JP3979967B2 - Manufacturing method of low reflection low resistance film - Google Patents

Manufacturing method of low reflection low resistance film Download PDF

Info

Publication number
JP3979967B2
JP3979967B2 JP2003139351A JP2003139351A JP3979967B2 JP 3979967 B2 JP3979967 B2 JP 3979967B2 JP 2003139351 A JP2003139351 A JP 2003139351A JP 2003139351 A JP2003139351 A JP 2003139351A JP 3979967 B2 JP3979967 B2 JP 3979967B2
Authority
JP
Japan
Prior art keywords
film
low
coating
solution
resistance film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003139351A
Other languages
Japanese (ja)
Other versions
JP2003306615A (en
Inventor
啓介 阿部
健二 石関
恭宏 真田
貴重 米田
剛 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2003139351A priority Critical patent/JP3979967B2/en
Publication of JP2003306615A publication Critical patent/JP2003306615A/en
Application granted granted Critical
Publication of JP3979967B2 publication Critical patent/JP3979967B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Paints Or Removers (AREA)
  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、ブラウン管パネル等のガラス基体表面に塗布して電磁波シールド能を有する低抵抗膜、さらに反射防止性を有する低反射低抵抗膜を形成しうる低反射低抵抗膜の製造方法に関する。
【0002】
【従来の技術】
ブラウン管は高電圧で作動するために、起動時又は終了時にブラウン管表面に静電気が誘発される。この静電気により該表面に埃が付着し、表示画像のコントラスト低下を引き起こしたり、直接手指が触れた際に軽い電気ショックによる不快感を生じることが多い。
【0003】
従来、上述の現象を防止するために、ブラウン管パネル表面に帯電防止膜を付与する試みがかなりなされ、例えば、ブラウン管パネル表面を350℃程度に加熱し、CVD法により酸化スズ及び酸化インジウム等の導電性酸化物層をパネル表面に設ける方法(特許文献1)が採用されてきた。
【0004】
しかし、この方法では装置コストがかかることに加え、ブラウン管表面を高温に加熱するためにブラウン管内の蛍光体の脱落を生じたり、寸法精度が低下したりする問題があった。また、上記導電層に用いる材料としては酸化スズが一般的であるが、この場合には低温処理では高性能な膜が得にくい欠点があった。
【0005】
また、近年、電磁波ノイズによる電子機器への電波障害が社会問題となり、それらを防止するために規格の作成や規制が行われている。電磁波ノイズについては、人体に関してCRT上の静電気チャージによる皮膚癌の恐れ、低周波電界(ELF)による胎児への影響、その他、X線、紫外線等による害が各国で問題視されている。このような問題は、導電性塗膜をブラウン管表面に介在させることにより、該導電性塗膜に電磁波が当たり、塗膜内において渦電流を誘導して、この作用で電磁波を反射する。
【0006】
しかし、このような性能を発揮するためには、導電性被膜が高い電界強度に耐え得る良導電性である必要があるが、それほどの良導電性の膜を得ることはさらに困難であった。
【0007】
一方、低抵抗膜の製造方法に関し、例えば、基体に金属塩と還元剤との混合液を塗布して低抵抗膜を形成する(特許文献2)ことが提案されているが、この方法では金属塩溶液の安定性に乏しいために、該溶液と還元剤との混合後、直ちに混合液を基体に塗布する必要があり、また、溶液自体の成膜性が乏しいために得られる膜の外観が悪いという欠点があった。
【0008】
また、低抵抗膜を形成するために、金属塩と導電性酸化物微粒子とを含有する液、又は金属塩と金属で表面が被覆された微粒子を含有する液(特許文献3)が提案されているが、上記の導電性酸化物微粒子は導電性が金属単体の場合よりも劣り、一方、金属で表面が被覆された微粒子も金属と非金属粒子との界面で接触抵抗が生じて膜の導電性が充分ではないという課題があった。
【0009】
また、上記と同様の目的で金属酸化物とPd、Sn、Pt、Ag及びAuのうちの1種以上の金属粒子を含む液を基体に塗布する(特許文献4)ことが提案されているが、この方法では合金属微粒子の粒径が0.01μm以下であり、金属分散液の安定性が乏しい点に問題があった。
【0010】
さらに、粒径が0.01μmを超える微粒子であっても、金属の種類によってはコロイド特有の吸収が生じ、これらのコロイドを使用して形成された膜は透過色調がニュートラルではないという問題があった。
【0011】
すなわち、金属中の電子の平均自由行程が57nmであることから、これより微小な金属微粒子を用いた場合には、金属中の電子の平均自由行程が制限され、金属微粒子内に電荷の粗密が生じ、これを緩和するために金属微粒子表面にプラズマ振動が生じ、特定の波長の光に対しては共鳴吸収が生じる。特にAg微粒子を用いた場合には、その共鳴吸収波長が可視光領域内(400〜500nm)に生じ、透過色調が黄色となる点が課題であった。
【0012】
また、上記の如く形成される低抵抗膜は、従来より光学機器においてはいうまでもなく、民生用機器、特にTV、コンピュータ端末の陰極線管(CRT)パネル等に形成されるが、表示画像のコントラストやパネル面での外光の反射等の問題があり、これらの反射光の防止に関して数多くの検討がなされてきた。
【0013】
従来の反射防止方法は、例えば、ブラウン管表面に防眩効果を持たるために表面に微細な凹凸を有するSiO層を付着させたり(特許文献5)、フッ酸により表面をエッチングして表面に凹凸を設ける等の方法が採られてきた。
【0014】
しかし、これらの方法は、外部光を散乱させるノングレア処理と呼ばれ、本質的に低反射層を設ける方法でなく、そのために反射率の低減には限界があり、また、ブラウン管等においては、解像度を低下させる原因ともなっている。
【0015】
【特許文献1】
特開昭63−76247号公報
【特許文献2】
特開平6−310058号公報
【特許文献3】
特開平7−258862号公報
【特許文献4】
特開昭63−160140号公報
【特許文献5】
特開昭61−118931号公報
【0016】
【発明が解決しようとする課題】
本発明の目的は、従来技術が有する前述の欠点を解消し、塗布液の状態で分散安定性に優れており、ブラウン管フェイス面等のガラス基体上に膜を形成する際、低温熱処理により、着色がなく透明で導電性に優れた高性能な低抵抗膜を形成でき、さらには反射防止効果にも優れた低反射低抵抗膜を形成できる低反射低抵抗膜の製造方法を提供することにある。
【0017】
【課題を解決するための手段】
本発明は、基体上に、平均粒径が10nmを超えるAg微粒子を少なくとも含有してなる低抵抗膜形成用塗布液を塗布し、その上にケイ素化合物とAg塩とを少なくとも含有してなる低屈折率膜形成用塗布液を塗布することを特徴とする低反射低抵抗膜の製造方法を提供する。
【0018】
【0019
【0020】
【発明の実施の形態】
本発明においては、Ag塩を用いる。Ag塩は、1)低抵抗膜形成用塗布液に含有させる、及び/又は、2)低屈折率膜形成用塗布液に含有させることができる。
【0021】
このようにAg塩を用いることで、Ag微粒子自身の光プラズマ共鳴吸収に起因する膜の400〜500nm領域での吸収を抑制でき、従来技術における低抵抗膜の着色の問題を解決し、着色がなく透明で導電性に優れた高性能な低抵抗膜、さらには反射防止効果にも優れた低反射低抵抗膜を形成できる。
【0022】
本発明で用いるAg塩は、成膜硬化工程時の加熱又は紫外線照射においてAgイオンとして拡散することにより、膜を形成しているAg微粒子の粒成長を促進させ、その結果としてAg微粒子自身の光プラズマ共鳴吸収が抑制されて膜の透過色調がニュートラルになり、これらの膜をTV等の表示装置に適用した場合、表示画像の色のバランスを崩すことなく、表示画像のコントラストを高める作用を有する。
【0023】
本発明で用いるAg微粒子は、該Ag微粒子が所定の粒子径を有するものであれば、種々の方法により製造できるが、特にAg化合物溶液に含まれるAg化合物を還元しうる化合物を、Ag化合物溶液に混合してAg微粒子を製造することが好ましい。
【0024】
本発明において、Ag微粒子を製造するためのAg塩としては、硝酸銀、亜硝酸銀、シアン化銀等のように溶解度の高い種々のAg塩が使用でき、コストや安全性の点から特には硝酸銀が好ましい。また、硝酸銀は水等の溶媒にそのまま溶解して用いることが好ましい。
【0025】
硝酸銀等のAg化合物を還元してAg微粒子を析出させうる還元性化合物としては特に限定されず、例えば、FeSOやSnSO等の卑金属の塩、ホルマリン、ブドウ糖、ロッセル塩、酒石酸、チオ硫酸ナトリウム、水素化ホウ素化合物、次亜リン酸塩等が挙げられる。これらの化合物中で還元速度が比較的緩やかなFeSOやSnSO等の卑金属を含む塩が好ましい。特にFeSOは還元速度が緩やかで均一なAg微粒子の分散液を作りやすいために好ましい。
【0026】
また、Ag化合物溶液に上記のような還元性化合物を混合する前に、Ag化合物溶液にAgイオンと錯体を形成するか、又は生成したAg微粒子表面に吸着していわゆる保護コロイドを形成する物質を添加すると、得られるAg微粒子分散液中のAg微粒子の粒径が均一となるために好ましい。
【0027】
このような物質としては公知の種々の物質が挙げられる。錯体を形成しうる物質としては、例えば、シュウ酸、クエン酸等のカルボン酸及びその塩、アンモニア、トリエタノールアミン等が挙げられる。また、Ag微粒子の表面に吸着して保護コロイドを形成しうる物質として、例えば、ポリビニルアルコール、ポリビニルピロリドン、ゼラチン、アクリル樹脂等の高分子材料が挙げられる。これらのうちではクエン酸塩、特にクエン酸ナトリウムを用いて得られるAg微粒子は平均粒径の均一性が優れるため、クエン酸ナトリウムの使用が特に好適である。
【0028】
本発明で用いるAg微粒子分散液においては、Ag微粒子の平均粒径が10nmを超えることを要し、10nm超100nm以下の範囲とする。Ag微粒子の平均粒径が100nm超では、形成される膜において可視光の散乱が増大し膜の透明度が著しく低下する。Ag微粒子の平均粒径が10nm以下では、塗布液中でのAg微粒子の均一分散性及び分散安定性が著しく損なわれる。
【0029】
本発明の低抵抗膜形成用塗布液中のAg塩の含有量に関しては、膜外観、透過色調等を考慮して適宜決定することが好ましいが、Ag微粒子ゾル含有液にAg塩を添加する場合には、該ゾルの安定性を考慮し、5〜1000ppmの範囲の添加量が好ましい。
【0030】
Ag微粒子分散液は、そのままで種々の溶媒で希釈又は置換して低抵抗膜形成用塗布液として使用できる。この場合に使用する溶媒としては特に限定されず、水以外にも種々公知の有機溶媒が採用できる。
【0031】
例えば、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、イソブタノール、sec−ブタノール、tert−ブタノール等のアルコール類、エチレングリコール等の多価アルコール類、エチルセロソルブ、メチルセロソルブ、ブチルセロソルブ、プロピレングリコールメチルエーテル等のエーテル類、2,4−ペンタンジオン、ジアセトンアルコール等のケトン類、乳酸エチル、乳酸メチル等のエステル類、N−メチルピロリドン等のアミド類、ジメチルスルホキシド、スルホラン等の硫黄化合物が挙げられる。
【0032】
低抵抗膜形成用塗布液中のAg微粒子濃度は、0.01〜5重量%、特には0.05〜2重量%の範囲とするのが好ましい。Ag微粒子濃度が5重量%超では、形成される膜の透明性が著しく低下し、Ag微粒子濃度が0.01重量%未満では、形成される膜の抵抗が上昇するために好ましくない。
【0033】
塗布液中には、形成される膜の透過率等の物性を変えるために、Sn、In、Sb、Zn、Al、Ti、Si及びGaからなる群から選ばれる1種以上の化合物を添加してもよい。添加する化合物には特に限定はないが、SnをドープしたInやSbをドープしたSnOを用いると、形成される膜の抵抗を上昇させずに透過率を制御できるために好ましい。
【0034】
また、添加剤としてSiO、特にケイ酸エチル等を加水分解して得られるSiOゾルを用いた場合には、塗布液の塗布適性が向上するために好ましい。添加剤としてTiOを用いた場合も塗布液の塗布適性及び形成される膜の色調を制御できるために好ましい。これらの添加剤は、微粒子又はアルコキシドの加水分解物の形態で前述のAg微粒子分散液に添加してもよく、超音波分散機やサンドミル等の分散機により分散した液として添加してもよい。さらに塗布液の基体への濡れ性を向上させるために、塗布液に種々の界面活性剤を添加してもよい。
【0035】
以上のような本発明の低抵抗膜形成用塗布液は、それ自体で基体上への塗布液として供するために、該塗布液に低沸点溶媒を添加した場合には、室温下の乾燥でも塗膜が得られるが、塗布液の溶媒として沸点が100〜250℃にある中〜高沸点溶媒を用いる場合には、塗膜を室温乾燥しても上記溶媒が塗膜中に残留するために加熱処理を行う。加熱温度の上限は、基板として用いられるガラス、プラスチック等の軟化点によって決定される。この点も考慮すると好ましい加熱温度範囲は100〜500℃である。
【0036】
また、本発明の膜の硬化方法として紫外線(UV)を塗膜に照射してもよい。本発明の塗布液からなる塗膜はAg微粒子を含有するために、Agの5sバンドと5dバンドに起因する330nm付近に吸収ピークが存在し、硬化手段としてUVを照射した場合には、効率よくエネルギーが吸収され、優れた膜硬化作用が発現する。
【0037】
また、本発明においては、以上のように形成された低抵抗膜上に、光の干渉作用を利用して低屈折率膜を形成する。例えば、基体がガラス(屈折率n=1.52)の場合、前記低抵抗膜の上に、低屈折率膜の屈折率に対する低抵抗膜の屈折率の比の値が約1.23となるような低屈折率膜を形成することにより、形成された膜の反射率を最も低減させうる。膜の反射率の低減には、可視光領域において、特に555nmの反射率を低減することが好ましいが、実用上は反射外観等を考慮し、適宜決定することが好ましい。
【0038】
このような2層からなる低反射低抵抗膜における低屈折率膜としては、ケイ素化合物を含有する塗布液を用いて形成することが、形成される膜の硬度等の点から好ましいが、さらに屈折率の点からは低屈折率膜形成用塗布液にMgFゾルを含ませてもよい。
【0039】
こうした低屈折率膜形成用のケイ素化合物としては、Siアルコキシドを含む種々のものが使用でき、好適な材料として、例えば、Si(OR)・R'4−y(yは3又は4であり、R、R'はアルキル基を示す)で示されるSiアルコキシド又はその部分加水分解物を含む液が挙げられる。例えば、シリコンエトキシド、シリコンメトキシド、シリコンイソプロポキシド、シリコンブトキシドのモノマー又は重合体が好ましく使用できる。
【0040】
Siアルコキシドは、アルコール、エステル、エーテル等に溶解しても使用でき、Siアルコキシド溶液に塩酸、硝酸、硫酸、酢酸、ギ酸、マレイン酸、フッ酸、又はアンモニア水溶液を添加してSiアルコキシドを加水分解しても使用できる。また、前記Siアルコキシドは溶媒に対して、30重量%以下含まれていることが好ましい。固形分量があまり大きいと液の保存安定性が悪くなる。
【0041】
また、このSiアルコキシド溶液には、形成される膜の強度向上のためにバインダとして、Zr、Ti、Sn、Al等のアルコキシドや、これらの部分加水分解物を添加して、ZrO、TiO、SnO及びAlの1種以上の複合物をMgFやSiOと同時に析出させてもよい。さらにSiアルコキシド溶液の基体に対する濡れ性を向上させるために該溶液に界面活性剤を添加してもよい。添加される界面活性剤としては、直鎖アルキルベンゼンスルホン酸ナトリウムやアルキルエーテル硫酸エステル等が挙げられる。
【0042】
上記ケイ素化合物を含有する低屈折率膜形成用塗布液に、前記のようなAg塩を添加できる。添加するAg塩の添加量は、前記低抵抗膜形成用塗布液の場合と同様である。
【0043】
本発明の低反射低抵抗膜は、基体上に、平均粒径が10nmを超えるAg微粒子を少なくとも含有してなる低抵抗膜形成用塗布液を塗布し、その上にケイ素化合物とAg塩とを少なくとも含有してなることを特徴とする低屈折率膜形成用塗布液を塗布することにより得られる。
【0044】
それらの成膜は、加熱及び/又は紫外線を照射して行うことができ、少なくとも一方の膜中に存在するAg塩に起因するAgイオンによる前記作用によって、着色がなく透明で導電性に優れ、さらには反射防止効果にも優れた低反射低抵抗膜を形成できる。
【0045】
本発明の低反射低抵抗膜の製造方法は、多層干渉効果による低反射低抵抗膜にも応用できる。反射防止性能を有する多層の低屈折率膜の構成としては、反射防止をしたい光の波長をλとして、基体側より、高屈折率層−低屈折率層を光学厚みλ/2−λ/4、又はλ/4−λ/4で形成した2層の低屈折率膜、基体側より中屈折率層−高屈折率層−低屈折率層を光学厚みλ/4−λ/2−λ/4で形成した3層の低屈折率膜、基体側より低屈折率層−中屈折率層−高屈折率層−低屈折率層を光学厚みλ/2−λ/2−λ/2−λ/4で形成した4層の低屈折率膜等が典型的な例として知られている。
【0046】
本発明の低抵抗膜形成用塗布液は、上記多層構成膜の中〜高屈折率層の形成に使用でき、低屈折率膜形成用塗布液は、上記多層構成膜の低屈折率層の形成に使用できる。
【0047】
本発明における低抵抗膜又は低反射低抵抗膜を形成する基体としては、ブラウン管パネル、複写機用ガラス板、計算機用パネル、クリーンルーム用ガラス、CRT又はLCD等の表示装置の前面板等の各種ガラス、プラスチック基板等が挙げられる。
【0048】
塗布液の基体上への塗布方法としては、スピンコート、ディップコート、スプレーコート等の方法が好適に使用できる。また、スプレーコート法を用いて表面に凹凸を形成し、形成される膜に防眩効果を付与してもよく、また、その上にシリカ被膜等のハードコート層を設けてもよい。
【0049】
さらには、本発明の低抵抗膜をスピンコート法又はスプレーコート法で形成し、その上にSiアルコキシドを含む溶液をスプレーコートして、表面に凹凸を有するシリカ被膜のノングレアコート層を設けてもよい。
【0050】
本発明の低抵抗膜形成用塗布液と低屈折率膜形成用塗布液の基体に対する塗布量(膜厚)は、被塗布基体の種類、被塗布基体の使用目的等によって一概には規定されないが、低抵抗膜形成用塗布液の塗布量は一般的には硬化膜の厚みとして約5〜150nmとなる範囲であり、低屈折率膜形成用塗布液の塗布量は一般的には硬化膜の厚みとして約5〜150nmとなる範囲が好適である。
【0051】
形成される低抵抗膜の厚みが上記範囲未満では膜の導電性及び2層膜又は多層膜形成時の低反射性等の点で不充分であり、形成される低抵抗膜の厚みが上記範囲超では膜の透過率及び2層膜形成時の低反射性等の点で不充分である。
【0052】
また、形成される低屈折率膜の厚みが上記範囲未満では膜の強度及び2層膜又は多層膜形成時の低反射性等の点で不充分であり、形成される低屈折率膜の厚みが上記範囲超では膜の外観及び低反射性等の点で不充分である。
【0053】
なお、上記低抵抗膜及び低屈折率膜の上下には、他の膜を介在させて多層構造の低反射低抵抗膜とすることもできる。
【0054】
【実施例】
次に実施例(例1〜10、12)、参考例(例11)及び比較例(例13)を挙げて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されない。以下の実施例、参考例及び比較例において、得られたゾル中の粒子の平均粒径は透過型電子顕微鏡によって測定した。また、得られた膜の評価方法は次の通りである。
【0055】
1)導電性評価:ローレスタ抵抗測定器(三菱油化製)により膜表面の表面抵抗を測定した。
2)耐擦傷性:1kg荷重下で消しゴム(ライオン製50−50)で膜表面を50回往復後、その表面の傷の付き具合を目視で判断した。評価基準は、○:傷が全く付かない、△:傷が多少つく、×:一部に膜剥離が生じる、とした。
3)視感反射率:GAMMA分光反射率スペクトル測定器により膜の400〜700nmでの視感反射率を測定した。
【0056】
4)視感透過率:日立製作所製スペクトロフォトメータU−3500により380〜780nmでの視感透過率を測定した。
5)透過率差及び透過色調:日立製作所製スペクトロフォトメータU−3500により380〜780nmでの透過率中の最大透過率と最小透過率の差を測定し、透過色調を評価した。また、その透過色調を目視で判断した。特に透過色が認識されない場合はニュートラルと評価した。
【0057】
[例1]
「Ag微粒子分散液の調製」
(1)30重量%硫酸鉄水溶液20gに30重量%クエン酸3ナトリウム水溶液35gを添加し、さらに12重量%の硝酸銀水溶液25gを添加した後5分間撹拌した。
【0058】
(2)上記工程(1)で得られた液を遠心分離により固液分離した後、沈殿物に純水30gを添加して撹拌した。この液に10分間超音波照射を施した後、30重量%クエン酸3ナトリウム水溶液を30g添加した。
【0059】
(3)上記工程(2)を4回繰り返した後、遠心分離により固液分離した後、純水50gを添加し、さらに20分間の超音波照射を施した。
【0060】
(4)上記(3)で得られた液に、陽イオン交換樹脂を添加し15分間撹拌した後、陽イオン交換樹脂を濾別し、さらに陰イオン交換樹脂を添加して15分間撹拌した後、陰イオン交換樹脂を濾別し、Ag微粒子分散液を得た。
この分散液のAg微粒子の平均粒径は27nmであり、その固形分濃度は5重量%であった。
【0061】
(5)この分散液にエタノールを添加し、エタノール80重量%、固形分0.4重量%となるように調整した(A液)。
【0062】
「ケイ素化合物含有液の調製」
(6)ケイ酸エチル50gをエタノール200gに溶解し、撹拌下で濃硝酸1.5gと純水33gとの混合溶液を滴下し、室温で2時間撹拌してSiO濃度4.9重量%の液を得た(B液)。
【0063】
このB液を、プロピレングリコールモノメチルエーテル/イソプロパノール/ジアセトンアルコール=50:40:10(重量比)の混合溶媒でSiO固形分が0.70重量%となるように希釈した(B液)。
【0064】
「Ag塩液の調製」
(7)硝酸銀1gを水9gに溶解し、硝酸銀10重量%水溶液を調製した(C液)。
【0065】
「Ag塩含有塗布液の調製」
(8)B液20gにC液0.1gを添加して10分間撹拌した(D液)。
【0066】
「塗布及び硬化」
(9)A液20gを、表面温度40℃に加温した14インチブラウン管パネル表面にスピンコート法で、硬化時の膜厚が40nmになる塗布量で100rpm、60秒間の条件で塗布した後、D液20gをA液の塗布時と同一のスピンコート条件で硬化時の膜厚が60nmになる塗布量で塗布した後、160℃で30分間加熱することにより本発明の低反射低抵抗膜を得た。
【0067】
[例2〜10]
例1における表1のA欄に示す各液に代えて表1のB欄に示す各液を使用し、他は例1と同様にして本発明の低反射低抵抗膜を得た。
【0068】
[例11]
硝酸銀1.0gを水30gに溶解させた後、29%アンモニア水溶液を1g添加し銀アンミン錯塩含有溶液を調製した(C液)。
【0069】
液20gにC液0.05gを添加し1時間超音波分散を行った(A液)。
【0070】
液を表面温度40℃に加温した14インチブラウン管パネル表面にスピンコート法で硬化時の膜厚が54nmになる塗布量で100rpm、60秒間の条件で塗布した後、B液20gをA液塗布時と同一のスピンコート条件で、硬化時の膜厚が72nmになる塗布量で塗布した後、高圧水銀灯により紫外線を30分間照射することにより参考例の低反射低抵抗膜を得た。
【0071】
[例12]
Ti(acac)(OPr)をTiO換算固形分量で10重量%となるようにエタノールに溶解し、撹拌しながら硝酸酸性水溶液を添加して加水分解を行った。なお、acacはアセチルアセトナト配位子、Prはイソプロピル基を示す。この液をさらにエタノールで4.9重量%まで希釈した(B液)。
【0072】
B液とB液をB液:B液=45:55となるように混合し、さらにプロピレングリコールモノメチルエーテル/イソプロパノール/ジアセトンアルコール=50:40:10(重量比)の混合溶媒で酸化物換算固形分0.90重量%となるように希釈した(B液)。
【0073】
液20gを、表面温度40℃に加温した14インチブラウン管パネル表面にスピンコート法で硬化時の膜厚が81nmになる塗布量で100rpm、60秒の条件で塗布した後、A液20gをB液塗布時と同一のスピンコート条件で硬化時の膜厚が73nmになる塗布量で塗布し、さらにD液20gをB液塗布時と同一のスピンコート条件で硬化時の膜厚が95nmになる塗布量で塗布した後160℃で30分間加熱することにより3層構成の本発明の低反射低抵抗膜を得た。
【0074】
[例13]
液20gを、表面温度40℃に加温した14インチブラウン管パネル表面にスピンコート法で、硬化時の膜厚が40nmになる塗布量で100rpm、60秒間の条件で塗布した後、B液20gをA液塗布時と同一のスピンコート条件で、硬化時の膜厚が60nmになる塗布量で塗布した後160℃で30分間加熱して比較例の膜を形成した。
【0075】
[評価結果」
例1〜13で得られた各低抵抗膜の物性を前記方法で測定した結果を表2に示す。なお、表2において2E2は2×10を意味し、他も同様である。また、透過色調のNはニュートラルを意味する。
【0076】
【表1】

Figure 0003979967
【0077】
【表2】
Figure 0003979967
【0078】
【発明の効果】
本発明によれば、従来技術の種々の欠点を解消し、塗布液の状態で分散安定性に優れ、ブラウン管フェイス面等のガラス基体上に膜を形成する際、低温熱処理により、着色がなく透明で導電性に優れ、さらには反射防止効果にも優れた低反射低抵抗膜を形成できる。[0001]
BACKGROUND OF THE INVENTION
The present invention is, for example, a manufacturing method of the low-resistance film, the low reflective low resistance film Ru bovine form the low reflective low resistance film further having an antireflection property having an electromagnetic shielding ability was applied to the glass substrate surface, such as a cathode ray tube panel About.
[0002]
[Prior art]
Since the cathode ray tube operates at a high voltage, static electricity is induced on the surface of the cathode ray tube at start-up or termination. In many cases, the static electricity causes dust to adhere to the surface, causing a reduction in the contrast of the display image, or causing a sense of discomfort due to a light electric shock when the finger is directly touched.
[0003]
Conventionally, in order to prevent the above-mentioned phenomenon, considerable attempts have been made to provide an antistatic film on the surface of the cathode ray tube panel. For example, the surface of the cathode ray tube panel is heated to about 350 ° C., and conductive materials such as tin oxide and indium oxide are formed by CVD. A method of providing a conductive oxide layer on the panel surface (Patent Document 1) has been adopted.
[0004]
However, in this method, in addition to the cost of the apparatus, there is a problem that the phosphor in the cathode ray tube falls off and the dimensional accuracy is lowered because the surface of the cathode ray tube is heated to a high temperature. In addition, tin oxide is generally used as the material for the conductive layer. In this case, however, there is a drawback that it is difficult to obtain a high-performance film by low-temperature treatment.
[0005]
In recent years, radio wave interference to electronic devices due to electromagnetic noise has become a social problem, and standards have been created and regulated to prevent them. Regarding electromagnetic wave noise, there are fears of skin cancer due to electrostatic charge on the CRT on the human body, effects on the fetus by low frequency electric field (ELF), and other harms caused by X-rays, ultraviolet rays, etc. in each country. Such a problem is caused by interposing the conductive coating film on the surface of the cathode ray tube, so that electromagnetic waves hit the conductive coating film, induce eddy currents in the coating film, and reflect the electromagnetic waves by this action.
[0006]
However, in order to exhibit such performance, it is necessary that the conductive film has good conductivity that can withstand high electric field strength, but it has been more difficult to obtain a film with such good conductivity.
[0007]
On the other hand, regarding a method for producing a low resistance film, for example, it has been proposed to form a low resistance film by applying a mixed solution of a metal salt and a reducing agent to a substrate (Patent Document 2). Since the stability of the salt solution is poor, it is necessary to apply the mixed solution to the substrate immediately after mixing the solution and the reducing agent. Also, since the film itself is poor in film formability, the appearance of the obtained film is There was a drawback of being bad.
[0008]
In order to form a low resistance film, a liquid containing a metal salt and conductive oxide fine particles, or a liquid containing fine particles whose surfaces are coated with a metal salt and a metal (Patent Document 3) has been proposed. However, the conductive oxide fine particles described above are inferior in conductivity to the case of a single metal, while the fine particles whose surface is coated with a metal also generate contact resistance at the interface between the metal and the non-metallic particles, thereby conducting the film. There was a problem that the property was not sufficient.
[0009]
In addition, for the same purpose as described above, it has been proposed that a liquid containing a metal oxide and one or more metal particles of Pd, Sn, Pt, Ag, and Au is applied to a substrate (Patent Document 4). However, this method has a problem in that the particle diameter of the mixed metal fine particles is 0.01 μm or less and the stability of the metal dispersion is poor.
[0010]
Furthermore, even if the particle size exceeds 0.01 μm, absorption specific to the colloid occurs depending on the type of metal, and the film formed using these colloids has a problem that the transmission color tone is not neutral. It was.
[0011]
That is, since the mean free path of electrons in the metal is 57 nm, when finer metal particles are used, the mean free path of electrons in the metal is limited, and the charge density in the metal fine particles is reduced. In order to mitigate this, plasma vibration occurs on the surface of the metal fine particles, and resonance absorption occurs for light of a specific wavelength. In particular, when Ag fine particles are used, the resonance absorption wavelength is generated in the visible light region (400 to 500 nm), and the transmission color tone is yellow.
[0012]
In addition, the low resistance film formed as described above is formed on a consumer device such as a TV, a cathode ray tube (CRT) panel of a computer terminal, etc. There are problems such as contrast and reflection of external light on the panel surface, and many studies have been made on the prevention of such reflected light.
[0013]
The conventional antireflection method is, for example, to attach a SiO 2 layer having fine irregularities on the surface in order to have an antiglare effect on the surface of the CRT (Patent Document 5), or etch the surface with hydrofluoric acid to Methods such as providing irregularities have been adopted.
[0014]
However, these methods are called non-glare treatment that scatters external light, and are not essentially methods of providing a low reflection layer. For this reason, there is a limit to the reduction of reflectivity. It is also a cause of lowering.
[0015]
[Patent Document 1]
JP 63-76247 A [Patent Document 2]
JP-A-6-310058 [Patent Document 3]
JP 7-258862 A [Patent Document 4]
JP-A 63-160140 [Patent Document 5]
Japanese Patent Laid-Open No. 61-118931 [0016]
[Problems to be solved by the invention]
The object of the present invention is to eliminate the above-mentioned drawbacks of the prior art and to have excellent dispersion stability in the state of a coating solution. When a film is formed on a glass substrate such as a cathode ray tube face surface, coloring is performed by low-temperature heat treatment. that it can be formed a high-performance low-resistance film having excellent transparent conductive without further provides a method for producing a low-reflection low resistance film that can form the low reflective low resistance film excellent in the antireflection effect is there.
[0017]
[Means for Solving the Problems]
In the present invention, a low-resistance film-forming coating solution containing at least Ag fine particles having an average particle diameter of more than 10 nm is applied on a substrate, and a silicon compound and an Ag salt are contained thereon. Provided is a method for producing a low-reflection, low-resistance film characterized by applying a coating liquid for forming a refractive index film .
[0018]
[0019 ]
[0020]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, an Ag salt is used. The Ag salt can be contained 1) in the coating solution for forming a low resistance film and / or 2) in the coating solution for forming a low refractive index film.
[0021]
By using the Ag salt in this way, absorption in the 400 to 500 nm region of the film due to the optical plasma resonance absorption of the Ag fine particles themselves can be suppressed, and the problem of coloring the low resistance film in the prior art can be solved. In addition, it is possible to form a high-performance low-resistance film that is transparent and excellent in conductivity, and further has a low-reflection low-resistance film that is also excellent in antireflection effect.
[0022]
The Ag salt used in the present invention promotes the grain growth of Ag fine particles forming a film by diffusing as Ag ions during heating or ultraviolet irradiation during the film-curing process, and as a result, the light of the Ag fine particles themselves. Plasma resonance absorption is suppressed and the transmission color tone of the film becomes neutral. When these films are applied to a display device such as a TV, the contrast of the display image is increased without breaking the color balance of the display image. .
[0023]
The Ag fine particles used in the present invention can be produced by various methods as long as the Ag fine particles have a predetermined particle diameter. In particular, a compound capable of reducing the Ag compound contained in the Ag compound solution is used as the Ag compound solution. It is preferable to produce Ag fine particles by mixing them with each other.
[0024]
In the present invention, various Ag salts having high solubility such as silver nitrate, silver nitrite, and silver cyanide can be used as the Ag salt for producing the Ag fine particles, and silver nitrate is particularly preferable from the viewpoint of cost and safety. preferable. Silver nitrate is preferably used as it is dissolved in a solvent such as water.
[0025]
The reducing compound capable of reducing Ag compound such as silver nitrate to precipitate Ag fine particles is not particularly limited. For example, base metal salts such as FeSO 4 and SnSO 4 , formalin, glucose, Rossell salt, tartaric acid, sodium thiosulfate , Borohydride compounds, hypophosphites and the like. Among these compounds, a salt containing a base metal such as FeSO 4 or SnSO 4 having a relatively slow reduction rate is preferable. In particular, FeSO 4 is preferable because it is easy to make a dispersion of uniform Ag fine particles with a slow reduction rate.
[0026]
In addition, before mixing the reducing compound as described above into the Ag compound solution, a substance that forms a complex with Ag ions in the Ag compound solution or adsorbs on the surface of the generated Ag fine particles to form a so-called protective colloid. Addition is preferable because the particle diameter of Ag fine particles in the obtained Ag fine particle dispersion becomes uniform.
[0027]
Examples of such substances include various known substances. Examples of the substance that can form a complex include carboxylic acids such as oxalic acid and citric acid and salts thereof, ammonia, triethanolamine, and the like. Examples of the substance that can be adsorbed on the surface of the Ag fine particles to form a protective colloid include polymer materials such as polyvinyl alcohol, polyvinyl pyrrolidone, gelatin, and acrylic resin. Among these, Ag fine particles obtained using citrate, particularly sodium citrate are excellent in uniformity of average particle diameter, and therefore, sodium citrate is particularly preferable.
[0028]
In the Ag fine particle dispersion used in the present invention, the average particle size of Ag fine particles needs to exceed 10 nm, and the range is more than 10 nm and not more than 100 nm. When the average particle diameter of the Ag fine particles exceeds 100 nm, the scattering of visible light increases in the formed film, and the transparency of the film decreases remarkably. When the average particle diameter of the Ag fine particles is 10 nm or less, the uniform dispersibility and dispersion stability of the Ag fine particles in the coating solution are significantly impaired.
[0029]
The content of the Ag salt in the coating solution for forming a low resistance film according to the present invention is preferably determined as appropriate in consideration of the film appearance, transmission color tone, etc., but when Ag salt is added to the Ag fine particle sol-containing solution In consideration of the stability of the sol, an addition amount in the range of 5 to 1000 ppm is preferable.
[0030]
The Ag fine particle dispersion can be used as a coating solution for forming a low resistance film by diluting or replacing it with various solvents as it is. The solvent used in this case is not particularly limited, and various known organic solvents can be employed in addition to water.
[0031]
For example, alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, sec-butanol, tert-butanol, polyhydric alcohols such as ethylene glycol, ethyl cellosolve, methyl cellosolve, butyl cellosolve, propylene glycol Ethers such as methyl ether, ketones such as 2,4-pentanedione and diacetone alcohol, esters such as ethyl lactate and methyl lactate, amides such as N-methylpyrrolidone, sulfur compounds such as dimethyl sulfoxide and sulfolane Can be mentioned.
[0032]
The concentration of Ag fine particles in the coating solution for forming a low resistance film is preferably 0.01 to 5% by weight, particularly 0.05 to 2% by weight. When the Ag fine particle concentration exceeds 5% by weight, the transparency of the formed film is remarkably lowered, and when the Ag fine particle concentration is less than 0.01% by weight, the resistance of the formed film is increased, which is not preferable.
[0033]
In the coating solution, one or more compounds selected from the group consisting of Sn, In, Sb, Zn, Al, Ti, Si and Ga are added in order to change the physical properties such as the transmittance of the formed film. May be. The compound to be added is not particularly limited, but it is preferable to use In 2 O 3 doped with Sn or SnO 2 doped with Sb because the transmittance can be controlled without increasing the resistance of the formed film.
[0034]
In addition, when an SiO 2 sol obtained by hydrolyzing SiO 2 , particularly ethyl silicate, etc. is used as an additive, it is preferable because the applicability of the coating liquid is improved. The use of TiO 2 as an additive is also preferable because the application suitability of the coating liquid and the color tone of the formed film can be controlled. These additives may be added to the above-mentioned Ag fine particle dispersion in the form of fine particles or an alkoxide hydrolyzate, or may be added as a liquid dispersed by a dispersing machine such as an ultrasonic dispersing machine or a sand mill. Further, in order to improve the wettability of the coating solution to the substrate, various surfactants may be added to the coating solution.
[0035]
The coating solution for forming a low resistance film of the present invention as described above is itself applied as a coating solution on a substrate. Therefore, when a low boiling point solvent is added to the coating solution, the coating solution can be applied even by drying at room temperature. When a medium to high boiling point solvent having a boiling point of 100 to 250 ° C. is used as a solvent for the coating solution, heating is performed because the solvent remains in the coating film even when the coating film is dried at room temperature. Process. The upper limit of the heating temperature is determined by the softening point of glass or plastic used as the substrate. Considering this point, a preferable heating temperature range is 100 to 500 ° C.
[0036]
Moreover, you may irradiate a coating film with an ultraviolet-ray (UV) as a hardening method of the film | membrane of this invention. Since the coating film made of the coating liquid of the present invention contains Ag fine particles, an absorption peak exists in the vicinity of 330 nm due to the 5s band and 5d band of Ag, and when UV is irradiated as a curing means, it is efficient. Energy is absorbed, and excellent film hardening action is exhibited.
[0037]
In the present invention, a low refractive index film is formed on the low resistance film formed as described above by utilizing the interference action of light. For example, when the substrate is glass (refractive index n = 1.52), the ratio of the refractive index of the low resistance film to the refractive index of the low refractive index film is about 1.23 on the low resistance film. By forming such a low refractive index film, the reflectance of the formed film can be reduced most. In order to reduce the reflectivity of the film, it is preferable to reduce the reflectivity of 555 nm in the visible light region.
[0038]
The low refractive index film in such a two-layer low-reflection low-resistance film is preferably formed using a coating solution containing a silicon compound from the viewpoint of the hardness of the film to be formed. From the viewpoint of efficiency, MgF 2 sol may be included in the coating solution for forming a low refractive index film.
[0039]
As the silicon compound for forming such a low refractive index film, various compounds containing Si alkoxide can be used. As a suitable material, for example, Si (OR) y · R ′ 4-y (y is 3 or 4). , R, R ′ each represents an alkyl group), and a liquid containing a partial hydrolyzate thereof. For example, monomers or polymers of silicon ethoxide, silicon methoxide, silicon isopropoxide, silicon butoxide can be preferably used.
[0040]
Si alkoxide can be used even if dissolved in alcohol, ester, ether, etc. Hydrochloric acid, nitric acid, sulfuric acid, acetic acid, formic acid, maleic acid, hydrofluoric acid, or aqueous ammonia solution is added to Si alkoxide solution to hydrolyze Si alkoxide. Even you can use it. The Si alkoxide is preferably contained in an amount of 30% by weight or less based on the solvent. If the solid content is too large, the storage stability of the liquid will deteriorate.
[0041]
Further, to this Si alkoxide solution, an alkoxide such as Zr, Ti, Sn, Al or a partial hydrolyzate thereof is added as a binder to improve the strength of the formed film, and ZrO 2 , TiO 2 is added. One or more composites of SnO 2 and Al 2 O 3 may be precipitated simultaneously with MgF 2 and SiO 2 . Further, in order to improve the wettability of the Si alkoxide solution to the substrate, a surfactant may be added to the solution. Examples of the surfactant to be added include linear sodium alkylbenzene sulfonate and alkyl ether sulfate.
[0042]
The Ag salt as described above can be added to the coating solution for forming a low refractive index film containing the silicon compound. The amount of Ag salt to be added is the same as in the case of the low resistance film forming coating solution.
[0043]
The low-reflection low-resistance film of the present invention is obtained by applying a low-resistance film-forming coating solution containing at least Ag fine particles having an average particle size of more than 10 nm on a substrate, and a silicon compound and an Ag salt thereon. It is obtained by applying a coating solution for forming a low refractive index film characterized by containing at least.
[0044]
The film formation can be performed by heating and / or irradiation with ultraviolet rays, and is transparent and excellent in electrical conductivity without coloration due to the above-described action by Ag ions derived from the Ag salt present in at least one of the films. Furthermore, it is possible to form a low reflection low resistance film having an excellent antireflection effect.
[0045]
The method for producing a low reflection low resistance film of the present invention can also be applied to a low reflection low resistance film due to a multilayer interference effect. The multilayer low-refractive-index film having anti-reflection performance is configured such that the wavelength of light to be anti-reflected is λ, and the optical thickness of the high-refractive index layer-low-refractive index layer is λ / 2−λ / 4 from the substrate side. Or two layers of low refractive index films formed at λ / 4-λ / 4, and medium refractive index layer-high refractive index layer-low refractive index layer from the substrate side with an optical thickness of λ / 4-λ / 2-λ / The three layers of the low refractive index film formed in 4 and the low refractive index layer—the middle refractive index layer—the high refractive index layer—the low refractive index layer from the substrate side are optical thicknesses λ / 2-λ / 2-λ / 2-λ. A four-layer low refractive index film formed by / 4 is known as a typical example.
[0046]
The coating solution for forming a low-resistance film of the present invention can be used for forming the middle to high refractive index layer of the multilayer constituent film, and the coating solution for forming a low refractive index film is used for forming the low refractive index layer of the multilayer constituent film. Can be used for
[0047]
As the substrate for forming the low resistance film or the low reflection low resistance film in the present invention, various glasses such as a cathode ray tube panel, a glass plate for a copying machine, a panel for a computer, a glass for a clean room, a front plate of a display device such as a CRT or LCD, etc. And a plastic substrate.
[0048]
As a method for applying the coating solution onto the substrate, methods such as spin coating, dip coating, and spray coating can be suitably used. Further, irregularities may be formed on the surface by using a spray coating method to impart an antiglare effect to the formed film, and a hard coat layer such as a silica coating may be provided thereon.
[0049]
Further, the low resistance film of the present invention may be formed by spin coating or spray coating, and a solution containing Si alkoxide may be spray coated thereon to provide a non-glare coating layer of silica coating having irregularities on the surface. Good.
[0050]
The coating amount (film thickness) of the coating solution for forming a low resistance film and the coating solution for forming a low refractive index film of the present invention on the substrate is not generally defined by the type of substrate to be coated, the purpose of use of the substrate to be coated, etc. The coating amount of the low resistance film forming coating solution is generally in the range of about 5 to 150 nm as the thickness of the cured film, and the coating amount of the low refractive index film forming coating solution is generally that of the cured film. A thickness range of about 5 to 150 nm is preferable.
[0051]
If the thickness of the low resistance film to be formed is less than the above range, it is insufficient in terms of film conductivity and low reflectivity when forming a two-layer film or a multilayer film, and the thickness of the low resistance film to be formed is in the above range. If the thickness is too high, the transmittance of the film and the low reflectivity when forming the two-layer film are insufficient.
[0052]
Further, if the thickness of the low refractive index film to be formed is less than the above range, it is insufficient in terms of film strength and low reflectivity when forming a two-layer film or a multilayer film, and the thickness of the formed low refractive index film. However, if it exceeds the above range, it is insufficient in terms of the appearance and low reflectivity of the film.
[0053]
Note that another film may be interposed above and below the low-resistance film and the low-refractive index film to form a low-reflection low-resistance film having a multilayer structure.
[0054]
【Example】
Next, the present invention will be described more specifically with reference to Examples (Examples 1 to 10, 12), Reference Examples (Example 11), and Comparative Examples (Example 13), but the present invention is not limited to these Examples. . In the following Examples, Reference Examples and Comparative Examples, the average particle size of the particles in the obtained sol was measured with a transmission electron microscope. Moreover, the evaluation method of the obtained film | membrane is as follows.
[0055]
1) Conductivity evaluation: The surface resistance of the film surface was measured with a Laresta resistance measuring instrument (manufactured by Mitsubishi Yuka).
2) Scratch resistance: The surface of the film was reciprocated 50 times with an eraser (Lion 50-50) under a load of 1 kg, and the degree of scratching on the surface was judged visually. The evaluation criteria were as follows: ○: no scratches were given, Δ: some scratches were made, ×: film peeling occurred in part.
3) Luminous reflectance: The luminous reflectance at 400 to 700 nm of the film was measured with a GAMMA spectral reflectance spectrum measuring instrument.
[0056]
4) Luminous transmittance: The luminous transmittance at 380 to 780 nm was measured with a spectrophotometer U-3500 manufactured by Hitachi, Ltd.
5) Transmittance difference and transmission color tone: The difference between the maximum transmittance and the minimum transmittance in the transmittance at 380 to 780 nm was measured with a spectrophotometer U-3500 manufactured by Hitachi, Ltd., and the transmission color tone was evaluated. Further, the transmission color tone was visually judged. In particular, when the transmitted color was not recognized, it was evaluated as neutral.
[0057]
[Example 1]
“Preparation of Ag fine particle dispersion”
(1) 35 g of a 30 wt% trisodium citrate aqueous solution was added to 20 g of a 30 wt% aqueous iron sulfate solution, and 25 g of a 12 wt% silver nitrate aqueous solution was further added, followed by stirring for 5 minutes.
[0058]
(2) The liquid obtained in the above step (1) was subjected to solid-liquid separation by centrifugation, and then 30 g of pure water was added to the precipitate and stirred. This solution was subjected to ultrasonic irradiation for 10 minutes, and then 30 g of a 30 wt% trisodium citrate aqueous solution was added.
[0059]
(3) The above step (2) was repeated 4 times, and after solid-liquid separation by centrifugation, 50 g of pure water was added, and ultrasonic irradiation was further performed for 20 minutes.
[0060]
(4) After adding a cation exchange resin to the liquid obtained in the above (3) and stirring for 15 minutes, the cation exchange resin is filtered off, and further an anion exchange resin is added and stirred for 15 minutes. The anion exchange resin was separated by filtration to obtain an Ag fine particle dispersion.
The average particle diameter of Ag fine particles of this dispersion was 27 nm, and the solid content concentration was 5% by weight.
[0061]
(5) ethanol is added to this dispersion, ethanol 80% by weight, was adjusted to a solid content of 0.4 wt% (A 1 solution).
[0062]
"Preparation of silicon compound-containing liquid"
(6) 50 g of ethyl silicate was dissolved in 200 g of ethanol, a mixed solution of 1.5 g of concentrated nitric acid and 33 g of pure water was added dropwise with stirring, and the mixture was stirred at room temperature for 2 hours to have a SiO 2 concentration of 4.9% by weight. A liquid was obtained (liquid B).
[0063]
This liquid B was diluted with a mixed solvent of propylene glycol monomethyl ether / isopropanol / diacetone alcohol = 50: 40: 10 (weight ratio) so that the SiO 2 solid content was 0.70 wt% (B 1 liquid). .
[0064]
“Preparation of Ag salt solution”
(7) 1 g of silver nitrate was dissolved in 9 g of water to prepare a 10% by weight aqueous solution of silver nitrate (C 1 solution).
[0065]
“Preparation of Ag salt-containing coating solution”
(8) 0.1 g of C 1 solution was added to 20 g of B 1 solution and stirred for 10 minutes (D 1 solution).
[0066]
"Coating and curing"
(9) After coating 20 g of 1 A liquid on the surface of a 14-inch CRT panel heated to a surface temperature of 40 ° C. by spin coating under the conditions of 100 rpm and 60 seconds in a coating amount that results in a film thickness upon curing of 40 nm. After applying 20 g of D 1 solution at a coating amount so that the film thickness upon curing is 60 nm under the same spin coating conditions as the application of A 1 solution, heating at 160 ° C. for 30 minutes can reduce the low reflection low of the present invention. A resistive film was obtained.
[0067]
[Examples 2 to 10]
Instead of the solutions shown in the column A of Table 1 in Example 1, the solutions shown in the column B of Table 1 were used, and others were obtained in the same manner as in Example 1 to obtain a low reflection low resistance film of the present invention.
[0068]
[Example 11]
After dissolving 1.0 g of silver nitrate in 30 g of water, 1 g of 29% aqueous ammonia solution was added to prepare a silver ammine complex salt-containing solution (C 2 solution).
[0069]
Was added C 2 solution 0.05g to A 1 solution 20g was carried out for 1 hour ultrasonic dispersion (A 2 solution).
[0070]
After coating A 2 liquid on the surface of a 14-inch CRT tube heated to a surface temperature of 40 ° C. with a spin coat method at a coating amount that results in a film thickness of 54 nm upon curing at 100 rpm for 60 seconds, 20 g of B 1 liquid was applied. A Low-reflection low-resistance film of a reference example is obtained by applying ultraviolet light with a high-pressure mercury lamp for 30 minutes after coating with a coating amount that results in a film thickness of 72 nm at the time of curing under the same spin coating conditions as in the case of A 2 liquid coating. It was.
[0071]
[Example 12]
Ti (acac) 2 (OPr) 2 was dissolved in ethanol so that the solid content in terms of TiO 2 would be 10% by weight, and hydrolyzed by adding an aqueous nitric acid solution while stirring. Acac represents an acetylacetonato ligand, and Pr represents an isopropyl group. This solution was further diluted to 4.9% by weight with ethanol (B 2 solution).
[0072]
B liquid and B 2 liquid are mixed so that B liquid: B 2 liquid = 45: 55, and further oxidized with a mixed solvent of propylene glycol monomethyl ether / isopropanol / diacetone alcohol = 50: 40: 10 (weight ratio). It was diluted to a thing in terms of solid content 0.90 wt% (B 3 solution).
[0073]
After applying 20 g of the B 3 liquid on the surface of a 14-inch CRT tube heated to a surface temperature of 40 ° C. under the conditions of 100 rpm and 60 seconds with a coating amount of 81 nm at the time of curing by spin coating, the A 1 liquid thickness during curing of 20g in B 3 liquid coating at the same spin coating conditions are applied at a coverage to be 73 nm, further at the time of curing the D 1 was 20g in the same spin coating conditions and time of B 3 liquid coating After coating with a coating amount of 95 nm, the film was heated at 160 ° C. for 30 minutes to obtain a low-reflection, low-resistance film of the present invention having a three-layer structure.
[0074]
[Example 13]
After applying 20 g of A 1 liquid on the surface of a 14-inch CRT tube heated to a surface temperature of 40 ° C. by spin coating, the coating amount was 100 nm for 60 seconds at a coating amount of 40 nm when cured, and then B 1 the liquid 20g in the same spin coating conditions and the time of a 1 liquid coating, the film thickness at the time of curing to form a film of heat to Comparative example 30 min at 160 ° C. after applying the coating amount to be 60 nm.
[0075]
[Evaluation results"
Table 2 shows the results of measuring the physical properties of the low resistance films obtained in Examples 1 to 13 by the above method. In Table 2, 2E2 means 2 × 10 2 , and so on. Further, N of the transmission color tone means neutral.
[0076]
[Table 1]
Figure 0003979967
[0077]
[Table 2]
Figure 0003979967
[0078]
【The invention's effect】
According to the present invention, various disadvantages of the prior art are eliminated, the dispersion stability is excellent in the state of a coating solution, and when a film is formed on a glass substrate such as a cathode ray tube face, it is transparent without coloring by low-temperature heat treatment. in superior conductivity, further, form the low reflective low resistance film excellent in antireflection effect.

Claims (1)

基体上に、平均粒径が10nmを超えるAg微粒子を少なくとも含有してなる低抵抗膜形成用塗布液を塗布し
その上にケイ素化合物とAg塩とを少なくとも含有してなる低屈折率膜形成用塗布液を塗布することを特徴とする低反射低抵抗膜の製造方法。
On the substrate, a coating solution for forming a low resistance film comprising at least Ag fine particles having an average particle size exceeding 10 nm is applied ,
A method for producing a low-reflective low-resistance film comprising applying a coating solution for forming a low refractive index film comprising at least a silicon compound and an Ag salt thereon.
JP2003139351A 2003-05-16 2003-05-16 Manufacturing method of low reflection low resistance film Expired - Fee Related JP3979967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003139351A JP3979967B2 (en) 2003-05-16 2003-05-16 Manufacturing method of low reflection low resistance film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003139351A JP3979967B2 (en) 2003-05-16 2003-05-16 Manufacturing method of low reflection low resistance film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP19235696A Division JP3449123B2 (en) 1996-07-22 1996-07-22 Coating solution for forming low-resistance film or low-refractive-index film, and method for producing low-resistance film or low-reflection low-refractive-index film

Publications (2)

Publication Number Publication Date
JP2003306615A JP2003306615A (en) 2003-10-31
JP3979967B2 true JP3979967B2 (en) 2007-09-19

Family

ID=29398336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003139351A Expired - Fee Related JP3979967B2 (en) 2003-05-16 2003-05-16 Manufacturing method of low reflection low resistance film

Country Status (1)

Country Link
JP (1) JP3979967B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100711505B1 (en) * 2007-01-30 2007-04-27 (주)이그잭스 Silver paste for forming conductive layers
KR100709724B1 (en) * 2007-01-30 2007-04-24 (주)이그잭스 Metal paste for forming conductive layers
IN2010MN01162A (en) * 2007-11-05 2010-10-01 Ind Penoles Sa De Cv
WO2012029400A1 (en) * 2010-08-31 2012-03-08 三菱重工業株式会社 Antistatic coating, and structure made of composite material using same and production method therefor

Also Published As

Publication number Publication date
JP2003306615A (en) 2003-10-31

Similar Documents

Publication Publication Date Title
JP3302186B2 (en) Substrate with transparent conductive film, method for producing the same, and display device provided with the substrate
TW539734B (en) Transparent conductive layered structure and method of producing the same, and coating liquid for forming transparent conductive layer used in production of transparent conductive layered structure and method of producing the same
JP3882419B2 (en) Coating liquid for forming conductive film and use thereof
JP3697760B2 (en) Coating liquid
US20040197549A1 (en) Conductive film, manufactruing method thereof, substrate having the same
JP3473272B2 (en) Coating liquid for conductive film formation and conductive film
JPH10110123A (en) Coating material for forming transparent conductive membrane and its production, transparent conductive low reflective membrane and its production, and display with the transparent conductive low reflective membrane
JP3979967B2 (en) Manufacturing method of low reflection low resistance film
JP3876811B2 (en) Production method of coating liquid for forming transparent conductive layer
JP3449123B2 (en) Coating solution for forming low-resistance film or low-refractive-index film, and method for producing low-resistance film or low-reflection low-refractive-index film
JPH11133207A (en) Optical thin film and refelction preventive article
JP3520705B2 (en) Coating liquid for forming conductive film, conductive film and method for manufacturing the same
JP3484903B2 (en) Coating liquid for forming low-resistance film, low-resistance film and method for manufacturing the same, and low-reflection low-resistance film and method for manufacturing the same
JP3501942B2 (en) Paint for forming transparent conductive film, transparent conductive film, and display device
JP2004190142A (en) Coating liquid for forming electroconductive film, electroconductive film, and production method therefor
JP2002367428A (en) Application liquid for forming colored transparent conductive film, base body with the colored transparent conductive film, method of manufacture and display device
JP3750461B2 (en) Transparent conductive layer forming coating liquid, transparent conductive layer and transparent conductive substrate
JP3308511B2 (en) Method of forming CRT panel with conductive film
JP3315673B2 (en) CRT with conductive film
JPH09320807A (en) Coating solution for forming low-resistance film, low-resistance film and its manufacture
JPH05166423A (en) Manufacture of conductive film and low reflective conductive film
JP3514192B2 (en) Method for forming low reflective conductive film
JP2002003746A (en) Coating for forming transparent electroconductive film, transparent electroconductive film and display device
JPH10147886A (en) Conductive film forming coating solution, conductive film and its production
JPH115929A (en) Coating liquid for use in forming electrically conductive film, method for forming electrically conductive film, and method for forming electrically conductive film of low reflectivity

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070626

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees