JP3520705B2 - Coating liquid for forming conductive film, conductive film and method for manufacturing the same - Google Patents

Coating liquid for forming conductive film, conductive film and method for manufacturing the same

Info

Publication number
JP3520705B2
JP3520705B2 JP04112197A JP4112197A JP3520705B2 JP 3520705 B2 JP3520705 B2 JP 3520705B2 JP 04112197 A JP04112197 A JP 04112197A JP 4112197 A JP4112197 A JP 4112197A JP 3520705 B2 JP3520705 B2 JP 3520705B2
Authority
JP
Japan
Prior art keywords
conductive film
liquid
forming
coating liquid
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04112197A
Other languages
Japanese (ja)
Other versions
JPH10237665A (en
Inventor
恭宏 真田
啓介 阿部
健二 石関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP04112197A priority Critical patent/JP3520705B2/en
Publication of JPH10237665A publication Critical patent/JPH10237665A/en
Application granted granted Critical
Publication of JP3520705B2 publication Critical patent/JP3520705B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ブラウン管パネル
等の基体表面に導電膜を形成するための導電膜形成用塗
布液、導電膜とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive film forming coating solution for forming a conductive film on the surface of a substrate such as a cathode ray tube panel, a conductive film and a method for producing the same.

【0002】[0002]

【従来の技術】ブラウン管は高電圧で作動するために起
動時または終了時に該表面に静電気が誘発される。この
静電気により該表面にほこりが付着し、画像のコントラ
スト低下を引き起こしたり、直接触れた際に軽い電気シ
ョックによる不快感を生じたりすることが多い。
2. Description of the Related Art Since a cathode ray tube operates at a high voltage, static electricity is induced on the surface of the cathode ray tube at the time of starting or ending. Due to this static electricity, dust is often attached to the surface, causing a reduction in image contrast, and often causing discomfort due to a slight electric shock when touched directly.

【0003】また、近年、電磁波ノイズによる電子機器
への電波障害が社会問題となり、それらを防止するため
に規格の作成や規制が行われている。電磁波ノイズは人
体に対しての影響、例えば、陰極線管(CRT)上の静
電気チャージによる皮膚癌の恐れ、低周波電界(EL
F)による胎児への影響、その他X線、紫外線等による
害が各国で問題視されている。
Further, in recent years, radio wave interference to electronic equipment due to electromagnetic wave noise has become a social problem, and standards and regulations have been made to prevent it. Electromagnetic noise affects the human body, for example, skin cancer due to electrostatic charge on a cathode ray tube (CRT), low frequency electric field (EL).
The effects of F) on the fetus and other harms such as X-rays and ultraviolet rays are regarded as problems in each country.

【0004】電磁波ノイズは、導電性塗膜をブラウン管
パネル表面に介在させることにより遮断できるが、電磁
波遮断効果を充分に発現させるためには膜の面抵抗値が
1×103 Ω/□未満であることを要する。しかし、従
来はそれほどの良導電性塗膜を得ることは困難であっ
た。例えば、特開平6−234552には、ITO分散
シリケート膜を形成する旨の記載があるが、この場合に
得られる膜の面抵抗値は1×103 Ω/□以上であり、
充分な電磁波遮断効果が得られなかった。
Electromagnetic noise can be shielded by interposing a conductive coating film on the surface of the cathode ray tube panel, but in order to sufficiently exert the electromagnetic shielding effect, the surface resistance value of the film is less than 1 × 10 3 Ω / □. I need to be there. However, conventionally, it was difficult to obtain such a good conductive coating film. For example, JP-A-6-234552 describes that an ITO-dispersed silicate film is formed, but the sheet resistance of the film obtained in this case is 1 × 10 3 Ω / □ or more,
A sufficient electromagnetic wave blocking effect was not obtained.

【0005】また、特開平6−310058には、Ag
やCu等の金属塩と還元剤とからなる液を用いてブラ
ウン管表面に金属膜を析出させる旨の記載がある。この
場合には膜は低抵抗化できるが、得られる膜がAgやC
u等の金属膜であり、本質的に膜耐久性が劣り、抵抗
が経時的に増加したり膜が変色したりする等の実用上の
問題があった。特にAgを用いた膜の場合には、材料固
有の体積抵抗は金属中で最も低いものの、簡単にアノー
ド溶解を起こし、また、塩化物や硫化物の存在で膜の劣
化が促進されるといった本質的な問題があり、実用に供
するには問題が多かった。
Further, Japanese Patent Laid-Open No. 6-310058 discloses Ag.
There is a description that a metal film is deposited on the surface of the cathode ray tube using a liquid composed of a salt of a metal such as Cu or Cu and a reducing agent. In this case, the resistance of the film can be reduced, but the obtained film is Ag or C.
a film of a metal u like, essentially inferior in film durability, resistance increase over time or film had practical problems such that discolored. In particular, in the case of a film using Ag, the volume resistance peculiar to the material is the lowest among metals, but the anodic dissolution easily occurs, and the presence of chloride or sulfide accelerates the deterioration of the film. There were many problems and there were many problems for practical use.

【0006】また、金属塩と還元剤との混合液をガラス
基体に塗布して膜を形成する場合には、成膜された金属
導電膜はガラス面にメッキされた状態となり、膜の強度
が著しく弱く、かつ該導電膜を洗浄して副生成塩を除去
する工程が必要となる問題があった。さらにAgやCu
等の金属は耐久性に乏しく、通常の空気中でも徐々に酸
化されて膜の抵抗が増加しかつ膜が変色するといった問
題があった。
When a mixed solution of a metal salt and a reducing agent is applied to a glass substrate to form a film, the formed metal conductive film is in a state of being plated on the glass surface, and the strength of the film is reduced. There is a problem that it is extremely weak and a step of cleaning the conductive film to remove the by-product salt is required. Furthermore, Ag and Cu
Such metals have poor durability and have a problem that they are gradually oxidized even in normal air to increase the resistance of the film and discolor the film.

【0007】また、導電膜および低反射膜のコーティン
グ法による形成は、従来より光学機器においてはいうま
でもなく、民生用機器、特にTVやコンピュータ端末の
陰極線管(CRT)に関しても数多くの検討がなされて
きた。従来の方法は、例えば、特開昭61−11893
1記載のように、ブラウン管表面に防眩効果をもたせる
ために表面に微細な凹凸を有するSiO 2 を付着させ
たり、フッ酸により表面をエッチングして表面に凹凸を
設ける等の方法がとられてきた。しかし、これらの方法
は、外部光を散乱させるノングレア処理と呼ばれ、本質
的に低反射層を設ける方法でないために、膜の反射率の
低減には限界があり、また、ブラウン管等においては、
画像の解像度を低下させる原因ともなっている。
In addition, the formation of the conductive film and the low-reflection film by the coating method has hitherto been carried out not only in optical devices but also in consumer devices, particularly in cathode ray tubes (CRTs) of TVs and computer terminals. It has been done. The conventional method is disclosed in, for example, JP-A-61-118993.
As described in 1, a method such as attaching a SiO 2 layer having fine irregularities on the surface to have an antiglare effect on the surface of the cathode ray tube or etching the surface with hydrofluoric acid to provide irregularities on the surface is taken. Came. However, these methods are called non-glare treatment that scatters external light, and there is a limit to the reduction of the reflectance of the film because it is not a method of essentially providing a low reflection layer, and in a cathode ray tube or the like,
It is also a cause of lowering the image resolution.

【0008】[0008]

【発明が解決しようとする課題】本発明は、従来技術が
有していた前述の欠点を解消し、優れた電磁波シールド
性および膜耐久性を有する導電膜、該導電膜形成用塗布
液と該導電膜の製造方法の提供を目的とする。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned drawbacks of the prior art and has a conductive film having excellent electromagnetic wave shielding properties and film durability, a coating liquid for forming the conductive film, and It is intended to provide a method for manufacturing a conductive film.

【0009】[0009]

【課題を解決するための手段】本発明は、Ag、Ru、
Pt、Pd、Ni、CuおよびAuからなる群から選ば
れる2種以上の金属元素よりなる合金微粒子分散体を含
むことを特徴とする導電膜形成用塗布液、該塗布液を基
体上に塗布して形成されてなる導電膜、該塗布液を、基
体上に塗布し、硬化させて形成することを特徴とする
電膜の製造方法を提供する。
The present invention provides Ag, Ru,
A coating film for forming a conductive film, which contains an alloy fine particle dispersion containing two or more kinds of metal elements selected from the group consisting of Pt, Pd, Ni, Cu and Au, and a coating solution based on the same.
Conductive film made formed by coating on the body, the coating solution, based on
Provided is a method for producing a conductive film, which comprises applying the composition on a body and curing it to form the conductive film.

【0010】本発明の特徴は、導電膜形成用塗布液に含
有される導電性微粒子が合金でありかつこの合金微粒子
がいわゆるゾル状態となった分散体である点にある。こ
れにより電磁波シールド性発現に必要な導電性と実用上
問題のない耐久性を有する導電膜が得られる。
The feature of the present invention resides in that the conductive fine particles contained in the coating liquid for forming a conductive film are an alloy and the alloy fine particles are a dispersion in a so-called sol state. As a result, a conductive film having the conductivity required to exhibit the electromagnetic wave shielding property and the durability with no practical problems can be obtained.

【0011】本発明の塗布液は、あらかじめ合金微粒子
をゾルの形で含有しており、これを基体に塗布した場合
には、従来のメッキ膜とは異なり、微小な孔が導電膜中
に導入されている。さらに、当該導電膜の上に酸化ケイ
素化合物を形成するSiアルコキシドの加水分解物を含
有する塗布液を塗布した場合には、この孔に上記塗布液
が侵入して導電膜の膜強度が著しく向上する。
The coating solution of the present invention contains fine alloy particles in the form of a sol in advance. When this is applied to a substrate, minute holes are introduced into the conductive film, unlike conventional plating films. Has been done. Furthermore, when a coating solution containing a hydrolyzate of Si alkoxide that forms a silicon oxide compound is applied onto the conductive film, the coating solution penetrates into the pores to significantly improve the film strength of the conductive film. To do.

【0012】また、本発明においては、金属塩と還元液
とからなる塗布液を使用する前記従来法とは異なり、導
電膜の形成時に副生成物が生成せず、導電膜とその上に
形成される膜との間での膜強度の劣化も生じない。した
がって本発明によれば、ブラウン管パネル面等のガラス
基体に、前述の問題点を解決した導電膜を形成できる。
Further, in the present invention, unlike the above-mentioned conventional method which uses a coating solution composed of a metal salt and a reducing solution, a by-product is not generated during the formation of the conductive film, and the conductive film and the conductive film are formed thereon. The deterioration of the film strength between the film and the formed film does not occur. Therefore, according to the present invention, a conductive film which solves the above-mentioned problems can be formed on a glass substrate such as a cathode ray tube panel surface.

【0013】[0013]

【発明の実施の形態】本発明において使用する合金微粒
子は、Ag、Ru、Pt、Pd、Ni、CuおよびAu
からなる群から選ばれる2種以上の金属元素よりなる合
金微粒子である。該微粒子の製法としては特に限定され
ず、種々の方法により製造できるが、特に金属塩溶液に
金属イオンを還元しうる物質を混合して製造することが
好ましい。本発明において好ましい合金は、例えば、A
g−Pd、Ag−Cu−Pd、Ag−Ni、Ru−P
d、Au−Pd、Pt−Pd等である。
BEST MODE FOR CARRYING OUT THE INVENTION Alloy fine particles used in the present invention are Ag, Ru, Pt, Pd, Ni, Cu and Au.
It is an alloy fine particle composed of two or more kinds of metal elements selected from the group consisting of The method for producing the fine particles is not particularly limited and can be produced by various methods, but it is particularly preferable to produce by mixing a substance capable of reducing metal ions with a metal salt solution. Preferred alloys in the present invention are, for example, A
g-Pd, Ag-Cu-Pd, Ag-Ni, Ru-P
d, Au-Pd, Pt-Pd and the like.

【0014】本発明において還元による合金微粒子の生
成に用いられる金属塩としては、特に限定されないが、
硝酸銀、亜硝酸銀、ニトロソ硝酸ルテニウム、硝酸ルテ
ニウム、硝酸パラジウム、硝酸ニッケル、硝酸銅等の硝
酸塩、塩化ルテニウム、塩化ルテニウムアンモニウム、
塩化ルテニウムカリウム、塩化ルテニウムナトリウム、
塩化第一金、塩化第二金、塩化金酸、塩化銀、塩化第一
白金、塩化第一白金アンモニウム、塩化パラジウム、四
塩化パラジウムアンモニウム、六塩化パラジウムカリウ
ム、塩化ニッケル、塩化第一銅、塩化第二銅等の塩化
物、酢酸ルテニウム、酢酸銀、酢酸パラジウム、酢酸ニ
ッケル、酢酸コバルト、酢酸第二銅等の酢酸塩、硫酸パ
ラジウム、硫酸銅、硫酸ニッケル等の硫酸塩が好まし
い。これらの金属化合物は水等の溶媒にそのまま溶解し
て用いることが好ましい。
In the present invention, the metal salt used for producing the fine alloy particles by reduction is not particularly limited,
Silver nitrate, silver nitrite, ruthenium nitroso nitrate, ruthenium nitrate, palladium nitrate, nickel nitrate, nitrates such as copper nitrate, ruthenium chloride, ruthenium ammonium chloride,
Ruthenium potassium chloride, Ruthenium sodium chloride,
Gold (I) chloride, Gold (II) chloride, Chloroauric acid, Silver chloride, Platinum chloride, Platinum ammonium chloride, Palladium chloride, Palladium ammonium tetrachloride, Palladium potassium hexachloride, Nickel chloride, Cuprous chloride, Chloride Preferred are chlorides such as cupric acid, ruthenium acetate, silver acetate, silver acetate, palladium acetate, nickel acetate, cobalt acetate, acetate salts such as cupric acetate, and sulfate salts such as palladium sulfate, copper sulfate and nickel sulfate. These metal compounds are preferably dissolved in a solvent such as water and used as they are.

【0015】また、本発明では合金微粒子を生成するた
めに2種以上の金属塩の水溶液等を混合して用いるが、
用いる金属種が異なるために、それらの還元電位も異な
り、これらの金属種を合金化するには異なる金属の還元
電位を同一にする必要がある。還元電位を同一にするに
は種々の方法が考えられるが、還元する前の少なくとも
一方の金属イオンと錯体を形成しうる物質または溶媒和
しうる溶媒等を添加することが好ましい。
Further, in the present invention, an aqueous solution of two or more kinds of metal salts is used as a mixture in order to produce fine alloy particles.
Due to the different metal species used, their reduction potentials are also different and it is necessary to make the reduction potentials of different metals the same in order to alloy these metal species. Various methods can be considered to make the reduction potentials the same, but it is preferable to add a substance capable of forming a complex with at least one metal ion before the reduction, a solvent capable of being solvated, or the like.

【0016】金属塩と錯体を形成しうる物質としては、
それぞれの金属イオンに対して種々公知の物質が適用で
き、例えば、シュウ酸、クエン酸、EDTAおよびその
誘導体等のカルボン酸およびその塩、アンモニア、トリ
エタノールアミン等が挙げられる。これらのうちでは、
得られる合金微粒子の均一性に優れるため、クエン酸
塩、特にクエン酸ナトリウムが好ましい。
As the substance capable of forming a complex with a metal salt,
Various known substances can be applied to each metal ion, and examples thereof include carboxylic acids such as oxalic acid, citric acid, EDTA and its derivatives, salts thereof, ammonia, triethanolamine and the like. Of these,
A citrate, particularly sodium citrate, is preferable because the obtained alloy fine particles have excellent uniformity.

【0017】また、特定の金属イオンに溶媒和する有機
溶媒としては、金属イオンに対する親和性から、特に電
子供与性の高い溶媒が好ましく、この条件を満たせば特
に限定されないが、ジメチルスルホキシド、N−メチル
−2−ピロリドン、テトラヒドロフラン、ジメチルホル
ムアミド、アセトニトリルおよびスルホラン等の溶媒が
好ましい。
Further, as the organic solvent which solvates a specific metal ion, a solvent having a particularly high electron donating property is preferable from the viewpoint of affinity for the metal ion, and it is not particularly limited as long as this condition is satisfied, but dimethyl sulfoxide, N- Solvents such as methyl-2-pyrrolidone, tetrahydrofuran, dimethylformamide, acetonitrile and sulfolane are preferred.

【0018】硝酸銀等の化合物を還元して合金を析出し
うる還元剤としては特に限定はないが、FeSO4 やS
nSO4 等の卑金属の塩、ホルマリン、ブドウ糖、ロッ
セル塩、酒石酸、チオ硫酸ソーダ、水素化ホウ素化合
物、次亜リン酸塩等またはエタノール等の有機溶媒が挙
げられる。これらの化合物のうちでは還元速度が比較的
緩やかなFeSO4 やSnSO4 等の卑金属を含む塩を
用いることが好ましい。特にFeSO4 は還元速度が緩
やかで均一な合金微粒子分散液を作りやすいため好まし
い。
The reducing agent capable of reducing a compound such as silver nitrate to precipitate an alloy is not particularly limited, but FeSO 4 and S
Examples thereof include base metal salts such as nSO 4 , formalin, glucose, Rossell salt, tartaric acid, sodium thiosulfate, borohydride compounds, hypophosphite, and organic solvents such as ethanol. Among these compounds, it is preferable to use a salt containing a base metal such as FeSO 4 or SnSO 4 having a relatively slow reduction rate. FeSO 4 is particularly preferable because it has a slow reduction rate and can easily form a uniform alloy fine particle dispersion.

【0019】また、生成した合金微粒子表面に吸着して
いわゆる保護コロイドを形成する物質を添加すること
は、得られる分散液中の合金微粒子の粒径が均一となる
ために好ましい。このような物質としては種々公知の物
質が挙げられ、例えば、PVA、PVP、ゼラチン、ア
クリル樹脂等の高分子材料が挙げられる。
Further, it is preferable to add a substance that adsorbs to the surface of the produced alloy fine particles to form a so-called protective colloid because the particle diameter of the alloy fine particles in the obtained dispersion becomes uniform. As such a substance, various known substances can be mentioned, and examples thereof include polymeric materials such as PVA, PVP, gelatin, and acrylic resins.

【0020】また、本発明においては、上記合金微粒子
分散液中に含まれるアルカリ金属イオン、アンモニウム
イオン、多価金属イオン等の陽イオンおよび鉱酸等の無
機陰イオン、酢酸、ギ酸等の有機陰イオン等を脱イオン
して用いることが好ましい。この場合には分散液中のイ
オン量は種々の方法で測定しうるが、例えば、伝導度で
測定した場合に、塗布液の伝導度が500μS/cm以
下、特には200μS/cm以下であることが好まし
い。脱イオンが不充分で液中のイオン量が多くなると、
液中の合金微粒子が凝集し、所定の面抵抗を有する導電
膜が得られなくなるのみならず、得られる膜の外観が悪
化するために好ましくない。
Further, in the present invention, cations such as alkali metal ions, ammonium ions and polyvalent metal ions contained in the alloy fine particle dispersion, inorganic anions such as mineral acids, and organic anions such as acetic acid and formic acid. It is preferable to deionize ions and the like before use. In this case, the amount of ions in the dispersion liquid can be measured by various methods. For example, when the conductivity is measured, the conductivity of the coating liquid is 500 μS / cm or less, and particularly 200 μS / cm or less. Is preferred. If deionization is insufficient and the amount of ions in the liquid increases,
It is not preferable because the alloy fine particles in the liquid aggregate and the conductive film having a predetermined surface resistance cannot be obtained, and the appearance of the obtained film deteriorates.

【0021】脱イオンの手法としては特に限定されず、
例えば、限外過、イオン交換等が使用できる。特に得
られた合金微粒子分散液とイオン交換樹脂とを接触する
手法は、合金微粒子分散液の安定性を損なわずに脱塩が
でき好ましい。上記手法で得られる合金微粒子分散液に
おいては合金微粒子の平均一次粒径が100nm以下で
あることが好ましい。これは平均一次粒径が100nm
超では可視光の散乱が増大し膜のヘーズ値が上昇し、画
像表示部の解像度の低下が生じるためである。特に50
nm以下が好ましい。
The deionization method is not particularly limited,
For example, ultrafiltration Filtration, ion exchange or the like can be used. In particular, the method of contacting the obtained alloy fine particle dispersion with the ion exchange resin is preferable because desalting can be performed without impairing the stability of the alloy fine particle dispersion. In the alloy fine particle dispersion obtained by the above method, the average primary particle diameter of the alloy fine particles is preferably 100 nm or less. This has an average primary particle size of 100 nm
This is because when it exceeds the above range, the scattering of visible light increases, the haze value of the film increases, and the resolution of the image display unit decreases. Especially 50
nm or less is preferable.

【0022】合金微粒子分散液はそのままで種々の溶媒
で希釈または置換して本発明の導電膜形成用塗布液とし
て使用できる。この場合に使用する溶媒としては特に限
定されず、水以外にも種々公知の有機溶媒が適用でき
る。例えば、メタノール、エタノール、プロパノール、
ブタノール等のアルコール類、エチレングリコール等の
多価アルコール類、エチルセロソルブ、メチルセロソル
ブ、ブチルセロソルブ、プロピレングリコールメチルエ
ーテル等のエーテル類、2,4−ペンタンジオン、ジア
セトアルコール等のケトン類、乳酸エチル、乳酸メチ
ル等のエステル類、またはN−メチル−2−ピロリドン
等のアミド類、ジメチルスルホキシド、スルホラン等の
硫黄化合物が使用できる。
The alloy fine particle dispersion can be used as it is as a coating liquid for forming a conductive film of the present invention by diluting or substituting it with various solvents. The solvent used in this case is not particularly limited, and various known organic solvents other than water can be applied. For example, methanol, ethanol, propanol,
Alcohols such as butanol, polyhydric alcohols such as ethylene glycol, ethyl cellosolve, methyl cellosolve, butyl cellosolve, ethers such as propylene glycol methyl ether, 2,4-pentanedione, Zia <br/> Seth down ketone alcohol , Esters such as ethyl lactate and methyl lactate, amides such as N-methyl-2-pyrrolidone, and sulfur compounds such as dimethyl sulfoxide and sulfolane.

【0023】導電膜形成用塗布液中の合金微粒子濃度は
0.01〜5重量%、特には0.05〜2重量%となる
ように調整されることが好ましい。5重量%超では形成
される膜の透明性が著しく低下し、0.01重量%未満
では形成される膜の抵抗が上昇するために好ましくな
い。また、塗布液中には膜の透過率または色調等の物性
を変えるために、Sn、In、Sb、Zn、Al、T
i、SiおよびGaからなる群から選ばれる1種以上の
化合物を添加できる。使用する化合物には特に限定はな
いが、SnをドープしたIn23 、Sbをドープした
SnO2 を用いた場合には形成される膜の抵抗を上昇さ
せずに透過率を制御できるために好ましい。
The concentration of fine alloy particles in the coating liquid for forming a conductive film is preferably adjusted to 0.01 to 5% by weight, particularly 0.05 to 2% by weight. If it exceeds 5% by weight, the transparency of the formed film remarkably decreases, and if it is less than 0.01% by weight, the resistance of the formed film increases, which is not preferable. Further, in order to change the physical properties such as the transmittance or color tone of the film in the coating liquid, Sn, In, Sb, Zn, Al, T
One or more compounds selected from the group consisting of i, Si and Ga can be added. The compound to be used is not particularly limited, but in the case of using Sn-doped In 2 O 3 and Sb-doped SnO 2 , the transmittance can be controlled without increasing the resistance of the formed film. preferable.

【0024】また、SiO2 、特にケイ酸エチル等を加
水分解して得られるSiO2 ゾルを用いた場合には、塗
布液の塗布性が向上するために好ましい。また、TiO
2 を用いた場合にも、塗布液の塗布性および形成される
膜の色調を制御できるために好ましい。特にTiO2
関しては、窒素原子をチタン原子と酸素原子の合計に対
して0.3〜30重量%含有するTiOx 微粒子(2.
0>x≧1.0)で示される還元TiO2 を用いた場合
には、得られる膜の耐光性向上に効果がある。この窒素
原子含有酸化チタン微粒子は、酸化チタン微粒子または
水酸化チタン微粒子を、窒素ガスまたはアンモニアガス
を含む雰囲気で加熱処理することにより得られる。この
場合の粒子製造時の加熱処理温度は粒径との関係で適宜
決められるが、好ましくは300〜850℃で加熱す
る。
Further, it is preferable to use SiO 2 sol obtained by hydrolyzing SiO 2 , particularly ethyl silicate or the like, because the coating property of the coating liquid is improved. Also, TiO
The use of 2 is also preferable because the coating property of the coating liquid and the color tone of the formed film can be controlled. Particularly, regarding TiO 2 , fine particles of TiO x containing nitrogen atoms in an amount of 0.3 to 30% by weight based on the total of titanium atoms and oxygen atoms (2.
When reduced TiO 2 represented by 0> x ≧ 1.0) is used, it is effective in improving the light resistance of the obtained film. The nitrogen atom-containing titanium oxide fine particles can be obtained by subjecting titanium oxide fine particles or titanium hydroxide fine particles to heat treatment in an atmosphere containing nitrogen gas or ammonia gas. In this case, the heat treatment temperature at the time of producing particles is appropriately determined in relation to the particle diameter, but is preferably 300 to 850 ° C.

【0025】この窒素原子含有酸化チタン微粒子の窒素
原子含有量は0.3〜30重量%の範囲が好ましく、
0.3重量%未満では紫外線照射時の酸素ラジカルの生
成を低減させがたく、したがって、合金微粒子の励起状
態への移行を抑制する効果が薄い。また、30重量%超
では膜が酸化されやすく、膜自体の耐酸化性が劣化す
る。このような窒素原子含有酸化チタン微粒子の粒径は
一般的には100nm以下であり、好ましくは80nm
以下である。
The nitrogen atom content of the nitrogen atom-containing titanium oxide fine particles is preferably in the range of 0.3 to 30% by weight,
If it is less than 0.3% by weight, it is difficult to reduce the production of oxygen radicals during ultraviolet irradiation, and therefore the effect of suppressing the transition of the alloy fine particles to the excited state is small. Further, if it exceeds 30% by weight, the film is easily oxidized and the oxidation resistance of the film itself is deteriorated. The particle size of such nitrogen atom-containing titanium oxide fine particles is generally 100 nm or less, preferably 80 nm.
It is the following.

【0026】これらの窒素原子含有酸化チタン微粒子
は、微粒子またはアルコキシドの加水分解物の形態で前
述の合金微粒子分散液に添加することもでき、また、超
音波分散機、サンドミル等の分散機により分散した液と
して本発明の導電膜形成用塗布液に添加することもでき
る。これらの窒素原子含有酸化チタン微粒子の添加量
は、合金微粒子100重量部当たり0〜50重量部、特
には1〜20重量部の範囲が好ましい。さらに本発明の
導電膜形成用塗布液には、被塗布基体への濡れ性を向上
させるために種々の界面活性剤も添加できる。
These nitrogen atom-containing titanium oxide fine particles can be added to the aforementioned alloy fine particle dispersion liquid in the form of fine particles or a hydrolyzate of alkoxide, and dispersed by a disperser such as an ultrasonic disperser or a sand mill. It can also be added to the coating liquid for forming a conductive film of the present invention as the above liquid. The addition amount of these nitrogen atom-containing titanium oxide fine particles is preferably 0 to 50 parts by weight, and particularly preferably 1 to 20 parts by weight, per 100 parts by weight of the alloy fine particles. Further, various surfactants can be added to the coating film for forming a conductive film of the present invention in order to improve the wettability to the substrate to be coated.

【0027】上記で合成した本発明の塗布液の基体上へ
の塗布方法としては、スピンコート、ディップコート、
スプレーコート等の方法が好適である。また、スプレー
コート法を用いて表面に凹凸を形成して膜に防眩効果を
付与してもよく、また、その上にシリカ被膜等のハード
コートを設けてもよい。さらには、本発明の導電膜をス
ピンコートまたはスプレーコートで形成し、その上にS
iアルコキシドを含む溶液をスプレーコートして、表面
に凹凸を有するシリカ被膜のノングレアコートを設けて
もよい。
The coating solution of the present invention synthesized above may be applied onto a substrate by spin coating, dip coating,
A method such as spray coating is suitable. Further, a spray coating method may be used to form irregularities on the surface to impart an antiglare effect to the film, and a hard coat such as a silica coating may be provided thereon. Furthermore, the conductive film of the present invention is formed by spin coating or spray coating, and S is formed thereon.
A solution containing i-alkoxide may be spray-coated to provide a non-glare coat of silica coating having irregularities on the surface.

【0028】本発明における合金微粒子を分散してなる
液を含む導電膜形成用塗布液は、それ自体で基体上への
塗布液として供するために低沸点溶媒を添加した場合
は、室温下の乾燥で塗膜が得られるが、沸点が100〜
250℃の中〜高沸点溶媒を用いる場合には、室温乾燥
では溶媒が塗膜中に残留するために、加熱処理を行う。
加熱温度の上限は基板として用いられるガラス、プラス
チック等の軟化点によって決定される。この点も考慮す
ると加熱温度は100〜500℃が好ましい。
The conductive film-forming coating liquid containing the liquid in which fine alloy particles are dispersed according to the present invention is dried at room temperature when a low boiling point solvent is added in order to serve as a coating liquid on a substrate by itself. A coating film is obtained with a boiling point of 100-
When a medium to high boiling point solvent at 250 ° C. is used, the solvent remains in the coating film when dried at room temperature, and therefore heat treatment is performed.
The upper limit of the heating temperature is determined by the softening point of glass, plastic, etc. used as the substrate. Considering this point, the heating temperature is preferably 100 to 500 ° C.

【0029】こうして形成される本発明の導電膜の膜厚
は、その用途によって異なるが、一般には0.01〜
0.3μmが好ましい。導電膜の膜厚が0.01μm未
満では導電性が不充分であり、導電膜の膜厚が0.3μ
m超では膜の光学透過率および強度の点で不充分であ
る。より好ましい膜厚は0.02〜0.1μmである。
The thickness of the conductive film of the present invention thus formed varies depending on its use, but is generally 0.01 to
0.3 μm is preferable. If the thickness of the conductive film is less than 0.01 μm, the conductivity is insufficient, and the thickness of the conductive film is 0.3 μm.
If it exceeds m, the optical transmittance and strength of the film are insufficient. A more preferable film thickness is 0.02 to 0.1 μm.

【0030】本発明では、光の干渉作用を利用して低反
射導電膜を形成できる。例えば、基体がガラスの場合
(屈折率n=1.52)、上記導電膜の上に、n(導電
膜)/n(低屈折率膜)の比の値が約1.23となるよ
うな、低屈折率膜を形成すると導電膜の反射率を最も低
減させうる。導電膜の反射率の低減には、可視光領域に
おいて、特に、555nmの反射率を低減することが好
ましいが、実用上は反射外観等を考慮して適宜決定する
ことが好ましい。
In the present invention, the low reflection conductive film can be formed by utilizing the interference effect of light. For example, when the substrate is glass (refractive index n = 1.52), the ratio of n (conductive film) / n (low refractive index film) on the conductive film is about 1.23. By forming a low refractive index film, the reflectance of the conductive film can be most reduced. In order to reduce the reflectance of the conductive film, it is preferable to reduce the reflectance of 555 nm particularly in the visible light region, but in practice, it is preferable to appropriately determine in consideration of the reflection appearance and the like.

【0031】かかる2層からなる低反射導電膜の最外層
の低屈折率膜としては、MgF2 ゾルを含む溶液や、S
iアルコキシドを含む溶液のうちから選ばれる1種以上
よりなる溶液を用いて形成できる。膜の屈折率の点から
は上記材料中ではMgF2 が最も低く、反射率低減のた
めにはMgF2 ゾルを含む溶液を用いることが好ましい
が、膜の硬度や耐擦傷性の点ではSiO2 を主成分とす
る膜を形成しうるSiアルコキシドを含む溶液を用いる
ことが好ましい。
The outermost low refractive index film of the two-layered low reflective conductive film is a solution containing MgF 2 sol or S.
It can be formed using a solution consisting of one or more kinds selected from solutions containing i-alkoxide. From the viewpoint of the refractive index of the film, MgF 2 is the lowest among the above materials, and it is preferable to use a solution containing MgF 2 sol in order to reduce the reflectance, but from the viewpoint of film hardness and scratch resistance, SiO 2 It is preferable to use a solution containing Si alkoxide capable of forming a film containing as a main component.

【0032】かかる低屈折率膜形成用のSiアルコキシ
ドを含む溶液としては種々のものが使用できるが、Si
(OR)y R’4-y (yは3または4。R、R’はアル
キル基。)で示されるSiアルコキシドまたはそれらの
部分加水分解物を含む液が挙げられる。例えば、Siエ
トキシド、Siメトキシド、Siイソプロポキシド、S
iブトキシドのモノマーまたは重合体が好ましい。
Various solutions can be used as the solution containing the Si alkoxide for forming the low refractive index film.
(OR) y R ′ 4-y (y is 3 or 4, R and R ′ are alkyl groups) and a solution containing a Si alkoxide or a partial hydrolyzate thereof can be mentioned. For example, Si ethoxide, Si methoxide, Si isopropoxide, S
i-Butoxide monomers or polymers are preferred.

【0033】Siアルコキシドはアルコール、エステ
ル、エーテル等に溶解して用いることもでき、また、前
記溶液に塩酸、硝酸、硫酸、酢酸、ギ酸、マレイン酸、
フッ酸、またはアンモニア水溶液を添加して加水分解し
て用いることもできる。また、前記Siアルコキシドは
溶媒に対して固形分換算で30重量%以下の量で含まれ
ていることが好ましい。固形分量があまり大きいと保存
安定性が悪いために、かかる固形分量が好ましい。
The Si alkoxide can be used by dissolving it in alcohol, ester, ether or the like, and in the above solution, hydrochloric acid, nitric acid, sulfuric acid, acetic acid, formic acid, maleic acid,
It is also possible to add hydrofluoric acid or an aqueous ammonia solution and hydrolyze it before use. The Si alkoxide is preferably contained in the solvent in an amount of 30% by weight or less in terms of solid content. If the solid content is too large, the storage stability will be poor, so such solid content is preferable.

【0034】こうして形成される低屈折率膜の膜厚は、
その用途によって異なるが、一般的には0.02〜0.
2μmであり、低屈折率膜の膜厚が0.02μm未満で
0.2μmを超えても所定の光学特性(低反射性)が
得られない。より好ましい膜厚は0.04〜0.1μm
である。
The film thickness of the low refractive index film thus formed is
Generally, 0.02 to 0.
The thickness is 2 μm, and the predetermined optical characteristics (low reflectivity) cannot be obtained even when the film thickness of the low refractive index film is less than 0.02 μm or more than 0.2 μm . More preferable film thickness is 0.04 to 0.1 μm
Is.

【0035】この溶液には膜の強度向上のためにバイン
ダとして、Zr、Ti、Sn、Al等のアルコキシド
や、これらの部分加水分解物を添加して、ZrO2 、T
iO2、SnO2 、Al23 から選ばれる1種以上を
MgF2 またはSiO2 と同時に析出させてもよい。基
体との濡れ性を向上させるために界面活性剤を添加して
もよい。添加される界面活性剤としては、直鎖アルキル
ベンゼンスルホン酸ナトリウムやアルキルエーテル硫酸
エステル等が挙げられる。
To this solution, alkoxides such as Zr, Ti, Sn and Al, and their partial hydrolysates were added as a binder to improve the strength of the film, and ZrO 2 and T were added.
One or more selected from iO 2 , SnO 2 and Al 2 O 3 may be simultaneously deposited with MgF 2 or SiO 2 . A surfactant may be added to improve the wettability with the substrate. Examples of the surfactant to be added include linear sodium alkylbenzene sulfonate and alkyl ether sulfate.

【0036】本発明の導電膜の製造方法は、多層干渉効
果による低反射導電膜にも応用できる。反射防止性能を
有する多層の低反射膜の構成としては、反射防止をした
い光の波長をλとして、基体側より、高屈折率層−低屈
折率層を光学厚みλ/2−λ/4、またはλ/4−λ/
4で形成した2層の低反射膜、基体側より中屈折率層−
高屈折率層−低屈折率層を光学厚みλ/4−λ/2−λ
/4で形成した3層の低反射膜、基体側より低屈折率層
−中屈折率層−高屈折率層−低屈折率層を光学厚みλ/
2−λ/2−λ/2−λ/4で形成した4層の低反射膜
等が典型例として知られている。本発明の導電膜は、前
記の中屈折率層や、高屈折率層として使用できる。
The method of manufacturing a conductive film of the present invention can be applied to a low reflective conductive film due to the multilayer interference effect. The structure of the multilayer low-reflection film having antireflection properties is as follows: the wavelength of the light to be antireflection is λ, and the high refractive index layer-low refractive index layer has an optical thickness of λ / 2-λ / 4 from the base side. Or λ / 4-λ /
2 layer of low reflection film formed in 4, the medium refractive index layer from the substrate side-
High Refractive Index Layer-Low Refractive Index Layer with Optical Thickness λ / 4-λ / 2-λ
The three-layer low-reflection film formed by / 4, and the optical thickness λ /
A four-layer low-reflection film formed of 2-λ / 2-λ / 2-λ / 4 and the like are known as typical examples. The conductive film of the present invention can be used as the medium refractive index layer or the high refractive index layer.

【0037】また、ディスプレイ機器、特にTVディス
プレイ、コンピュータディスプレイ等の陰極線管を使用
した表示装置は光の3原色(RGB)により画像を表示
するが、RGBのそれぞれの発光スペクトルは全く独立
ではなく、一部の波長領域において重なりが生じてい
る。
Further, a display device, particularly a display device using a cathode ray tube such as a TV display or a computer display displays an image with the three primary colors (RGB) of light, but the respective emission spectra of RGB are not completely independent. Overlap occurs in some wavelength regions.

【0038】本発明の合金微粒子を含有する膜は可視光
領域全般にわたって吸収を生じるため、RGBの発光ス
ペクトルの重なり部分自体も吸収し、RGBの重なる波
長領域の光が透過しないため、コントラストの向上にも
寄与し、かつ低反射性にも優れる。
Since the film containing the alloy fine particles of the present invention absorbs light in the entire visible light region, it also absorbs the overlapping portion of the emission spectra of RGB itself, and the light in the overlapping wavelength region of RGB does not pass therethrough, thus improving the contrast. It also contributes to and has excellent low reflectivity.

【0039】合金微粒子を含有する本発明の導電膜およ
びその上層に形成されるケイ素化合物を主成分とする膜
よりなる低反射導電膜を形成する基体としては、ブラウ
ン管パネル、複写機用ガラス板、計算機用パネル、クリ
ーンルーム用ガラス、CRTまたはLCD等の表示装置
の前面板等の各種ガラスやプラスチック基板が挙げられ
る。
As the substrate for forming the low-reflection conductive film comprising the conductive film of the present invention containing fine alloy particles and the film containing a silicon compound as the main component formed thereon, a cathode ray tube panel, a glass plate for a copying machine, Examples thereof include computer panels, clean room glass, various glasses such as front plates of display devices such as CRTs and LCDs, and plastic substrates.

【0040】[0040]

【実施例】次に実施例および比較例を挙げて本発明をさ
らに具体的に説明するが、本発明はこれらに限定されな
下の実施例および比較例において、得られた膜の
評価方法は次のとおりである。
EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto . In Examples and Comparative Examples below, the evaluation method of the film obtained are as follows.

【0041】1)導電性:ローレスタ抵抗測定器(三菱
油化製)により膜表面の表面抵抗を測定した。 2)視感反射率:GAMMA分光反射率スペクトル測定
器により多層膜の400〜700nmでの視感反射率を
測定した。
1) Conductivity: The surface resistance of the film surface was measured with a Loresta resistance measuring instrument (manufactured by Mitsubishi Yuka). 2) Luminous reflectance: The luminous reflectance of the multilayer film at 400 to 700 nm was measured by a GAMMA spectral reflectance spectrophotometer.

【0042】3)視感透過率:日立製作所製スペクトロ
フォトメータU−3500により380〜780nmで
の視感透過率を測定した。 4)耐擦傷性:1kg荷重下で(LION製消しゴム5
0−50)で膜表面を50回往復後、その表面の傷つき
具合を目視で判断した。評価基準は、○:傷が全くつか
ない、△:傷が多少つく、×:一部に膜剥離が生じる、
とした。
3) Luminous transmittance: The luminous transmittance at 380 to 780 nm was measured with a spectrophotometer U-3500 manufactured by Hitachi Ltd. 4) Scratch resistance: Under 1kg load (LION eraser 5
0-50), the film surface was reciprocated 50 times, and the degree of scratches on the surface was visually evaluated. The evaluation criteria are: ○: no scratches at all, Δ: some scratches, ×: film peeling occurs in part
And

【0043】5)耐候性:センエンジニアリング製フォ
トドライクリーナPL7−200により254nmを主
波長とする紫外線を100時間照射した後での膜の表面
抵抗値を測定した。 6)耐薬品性:5%NaCl液に100時間浸漬した後
の膜の表面抵抗値を測定した。
5) Weather resistance: The surface resistance value of the film was measured with a photo dry cleaner PL7-200 manufactured by Sen Engineering after irradiating with ultraviolet rays having a main wavelength of 254 nm for 100 hours. 6) Chemical resistance: The surface resistance value of the film after being immersed in a 5% NaCl solution for 100 hours was measured.

【0044】また、得られたゾル中の粒子の平均一次粒
径は透過型電子顕微鏡によって測定し、また、凝集粒径
は大塚電子製レーザー回折式粒径測定装置LPA−31
00により測定した。
The average primary particle diameter of the particles in the obtained sol is measured by a transmission electron microscope, and the aggregate particle diameter is LPA-31, a laser diffraction particle size analyzer manufactured by Otsuka Electronics.
00 was measured.

【0045】(実施例1) 「Ag−Pd合金微粒子分散液の調製」 (1−1)5重量%硝酸パラジウム水溶液7.5gにN
−メチル−2−ピロリドン3.5g添加した後15分
間撹拌した。この液に10重量%硝酸銀水溶液20gを
添加した後15分間撹拌した。 (1−2)30重量%硫酸鉄水溶液20gに35重量%
クエン酸三ナトリウム水溶液35gを添加し、さらにこ
の液に上記(1−1)で得られた液を添加した。 (1−3)上記(1−2)で得られた液を遠心分離によ
り固液分離後、沈殿物に純水30gを添加して撹拌し
た。この液に10分間超音波照射した後、30重量%ク
エン酸三ナトリウム水溶液30g添加した。
(Example 1) "Preparation of Ag-Pd alloy fine particle dispersion" (1-1) N was added to 7.5 g of a 5 wt% palladium nitrate aqueous solution.
- methyl-2-pyrrolidone down 3. After adding 5 g , the mixture was stirred for 15 minutes. After adding 20 g of a 10 wt% silver nitrate aqueous solution to this solution, the solution was stirred for 15 minutes. (1-2) 35 wt% in 20 g of 30 wt% iron sulfate aqueous solution
35 g of a trisodium citrate aqueous solution was added, and the liquid obtained in (1-1) above was further added to this liquid. (1-3) The liquid obtained in (1-2) above was subjected to solid-liquid separation by centrifugation, 30 g of pure water was added to the precipitate, and the mixture was stirred. After ultrasonic irradiation for 10 minutes in this solution was added 30 wt% trisodium citrate aqueous solution 3 0 g.

【0046】(1−4)上記工程(1−3)を2回繰り
返した後、遠心分離により固液分離後、純水35gを添
加し、さらに20分間超音波照射した。 (1−5)上記(1−4)で得られた液に、陽イオン交
換樹脂を添加し15分間撹拌した後、陽イオン交換樹脂
を濾別し、さらに陰イオン交換樹脂を添加して18分間
撹拌した後、陰イオン交換樹脂を濾別し、Ag−Pd合
金微粒子分散液を得た。この分散液のAg−Pd合金微
粒子の平均一次粒径は8nmであり、液中の凝集粒径は
60nm、その固形分濃度は3.5重量%であった(A
1液)。
(1-4) After repeating the above step (1-3) twice, solid-liquid separation was carried out by centrifugation, 35 g of pure water was added, and ultrasonic irradiation was further carried out for 20 minutes. (1-5) The cation exchange resin was added to the liquid obtained in the above (1-4), and the mixture was stirred for 15 minutes, then the cation exchange resin was filtered off, and the anion exchange resin was added to give 18 After stirring for a minute, the anion exchange resin was filtered off to obtain a Ag-Pd alloy fine particle dispersion liquid. The average primary particle size of the Ag-Pd alloy fine particles in this dispersion was 8 nm, the aggregate particle size in the liquid was 60 nm, and the solid content concentration was 3.5% by weight (A
1 solution).

【0047】「導電膜用塗布液の調製」 (1−6)A1液をエタノールおよび水で希釈し、エタ
ノール80重量%、固形分0.27重量%となるように
調整した(A2液)。 「ケイ素化合物含有液の調製」 (1−7)ケイ酸エチル50gをエタノール200gに
溶解し、撹拌下で濃硝酸1.5gと純水33gとの混合
溶液を滴下し、室温で2時間撹拌してSiO2 濃度4.
9重量%の液を得た(B1液)。このB1液を、プロピ
レングリコールモノメチルエーテル/イソプロピルアル
ール/ジアセトンアルコール=50:40:10(重
量比)の混合溶媒でSiO2 固形分が0.70重量%と
なるように希釈した(B2液)。
"Preparation of coating liquid for conductive film" (1-6) A1 liquid was diluted with ethanol and water and adjusted to 80 % by weight of ethanol and 0.27 % by weight of solid content. (A2 liquid). "Preparation of Liquid Containing Silicon Compound" (1-7) 50 g of ethyl silicate was dissolved in 200 g of ethanol, a mixed solution of 1.5 g of concentrated nitric acid and 33 g of pure water was added dropwise under stirring, and the mixture was stirred at room temperature for 2 hours. SiO 2 concentration 4.
A 9% by weight liquid was obtained (B1 liquid). The B1 liquid, propylene glycol monomethyl ether / isopropyl Piruaru
Co Lumpur / diacetone alcohol = 50: 40: 10 SiO 2 solid with a mixed solvent (weight ratio) was diluted to 0.70 wt% (B2 solution).

【0048】「塗布および硬化」 (1−8)A2液25gを、表面温度48℃に加温した
14インチ(型)ブラウン管パネル表面にスピンコート
法で、硬化時の膜厚が40nmになるよう100rp
m、60秒間の条件で塗布した後、B2液20gをA2
液の塗布時と同一のスピンコート条件で硬化時の膜厚が
60nmになる塗布量で塗布した後、160℃で30分
間加熱することにより本発明の導電膜付き陰極線管用ガ
ラスを得た。この導電膜は、低反射性を有する低反射導
電膜である。
"Coating and Curing" (1-8) 25 g of A2 solution was spin-coated on the surface of a 14-inch (type) CRT panel heated to a surface temperature of 48 ° C. by a spin coating method so that the film thickness at the time of curing would be 40 nm. 100 rp
m2 for 60 seconds, and then apply 20g of B2 solution to A2
The glass for a cathode ray tube with a conductive film of the present invention was obtained by applying a coating amount such that the film thickness upon curing was 60 nm under the same spin coating conditions as when the liquid was applied, and then heating at 160 ° C. for 30 minutes. The conductive film is a low reflective conductive film having low reflectivity.

【0049】(実施例2) 「Ag−Cu−Pd合金微粒子分散液の調製」 (2−1)5重量%硝酸パラジウム水溶液7.5gにN
−メチル−2−ピロリドン3.5g添加した後15分
間撹拌した。この液に8重量%硝酸銅水溶液10gを添
加した後15分間撹拌し、さらにこの液に10重量%硝
酸銀水溶液15gを添加した後15分間撹拌した。 (2−2)30重量%硫酸鉄水溶液20gに35重量%
クエン酸三ナトリウム水溶液35gを添加し、さらにこ
の液に上記(2−1)で得られた液を添加した。 (2−3)上記(2−2)で得られた液を遠心分離によ
り固液分離後、沈殿物に純水20gを添加して撹拌し
た。この液に15分間超音波照射した後、30重量%ク
エン酸三ナトリウム水溶液25gを添加した。
(Example 2) "Preparation of Ag-Cu-Pd alloy fine particle dispersion liquid" (2-1) N was added to 7.5 g of a 5 wt% palladium nitrate aqueous solution.
- methyl-2-pyrrolidone down 3. After adding 5 g , the mixture was stirred for 15 minutes. 10 g of an 8 wt% copper nitrate aqueous solution was added to this liquid and then stirred for 15 minutes, and further 15 g of a 10 wt% silver nitrate aqueous solution was added to this liquid and then stirred for 15 minutes. (2-2) 35 wt% in 20 g of 30 wt% iron sulfate aqueous solution
35 g of a trisodium citrate aqueous solution was added, and the liquid obtained in (2-1) above was further added to this liquid. (2-3) The liquid obtained in (2-2) above was subjected to solid-liquid separation by centrifugation, 20 g of pure water was added to the precipitate, and the mixture was stirred. After ultrasonic irradiation of this solution for 15 minutes, 25 g of a 30% by weight aqueous solution of trisodium citrate was added.

【0050】(2−4)上記工程(2−3)を3回繰り
返した後、遠心分離により固液分離後、純水30gを添
加し、さらに30分間超音波照射した。 (2−5)上記(2−4)で得られた液に、陽イオン交
換樹脂を添加し8分間撹拌した後、陽イオン交換樹脂を
濾別し、さらに陰イオン交換樹脂を添加して8分間撹拌
した後、陰イオン交換樹脂を濾別し、Ag−Cu−Pd
合金微粒子分散液を得た。この分散液のAg−Cu−P
d合金微粒子の平均一次粒径は10nmであり、液中の
凝集粒径は98nm、その固形分濃度は2.5重量%で
あった(A3液)。
(2-4) After repeating the above step (2-3) three times, solid-liquid separation was carried out by centrifugation, 30 g of pure water was added, and ultrasonic irradiation was further carried out for 30 minutes. (2-5) To the liquid obtained in (2-4) above, a cation exchange resin was added and stirred for 8 minutes, then the cation exchange resin was filtered off, and an anion exchange resin was added to obtain 8 After stirring for minutes, the anion exchange resin was filtered off and the Ag-Cu-Pd
An alloy fine particle dispersion was obtained. Ag-Cu-P of this dispersion
The average primary particle diameter of the d-alloy fine particles was 10 nm, the aggregate particle diameter in the liquid was 98 nm, and the solid content concentration was 2.5% by weight (Liquid A3).

【0051】「導電膜用塗布液の調製」 (2−6)A3液をエタノールおよび水で希釈し、エタ
ノール70重量%、固形分0.27重量%となるように
調整した(A4液)。 「塗布および硬化」 (2−7)A4液30gを、表面温度48℃に加温した
14インチ(型)ブラウン管パネル表面にスピンコート
法で、硬化時の膜厚が45nmになるよう100rp
m、60秒間の条件で塗布した後、B2液20gをA4
液の塗布時と同一のスピンコート条件で硬化時の膜厚が
60nmになる塗布量で塗布した後、160℃で30分
間加熱することにより本発明の導電膜付き陰極線管用ガ
ラスを得た。
"Preparation of coating liquid for conductive film" (2-6) A3 solution was diluted with ethanol and water to adjust to 70 % by weight of ethanol and 0.27 % by weight of solid content. (A4 liquid). "Coating and curing" (2-7) 30g of A4 liquid was spin-coated on the surface of a 14-inch (type) cathode ray tube panel heated to a surface temperature of 48 ° C by a spin coating method to obtain a film thickness of 100 rp at 45 nm.
m2 for 60 seconds, then apply 20g of B2 solution to A4
The glass for a cathode ray tube with a conductive film of the present invention was obtained by applying a coating amount such that the film thickness upon curing was 60 nm under the same spin coating conditions as when the liquid was applied, and then heating at 160 ° C. for 30 minutes.

【0052】(実施例3) 「Ag−Ni合金微粒子分散液の調製」 (3−1)10重量%硝酸ニッケル水溶液7.5gに1
0重量%硝酸銀水溶液20gを添加した後30分間撹拌
した。 (3−2)35重量%クエン酸三ナトリウム水溶液35
gに上記(3−1)で得られた液を添加した後、5重量
%水素化ホウ素ナトリウム水溶液20gを添加した。 (3−3)上記(3−2)で得られた液を遠心分離によ
り固液分離後、沈殿物に純水20gを添加して撹拌し
た。この液に15分間超音波照射した後、30重量%ク
エン酸三ナトリウム水溶液25g添加した。
(Example 3) "Preparation of Ag-Ni alloy fine particle dispersion liquid" (3-1) 1 to 7.5 g of 10 wt% nickel nitrate aqueous solution
After adding 20 g of a 0 wt% silver nitrate aqueous solution, the mixture was stirred for 30 minutes. (3-2) 35 wt% trisodium citrate aqueous solution 35
After adding the liquid obtained in the above (3-1) to g, 20 g of a 5 wt% sodium borohydride aqueous solution was added. (3-3) The liquid obtained in (3-2) above was subjected to solid-liquid separation by centrifugation, 20 g of pure water was added to the precipitate, and the mixture was stirred. After ultrasonic irradiation for 15 minutes this solution was added 30 wt% trisodium citrate aqueous solution 2 5 g.

【0053】(3−4)上記工程(3−3)を2回繰り
返した後、遠心分離により固液分離後、純水30gを添
加し、さらに30分間超音波照射した。 (3−5)上記(3−4)で得られた液に、陽イオン交
換樹脂を添加し5分間撹拌した後、陽イオン交換樹脂を
濾別し、さらに陰イオン交換樹脂を添加して5分間撹拌
した後、陰イオン交換樹脂を濾別し、Ag−Ni合金微
粒子分散液を得た。この分散液のAg−Ni合金微粒子
の平均一次粒径は12nmであり、液中の凝集粒径は8
5nm、その固形分濃度は2.2重量%であった(A5
液)。
(3-4) The above step (3-3) was repeated twice, and after solid-liquid separation by centrifugation, 30 g of pure water was added and ultrasonic irradiation was carried out for another 30 minutes. (3-5) The cation exchange resin was added to the liquid obtained in (3-4) above, and the mixture was stirred for 5 minutes. Then, the cation exchange resin was filtered off, and the anion exchange resin was added to give 5 After stirring for 1 minute, the anion exchange resin was filtered off to obtain an Ag-Ni alloy fine particle dispersion liquid. The average primary particle diameter of Ag-Ni alloy fine particles in this dispersion was 12 nm, and the aggregate particle diameter in the liquid was 8
5 nm, the solid content concentration was 2.2% by weight (A5
liquid).

【0054】「導電膜用塗布液の調製」 (3−6)(A5液)をエタノールおよび水で希釈し、
エタノール70重量%、固形分0.27重量%となるよ
うに調整した(A6液)。 「塗布および硬化」 (3−7)A6液30gを、表面温度48℃に加温した
14インチ(型)ブラウン管パネル表面にスピンコート
法で、硬化時の膜厚が45nmになるよう100rp
m、60秒間の条件で塗布した後、B2液20gをA6
液の塗布時と同一のスピンコート条件で硬化時の膜厚が
60nmになる塗布量で塗布した後、160℃で30分
間加熱することにより本発明の導電膜付き陰極線管用ガ
ラスを得た。
"Preparation of coating liquid for conductive film" (3-6) (A5 liquid) was diluted with ethanol and water,
Ethanol was adjusted to 70 % by weight and solid content was 0.27 % by weight (Liquid A6). "Coating and curing" (3-7) 30g of A6 liquid was spin-coated on the surface of a 14-inch (type) cathode ray tube panel heated to a surface temperature of 48 ° C by a spin coating method to obtain a film thickness of 45 rp at 100 rp.
m2 for 60 seconds, and then apply 20g of B2 solution to A6
The glass for a cathode ray tube with a conductive film of the present invention was obtained by applying a coating amount such that the film thickness upon curing was 60 nm under the same spin coating conditions as when the liquid was applied, and then heating at 160 ° C. for 30 minutes.

【0055】(実施例4) 「RuPd合金微粒子分散液の調製」 (4−1)6.5重量%塩化パラジウム水溶液7.5g
にN−メチル−2−ピロリドン2.5g添加した後1
5分間撹拌した。この液に3.6重量%塩化ルテニウム
水溶液15gを添加した後15分間撹拌した。 (4−2)35重量%クエン酸三ナトリウム水溶液35
gに上記(4−1)で得られた液を添加した後、5重量
%水素化ホウ素ナトリウム水溶液40gを添加した。 (4−3)上記(4−2)で得られた液を遠心分離によ
り固液分離後、沈殿物に純水20gを添加して撹拌し
た。この液に15分間超音波照射した後、30重量%ク
エン酸三ナトリウム水溶液10g添加した。
(Example 4) "Preparation of Ru - Pd alloy fine particle dispersion liquid" (4-1) 7.5 wt% palladium chloride aqueous solution 7.5 g
In N- methyl-2-pyrrolidone down 2. 1 After the addition of 5g
Stir for 5 minutes. 15 g of a 3.6 wt% ruthenium chloride aqueous solution was added to this liquid, and the mixture was stirred for 15 minutes. (4-2) 35 wt% trisodium citrate aqueous solution 35
After adding the liquid obtained in the above (4-1) to g, 40 g of a 5 wt% sodium borohydride aqueous solution was added. (4-3) The liquid obtained in (4-2) above was subjected to solid-liquid separation by centrifugation, 20 g of pure water was added to the precipitate, and the mixture was stirred. After ultrasonic irradiation for 15 minutes this solution was added 30 wt% trisodium citrate aqueous solution 1 0 g.

【0056】(4−4)上記工程(4−3)を2回繰り
返した後、遠心分離により固液分離後、純水30gを添
加し、さらに30分間超音波照射した。 (4−5)上記(4−4)で得られた液に、陽イオン交
換樹脂を添加し5分間撹拌した後、陽イオン交換樹脂を
濾別し、さらに陰イオン交換樹脂を添加して5分間撹拌
した後、陰イオン交換樹脂を濾別し、RuPd合金微
粒子分散液を得た。この分散液のRuPd合金微粒子
の平均一次粒径は13nmであり、液中の凝集粒径は7
5nm、その固形分濃度は1.8重量%であった(A7
液)。
(4-4) After the above step (4-3) was repeated twice, solid-liquid separation was carried out by centrifugation, 30 g of pure water was added, and ultrasonic irradiation was carried out for another 30 minutes. (4-5) The cation exchange resin was added to the liquid obtained in the above (4-4), the mixture was stirred for 5 minutes, the cation exchange resin was filtered off, and the anion exchange resin was further added to obtain 5 After stirring for 1 minute, the anion exchange resin was filtered off to obtain a Ru - Pd alloy fine particle dispersion liquid. The average primary particle size of the Ru - Pd alloy fine particles in this dispersion was 13 nm, and the aggregate particle size in the liquid was 7
5 nm, the solid content concentration was 1.8% by weight (A7
liquid).

【0057】「導電膜用塗布液の調製」 (4−6)A7液をエタノールおよび水で希釈し、エタ
ノール70重量%、固形分0.27重量%となるように
調整した(A8液)。 「塗布および硬化」 (4−7)A8液30gを、表面温度48℃に加温した
14インチ(型)ブラウン管パネル表面にスピンコート
法で、硬化時の膜厚が45nmになるよう100rp
m、60秒間の条件で塗布した後、B2液20gをA8
液の塗布時と同一のスピンコート条件で硬化時の膜厚が
60nmになる塗布量で塗布した後、160℃で30分
間加熱することにより本発明の導電膜付き陰極線管用ガ
ラスを得た。
"Preparation of coating liquid for conductive film" (4-6) A7 solution was diluted with ethanol and water to adjust to 70 % by weight of ethanol and 0.27 % by weight of solid content. (A8 liquid). "Coating and curing" (4-7) 30 g of A8 liquid was spin-coated on the surface of a 14-inch (type) cathode ray tube panel heated to a surface temperature of 48 ° C. by a spin coating method to obtain a film thickness of 45 rp at 100 rp.
m2 for 60 seconds, and then apply 20g of B2 solution to A8
The glass for a cathode ray tube with a conductive film of the present invention was obtained by applying a coating amount such that the film thickness upon curing was 60 nm under the same spin coating conditions as when the liquid was applied, and then heating at 160 ° C. for 30 minutes.

【0058】(実施例5) 「Au−Pd合金微粒子分散液の調製」 (5−1)6.5重量%塩化パラジウム水溶液7.5g
にN−メチル−2−ピロリドン2.5g添加した後1
5分間撹拌した。この液に3重量%塩化金酸水溶液20
gを添加した後15分間撹拌した。 (5−2)30重量%硫酸鉄水溶液20gに35重量%
クエン酸三ナトリウム水溶液35gを添加し、さらにこ
の液に上記(5−1)で得られた液を添加した。 (5−3)上記(5−2)で得られた液を遠心分離によ
り固液分離後、沈殿物に純水30gを添加して撹拌し
た。この液に10分間超音波照射した後、30重量%ク
エン酸三ナトリウム水溶液30g添加した。
(Example 5) "Preparation of Au-Pd alloy fine particle dispersion liquid" (5-1) 7.5% by weight aqueous solution of palladium chloride 7.5 g
In N- methyl-2-pyrrolidone down 2. 1 After the addition of 5g
Stir for 5 minutes. 20% of 3 wt% aqueous chloroauric acid solution
After adding g, the mixture was stirred for 15 minutes. (5-2) 35 wt% in 20 g of 30 wt% iron sulfate aqueous solution
35 g of trisodium citrate aqueous solution was added, and the liquid obtained in the above (5-1) was further added to this liquid. (5-3) The liquid obtained in (5-2) above was subjected to solid-liquid separation by centrifugation, 30 g of pure water was added to the precipitate, and the mixture was stirred. After ultrasonic irradiation for 10 minutes in this solution was added 30 wt% trisodium citrate aqueous solution 3 0 g.

【0059】(5−4)上記工程(5−3)を3回繰り
返した後、遠心分離により固液分離後、純水35gを添
加し、さらに30分間超音波照射した。 (5−5)上記(5−4)で得られた液に、陽イオン交
換樹脂を添加し15分間撹拌した後、陽イオン交換樹脂
を濾別し、さらに陰イオン交換樹脂を添加して18分間
撹拌した後、陰イオン交換樹脂を濾別し、Au−Pd合
金微粒子分散液を得た。この分散液のAu−Pd合金微
粒子の平均一次粒径は5nmであり、液中の凝集粒径は
52nm、その固形分濃度は3.5重量%であった(A
9液)。
(5-4) After repeating the above step (5-3) three times, solid-liquid separation was carried out by centrifugation, 35 g of pure water was added, and ultrasonic irradiation was further carried out for 30 minutes. (5-5) A cation exchange resin was added to the liquid obtained in (5-4) above, and the mixture was stirred for 15 minutes. Then, the cation exchange resin was filtered off, and the anion exchange resin was added. After stirring for 1 minute, the anion exchange resin was filtered off to obtain an Au-Pd alloy fine particle dispersion liquid. The average primary particle size of the Au-Pd alloy fine particles in this dispersion was 5 nm, the aggregate particle size in the liquid was 52 nm, and the solid content concentration was 3.5% by weight (A
9 solution).

【0060】「導電膜用塗布液の調製」 (5−6)A9液をエタノールおよび水で希釈し、エタ
ノール80重量%、固形分0.25重量%となるように
調整した(A10液)。 「塗布および硬化」 (5−7)A10液35gを、表面温度48℃に加温し
た14インチ(型)ブラウン管パネル表面にスピンコー
ト法で、硬化時の膜厚が50nmになるよう100rp
m、60秒間の条件で塗布した後、B2液20gをA
液の塗布時と同一のスピンコート条件で硬化時の膜厚
が60nmになる塗布量で塗布した後、160℃で30
分間加熱することにより本発明の導電膜付き陰極線管用
ガラスを得た。
"Preparation of Coating Solution for Conductive Film" (5-6) A9 solution was diluted with ethanol and water to adjust to 80 % by weight of ethanol and 0.25 % by weight of solid content. (A10 liquid). "Coating and curing" (5-7) 35g of A10 liquid was spin-coated on the surface of a 14-inch (type) CRT panel heated to a surface temperature of 48 ° C by a spin coating method to obtain a film thickness of 50nm at 100rp.
m 2 for 60 seconds, and then apply 20g of B2 solution to A 1
After coating with a coating amount such that the film thickness upon curing was 60 nm under the same spin coating conditions as when coating the 0 liquid, at 30 ° C. at 160 ° C.
The glass for a cathode ray tube with a conductive film of the present invention was obtained by heating for a minute.

【0061】(実施例6) 「Pt−Pd合金微粒子分散液の調製」 (6−1)6.5重量%塩化パラジウム水溶液7.5g
にN−メチル−2−ピロリドン2.5g添加した後1
5分間撹拌した。この液に3重量%塩化白金酸水溶液1
5gを添加した後15分間撹拌した。 (6−2)30重量%硫酸鉄水溶液20gに35重量%
クエン酸三ナトリウム水溶液35gを添加し、さらにこ
の液に上記(6−1)で得られた液を添加した。 (6−3)上記(6−2)で得られた液を遠心分離によ
り固液分離後、沈殿物に純水30gを添加して撹拌し
た。この液に10分間超音波照射した後、30重量%ク
エン酸三ナトリウム水溶液30g添加した。
(Example 6) "Preparation of Pt-Pd alloy fine particle dispersion liquid" (6-1) 7.5 g by weight aqueous solution of palladium chloride 7.5 g
In N- methyl-2-pyrrolidone down 2. 1 After the addition of 5g
Stir for 5 minutes. Add 3 wt% chloroplatinic acid aqueous solution to this solution 1
After adding 5 g, the mixture was stirred for 15 minutes. (6-2) 35 wt% in 20 g of 30 wt% iron sulfate aqueous solution
35 g of trisodium citrate aqueous solution was added, and the liquid obtained in the above (6-1) was added to this liquid. (6-3) The liquid obtained in (6-2) above was subjected to solid-liquid separation by centrifugation, and 30 g of pure water was added to the precipitate and stirred. After ultrasonic irradiation for 10 minutes in this solution was added 30 wt% trisodium citrate aqueous solution 3 0 g.

【0062】(6−4)上記工程(6−3)を4回繰り
返した後、遠心分離により固液分離後、純水35gを添
加し、さらに60分間超音波照射した。 (6−5)上記(6−4)で得られた液に、陽イオン交
換樹脂を添加し5分間撹拌した後、陽イオン交換樹脂を
濾別し、さらに陰イオン交換樹脂を添加して5分間撹拌
した後、陰イオン交換樹脂を濾別し、Pt−Pd合金微
粒子分散液を得た。この分散液のPt−Pd合金微粒子
の平均一次粒径は6nmであり、液中の凝集粒径は63
nm、その固形分濃度は2.1重量%であった(A11
液)。
(6-4) After repeating the above step (6-3) four times, solid-liquid separation was carried out by centrifugation, 35 g of pure water was added, and ultrasonic irradiation was further carried out for 60 minutes. (6-5) To the liquid obtained in (6-4) above, a cation exchange resin was added and stirred for 5 minutes, then the cation exchange resin was filtered off, and an anion exchange resin was added to give 5 After stirring for a minute, the anion exchange resin was filtered off to obtain a Pt-Pd alloy fine particle dispersion liquid. The average primary particle diameter of the Pt-Pd alloy fine particles in this dispersion was 6 nm, and the aggregate particle diameter in the liquid was 63.
nm, and the solid content concentration was 2.1% by weight (A11
liquid).

【0063】「導電膜用塗布液の調製」 (6−6)A11液をエタノールおよび水で希釈し、エ
タノール80重量%、固形分0.25重量%となるよう
に調整した(A12液)。 「塗布および硬化」 (6−7)A12液35gを、表面温度48℃に加温し
た14インチ(型)ブラウン管パネル表面にスピンコー
ト法で、硬化時の膜厚が55nmになるよう100rp
m、60秒間の条件で塗布した後、B2液20gをA
2液の塗布時と同一のスピンコート条件で硬化時の膜厚
が60nmになる塗布量で塗布した後、160℃で30
分間加熱することにより本発明の導電膜付き陰極線管用
ガラスを得た。
"Preparation of Coating Liquid for Conductive Film" (6-6) A11 liquid was diluted with ethanol and water and adjusted to 80 % by weight of ethanol and 0.25 % by weight of solid content. (A12 liquid). "Coating and curing" (6-7) 35g of A12 liquid was spin-coated on the surface of a 14-inch (type) cathode ray tube panel heated to a surface temperature of 48 ° C by a spin coating method to obtain a film thickness of 55 rp at 100 rp.
m 2 for 60 seconds, and then apply 20g of B2 solution to A 1
Under the same spin-coating conditions as when applying the two liquids, a coating amount of 60 nm is obtained at the time of curing, and then 30 at 160 ° C.
The glass for a cathode ray tube with a conductive film of the present invention was obtained by heating for a minute.

【0064】(実施例7) 「窒素を含有するTiOx (1.0≦x<2.0)微粒
子分散液の調製」 (7−1)窒素を3重量%含有するTiOx (1.0≦
x<2.0)微粒子15gをあらかじめpH3.5に調
整した水溶液85g中に添加してサンドミルで4時間粉
砕し、90℃で1時間加熱した。 (7−2)上記(7−1)で得られた液に、陽イオン交
換樹脂を添加し30分間撹拌した後、陽イオン交換樹脂
を濾別し、さらに陰イオン交換樹脂を添加して30分間
撹拌した後、陰イオン交換樹脂を濾別し、蒸留水で濃度
10重量%に調整し、平均凝集粒径43nmの分散液を
得た。この分散液に水を添加して、固形分3.5重量%
となるように調整した(C1液)。
(Example 7) "Preparation of TiO x (1.0 ≤ x <2.0) fine particle dispersion containing nitrogen" (7-1) TiO x (1.0 containing 1.0% by weight of nitrogen) ≤
x <2.0) 15 g of fine particles were added to 85 g of an aqueous solution adjusted to pH 3.5 in advance, pulverized with a sand mill for 4 hours, and heated at 90 ° C. for 1 hour. (7-2) A cation exchange resin was added to the liquid obtained in (7-1) above, and the mixture was stirred for 30 minutes. Then, the cation exchange resin was filtered off, and an anion exchange resin was added to the solution. After stirring for 1 minute, the anion exchange resin was filtered off and the concentration was adjusted to 10% by weight with distilled water to obtain a dispersion liquid having an average aggregate particle diameter of 43 nm. Water was added to this dispersion to give a solid content of 3.5% by weight.
Was adjusted so that (C1 liquid).

【0065】「導電膜用塗布液の調製」 (7−3)実施例1記載のA1液と上記C1液をA1
液:C1液=20:1となるように混合した後、30分
間超音波分散処理を行い、その後エタノールおよび水で
希釈し、エタノール80重量%、固形分0.30重量
となるように調整した(A13液)。
[0065] "conductive film coating solution preparation of" (7-3) the A1 solution and the C1 solution of Example 1 Symbol placement A1
Liquid: C1 liquid = 20: 1, ultrasonically dispersed for 30 minutes, then diluted with ethanol and water to give 80 % by weight of ethanol and 0.30 % by weight of solids.
(A13 solution).

【0066】「塗布および硬化」 (7−4)A13液35gを、表面温度48℃に加温し
た14インチ(型)ブラウン管パネル表面にスピンコー
ト法で、硬化時の膜厚が40nmになるよう100rp
m、60秒間の条件で塗布した後、B2液20gをA1
3液の塗布時と同一のスピンコート条件で硬化時の膜厚
が60nmになる塗布量で塗布した後、160℃で30
分間加熱することにより本発明の導電膜付き陰極線管用
ガラスを得た。
[Coating and curing] (7-4) 35 g of A13 solution was spin-coated on the surface of a 14-inch (type) cathode ray tube panel heated to a surface temperature of 48 ° C. by a spin coating method so that the film thickness upon curing would be 40 nm. 100 rp
m2 for 60 seconds, and then apply 20g of B2 solution to A1
Under the same spin-coating conditions as when applying the three liquids, a coating amount of 60 nm is obtained at the time of curing, and then 30 at 160 ° C.
The glass for a cathode ray tube with a conductive film of the present invention was obtained by heating for a minute.

【0067】(実施例8) 「ケイ素化合物含有液の調製」 (8−1)ケイ酸エチル35gをエタノール215gに
溶解し、撹拌下で濃硝酸1.5gと純水33gとの混合
溶液を滴下し、室温で2時間撹拌してSiO2 濃度3.
5重量%の液を得た(B3液)。
(Example 8) "Preparation of liquid containing silicon compound" (8-1) 35 g of ethyl silicate was dissolved in 215 g of ethanol, and a mixed solution of 1.5 g of concentrated nitric acid and 33 g of pure water was added dropwise with stirring. Then, the mixture is stirred at room temperature for 2 hours to obtain a SiO 2 concentration of 3.
A 5 wt% liquid was obtained (B3 liquid).

【0068】「導電膜用塗布液の調製」 (8−2)実施例1記載のA1液と実施例7記載のC1
液と上記B3液をA1液:C1液:B3液=50:3:
47となるように混合した後、30分間超音波分散処理
を行い、その後エタノールおよび水で希釈し、エタノー
70重量%、固形分1.1重量%となるように調整し
た(A14液)。
"Preparation of coating liquid for conductive film" (8-2) A1 liquid described in Example 1 and C1 described in Example 7
Liquid and the above B3 liquid are A1 liquid: C1 liquid: B3 liquid = 50: 3:
After mixing so as to be 47, ultrasonic dispersion treatment was carried out for 30 minutes and then diluted with ethanol and water to adjust to 70 % by weight of ethanol and 1.1 % by weight of solid content ( A14 solution).

【0069】「塗布および硬化」 (8−3)A14液35gを、表面温度48℃に加温し
た14インチ(型)ブラウン管パネル表面にスピンコー
ト法で100rpm、60秒間の条件で塗布した後16
0℃で30分間加熱することにより本発明の導電膜付き
陰極線管用ガラスを得た。
[Coating and Curing] (8-3) 35 g of A14 liquid was applied to the surface of a 14-inch (type) cathode ray tube panel heated to a surface temperature of 48 ° C. by a spin coating method at 100 rpm for 60 seconds, and then 16
The glass for a cathode ray tube with a conductive film of the present invention was obtained by heating at 0 ° C. for 30 minutes.

【0070】(比較例1) (9−1)10重量%硝酸銀水溶液20gに29重量
NH3 水溶液3gを添加した後10分撹拌した(D1
液)。 (9−2)9重量%ブドウ糖水溶液100gに0.8重
量%酒石酸水溶液100gを添加し、さらにエタノー
0g添加した(D2液)。 (9−3)上記D1液とD2液を混合後直ちに、表面温
度48℃に加温した14インチ(型)ブラウン管パネル
表面にスピンコート法で100rpm、60秒間の条件
で50gを塗布し、成膜した後、蒸留水1リットルを同
様に100rpm、600秒間かけ、膜を洗浄し、その
上にB2液20gをA13液の塗布時と同一のスピンコ
ート条件で塗布した後、160℃で30分間加熱するこ
とにより導電膜付き陰極線管用ガラスを得た。
Comparative Example 1 (9-1) 29% by weight in 20 g of 10% by weight silver nitrate aqueous solution
After adding 3 g of NH 3 aqueous solution, the mixture was stirred for 10 minutes (D1
liquid). (9-2) 9 added wt% aqueous glucose solution 100g 0.8% by weight aqueous tartaric acid solution 100g, further ethanol
20 g was added (D2 solution). (9-3) Immediately after mixing the D1 liquid and the D2 liquid, 50 g was applied to the surface of a 14-inch (type) CRT panel heated to a surface temperature of 48 ° C. by a spin coating method at 100 rpm for 60 seconds, and the mixture was formed. After the film was formed, 1 liter of distilled water was similarly applied at 100 rpm for 600 seconds to wash the film, and 20 g of the B2 solution was applied thereon under the same spin coating conditions as when the A13 solution was applied, and then at 160 ° C. for 30 minutes. By heating, a glass for a cathode ray tube with a conductive film was obtained.

【0071】(比較例2) (10−1)30重量%硫酸鉄水溶液20gに35重量
%クエン酸三ナトリウム水溶液35gを添加し、さらに
この液に10重量%硝酸銀水溶液25gを添加した。 (10−2)上記(10−1)で得られた液を遠心分離
により固液分離後、沈殿物に純水30gを添加して撹拌
した。この液に5分間超音波照射した後、30重量%ク
エン酸三ナトリウム水溶液25g添加した。
Comparative Example 2 (10-1) 35 g of a 35 wt% trisodium citrate aqueous solution was added to 20 g of a 30 wt% iron sulfate aqueous solution, and further 25 g of a 10 wt% silver nitrate aqueous solution was added to this solution. (10-2) The liquid obtained in (10-1) above was subjected to solid-liquid separation by centrifugation, 30 g of pure water was added to the precipitate, and the mixture was stirred. After ultrasonic irradiation for 5 minutes to this solution was added 30 wt% trisodium citrate aqueous solution 2 5 g.

【0072】(10−3)上記工程(10−2)を4回
繰り返した後、遠心分離により固液分離後、純水35g
を添加し、さらに20分間超音波照射した。 (10−4)上記(10−3)で得られた液に、陽イオ
ン交換樹脂を添加し30分間撹拌した後、陽イオン交換
樹脂を濾別し、さらに陰イオン交換樹脂を添加して30
分間撹拌した後、陰イオン交換樹脂を濾別し、Ag微粒
子分散液を得た。この分散液のAg微粒子の平均一次粒
径は10nmであり、液中の凝集粒径は75nm、その
固形分濃度は3.5重量%であった(E1液)。
(10-3) After repeating the above step (10-2) four times, solid-liquid separation was carried out by centrifugation, and then 35 g of pure water was added.
Was added and ultrasonic irradiation was performed for another 20 minutes. (10-4) After adding a cation exchange resin to the liquid obtained in (10-3) and stirring for 30 minutes, the cation exchange resin is filtered off, and an anion exchange resin is further added to 30
After stirring for 1 minute, the anion exchange resin was filtered off to obtain Ag fine particle dispersion liquid. The average primary particle diameter of Ag particles in this dispersion was 10 nm, the aggregate particle diameter in the solution was 75 nm, and the solid content concentration was 3.5 wt% (E1 solution).

【0073】「導電膜用塗布液の調製」 (10−5)E液をエタノールおよび水で希釈し、エ
タノール80重量%、固形分0.27重量%となるよう
に調整した(E2液)。 「塗布および硬化」 (10−6)E2液20gを、表面温度45℃に加温し
た14インチ(型)ブラウン管パネル表面にスピンコー
ト法で、硬化時の膜厚が42nmになるよう100rp
m、60秒間の条件で塗布した後、B2液20gをE2
液の塗布時と同一のスピンコート条件で硬化時の膜厚が
60nmになる塗布量で塗布した後、160℃で30分
間加熱することにより導電膜付き陰極線管用ガラスを得
た。
"Preparation of coating liquid for conductive film" (10-5 ) E1 liquid was diluted with ethanol and water to adjust to 80 % by weight of ethanol and 0.27 % by weight of solid content. (E2 solution). "Coating and curing" (10-6) 20 g of E2 liquid was spin-coated on a surface of a 14-inch (type) CRT panel heated to a surface temperature of 45 ° C by a spin coating method so that the film thickness at the time of curing was 100 rp.
m2 for 60 seconds, and then apply 20g of B2 solution to E2
A glass for a cathode ray tube with a conductive film was obtained by applying a coating amount such that the film thickness upon curing was 60 nm under the same spin coating conditions as when applying the liquid, and then heating at 160 ° C. for 30 minutes.

【0074】(比較例3) (11−1)塩化インジウムと塩化スズをIn/Sn=
85/15となるように混合し、アンモニア水でpH1
0に調整し50℃に保持した溶液中に添加し、水酸化物
を沈殿析出させた。この沈殿物を洗浄濾別し、100℃
で12時間乾燥後450℃3時間5%水素95%アル
ゴン雰囲気下で焼成し、ITO微粒子を得た。この微粒
子をサンドミルで2時間湿式解膠粉砕した。解膠粉砕後
の液中の平均凝集粒径は65nmであった。その後濃縮
を行い、濃度6.8重量%の液を得た(F1液)。
Comparative Example 3 (11-1) In / Sn =
Mix until it becomes 85/15 and add ammonia water to pH 1
It was adjusted to 0 and added to the solution kept at 50 ° C. to precipitate the hydroxide. The precipitate is washed and filtered, and the temperature is 100 ° C.
After being dried for 12 hours at 450 ° C. , it was baked for 3 hours at 450 ° C. in an atmosphere of 5% hydrogen and 95% argon to obtain ITO fine particles. The fine particles were wet peptized and ground for 2 hours with a sand mill. The average agglomerated particle size in the liquid after deflocculation and pulverization was 65 nm. After that, concentration was performed to obtain a liquid having a concentration of 6.8 wt% (F1 liquid).

【0075】「導電膜用塗布液の調製」 (11−2)F1液をエタノールおよび水で希釈し、エ
タノール80重量%、固形分2.5重量%となるように
調整した(F2液)。 「塗布および硬化」 (11−3)F2液30gを、表面温度45℃に加温し
た14インチ(型)ブラウン管パネル表面にスピンコー
ト法で、硬化時の膜厚が120nmになるよう100r
pm、60秒間の条件で塗布した後、B2液20gを
2液の塗布時と同一のスピンコート条件で硬化時の膜厚
が60nmになる塗布量で塗布した後、160℃で30
分間加熱することにより導電膜付き陰極線管用ガラスを
得た。
"Preparation of coating liquid for conductive film" (11-2) The F1 liquid was diluted with ethanol and water and adjusted so that the ethanol content was 80 % by weight and the solid content was 2.5 % by weight . (F2 solution). “Applying and curing” (11-3) 30 g of F2 liquid was spin-coated on the surface of a 14-inch (type) CRT panel heated to a surface temperature of 45 ° C. by a spin coating method to obtain a film thickness of 100 nm at 120 nm.
After applying under the condition of pm for 60 seconds, 20 g of B2 solution is F
Under the same spin-coating conditions as when applying the two liquids, a coating amount of 60 nm is obtained at the time of curing, and then 30 at 160 ° C.
By heating for minutes, a glass for a cathode ray tube with a conductive film was obtained.

【0076】[評価結果] 実施例1〜8および比較例1〜3で得られた各導電膜の
種類および物性を表1〜3に示す。表において2E2は
2×102 を意味し、他も同様である。
[Evaluation Results] Tables 1 to 3 show the types and physical properties of the conductive films obtained in Examples 1 to 8 and Comparative Examples 1 to 3. In the table, 2E2 means 2 × 10 2 , and the same applies to others.

【0077】[0077]

【表1】 [Table 1]

【0078】[0078]

【表2】 [Table 2]

【0079】[0079]

【表3】 [Table 3]

【0080】[0080]

【発明の効果】本発明によれば、従来技術が有していた
種々の欠点を解消し、耐候性、耐薬品性に優れかつ実用
上充分な膜強度、電磁波シールド能を有し、さらには反
射防止効果にも優れた導電膜を形成できる。
According to the present invention, various drawbacks of the prior art are solved, the weather resistance and the chemical resistance are excellent, and the practically sufficient film strength and electromagnetic wave shielding ability are further provided. A conductive film having an excellent antireflection effect can be formed.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平8−77832(JP,A) 特開 平3−68774(JP,A) 特開 平10−182191(JP,A) 特開 平9−286936(JP,A) 特開 平8−290943(JP,A) 特開 昭63−160140(JP,A) 粉体粉末冶金協会講演概要集平成元年 度秋季大会(平成元年11月7日発行)、 第84,85頁 (58)調査した分野(Int.Cl.7,DB名) C23C 18/00 - 20/08 C09D 5/24 H01J 9/20 H01B 1/22 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-8-77832 (JP, A) JP-A-3-68774 (JP, A) JP-A-10-182191 (JP, A) JP-A-9- 286936 (JP, A) JP-A-8-290943 (JP, A) JP-A-63-160140 (JP, A) Summary of lectures by the Powder and Powder Metallurgy Association 1989 Autumn Meeting (November 7, 1989) Issue), pp. 84, 85 (58) Fields investigated (Int.Cl. 7 , DB name) C23C 18/00-20/08 C09D 5/24 H01J 9/20 H01B 1/22

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】2種以上の金属塩の混合液を還元すること
により合金微粒子分散液を形成し、前記合金微粒子分散
液中に含まれるアルカリ金属イオン、アンモニウムイオ
ン、多価金属イオン等の陽イオンおよび鉱酸等の無機陰
イオン、酢酸、ギ酸等の有機陰イオンを脱イオンするこ
とにより、Ag、Ru、Pt、Pd、Ni、Cuおよび
Auからなる群から選ばれる2種以上の金属元素よりな
る合金微粒子分散体を含むことを特徴とする導電膜形成
用塗布液を製造する導電膜形成用塗布液の製造方法
1. Reduction of a mixed solution of two or more metal salts
To form an alloy fine particle dispersion,
Alkali metal ions and ammonium ions contained in the liquid
And cations such as polyvalent metal ions and inorganic anions such as mineral acids.
Deionize organic anions such as ions, acetic acid, and formic acid.
By the above, a coating liquid for forming a conductive film containing an alloy fine particle dispersion containing two or more kinds of metal elements selected from the group consisting of Ag, Ru, Pt, Pd, Ni, Cu and Au is produced. A method for producing a coating liquid for forming a conductive film .
【請求項2】前記導電膜形成用塗布液が、Ag、Pdお
よびCuからなる合金微粒子分散体を含む請求項1記載
導電膜形成用塗布液の製造方法
Wherein said conductive film forming coating liquid, Ag, according to claim 1 comprising an alloy particle dispersion consisting of Pd and Cu
2. A method for producing a coating liquid for forming a conductive film according to.
【請求項3】前記導電膜形成用塗布液が、AgおよびN
iからなる合金微粒子分散体を含む請求項1記載の導電
膜形成用塗布液の製造方法
3. The conductive film forming coating solution comprises Ag and N.
The method for producing a coating liquid for forming a conductive film according to claim 1 , comprising an alloy fine particle dispersion made of i.
【請求項4】前記導電膜形成用塗布液が、RuおよびP
dからなる合金微粒子分散体を含む請求項1記載の導電
膜形成用塗布液の製造方法
4. The conductive film forming coating solution comprises Ru and P.
The method for producing a coating liquid for forming a conductive film according to claim 1 , comprising an alloy fine particle dispersion made of d.
【請求項5】前記導電膜形成用塗布液が、AuおよびP
dからなる合金微粒子分散体を含む請求項1記載の導電
膜形成用塗布液の製造方法
5. The conductive film forming coating solution is Au or P.
The method for producing a coating liquid for forming a conductive film according to claim 1 , comprising an alloy fine particle dispersion made of d.
【請求項6】前記合金微粒子の平均一次粒径が100n
m以下である請求項1〜5いずれか1項記載の導電膜形
成用塗布液の製造方法
6. The average primary particle size of the alloy fine particles is 100 n.
It is m or less, The manufacturing method of the coating liquid for electrically conductive film formation of any one of Claims 1-5.
【請求項7】前記導電膜形成用塗布液の伝導度が500
μS/cm以下である請求項1〜6いずれか1項記載の
導電膜形成用塗布液の製造方法
7. The conductivity of the coating liquid for forming a conductive film is 500.
7. The method for producing a coating liquid for forming a conductive film according to claim 1, which has a μS / cm or less.
【請求項8】窒素原子をチタン原子と酸素原子の合計に
対して0.3〜30重量%含有するTiOx 微粒子
(2.0>x≧1.0)および/またはケイ素化合物を
さらに含む請求項1〜7いずれか1項記載の導電膜形成
用塗布液の製造方法
8. A TiO x fine particle (2.0> x ≧ 1.0) containing 0.3 to 30% by weight of nitrogen atom based on the total of titanium atom and oxygen atom and / or a silicon compound. Item 8. A method for producing a coating liquid for forming a conductive film according to any one of Items 1 to 7.
【請求項9】RuおよびPdからなる合金微粒子分散体
を含むことを特徴とする導電膜形成用塗布液。
9. A fine alloy particle dispersion comprising Ru and Pd.
A coating liquid for forming a conductive film, comprising:
JP04112197A 1997-02-25 1997-02-25 Coating liquid for forming conductive film, conductive film and method for manufacturing the same Expired - Fee Related JP3520705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04112197A JP3520705B2 (en) 1997-02-25 1997-02-25 Coating liquid for forming conductive film, conductive film and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04112197A JP3520705B2 (en) 1997-02-25 1997-02-25 Coating liquid for forming conductive film, conductive film and method for manufacturing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003413029A Division JP2004190142A (en) 2003-12-11 2003-12-11 Coating liquid for forming electroconductive film, electroconductive film, and production method therefor

Publications (2)

Publication Number Publication Date
JPH10237665A JPH10237665A (en) 1998-09-08
JP3520705B2 true JP3520705B2 (en) 2004-04-19

Family

ID=12599628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04112197A Expired - Fee Related JP3520705B2 (en) 1997-02-25 1997-02-25 Coating liquid for forming conductive film, conductive film and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP3520705B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3310234B2 (en) * 1999-02-25 2002-08-05 シャープ株式会社 Method of manufacturing reflection plate for reflection type liquid crystal display device
JP4573445B2 (en) * 2001-02-16 2010-11-04 吉野電化工業株式会社 Electroless copper plating solution composition and electroless copper plating method
US8349393B2 (en) 2004-07-29 2013-01-08 Enthone Inc. Silver plating in electronics manufacture
JP2007200775A (en) * 2006-01-27 2007-08-09 Bando Chem Ind Ltd Metal fine particle-dispersed body and conductive material using metal fine particle-dispersed body

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
粉体粉末冶金協会講演概要集平成元年度秋季大会(平成元年11月7日発行)、第84,85頁

Also Published As

Publication number Publication date
JPH10237665A (en) 1998-09-08

Similar Documents

Publication Publication Date Title
US6673142B2 (en) Transparent conductive layered structure and method of producing the same, and transparent coat layer forming coating liquid used in the method of producing the same, and display device to which transparent conductive layered structure is applied
JP3302186B2 (en) Substrate with transparent conductive film, method for producing the same, and display device provided with the substrate
JPH10188681A (en) Transparent-conductive-film forming application liquid, base material with transparent conductive film, its manufacture, and display device
JP3473272B2 (en) Coating liquid for conductive film formation and conductive film
JP4411672B2 (en) Coating liquid for forming transparent conductive layer and method for producing the same
EP1079413B1 (en) Transparent conductive layered structure and method of producing the same, coating liquid useful therefor, and display that uses transparent conductive layered structure
JP2000268639A (en) Transparent conductive base material, its manufacture, paint liquid for forming transparent conductive layer used for manufacturing it, and its manufacture
JP3697760B2 (en) Coating liquid
JP2002038053A (en) Coating fluid for forming transparent conductive layer
US20040197549A1 (en) Conductive film, manufactruing method thereof, substrate having the same
JP3520705B2 (en) Coating liquid for forming conductive film, conductive film and method for manufacturing the same
JP3876811B2 (en) Production method of coating liquid for forming transparent conductive layer
KR101171878B1 (en) Applying fluid for forming transparent coating film and base material with transparent coating film, and display device
JP3979967B2 (en) Manufacturing method of low reflection low resistance film
JP3449123B2 (en) Coating solution for forming low-resistance film or low-refractive-index film, and method for producing low-resistance film or low-reflection low-refractive-index film
JP3501942B2 (en) Paint for forming transparent conductive film, transparent conductive film, and display device
JP2004190142A (en) Coating liquid for forming electroconductive film, electroconductive film, and production method therefor
JP3356966B2 (en) Transparent conductive film, method of manufacturing the same, and display device
JP2002367428A (en) Application liquid for forming colored transparent conductive film, base body with the colored transparent conductive film, method of manufacture and display device
JP3750461B2 (en) Transparent conductive layer forming coating liquid, transparent conductive layer and transparent conductive substrate
JP3514192B2 (en) Method for forming low reflective conductive film
JP4902048B2 (en) Substrate with transparent conductive film and display device
JP3484903B2 (en) Coating liquid for forming low-resistance film, low-resistance film and method for manufacturing the same, and low-reflection low-resistance film and method for manufacturing the same
JP2005154453A (en) Coating liquid for forming transparent conductive layer and transparent conductive base material
JP2004303628A (en) Metal-clad metallic particle, its manufacturing method, transparent conductive film forming paint, conductive binding material, and transparent conductive film and display using it

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080213

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees