機バインダーが含まれていることを特徴とするものである。
【0018】
次に、請求項6〜8に係る発明は上記透明導電層形成用塗布液の製造方法を特定した発明に関する。
【0019】
すなわち、請求項6に係る発明は、
請求項1、3または5記載の透明導電層形成用塗布液の製造方法を前提とし、
銀微粒子のコロイド状分散液に還元剤とアルカリ金属の金酸塩溶液を加えて上記銀微粒子の表面に金単体をコーティングし、貴金属コート銀微粒子のコロイド状分散液を得る貴金属コート銀微粒子調製工程、
上記貴金属コート銀微粒子のコロイド状分散液における電解質濃度を下げる脱塩処理と上記コロイド状分散液を濃縮する濃縮処理を施して貴金属コート銀微粒子の分散濃縮液を得る脱塩・濃縮工程、
上記貴金属コート銀微粒子の分散濃縮液に溶媒単独、あるいは導電性酸化物微粒子または/および無機バインダーが含まれた溶媒を加えて透明導電層形成用塗布液を得る溶媒配合工程、
の各工程を具備することを特徴とし、
請求項7に係る発明は、
請求項1、3または5記載の透明導電層形成用塗布液の製造方法を前提とし、
銀微粒子のコロイド状分散液にアルカリ金属の金酸塩溶液を加えて、銀、のイオン化傾向の差による置換反応により上記銀微粒子の表面に金単体をコーティングし、貴金属コート銀微粒子のコロイド状分散液を得る貴金属コート銀微粒子調製工程、
上記貴金属コート銀微粒子のコロイド状分散液における電解質濃度を下げる脱塩処理と上記コロイド状分散液を濃縮する濃縮処理を施して貴金属コート銀微粒子の分散濃縮液を得る脱塩・濃縮工程、
上記貴金属コート銀微粒子の分散濃縮液に溶媒単独、あるいは導電性酸化物微粒子または/および無機バインダーが含まれた溶媒を加えて透明導電層形成用塗布液を得る溶媒配合工程、
の各工程を具備することを特徴とする。
【0020】
また、請求項8に係る発明は、
請求項6または7記載の透明導電層形成用塗布液の製造方法を前提とし、
上記貴金属コート銀微粒子調製工程において、貴金属コート銀微粒子における金単体のコーティング量が銀100重量部に対し5〜100重量部の範囲に設定されるように、銀微粒子のコロイド状分散液とアルカリ金属の金酸塩溶液の各配合割合が調整されていることを特徴とするものである。
【0021】
【発明の実施の形態】
以下、本発明の実施の形態について詳細に説明する。
【0022】
まず、本発明は、が化学的に安定で、耐候性、耐薬品性、耐酸化性等に優れているため、銀微粒子の表面にをコーティングすればその化学的安定性を高めることができるという考え方に基づいている。また、は上記銀微粒子表面のコーティング層として適用されていることから銀の良好な導電性を損なうこともない。尚、上記を銀微粒子にコーティングする代わりに、銀をと合金化させて合金微粒子とし、上述した耐候性等の特性を改善させる方法も考えられるが、この方法では微粒子全体におけるの濃度を高くする必要があることから多量のを必要としコスト的に難がある。以上の考えから、本発明においては、透明導電層形成用塗布液における金属微粒子として、銀微粒子の表面に金単体がコーティングされた貴金属コート銀微粒子を適用することで上述した問題点の解決を図っている。
【0023】
すなわち、銀微粒子の表面に金単体をコーティングすると、貴金属コート銀微粒子内部の銀がにより保護されるため、耐候性、耐薬品性等が著しく改善される。例えば、銀微粒子と、酸化ケイ素を主成分とするバインダーマトリックスから成る透明導電層を5%食塩水に浸漬すると、食塩水中の塩素イオンと透明導電層の銀微粒子が反応して1時間以内の短時間で著しく劣化し、透明導電層における膜の剥離さえ生じるが、金単体がコーティングされた貴金属コート銀微粒子を適用した透明導電層の場合には、のコーティング量にもよるが24時間以上の浸漬でも透明導電層は全く変化せず、優れた耐候性を示す。また、は大気中で酸化しないため、酸化による電気抵抗の劣化もなく、貴金属コート銀微粒子が適用された透明導電層は、銀微粒子が適用された透明導電層の表面抵抗よりも優れている。
【0024】
ここで、本発明における上記貴金属コート銀微粒子は、その平均粒径が1〜100nmであることを要する(請求項1)。1nm未満の場合、この微粒子の製造は困難であり、更に、塗液中で凝集し易く実用的でない。また、100nmを越えると、形成された透明導電層の可視光線透過率が低くなり過ぎてしまい、仮に、膜厚を薄く設定して可視光線透過率を高くした場合でも、表面抵抗が高くなり過ぎてしまい実用的ではないからである。尚、ここでいう平均粒径とは、透過電子顕微鏡(TEM)で観察される微粒子の平均粒径を示している。
【0025】
次に、上記貴金属コート銀微粒子において、金単体のコーティング量は、銀100重量部に対し5〜100重量部の範囲に設定することが望ましく(請求項2)、好ましくは10〜50重量部の範囲に設定するとよい。金単体のコーティング量が5重量部未満だと、コーティングの保護効果が弱まって耐候性が若干悪くなる場合があり、逆に、100重量部を越えるとコスト的に難があるからである。
【0026】
尚、形成する透明導電層における膜透過率の向上を図る目的で、透明導電層形成用塗布液内に酸化錫、錫アンチモン酸化物またはインジウム錫酸化物から選択された1種以上の導電性酸化物微粒子を加えてもよい(請求項3、請求項4)。この場合、形成される透明導電層内の貴金属コート銀微粒子と導電性酸化物微粒子の配合比は、貴金属コート銀微粒子100重量部に対し導電性酸化物微粒子1〜200重量部、好ましくは10〜100重量部の範囲に設定するとよい。導電性酸化物微粒子の配合量が1重量部未満だと、導電性酸化物微粒子添加の効果がみられず、逆に200重量部を越えると、透明導電層の抵抗が高くなり過ぎてしまい実用的ではないからである。また、貴金属コート銀微粒子と同様、導電性酸化物微粒子の平均粒径は1〜100nm程度が好ましい。
【0027】
次に、貴金属コート銀微粒子を適用する本発明に係る透明導電層形成用塗布液は、以下のような方法で製造することができる。まず、既知の方法[例えば、Carey−Lea法、Am.J.Sci.、37、47(1889)、Am.J.Sci.、38(1889)]により銀微粒子のコロイド分散液を調製する。すなわち、硝酸銀水溶液に、硫酸鉄(II)水溶液とクエン酸ナトリウム水溶液の混合液を加えて反応させ、沈降物を濾過・洗浄した後、純水を加えることにより簡単に銀微粒子のコロイド分散液(Ag:0.1〜10重量%)が調製される。この銀微粒子のコロイド分散液の調製方法は平均粒径1〜100nmの銀微粒子が分散されたものであれば任意でありかつこれに限定されるものではない。得られた銀微粒子のコロイド分散液に還元剤を加え、更にそこにアルカリ金属の金酸塩溶液を加えることで上記銀微粒子の表面に金単体をコーティングし、貴金属コート銀微粒子のコロイド状分散液を得ることができる(請求項6)。尚、この貴金属コート銀微粒子調製工程で、必要により、銀微粒子のコロイド分散液、アルカリ金属の金酸塩溶液の少なくともいずれか一つ、または、それぞれに少量の分散剤を加えてもよい。また、上記貴金属コート銀微粒子調製工程において銀微粒子表面への金単体のコーティング反応が起こるのは、金酸塩の還元によりが生じる際に、既に液中に微細な銀微粒子が多量に存在するためで、が単独で核発生(均一核発生)するよりも、銀微粒子を核としてその表面に成長する方がエネルギー的に有利な条件で進行するからである。従って、金酸塩の還元によりが生じる際、液中に微細な銀微粒子が多量に存在することを前提としているため、貴金属コート銀微粒子調製工程における金酸塩溶液と上記還元剤との添加タイミングについては、少なくとも金酸塩溶液より先に上記還元剤が添加されるよう調整することが好ましい。すなわち、還元剤と金酸塩溶液を混ぜた状態で銀微粒子のコロイド分散液に添加した場合には、金酸塩溶液を上記還元剤に混ぜた段階で金酸塩の還元によりが生じてしまい、かつ、が単独で核発生(均一核発生)してしまうため、金酸塩溶液と還元剤とを混ぜた後に銀微粒子のコロイド分散液に添加しても銀微粒子表面へののコーティング反応が起こらなくなることがあるからである。
【0028】
尚、上記還元剤には、ヒドラジン(N24)、水素化ホウ素ナトリウム(NaBH4)等の水素化ホウ素化合物、ホルムアルデヒド等を用いることができるが、銀微粒子のコロイド分散液に加えられたときに銀超微粒子の凝集を起こさず、金酸塩に還元できれば任意でありこれらに限定されるものではない。
【0029】
例えば、金酸カリウム[KAu(OH) 4 をヒドラジンあるいは水素化ホウ素ナトリウムで還元する場合の還元反応は、それぞれ以下の様に示される。
【0030】
KAu(OH)4+3/4N24→Au+KOH+3H2O+3/4N2
KAu(OH)4+3/4NaBH4→Au+KOH+3/4NaOH
+3/4H3BO3+3/2H2
ここで、還元剤として上記水素化ホウ素ナトリウムを用いた場合、上記反応式から確認できるように還元反応により生じる電解質の濃度が高くなるため、後述するように微粒子が凝集し易く、還元剤としての添加量が限られ、用いる銀微粒子のコロイド分散液における銀濃度を高くできない不便さがある。
【0031】
一方、還元剤として上記ヒドラジンを用いた場合、上記反応式から確認できるように還元反応により生じる電解質が少なく、還元剤としてより適している。
【0032】
尚、のコーティング原料として、アルカリ金属の金酸塩以外の塩、例えば、塩化金酸(HAuCl 4 )または塩化金酸塩(NaAuCl 4 、KAuCl 4 等)を用いると、ヒドラジンによる還元反応は以下のように示される。
【0033】
XAuCl4+3/4N24→Au+XCl+3HCl+3/4N2
(X=H,Na,K等)
この様に塩化金酸等を適用した場合、上記金酸塩を用いた場合と比較して、還元反応による電解質濃度が高くなるだけでなく塩素イオンを生じるため、これが銀微粒子と反応し、難溶性の塩化銀を生成してしまうことから、本発明に係る透明導電層形成用の原料に用いることは困難である。
【0034】
また、上記の方法において、ヒドラジン等の還元剤を用いず、銀とのイオン化傾向の差による置換反応によりのコーティングを行うことも可能である。
【0035】
すなわち、銀微粒子のコロイド分散液に、アルカリ金属の金酸塩溶液を直接加えることにより、貴金属コート銀微粒子のコロイド状分散液を得ることができる(請求項7)。
【0036】
尚、のコーティング反応は、以下のように示される。
【0037】
3Ag+Au3+→3Ag++Au
以上のようにして得られた貴金属コート銀微粒子のコロイド状分散液は、この後、透析、電気透析、イオン交換、限外濾過等の脱塩処理方法により分散液内の電解質濃度を下げることが好ましい。これは、電解質濃度を下げないとコロイドは電解質で一般に凝集してしまうからであり、この現象は、Schulze−Hardy則としても知られている。
【0038】
尚、同様の理由から、上記貴金属コート銀微粒子のコロイド状分散液若しくは透明導電層形成用塗布液内に、酸化錫、錫アンチモン酸化物またはインジウム錫酸化物から選択された導電性酸化物微粒子を配合する場合、これ等導電性酸化物微粒子若しくはその分散液についてもその脱塩を十分に行っておくことが望ましい。
【0039】
次に、脱塩処理された貴金属コート銀微粒子のコロイド状分散液を濃縮処理して貴金属コート銀微粒子の分散濃縮液を得、この貴金属コート銀微粒子の分散濃縮液に、有機溶剤単独、あるいは導電性酸化物微粒子または/および無機バインダーが含まれた有機溶剤を添加して成分調整(微粒子濃度、水分濃度等)を行い、本発明に係る透明導電層形成用塗布液が得られる。尚、脱塩処理方式として限外濾過が適用された場合、この限外濾過は以下に述べるように濃縮処理としても作用することから、脱塩処理と濃縮処理を同時進行で行うことも可能である。従って、貴金属コート銀微粒子が分散されたコロイド状分散液の脱塩処理と濃縮処理については、適用する処理方式によりその順序は任意に設定され、限外濾過等が適用された場合には同時処理も可能である。
【0040】
ここで、本発明に係る透明導電層形成用塗布液において、銀微粒子表面に金単体がコーティングされていることの根拠は、透過電子顕微鏡(TEM)による粒子観察と成分分析(EDX:エネルギー分散型X線解析装置)にて、のコーティング前後で粒子径がほとんど変化してないこと、および、の分布が各粒子に対して一様であること、更にはEXAFS(Extended X-ray Absorption Fine Structure:広域X線吸収微細構造)解析によるの配位数から技術的に確認されている。
【0042】
また、上記貴金属コート銀微粒子のコロイド状分散液の濃縮処理は、減圧エバポレーター、限外濾過等の常用の方法で行うことができる。また、透明導電層形成用塗布液中の水分濃度は、1〜20重量%が好ましい。20重量%を超えると、透明基板上にこの透明導電層形成用塗布液を塗布した後、乾燥中に、水の高い表面張力によりはじきを生じ易くなる場合があるからである。
【0043】
尚、透明導電層形成用塗布液中に界面活性剤を加えれば上記はじきの問題は解決可能である。しかし、界面活性剤の配合による塗布欠陥が生じ易くなる別の問題を生ずることがある。従って、透明導電層形成用塗布液中の水分濃度は1〜20重量%が好ましい。
【0044】
また、上記有機溶剤としては特に制限はなく、塗布方法や製膜条件により、適宜に選定される。例えば、メタノール、エタノール、イソプロパノール、ブタノール、ベンジルアルコール、ジアセトンアルコール等のアルコール系溶媒、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)、シクロヘキサノン、イソホロン等のケトン系溶媒、プロピレングリコールメチルエーテル、プロピレングリコールエチルエーテル等のグリコール誘導体、ジメチルホルムアミド(DMF)、N−メチル−2−ピロリドン(NMP)等が挙げられるが、これらに限定されるものではない。
【0045】
次に、この様にして得られた本発明に係る透明導電層形成用塗布液を用いて、透明基板、および、この透明基板上に形成され平均粒径1〜100nmの貴金属コート銀微粒子とバインダーマトリックスを主成分とする透明導電層とこの上に形成された透明コート層から成る透明2層膜とでその主要部が構成される透明導電性基材を得ることができる。
【0046】
そして、透明基板上に上記透明2層膜を形成するには以下の方法でこれを行うことができる。すなわち、溶媒と平均粒径1〜100nmの貴金属コート銀微粒子を主成分とする本発明に係る透明導電層形成用塗布液を、ガラス基板、プラスチック基板等の透明基板上にスプレーコート、スピンコート、ワイヤーバーコート、ドクターブレードコート等の手法にて塗布し、必要に応じて乾燥した後、例えばシリカゾル等を主成分とする透明コート層形成用塗布液を上述した手法によりオーバーコートする。次に、オーバーコートした後、例えば50〜250℃程度の温度で加熱処理を施しオーバーコートした透明コート層形成用塗布液の硬化を行って上記透明2層膜を形成する。尚、50〜250℃程度の加熱処理では、貴金属コート銀微粒子はで保護されているため問題を生じないが、銀微粒子であると200℃を超えた場合に酸化拡散により表面抵抗値が上昇し膜の劣化が生じる。
【0047】
ここで、シリカゾル等を主成分とする透明コート層形成用塗布液を上述した手法によりオーバーコートした際、予め塗布された溶媒と貴金属コート銀微粒子を主成分とする透明導電層形成用塗布液により形成された貴金属コート銀微粒子層の間隙に、オーバーコートしたシリカゾル液(このシリカゾル液は上記加熱処理により酸化ケイ素を主成分とするバインダーマトリックスとなる)がしみ込むことで、導電性の向上、強度の向上、耐候性の一層の向上が同時に達成される。更に、貴金属コート銀微粒子が酸化ケイ素を主成分とする上記バインダーマトリックス中に分散された透明導電層の光学定数(n−ik)において、屈折率nはさほど大きくないが消衰係数kが大きいため、上記透明導電層と透明コート層の透明2層膜構造により、透明2層膜の反射率を大幅に低下できる。そして、図1に示すように、ITO微粒子(比較例2)や銀微粒子(比較例1)が適用された場合と比較しても、金単体がコーティングされた貴金属コート銀微粒子(実施例1)を用いた場合、可視光線の短波長域(380〜500nm)で反射率が改善される。また、透明2層膜の透過光線プロファイルも、図2に示すように、可視光線の短波長域で、銀微粒子に金単体をコートすることで改善される。例えば、可視光線波長域(380〜780nm)の5nmおきの各波長での透明基板を含まない透明2層膜だけの透過率について、その標準偏差を比較すると、銀微粒子(比較例1)を用いた場合7%程度あるが、銀微粒子に貴金属コートする(実施例1〜7、参考例1〜4)と2〜3%程度の小さな値となり、非常にフラットな透過プロファイルが得られている。これら透明2層膜の反射、透過特性が改善される理由については未だ明らかでないが、銀微粒子にをコーティングしたことによる金属微粒子の表面プラズモンの変化が考えられる。
【0048】
ここで、上記シリカゾルとしては、オルトアルキルシリケートに水や酸触媒を加えて加水分解し、脱水縮重合を進ませた重合物、あるいは既に4〜5量体まで加水分解縮重合を進ませた市販のアルキルシリケート溶液を、さらに加水分解と脱水縮重合を進行させた重合物等を利用することができる。尚、脱水縮重合が進行すると、溶液粘度が上昇して最終的には固化してしまうので、脱水縮重合の度合いについては、ガラス基板やプラスチック基板などの透明基板上に塗布可能な上限粘度以下のところに調整する。但し、脱水縮重合の度合いは上記上限粘度以下のレベルであれば特に指定されないが、膜強度、耐候性等を考慮すると重量平均分子量で500から3000程度が好ましい。そして、アルキルシリケート部分加水分解重合物は、透明2層膜の加熱焼成時に脱水縮重合反応がほぼ完結して、硬いシリケート膜(酸化ケイ素を主成分とする膜)になる。尚、上記シリカゾルに、弗化マグネシウム微粒子、アルミナゾル、チタニアゾル、ジルコニアゾル等を加え、透明コート層の屈折率を調節して透明2層膜の反射率を変えることも可能である。
【0049】
また、溶媒とこの溶媒に分散された平均粒径1〜100nmの貴金属コート銀微粒子に加え、透明導電層のバインダーマトリックスを構成する無機バインダー成分としてのシリカゾル液を配合させて本発明に係る透明導電層形成用塗布液を構成してもよい(請求項5〜請求項7)。この場合においても、シリカゾル液が含まれた透明導電層形成用塗布液を塗布し、必要に応じて乾燥させた後に透明コート層形成用塗布液を上述した手法によりオーバーコートすることで、同様の透明2層膜が得られる。尚、透明導電層形成用塗布液内に導電性酸化物微粒子を配合する場合と同様の理由から、透明導電層形成用塗布液内に配合する上記シリカゾル液についてもその脱塩を十分に行っておくことが望ましい。
【0050】
以上説明したように、本発明に係る透明導電層形成用塗布液を適用して形成された透明導電層を具備する透明導電性基材は、従来よりも優れた反射防止効果と透過光線プロファイルを有し、かつ、良好な耐候性と高い電界シールド効果を有するため、例えば、上述したブラウン管(CRT)、プラズマディスプレイパネル(PDP)、蛍光表示管(VFD)、フィールドエミッションディスプレイ(FED)、エレクトロルミネッセンスディスプレイ(ELD)、液晶ディスプレイ(LCD)等表示装置における前面板等に用いることができる。
【0051】
【実施例】
以下、本発明の実施例を具体的に説明するが本発明はこれら実施例に限定されるものではない。また、本文中の『%』は、透過率、反射率、ヘーズ値の(%)を除いて『重量%』を示し、また『部』は『重量部』を示している。
【0052】
[実施例1]
前述のCarey−Lea法により銀微粒子のコロイド分散液を調製した。具体的には、9%硝酸銀水溶液33gに、23%硫酸鉄(II)水溶液39gと37.5%クエン酸ナトリウム水溶液48gの混合液を加えた後、沈降物をろ過・洗浄した後、純水を加えて、銀微粒子のコロイド分散液(Ag:0.45%)を調製した。この銀微粒子のコロイド分散液15gに、1%ヒドラジン水溶液0.5gを加えて攪拌しながら、金酸カリウム[KAu(OH)4 ]水溶液(Au:0.1%)15gと2%高分子分散剤水溶液0.3gの混合液を加え、金単体がコーティングされた貴金属コート銀微粒子のコロイド分散液を得た。
【0053】
この貴金属コート銀微粒子のコロイド分散液をイオン交換樹脂(三菱化学社製商品名ダイヤイオンSK1B,SA20AP)で脱塩した後、限外ろ過により濃縮した液に、エタノール(EA)、ジアセトンアルコール(DAA)を加え、貴金属コート銀微粒子が含まれた実施例1に係る透明導電層形成用塗布液(Ag:0.217%、Au:0.057%、水:11.8%、EA:82.9%、DAA:5.0%)を得た。この透明導電層形成用塗布液を透過電子顕微鏡で観察した結果、貴金属コート銀微粒子の平均粒径は、7.2nmであった。
【0054】
次に、貴金属コート銀微粒子が含まれた実施例1に係る透明導電層形成用塗布液を、40℃に加熱されたガラス基板(厚さ3mmのソーダライムガラス)上に、スピンコート(130rpm,60秒間)した後、続けて、シリカゾル液をスピンコート(130rpm,60秒間)し、さらに、180℃、20分間硬化させて、貴金属コート銀微粒子を含有する透明導電層と、酸化ケイ素を主成分とするシリケート膜から成る透明コート層とで構成された透明2層膜付きのガラス基板、すなわち、実施例1に係る透明導電性基材を得た。
【0055】
ここで、上記シリカゾル液は、メチルシリケート51(コルコート社製商品名)を19.6部、エタノール57.8部、1%硝酸水溶液7.9部、純水14.7部を用いて、SiO2 (酸化ケイ素)固形分濃度が10%のものを調製し、最終的に、SiO2 固形分濃度が0.7%となるようにイソプロピルアルコール(IPA)とn−ブタノール(NBA)の混合物(IPA/NBA=3/1)により希釈して得ている。
【0056】
そして、ガラス基板上に形成された透明2層膜の膜特性(表面抵抗、可視光線透過率、透過率の標準偏差、ヘーズ値、ボトム反射率/ボトム波長)を以下の表1に示す。尚、上記ボトム反射率とは透明導電性基材の反射プロファイルにおいて極小の反射率をいい、ボトム波長とは反射率が極小における波長を意味している。また、実施例1に係る透明導電性基材の反射プロファイルを図1と図3に、透過プロファイルを図2と図4に合わせて示す。
【0057】
尚、表1において可視光線波長域(380〜780nm)の5nmおきの各波長における透明基板(ガラス基板)を含まない透明2層膜だけの透過率は、以下の様にして求められている。すなわち、
透明基板を含まない透明2層膜だけの透過率(%)
=[(透明基板ごと測定した透過率)/(透明基板の透過率)]×100
ここで、本明細書においては、特に言及しない限り、透過率としては、透明基板ごと(すなわち透明基板を含む透明2層膜のことで上記透明導電性基材を意味する)測定した値を用いている。
【0058】
また、透明2層膜の表面抵抗は、三菱化学(株)製の表面抵抗計ロレスタAP(MCP−T400)を用い測定した。ヘーズ値と可視光線透過率は、透明基板ごと、村上色彩技術研究所製のヘーズメーター(HR−200)を用いて測定した。反射率、及び反射・透過プロファイルは、日立製作所(株)製の分光光度計(U−4000)を用いて測定した。また、貴金属コート銀微粒子の粒径は日本電子製の透過電子顕微鏡で評価している。
【0059】
[実施例2]
実施例1と同様の方法で調製した銀微粒子のコロイド分散液を用い、かつ、1.5%ヒドラジン水溶液と金酸カリウム水溶液(Au:0.15%)を用いると共に、実施例1と同様の処理を行って平均粒径6.3nmの貴金属コート銀微粒子が分散した実施例2に係る透明導電層形成用塗布液(Ag:0.221%、Au:0.079%、水:5.0%、EA:89.7%、DAA:5.0%)を得た。
【0060】
そして、この透明導電層形成用塗布液を用い、かつ、シリカゾル液のSiO2 (酸化ケイ素)固形分濃度が0.65%となるように希釈した以外は、実施例1と同様に行い、貴金属コート銀微粒子を含有する透明導電層と、酸化ケイ素を主成分とするシリケート膜から成る透明コート層とで構成された透明2層膜付きのガラス基板、すなわち、実施例2に係る透明導電性基材を得た。
【0061】
ガラス基板上に形成された透明2層膜の膜特性を以下の表1に示す。また、実施例2に係る透明導電性基材の反射プロファイルを図5に、透過プロファイルを図6に示す。
【0062】
[実施例3]
実施例1と同様の方法で調製した銀微粒子のコロイド分散液を用い、かつ、0.5%ヒドラジン水溶液と金酸カリウム水溶液(Au:0.05%)を用いると共に、実施例1と同様の処理を行って平均粒径6.8nmの貴金属コート銀微粒子が分散した実施例3に係る透明導電層形成用塗布液(Ag:0.24%、Au:0.028%、水:3.7%、EA:91.0%、DAA:5.0%)を得た。
【0063】
そして、この透明導電層形成用塗布液を用い、かつ、シリカゾル液のSiO2 (酸化ケイ素)固形分濃度が0.65%となるように希釈した以外は、実施例1と同様に行い、貴金属コート銀微粒子を含有する透明導電層と、酸化ケイ素を主成分とするシリケート膜から成る透明コート層とで構成された透明2層膜付きのガラス基板、すなわち、実施例3に係る透明導電性基材を得た。
【0064】
ガラス基板上に形成された透明2層膜の膜特性を以下の表1に示す。
【0065】
[実施例4]
実施例1と同様の方法で調製した銀微粒子のコロイド分散液を用い、還元剤としてのヒドラジン水溶液を加えずに、撹拌しながら、金酸カリウム水溶液(Au:0.05%)15gを加え、金と銀の置換反応により、貴金属コート銀微粒子のコロイド分散液を得ると共に、実施例1と同様の処理を行って平均粒径6.5nmの貴金属コート銀微粒子が分散した実施例4に係る透明導電層形成用塗布液(Ag:0.245%、Au:0.025%、水:7.6%、EA:87.1%、DAA:5.0%)を得た。
【0066】
そして、この透明導電層形成用塗布液を用いた以外は、実施例1と同様に行い、貴金属コート銀微粒子を含有する透明導電層と、酸化ケイ素を主成分とするシリケート膜から成る透明コート層とで構成された透明2層膜付きのガラス基板、すなわち、実施例4に係る透明導電性基材を得た。
【0067】
ガラス基板上に形成された透明2層膜の膜特性を以下の表1に示す。
【0068】
[実施例5]
実施例1と同様の方法で調製した銀微粒子のコロイド分散液を用い、かつ、1%ヒドラジン水溶液0.4gと金酸カリウム水溶液(Au:0.075%)を用いて、平均粒径7.1nmの貴金属コート銀微粒子が分散した溶液を得た。
【0069】
次に、この溶液内に、平均粒径0.03μmのインジウム錫酸化物(ITO)微粒子(住友金属鉱山社製、商品名SUFP−HX)を用いかつイオン交換により十分に脱塩して得られたITO分散液を加えて、最終的に貴金属コート銀微粒子とITO微粒子が分散した実施例5に係る透明導電層形成用塗布液(Ag:0.294%、Au:0.049%、ITO:0.1%、水:9.7%、EA:84.95%、DAA:4.9%)を得た。
【0070】
そして、この透明導電層形成用塗布液を用い、かつ、重量平均分子量が1920のシリカゾル液を用いて、SiO2 (酸化ケイ素)固形分濃度が0.8%となるように希釈し、更に35℃に加熱されたガラス基板を用いると共に、透明導電層形成用塗布液とシリカゾル液を150rpmで60秒間の条件でスピンコートし、かつ、210℃、20分間硬化させた以外は、実施例1と同様に行い、貴金属コート銀微粒子とITO微粒子を含有する透明導電層と、酸化ケイ素を主成分とするシリケート膜から成る透明コート層とで構成された透明2層膜付きのガラス基板、すなわち、実施例5に係る透明導電性基材を得た。
【0071】
ガラス基板上に形成された透明2層膜の膜特性を以下の表1に示す。また、製造された実施例5に係る透明導電性基材の反射プロファイルを図7に、透過プロファイルを図8に示す。
【0072】
[実施例6]
実施例1と同様の方法で調製した銀微粒子のコロイド分散液を用い、かつ、1%ヒドラジン水溶液0.4gと金酸カリウム水溶液(Au:0.075%)を用いて、平均粒径7.1nmの貴金属コート銀微粒子が分散した溶液を得た。
【0073】
次に、この溶液内に、平均粒径0.01μmのアンチモン錫酸化物(ATO)微粒子(石原産業社製、商品名SN−100P)を用いかつイオン交換により十分に脱塩して得られたATO分散液を加えて、最終的に貴金属コート銀微粒子とATO微粒子が分散した実施例6に係る透明導電層形成用塗布液(Ag:0.29%、Au:0.048%、ATO:0.174%、水:11.0%、EA:83.58、DAA:4.9%)を得た。
【0074】
そして、この透明導電層形成用塗布液を用い、かつ、重量平均分子量が1920のシリカゾル液を用いて、SiO2 (酸化ケイ素)固形分濃度が0.8%となるように希釈し、更に35℃に加熱されたガラス基板を用いると共に、透明導電層形成用塗布液とシリカゾル液を150rpmで60秒間の条件でスピンコートし、かつ、210℃、20分間硬化させた以外は、実施例1と同様に行い、貴金属コート銀微粒子とATO微粒子を含有する透明導電層と、酸化ケイ素を主成分とするシリケート膜から成る透明コート層とで構成された透明2層膜付きのガラス基板、すなわち、実施例6に係る透明導電性基材を得た。
【0075】
ガラス基板上に形成された透明2層膜の膜特性を以下の表1に示す。また、製造された実施例6に係る透明導電性基材の反射プロファイルを図9に、透過プロファイルを図10に示す。
【0076】
[実施例7]
実施例1と同様の方法で調製した銀微粒子のコロイド分散液を用い、かつ、1%ヒドラジン水溶液0.4gと金酸カリウム水溶液(Au:0.075%)を用いて、貴金属コート銀微粒子の分散濃縮液を得、これに無機バインダーとしてのテトラメチルシリケートの4量体(コルコート社製商品名メチルシリケート51)を含んだ溶液を加えて、平均粒径7.0nmの貴金属コート銀微粒子が分散した実施例7に係る透明導電層形成用塗布液(Ag:0.29%、Au:0.052%、SiO2 :0.02%、水:8.78%、EA:85.85%、DAA:5.0%)を得た。
【0077】
そして、この透明導電層形成用塗布液を用い、かつ、重量平均分子量が2460のシリカゾル液を用いて、SiO2 (酸化ケイ素)固形分濃度が0.7%となるように希釈し、更に35℃に加熱されたガラス基板を用いると共に、透明導電層形成用塗布液とシリカゾル液を150rpmで60秒間の条件でスピンコートし、かつ、210℃、20分間硬化させた以外は、実施例1と同様に行い、貴金属コート銀微粒子を含有する透明導電層と、酸化ケイ素を主成分とするシリケート膜から成る透明コート層とで構成された透明2層膜付きのガラス基板、すなわち、実施例7に係る透明導電性基材を得た。
【0078】
ガラス基板上に形成された透明2層膜の膜特性を以下の表1に示す。
【0079】
参考例1
9%硝酸銀水溶液33gに、23%硫酸鉄(II)水溶液39gと37.5%クエン酸ナトリウム水溶液48gの混合液を加えた後、沈降物を濾過・洗浄した後、純水を加えて、銀微粒子のコロイド分散液(Ag:0.49%)を調製した。この銀微粒子のコロイド分散液240gにヒドラジン1水和物(N24・H2O)の1%水溶液5gを加えて攪拌しながら、白金(IV)酸カリウム[K2Pt(OH)6]水溶液(Pt:0.06%)200gを加え、白金単体がコーティングされた貴金属コート銀微粒子のコロイド分散液を得た。
【0080】
この貴金属コート銀微粒子のコロイド分散液を限外濾過により濃縮した後、この濃縮液に純水を加えて再び限外濾過により濃縮する工程を繰返して得た脱塩された濃縮液に、エタノール(EA)、ジアセトンアルコール(DAA)を加えて、参考例1に係る透明導電層形成用塗布液(Ag:0.245%、Pt:0.025%、水:7.48%、EA:87.25%、DAA:5.0%)を得た。この透明導電層形成用塗布液を透過電子顕微鏡で観察した結果、貴金属コート銀微粒子の平均粒径は、9.2nmであった。
【0081】
次に、この透明導電層形成用塗布液を、40℃に加熱されたガラス基板(厚さ3mmのソーダライムガラス)上に、スピンコート(130rpm,60秒間)した後、続けて、シリカゾル液をスピンコート(130rpm,60秒間)し、さらに、180℃、20分間硬化させて、貴金属コート銀微粒子を含有する透明導電層と、酸化ケイ素を主成分とするシリケート膜から成る透明コート層とで構成された透明2層膜付きのガラス基板、すなわち、参考例1に係る透明導電性基材を得た。
【0082】
ここで、上記シリカゾル液は、メチルシリケート51(コルコート社製商品名)を19.6部、エタノール57.8部、1%硝酸水溶液7.9部、純水14.7部を用いて、SiO2 (酸化ケイ素)固形分濃度が10%のものを調製し、最終的に、SiO2 固形分濃度が0.65%となるようにイソプロピルアルコール(IPA)とn−ブタノール(NBA)の混合物(IPA/NBA=3/1)により希釈して得ている。
【0083】
そして、ガラス基板上に形成された透明2層膜の膜特性を以下の表1に示す。また、製造された参考例1に係る透明導電性基材の反射プロファイルを図11と図13に、透過プロファイルを図12と図14に合わせて示す。
【0084】
参考例2
参考例1と同様の方法で調製した銀微粒子のコロイド分散液を用い、かつ、ヒドラジン1水和物(N24・H2O)の1%水溶液6.3gと、金酸塩[KAu(OH)4]水溶液(Au:0.098%)121gおよび白金酸カリウム[K2Pt(OH)6]水溶液(Pt:0.065%)121gの混合溶液を用いると共に、参考例1と同様の処理を行って、金と白金の複合体がコーティングされた平均粒径11.7nmの貴金属コート銀微粒子を分散した参考例2に係る透明導電層形成用塗布液(Ag:0.26%、Au:0.03%、Pt:0.02%、水:7.48%、EA:87.2%、DAA:5.0%)を得た。
【0085】
そして、この透明導電層形成用塗布液を用いた以外は、参考例1と同様に行い、貴金属コート銀微粒子を含有する透明導電層と、酸化ケイ素を主成分とするシリケート膜から成る透明コート層とで構成された透明2層膜付きのガラス基板、すなわち、参考例2に係る透明導電性基材を得た。
【0086】
ガラス基板上に形成された透明2層膜の膜特性を以下の表1に示す。また、製造された参考例2に係る透明導電性基材の反射プロファイルを図15に、透過プロファイルを図16に示す。
【0087】
参考例3
参考例1と同様の方法で調製した銀微粒子のコロイド分散液を用い、還元剤としての上記ヒドラジン水溶液を加えずに、撹拌しながら、白金酸カリウム[K2Pt(OH)6]水溶液(Pt:0.064%)203gを加え、白金と銀の置換反応により、白金がコーティングされた貴金属コート銀微粒子のコロイド分散液を得ると共に、参考例1と同様の処理を行って、平均粒径9.2nmの貴金属コート銀微粒子が分散した参考例3に係る透明導電層形成用塗布液(Ag:0.24%、Pt:0.025%、水:9.2%、EA:85.53%、DAA:5.0%)を得た。
【0088】
そして、この透明導電層形成用塗布液を用いた以外は、参考例1と同様に行い、貴金属コート銀微粒子を含有する透明導電層と、酸化ケイ素を主成分とするシリケート膜から成る透明コート層とで構成された透明2層膜付きのガラス基板、すなわち参考例3に係る透明導電性基材を得た。
【0089】
ガラス基板上に形成された透明2層膜の膜特性を以下の表1に示す。
【0090】
参考例4
参考例1と同様の方法で調製した銀微粒子のコロイド分散液(Ag:0.49%)240gを用い、還元剤としての上記ヒドラジン水溶液を加えずに、撹拌しながら、白金酸カリウム[K2Pt(OH)6]水溶液(Pt:0.064%)203gを加え、白金と銀の置換反応により、白金単体がコーティングされた平均粒径9.2nmの貴金属コート銀微粒子を分散した溶液を得た。
【0091】
次に、この溶液内に、平均粒径0.03μmのインジウム錫酸化物(ITO)微粒子(住友金属鉱山社製、商品名SUFP−HX)を用いかつイオン交換により十分に脱塩して得られたITO分散液を加えて、最終的に上記貴金属コート銀微粒子とITO微粒子が分散した参考例4に係る透明導電層形成用塗布液(Ag:0.312%、Pt:0.0325%、ITO:0.12%、水:12.3%、EA:87.23%)を得た。
【0092】
そして、この透明導電層形成用塗布液を用い、かつ、重量平均分子量が1920のシリカゾル液を用いて、SiO2(酸化ケイ素)固形分濃度が0.8%となるように希釈し、更に35℃に加熱されたガラス基板を用いると共に、透明導電層形成用塗布液とシリカゾル液を150rpmで60秒間の条件でスピンコートし、かつ、210℃、20分間硬化させた以外は、参考例1と同様に行い、貴金属コート銀微粒子とITO微粒子を含有する透明導電層と、酸化ケイ素を主成分とするシリケート膜から成る透明コート層とで構成された透明2層膜付きのガラス基板、すなわち、参考例4に係る透明導電性基材を得た。
【0093】
ガラス基板上に形成された透明2層膜の膜特性を以下の表1に示す。また、製造された参考例4に係る透明導電性基材の反射プロファイルを図17に、透過プロファイルを図18に示す。
【0094】
[比較例1]
実施例1と同様の方法で調製した銀微粒子のコロイド分散液を用い、金コーティングせずに、平均粒径6.9nmの銀微粒子が分散した比較例1に係る透明導電層形成用塗布液(Ag:0.3%、水:4.0%、EA:90.7%、DAA:5.0%)を得た。
【0095】
そして、この透明導電層形成用塗布液を用いた以外は、実施例1と同様に行い、銀微粒子を含有する透明導電層と、酸化ケイ素を主成分とするシリケート膜から成る透明コート層とで構成された透明2層膜付きのガラス基板、すなわち、比較例1に係る透明導電性基材を得た。
【0096】
ガラス基板上に形成された透明2層膜の膜特性を以下の表1に示す。また、製造された比較例1に係る透明導電性基材の反射プロファイルを図1と図11に、透過プロファイルを図2と図12に示す。
【0097】
[比較例2]
平均粒径30nmのITO微粒子が溶剤に分散された比較例2に係る透明導電層形成用塗布液(住友金属鉱山社製、商品名SDA−104、ITO:2%)を40℃に加熱されたガラス基板(厚さ3mmのソーダライムガラス)上に、スピンコート(150rpm,60秒間)した後、続けて、SiO2 (酸化ケイ素)固形分濃度が1.0%となるように希釈したシリカゾル液をスピンコート(150rpm,60秒間)し、さらに、180℃、30分間硬化させて、ITO微粒子を含有する透明導電層と、酸化ケイ素を主成分とするシリケート膜から成る透明コート層とで構成された透明2層膜付きのガラス基板、すなわち比較例2に係る透明導電性基材を得た。
【0098】
そして、ガラス基板上に形成された透明2層膜の膜特性を以下の表1に示す。また、製造された比較例2に係る透明導電性基材の反射プロファイルを図1に示す。
【0099】
【表1】

Figure 0004411672
【0100】
『耐候性試験』
実施例1〜7、参考例1〜4に係る透明導電性基材と比較例1に係る透明導電性基材を、5%食塩水に浸漬し、透明基板(ガラス基板)上に設けた透明2層膜の表面抵抗値、膜の外観を調べた。この結果を以下の表2に示す。
【0101】
【表2】
Figure 0004411672
【0102】
『評 価』
(1)表1に示された結果から明らかなように、実施例1〜7、参考例1〜4に係る透明2層膜の表面抵抗(Ω/□)と透過率の標準偏差の値が、各比較例に係る透明2層膜の値と較べて著しく改善されていることが確認される。また、図2と図12に示された実施例1および参考例1に係る透明導電性基材の透過プロファイルと比較例1に係る透明導電性基材の透過プロファイルの比較から明らかなように、実施例1および参考例1の透明導電性基材では非常にフラットな透過プロファイルが得られていることも確認される。
また、図1と図11の反射プロファイルから明らかなように、比較例1、2に較べて実施例1および参考例1に係る透明導電性基材では可視光線波長域における反射特性も改善されていることが確認される。
(2)また、表2に示された結果から明らかなように、比較例1に係る透明2層膜に較べて実施例1〜7、参考例1〜4に係る透明2層膜の耐候性も著しく改善されていることが確認される。
(3)次に、金単体がコーティングされた貴金属コート銀微粒子を適用している実施例1〜7に係る透明導電性基材の可視光線透過率を比較した場合、表1から確認されるようにITOを含ませた実施例5とATOを含ませた実施例6の可視光線透過率が他の実施例に較べて高い値を示している。
【0103】
他方、白金単体または金、白金複合体がコーティングされた貴金属コート銀微粒子を適用している参考例1〜4に係る透明導電性基材の表面抵抗を比較した場合、表1から確認されるようにITOを含ませた参考例4の表面抵抗が一番小さな値になっており、かつ、可視光線透過率についてはそれぞれ略同一の値になっている。すなわち、参考例4で、参考例1〜3の表面抵抗値と略同一となるように透明導電層の厚みをより薄く設定した場合、透明導電層の可視光線透過率を参考例1〜3より高くできることを示している。
【0104】
これ等からITOやATO等の導電性酸化物微粒子を透明導電層内に含ませた場合、透明導電層における膜透過率の向上を図れることが確認される。
(4)尚、実施例1〜7、参考例1〜4においては、上記金酸塩と白金酸塩として金酸カリウムおよび白金酸カリウムを適用して貴金属コート銀微粒子を調製しているが、これ等金酸カリウムおよび白金酸カリウムに代えて金酸ナトリウムおよび白金酸ナトリウムを適用した実験も行っている。
【0105】
そして、金酸ナトリウムおよび白金酸ナトリウムを適用して得られた貴金属コート銀微粒子についても実施例1〜7、参考例1〜4と同様の評価試験を行い、かつ、同様の評価が得られることを確認している。
【0106】
【発明の効果】
請求項1〜5記載の発明に係る透明導電層形成用塗布液によれば、
溶媒、および、この溶媒に分散されかつ表面に金単体がコーティングされた平均粒径1〜100nmの貴金属コート銀微粒子を主成分としているため、従来の透明導電層形成用塗布液が適用された透明導電層と比較して、良好な反射防止機能と電界シールド機能を有しかつ可視光線域での透過光線プロファイルと耐候性も良好な透明導電層を形成できる効果を有する。
【0107】
また、請求項6〜8記載の発明に係る透明導電層形成用塗布液の製造方法によれば、
本発明に係る透明導電層形成用塗布液を低コストでかつ簡便に製造できる効果を有する。
【図面の簡単な説明】
【図1】実施例1および比較例1〜2に係る透明導電性基材の反射プロファイルを示すグラフ図。
【図2】実施例1および比較例1に係る透明導電性基材の透過プロファイルを示すグラフ図。
【図3】実施例1に係る透明導電性基材の反射プロファイルを示すグラフ図。
【図4】実施例1に係る透明導電性基材とこの基材の構成部材であるガラス基板の透過プロファイルを示すグラフ図。
【図5】実施例2に係る透明導電性基材の反射プロファイルを示すグラフ図。
【図6】実施例2に係る透明導電性基材とこの基材の構成部材であるガラス基板の透過プロファイルを示すグラフ図。
【図7】実施例5に係る透明導電性基材の反射プロファイルを示すグラフ図。
【図8】実施例5に係る透明導電性基材とこの基材の構成部材であるガラス基板の透過プロファイルを示すグラフ図。
【図9】実施例6に係る透明導電性基材の反射プロファイルを示すグラフ図。
【図10】実施例6に係る透明導電性基材とこの基材の構成部材であるガラス基板の透過プロファイルを示すグラフ図。
【図11】 参考例1および比較例1〜2に係る透明導電性基材の反射プロファイルを示すグラフ図。
【図12】 参考例1および比較例1に係る透明導電性基材の透過プロファイルを示すグラフ図。
【図13】 参考例1に係る透明導電性基材の反射プロファイルを示すグラフ図。
【図14】 参考例1に係る透明導電性基材とこの基材の構成部材であるガラス基板の透過プロファイルを示すグラフ図。
【図15】 参考例2に係る透明導電性基材の反射プロファイルを示すグラフ図。
【図16】 参考例2に係る透明導電性基材とこの基材の構成部材であるガラス基板の透過プロファイルを示すグラフ図。
【図17】 参考例4に係る透明導電性基材の反射プロファイルを示すグラフ図。
【図18】 参考例4に係る透明導電性基材とこの基材の構成部材であるガラス基板の透過プロファイルを示すグラフ図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a transparent conductive layer forming coating solution for forming a transparent conductive layer on a transparent substrate, and in particular, a cathode ray tube (CRT), a plasma display panel (PDP), a fluorescent display tube (VFD), a liquid crystal display ( When applied to the front plate of a display device such as an LCD), a transparent conductive layer that provides a good antireflection effect and electric field shielding effect, and can form a transparent conductive layer having a good transmitted light profile and good weather resistance in the visible light range. The present invention relates to an improvement of a coating liquid for layer formation and a method for producing the same.
[0002]
[Prior art]
In recent years, office automation (OA) has led to the introduction of many OA devices in the office, and it is not uncommon recently to have to work all day while facing the display of OA devices.
[0003]
By the way, when working in contact with a cathode ray tube of a computer (also referred to as the above-mentioned CRT) as an example of an OA device, the display screen is easy to see and the visual fatigue is not felt. It is required that there is no adhesion or electric shock. In addition to these, recently, there are concerns about the adverse effects of low frequency electromagnetic waves generated from CRTs on the human body, and it is desired for CRTs to prevent such electromagnetic waves from leaking to the outside.
[0004]
And the said electromagnetic waves generate | occur | produce from a deflection coil or a flyback transformer, and there exists a tendency for a lot of electromagnetic waves to leak to circumference | surroundings with the enlargement of a television.
[0005]
By the way, most of leakage of the magnetic field can be prevented by changing the shape of the deflection coil. On the other hand, electric field leakage can also be prevented by forming a transparent conductive layer on the front glass surface of the CRT.
[0006]
The method for preventing such electric field leakage is in principle the same as the countermeasures taken for the prevention of charging in recent years. However, the transparent conductive layer is required to have a much higher conductivity than the conductive layer formed for antistatic purposes. That is, the surface resistance is 10 for antistatic.8Ω / □ is sufficient, but at least 10 to prevent leakage electric field (electric field shielding).6Ω / □ or less, preferably 10ThreeIt is necessary to form a transparent conductive layer having a low resistance of Ω / □ or less.
[0007]
Thus, several proposals have been made in the past to cope with the above requirements. Among them, as a method capable of realizing low surface resistance at a low cost, the conductive fine particles are placed in a solvent together with an inorganic binder such as an alkyl silicate. A method is known in which a dispersed transparent conductive layer forming coating solution is applied to a CRT front glass and dried, and then fired at a temperature of 200 ° C. or lower.
[0008]
The method using the coating liquid for forming the transparent conductive layer is much simpler than other methods for forming the transparent conductive layer such as vacuum deposition and sputtering, and the manufacturing cost is low, so that it can be processed into a CRT. This is a very advantageous method for electric field shielding.
[0009]
As the coating liquid for forming the transparent conductive layer used in this method, one in which indium tin oxide (ITO) is applied to conductive fine particles is known. However, the resulting film has a surface resistance of 10Four-106Since it is as high as Ω / □, a correction circuit for canceling the electric field is necessary to sufficiently shield the leakage electric field, and there is a problem that the manufacturing cost is increased accordingly. On the other hand, the coating liquid for forming a transparent conductive layer using metal powder as the conductive fine particles has a slightly lower film transmittance than the coating liquid using ITO, but 102-10ThreeA low resistance film of Ω / □ can be obtained. Accordingly, the above-described correction circuit is not necessary, which is advantageous in terms of cost and is expected to become mainstream in the future.
[0010]
As the metal fine particles applied to the coating liquid for forming the transparent conductive layer, silver, gold, and the like, which are hardly oxidized in the air as disclosed in JP-A-8-77832 and JP-A-9-55175, are disclosed. , Platinum, rhodium, palladium and other precious metals. This is because, when metal fine particles other than noble metals, such as iron, nickel, cobalt, etc., are applied, an oxide film is always formed on the surface of these metal fine particles in the air atmosphere, and a good conductive property as a transparent conductive layer. This is because sex cannot be obtained.
[0011]
On the other hand, in order to make the display screen easier to see, anti-glare treatment is performed on the face panel surface to suppress screen reflection. This anti-glare treatment is also performed by a method of increasing the diffuse reflection of the surface by providing fine irregularities. However, when this method is used, it is not a preferable method because the resolution is lowered and the image quality is lowered. Therefore, it is preferable to perform the antiglare treatment by an interference method that controls the refractive index and the film thickness of the transparent film so that the reflected light causes destructive interference with the incident light. In order to obtain a low reflection effect by such an interference method, the optical film thicknesses of the high refractive index film and the low refractive index film are generally set to 1 / 4λ and 1 / 4λ, or 1 / 2λ and 1 / 4λ, respectively. A set two-layer structure film is employed, and a film made of the aforementioned indium tin oxide (ITO) fine particles is also used as this type of high refractive index film.
[0012]
For metals, optical constants (n-ik, n: refractive index, i2= -1, k: extinction coefficient), the value of n is small, but the value of k is extremely large compared to ITO or the like. Therefore, even when a transparent conductive layer made of metal fine particles is used, ITO (high refractive index) Similarly to the film), the antireflection effect due to the interference of light can be obtained with the two-layer structure film.
[0013]
[Problems to be solved by the invention]
By the way, as described above, the metal fine particles applied to the conventional coating liquid for forming a transparent conductive layer are limited to noble metals such as silver, gold, platinum, rhodium, and palladium. The specific resistance of platinum, rhodium, and palladium is 10.6, 5.1, and 10.8 μΩ · cm, respectively, which is higher than 1.62 and 2.2 μΩ · cm of silver and gold. In order to form a transparent conductive layer having a low thickness, it was advantageous to apply silver fine particles or gold fine particles.
[0014]
However, when silver fine particles are applied, deterioration due to sulfidation or saline is severe and there is a problem in weather resistance. On the other hand, when gold fine particles are applied, the above-mentioned weather resistance problems are eliminated, but platinum fine particles, rhodium fine particles, palladium fine particles, etc. Had the same cost problem as when applied. Furthermore, when gold fine particles are applied, the transparent conductive layer itself formed by the optical characteristics peculiar to gold absorbs a part of visible light, so that a CRT that requires a flat transmitted light profile over the entire visible light is required. There is a problem that cannot be applied to the display surface of the display device.
[0015]
The present invention has been made paying attention to such problems, and the object of the present invention is to provide a good antireflection effect and electric field shielding effect when applied to the front plate of the display device such as the CRT. And providing a coating solution for forming a transparent conductive layer capable of forming a transparent conductive layer having a transmitted light profile in the visible light region and good weather resistance, and a method for producing the coating solution for forming the transparent conductive layer. It is in.
[0016]
[Means for Solving the Problems]
  That is, the invention according to claim 1
  The above transparent conductive substrate comprising a transparent substrate and a transparent two-layer film comprising a transparent conductive layer and a transparent coating layer sequentially formed on the transparent substrateAssuming a coating liquid for forming a transparent conductive layer for forming a transparent conductive layer,
  Solvent, and the surface of the silver fine particles dispersed in the solventGold aloneCharacterized in that the main component is precious metal-coated silver fine particles having an average particle diameter of 1 to 100 nm coated with
  The invention according to claim 2
  Based on the coating liquid for forming a transparent conductive layer according to the invention of claim 1,
  In the noble metal coated silver fine particlesGold aloneThe coating amount is set in the range of 5 to 100 parts by weight with respect to 100 parts by weight of silver.
[0017]
Next, the invention according to claim 3 is
Based on the coating liquid for forming a transparent conductive layer according to the invention of claim 1 or 2,
It contains conductive oxide fine particles,
The invention according to claim 4
Based on the coating liquid for forming a transparent conductive layer according to the invention of claim 3,
The conductive oxide fine particles are one or more fine particles selected from tin oxide, tin antimony oxide or indium tin oxide,
The invention according to claim 5
Based on the coating liquid for forming a transparent conductive layer according to any one of claims 1 to 4,
An inorganic binder is included.
[0018]
Next, the invention which concerns on Claims 6-8 is related with the invention which specified the manufacturing method of the said coating liquid for transparent conductive layer formation.
[0019]
  That is, the invention according to claim 6
  Based on the manufacturing method of the coating liquid for forming a transparent conductive layer according to claim 1, 3 or 5,
  In a colloidal dispersion of silver particles, a reducing agent and an alkali metalGold salt solutionOn the surface of the silver fine particlesGold aloneA precious metal-coated silver fine particle preparation step to obtain a colloidal dispersion of precious metal-coated silver fine particles,
  A desalting / concentration step for obtaining a dispersion concentrate of the noble metal-coated silver fine particles by performing a desalting treatment for reducing the electrolyte concentration in the colloidal dispersion of the noble metal-coated silver fine particles and a concentration treatment for concentrating the colloidal dispersion;
  Solvent blending step of obtaining a coating solution for forming a transparent conductive layer by adding a solvent alone or a solvent containing conductive oxide fine particles or / and an inorganic binder to the dispersion concentrate of the noble metal-coated silver fine particles,
  It is characterized by comprising each step of
  The invention according to claim 7 provides:
  Based on the manufacturing method of the coating liquid for forming a transparent conductive layer according to claim 1, 3 or 5,
  The colloidal dispersion of silver fine particlesGold salt solutionPlus silver,MoneyOn the surface of the silver fine particles by the substitution reaction due to the difference in ionization tendency ofGold aloneA precious metal-coated silver fine particle preparation step to obtain a colloidal dispersion of precious metal-coated silver fine particles,
  A desalting / concentration step for obtaining a dispersion concentrate of the noble metal-coated silver fine particles by performing a desalting treatment for reducing the electrolyte concentration in the colloidal dispersion of the noble metal-coated silver fine particles and a concentration treatment for concentrating the colloidal dispersion;
  Solvent blending step of obtaining a coating solution for forming a transparent conductive layer by adding a solvent alone or a solvent containing conductive oxide fine particles or / and an inorganic binder to the dispersion concentrate of the noble metal-coated silver fine particles,
  It comprises each of these processes.
[0020]
  The invention according to claim 8 is
  Based on the manufacturing method of the coating liquid for forming a transparent conductive layer according to claim 6 or 7,
  In the precious metal-coated silver fine particle preparation step,Gold aloneThe colloidal dispersion of fine silver particles and the alkali metal so that the coating amount is set in the range of 5 to 100 parts by weight with respect to 100 parts by weight of silver.Gold salt solutionEach mixing ratio is adjusted.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0022]
  First, the present inventionMoneyIs chemically stable and has excellent weather resistance, chemical resistance, oxidation resistance, etc.MoneyIt is based on the idea that its chemical stability can be improved by coating the coating. Also,MoneySince it is applied as a coating layer on the surface of the silver fine particles, it does not impair the good conductivity of silver. The aboveMoneyInstead of coating the silver particles with silverMoneyA method of improving the properties such as the above-mentioned weather resistance can be considered by alloying with an alloy fine particle.MoneyBecause it is necessary to increase the concentration ofMoneyIs necessary and costly. In view of the above, in the present invention, as the metal fine particles in the transparent conductive layer forming coating solution,Gold aloneThe above-mentioned problems are solved by applying noble metal-coated silver fine particles coated with.
[0023]
  That is, on the surface of the silver fine particlesGold aloneCoating, the silver inside the precious metal coated silver fine particlesMoneyTherefore, weather resistance, chemical resistance, etc. are remarkably improved. For example, when a transparent conductive layer composed of silver fine particles and a binder matrix containing silicon oxide as a main component is immersed in 5% saline, chlorine ions in the saline and silver fine particles in the transparent conductive layer react with each other for less than 1 hour. Although it deteriorates significantly with time and even peeling of the film in the transparent conductive layer occurs,Gold aloneIn the case of a transparent conductive layer to which noble metal coated silver fine particles coated withMoneyDepending on the coating amount, the transparent conductive layer does not change at all even when immersed for 24 hours or more, and exhibits excellent weather resistance. Also,MoneySince no oxidation occurs in the air, the electrical resistance does not deteriorate due to oxidation, and the transparent conductive layer to which the noble metal-coated silver fine particles are applied is superior to the surface resistance of the transparent conductive layer to which the silver fine particles are applied.
[0024]
Here, the noble metal-coated silver fine particles in the present invention are required to have an average particle diameter of 1 to 100 nm (claim 1). When the thickness is less than 1 nm, it is difficult to produce the fine particles, and further, the particles are likely to aggregate in the coating liquid and are not practical. On the other hand, if the thickness exceeds 100 nm, the visible light transmittance of the formed transparent conductive layer becomes too low. Even if the film thickness is set thin and the visible light transmittance is increased, the surface resistance becomes too high. This is because it is not practical. In addition, the average particle diameter here has shown the average particle diameter of the microparticles | fine-particles observed with a transmission electron microscope (TEM).
[0025]
  Next, in the noble metal coated silver fine particles,Gold aloneThe coating amount is desirably set in the range of 5 to 100 parts by weight with respect to 100 parts by weight of silver (Claim 2), and preferably in the range of 10 to 50 parts by weight.Gold aloneIf the coating amount is less than 5 parts by weight, the protective effect of the coating may be weakened and the weather resistance may be slightly deteriorated. On the other hand, if it exceeds 100 parts by weight, the cost is difficult.
[0026]
For the purpose of improving the film transmittance in the transparent conductive layer to be formed, one or more kinds of conductive oxides selected from tin oxide, tin antimony oxide or indium tin oxide in the coating liquid for forming the transparent conductive layer are used. Fine particles may be added (claims 3 and 4). In this case, the compounding ratio of the noble metal coated silver fine particles and the conductive oxide fine particles in the transparent conductive layer to be formed is 1 to 200 parts by weight, preferably 10 to 10 parts by weight of the conductive oxide fine particles with respect to 100 parts by weight of the noble metal coated silver fine particles. It is good to set to the range of 100 weight part. When the blending amount of the conductive oxide fine particles is less than 1 part by weight, the effect of adding the conductive oxide fine particles is not seen, and conversely, when it exceeds 200 parts by weight, the resistance of the transparent conductive layer becomes too high and practical. Because it is not the target. Further, like the noble metal-coated silver fine particles, the average particle diameter of the conductive oxide fine particles is preferably about 1 to 100 nm.
[0027]
  Next, the coating liquid for forming a transparent conductive layer according to the present invention to which the noble metal-coated silver fine particles are applied can be produced by the following method. First, a colloidal dispersion of silver fine particles is prepared by a known method [for example, Carey-Lea method, Am. J. Sci., 37, 47 (1889), Am. J. Sci., 38 (1889)]. That is, a silver nitrate aqueous solution is mixed with an iron (II) sulfate aqueous solution and a sodium citrate aqueous solution and reacted. After the precipitate is filtered and washed, pure water is added to the colloidal dispersion of silver particles ( Ag: 0.1 to 10% by weight) is prepared. The method for preparing the colloidal dispersion of silver fine particles is arbitrary and not limited to this as long as silver fine particles having an average particle diameter of 1 to 100 nm are dispersed. A reducing agent is added to the resulting colloidal dispersion of silver fine particles, and an alkali metal is further added thereto.Gold salt solutionTo the surface of the silver fine particlesGold aloneTo obtain a colloidal dispersion of noble metal-coated silver fine particles (Claim 6). In this precious metal-coated silver fine particle preparation step, if necessary, a colloidal dispersion of silver fine particles, an alkali metalGold salt solutionA small amount of a dispersant may be added to each of at least one of the above. In addition, in the precious metal coated silver fine particle preparation step,Gold aloneThe coating reaction ofGold saltBy reductionMoneyWhen there is a large amount of fine silver particles already in the liquid,MoneyThis is because it progresses under conditions that are advantageous in terms of energy when it is grown on the surface of silver fine particles as nuclei rather than nucleating alone (uniform nucleation). Therefore,Gold saltBy reductionMoneyIs premised on the presence of a large amount of fine silver fine particles in the liquid,Gold salt solutionAnd the addition timing of the reducing agent, at leastGold salt solutionIt is preferable to adjust so that the said reducing agent is added earlier. That is, with a reducing agentGold salt solutionWhen added to a colloidal dispersion of silver fine particles in a mixed state,Gold salt solutionAt the stage of mixing with the reducing agentGold saltBy reductionMoneyHas occurred, andMoneyNucleates alone (uniform nucleation),Gold salt solutionEven if it is added to the colloidal dispersion of silver particles after mixingMoneyThis is because the coating reaction may not occur.
[0028]
  The reducing agent includes hydrazine (N2HFour), Sodium borohydride (NaBH)FourBoron hydride compounds such as), formaldehyde, etc. can be used, but when added to a colloidal dispersion of silver fine particles, the silver ultrafine particles do not aggregate,Gold saltTheMoneyIt is arbitrary as long as it can be reduced, and is not limited thereto.
[0029]
  For example,Potassium goldate [KAu (OH) Four ]The reduction reaction when reducing hydrazine with hydrazine or sodium borohydride is shown as follows, respectively.
[0030]
  KAu (OH)Four+ 3 / 4N2HFour→ Au + KOH + 3H2O + 3 / 4N2
  KAu (OH)Four+ 3 / 4NaBHFour→ Au + KOH + 3 / 4NaOH
                                      + 3 / 4HThreeBOThree+ 3 / 2H2
  Here, when the sodium borohydride is used as the reducing agent, the concentration of the electrolyte generated by the reduction reaction increases as can be confirmed from the above reaction formula. The addition amount is limited, and there is an inconvenience that the silver concentration in the colloidal dispersion of silver fine particles to be used cannot be increased.
[0031]
On the other hand, when the hydrazine is used as a reducing agent, the electrolyte generated by the reduction reaction is small as can be confirmed from the above reaction formula, and is more suitable as a reducing agent.
[0032]
  still,MoneyAs a coating raw material,Salts other than alkali metal aurateFor example,Chloroauric acid (HAuCl Four ) Or chloroaurate (NaAuCl) Four , KAuCl Four etc)Is used, the reduction reaction with hydrazine is shown as follows.
[0033]
  XAuClFour+ 3 / 4N2HFour→ Au + XCl + 3HCl + 3 / 4N2
                                            (X = H, Na, K, etc.)
  When chloroauric acid is applied in this way,The above metal saltCompared with the case of using, not only the electrolyte concentration due to the reduction reaction is increased, but also chlorine ions are generated, which reacts with the silver fine particles to produce hardly soluble silver chloride. It is difficult to use as a raw material for forming a transparent conductive layer.
[0034]
  In the above method, without using a reducing agent such as hydrazine, silver andMoneyBy substitution reaction due to difference in ionization tendency ofMoneyIt is also possible to perform coating.
[0035]
  That is, the colloidal dispersion of silver fine particlesGold salt solutionBy adding directly, a colloidal dispersion of noble metal-coated silver fine particles can be obtained (Claim 7).
[0036]
  still,MoneyThe coating reaction of is shown as follows.
[0037]
      3Ag + Au3+→ 3Ag++ Au
  The colloidal dispersion of the noble metal-coated silver fine particles obtained as described above can be used to lower the electrolyte concentration in the dispersion by a desalting method such as dialysis, electrodialysis, ion exchange, and ultrafiltration. preferable. This is because colloids generally aggregate in the electrolyte unless the electrolyte concentration is lowered, and this phenomenon is also known as the Schulze-Hardy law.
[0038]
For the same reason, conductive oxide fine particles selected from tin oxide, tin antimony oxide or indium tin oxide are added into the colloidal dispersion of the noble metal-coated silver fine particles or the coating liquid for forming a transparent conductive layer. When blended, it is desirable that these conductive oxide fine particles or dispersions thereof are sufficiently desalted.
[0039]
Next, the colloidal dispersion of the noble metal-coated silver fine particles subjected to the desalting treatment is concentrated to obtain a dispersion concentrated liquid of the noble metal-coated silver fine particles. The organic solvent containing the conductive oxide fine particles and / or the inorganic binder is added to adjust the components (fine particle concentration, water concentration, etc.) to obtain the coating liquid for forming a transparent conductive layer according to the present invention. In addition, when ultrafiltration is applied as a desalination treatment method, this ultrafiltration also acts as a concentration treatment as described below, and therefore, desalination treatment and concentration treatment can be performed simultaneously. is there. Therefore, for the desalting treatment and concentration treatment of the colloidal dispersion in which the precious metal-coated silver fine particles are dispersed, the order is arbitrarily set depending on the treatment method to be applied, and when ultrafiltration or the like is applied, simultaneous treatment is performed. Is also possible.
[0040]
  Here, in the coating liquid for forming a transparent conductive layer according to the present invention, on the surface of the silver fine particlesGold aloneThe basis for the coating is particle observation with a transmission electron microscope (TEM) and component analysis (EDX: energy dispersive X-ray analyzer).MoneyThat the particle size has hardly changed before and after coating, andMoneyDistribution of particles is uniform for each particle, and further by EXAFS (Extended X-ray Absorption Fine Structure) analysisMoneyIt is technically confirmed from the number of coordination.
[0042]
The concentration treatment of the colloidal dispersion of the noble metal-coated silver fine particles can be performed by a conventional method such as a vacuum evaporator or ultrafiltration. Moreover, the water concentration in the coating liquid for forming a transparent conductive layer is preferably 1 to 20% by weight. This is because if the amount exceeds 20% by weight, the transparent conductive layer forming coating solution may be easily repelled during drying after being coated on the transparent substrate due to the high surface tension of water.
[0043]
Note that the above problem of repelling can be solved by adding a surfactant to the coating liquid for forming the transparent conductive layer. However, there may be another problem that a coating defect is likely to occur due to the blending of the surfactant. Therefore, the water concentration in the coating liquid for forming a transparent conductive layer is preferably 1 to 20% by weight.
[0044]
Moreover, there is no restriction | limiting in particular as said organic solvent, According to the coating method and film forming conditions, it selects suitably. For example, alcohol solvents such as methanol, ethanol, isopropanol, butanol, benzyl alcohol, diacetone alcohol, ketone solvents such as acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), cyclohexanone, isophorone, propylene glycol methyl ether, Examples include glycol derivatives such as propylene glycol ethyl ether, dimethylformamide (DMF), N-methyl-2-pyrrolidone (NMP), and the like, but are not limited thereto.
[0045]
Next, using the thus obtained coating liquid for forming a transparent conductive layer according to the present invention, a transparent substrate, noble metal-coated silver fine particles having an average particle diameter of 1 to 100 nm and a binder formed on the transparent substrate A transparent conductive base material, the main part of which is composed of a transparent conductive layer mainly composed of a matrix and a transparent two-layer film comprising a transparent coating layer formed thereon, can be obtained.
[0046]
  And in order to form the said transparent double layer film | membrane on a transparent substrate, this can be performed with the following method. That is, a coating liquid for forming a transparent conductive layer according to the present invention mainly comprising a solvent and noble metal-coated silver fine particles having an average particle diameter of 1 to 100 nm is spray-coated, spin-coated on a transparent substrate such as a glass substrate or a plastic substrate After applying by a method such as wire bar coating or doctor blade coating and drying as necessary, for example, a coating solution for forming a transparent coat layer mainly composed of silica sol or the like is overcoated by the above-described method. Next, after overcoating, for example, a heat treatment is performed at a temperature of about 50 to 250 ° C. to cure the overcoated coating liquid for forming a transparent coat layer to form the transparent two-layer film. In the heat treatment at about 50 to 250 ° C., the noble metal coated silver fine particles areMoneyHowever, in the case of silver fine particles, when the temperature exceeds 200 ° C., the surface resistance value increases due to oxidative diffusion and the film deteriorates.
[0047]
  Here, when the coating liquid for forming a transparent coating layer mainly composed of silica sol or the like is overcoated by the above-described method, the coating liquid for forming a transparent conductive layer mainly composed of a pre-coated solvent and noble metal coated silver fine particles is used. The gap between the formed noble metal-coated silver fine particle layers is impregnated with an overcoated silica sol solution (this silica sol solution becomes a binder matrix mainly composed of silicon oxide by the above heat treatment), thereby improving conductivity and increasing strength. Improvement and further improvement of weather resistance are achieved at the same time. Further, in the optical constant (n-ik) of the transparent conductive layer in which the noble metal-coated silver fine particles are dispersed in the binder matrix containing silicon oxide as a main component, the refractive index n is not so large but the extinction coefficient k is large. The reflectance of the transparent two-layer film can be greatly reduced by the transparent two-layer film structure of the transparent conductive layer and the transparent coat layer. As shown in FIG. 1, noble metal-coated silver fine particles coated with simple gold (Example 1) even when compared with the case where ITO fine particles (Comparative Example 2) and silver fine particles (Comparative Example 1) are applied. When is used, the reflectance is improved in the short wavelength region (380 to 500 nm) of visible light. In addition, the transmitted light profile of the transparent two-layer film is improved by coating the silver fine particles with a single gold substance in the short wavelength range of visible light as shown in FIG. For example, when the standard deviation of the transmittance of only a transparent two-layer film not including a transparent substrate at each wavelength of 5 nm in the visible light wavelength range (380 to 780 nm) is compared, silver fine particles (Comparative Example 1) are used. However, the silver fine particles are coated with a noble metal (Example 1).-7, Reference Examples 1-4) And a small value of about 2-3%, and a very flat transmission profile is obtained. The reason why the reflection and transmission characteristics of these transparent two-layer films are improved is not yet clear.MoneyIt is considered that the surface plasmon of the metal fine particles changes due to the coating.
[0048]
Here, as the silica sol, a polymer obtained by adding water or an acid catalyst to an orthoalkyl silicate and hydrolyzing it to cause dehydration condensation polymerization, or a commercial product that has already undergone hydrolysis condensation polymerization to a tetramer to a pentamer. A polymer obtained by further hydrolyzing and dehydrating polycondensation can be used for the alkyl silicate solution. As dehydration condensation polymerization proceeds, the solution viscosity increases and eventually solidifies. Therefore, the degree of dehydration condensation polymerization is less than the upper limit viscosity that can be applied on a transparent substrate such as a glass substrate or a plastic substrate. Adjust to. However, the degree of dehydration condensation polymerization is not particularly specified as long as it is a level equal to or lower than the above upper limit viscosity, but in view of film strength, weather resistance and the like, a weight average molecular weight of about 500 to 3000 is preferable. The alkyl silicate partially hydrolyzed polymer almost completes the dehydration condensation polymerization reaction when the transparent two-layer film is heated and fired, and becomes a hard silicate film (a film containing silicon oxide as a main component). It is also possible to change the reflectance of the transparent two-layer film by adding magnesium fluoride fine particles, alumina sol, titania sol, zirconia sol or the like to the silica sol to adjust the refractive index of the transparent coating layer.
[0049]
Further, in addition to the solvent and the noble metal-coated silver fine particles having an average particle diameter of 1 to 100 nm dispersed in the solvent, a silica sol solution as an inorganic binder component constituting the binder matrix of the transparent conductive layer is blended to thereby add the transparent conductive material according to the present invention. You may comprise the coating liquid for layer formation (Claim 5-Claim 7). In this case as well, by applying a coating solution for forming a transparent conductive layer containing a silica sol solution and drying it as necessary, the coating solution for forming a transparent coating layer is overcoated by the above-described method. A transparent two-layer film is obtained. For the same reason as when conductive oxide fine particles are blended in the transparent conductive layer forming coating solution, the silica sol solution blended in the transparent conductive layer forming coating solution is also sufficiently desalted. It is desirable to keep it.
[0050]
As described above, the transparent conductive substrate having a transparent conductive layer formed by applying the coating liquid for forming a transparent conductive layer according to the present invention has a better antireflection effect and transmitted light profile than conventional ones. For example, the cathode ray tube (CRT), plasma display panel (PDP), fluorescent display tube (VFD), field emission display (FED), electroluminescence It can be used for a front plate or the like in a display device such as a display (ELD) or a liquid crystal display (LCD).
[0051]
【Example】
Examples of the present invention will be specifically described below, but the present invention is not limited to these examples. Further, “%” in the text indicates “% by weight” excluding (%) of transmittance, reflectance, and haze value, and “part” indicates “weight part”.
[0052]
[Example 1]
A colloidal dispersion of silver fine particles was prepared by the aforementioned Carey-Lea method. Specifically, after adding a mixed solution of 39 g of 23% iron (II) sulfate solution and 48 g of 37.5% sodium citrate aqueous solution to 33 g of 9% silver nitrate aqueous solution, the precipitate was filtered and washed, and then purified water Was added to prepare a colloidal dispersion of silver fine particles (Ag: 0.45%). While adding 0.5 g of a 1% hydrazine aqueous solution to 15 g of the colloidal dispersion of silver fine particles and stirring, potassium metalate [KAu (OH)FourA mixed solution of 15 g of an aqueous solution (Au: 0.1%) and 0.3 g of a 2% polymer dispersant aqueous solution was added to obtain a colloidal dispersion of noble metal-coated silver fine particles coated with simple gold.
[0053]
This noble metal-coated colloidal dispersion of silver fine particles is desalted with an ion exchange resin (trade name Diaion SK1B, SA20AP manufactured by Mitsubishi Chemical Corporation), and then concentrated by ultrafiltration to ethanol (EA), diacetone alcohol ( DAA) and a transparent conductive layer forming coating solution according to Example 1 containing noble metal-coated silver fine particles (Ag: 0.217%, Au: 0.057%, water: 11.8%, EA: 82) 9%, DAA: 5.0%). As a result of observing this coating liquid for forming a transparent conductive layer with a transmission electron microscope, the average particle diameter of the noble metal-coated silver fine particles was 7.2 nm.
[0054]
Next, the transparent conductive layer forming coating solution according to Example 1 containing noble metal-coated silver fine particles was spin-coated (130 rpm, 3 mm thick soda lime glass) on a glass substrate heated to 40 ° C. 60 seconds), then, the silica sol solution is spin-coated (130 rpm, 60 seconds), and further cured at 180 ° C. for 20 minutes to contain a transparent conductive layer containing noble metal-coated silver fine particles, and silicon oxide as a main component. A glass substrate with a transparent two-layer film composed of a transparent coating layer made of a silicate film, that is, a transparent conductive substrate according to Example 1 was obtained.
[0055]
Here, the silica sol solution is composed of 19.6 parts of methyl silicate 51 (trade name, manufactured by Colcoat Co.), 57.8 parts of ethanol, 7.9 parts of 1% nitric acid aqueous solution, and 14.7 parts of pure water.2(Silicon oxide) A solid content of 10% is prepared, and finally, SiO2It is obtained by diluting with a mixture of isopropyl alcohol (IPA) and n-butanol (NBA) (IPA / NBA = 3/1) so that the solid content concentration becomes 0.7%.
[0056]
The film properties (surface resistance, visible light transmittance, transmittance standard deviation, haze value, bottom reflectance / bottom wavelength) of the transparent two-layer film formed on the glass substrate are shown in Table 1 below. The bottom reflectance means a minimum reflectance in the reflection profile of the transparent conductive substrate, and the bottom wavelength means a wavelength at which the reflectance is a minimum. Further, the reflection profile of the transparent conductive substrate according to Example 1 is shown in FIGS. 1 and 3, and the transmission profile is shown in FIGS.
[0057]
In Table 1, the transmittance of only the transparent two-layer film not including the transparent substrate (glass substrate) at each wavelength of 5 nm in the visible light wavelength range (380 to 780 nm) is obtained as follows. That is,
Transmittance (%) of transparent two-layer film only without transparent substrate
= [(Transmittance measured for each transparent substrate) / (Transparency of transparent substrate)] × 100
Here, in this specification, unless otherwise specified, the transmittance is a value measured for each transparent substrate (that is, the transparent conductive substrate including the transparent substrate means the transparent conductive substrate). ing.
[0058]
The surface resistance of the transparent two-layer film was measured using a surface resistance meter Loresta AP (MCP-T400) manufactured by Mitsubishi Chemical Corporation. The haze value and visible light transmittance were measured for each transparent substrate using a haze meter (HR-200) manufactured by Murakami Color Research Laboratory. The reflectance and the reflection / transmission profile were measured using a spectrophotometer (U-4000) manufactured by Hitachi, Ltd. The particle diameter of the noble metal-coated silver fine particles is evaluated with a transmission electron microscope made by JEOL.
[0059]
[Example 2]
Using a colloidal dispersion of silver fine particles prepared by the same method as in Example 1, and using a 1.5% hydrazine aqueous solution and a potassium oxalate aqueous solution (Au: 0.15%), the same as in Example 1 The transparent conductive layer forming coating solution according to Example 2 in which noble metal-coated silver fine particles having an average particle size of 6.3 nm were dispersed by the treatment (Ag: 0.221%, Au: 0.079%, water: 5.0) %, EA: 89.7%, DAA: 5.0%).
[0060]
And this coating liquid for forming a transparent conductive layer was used, and the silica sol liquid SiO2(Silicon oxide) A transparent conductive layer containing noble metal-coated silver fine particles and a silicate film containing silicon oxide as a main component, except that the solid content concentration was diluted to 0.65%. A transparent conductive layer according to Example 2 was obtained, that is, a glass substrate with a transparent two-layer film composed of a transparent coating layer comprising:
[0061]
The film properties of the transparent two-layer film formed on the glass substrate are shown in Table 1 below. Moreover, the reflection profile of the transparent conductive base material which concerns on Example 2 is shown in FIG. 5, and a transmission profile is shown in FIG.
[0062]
[Example 3]
Using a colloidal dispersion of silver fine particles prepared by the same method as in Example 1, and using a 0.5% hydrazine aqueous solution and a potassium oxalate aqueous solution (Au: 0.05%), the same as in Example 1 The transparent conductive layer forming coating liquid according to Example 3 (Ag: 0.24%, Au: 0.028%, water: 3.7) in which precious metal-coated silver fine particles having an average particle diameter of 6.8 nm were dispersed by the treatment. %, EA: 91.0%, DAA: 5.0%).
[0063]
And this coating liquid for forming a transparent conductive layer was used, and the silica sol liquid SiO2(Silicon oxide) A transparent conductive layer containing noble metal-coated silver fine particles and a silicate film containing silicon oxide as a main component, except that the solid content concentration was diluted to 0.65%. A transparent conductive layer according to Example 3 was obtained, that is, a glass substrate with a transparent two-layer film composed of a transparent coating layer comprising:
[0064]
The film properties of the transparent two-layer film formed on the glass substrate are shown in Table 1 below.
[0065]
[Example 4]
Using a colloidal dispersion of silver fine particles prepared in the same manner as in Example 1, 15 g of an aqueous potassium metalate solution (Au: 0.05%) was added while stirring without adding a hydrazine aqueous solution as a reducing agent. A colloidal dispersion of noble metal-coated silver fine particles is obtained by a substitution reaction of gold and silver, and the same treatment as in Example 1 is performed to disperse noble metal-coated silver fine particles having an average particle diameter of 6.5 nm. A coating liquid for forming a conductive layer (Ag: 0.245%, Au: 0.025%, water: 7.6%, EA: 87.1%, DAA: 5.0%) was obtained.
[0066]
A transparent coating layer comprising a transparent conductive layer containing noble metal-coated silver fine particles and a silicate film containing silicon oxide as a main component, except that this coating solution for forming a transparent conductive layer was used. A glass substrate with a transparent two-layer film constituted by the above, that is, a transparent conductive substrate according to Example 4 was obtained.
[0067]
The film properties of the transparent two-layer film formed on the glass substrate are shown in Table 1 below.
[0068]
[Example 5]
Using a colloidal dispersion of silver fine particles prepared by the same method as in Example 1, and using 0.4 g of 1% hydrazine aqueous solution and potassium oxalate aqueous solution (Au: 0.075%), an average particle size of 7. A solution in which 1 nm of noble metal-coated silver fine particles was dispersed was obtained.
[0069]
Next, this solution is obtained by sufficiently desalting by using indium tin oxide (ITO) fine particles (manufactured by Sumitomo Metal Mining Co., Ltd., trade name SUFP-HX) having an average particle size of 0.03 μm and ion exchange. The ITO dispersion liquid was added, and finally the noble metal-coated silver fine particles and ITO fine particles were dispersed, and the transparent conductive layer forming coating liquid according to Example 5 (Ag: 0.294%, Au: 0.049%, ITO: 0.1%, water: 9.7%, EA: 84.95%, DAA: 4.9%).
[0070]
Then, using this transparent conductive layer forming coating solution, and using a silica sol solution having a weight average molecular weight of 1920, SiO 22(Silicon oxide) Using a glass substrate diluted to a solid content concentration of 0.8% and heated to 35 ° C., the transparent conductive layer forming coating solution and the silica sol solution were used at 150 rpm for 60 seconds. A transparent conductive layer containing noble metal coated silver fine particles and ITO fine particles, and a silicate film containing silicon oxide as a main component except that spin coating and curing at 210 ° C. for 20 minutes were conducted in the same manner as in Example 1. A glass substrate with a transparent two-layer film composed of a transparent coating layer, that is, a transparent conductive substrate according to Example 5 was obtained.
[0071]
The film properties of the transparent two-layer film formed on the glass substrate are shown in Table 1 below. Moreover, the reflection profile of the manufactured transparent conductive substrate according to Example 5 is shown in FIG. 7, and the transmission profile is shown in FIG.
[0072]
[Example 6]
Using a colloidal dispersion of silver fine particles prepared by the same method as in Example 1, and using 0.4 g of 1% hydrazine aqueous solution and potassium oxalate aqueous solution (Au: 0.075%), an average particle size of 7. A solution in which 1 nm of noble metal-coated silver fine particles was dispersed was obtained.
[0073]
Next, this solution was obtained by sufficiently desalting by ion exchange using antimony tin oxide (ATO) fine particles (Ishihara Sangyo Co., Ltd., trade name SN-100P) having an average particle diameter of 0.01 μm. The transparent conductive layer forming coating solution (Ag: 0.29%, Au: 0.048%, ATO: 0) according to Example 6 in which the ATO dispersion was added and finally the noble metal-coated silver fine particles and the ATO fine particles were dispersed. 174%, water: 11.0%, EA: 83.58, DAA: 4.9%).
[0074]
Then, using this transparent conductive layer forming coating solution, and using a silica sol solution having a weight average molecular weight of 1920, SiO 22(Silicon oxide) Using a glass substrate diluted to a solid content concentration of 0.8% and heated to 35 ° C., the transparent conductive layer forming coating solution and the silica sol solution were used at 150 rpm for 60 seconds. Except for spin coating and curing at 210 ° C. for 20 minutes, the same procedure as in Example 1 was performed. From a transparent conductive layer containing noble metal-coated silver fine particles and ATO fine particles, and a silicate film mainly composed of silicon oxide A glass substrate with a transparent two-layer film composed of the transparent coating layer thus formed, that is, a transparent conductive substrate according to Example 6 was obtained.
[0075]
The film properties of the transparent two-layer film formed on the glass substrate are shown in Table 1 below. Moreover, the reflection profile of the manufactured transparent conductive substrate according to Example 6 is shown in FIG. 9, and the transmission profile is shown in FIG.
[0076]
[Example 7]
Using a colloidal dispersion of silver fine particles prepared in the same manner as in Example 1, and using 0.4 g of a 1% hydrazine aqueous solution and a potassium gold acid aqueous solution (Au: 0.075%), noble metal-coated silver fine particles A dispersion concentrated liquid was obtained, and a solution containing tetramethyl silicate tetramer (trade name: methyl silicate 51, manufactured by Colcoat Co.) as an inorganic binder was added thereto to disperse noble metal coated silver fine particles having an average particle diameter of 7.0 nm. The transparent conductive layer forming coating solution according to Example 7 (Ag: 0.29%, Au: 0.052%, SiO 22: 0.02%, water: 8.78%, EA: 85.85%, DAA: 5.0%).
[0077]
Then, using this transparent conductive layer forming coating solution, and using a silica sol solution having a weight average molecular weight of 2460, SiO 22(Silicon oxide) Using a glass substrate diluted to a solid content concentration of 0.7% and heated to 35 ° C., the transparent conductive layer forming coating solution and the silica sol solution are used at 150 rpm for 60 seconds. A transparent coat comprising a transparent conductive layer containing noble metal-coated silver fine particles and a silicate film containing silicon oxide as a main component, except that spin coating and curing at 210 ° C. for 20 minutes are performed. A glass substrate with a transparent two-layer film composed of layers, that is, a transparent conductive substrate according to Example 7 was obtained.
[0078]
The film properties of the transparent two-layer film formed on the glass substrate are shown in Table 1 below.
[0079]
  [Reference example 1]
  After adding a mixed solution of 39 g of 23% iron (II) sulfate solution and 48 g of 37.5% sodium citrate aqueous solution to 33 g of 9% silver nitrate aqueous solution, the precipitate was filtered and washed, and then pure water was added to add silver. A colloidal dispersion of fine particles (Ag: 0.49%) was prepared. To 240 g of the colloidal dispersion of silver fine particles, hydrazine monohydrate (N2HFour・ H2While adding 5 g of 1% aqueous solution of O) and stirring, potassium platinum (IV) ate [K2Pt (OH)6] 200 g of an aqueous solution (Pt: 0.06%) was added to obtain a colloidal dispersion of noble metal-coated silver fine particles coated with platinum alone.
[0080]
  After concentrating the colloidal dispersion of the noble metal-coated silver fine particles by ultrafiltration, adding pure water to the concentrate and concentrating it again by ultrafiltration, the desalted concentrate obtained by repeating the step of adding ethanol ( EA), diacetone alcohol (DAA),Reference example 1The transparent conductive layer forming coating solution (Ag: 0.245%, Pt: 0.025%, water: 7.48%, EA: 87.25%, DAA: 5.0%) was obtained. As a result of observing this coating liquid for forming a transparent conductive layer with a transmission electron microscope, the average particle diameter of the noble metal-coated silver fine particles was 9.2 nm.
[0081]
  Next, this coating solution for forming a transparent conductive layer was spin-coated (130 rpm, 60 seconds) on a glass substrate (3 mm thick soda lime glass) heated to 40 ° C., and then a silica sol solution was added. Spin coating (130 rpm, 60 seconds), further curing at 180 ° C. for 20 minutes, and composed of a transparent conductive layer containing noble metal coated silver fine particles and a transparent coating layer composed of a silicate film mainly composed of silicon oxide A glass substrate with a transparent two-layer film, that is,Reference example 1A transparent conductive substrate was obtained.
[0082]
Here, the silica sol solution is composed of 19.6 parts of methyl silicate 51 (trade name, manufactured by Colcoat Co.), 57.8 parts of ethanol, 7.9 parts of 1% nitric acid aqueous solution, and 14.7 parts of pure water.2(Silicon oxide) A solid content of 10% is prepared, and finally, SiO2It is obtained by diluting with a mixture of isopropyl alcohol (IPA) and n-butanol (NBA) (IPA / NBA = 3/1) so that the solid content concentration becomes 0.65%.
[0083]
  Table 1 below shows the film characteristics of the transparent two-layer film formed on the glass substrate. Also manufacturedReference example 1The reflection profile of the transparent conductive substrate according to FIG. 11 is shown in FIGS. 11 and 13, and the transmission profile is shown in FIGS.
[0084]
  [Reference example 2]
  Reference example 1A colloidal dispersion of silver fine particles prepared by the same method as above, and hydrazine monohydrate (N2HFour・ H26.3 g of a 1% aqueous solution of O) and a gold salt [KAu (OH)Four] 121 g of aqueous solution (Au: 0.098%) and potassium platinumate [K2Pt (OH)6] Using a mixed solution of 121 g of an aqueous solution (Pt: 0.065%),Reference example 1The noble metal-coated silver fine particles having an average particle diameter of 11.7 nm coated with a composite of gold and platinum were dispersed in the same manner as described above.Reference example 2Transparent conductive layer forming coating solution (Ag: 0.26%, Au: 0.03%, Pt: 0.02%, water: 7.48%, EA: 87.2%, DAA: 5.0 %).
[0085]
  And, except using this transparent conductive layer forming coating solution,Reference example 1A glass substrate with a transparent two-layer film composed of a transparent conductive layer containing noble metal-coated silver fine particles and a transparent coat layer composed of a silicate film mainly composed of silicon oxide,Reference example 2A transparent conductive substrate was obtained.
[0086]
  The film properties of the transparent two-layer film formed on the glass substrate are shown in Table 1 below. Also manufacturedReference example 2FIG. 15 shows the reflection profile of the transparent conductive substrate according to the above, and FIG. 16 shows the transmission profile.
[0087]
  [Reference example 3]
  Reference example 1Using a colloidal dispersion of silver fine particles prepared in the same manner as described above, without adding the hydrazine aqueous solution as a reducing agent, the potassium platinate [K2Pt (OH)6] 203 g of aqueous solution (Pt: 0.064%) was added, and a colloidal dispersion of precious metal-coated silver fine particles coated with platinum was obtained by a platinum-silver substitution reaction.Reference example 1In the same manner as above, noble metal-coated silver fine particles having an average particle diameter of 9.2 nm were dispersed.Reference example 3The transparent conductive layer forming coating solution (Ag: 0.24%, Pt: 0.025%, water: 9.2%, EA: 85.53%, DAA: 5.0%) was obtained.
[0088]
  And, except using this transparent conductive layer forming coating solution,Reference example 1A glass substrate with a transparent two-layer film composed of a transparent conductive layer containing noble metal-coated silver fine particles and a transparent coat layer composed of a silicate film mainly composed of silicon oxide,Reference example 3A transparent conductive substrate was obtained.
[0089]
The film properties of the transparent two-layer film formed on the glass substrate are shown in Table 1 below.
[0090]
  [Reference example 4]
  Reference example 1Using a colloidal dispersion of silver fine particles (Ag: 0.49%) prepared in the same manner as in Example 1, potassium platinate [K2Pt (OH)6] 203 g of an aqueous solution (Pt: 0.064%) was added, and a solution in which noble metal-coated silver fine particles having an average particle diameter of 9.2 nm coated with platinum alone was dispersed was obtained by a platinum-silver substitution reaction.
[0091]
  Next, this solution is obtained by sufficiently desalting by using indium tin oxide (ITO) fine particles (manufactured by Sumitomo Metal Mining Co., Ltd., trade name SUFP-HX) having an average particle size of 0.03 μm and ion exchange. ITO dispersion liquid was added and finally the above precious metal coated silver fine particles and ITO fine particles were dispersed.Reference example 4The transparent conductive layer forming coating solution (Ag: 0.312%, Pt: 0.0325%, ITO: 0.12%, water: 12.3%, EA: 87.23%) was obtained.
[0092]
  Then, using this transparent conductive layer forming coating solution, and using a silica sol solution having a weight average molecular weight of 1920, SiO 22(Silicon oxide) Using a glass substrate diluted to a solid content concentration of 0.8% and heated to 35 ° C., the transparent conductive layer forming coating solution and the silica sol solution were used at 150 rpm for 60 seconds. Except for spin coating and curing at 210 ° C. for 20 minutes,Reference example 1A glass substrate with a transparent two-layer film composed of a transparent conductive layer containing noble metal-coated silver fine particles and ITO fine particles and a transparent coat layer composed of a silicate film mainly composed of silicon oxide,Reference example 4A transparent conductive substrate was obtained.
[0093]
  The film properties of the transparent two-layer film formed on the glass substrate are shown in Table 1 below. Also manufacturedReference example 4FIG. 17 shows a reflection profile and FIG. 18 shows a transmission profile of the transparent conductive substrate according to the present invention.
[0094]
[Comparative Example 1]
A coating liquid for forming a transparent conductive layer according to Comparative Example 1 in which silver fine particles having an average particle diameter of 6.9 nm were dispersed without using a colloidal dispersion of silver fine particles prepared by the same method as in Example 1 and gold coating ( Ag: 0.3%, water: 4.0%, EA: 90.7%, DAA: 5.0%).
[0095]
Then, except that this coating solution for forming a transparent conductive layer was used, the same procedure as in Example 1 was performed, and a transparent conductive layer containing silver fine particles and a transparent coat layer made of a silicate film containing silicon oxide as a main component were used. A configured glass substrate with a transparent two-layer film, that is, a transparent conductive substrate according to Comparative Example 1 was obtained.
[0096]
The film properties of the transparent two-layer film formed on the glass substrate are shown in Table 1 below. Moreover, the reflection profile of the manufactured transparent conductive substrate according to Comparative Example 1 is shown in FIGS. 1 and 11, and the transmission profile is shown in FIGS.
[0097]
[Comparative Example 2]
A coating solution for forming a transparent conductive layer according to Comparative Example 2 in which ITO fine particles having an average particle diameter of 30 nm were dispersed in a solvent (Sumitomo Metal Mining Co., Ltd., trade name: SDA-104, ITO: 2%) was heated to 40 ° C. After spin coating (150 rpm, 60 seconds) on a glass substrate (3 mm thick soda lime glass), SiO,2(Silicon oxide) A transparent conductive layer containing ITO fine particles by spin-coating (150 rpm, 60 seconds) a silica sol solution diluted to a solid content concentration of 1.0% and further curing at 180 ° C. for 30 minutes. Thus, a glass substrate with a transparent two-layer film composed of a silicate film composed mainly of silicon oxide and a transparent conductive substrate according to Comparative Example 2 was obtained.
[0098]
Table 1 below shows the film characteristics of the transparent two-layer film formed on the glass substrate. Moreover, the reflection profile of the transparent conductive base material which concerns on the manufactured comparative example 2 is shown in FIG.
[0099]
[Table 1]
Figure 0004411672
[0100]
  "Weather resistance test"
  Example 1-7, Reference Examples 1-4The transparent conductive base material according to the present invention and the transparent conductive base material according to Comparative Example 1 are immersed in 5% saline, and the surface resistance value of the transparent two-layer film provided on the transparent substrate (glass substrate), the appearance of the film I investigated. The results are shown in Table 2 below.
[0101]
[Table 2]
Figure 0004411672
[0102]
  "Evaluation"
(1) As is clear from the results shown in Table 1,Examples 1-7, Reference Examples 1-4It is confirmed that the surface resistance (Ω / □) and the standard deviation value of the transmittance of the transparent two-layer film according to the present invention are remarkably improved as compared with the values of the transparent two-layer film according to each comparative example. In addition, the first embodiment shown in FIGS. 2 and 12 andReference example 1As is clear from the comparison of the transmission profile of the transparent conductive substrate according to Example 1 and the transmission profile of the transparent conductive substrate according to Comparative Example 1, Example 1 andReference example 1It is also confirmed that a very flat transmission profile is obtained with the transparent conductive substrate.
  Further, as is apparent from the reflection profiles of FIGS. 1 and 11, Example 1 andReference example 1It is confirmed that the transparent conductive base material according to the present invention has improved reflection characteristics in the visible light wavelength region.
(2) Also, as is clear from the results shown in Table 2, compared to the transparent two-layer film according to Comparative Example 1.Examples 1-7, Reference Examples 1-4It is confirmed that the weather resistance of the transparent two-layer film according to the present invention is remarkably improved.
(3) Next, when the visible light transmittances of the transparent conductive substrates according to Examples 1 to 7 in which the noble metal-coated silver fine particles coated with simple gold are applied are confirmed from Table 1. The visible light transmittance of Example 5 containing ITO and Example 6 containing ATO is higher than that of the other examples.
[0103]
  On the other hand, precious metal coated silver fine particles coated with platinum alone or gold and platinum composites are applied.Reference Examples 1-4When the surface resistance of the transparent conductive substrate according to the present invention was compared, ITO was included as confirmed from Table 1.Reference example 4The surface resistance of each has the smallest value, and the visible light transmittance is substantially the same value. That is,Reference example 4so,Reference Examples 1-3When the thickness of the transparent conductive layer is set to be substantially the same as the surface resistance value of the transparent conductive layer, the visible light transmittance of the transparent conductive layer isReference Examples 1-3It shows that it can be higher.
[0104]
  From these, it is confirmed that when conductive oxide fine particles such as ITO and ATO are included in the transparent conductive layer, the film transmittance in the transparent conductive layer can be improved.
(4) In addition, Example 1-7, Reference Examples 1-4In the present invention, noble metal-coated silver fine particles are prepared by applying potassium goldate and potassium platinumate as the goldate and platinumate, but instead of these potassium metallate and potassium platinumate, sodium metalate and Experiments using sodium platinate have also been conducted.
[0105]
  Example 1 of the noble metal-coated silver fine particles obtained by applying sodium metallate and sodium platinumate-7, Reference Examples 1-4The same evaluation test is performed, and it is confirmed that the same evaluation can be obtained.
[0106]
【The invention's effect】
  According to the coating liquid for forming a transparent conductive layer according to the inventions of claims 1 to 5,
  Solvent, and dispersed in the solvent and on the surfaceGold aloneAs a main component, noble metal-coated silver fine particles with an average particle diameter of 1 to 100 nm coated with a coating material have a better antireflection function and electric field compared to a transparent conductive layer to which a conventional coating liquid for forming a transparent conductive layer is applied. It has an effect of forming a transparent conductive layer having a shielding function and having a transmitted light profile in the visible light region and good weather resistance.
[0107]
Moreover, according to the manufacturing method of the coating liquid for transparent conductive layer formation concerning the invention of Claims 6-8,
The transparent conductive layer forming coating liquid according to the present invention has an effect that can be easily produced at low cost.
[Brief description of the drawings]
FIG. 1 is a graph showing reflection profiles of transparent conductive substrates according to Example 1 and Comparative Examples 1 and 2. FIG.
2 is a graph showing transmission profiles of transparent conductive substrates according to Example 1 and Comparative Example 1. FIG.
3 is a graph showing a reflection profile of a transparent conductive substrate according to Example 1. FIG.
4 is a graph showing a transmission profile of a transparent conductive base material according to Example 1 and a glass substrate which is a constituent member of the base material. FIG.
5 is a graph showing a reflection profile of a transparent conductive substrate according to Example 2. FIG.
6 is a graph showing a transmission profile of a transparent conductive base material according to Example 2 and a glass substrate which is a constituent member of the base material. FIG.
7 is a graph showing a reflection profile of a transparent conductive substrate according to Example 5. FIG.
FIG. 8 is a graph showing a transmission profile of a transparent conductive base material according to Example 5 and a glass substrate which is a constituent member of the base material.
9 is a graph showing a reflection profile of a transparent conductive substrate according to Example 6. FIG.
FIG. 10 is a graph showing a transmission profile of a transparent conductive base material according to Example 6 and a glass substrate which is a constituent member of the base material.
FIG. 11Reference example 1The graph which shows the reflection profile of the transparent conductive base material which concerns on Comparative Examples 1-2.
FIG.Reference example 1FIG. 5 is a graph showing a transmission profile of a transparent conductive substrate according to Comparative Example 1.
FIG. 13Reference example 1The graph which shows the reflection profile of the transparent conductive base material which concerns on.
FIG. 14Reference example 1The graph which shows the permeation | transmission profile of the transparent conductive base material which concerns on, and the glass substrate which is a structural member of this base material.
FIG. 15Reference example 2The graph which shows the reflection profile of the transparent conductive base material which concerns on.
FIG. 16Reference example 2The graph which shows the permeation | transmission profile of the transparent conductive base material which concerns on, and the glass substrate which is a structural member of this base material.
FIG. 17Reference example 4The graph which shows the reflection profile of the transparent conductive base material which concerns on.
FIG. 18Reference example 4The graph which shows the permeation | transmission profile of the transparent conductive base material which concerns on, and the glass substrate which is a structural member of this base material.

Claims (8)

透明基板、および、この透明基板上に順次形成された透明導電層と透明コート層から成る透明2層膜を備える透明導電性基材の上記透明導電層を形成する透明導電層形成用塗布液において、
溶媒、および、この溶媒に分散されかつ銀微粒子の表面に金単体がコーティングされた平均粒径1〜100nmの貴金属コート銀微粒子を主成分とすることを特徴とする透明導電層形成用塗布液。
In a transparent conductive layer forming coating solution for forming the transparent conductive layer of the transparent conductive substrate comprising a transparent substrate and a transparent two-layer film comprising a transparent conductive layer and a transparent coat layer sequentially formed on the transparent substrate . ,
A coating liquid for forming a transparent conductive layer, comprising a solvent and noble metal-coated silver fine particles having an average particle diameter of 1 to 100 nm dispersed in the solvent and coated with simple gold on the surface of the silver fine particles.
上記貴金属コート銀微粒子における金単体のコーティング量が、銀100重量部に対し5〜100重量部の範囲に設定されていることを特徴とする請求項1記載の透明導電層形成用塗布液。The coating solution for forming a transparent conductive layer according to claim 1, wherein the coating amount of gold alone in the noble metal-coated silver fine particles is set in a range of 5 to 100 parts by weight with respect to 100 parts by weight of silver. 導電性酸化物微粒子が含まれていることを特徴とする請求項1または2記載の透明導電層形成用塗布液。  The coating liquid for forming a transparent conductive layer according to claim 1 or 2, wherein conductive oxide fine particles are contained. 上記導電性酸化物微粒子が、酸化錫、錫アンチモン酸化物またはインジウム錫酸化物から選択された1種以上の微粒子であることを特徴とする請求項3記載の透明導電層形成用塗布液。  4. The coating liquid for forming a transparent conductive layer according to claim 3, wherein the conductive oxide fine particles are one or more fine particles selected from tin oxide, tin antimony oxide or indium tin oxide. 無機バインダーが含まれていることを特徴とする請求項1〜4のいずれかに記載の透明導電層形成用塗布液。  The coating liquid for forming a transparent conductive layer according to any one of claims 1 to 4, wherein an inorganic binder is contained. 請求項1、3または5記載の透明導電層形成用塗布液の製造方法において、
銀微粒子のコロイド状分散液に還元剤とアルカリ金属の金酸塩溶液を加えて上記銀微粒子の表面に金単体をコーティングし、貴金属コート銀微粒子のコロイド状分散液を得る貴金属コート銀微粒子調製工程、
上記貴金属コート銀微粒子のコロイド状分散液における電解質濃度を下げる脱塩処理と上記コロイド状分散液を濃縮する濃縮処理を施して貴金属コート銀微粒子の分散濃縮液を得る脱塩・濃縮工程、
上記貴金属コート銀微粒子の分散濃縮液に溶媒単独、あるいは導電性酸化物微粒子または/および無機バインダーが含まれた溶媒を加えて透明導電層形成用塗布液を得る溶媒配合工程、
の各工程を具備することを特徴とする透明導電層形成用塗布液の製造方法。
In the manufacturing method of the coating liquid for transparent conductive layer formation of Claim 1, 3 or 5,
Step of preparing noble metal coated silver fine particles to obtain a colloidal dispersion of noble metal coated silver fine particles by adding a reducing agent and an alkali metal metallate solution to a colloidal dispersion of silver fine particles and coating the surface of the silver fine particles with a simple substance of gold ,
A desalting / concentration step for obtaining a dispersion concentrate of the noble metal-coated silver fine particles by performing a desalting treatment for reducing the electrolyte concentration in the colloidal dispersion of the noble metal-coated silver fine particles and a concentration treatment for concentrating the colloidal dispersion;
Solvent blending step of obtaining a coating solution for forming a transparent conductive layer by adding a solvent alone or a solvent containing conductive oxide fine particles or / and an inorganic binder to the dispersion concentrate of the noble metal-coated silver fine particles,
The manufacturing method of the coating liquid for transparent conductive layer formation characterized by comprising each process of these.
請求項1、3または5記載の透明導電層形成用塗布液の製造方法において、
銀微粒子のコロイド状分散液にアルカリ金属の金酸塩溶液を加えて、銀、のイオン化傾向の差による置換反応により上記銀微粒子の表面に金単体をコーティングし、貴金属コート銀微粒子のコロイド状分散液を得る貴金属コート銀微粒子調製工程、
上記貴金属コート銀微粒子のコロイド状分散液における電解質濃度を下げる脱塩処理と上記コロイド状分散液を濃縮する濃縮処理を施して貴金属コート銀微粒子の分散濃縮液を得る脱塩・濃縮工程、
上記貴金属コート銀微粒子の分散濃縮液に溶媒単独、あるいは導電性酸化物微粒子または/および無機バインダーが含まれた溶媒を加えて透明導電層形成用塗布液を得る溶媒配合工程、
の各工程を具備することを特徴とする透明導電層形成用塗布液の製造方法。
In the manufacturing method of the coating liquid for transparent conductive layer formation of Claim 1, 3 or 5,
Adding gold salt solution of an alkali metal in the colloidal dispersion of fine silver particles, silver, by substitution reaction with difference in ionization tendency of the metal coated with gold alone on the surface of the silver particles, colloidal noble metal-coated silver microparticles A precious metal-coated silver fine particle preparation step for obtaining a dispersion;
A desalting / concentration step for obtaining a dispersion concentrate of the noble metal-coated silver fine particles by performing a desalting treatment for reducing the electrolyte concentration in the colloidal dispersion of the noble metal-coated silver fine particles and a concentration treatment for concentrating the colloidal dispersion;
Solvent blending step of obtaining a coating solution for forming a transparent conductive layer by adding a solvent alone or a solvent containing conductive oxide fine particles or / and an inorganic binder to the dispersion concentrate of the noble metal-coated silver fine particles,
The manufacturing method of the coating liquid for transparent conductive layer formation characterized by comprising each process of these.
上記貴金属コート銀微粒子調製工程において、貴金属コート銀微粒子における金単体のコーティング量が銀100重量部に対し5〜100重量部の範囲に設定されるように、銀微粒子のコロイド状分散液とアルカリ金属の金酸塩溶液の各配合割合が調整されていることを特徴とする請求項6または7記載の透明導電層形成用塗布液の製造方法。In the precious metal-coated silver fine particle preparation step, the colloidal dispersion of silver fine particles and the alkali metal so that the coating amount of the gold simple substance in the precious metal-coated silver fine particles is set in the range of 5 to 100 parts by weight with respect to 100 parts by weight of silver. The method for producing a coating liquid for forming a transparent conductive layer according to claim 6, wherein the blending ratio of each of the gold salt solutions is adjusted.
JP28727098A 1997-10-23 1998-09-24 Coating liquid for forming transparent conductive layer and method for producing the same Expired - Fee Related JP4411672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28727098A JP4411672B2 (en) 1997-10-23 1998-09-24 Coating liquid for forming transparent conductive layer and method for producing the same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP9-309351 1997-10-23
JP30935197 1997-10-23
JP33240097 1997-11-17
JP9-332400 1997-11-17
JP28727098A JP4411672B2 (en) 1997-10-23 1998-09-24 Coating liquid for forming transparent conductive layer and method for producing the same

Publications (2)

Publication Number Publication Date
JPH11228872A JPH11228872A (en) 1999-08-24
JP4411672B2 true JP4411672B2 (en) 2010-02-10

Family

ID=27337339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28727098A Expired - Fee Related JP4411672B2 (en) 1997-10-23 1998-09-24 Coating liquid for forming transparent conductive layer and method for producing the same

Country Status (1)

Country Link
JP (1) JP4411672B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4788852B2 (en) 2000-07-25 2011-10-05 住友金属鉱山株式会社 Transparent conductive substrate, manufacturing method thereof, transparent coating layer forming coating solution used in the manufacturing method, and display device to which transparent conductive substrate is applied
JP2002038053A (en) * 2000-07-25 2002-02-06 Sumitomo Metal Mining Co Ltd Coating fluid for forming transparent conductive layer
WO2002094954A1 (en) * 2001-05-21 2002-11-28 Nippon Paint Co., Ltd. Process for producing high-concentration colloidal metal solution
JP4232480B2 (en) 2002-03-25 2009-03-04 住友金属鉱山株式会社 Method for producing noble metal-coated silver fine particle dispersion, coating liquid for forming transparent conductive layer, transparent conductive substrate and display device
JP4479161B2 (en) 2002-03-25 2010-06-09 住友金属鉱山株式会社 Transparent conductive film, coating liquid for forming transparent conductive film, transparent conductive laminated structure, and display device
KR100726167B1 (en) 2004-12-13 2007-06-13 한국전자통신연구원 Method for Preparing Transparent Electrode Using Gold Nanoparticles, and Transparent Electrode Obtained by the Method
US20090135492A1 (en) * 2006-08-11 2009-05-28 Kouji Kusuda Anti-reflective film, polarizer, liquid crystal display element and display element
JP4991735B2 (en) 2006-09-28 2012-08-01 シャープ株式会社 Liquid crystal display panel and liquid crystal display device
JP5288848B2 (en) * 2007-10-05 2013-09-11 油脂製品株式会社 Gold coloring pigment and method for producing gold coloring pigment
US7749300B2 (en) * 2008-06-05 2010-07-06 Xerox Corporation Photochemical synthesis of bimetallic core-shell nanoparticles
JP5405935B2 (en) * 2009-07-30 2014-02-05 日立マクセル株式会社 Transparent conductive sheet
WO2011109114A2 (en) * 2010-03-05 2011-09-09 Carestream Health, Inc. Transparent conductive films, articles, and methods
JP6051960B2 (en) 2012-03-19 2016-12-27 株式会社リコー Conductive thin film, coating liquid for forming conductive thin film, field effect transistor, and method of manufacturing field effect transistor

Also Published As

Publication number Publication date
JPH11228872A (en) 1999-08-24

Similar Documents

Publication Publication Date Title
US6261479B1 (en) Transparent electro-conductive structure, process for its production, transparent electro-conductive layer forming coating fluid used for its production, and process for preparing the coating fluid
US6673142B2 (en) Transparent conductive layered structure and method of producing the same, and transparent coat layer forming coating liquid used in the method of producing the same, and display device to which transparent conductive layered structure is applied
US6686249B1 (en) Transparent conductive layered structure, display in which this transparent conductive layered structure is applied, and coating liquid for forming transparent conductive layer
KR100630595B1 (en) Transparent conductive layered structure and method of producing the same, and coating liquid for forming transparent conductive layer used in production of transparent conductive layered structure and method of producing the same
JP4035934B2 (en) Transparent conductive substrate, method for producing the same, coating solution for forming transparent conductive layer used for production of transparent conductive substrate, and method for producing the same
JP4411672B2 (en) Coating liquid for forming transparent conductive layer and method for producing the same
US6569359B2 (en) Transparent conductive layer forming coating liquid containing formamide
JP3876811B2 (en) Production method of coating liquid for forming transparent conductive layer
JP3975310B2 (en) Transparent conductive substrate, method for producing the same, and display device to which the substrate is applied
JP3750461B2 (en) Transparent conductive layer forming coating liquid, transparent conductive layer and transparent conductive substrate
JP4325201B2 (en) Transparent conductive layer forming coating liquid and transparent conductive film
JP2003132734A (en) Coating solution for forming transparent electroconductive layer
JP2004071309A (en) Transparent conductive substrate and its manufacturing method and coating liquid for transparent coating layer formation used for manufacturing this transparent conductive substrate and display device applying the same
JP3870669B2 (en) Transparent conductive substrate, method for producing the same, coating liquid for forming transparent coat layer used for production of transparent conductive substrate, and display device to which transparent conductive substrate is applied
JP4232575B2 (en) Transparent conductive layer forming coating liquid, transparent conductive film and transparent conductive substrate
JP2002069335A (en) Coating liquid for forming transparent electroconductive layer
JP2005135722A (en) Coating liquid for forming transparent conductive layer and transparent conductive substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080521

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees