JP2005135722A - Coating liquid for forming transparent conductive layer and transparent conductive substrate - Google Patents

Coating liquid for forming transparent conductive layer and transparent conductive substrate Download PDF

Info

Publication number
JP2005135722A
JP2005135722A JP2003369829A JP2003369829A JP2005135722A JP 2005135722 A JP2005135722 A JP 2005135722A JP 2003369829 A JP2003369829 A JP 2003369829A JP 2003369829 A JP2003369829 A JP 2003369829A JP 2005135722 A JP2005135722 A JP 2005135722A
Authority
JP
Japan
Prior art keywords
transparent conductive
conductive layer
fine particles
forming
coating liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003369829A
Other languages
Japanese (ja)
Inventor
Junji Tofuku
淳司 東福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2003369829A priority Critical patent/JP2005135722A/en
Publication of JP2005135722A publication Critical patent/JP2005135722A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coating liquid for forming a transparent conductive layer, having high dispersion stability for noble-metal-containing fine particles, and superior coatability and storage stability; and further provide a transparent conductive substrate formed by using the coating liquid, having proper electrical conductivity. <P>SOLUTION: The coating liquid for forming the transparent conductive layer is composed mainly of a solvent, polymeric resin, and noble-metal-containing fine-particles of 1-100 nm for the average particle size, wherein the polymeric resin is a compound having a cyanoethyl group and a cyanoalkyl group, such as cyanoethyl group, and coating liquid, is combined in the ratio of the noble-metal-containing fine particles of 5-500 pts.wt. with respect to the polymeric resin of 1 pts.wt. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、透明基板上に透明導電膜を形成する際に用いられる透明導電膜形成用塗布液、及びその透明導電膜形成用塗布液により形成された透明導電膜を有する透明2層膜を備え、例えばブラウン管(CRT)等の表示装置の前面板等として利用される透明導電性基材に関するものである。   The present invention includes a transparent conductive film forming coating solution used when forming a transparent conductive film on a transparent substrate, and a transparent two-layer film having a transparent conductive film formed from the transparent conductive film forming coating solution. For example, the present invention relates to a transparent conductive substrate used as a front plate of a display device such as a cathode ray tube (CRT).

近年においては、オフィスオートメーション(OA)化の進行により、オフィスに多くのOA機器が導入され、OA機器のディスプレイと向き合って終日作業を行わねばならないという環境が珍しくない。OA機器の一例としてコンピュータの陰極線管(ブラウン管とも称する:CRT)等に接して仕事を行う場合、その表示画面が見やすく、視覚疲労を感じさせないことの外に、CRT表面の帯電によるほこりの付着や電撃ショックがないこと等が要求されている。   In recent years, with the progress of office automation (OA), many OA devices have been introduced into the office, and it is not uncommon for the environment to have to work all day while facing the display of the OA device. As an example of OA equipment, when a work is performed in contact with a cathode ray tube (also referred to as a cathode ray tube: CRT) of a computer or the like, the display screen is easy to see and does not cause visual fatigue. It is required that there is no electric shock.

更に最近では、これ等に加えてテレビジョンやOA機器のCRTから発生する低周波電磁波の人体に対する悪影響が懸念され、このような電磁波が外部に漏洩しないことがCRTに対して望まれている。上記電磁波はCRTの偏向コイルやフライバックトランスから発生し、テレビジョン等の表示画面の大型化に伴って益々大量の電磁波が周囲に漏洩する傾向にある。   Furthermore, recently, in addition to these, there is a concern about the adverse effect of low frequency electromagnetic waves generated from CRTs of televisions and OA devices on the human body, and it is desired for CRTs to prevent such electromagnetic waves from leaking to the outside. The electromagnetic wave is generated from a deflection coil or flyback transformer of a CRT, and a large amount of electromagnetic wave tends to leak to the surroundings as the display screen of a television or the like becomes larger.

ところで、磁界の漏洩は偏向コイルの形状を変えるなどの工夫で大部分を防止することができる。一方、電界の漏洩もCRTの前面ガラス表面に透明導電層を形成することにより防止することが可能である。このような電界の漏洩に対する防止方法は、近年帯電防止のために取られてきた対策と原理的には同一である。しかし、上記透明導電層には、帯電防止用に形成されていた導電層よりもはるかに高い導電性が求められている。即ち、帯電防止用には10Ω/□程度の表面抵抗で十分とされているが、漏洩電界を防ぐ(電界シールド)ためには、少なくとも10Ω/□以下、好ましくは5×10Ω/□以下、更に好ましくは10Ω/□以下の表面抵抗の低い透明導電層を形成する必要がある。 By the way, most of leakage of the magnetic field can be prevented by changing the shape of the deflection coil. On the other hand, electric field leakage can also be prevented by forming a transparent conductive layer on the front glass surface of the CRT. The method for preventing the leakage of the electric field is in principle the same as the countermeasures that have been taken in recent years for preventing the charging. However, the transparent conductive layer is required to have a much higher conductivity than the conductive layer formed for antistatic purposes. That is, a surface resistance of about 10 8 Ω / □ is sufficient for antistatic purposes, but at least 10 6 Ω / □ or less, preferably 5 × 10 3 to prevent a leakage electric field (electric field shielding). It is necessary to form a transparent conductive layer having a low surface resistance of Ω / □ or less, more preferably 10 3 Ω / □ or less.

そこで、上記要求に対処するため従来から幾つかの提案がなされているが、その中でも低コストで且つ低い表面抵抗を実現できる方法として、導電性微粒子をアルキルシリケート等の無機バインダーと共に溶媒中に分散した透明導電層形成用塗布液を用い、この塗布液をCRT等の前面ガラスに塗布・乾燥した後、200℃程度の温度で焼成する方法が知られている。この透明導電層形成用塗布液を用いた方法は、真空蒸着やスパッタ法等の物理的な透明導電層の形成方法に比べてはるかに簡便であり、製造コストも低いため、CRT等に処理可能な電界シールドの形成方法として極めて有利な方法である。   Thus, several proposals have been made to meet the above requirements. Among them, as a method capable of realizing low surface resistance at low cost, conductive fine particles are dispersed in a solvent together with an inorganic binder such as an alkyl silicate. A method is known in which a transparent conductive layer forming coating solution is used, and this coating solution is applied to a front glass such as a CRT and dried, followed by baking at a temperature of about 200 ° C. The method using the coating liquid for forming the transparent conductive layer is much simpler than the physical transparent conductive layer forming method such as vacuum deposition and sputtering, and can be processed to CRT and the like because the manufacturing cost is low. This is a very advantageous method as a method for forming a simple electric field shield.

この方法に用いられる透明導電層形成用塗布液として、導電性微粒子にインジウム錫酸化物(ITO)を適用したものが知られている。しかし、得られる膜の表面抵抗が10〜10Ω/□と高いため、漏洩電界を十分に遮蔽するには電界キャンセル用の補正回路が必要となり、その分だけ製造コストが割高となる問題があった。 As a coating liquid for forming a transparent conductive layer used in this method, one in which indium tin oxide (ITO) is applied to conductive fine particles is known. However, since the surface resistance of the obtained film is as high as 10 4 to 10 6 Ω / □, a correction circuit for electric field cancellation is necessary to sufficiently shield the leakage electric field, and the manufacturing cost is increased accordingly. was there.

一方、上記導電性微粒子に金属粉を用いた透明導電層形成用塗布液は、ITOを用いた塗布液に比べ、若干膜の透過率が低くなるものの、10〜10Ω/□という低い表面抵抗の膜が得られる。従って、上述した補正回路が必要なくなるため、コスト的に有利となり、今後主流になるものと思われる。そして、この透明導電層形成用塗布液に適用される金属微粒子は、特開平8−77832号公報や特開平9−55175号公報等に示されるように、空気中で酸化され難い銀、金、白金、ロジウム、パラジウム等の貴金属に限られている。貴金属以外の金属微粒子、例えば、鉄、ニッケル、コバルト等が適用された場合、大気雰囲気下で表面に酸化物皮膜が必ず形成されてしまい、透明導電層として良好な導電性が得られなくなるからである。 On the other hand, the coating solution for forming a transparent conductive layer using metal powder as the conductive fine particles has a low transmittance of 10 2 to 10 3 Ω / □, although the transmittance of the film is slightly lower than that of the coating solution using ITO. A film of surface resistance is obtained. Accordingly, the correction circuit described above is not necessary, which is advantageous in terms of cost and is expected to become mainstream in the future. The metal fine particles applied to the transparent conductive layer forming coating solution are silver, gold, and the like, which are not easily oxidized in the air, as disclosed in JP-A-8-77832 and JP-A-9-55175. Limited to noble metals such as platinum, rhodium and palladium. When metal fine particles other than noble metals, such as iron, nickel, cobalt, etc., are applied, an oxide film is necessarily formed on the surface in the air atmosphere, and good conductivity cannot be obtained as a transparent conductive layer. is there.

また一方では、CRTの表示画面を見易くするために、フェイスパネル表面に防眩処理を施して画面の反射を抑えることも行われている。この防眩処理は、微細な凹凸を設けて表面の拡散反射を増加させる方法によっても可能であるが、この方法を用いた場合、解像度が低下して画質が落ちるため、あまり好ましい方法とはいえない。従って、むしろ反射光が入射光に対して破壊的干渉を生ずるように、透明皮膜の屈折率と膜厚とを制御する干渉法によって防眩処理を行うことが好ましい。   On the other hand, in order to make the CRT display screen easier to see, anti-glare treatment is applied to the face panel surface to suppress screen reflection. This anti-glare treatment is also possible by a method of providing fine irregularities to increase the diffuse reflection of the surface, but when this method is used, the resolution is lowered and the image quality is lowered. Absent. Accordingly, it is preferable to perform the antiglare treatment by an interference method that controls the refractive index and the film thickness of the transparent film so that the reflected light causes destructive interference with the incident light.

このような干渉法により低反射効果を得るには、一般的には高屈折率膜と低屈折率膜の光学的膜厚をそれぞれ1/4λと1/4λ、あるいは1/2λと1/4λに設定した二層構造膜が採用されており、前述のインジウム錫酸化物(ITO)微粒子からなる膜もこの種の高屈折率膜として用いられている。尚、金属においては、光学定数(n−ik、n:屈折率、i=−1、k:消衰係数)のうち、n(屈折率)の値は小さいがkの値が大きいため、金属微粒子からなる透明導電層を用いた多層膜の場合でも、各層の光学定数と膜厚を適正に設定すれば、光の干渉による上記反射防止効果が得られる。 In order to obtain a low reflection effect by such an interference method, the optical film thicknesses of the high refractive index film and the low refractive index film are generally set to 1 / 4λ and 1 / 4λ, or 1 / 2λ and 1 / 4λ, respectively. A film composed of indium tin oxide (ITO) fine particles is also used as this type of high refractive index film. In addition, in the metal, since the value of n (refractive index) is small but the value of k is large among the optical constants (n−ik, n: refractive index, i 2 = −1, k: extinction coefficient), Even in the case of a multilayer film using a transparent conductive layer made of metal fine particles, the antireflection effect due to light interference can be obtained if the optical constant and film thickness of each layer are set appropriately.

更に、近年では、CRT等の表示装置において、良好な導電性、低い反射率等の諸特性に加えて、表示画面の平面化に伴い、その透過率を100%より低い所定範囲(具体的には40〜95%、一般的には40〜75%)に調整することにより、画像のコントラストを向上させることが要請されている。そのため、例えば、透明導電層形成用塗布液に有色顔料微粒子等を配合することにより、透明導電層の透過率を制御する方法が実施されている。   Furthermore, in recent years, in a display device such as a CRT, in addition to various characteristics such as good conductivity and low reflectance, as the display screen is flattened, its transmittance falls within a predetermined range (specifically, lower than 100%). 40 to 95%, and generally 40 to 75%), it is required to improve the contrast of the image. Therefore, for example, a method of controlling the transmittance of the transparent conductive layer by blending colored pigment fine particles or the like with the coating liquid for forming the transparent conductive layer has been implemented.

ところで、従来の透明導電層形成用塗布液に適用される金属微粒子は、上述したように銀、金、白金、ロジウム、パラジウムなどの貴金属に限定されているが、これ等の貴金属の比抵抗を比較した場合、白金、ロジウム、パラジウムの比抵抗はそれぞれ10.6、5.1、10.8μΩ・cmであるのに対し、銀と金は1.62及び2.2μΩ・cmであるため、表面抵抗の低い透明導電層を形成するには銀微粒子や金微粒子を適用した方が有利である。しかし、銀微粒子を適用した場合、硫化や酸化、食塩水、紫外線等による劣化が激しく、耐候性に問題があり、他方、金微粒子を適用した場合には、このような耐候性の問題はなくなるが、白金微粒子、ロジウム微粒子、パラジウム微粒子等が適用された場合と同様にコスト上の問題を有していた。   By the way, the metal fine particles applied to the conventional coating liquid for forming a transparent conductive layer are limited to noble metals such as silver, gold, platinum, rhodium and palladium as described above, but the specific resistance of these noble metals is limited. In comparison, the specific resistances of platinum, rhodium, and palladium are 10.6, 5.1, and 10.8 μΩ · cm, respectively, whereas silver and gold are 1.62 and 2.2 μΩ · cm. In order to form a transparent conductive layer having a low surface resistance, it is advantageous to apply silver fine particles or gold fine particles. However, when silver fine particles are applied, the deterioration due to sulfidation, oxidation, saline solution, ultraviolet rays, etc. is severe, and there is a problem with weather resistance. On the other hand, when gold fine particles are applied, such weather resistance problems are eliminated. However, as with the case where platinum fine particles, rhodium fine particles, palladium fine particles and the like are applied, there is a problem in cost.

そこで、このような技術的背景の下に、本発明者は、上記銀微粒子や金微粒子に代えて、銀微粒子表面に金若しくは白金単体又は金と白金の複合体をコーティングした、平均粒径1〜100nmの金/白金コート銀微粒子を適用した透明導電層形成用塗布液、並びにこの塗布液を用いて製造した透明導電性基材、この基材が適用された表示装置等を既に提案している(特開平11−203943号公報、特開平11−228872号公報参照)。この金/白金コート銀微粒子では、銀微粒子の表面に金若しくは白金単体又は金と白金の複合体がコーティングされているため、微粒子内部の銀が保護され、耐候性、耐薬品性等の改善を図ることができる。   In view of this technical background, the present inventor, instead of the silver fine particles and the gold fine particles, has an average particle diameter of 1 coated with gold or platinum alone or a composite of gold and platinum on the surface of the silver fine particles. We have already proposed a coating liquid for forming a transparent conductive layer to which gold / platinum coated silver fine particles of ˜100 nm are applied, a transparent conductive base material produced using this coating liquid, a display device to which this base material is applied, etc. (See JP-A-11-203943 and JP-A-11-228872). In this gold / platinum coated silver fine particle, the surface of the silver fine particle is coated with gold or a simple substance of platinum or a composite of gold and platinum, so that the silver inside the fine particle is protected, and weather resistance, chemical resistance, etc. are improved. Can be planned.

尚、この銀微粒子の表面に金若しくは白金単体又は金と白金の複合体がコーティングされた、平均粒径1〜100nmの上記金/白金コート銀微粒子を適用した透明導電層形成用塗布液の場合、透明導電性基材の製造過程での加熱処理条件(金/白金コート銀微粒子が含まれる透明導電層形成用塗布液を透明基板上に塗布した後の加熱処理条件)によっては、耐候性、耐薬品性等が若干低下する傾向が認められる。この現象は、金/白金コート銀微粒子内で金、白金、銀が熱拡散により合金化するためと考えられるが、上記金/白金コート銀微粒子内における金及び/又は白金の含有割合を50〜95重量%に設定すれば回避できることが確認されている。   In the case of a coating solution for forming a transparent conductive layer in which the above gold / platinum coated silver fine particles having an average particle diameter of 1 to 100 nm are coated on the surface of the silver fine particles with gold or platinum alone or a composite of gold and platinum. Depending on the heat treatment conditions in the production process of the transparent conductive base material (heat treatment conditions after coating the transparent conductive layer forming coating liquid containing gold / platinum coated silver fine particles on the transparent substrate), the weather resistance, There is a tendency for chemical resistance and the like to decrease slightly. This phenomenon is considered to be because gold, platinum, and silver are alloyed by thermal diffusion in the gold / platinum-coated silver fine particles. The gold and / or platinum content ratio in the gold / platinum-coated silver fine particles is 50 to 50%. It has been confirmed that it can be avoided if it is set to 95% by weight.

ところで、貴金属微粒子が適用された導電層は、本来、金属が可視光線に対し透明でないことから、上述した透明導電層における高透過率と低抵抗を両立させるためには、できるだけ少量の貴金属微粒子が透明導電層内において効率よく導電パスを形成していることが望ましい。つまり、溶媒と貴金属微粒子を主成分とする透明導電層形成用塗布液を基板上に塗布し、乾燥させて得られる導電層の構造として、貴金属微粒子の層に微小な空孔が導入された構造、即ち網目状(ネットワーク)構造を有することが必要である。このような網目状構造が形成されると、低抵抗で且つ高透過率の透明導電層が得られるが、これは、貴金属微粒子からなる網目状部分が導電パスとして機能する一方、網目状構造中に形成された穴の部分が光線透過率を向上させる機能を果たすためと考えられている。   By the way, the conductive layer to which the noble metal fine particles are applied is essentially that the metal is not transparent to visible light. Therefore, in order to achieve both the high transmittance and the low resistance in the transparent conductive layer described above, as little noble metal fine particles as possible are required. It is desirable that the conductive path is efficiently formed in the transparent conductive layer. In other words, a structure in which fine pores are introduced into the layer of noble metal fine particles as a structure of a conductive layer obtained by applying a coating liquid for forming a transparent conductive layer mainly composed of a solvent and noble metal fine particles on a substrate and drying it. That is, it is necessary to have a mesh (network) structure. When such a network structure is formed, a transparent conductive layer having a low resistance and a high transmittance can be obtained. This is because the network portion composed of noble metal fine particles functions as a conductive path, while the network structure This is considered to be because the hole formed in the hole functions to improve the light transmittance.

そして、貴金属微粒子の上記網目状構造を形成させる手法としては、大別すると以下の2つの方法が挙げられる。(1)透明導電層形成用塗布液の塗布及び乾燥の成膜過程において、貴金属微粒子同士を凝集させることで網目状構造を形成させる方法。(2)複数の金属微粒子が凝集した金属微粒子の凝集体を分散させた透明導電層形成用塗布液を用い、塗布及び乾燥させることによって貴金属微粒子の網目状構造を形成させる方法。   And as a method of forming the network structure of the noble metal fine particles, the following two methods can be roughly classified. (1) A method of forming a network structure by agglomerating noble metal fine particles in a film forming process of applying and drying a coating liquid for forming a transparent conductive layer. (2) A method of forming a network structure of noble metal fine particles by applying and drying a transparent conductive layer forming coating liquid in which an aggregate of metal fine particles in which a plurality of metal fine particles are aggregated is dispersed.

上記(1)の方法としては、例えば、貴金属微粒子は酸化物微粒子等に比べて凝集し易いことを利用し、透明導電層形成用塗布液の溶剤組成等を適宜選定することによって、塗布及び乾燥の成膜過程において必然的にある程度の貴金属微粒子同士の凝集が起きて上記網目状構造が得られる方法(特開平9−115438号公報、特開平10−1777号公報、特開平10−142401号公報、特開平10−182191号公報等参照)がある。また、透明導電層形成用塗布液に凝集誘因剤、凝集促進高沸点溶剤等を添加し、塗布及び乾燥過程において積極的に貴金属微粒子同士の凝集を促進する方法(特開平10−110123号公報、特開2002−038053公報参照)も知られている。   As the above method (1), for example, by utilizing the fact that noble metal fine particles are more easily aggregated than oxide fine particles and the like, and by appropriately selecting the solvent composition of the coating liquid for forming a transparent conductive layer, the coating and drying are performed. In the film forming process, a certain degree of aggregation of noble metal fine particles inevitably occurs to obtain the above network structure (Japanese Patent Laid-Open Nos. 9-115438, 10-1777, 10-142401). JP, 10-182191, A, etc.). Also, a method of adding an aggregation inducer, an aggregation-promoting high-boiling solvent, etc. to the coating liquid for forming a transparent conductive layer, and actively promoting aggregation of noble metal fine particles in the coating and drying processes (Japanese Patent Laid-Open No. 10-110123, Japanese Patent Laid-Open No. 2002-038053) is also known.

一方、上記(2)の方法としては、1次粒子が均一に分散されずに、1次粒子が小さな孔を持つ形で集合した2次粒子の状態で分散されている貴金属微粒子の分散液を用いる方法(「工業材料」、Vol.44,No.9,1996,p68−71参照)がある。また、貴金属微粒子が鎖状に凝集した金属微粒子群を予め分散させた透明導電層形成用塗布液を用いる方法(特開2000−124662号公報参照)も知られている。   On the other hand, as the method of (2) above, a dispersion of precious metal fine particles dispersed in the form of secondary particles in which primary particles are aggregated in a form having small pores without primary particles being uniformly dispersed is used. There is a method to be used (see “Industrial Materials”, Vol. 44, No. 9, 1996, p. 68-71). In addition, a method using a coating liquid for forming a transparent conductive layer in which metal fine particle groups in which noble metal fine particles are aggregated in a chain shape is used (see Japanese Patent Application Laid-Open No. 2000-124662) is also known.

上記(1)の方法と(2)の方法を比較すると、上記(2)の方法は、透明導電層形成用塗布液において貴金属微粒子の凝集体が予め完成されていることから、貴金属微粒子の発達した網目状構造の形成が容易となる利点を有している。   Comparing the method (1) with the method (2), the method (2) described above is because the aggregate of noble metal fine particles is completed in advance in the transparent conductive layer forming coating solution. This has the advantage that the formation of the network structure is facilitated.

実際のCRTの量産工場においては、貴金属微粒子が含まれる透明導電層形成用塗布液を用い、スピンコート法などでCRTなどの表示装置の前面板に透明導電層を形成する場合、製品の歩留まりを向上させることが重要であり、そのためには貴金属微粒子が含まれる透明導電層形成用塗布液の塗布性が良好であることが望まれる。   In an actual CRT mass production factory, when a transparent conductive layer forming coating liquid containing precious metal fine particles is used and a transparent conductive layer is formed on the front plate of a display device such as a CRT by spin coating, the product yield is reduced. It is important to improve, and for that purpose, it is desired that the coating property of the coating liquid for forming the transparent conductive layer containing the noble metal fine particles is good.

しかし、上記貴金属微粒子は、1次粒子径が小さく高活性であるため、製造条件が変動した場合、例えば、特に基板温度が高い(45℃程度)場合や基板表面の清浄度が低い場合には、塗布液が基板上に塗り広がる際に局部的な凝集が生じて、流星状あるいは線状の塗膜欠陥を引き起こしやすいため、CRT製造ラインの歩留まりを著しく悪化させることがあった。   However, since the above-mentioned noble metal fine particles have a small primary particle size and high activity, when the manufacturing conditions fluctuate, for example, when the substrate temperature is particularly high (about 45 ° C.) or when the cleanness of the substrate surface is low. When the coating solution is spread on the substrate, local agglomeration occurs and it is easy to cause meteor-like or linear coating film defects, which may significantly deteriorate the yield of the CRT production line.

貴金属微粒子の分散安定性を保ち、塗布時の凝集を防ぐ方法としては、例えば保護剤(分散安定化剤)の添加が有効であり、そのための保護剤として高分子樹脂や界面活性剤などが知られている。また、貴金有微粒子に対しては、界面活性剤よりも高分子樹脂の方が、高い保護安定化能を有している。このような知見から、本発明者らは、下記の化学式1〜3で示される繰り返し単位のうち少なくとも一つを分子内に有する高分子樹脂を、貴金属微粒子の保護剤として配合することを特徴とする透明導電層形成用塗布液を既に提案している(特開2002−69335号公報参照)。   As a method for maintaining the dispersion stability of the precious metal fine particles and preventing aggregation during coating, for example, the addition of a protective agent (dispersion stabilizer) is effective, and polymer resins and surfactants are known as protective agents for that purpose. It has been. In addition, for precious gold-containing fine particles, the polymer resin has higher protection and stabilizing ability than the surfactant. From such knowledge, the present inventors are characterized by blending a polymer resin having at least one repeating unit represented by the following chemical formulas 1 to 3 in the molecule as a protective agent for the noble metal fine particles. There has already been proposed a coating liquid for forming a transparent conductive layer (see JP-A-2002-69335).

Figure 2005135722
Figure 2005135722

Figure 2005135722
Figure 2005135722

Figure 2005135722
Figure 2005135722

上述のような高分子樹脂は金や白金に対する親和性が十分でないため、貴金属微粒子に対して高い分散安定性を付与するためには、多量の高分子樹脂を配合する必要がある。しかし、貴金属微粒子に対して高分子樹脂類を過剰に配合した場合、成膜後に多量の高分子樹脂が膜中に残留するため、膜の抵抗値が上昇し、十分な電界シールド効果が得られない。従って、貴金属微粒子の保護剤として上述のような高分子樹脂を適用した場合、高い導電性と良好な塗布性を両立させるには、条件調整に細かい注意を必要としていた。   Since the polymer resin as described above does not have sufficient affinity for gold or platinum, it is necessary to add a large amount of polymer resin in order to impart high dispersion stability to the noble metal fine particles. However, when polymer resins are added excessively to the precious metal fine particles, a large amount of polymer resin remains in the film after film formation, which increases the resistance value of the film and provides a sufficient electric field shielding effect. Absent. Therefore, when the above-described polymer resin is applied as a protective agent for the noble metal fine particles, it is necessary to pay close attention to the condition adjustment in order to achieve both high conductivity and good coatability.

一方、高分子樹脂の一つとして、シアノアルキル基を有する高分子化合物が知られている。その1種であるシアノエチル化高分子化合物は、その高誘電性を利用して、電子写真用トナーのバインダー樹脂として使用されている(特開平5−224459号公報参照)。また、シアノエチル化高分子化合物は、イオン伝導性が高いことを利用して、リチウム又はリチウムイオン2次電池用の電解液や、有機分散型エレクトロルミネッセンス用のバインダー樹脂としても用いられている(特開平11−80112号公報参照)。   On the other hand, a polymer compound having a cyanoalkyl group is known as one of polymer resins. One such cyanoethylated polymer compound is used as a binder resin for electrophotographic toners by utilizing its high dielectric property (see Japanese Patent Application Laid-Open No. 5-22459). In addition, cyanoethylated polymer compounds are also used as electrolytes for lithium or lithium ion secondary batteries and binder resins for organic dispersion type electroluminescence because of their high ionic conductivity. (See Kaihei 11-80112).

特開平8−77832号公報JP-A-8-77832 特開平9−55175号公報JP-A-9-55175 特開平11−203943号公報Japanese Patent Laid-Open No. 11-203943 特開平11−228872号公報JP-A-11-228872 特開平9−115438号公報JP-A-9-115438 特開平10−1777号公報JP-A-10-1777 特開平10−142401号公報JP-A-10-142401 特開平10−182191号公報JP-A-10-182191 特開平10−110123号公報JP-A-10-110123 特開2002−38053号公報JP 2002-38053 A 特開2000−124662号公報JP 2000-124662 A 特開2002−69335号公報JP 2002-69335 A 特開平5−224459号公報Japanese Patent Laid-Open No. 5-224259 特開平11−80112号公報Japanese Patent Laid-Open No. 11-80112 「工業材料」、Vol.44,No.9,1996,p68−71“Industrial Materials”, Vol. 44, No. 9, 1996, p.

本発明は、上記した従来の事情に鑑み、貴金属含有微粒子の分散安定性を向上させて、優れた塗布性と貯蔵安定性を有する透明導電層形成用塗布液を提供すること、及びその透明導電層形成用塗布液を用いることにより、良好な導電性を有する透明導電性基材を提供することを目的とする。   In view of the above-described conventional circumstances, the present invention provides a coating liquid for forming a transparent conductive layer having improved coating stability and storage stability by improving the dispersion stability of noble metal-containing fine particles, and its transparent conductivity. It aims at providing the transparent conductive base material which has favorable electroconductivity by using the coating liquid for layer formation.

上記目的を達成するため、本発明の請求項1に係わる透明導電層形成用塗布液は、溶媒と、高分子樹脂と、平均粒径1〜100nmの貴金属含有微粒子とを主成分とする透明導電層形成用塗布液であって、上記高分子樹脂がシアノアルキル基を有する高分子化合物であり、該高分子樹脂1重量部に対して上記貴金属含有微粒子が5〜500重量部の割合で配合されていることを特徴とする。   In order to achieve the above object, a coating liquid for forming a transparent conductive layer according to claim 1 of the present invention is a transparent conductive material mainly composed of a solvent, a polymer resin, and noble metal-containing fine particles having an average particle diameter of 1 to 100 nm. A coating solution for forming a layer, wherein the polymer resin is a polymer compound having a cyanoalkyl group, and the precious metal-containing fine particles are blended at a ratio of 5 to 500 parts by weight with respect to 1 part by weight of the polymer resin. It is characterized by.

本発明の請求項2に係わる透明導電層形成用塗布液は、上記請求項1の透明導電層形成用塗布液において、前記高分子樹脂がシアノエチル基を有するシアノエチル化高分子化合物であることを特徴とする。また、本発明の請求項3に係わる透明導電層形成用塗布液は、上記請求項2の透明導電層形成用塗布液において、前記シアノエチル化高分子化合物が、水酸基を有するサッカロース、デンプン、セルロース、プルラン、ポリビニルアルコールより選ばれた少なくとも1種に、アクリロニトリルを付加反応させることによって合成されたものであることを特徴とする。   The coating solution for forming a transparent conductive layer according to claim 2 of the present invention is the coating solution for forming a transparent conductive layer according to claim 1, wherein the polymer resin is a cyanoethylated polymer compound having a cyanoethyl group. And Further, the transparent conductive layer forming coating solution according to claim 3 of the present invention is the transparent conductive layer forming coating solution according to claim 2, wherein the cyanoethylated polymer compound is a saccharose having a hydroxyl group, starch, cellulose, It is synthesized by addition reaction of acrylonitrile with at least one selected from pullulan and polyvinyl alcohol.

本発明の請求項4に係わる透明導電層形成用塗布液は、上記請求項1〜3の透明導電層形成用塗布液において、前記貴金属含有微粒子が、金又は白金の単体微粒子、金及び/又は白金と銀とからなる貴金属合金微粒子、あるいは、銀微粒子の表面が金及び/又は白金でコートされた貴金属コート銀微粒子のいずれかであることを特徴とするものである。   The coating liquid for forming a transparent conductive layer according to claim 4 of the present invention is the coating liquid for forming a transparent conductive layer according to any one of claims 1 to 3, wherein the noble metal-containing fine particles are simple single particles of gold or platinum, gold and / or It is characterized in that it is either noble metal alloy fine particles composed of platinum and silver or noble metal coated silver fine particles whose surface is coated with gold and / or platinum.

本発明の請求項5に係わる透明導電層形成用塗布液は、上記請求項1〜4の透明導電層形成用塗布液において、有色顔料微粒子が含まれていることを特徴とするものである。また、本発明の請求項6に係わる透明導電層形成用塗布液は、上記請求項5の透明導電層形成用塗布液において、前記有色顔料微粒子が、カーボン、チタンブラック、窒化チタン、複合酸化物顔料、コバルトバイオレット、モリブデンオレンジ、群青、紺青、キナクリドン系顔料、ジオキサジン系顔料、アントラキノン系顔料、ペリレン系顔料、イソインドリノン系顔料、アゾ系顔料、及びフタロシアニン系顔料から選ばれた少なくとも1種の微粒子であることを特徴とする。   The coating liquid for forming a transparent conductive layer according to claim 5 of the present invention is characterized in that in the coating liquid for forming a transparent conductive layer according to claims 1 to 4, colored pigment fine particles are contained. The transparent conductive layer forming coating solution according to claim 6 of the present invention is the transparent conductive layer forming coating solution according to claim 5, wherein the colored pigment fine particles are carbon, titanium black, titanium nitride, composite oxide. At least one selected from a pigment, cobalt violet, molybdenum orange, ultramarine, bitumen, quinacridone pigment, dioxazine pigment, anthraquinone pigment, perylene pigment, isoindolinone pigment, azo pigment, and phthalocyanine pigment It is a fine particle.

更に、本発明の請求項7に係わる透明導電性基材は、請求項1〜6のいずれかに記載の透明導電層形成用塗布液を用いて透明基板の上に形成された透明導電層と、該透明導電層の上に形成された透明コート層とからなる透明2層膜を備えることを特徴とするものである。   Furthermore, the transparent conductive base material concerning Claim 7 of this invention is the transparent conductive layer formed on the transparent substrate using the coating liquid for transparent conductive layer formation in any one of Claims 1-6, And a transparent two-layer film comprising a transparent coat layer formed on the transparent conductive layer.

本発明によれば、保護剤としてシアノアルキル化高分子化合物(分子内にシアノアルキル基を有する高分子樹脂)を添加することにより、貴金属含有微粒子の分散安定性を著しく向上させることができ、優れた塗布性と貯蔵安定性を有する透明導電層形成用塗布液を提供することができる。   According to the present invention, by adding a cyanoalkylated polymer compound (polymer resin having a cyanoalkyl group in the molecule) as a protective agent, the dispersion stability of the noble metal-containing fine particles can be remarkably improved. It is possible to provide a coating liquid for forming a transparent conductive layer having high coatability and storage stability.

しかも、本発明の透明導電層形成用塗布液を用い、塗布法などによりCRT等の表示装置における前面板等のような透明基板上に透明導電層を形成したとき、その優れた塗布性から製品歩留まりを向上させることができると共に、良好な導電性、低反射率、耐候性、耐薬品性等の諸特性を備えた透明導電性基材を提供することができる。   In addition, when the transparent conductive layer is formed on a transparent substrate such as a front plate in a display device such as a CRT by a coating method using the coating liquid for forming a transparent conductive layer of the present invention, the product is obtained from its excellent coating properties. In addition to improving yield, it is possible to provide a transparent conductive substrate having various properties such as good conductivity, low reflectance, weather resistance, and chemical resistance.

本発明においては、高分子樹脂からなる保護剤として、分子内にシアノアルキル基を有するシアノアルキル化高分子化合物を添加することによって、透明導電層形成用塗布液中の貴金属含有微粒子の分散安定性を向上させることを大きな特徴とする。このシアノアルキル化高分子化合物の作用は、従来用いられていた高誘電性やイオン導電性が優れているという特性を利用するものではなく、高分子の側鎖に金や銀等と親和性の高い官能基であるシアノ基(−CN)を有することによって、貴金属含有微粒子に対する吸着力が高められる結果、貴金属含有微粒子の分散安定性が向上するものと考えられる。   In the present invention, by adding a cyanoalkylated polymer compound having a cyanoalkyl group in the molecule as a protective agent comprising a polymer resin, the dispersion stability of the noble metal-containing fine particles in the coating liquid for forming a transparent conductive layer It is a great feature to improve. The action of this cyanoalkylated polymer compound does not use the conventionally used properties of high dielectric properties and excellent ionic conductivity, and has an affinity for gold, silver, etc. on the side chain of the polymer. It is considered that the dispersion stability of the noble metal-containing fine particles is improved as a result of increasing the adsorption power to the noble metal-containing fine particles by having a cyano group (—CN) that is a high functional group.

上記シアノアルキル化高分子化合物としては、分子内にシアノエチル基を有するシアノエチル化高分子化合物、シアノプロピル基を有するシアノプロピル化高分子化合物等が挙げられる。これらのシアノアルキル化高分子化合物は、水酸基を有する糖類、多糖類、ポリビニルアルコール又はこれらの誘導体に、ニトリルを付加反応させることによって合成される。例えば、シアノエチル化高分子化合物は、水酸基を有する糖類、多糖類、ポリビニルアルコール又はこれらの誘導体に、アクリロニトリルを付加反応させることにより合成することができる。   Examples of the cyanoalkylated polymer compound include a cyanoethylated polymer compound having a cyanoethyl group in the molecule and a cyanopropylated polymer compound having a cyanopropyl group. These cyanoalkylated polymer compounds are synthesized by addition reaction of a nitrile with a saccharide having a hydroxyl group, a polysaccharide, polyvinyl alcohol, or a derivative thereof. For example, a cyanoethylated polymer compound can be synthesized by adding acrylonitrile to a saccharide having a hydroxyl group, a polysaccharide, polyvinyl alcohol, or a derivative thereof.

シアノアルキル化高分子化合物の合成原料である糖類、多糖類、これらの誘導体としては、サッカロース、ソルビトール等の糖類、セルロース、デンプン、プルラン等の多糖類、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース等のヒドロキシアルキルセルロース、ヒドロキシプロピルデンプン等のヒドロキシアルキルデンプン、セルロース、プルラン又はデンプンとグリシドールとの反応によって得られるジヒドロキシプロピルセルロース、ジヒドロキシプロピルプルラン、ジヒドロキシプロピルデンプン等のジヒドロキシアルキル多糖類を挙げることができるが、これらに限定されるものではない。   Saccharides and polysaccharides that are raw materials for synthesizing cyanoalkylated polymer compounds, and derivatives thereof include saccharides such as saccharose and sorbitol, polysaccharides such as cellulose, starch, and pullulan, and hydroxyalkylcelluloses such as hydroxyethylcellulose and hydroxypropylcellulose. , Hydroxyalkyl starch such as hydroxypropyl starch, cellulose, pullulan, or dihydroxyalkyl polysaccharides such as dihydroxypropylcellulose, dihydroxypropyl pullulan and dihydroxypropyl starch obtained by reaction of starch with glycidol, but are not limited thereto. Is not to be done.

これらのシアノアルキル化高分子化合物の中でも、シアノエチル化高分子化合物が貴金属含有微粒子の保護剤として好適である。特に好ましいシアノエチル化高分子化合物としては、水酸基を有するサッカロース、デンプン、セルロース、プルラン、ポリビニルアルコールより選ばれた少なくとも1種に、アクリロニトリルを付加反応させることによって合成されたものがある。その中でも特に、ポリビニルアルコールを合成原料に用いたシアノエチルポリビニルアルコールの使用が好ましい。   Among these cyanoalkylated polymer compounds, cyanoethylated polymer compounds are suitable as protective agents for noble metal-containing fine particles. Particularly preferred cyanoethylated polymer compounds include those synthesized by addition reaction of acrylonitrile with at least one selected from saccharose having a hydroxyl group, starch, cellulose, pullulan, and polyvinyl alcohol. Among these, the use of cyanoethyl polyvinyl alcohol using polyvinyl alcohol as a synthetic raw material is particularly preferable.

また、上記シアノアルキル化高分子化合物と共に、上述した化学式1〜3で示される繰り返し単位のうち少なくとも一つを分子内に有する高分子樹脂、例えば、ポリビニルアルコール、ポリビニルアセタール(ポリビニルブチラール、ポリビニルフォルマールなど)、ポリビニルエステル(ポリ酢酸ビニル、ポリプロピオン酸ビニルなど)を混合して使用することも可能である。更に、上記シアノエチル化高分子化合物を、既知の合成方法により、例えばシリコンやアクリル等の他の樹脂に共重合させたブロック共重合体あるいはグラフト共重合体も、シアノアルキル化高分子化合物の1種として使用することができる。   Further, together with the cyanoalkylated polymer compound, a polymer resin having at least one of the repeating units represented by Chemical Formulas 1 to 3 in the molecule, such as polyvinyl alcohol, polyvinyl acetal (polyvinyl butyral, polyvinyl formal) Etc.) and polyvinyl esters (polyvinyl acetate, polyvinyl propionate, etc.) can also be mixed and used. Furthermore, a block copolymer or graft copolymer obtained by copolymerizing the cyanoethylated polymer compound with another resin such as silicon or acrylic by a known synthesis method is also a kind of cyanoalkylated polymer compound. Can be used as

ただし、貴金属含有微粒子が含まれる透明導電層形成用塗布液を用い、塗布法によりブラウン管(CRT)等の表示装置の前面板等に透明導電層を形成する過程において、良好な導電性の透明導電層を得るためには、均一に分散している貴金属含有微粒子が網目状に凝集し、導電パスが形成されることが必要である。例えば、保護剤である高分子樹脂の貴金属含有微粒子への吸着が強い場合、その配合量によっては、貴金属含有微粒子の分散安定性は向上するが、導電パスの形成が不十分となり、形成される透明導電層の導電性が著しく悪化する場合がある。従って、高分子樹脂としてのシアノアルキル化高分子化合物と貴金属含有微粒子との配合割合は、最適化される必要がある。   However, in the process of forming a transparent conductive layer on a front plate of a display device such as a cathode ray tube (CRT) by a coating method using a coating liquid for forming a transparent conductive layer containing noble metal-containing fine particles, a transparent conductive layer having good conductivity In order to obtain a layer, it is necessary that the uniformly dispersed noble metal-containing fine particles are aggregated in a network to form a conductive path. For example, when the polymer resin as the protective agent is strongly adsorbed to the noble metal-containing fine particles, depending on the amount of the polymer resin, the dispersion stability of the noble metal-containing fine particles is improved, but the formation of the conductive path is insufficient and formed. The conductivity of the transparent conductive layer may be significantly deteriorated. Therefore, the blending ratio of the cyanoalkylated polymer compound as the polymer resin and the noble metal-containing fine particles needs to be optimized.

即ち、上記シアノアルキル化高分子化合物と貴金属含有微粒子とは、シアノアルキル化高分子化合物(高分子樹脂)1重量部に対して貴金属含有微粒子が5〜500重量部の割合で配合されていることが必要である。シアノアルキル化高分子化合物1重量部に対し貴金属含有微粒子が500重量部を超える場合、貴金属含有微粒子の分散性を向上させる効果が少なく、優れた塗布性と貯蔵安定性を有する透明導電層形成用塗布液が得られない。また、シアノアルキル化高分子化合物1重量部に対し貴金属含有微粒子が5重量部より少ない場合には、成膜後に膜中に残留する樹脂量が過剰となるため、形成された透明導電層の導電性が低下し、十分な電界シールド効果が得られない。   That is, the cyanoalkylated polymer compound and the noble metal-containing fine particles are blended in a ratio of 5 to 500 parts by weight of the noble metal-containing fine particles with respect to 1 part by weight of the cyanoalkylated polymer compound (polymer resin). is required. When the precious metal-containing fine particles exceed 500 parts by weight with respect to 1 part by weight of the cyanoalkylated polymer compound, the effect of improving the dispersibility of the precious metal-containing fine particles is small, and for forming a transparent conductive layer having excellent coating properties and storage stability. A coating solution cannot be obtained. Further, when the precious metal-containing fine particles are less than 5 parts by weight with respect to 1 part by weight of the cyanoalkylated polymer compound, the amount of resin remaining in the film becomes excessive after the film formation, so that the conductivity of the formed transparent conductive layer And the sufficient electric field shielding effect cannot be obtained.

本発明の透明導電層形成用塗布液に適用する貴金属含有微粒子としては、金又は白金の単体微粒子、金及び/又は白金と銀とからなる貴金属合金微粒子、銀微粒子の表面が金及び/又は白金でコートされた貴金属コート銀微粒子のいずれかが好ましい。尚、銀微粒子の表面が金及び/又は白金でコートされた貴金属コート銀微粒子については、透明導電層形成過程の加熱処理によって合金化層が形成される可能性があり、その場合には銀微粒子表面をコーティングしているコート層が金及び/又は白金のみによって構成されているとは限らない。このように透明導電層内において合金化層が形成された貴金属コート銀微粒子も、本発明における貴金属含有微粒子に含まれるものである。   As the noble metal-containing fine particles applied to the coating liquid for forming a transparent conductive layer of the present invention, gold or platinum simple particles, gold and / or noble metal alloy fine particles comprising platinum and silver, and the surface of the silver fine particles are gold and / or platinum. Any of the noble metal-coated silver fine particles coated with is preferred. In addition, about the noble metal coat silver fine particle by which the surface of the silver fine particle was coated with gold and / or platinum, an alloying layer may be formed by the heat treatment in the transparent conductive layer forming process. The coat layer that coats the surface is not necessarily composed of only gold and / or platinum. The noble metal-coated silver fine particles in which the alloying layer is formed in the transparent conductive layer as described above are also included in the noble metal-containing fine particles in the present invention.

また、上記貴金属含有微粒子は、その平均粒径が1〜100nmであることを要する。平均粒径が1nm未満の場合、その微粒子の製造が困難であるうえ、塗布液中で極めて凝集しやすくなるため実用的でない。逆に、平均粒径が100nmを超えると、形成された透明導電層の可視光線透過率が低くなり過ぎ、仮に膜厚を薄く設定して可視光線透過率を高くした場合には表面抵抗が高くなり過ぎるため、実用的な透明導電層が得られない。尚、ここでいう平均粒径とは、透過電子顕微鏡(TEM)で観察される微粒子の平均粒径を示している。   The noble metal-containing fine particles are required to have an average particle diameter of 1 to 100 nm. When the average particle size is less than 1 nm, it is difficult to produce the fine particles, and it is extremely impractical to aggregate in the coating solution. Conversely, if the average particle size exceeds 100 nm, the visible light transmittance of the formed transparent conductive layer becomes too low, and if the film thickness is set thin and the visible light transmittance is increased, the surface resistance is high. Therefore, a practical transparent conductive layer cannot be obtained. In addition, the average particle diameter here has shown the average particle diameter of the microparticles | fine-particles observed with a transmission electron microscope (TEM).

次に、本発明の透明導電層形成用塗布液の製造方法について説明する。貴金属含有微粒子が貴金属コート銀微粒子である場合を例にとって説明すると、まず、既知の方法[例えば、Carey−Lea法:Am. J. Sci.,37,38,47(1889)参照]により、銀微粒子のコロイド分散液を調製する。具体的には、硝酸銀水溶液に硫酸鉄(II)水溶液とクエン酸ナトリウム水溶液の混合液を加えて反応させ、沈降物を濾過・洗浄した後、純水を加えることにより銀微粒子のコロイド分散液が得られる。   Next, the manufacturing method of the coating liquid for transparent conductive layer formation of this invention is demonstrated. The case where the noble metal-containing fine particles are noble metal-coated silver fine particles will be described as an example. First, silver is obtained by a known method [see, for example, Carey-Lea method: Am. J. Sci., 37, 38, 47 (1889)]. A colloidal dispersion of fine particles is prepared. Specifically, a mixed solution of an iron (II) sulfate aqueous solution and an aqueous sodium citrate solution is added to a silver nitrate aqueous solution and reacted, and after the precipitate is filtered and washed, pure water is added to obtain a colloidal dispersion of silver fine particles. can get.

この銀微粒子コロイド分散液に、ヒドラジン等の還元剤溶液と、金酸塩溶液及び/又は白金酸塩溶液等を加えることにより、銀微粒子表面に金や白金の単体又は金と白金の複合体等がコーティングされた貴金属コート銀微粒子の分散液を得ることができる。必要に応じて、上記コーティング工程で、銀微粒子のコロイド分散液か又は金酸塩溶液や白金酸塩溶液の片方又は両方に、少量の分散剤を加えてもよい。尚、上記銀微粒子コロイド分散液及び貴金属コート銀微粒子分散液等の調製方法は、最終的に平均粒径1〜100nmの貴金属含有微粒子の分散液が得られれば任意の方法でよく、上記方法に限定されるものではない。   By adding a reducing agent solution such as hydrazine and a gold salt solution and / or a platinum salt solution to the silver fine particle colloidal dispersion, gold or platinum alone or a gold-platinum complex or the like on the surface of the silver fine particles A dispersion of noble metal-coated silver fine particles coated with can be obtained. If necessary, a small amount of a dispersant may be added to the colloidal dispersion of silver fine particles or one or both of the gold salt solution and the platinum salt solution in the coating step. The silver fine particle colloid dispersion and the noble metal coated silver fine particle dispersion may be prepared by any method as long as a dispersion of noble metal-containing fine particles having an average particle diameter of 1 to 100 nm is finally obtained. It is not limited.

その後、透析、電気透析、イオン交換、限外濾過等の方法で、分散液内の電解質濃度を下げることが好ましい。電解質濃度を下げないと、一般にコロイドは電解質で凝集してしまうからであり、この現象はSchulze−Hardy則として知られている。このように電解質濃度を下げた貴金属コート銀微粒子分散液は、減圧エバポレーター、限外濾過等の方法で濃縮処理し、有機溶媒等の添加による成分調整(微粒子濃度、水分濃度等)等を行って、貴金属コート銀微粒子の分散濃縮液とする。尚、この濃縮処理は、減圧エバポレーター、限外濾過等の常用の方法で行うことができる。   Thereafter, the electrolyte concentration in the dispersion is preferably lowered by a method such as dialysis, electrodialysis, ion exchange, or ultrafiltration. This is because colloids generally aggregate in the electrolyte unless the electrolyte concentration is lowered, and this phenomenon is known as the Schulze-Hardy law. In this way, the noble metal-coated silver fine particle dispersion with the electrolyte concentration lowered is concentrated by a method such as a vacuum evaporator or ultrafiltration, and component adjustment (fine particle concentration, water concentration, etc.) is performed by adding an organic solvent or the like. A dispersion concentrate of noble metal-coated silver fine particles is used. In addition, this concentration process can be performed by conventional methods, such as a vacuum evaporator and ultrafiltration.

貴金属コート銀微粒子の分散濃縮液は、次に凝集処理を行って、貴金属コート銀微粒子を連鎖状に凝集した凝集貴金属コート銀微粒子とすることが好ましい。即ち、貴金属コート銀微粒子分散濃縮液を撹拌しながらヒドラジン溶液を少量ずつ添加し、例えば室温で数分から数時間程度保持して凝集させた後、過酸化水素溶液を添加してヒドラジンを分解することで、鎖状凝集貴金属コート銀微粒子が得られる。   The dispersion concentrate of the noble metal-coated silver fine particles is preferably subjected to agglomeration treatment to give aggregated noble metal-coated silver fine particles obtained by agglomerating the noble metal-coated silver fine particles in a chain form. That is, a hydrazine solution is added little by little while stirring the noble metal-coated silver fine particle dispersion and concentrated, for example, kept at room temperature for several minutes to several hours to aggregate, and then added with a hydrogen peroxide solution to decompose hydrazine. Thus, chain-aggregated noble metal-coated silver fine particles can be obtained.

得られた鎖状凝集貴金属コート銀微粒子分散(濃縮)液に、保護剤のシアノアルキル化高分子化合物、及び有機溶媒等を添加して、微粒子濃度、水分濃度、高沸点有機溶媒濃度等の成分調整を行った後、鎖状凝集貴金属コート銀微粒子を含有する透明導電膜形成用塗布液が得られる。   Components such as fine particle concentration, moisture concentration, and high boiling point organic solvent concentration are added to the obtained chain aggregated noble metal coated silver fine particle dispersion (concentrated) liquid by adding a cyanoalkylated polymer compound as a protective agent and an organic solvent. After the adjustment, a coating liquid for forming a transparent conductive film containing chain-aggregated noble metal-coated silver fine particles is obtained.

透明導電膜形成用塗布液に用いる有機溶剤は、特に制限はなく、塗布方法や製膜条件により適宜に選定することができる。例えば、メタノール(MA)、エタノール(EA)、1−プロパノール(NPA)、イソプロパノール(IPA)、ブタノール、ペンタノール、ベンジルアルコール、ジアセトンアルコール等のアルコール系溶媒、アセトン、メチルエチルケトン(MEK)、メチルプロピルケトン、メチルイソブチルケトン(MIBK)、シクロヘキサノン、イソホロン等のケトン系溶媒、エチレングリコールモノメチルエーテル(MCS)、エチレングリコールモノエチルエーテル(ECS)、エチレングリコールイソプロピルエーテル(IPC)、プロピレングリコールメチルエーテル(PGM)、プロピレングリコールエチルエーテル(PE)、プロピレングリコールメチルエーテルアセテート(PGM−AC)、プロピレングリコールエチルエーテルアセテート(PE−AC)等のグリコール誘導体、ホルムアミド(FA)、N−メチルホルムアミド、ジメチルホルムアミド(DMF)、ジメチルアセトアミド、ジメチルスルフォキシド(DMSO)、N−メチル−2−ピロリドン(NMP)等が挙げられるが、これらに限定されるものではない。   There is no restriction | limiting in particular in the organic solvent used for the coating liquid for transparent conductive film formation, According to the coating method and film forming conditions, it can select suitably. For example, alcohol solvents such as methanol (MA), ethanol (EA), 1-propanol (NPA), isopropanol (IPA), butanol, pentanol, benzyl alcohol, diacetone alcohol, acetone, methyl ethyl ketone (MEK), methylpropyl Ketone solvents such as ketone, methyl isobutyl ketone (MIBK), cyclohexanone, isophorone, ethylene glycol monomethyl ether (MCS), ethylene glycol monoethyl ether (ECS), ethylene glycol isopropyl ether (IPC), propylene glycol methyl ether (PGM) , Propylene glycol ethyl ether (PE), propylene glycol methyl ether acetate (PGM-AC), propylene glycol ethyl ether Glycol derivatives such as acetate (PE-AC), formamide (FA), N-methylformamide, dimethylformamide (DMF), dimethylacetamide, dimethylsulfoxide (DMSO), N-methyl-2-pyrrolidone (NMP), etc. Although it is mentioned, it is not limited to these.

本発明の透明導電膜形成用塗布液には、有色顔料微粒子を添加してもよい。有色顔料微粒子を添加した透明導電膜形成用塗布液を用いることにより、透明導電層が形成された透明導電性基材の透過率を100%より低い所定範囲(40〜95%、一般的には40〜75%)に調整できるため、良好な導電性、低い反射率等の諸特性に加え、その画像のコントラストを向上させて表示画面を更に見易くさせることができ、上述したCRT画面の平面化に伴う要求に対応することが可能となる。   Colored pigment fine particles may be added to the coating liquid for forming a transparent conductive film of the present invention. By using a coating liquid for forming a transparent conductive film to which colored pigment fine particles are added, the transmittance of the transparent conductive substrate on which the transparent conductive layer is formed is within a predetermined range lower than 100% (40 to 95%, generally 40-75%), in addition to various properties such as good conductivity and low reflectance, the contrast of the image can be improved to make the display screen easier to see, and the above-described CRT screen can be flattened. It is possible to meet the demands associated with.

上記有色顔料微粒子には、カーボン、チタンブラック、窒化チタン、複合酸化物顔料、コバルトバイオレット、モリブデンオレンジ、群青、紺青、キナクリドン系顔料、ジオキサジン系顔料、アントラキノン系顔料、ペリレン系顔料、イソインドリノン系顔料、アゾ系顔料、及びフタロシアニン系顔料から選ばれた1種以上の微粒子、あるいは更にその表面が酸化ケイ素でコーティング処理された上記微粒子を用いることができる。   The colored pigment fine particles include carbon, titanium black, titanium nitride, composite oxide pigment, cobalt violet, molybdenum orange, ultramarine, bitumen, quinacridone pigment, dioxazine pigment, anthraquinone pigment, perylene pigment, isoindolinone. One or more fine particles selected from pigments, azo pigments, and phthalocyanine pigments, or the above-mentioned fine particles whose surface is coated with silicon oxide can be used.

次に、上記した本発明に係る透明導電層形成用塗液を用いることにより、透明基板上に形成された透明導電層と、更にその上に形成された透明コート層とからなる透明2層膜を備えた透明導電性基材を得ることができる。透明基板は、例えばCRTやPDPの前面板を構成するものであり、ガラス基板、プラスチック基板等を用いることができる。   Next, a transparent two-layer film comprising a transparent conductive layer formed on a transparent substrate and a transparent coating layer formed thereon by using the above-described coating liquid for forming a transparent conductive layer according to the present invention. A transparent conductive substrate provided with can be obtained. The transparent substrate constitutes, for example, a CRT or PDP front plate, and a glass substrate, a plastic substrate, or the like can be used.

透明基板上に上記透明導電層と透明コート層とで構成される透明2層膜を形成するには、以下の方法を用いることができる。例えば、ガラス基板、プラスチック基板等の透明基板上に、本発明の透明導電層形成用塗液をスプレーコート、スピンコート、ワイヤーバーコート、ドクターブレードコート等の手法にて塗布し、必要に応じて乾燥した後、次に同様の手法により、例えばシリカゾル等を主成分とする透明コート層形成用塗布液をオーバーコートする。その後、例えば50〜350℃程度の温度で加熱処理を施し、透明コート層形成用塗布液を硬化させることによって透明2層膜を形成する。   In order to form a transparent two-layer film composed of the transparent conductive layer and the transparent coat layer on the transparent substrate, the following method can be used. For example, on a transparent substrate such as a glass substrate or a plastic substrate, the transparent conductive layer forming coating liquid of the present invention is applied by a technique such as spray coating, spin coating, wire bar coating, doctor blade coating, etc. After drying, the coating solution for forming a transparent coat layer mainly containing silica sol or the like is then overcoated by the same method. Then, for example, a heat treatment is performed at a temperature of about 50 to 350 ° C., and the transparent coating layer forming coating solution is cured to form a transparent two-layer film.

上記シリカゾル等を主成分とする透明コート層形成用塗布液をオーバーコートした際、予め形成された透明導電層の網目状構造の穴の部分に、オーバーコートしたシリカゾル液が染み込み、このシリカゾル液が加熱処理により酸化ケイ素を主成分とするバインダーマトリックスとなることで、透過率の向上と導電性の向上とが達成される。同時に、網目状構造の穴の部分を介して、透明基板と酸化ケイ素等のバインダーマトリックスとの接触面積が増大するため、透明基板とバインダーマトリックスの結合が強くなり、強度の向上も図られる。   When the coating liquid for forming a transparent coating layer mainly composed of the above silica sol or the like is overcoated, the overcoated silica sol liquid soaks into the holes of the network structure of the previously formed transparent conductive layer. By forming a binder matrix containing silicon oxide as a main component by heat treatment, an improvement in transmittance and an improvement in conductivity are achieved. At the same time, the contact area between the transparent substrate and the binder matrix such as silicon oxide is increased through the holes of the network structure, so that the bond between the transparent substrate and the binder matrix is strengthened and the strength is improved.

更に、貴金属含有微粒子が酸化ケイ素を主成分とする上記バインダーマトリックス中に分散された透明導電層の光学定数(n−ik)においては、屈折率nはさほど大きくないが、消衰係数kが大きいため、上記透明導電層と透明コート層との透明2層膜構造によって、透明2層膜の反射率を大幅に低下させることが可能である。   Furthermore, in the optical constant (n-ik) of the transparent conductive layer in which the noble metal-containing fine particles are dispersed in the binder matrix containing silicon oxide as a main component, the refractive index n is not so large, but the extinction coefficient k is large. Therefore, the reflectance of the transparent two-layer film can be greatly reduced by the transparent two-layer film structure of the transparent conductive layer and the transparent coat layer.

ここで、上記シリカゾル液としては、オルトアルキルシリケートに水や酸触媒を加えて加水分解し、脱水縮重合を進ませた重合物、あるいは既に4〜5量体まで重合を進ませた市販のアルキルシリケート溶液を更に加水分解と脱水縮重合を進行させた重合物等を利用することができる。尚、脱水縮重合が進行し過ぎると、溶液粘度が上昇して最終的には固化してしまうので、脱水縮重合の度合いについては、透明基板上に塗布可能な上限粘度以下に調整する。この脱水縮重合の度合いは、上記上限粘度以下のレベルであれば特に制限されないが、膜強度、耐候性等を考慮すると、重量平均分子量で500〜3000程度が好ましい。   Here, as the silica sol solution, a hydrolyzed polymer obtained by adding water or an acid catalyst to an orthoalkyl silicate to promote dehydration condensation polymerization, or a commercially available alkyl having already been polymerized to a tetramer to a pentamer. A polymer obtained by further hydrolyzing and dehydrating condensation polymerization of the silicate solution can be used. If the dehydration condensation polymerization proceeds too much, the solution viscosity increases and eventually solidifies. Therefore, the degree of dehydration condensation polymerization is adjusted to be equal to or lower than the upper limit viscosity that can be applied on the transparent substrate. The degree of this dehydration condensation polymerization is not particularly limited as long as it is a level equal to or lower than the above upper limit viscosity, but considering film strength, weather resistance and the like, a weight average molecular weight of about 500 to 3000 is preferable.

かかるアルキルシリケート加水分解重合物(シリカゾル)は、透明2層膜の加熱焼成時に脱水縮重合反応がほぼ完結して、硬いシリケート膜(酸化ケイ素を主成分とする膜)になる。尚、上記シリカゾル液に、弗化マグネシウム微粒子、アルミナゾル、チタニアゾル、ジルコニアゾル等を加え、透明コート層の屈折率を調節して、透明2層膜の反射率を変えることも可能である。   Such an alkylsilicate hydrolyzed polymer (silica sol) undergoes almost complete dehydration polycondensation reaction when the transparent bilayer film is heated and fired, and becomes a hard silicate film (film mainly composed of silicon oxide). It is also possible to change the reflectance of the transparent two-layer film by adding fine particles of magnesium fluoride, alumina sol, titania sol, zirconia sol, etc. to the silica sol solution to adjust the refractive index of the transparent coating layer.

本発明に係る透明導電層形成用塗布液を用いて形成された透明導電層を具備する透明導電性基材は、透明導電層形成用塗布液の優れた塗布性から製品歩留まりが向上すると共に、形成された透明導電層は欠陥の少ない良質な被膜となり、且つ従来の透明導電層より発達した網目状構造を有するため、高透過率、低抵抗、低反射率、高強度等の優れた諸特性を有している。   The transparent conductive substrate comprising a transparent conductive layer formed using the transparent conductive layer forming coating solution according to the present invention improves the product yield from the excellent coating properties of the transparent conductive layer forming coating solution, The formed transparent conductive layer is a high-quality film with few defects and has a network structure developed from conventional transparent conductive layers, so it has excellent properties such as high transmittance, low resistance, low reflectance, and high strength. have.

そのため、本発明に係わる透明導電性基材は、例えば、上述したブラウン管(CRT)、プラズマディスプレイパネル(PDP)、蛍光表示管(VFD)、フィールドエミッションディスプレイ(FED)、エレクトロルミネッセンスディスプレイ(ELD)、液晶ディスプレイ(LCD)等の表示装置における前面板等として、好適に用いることができる。   Therefore, the transparent conductive substrate according to the present invention includes, for example, the above-mentioned cathode ray tube (CRT), plasma display panel (PDP), fluorescent display tube (VFD), field emission display (FED), electroluminescence display (ELD), It can be suitably used as a front plate or the like in a display device such as a liquid crystal display (LCD).

以下、本発明の実施例を具体的に説明するが、本発明はこれら実施例に限定されるものではない。また、本文中の「%」は、透過率、反射率、ヘイズ値の%を除いて「重量%」を示し、また「部」は「重量部」を示している。   Examples of the present invention will be specifically described below, but the present invention is not limited to these examples. In the text, “%” indicates “% by weight” excluding% of transmittance, reflectance, and haze value, and “part” indicates “part by weight”.

[実施例1]
前述のCarey−Lea法により銀微粒子のコロイド分散液を調製した。具体的には、9%硝酸銀水溶液330gに、23%硫酸鉄(II)水溶液390gと37.5%クエン酸ナトリウム水溶液480gの混合液を加え、沈降物を濾過・洗浄した後、純水を加えて、銀微粒子のコロイド分散液(Ag:0.15%)(A液)を調製した。尚、上記銀微粒子のコロイド分散液(A液)を透過電子顕微鏡で観察した結果、銀微粒子の平均粒径は4.8nmであった。
[Example 1]
A colloidal dispersion of silver fine particles was prepared by the aforementioned Carey-Lea method. Specifically, a mixture of 390 g of 23% iron (II) sulfate aqueous solution and 480 g of 37.5% sodium citrate aqueous solution was added to 330 g of 9% silver nitrate aqueous solution, the precipitate was filtered and washed, and then pure water was added. Then, a colloidal dispersion of silver fine particles (Ag: 0.15%) (A solution) was prepared. In addition, as a result of observing the colloidal dispersion liquid (A liquid) of the silver fine particles with a transmission electron microscope, the average particle diameter of the silver fine particles was 4.8 nm.

この銀微粒子のコロイド分散液(A液)600gにヒドラジン1水和物(N・HO)の1%水溶液80.0gを加えて撹拌しながら、金酸カリウム[KAu(OH)]水溶液(Au:0.075%)4800gと1%高分子分散剤水溶液2.0gの混合液を加え、表面に金単体がコーティングされた貴金属コート銀微粒子のコロイド分散液を得た。 80.0 g of a 1% aqueous solution of hydrazine monohydrate (N 2 H 4 .H 2 O) was added to 600 g of this silver fine particle colloidal dispersion (liquid A), and the mixture was stirred and potassium metalate [KAu (OH) 4 ] A mixed solution of 4800 g of an aqueous solution (Au: 0.075%) and 2.0 g of a 1% polymer dispersant aqueous solution was added to obtain a colloidal dispersion of noble metal-coated silver fine particles whose surface was coated with simple gold.

この貴金属コート銀微粒子のコロイド分散液をイオン交換樹脂(三菱化学(株)製、商品名ダイヤイオンSK1B,SA20AP)で脱塩した後、限外濾過を行い、貴金属コート銀微粒子の濃縮を行った。得られた液にエタノール(EA)を加え、貴金属コート銀微粒子の分散(濃縮)液(Ag−Au:1.6%、水:20.0%、EA:78.4%)(B液)を得た。この貴金属コート銀微粒子の分散(濃縮)液(B液)を透過電子顕微鏡で観察したところ、貴金属コート銀微粒子の平均粒径は6.2nmであった。   The colloidal dispersion of the noble metal-coated silver fine particles was desalted with an ion exchange resin (product name: Diaion SK1B, SA20AP, manufactured by Mitsubishi Chemical Corporation), and then ultrafiltered to concentrate the noble metal-coated silver fine particles. . Ethanol (EA) was added to the resulting liquid, and a dispersion (concentration) liquid of precious metal-coated silver fine particles (Ag-Au: 1.6%, water: 20.0%, EA: 78.4%) (liquid B) Got. When the dispersion (concentration) liquid (liquid B) of the noble metal-coated silver fine particles was observed with a transmission electron microscope, the average particle diameter of the noble metal-coated silver fine particles was 6.2 nm.

この貴金属コート銀微粒子の分散(濃縮)液(B液)60gを撹拌しながら、ヒドラジン水溶液(N・HO:0.75%)0.8g(Ag−Au濃度1.6%のB液に対して100ppm)を1分間かけて添加し、室温で15分間保持した。その後、更に過酸化水素水溶液(H:1.5%)0.6gを1分間かけて添加することで、凝集貴金属コート銀微粒子分散(濃縮)液(C液)を得た。この凝集貴金属コート銀微粒子分散(濃縮)液(C液)を透過電子顕微鏡で観察した結果、凝集貴金属コート銀微粒子は、数珠状に連なり且つ一部分岐した形状(個々の凝集貴金属コート銀微粒子における最大の長さ:100〜300nm)を有していた。 While stirring 60 g of this precious metal-coated silver fine particle dispersion (concentration) solution (solution B), 0.8 g of hydrazine aqueous solution (N 2 H 4 .H 2 O: 0.75%) (Ag—Au concentration 1.6%) Was added over 1 minute and held at room temperature for 15 minutes. Thereafter, 0.6 g of an aqueous hydrogen peroxide solution (H 2 O 2 : 1.5%) was further added over 1 minute to obtain an aggregated noble metal-coated silver fine particle dispersion (concentration) liquid (C liquid). As a result of observing this aggregated noble metal-coated silver fine particle dispersion (concentration) liquid (liquid C) with a transmission electron microscope, the aggregated noble metal-coated silver fine particles are arranged in a beaded shape and partially branched (maximum of individual aggregated noble metal-coated silver fine particles Length: 100-300 nm).

尚、上記貴金属コート銀微粒子の分散(濃縮)液(B液)にヒドラジン溶液を添加した際の貴金属コート銀微粒子の安定性低下、及び、ヒドラジン溶液添加により凝集した貴金属コート銀微粒子の分散(濃縮)液に過酸化水素溶液を添加した際の安定性向上は、それら分散(濃縮)液のゼータ電位の測定値から科学的に確認することができた。   In addition, the dispersion (concentration) of the noble metal-coated silver fine particles aggregated by the addition of the hydrazine solution, and the stability reduction of the noble metal-coated silver fine particles when the hydrazine solution is added to the dispersion (concentration) solution (liquid B) of the noble metal-coated silver fine particles The stability improvement when hydrogen peroxide solution was added to the solution could be scientifically confirmed from the measured zeta potential of these dispersion (concentrated) solutions.

上記凝集貴金属コート銀微粒子分散(濃縮)液(C液)に、保護剤として信越化学工業(株)製のシアノエチル化高分子化合物(商品名:シアノレジンCR−V)と、エタノール(EA)、プロピレングリコールモノメチルエーテル(PGM)、ジアセトンアルコール(DAA)、ホルムアミド(FA)を加え、透明導電層形成用塗布液(Ag−Au:0.30%、CR−V:0.015%、水:6.47%、PGM:20.00%、DAA:10.00%、FA:0.05%、EA:63.165%)を得た。   A cyanoethylated polymer compound (trade name: cyanoresin CR-V) manufactured by Shin-Etsu Chemical Co., Ltd., ethanol (EA), propylene as a protective agent in the above-mentioned aggregated noble metal-coated silver fine particle dispersion (concentration) liquid (C liquid) Glycol monomethyl ether (PGM), diacetone alcohol (DAA), formamide (FA) are added, and a transparent conductive layer forming coating solution (Ag-Au: 0.30%, CR-V: 0.015%, water: 6) .47%, PGM: 20.00%, DAA: 10.00%, FA: 0.05%, EA: 63.165%).

次に、この凝集貴金属コート銀微粒子を含有する透明導電層形成用塗布液を、濾過精度(ポアサイズ):5μmフィルターで濾過した後、45℃に加熱されたガラス基板(17インチサイズのCRT用フェイスパネル)上に、スピンコート(90rpm、10秒間−130rpm、80秒間)により塗布した。続けて、その上にシリカゾル液(D液)をスピンコート(150rpm、60秒間)した後、180℃で20分間硬化させた。尚、上記ガラス基板は、使用前に酸化セリウム系研磨剤で研磨処理し、純水で洗浄し乾燥したものを用いた。   Next, the coating solution for forming a transparent conductive layer containing the aggregated noble metal-coated silver fine particles is filtered with a filtration accuracy (pore size): 5 μm filter, and then heated to 45 ° C. (17-inch size CRT face) (Panel) was applied by spin coating (90 rpm, 10 seconds to 130 rpm, 80 seconds). Subsequently, a silica sol solution (solution D) was spin coated (150 rpm, 60 seconds) thereon, and then cured at 180 ° C. for 20 minutes. The glass substrate used was polished with a cerium oxide abrasive before use, washed with pure water and dried.

このようにして、貴金属含有微粒子からなる透明導電層と、酸化ケイ素を主成分とするシリケート膜からなる透明コート層とで構成された、透明2層膜付きのガラス基板、即ち実施例1に係る透明導電性基材を得た。   Thus, a glass substrate with a transparent two-layer film, that is, a transparent conductive layer composed of noble metal-containing fine particles and a transparent coating layer composed of a silicate film containing silicon oxide as a main component, that is, according to Example 1. A transparent conductive substrate was obtained.

ここで、上記シリカゾル液(D液)は、メチルシリケート51(コルコート社製商品名)19.6部、エタノール57.8部、1%硝酸水溶液7.9部、純水14.7部を用いて、SiO(酸化ケイ素)固形分濃度が10%で、重量平均分子量が1050のものを調製し、最終的にSiO固形分濃度が0.8%となるように、イソプロピルアルコール(IPA)とn−ブタノール(NBA)の混合物(IPA/NBA=3/1)により希釈して得ている。 Here, 19.6 parts of methyl silicate 51 (trade name, manufactured by Colcoat Co.), 57.8 parts of ethanol, 7.9 parts of 1% nitric acid aqueous solution, and 14.7 parts of pure water were used as the silica sol solution (D solution). Then, an SiO 2 (silicon oxide) solid content concentration of 10% and a weight average molecular weight of 1,050 are prepared, and isopropyl alcohol (IPA) is finally adjusted so that the SiO 2 solid content concentration is 0.8%. And diluted with a mixture of n-butanol (NBA) (IPA / NBA = 3/1).

上記した実施例1に係る透明導電性基材の製造過程において、透明導電層形成用塗布液の塗布性を評価した。尚、塗布の際の基板温度(45℃)は、一般のCRT製造ラインでの基板温度(30〜45℃)において最も高い値に設定した。これは、基板温度が高いほど塗膜欠陥の発生が顕著であることから、より厳しい条件下で比較評価するためである。以下に塗布性の評価基準を示す。
○:基板上に流星状や線状の塗膜欠陥が目視でほとんど確認できない。
×:目視で確認できる流星状や線状の塗膜欠陥が2〜10個所程度ある。
××:目視で確認できる流星状や線状の塗膜欠陥が10個所以上ある。
In the production process of the transparent conductive substrate according to Example 1 described above, the coating property of the coating liquid for forming a transparent conductive layer was evaluated. In addition, the substrate temperature (45 degreeC) in the case of application | coating was set to the highest value in the substrate temperature (30-45 degreeC) in a general CRT manufacturing line. This is for the purpose of comparative evaluation under more severe conditions because the higher the substrate temperature, the more pronounced the occurrence of coating film defects. The applicability evaluation criteria are shown below.
A: Almost no meteor-like or linear coating film defects can be visually confirmed on the substrate.
X: There are about 2 to 10 meteor-like and linear coating film defects that can be visually confirmed.
XX: There are 10 or more meteor-like and linear coating film defects that can be visually confirmed.

また、実施例1に係る透明導電性基材について、ガラス基板上に形成された透明2層膜の膜特性(表面抵抗、可視光線透過率)を評価した。透明2層膜の表面抵抗は、三菱化学(株)製の表面抵抗計ロレスタAP(MCP−T400)を用いて測定した。可視光透過率は、村上色彩技術研究所製のヘイズメーター(HR−200)を用いて測定した。尚、凝集貴金属コート銀微粒子等の微粒子の形状、粒子サイズ(長さ)は、日本電子製の透過電子顕微鏡で評価した。   Moreover, about the transparent conductive base material which concerns on Example 1, the film | membrane characteristic (surface resistance, visible light transmittance | permeability) of the transparent bilayer film formed on the glass substrate was evaluated. The surface resistance of the transparent two-layer film was measured using a surface resistance meter Loresta AP (MCP-T400) manufactured by Mitsubishi Chemical Corporation. The visible light transmittance was measured using a haze meter (HR-200) manufactured by Murakami Color Research Laboratory. The shape and particle size (length) of fine particles such as aggregated noble metal-coated silver fine particles were evaluated with a transmission electron microscope made by JEOL.

ガラス基板(透明基板)を含まない透明2層膜だけの可視光透過率は、下記の計算式1により求めることができる。尚、本明細書においては、特に言及しない限り、透過率としては、透明基板を含まない透明2層膜だけの可視光透過率の値を用いている。   The visible light transmittance of only the transparent two-layer film not including the glass substrate (transparent substrate) can be obtained by the following calculation formula 1. In the present specification, unless otherwise stated, as the transmittance, the value of the visible light transmittance of only the transparent two-layer film not including the transparent substrate is used.

[計算式1]
透明基板を含まない透明2層膜だけの透過率(%)=[(透明基板ごと測定した透過率)/(透明基板の透過率)]×100
[Calculation Formula 1]
Transmittance (%) of only transparent two-layer film not including transparent substrate = [(transmittance measured for each transparent substrate) / (transmittance of transparent substrate)] × 100

上記実施例1に係る透明導電性基材について、透明2層膜の膜特性(表面抵抗、可視光線透過率)を、上記塗布性の評価と共に、下記表1に示した。   About the transparent conductive base material which concerns on the said Example 1, the film characteristic (surface resistance, visible light transmittance) of the transparent bilayer film was shown in following Table 1 with the said applicability | paintability evaluation.

[実施例2]
保護剤である上記シアノエチル化高分子化合物(商品名:シアノレジンCR−V)の配合量を変えた以外は実施例1と同様にして、透明導電層形成用塗布液(Ag−Au:0.30%、CR−V:0.03%(実施例1の2倍)、水:6.47%、PGM:20.00%、DAA:10.00%、FA:0.05%、EA:63.15%)を得た。
[Example 2]
A coating solution for forming a transparent conductive layer (Ag-Au: 0.30) was used in the same manner as in Example 1 except that the amount of the cyanoethylated polymer compound (trade name: Cyanoresin CR-V) as a protective agent was changed. %, CR-V: 0.03% (twice that of Example 1), water: 6.47%, PGM: 20.00%, DAA: 10.00%, FA: 0.05%, EA: 63 .15%).

この透明導電層形成用塗布液を用い、実施例1と同様に実施して、貴金属含有微粒子からなる透明導電層と、酸化ケイ素を主成分とするシリケート膜とからなる透明コート層で構成された、透明2層膜付きのガラス基板、即ち、実施例2に係る透明導電性基材を得た。   Using this coating liquid for forming a transparent conductive layer, it was carried out in the same manner as in Example 1, and was composed of a transparent conductive layer composed of noble metal-containing fine particles and a transparent coating layer composed of a silicate film mainly composed of silicon oxide. A glass substrate with a transparent two-layer film, that is, a transparent conductive substrate according to Example 2 was obtained.

実施例2に係る透明導電性基材について、実施例1と同様にして、透明導電層形成用塗布液の塗布性を評価すると共に、透明2層膜の膜特性(表面抵抗、可視光線透過率)を評価し、その結果を下記表1に示した。   About the transparent conductive base material which concerns on Example 2, while evaluating the applicability | paintability of the coating liquid for transparent conductive layer formation similarly to Example 1, the film | membrane characteristic (surface resistance, visible light transmittance of a transparent two-layer film) The results are shown in Table 1 below.

[実施例3]
着色顔料の窒化チタン(TiN)微粒子(ネツレン(株)製)4gと分散剤0.2gを、水25g及びエタノール10.8gに混合して、ジルコニアビーズと共にペイントシェーカー分散を行った後、イオン交換樹脂(三菱化学(株)製、商品名ダイヤイオンSK1B,SA20AP)で脱塩し、分散粒径80nmの窒化チタン微粒子分散液を得た。
[Example 3]
After 4g of titanium nitride (TiN) fine particles of pigment (Netulen Co., Ltd.) and 0.2g of dispersant are mixed in 25g of water and 10.8g of ethanol, paint shaker dispersion is performed with zirconia beads, and then ion exchange is performed. Desalting was carried out with a resin (trade name Diaion SK1B, SA20AP, manufactured by Mitsubishi Chemical Corporation) to obtain a titanium nitride fine particle dispersion having a dispersed particle size of 80 nm.

次に、実施例1で得られた凝集貴金属コート銀微粒子の濃縮液(C液)に、上記窒化チタン微粒子分散液、エタノール(EA)、プロピレングリコールモノメチルエーテル(PGM)、ジアセトンアルコール(DAA)、ホルムアミド(FA)を加え、透明導電層形成用塗布液(Ag−Au:0.30%、CR−V:0.015%、TiN:0.15、水:6.47%、PGM:20.00%、DAA:10.00%、FA:0.05%、EA:63.015%)を得た。この透明導電層形成用塗布液を透過電子顕微鏡で観察した結果、窒化チタン微粒子の平均粒径は20nmであった。   Next, the above-mentioned titanium nitride fine particle dispersion, ethanol (EA), propylene glycol monomethyl ether (PGM), diacetone alcohol (DAA) were added to the concentrated noble metal-coated silver fine particle concentrate (C solution) obtained in Example 1. Formamide (FA) was added, and a transparent conductive layer forming coating solution (Ag-Au: 0.30%, CR-V: 0.015%, TiN: 0.15, water: 6.47%, PGM: 20 0.000%, DAA: 10.00%, FA: 0.05%, EA: 63.015%). As a result of observing this coating liquid for forming a transparent conductive layer with a transmission electron microscope, the average particle diameter of the titanium nitride fine particles was 20 nm.

この透明導電層形成用塗布液を用い、実施例1と同様に実施して、貴金属含有微粒子及び窒化チタン微粒子からなる透明導電層と、酸化ケイ素を主成分とするシリケート膜からなる透明コート層とで構成された、透明2層膜付きのガラス基板、即ち実施例3に係る透明導電性基材を得た。   Using this coating liquid for forming a transparent conductive layer, the same procedure as in Example 1 was performed, and a transparent conductive layer made of noble metal-containing fine particles and titanium nitride fine particles, and a transparent coat layer made of a silicate film containing silicon oxide as a main component, A glass substrate with a transparent two-layer film, that is, a transparent conductive substrate according to Example 3 was obtained.

実施例3に係る透明導電性基材について、実施例1と同様にして、透明導電層形成用塗布液の塗布性を評価すると共に、透明2層膜の膜特性(表面抵抗、可視光線透過率)を評価し、その結果を下記表1に示した。   About the transparent conductive base material which concerns on Example 3, while evaluating the applicability | paintability of the coating liquid for transparent conductive layer formation similarly to Example 1, the film characteristic (surface resistance, visible light transmittance) of a transparent two-layer film The results are shown in Table 1 below.

[比較例1]
保護剤として上記CR−Vの代わりにポリビニルブチラール(PVB)を用いた以外は実施例1と同様にして、透明導電層形成用塗布液(Ag−Au:0.30%、PVB:0.015%、水:6.47%、PGM:20.00%、DAA:10.00%、FA:0.05%、EA:63.165%)を得た。
[Comparative Example 1]
A coating solution for forming a transparent conductive layer (Ag-Au: 0.30%, PVB: 0.015) was used in the same manner as in Example 1 except that polyvinyl butyral (PVB) was used instead of CR-V as a protective agent. %, Water: 6.47%, PGM: 20.00%, DAA: 10.00%, FA: 0.05%, EA: 63.165%).

この透明導電層形成用塗布液を用い、実施例1と同様に実施して、貴金属含有微粒子からなる透明導電層と、酸化ケイ素を主成分とするシリケート膜とからなる透明コート層で構成された、透明2層膜付きのガラス基板、即ち、比較例1に係る透明導電性基材を得た。   Using this coating liquid for forming a transparent conductive layer, it was carried out in the same manner as in Example 1, and was composed of a transparent conductive layer composed of noble metal-containing fine particles and a transparent coating layer composed of a silicate film mainly composed of silicon oxide. Then, a glass substrate with a transparent two-layer film, that is, a transparent conductive substrate according to Comparative Example 1 was obtained.

比較例1に係る透明導電性基材について、実施例1と同様にして、透明導電層形成用塗布液の塗布性を評価すると共に、透明2層膜の膜特性(表面抵抗、可視光線透過率)を評価し、その結果を下記表1に示した。   About the transparent conductive base material concerning the comparative example 1, while evaluating the applicability | paintability of the coating liquid for transparent conductive layer formation similarly to Example 1, the film characteristic (surface resistance, visible light transmittance) of a transparent two-layer film The results are shown in Table 1 below.

[比較例2]
上記CR−Vの配合量を変えた以外は実施例1と同様にして、透明導電層形成用塗布液(Ag−Au:0.30%、CR−V:0.15%、水:6.47%、PGM:20.00%、DAA:10.00%、FA:0.05%、EA:63.03%)を得た。
[Comparative Example 2]
A transparent conductive layer forming coating solution (Ag-Au: 0.30%, CR-V: 0.15%, water: 6. 47%, PGM: 20.00%, DAA: 10.00%, FA: 0.05%, EA: 63.03%).

この透明導電層形成用塗布液を用い、実施例1と同様に実施して、貴金属含有微粒子からなる透明導電層と、酸化ケイ素を主成分とするシリケート膜とからなる透明コート層で構成された、透明2層膜付きのガラス基板、即ち、比較例2に係る透明導電性基材を得た。   Using this coating liquid for forming a transparent conductive layer, it was carried out in the same manner as in Example 1, and was composed of a transparent conductive layer composed of noble metal-containing fine particles and a transparent coating layer composed of a silicate film mainly composed of silicon oxide. Then, a glass substrate with a transparent two-layer film, that is, a transparent conductive substrate according to Comparative Example 2 was obtained.

比較例2に係る透明導電性基材について、実施例1と同様にして、透明導電層形成用塗布液の塗布性を評価すると共に、透明2層膜の膜特性(表面抵抗、可視光線透過率)を評価し、その結果を下記表1に示した。   About the transparent conductive base material which concerns on the comparative example 2, it carried out similarly to Example 1, and evaluated the applicability | paintability of the coating liquid for transparent conductive layer formation, and the film characteristics (surface resistance, visible light transmittance of a transparent two-layer film) The results are shown in Table 1 below.

[比較例3]
上記CR−Vの配合量を変えた以外は実施例1と同様にして、透明導電層形成用塗布液(Ag−Au:0.30%、CR−V:0.00038%、水:6.47%、PGM:20.00%、DAA:10.00%、FA:0.05%、EA:63.17962%)を得た。
[Comparative Example 3]
The coating liquid for forming a transparent conductive layer (Ag-Au: 0.30%, CR-V: 0.00308%, water: 6. 47%, PGM: 20.00%, DAA: 10.00%, FA: 0.05%, EA: 63.17962%).

この透明導電層形成用塗布液を用い、実施例1と同様に実施して、貴金属含有微粒子からなる透明導電層と、酸化ケイ素を主成分とするシリケート膜とからなる透明コート層で構成された、透明2層膜付きのガラス基板、即ち、比較例3に係る透明導電性基材を得た。   Using this coating liquid for forming a transparent conductive layer, it was carried out in the same manner as in Example 1, and was composed of a transparent conductive layer composed of noble metal-containing fine particles and a transparent coating layer composed of a silicate film mainly composed of silicon oxide. A glass substrate with a transparent two-layer film, that is, a transparent conductive substrate according to Comparative Example 3 was obtained.

比較例3に係る透明導電性基材について、実施例1と同様にして、透明導電層形成用塗布液の塗布性を評価すると共に、透明2層膜の膜特性(表面抵抗、可視光線透過率)を評価し、その結果を下記表1に示した。   About the transparent conductive base material which concerns on the comparative example 3, it carried out similarly to Example 1, and evaluated the applicability | paintability of the coating liquid for transparent conductive layer formation, and the film characteristics (surface resistance, visible light transmittance of a transparent two-layer film) The results are shown in Table 1 below.

Figure 2005135722
Figure 2005135722

上記表1に示された「塗布性評価」の結果から明らかなように、保護剤としてシアノアルキル化高分子化合物を配合することにより、各実施例に係る透明導電層形成用塗布液においては、良好な塗布性が得られ、塗膜欠陥の発生が抑制されていることが確認された。   As is clear from the results of the “applicability evaluation” shown in Table 1, in the coating liquid for forming a transparent conductive layer according to each example, by blending a cyanoalkylated polymer compound as a protective agent, It was confirmed that good coatability was obtained and the occurrence of coating film defects was suppressed.

また、表1に示された「表面抵抗」の結果から明らかなように、実施例1〜3の透明導電性基材においては、透明導電層内に高分子樹脂が残留しているにもかかわらず、その透明2層膜の表面抵抗は電界シールド用として好ましい範囲とされる10Ω/□以下にある。また、可視光透過率も優れていることから、実施例1〜3の透明導電性基材はCRT等の表示装置の全面板として実用上問題無いことが確認された。 Further, as is clear from the results of “surface resistance” shown in Table 1, in the transparent conductive substrates of Examples 1 to 3, although the polymer resin remains in the transparent conductive layer, The surface resistance of the transparent two-layer film is 10 3 Ω / □ or less, which is a preferable range for electric field shielding. Moreover, since the visible light transmittance | permeability is also excellent, it was confirmed that the transparent conductive base materials of Examples 1 to 3 have no practical problem as an entire surface plate of a display device such as a CRT.

尚、実施例1〜3に係る透明導電性基材に対しては、以下に述べるような「耐候性試験」も合わせて行った。即ち、各透明導電性基材を10%食塩水溶液に24時間浸漬し、ガラス基板上に設けた透明2層膜の透過率及び外観を調べたが、変化は観察されなかった。従って、実施例1〜3に係る透明導電性基材は、従来と同様に、耐候性、耐薬品性の特性も具備していることが確認された。   The transparent conductive substrates according to Examples 1 to 3 were also subjected to the “weather resistance test” as described below. That is, each transparent conductive base material was immersed in a 10% saline solution for 24 hours, and the transmittance and appearance of the transparent two-layer film provided on the glass substrate were examined, but no change was observed. Therefore, it was confirmed that the transparent conductive base materials according to Examples 1 to 3 also have weather resistance and chemical resistance properties as in the conventional case.

Claims (7)

溶媒と、高分子樹脂と、平均粒径1〜100nmの貴金属含有微粒子とを主成分とする透明導電層形成用塗布液であって、上記高分子樹脂がシアノアルキル基を有する高分子化合物であり、該高分子樹脂1重量部に対して上記貴金属含有微粒子が5〜500重量部の割合で配合されていることを特徴とする透明導電層形成用塗布液。 A coating liquid for forming a transparent conductive layer mainly comprising a solvent, a polymer resin, and noble metal-containing fine particles having an average particle diameter of 1 to 100 nm, wherein the polymer resin is a polymer compound having a cyanoalkyl group A coating solution for forming a transparent conductive layer, wherein the precious metal-containing fine particles are blended in an amount of 5 to 500 parts by weight with respect to 1 part by weight of the polymer resin. 前記高分子樹脂がシアノエチル基を有するシアノエチル化高分子化合物であることを特徴とする、請求項1に記載の透明導電層形成用塗布液。 The coating liquid for forming a transparent conductive layer according to claim 1, wherein the polymer resin is a cyanoethylated polymer compound having a cyanoethyl group. 前記シアノエチル化高分子化合物は、水酸基を有するサッカロース、デンプン、セルロース、プルラン、ポリビニルアルコールより選ばれた少なくとも1種に、アクリロニトリルを付加反応させることによって合成されたものであることを特徴とする、請求項2に記載の透明導電層形成用塗布液。 The cyanoethylated polymer compound is synthesized by addition reaction of acrylonitrile with at least one selected from saccharose, starch, cellulose, pullulan, and polyvinyl alcohol having a hydroxyl group. Item 3. A coating liquid for forming a transparent conductive layer according to Item 2. 前記貴金属含有微粒子が、金又は白金の単体微粒子、金及び/又は白金と銀とからなる貴金属合金微粒子、あるいは、銀微粒子の表面が金及び/又は白金でコートされた貴金属コート銀微粒子のいずれかであることを特徴とする、請求項1〜3のいずれかに記載の透明導電層形成用塗布液。 The noble metal-containing fine particles are either gold or platinum simple particles, gold and / or noble metal alloy fine particles composed of platinum and silver, or noble metal-coated silver fine particles whose surface is coated with gold and / or platinum. The coating liquid for forming a transparent conductive layer according to claim 1, wherein the coating liquid is for forming a transparent conductive layer. 有色顔料微粒子が含まれていることを特徴とする、請求項1〜4のいずれかに記載の透明導電層形成用塗布液。 The coating liquid for forming a transparent conductive layer according to claim 1, comprising colored pigment fine particles. 前記有色顔料微粒子が、カーボン、チタンブラック、窒化チタン、複合酸化物顔料、コバルトバイオレット、モリブデンオレンジ、群青、紺青、キナクリドン系顔料、ジオキサジン系顔料、アントラキノン系顔料、ペリレン系顔料、イソインドリノン系顔料、アゾ系顔料、及びフタロシアニン系顔料から選ばれた少なくとも1種の微粒子であることを特徴とする、請求項5に記載の透明導電層形成用塗布液。 The colored pigment fine particles are carbon, titanium black, titanium nitride, composite oxide pigment, cobalt violet, molybdenum orange, ultramarine, bitumen, quinacridone pigment, dioxazine pigment, anthraquinone pigment, perylene pigment, isoindolinone pigment. The coating liquid for forming a transparent conductive layer according to claim 5, wherein the coating liquid is at least one kind of fine particles selected from azo pigments and phthalocyanine pigments. 請求項1〜6のいずれかに記載の透明導電層形成用塗布液を用いて透明基板の上に形成された透明導電層と、該透明導電層の上に形成された透明コート層とからなる透明2層膜を備えることを特徴とする透明導電性基材。 It consists of the transparent conductive layer formed on the transparent substrate using the coating liquid for transparent conductive layer formation in any one of Claims 1-6, and the transparent coating layer formed on this transparent conductive layer. A transparent conductive substrate comprising a transparent two-layer film.
JP2003369829A 2003-10-30 2003-10-30 Coating liquid for forming transparent conductive layer and transparent conductive substrate Pending JP2005135722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003369829A JP2005135722A (en) 2003-10-30 2003-10-30 Coating liquid for forming transparent conductive layer and transparent conductive substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003369829A JP2005135722A (en) 2003-10-30 2003-10-30 Coating liquid for forming transparent conductive layer and transparent conductive substrate

Publications (1)

Publication Number Publication Date
JP2005135722A true JP2005135722A (en) 2005-05-26

Family

ID=34647020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003369829A Pending JP2005135722A (en) 2003-10-30 2003-10-30 Coating liquid for forming transparent conductive layer and transparent conductive substrate

Country Status (1)

Country Link
JP (1) JP2005135722A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010031158A (en) * 2008-07-29 2010-02-12 Mitsubishi Materials Corp Black pigment dispersion, production method and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010031158A (en) * 2008-07-29 2010-02-12 Mitsubishi Materials Corp Black pigment dispersion, production method and application thereof

Similar Documents

Publication Publication Date Title
US6673142B2 (en) Transparent conductive layered structure and method of producing the same, and transparent coat layer forming coating liquid used in the method of producing the same, and display device to which transparent conductive layered structure is applied
US6261479B1 (en) Transparent electro-conductive structure, process for its production, transparent electro-conductive layer forming coating fluid used for its production, and process for preparing the coating fluid
JP2002083518A (en) Transparent conductive substrate, its manufacturing method, display device using this transparent conductive substrate, coating solution for forming transparent conductive layer, and its manufacturing method
KR100630595B1 (en) Transparent conductive layered structure and method of producing the same, and coating liquid for forming transparent conductive layer used in production of transparent conductive layered structure and method of producing the same
JP4232480B2 (en) Method for producing noble metal-coated silver fine particle dispersion, coating liquid for forming transparent conductive layer, transparent conductive substrate and display device
JP4035934B2 (en) Transparent conductive substrate, method for producing the same, coating solution for forming transparent conductive layer used for production of transparent conductive substrate, and method for producing the same
US6569359B2 (en) Transparent conductive layer forming coating liquid containing formamide
JP4411672B2 (en) Coating liquid for forming transparent conductive layer and method for producing the same
JP3876811B2 (en) Production method of coating liquid for forming transparent conductive layer
JP2006032197A (en) Transparent bilayer film and its manufacturing method
JP4325201B2 (en) Transparent conductive layer forming coating liquid and transparent conductive film
JP2005154453A (en) Coating liquid for forming transparent conductive layer and transparent conductive base material
JP3750461B2 (en) Transparent conductive layer forming coating liquid, transparent conductive layer and transparent conductive substrate
JP2005135722A (en) Coating liquid for forming transparent conductive layer and transparent conductive substrate
JP4225156B2 (en) Transparent conductive film forming coating liquid, transparent conductive film and display device
JP3520705B2 (en) Coating liquid for forming conductive film, conductive film and method for manufacturing the same
JP2004335410A (en) Forming method of transparent electric conductive layer
JP2005100721A (en) Manufacturing method of transparent conductive substrate and substrate and display device
JP4258281B2 (en) Coating liquid for forming transparent conductive layer and method for producing the same
JP2003132734A (en) Coating solution for forming transparent electroconductive layer
JPH11203943A (en) Transparent conductive base material, its manufacture and display device using this base material
JP2002343149A (en) Forming method of transparent electric conductive layer
JP2002069335A (en) Coating liquid for forming transparent electroconductive layer
JP4232575B2 (en) Transparent conductive layer forming coating liquid, transparent conductive film and transparent conductive substrate
JP3870669B2 (en) Transparent conductive substrate, method for producing the same, coating liquid for forming transparent coat layer used for production of transparent conductive substrate, and display device to which transparent conductive substrate is applied