JPH10147886A - Conductive film forming coating solution, conductive film and its production - Google Patents

Conductive film forming coating solution, conductive film and its production

Info

Publication number
JPH10147886A
JPH10147886A JP30523696A JP30523696A JPH10147886A JP H10147886 A JPH10147886 A JP H10147886A JP 30523696 A JP30523696 A JP 30523696A JP 30523696 A JP30523696 A JP 30523696A JP H10147886 A JPH10147886 A JP H10147886A
Authority
JP
Japan
Prior art keywords
conductive film
coating
film
solution
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30523696A
Other languages
Japanese (ja)
Inventor
Kenji Ishizeki
健二 石関
Yasuhiro Sanada
恭宏 真田
Keisuke Abe
啓介 阿部
Takashige Yoneda
貴重 米田
Takeshi Morimoto
剛 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP30523696A priority Critical patent/JPH10147886A/en
Publication of JPH10147886A publication Critical patent/JPH10147886A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a coating soln. for forming a conductive film excellent in dispersion stability, appearance and conductivity by preparing a coating soln. consisting of the metallic fine particles with the average primary particle diameter specified and a water-soluble resin as a dispersion stabilizer. SOLUTION: A coating soln. contg. the metallic fine particles (Ag or Ru) having 10-100nm average primary particle diameter and a water-soluble resin >=1 kind among gelatin, PVA, polyacrylic acid, polyvinyl pyrrolidone and polyethylene glycol) as a dispersion stabilizer is prepared. At this time, 0.01-5wt.% metallic fine particle is dispersed in methanol, etc., and used, the mol.wt. of the water-soluble resin is controlled to 500-1,000,000, and 0.5-100wt.% resin is incorporated in the metallic fine particle. This coating soln. is applied on the surface of the glass substrate for a cathode-ray tube panel, etc., and a conductive film capable of shielding an electromagnetic wave and preventing reflection is formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば、ブラウン
管パネル等のガラス基体表面に塗布して電磁波シールド
能を有する低抵抗膜(導電膜)、さらに反射防止性を有
する低反射導電膜を形成しうる塗布液、導電膜、低反射
導電膜、及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a low-resistance film (conductive film) having an electromagnetic wave shielding function and a low-reflection conductive film having an antireflection property, for example, by applying the film to a glass substrate surface such as a cathode ray tube panel. The present invention relates to a coating solution, a conductive film, a low-reflection conductive film, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】ブラウン管は高電圧で作動するために、
起動時又は終了時にブラウン管表面に静電気が誘発され
る。この静電気により該表面に埃が付着し、表示画像の
コントラスト低下を引き起こしたり、直接手指が触れた
際に軽い電気ショックによる不快感を生じることが多
い。
2. Description of the Related Art CRTs operate at a high voltage.
At startup or termination, static electricity is induced on the surface of the cathode ray tube. Dust adheres to the surface due to the static electricity, causing a decrease in the contrast of a displayed image and often causing discomfort due to a light electric shock when directly touched with a finger.

【0003】従来、上述のような現象を防止するため
に、ブラウン管パネル表面に帯電防止膜を付与する試み
がかなりなされ、例えば、ブラウン管パネル表面を35
0℃程度に加熱し、CVD法により酸化スズ及び酸化イ
ンジウム等の導電性酸化物層をパネル表面に設ける方法
(特開昭63−76247)が採用されてきた。
Heretofore, in order to prevent the above-mentioned phenomenon, attempts have been made to provide an antistatic film on the surface of a CRT panel.
A method has been adopted in which a conductive oxide layer such as tin oxide and indium oxide is provided on a panel surface by heating to about 0 ° C. and using a CVD method (JP-A-63-76247).

【0004】しかし、この方法では装置コストがかかる
ことに加え、ブラウン管表面を高温に加熱するためにブ
ラウン管内の蛍光体の脱落を生じたり、寸法精度が低下
したりする問題があった。また、上記導電層に用いる材
料としては酸化スズが一般的であるが、この場合には低
温処理では高性能な膜が得にくい欠点があった。
[0004] However, in this method, in addition to the equipment cost, there is a problem that the phosphor in the cathode-ray tube is dropped off or the dimensional accuracy is reduced due to heating the surface of the cathode-ray tube to a high temperature. In addition, tin oxide is generally used as a material for the conductive layer, but in this case, there is a disadvantage that it is difficult to obtain a high-performance film by low-temperature treatment.

【0005】また、近年、電磁波ノイズによる電子機器
への電波障害が社会問題となり、その防止のために規格
の作成や規制が行われている。電磁波ノイズについて
は、人体に関してCRT上の静電気チャージによる皮膚
癌の恐れ、低周波電界(ELF)による胎児への影響、
その他、X線、紫外線等による害が各国で問題視されて
いる。このような問題は、導電性塗膜をブラウン管表面
に介在させることにより、該導電性塗膜に電磁波が当た
り、塗膜内において渦電流を誘導して、この作用で電磁
波を反射することによって解決しうる。
In recent years, electromagnetic interference caused by electromagnetic noise to electronic equipment has become a social problem, and standards have been created and regulated to prevent it. Regarding electromagnetic noise, regarding the human body, there is a risk of skin cancer due to electrostatic charge on the CRT, the effect on the fetus by the low frequency electric field (ELF),
In addition, harm caused by X-rays, ultraviolet rays and the like is regarded as a problem in each country. Such a problem is solved by interposing a conductive coating on the surface of the cathode ray tube, causing electromagnetic waves to hit the conductive coating, inducing eddy currents in the coating, and reflecting the electromagnetic waves by this action. Can.

【0006】しかし、このような性能を発揮するために
は、導電性被膜が高い電界強度に耐えうる良導電性であ
る必要があるが、それほどの良導電性の膜を得ることは
さらに困難であった。
However, in order to exhibit such performance, the conductive film needs to have good conductivity to withstand high electric field strength, but it is more difficult to obtain such a good conductive film. there were.

【0007】一方、低抵抗膜の製造方法に関し、例え
ば、基体に金属塩と還元剤との混合液を塗布して低抵抗
膜を形成することが提案されている(特開平6−310
058)が、この方法では金属塩溶液の安定性が乏しい
ために、該溶液と還元剤との混合後、直ちに混合液を基
体に塗布する必要があり、また、溶液自体の成膜性が乏
しいために得られる膜の外観が悪いという欠点があっ
た。
On the other hand, with respect to a method of manufacturing a low-resistance film, for example, it has been proposed to form a low-resistance film by applying a mixed solution of a metal salt and a reducing agent to a substrate (JP-A-6-310).
However, in this method, since the stability of the metal salt solution is poor, it is necessary to apply the mixed solution to the substrate immediately after mixing the solution and the reducing agent, and the solution itself has poor film-forming properties. Therefore, there is a disadvantage that the appearance of the obtained film is poor.

【0008】また、低抵抗膜を形成するために、金属塩
と導電性酸化物微粒子とを含有する液、又は金属塩と金
属で表面が被覆された微粒子を含有する液が提案されて
いる(特開平7−258862)が、上記の導電性酸化
物微粒子は導電性が金属単体の場合よりも劣り、一方、
金属で表面が被覆された微粒子も金属と非金属微粒子と
の界面で接触抵抗が生じて膜の導電性が充分ではなかっ
た。
Further, in order to form a low-resistance film, a liquid containing a metal salt and conductive oxide fine particles, or a liquid containing a metal salt and fine particles whose surface is coated with a metal has been proposed ( Japanese Unexamined Patent Publication (Kokai) No. 7-258860) discloses that the above conductive oxide fine particles are inferior in conductivity to the case of a single metal, while
The fine particles coated on the surface with metal also had a contact resistance at the interface between the metal and the non-metal fine particles, resulting in insufficient conductivity of the film.

【0009】また、上記と同様の目的で金属酸化物とP
d、Sn、Pt、Ag及びAuのうちの1種以上の金属
微粒子を含む液を基体に塗布することが提案されている
(特開昭63−160140)が、この方法では金属微
粒子の粒径が0.01μm以下であり、微粒子の活性が
高く経時的に微粒子が凝集を起こし、そのため液の長期
保存性(長期分散安定性)に劣っていた。
Further, for the same purpose as above, metal oxide and P
It has been proposed to apply a liquid containing one or more metal fine particles of d, Sn, Pt, Ag and Au to a substrate (JP-A-63-160140). Was 0.01 μm or less, the activity of the fine particles was high, and the fine particles were aggregated with time, so that the liquid was inferior in long-term storage stability (long-term dispersion stability).

【0010】また、上記のように形成される低抵抗膜
は、従来より光学機器においてはいうまでもなく、民生
用機器、特にTV、コンピュータ端末の陰極線管(CR
T)パネル等に形成されるが、表示画像のコントラスト
やパネル面での外光の反射等の問題があり、これらの反
射光の防止に関して多くの検討がなされてきた。
The low-resistance film formed as described above can be used not only in conventional optical devices but also in consumer devices, particularly TVs and cathode ray tubes (CRs) of computer terminals.
T) Although formed on a panel or the like, there are problems such as contrast of a displayed image and reflection of external light on the panel surface, and many studies have been made on prevention of such reflected light.

【0011】従来の反射防止方法は、例えば、ブラウン
管表面に防眩効果を持たるために表面に微細な凹凸を有
するSiO2 層を付着させたり(特開昭61−1189
31)、フッ酸により表面をエッチングして表面に凹凸
を設ける等の方法であった。しかし、これらの方法は、
外部光を散乱させるノングレア処理と呼ばれ、本質的に
低反射層を設ける方法でなく、そのために反射率の低減
には限界があり、また、ブラウン管等においては、解像
度を低下させる原因ともなっている。
The conventional anti-reflection method includes, for example, attaching a SiO 2 layer having fine irregularities on the surface of the cathode ray tube to have an anti-glare effect (Japanese Patent Laid-Open No. 61-1189).
31), a method of etching the surface with hydrofluoric acid to provide irregularities on the surface. However, these methods
It is called a non-glare treatment that scatters external light, and is not a method of providing a low-reflection layer in essence. Therefore, there is a limit to the reduction in reflectance, and in a cathode ray tube or the like, it also causes a reduction in resolution. .

【0012】[0012]

【発明が解決しようとする課題】本発明の目的は、従来
技術が有する前述の欠点を解消し、塗布液の状態で長期
分散安定性に優れ、ブラウン管フェイス面等のガラス基
体上に膜を形成する際、低温熱処理により、着色がなく
透明で、外観、導電性に優れた導電膜を形成でき、さら
には反射防止効果にも優れた低反射導電膜を形成できる
塗布液、該塗布液からなる導電膜、低反射導電膜膜、及
びその製造方法を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to overcome the above-mentioned disadvantages of the prior art, to provide excellent long-term dispersion stability in the state of a coating solution, and to form a film on a glass substrate such as a cathode ray tube face. In this case, a low-temperature heat treatment comprises a coating liquid capable of forming a transparent conductive film having no coloring and having excellent appearance and conductivity, and further capable of forming a low-reflection conductive film having an excellent antireflection effect. An object is to provide a conductive film, a low-reflection conductive film, and a manufacturing method thereof.

【0013】[0013]

【課題を解決するための手段】本発明は、平均一次粒径
が10nm超100nm以下である金属微粒子並びに水
溶性樹脂を含有していることを特徴とする導電膜形成用
塗布液(以下、本塗布液という)、本塗布液からなる導
電膜、低反射導電膜膜、及びその製造方法を提供する。
According to the present invention, there is provided a coating liquid for forming a conductive film (hereinafter referred to as the present invention) comprising metal fine particles having an average primary particle diameter of more than 10 nm and not more than 100 nm and a water-soluble resin. The present invention provides a conductive film, a low-reflection conductive film, and a method for producing the conductive film.

【0014】上記本発明によれば、塗布液の状態で分散
安定性に優れ、ガラス基体上に膜を形成する際、低温熱
処理により、着色がなく透明で、外観、導電性に優れた
導電膜、さらには反射防止効果にも優れた低反射導電膜
を形成できる。
According to the present invention, a conductive film which is excellent in dispersion stability in the state of a coating solution and which is transparent without coloration and excellent in appearance and conductivity by low-temperature heat treatment when forming a film on a glass substrate. Further, a low-reflection conductive film having an excellent antireflection effect can be formed.

【0015】[0015]

【発明の実施の形態】本発明で用いる金属微粒子は、該
金属微粒子が所定の粒子径を有するものであれば、いず
れの金属微粒子でもよいが、特にAg又はRuの微粒子
であることが好ましい。これらの微粒子は、種々の方法
により製造できるが、特に金属化合物溶液に含まれる金
属化合物を還元しうる化合物を、金属化合物溶液に混合
して金属微粒子を製造することが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The fine metal particles used in the present invention may be any fine metal particles as long as the fine metal particles have a predetermined particle diameter, but are preferably fine particles of Ag or Ru. These fine particles can be produced by various methods. In particular, it is preferable to produce a metal fine particle by mixing a compound capable of reducing the metal compound contained in the metal compound solution into the metal compound solution.

【0016】本発明で用いる金属微粒子分散液において
は、金属微粒子の平均一次粒径が10nm超100nm
以下であることが重要である。金属微粒子の平均一次粒
径が100nm超では、形成される膜において可視光の
散乱が増大し、膜の透明度が著しく低下する。金属微粒
子の平均一次粒径が10nm以下では、本塗布液中での
金属微粒子の均一分散性及び分散安定性が著しく損なわ
れる。
In the metal fine particle dispersion used in the present invention, the average primary particle diameter of the metal fine particles is more than 10 nm and 100 nm.
It is important that: If the average primary particle size of the metal fine particles is more than 100 nm, scattering of visible light increases in the formed film, and the transparency of the film is significantly reduced. If the average primary particle size of the metal fine particles is 10 nm or less, the uniform dispersibility and dispersion stability of the metal fine particles in the present coating solution are significantly impaired.

【0017】本発明においては、この金属微粒子分散液
の分散安定性の長期保持と塗膜成膜時に微粒子の凝集を
抑制し、形成される膜の導電連鎖性を向上させる目的で
金属微粒子分散液に水溶性樹脂を添加する。
In the present invention, in order to maintain the dispersion stability of the metal fine particle dispersion for a long period of time, to suppress the aggregation of the fine particles during coating film formation, and to improve the conductivity chain of the formed film, the metal fine particle dispersion is used. Is added with a water-soluble resin.

【0018】上記水溶性樹脂としては平均分子量(ゲル
パーミエーションクロマトグラフ分析による平均分子
量)が500〜1,000,000であるものが好まし
い。平均分子量が500未満では、水溶性樹脂による立
体障害効果が小さくなるために、微粒子の立体安定性が
乏しくなり、経時的に微粒子の合一が進行する。平均分
子量が1,000,000超では、形成した膜中での金
属微粒子間距離が広がりすぎて、膜が高抵抗化する。上
記水溶性樹脂としては、ゼラチン、ポリビニルアルコー
ル、ポリアクリル酸、ポリビニルピロリドン及びポリエ
チレングリコールからなる群から選ばれた1種以上が望
ましい。
The water-soluble resin preferably has an average molecular weight (average molecular weight determined by gel permeation chromatography) of 500 to 1,000,000. When the average molecular weight is less than 500, the steric hindrance effect of the water-soluble resin is reduced, so that the steric stability of the fine particles is poor, and coalescence of the fine particles progresses with time. If the average molecular weight is more than 1,000,000, the distance between the metal fine particles in the formed film is too large, and the film has a high resistance. The water-soluble resin is desirably at least one selected from the group consisting of gelatin, polyvinyl alcohol, polyacrylic acid, polyvinylpyrrolidone and polyethylene glycol.

【0019】添加する水溶性樹脂量は金属微粒子に対し
て0.5〜100重量%の範囲が好ましい。添加量が
0.5重量%未満では、樹脂による金属微粒子に対する
立体障害効果が低くなり、経時的に微粒子の合一が進
み、粒子の平均粒径が100nmを超え、形成される膜
の可視光の散乱が増大し、膜の透明度が著しく低下する
うえ、金属微粒子の沈降も起こる。添加量が100重量
%超では、液の分散安定性は良好であるが、成膜した導
電膜中に残存する水溶性樹脂が多く、金属微粒子間の接
触が悪化し、形成される膜の導電連鎖性が欠如し、膜が
高抵抗化する。
The amount of the water-soluble resin to be added is preferably in the range of 0.5 to 100% by weight based on the metal fine particles. When the addition amount is less than 0.5% by weight, the steric hindrance effect on the metal fine particles by the resin is reduced, the coalescence of the fine particles progresses with time, the average particle diameter of the particles exceeds 100 nm, and the visible light of the formed film is increased. Scattering, the transparency of the film is remarkably reduced, and sedimentation of metal fine particles also occurs. When the addition amount exceeds 100% by weight, the dispersion stability of the liquid is good, but the water-soluble resin remaining in the formed conductive film is large, and the contact between the metal fine particles is deteriorated, and the conductive property of the formed film is deteriorated. Lack of chaining property increases the resistance of the film.

【0020】金属微粒子分散液を用いる場合、成膜する
膜の外観を整えるために、液の表面張力や粘度等を制御
しなくてはならない。そのために金属微粒子の分散安定
性には好ましくない水よりも誘電率の低い有機溶媒で希
釈することが好ましい。
When a metal fine particle dispersion is used, the surface tension, viscosity, etc. of the liquid must be controlled in order to adjust the appearance of the film to be formed. Therefore, it is preferable to dilute with an organic solvent having a lower dielectric constant than water, which is not preferable for the dispersion stability of the metal fine particles.

【0021】こうした有機溶媒としては、メタノール、
エタノール、n−プロパノール、イソプロパノール、n
−ブタノール、イソブタノール、sec−ブタノール、
tert−ブタノール等の1価アルコール類、エチレン
グリコール等の多価アルコール類、エチルセロソルブ、
メチルセロソルブ、ブチルセロソルブ、プロピレングリ
コールメチルエーテル等のエーテル類、2,4−ペンタ
ンジオン、ジアセトンアルコール等のケトン類、乳酸エ
チル、乳酸メチル等のエステル類、N−メチルピロリド
ン等のアミド類、ジメチルスルホキシド、スルホラン等
の硫黄化合物等が挙げられる。
As such organic solvents, methanol,
Ethanol, n-propanol, isopropanol, n
-Butanol, isobutanol, sec-butanol,
monohydric alcohols such as tert-butanol, polyhydric alcohols such as ethylene glycol, ethyl cellosolve,
Ethers such as methyl cellosolve, butyl cellosolve and propylene glycol methyl ether; ketones such as 2,4-pentanedione and diacetone alcohol; esters such as ethyl lactate and methyl lactate; amides such as N-methylpyrrolidone; dimethyl sulfoxide And sulfur compounds such as sulfolane.

【0022】このような溶媒で希釈した塗布液中での金
属微粒子の長期間にわたる分散安定性を付与するために
も水溶性樹脂の添加が望ましい。また、上記有機溶媒
中、水よりも高沸点の溶媒を塗布液に添加した場合、そ
の溶媒が塗膜後の膜乾燥時に水よりも後に蒸発する。そ
のために膜の乾燥中に塗布液の混合誘電率は低下し、金
属微粒子が不安定となって凝集し、微粒子の緻密性が低
下し、膜の導電連鎖性が悪化する。このような成膜乾燥
中の金属微粒子の凝集を抑制するためにも水溶性樹脂を
添加し、立体障害的に微粒子を安定化することが望まし
い。
It is desirable to add a water-soluble resin in order to impart long-term dispersion stability of the metal fine particles in the coating solution diluted with such a solvent. When a solvent having a higher boiling point than water in the organic solvent is added to the coating solution, the solvent evaporates later than water when the film is dried after coating. Therefore, during the drying of the film, the mixed dielectric constant of the coating liquid decreases, the metal fine particles become unstable and aggregate, the fineness of the fine particles decreases, and the conductive chain property of the film deteriorates. It is desirable to add a water-soluble resin to stabilize the fine particles with steric hindrance in order to suppress the aggregation of the fine metal particles during the drying of the film.

【0023】本塗布液中の金属微粒子濃度は、0.01
〜5重量%、特には0.05〜2重量%の範囲が好まし
い。金属微粒子濃度が5重量%超では、形成される膜の
透明性が著しく低下し、金属微粒子濃度が0.01重量
%未満では、形成される膜の抵抗が上昇するために好ま
しくない。
The concentration of fine metal particles in the coating solution is 0.01
-5% by weight, particularly preferably 0.05-2% by weight. If the concentration of the metal fine particles is more than 5% by weight, the transparency of the formed film is remarkably reduced. If the concentration of the metal fine particles is less than 0.01% by weight, the resistance of the formed film is undesirably increased.

【0024】また、本塗布液中に、形成される膜の透過
率等の物性を変えるために、Sn、Sb、In、Zn、
Ga、Ru、Al、Si、Ti及びZrからなる群から
選ばれる1種以上の金属の化合物、好ましくは金属酸化
物ゾルを添加してもよい。添加割合は、Agに対する前
記金属化合物の酸化物換算の重量比で9/1以下が好ま
しい。添加する化合物には特に限定はないが、Snをド
ープしたIn23 やSbをドープしたSnO2 を用い
ると、形成される膜の抵抗を上昇させずに透過率を制御
できるために好ましい。
In order to change physical properties such as transmittance of a film formed in the present coating solution, Sn, Sb, In, Zn,
At least one metal compound selected from the group consisting of Ga, Ru, Al, Si, Ti and Zr, preferably a metal oxide sol may be added. The addition ratio is preferably 9/1 or less in terms of a weight ratio of the metal compound to Ag in terms of oxide. Although there is no particular limitation on the compound to be added, it is preferable to use Sn-doped In 2 O 3 or Sb-doped SnO 2 because the transmittance can be controlled without increasing the resistance of the formed film.

【0025】また、添加剤としてSiO2 、特にケイ酸
エチル等を加水分解して得られるSiO2 ゾルを用いた
場合には、本塗布液の塗布適性が向上するために好まし
い。添加剤としてTiO2 やZrO2 を用いた場合も、
本塗布液の塗布適性及び形成される膜の色調を制御でき
るために好ましい。これらの添加剤は、微粒子又はアル
コキシドの加水分解物の形態で前述の金属微粒子分散液
に添加してもよく、超音波分散機やサンドミル等の分散
機により分散した液として添加してもよい。さらに本塗
布液の基体への濡れ性を向上させるために、本塗布液に
種々の界面活性剤を添加してもよい。
It is preferable to use SiO 2 , particularly SiO 2 sol obtained by hydrolyzing ethyl silicate or the like as an additive, because the coating suitability of the present coating solution is improved. When TiO 2 or ZrO 2 is used as an additive,
This is preferable because the suitability for application of the present coating solution and the color tone of the formed film can be controlled. These additives may be added to the above-mentioned metal fine particle dispersion in the form of fine particles or hydrolyzates of alkoxides, or may be added as a liquid dispersed by a disperser such as an ultrasonic disperser or a sand mill. Further, in order to improve the wettability of the present coating solution to the substrate, various surfactants may be added to the present coating solution.

【0026】本塗布液は、それ自体で基体上への塗布液
として供するために、本塗布液に低沸点溶媒を添加した
場合には、室温下の乾燥でも塗膜が得られるが、本塗布
液の溶媒として沸点が100〜250℃にある中〜高沸
点溶媒を用いる場合には、塗膜を室温乾燥しても上記溶
媒が塗膜中に残留するために加熱処理を行う。加熱温度
の上限は、基板として用いられるガラス、プラスチック
等の軟化点によって決定される。この点も考慮すると加
熱温度範囲は100〜500℃が好ましい。
Since the present coating solution itself is used as a coating solution on a substrate, when a low-boiling solvent is added to the coating solution, a coating film can be obtained by drying at room temperature. When a medium to high boiling point solvent having a boiling point of 100 to 250 ° C. is used as a solvent for the liquid, heat treatment is performed because the solvent remains in the coating film even when the coating film is dried at room temperature. The upper limit of the heating temperature is determined by the softening point of glass, plastic, or the like used as a substrate. Considering this point, the heating temperature range is preferably 100 to 500 ° C.

【0027】また、本発明の膜の硬化方法として紫外線
(UV)を塗膜に照射してもよい。本塗布液からなる塗
膜はAg微粒子を含有するために、Agの5sバンドと
5dバンドに起因する330nm付近に吸収ピークが存
在し、硬化手段としてUVを照射した場合には、効率よ
くエネルギーが吸収され、優れた膜硬化作用が発現す
る。
Further, as a method for curing the film of the present invention, the coating film may be irradiated with ultraviolet rays (UV). Since the coating film composed of this coating solution contains Ag fine particles, an absorption peak exists around 330 nm caused by the 5s band and 5d band of Ag, and when UV is irradiated as a curing means, energy is efficiently consumed. Absorbed and excellent film hardening action is exhibited.

【0028】また、本発明においては、以上のように形
成された導電膜上に、光の干渉作用を利用して低屈折率
膜を形成できる。例えば、基体がガラス(屈折率n=
1.52)の場合、前記導電膜の上に、低屈折率膜の屈
折率に対する導電膜の屈折率の比の値が約1.23とな
るような低屈折率膜を形成することにより、形成された
膜の反射率を最も低減させうる。膜の反射率の低減に
は、可視光領域において、特に555nmの反射率を低
減することが好ましいが、実用上は反射外観等を考慮
し、適宜決定することが好ましい。
Further, in the present invention, a low refractive index film can be formed on the conductive film formed as described above by utilizing the interference effect of light. For example, if the substrate is glass (refractive index n =
In the case of 1.52), a low refractive index film is formed on the conductive film so that the ratio of the refractive index of the conductive film to the refractive index of the low refractive index film is about 1.23. The reflectance of the formed film can be reduced most. In order to reduce the reflectance of the film, it is preferable to reduce the reflectance particularly at 555 nm in the visible light region. However, in practice, it is preferable to determine the reflectance appropriately in consideration of the reflection appearance and the like.

【0029】このような2層からなる低反射導電膜にお
ける低屈折率膜としては、ケイ素化合物を含有する塗布
液を用いて形成することが、形成される膜の硬度等の点
から好ましいが、さらに屈折率の点からは低屈折率膜形
成用塗布液にMgF2 ゾルを含ませてもよい。
The low-refractive-index film in the low-reflection conductive film having two layers is preferably formed by using a coating solution containing a silicon compound from the viewpoint of the hardness of the formed film. Further, from the viewpoint of the refractive index, the coating liquid for forming a low refractive index film may contain MgF 2 sol.

【0030】以上のような低屈折率膜形成用のケイ素化
合物としては、Siアルコキシドを含む種々のものが使
用でき、好適な材料として、例えば、Si(OR)y
R’4-y (yは3又は4。R、R’はアルキル基。)で
示されるSiアルコキシド又はその部分加水分解物を含
む液が挙げられる。例えば、シリコンエトキシド、シリ
コンメトキシド、シリコンイソプロポキシド、シリコン
ブトキシドのモノマー又は重合体が好ましく使用でき
る。
As the silicon compound for forming the low refractive index film as described above, various compounds including Si alkoxide can be used. As a suitable material, for example, Si (OR) y.
A liquid containing a Si alkoxide represented by R ′ 4-y (y is 3 or 4, R and R ′ is an alkyl group) or a partial hydrolyzate thereof is exemplified. For example, a monomer or polymer of silicon ethoxide, silicon methoxide, silicon isopropoxide, or silicon butoxide can be preferably used.

【0031】Siアルコキシドは、アルコール、エステ
ル、エーテル等に溶解しても使用でき、Siアルコキシ
ド溶液に塩酸、硝酸、硫酸、酢酸、ギ酸、マレイン酸、
フッ酸、又はアンモニア水溶液を添加してSiアルコキ
シドを加水分解しても使用できる。また、Siアルコキ
シドは溶媒に対して30重量%以下含まれていることが
好ましい。Siアルコキシドの固形分量があまり大きい
と液の保存安定性が悪くなる。
The Si alkoxide can be used by dissolving it in an alcohol, an ester, an ether, or the like. A hydrochloric acid, a nitric acid, a sulfuric acid, an acetic acid, a formic acid, a maleic acid,
It can also be used by adding hydrofluoric acid or an aqueous ammonia solution to hydrolyze the Si alkoxide. Further, it is preferable that the Si alkoxide is contained in an amount of 30% by weight or less based on the solvent. If the solid content of the Si alkoxide is too large, the storage stability of the liquid will deteriorate.

【0032】また、このSiアルコキシド溶液には、形
成される膜の強度向上のためにバインダとして、Zr、
Ti、Sn、Al等のアルコキシドや、これらの部分加
水分解物を添加して、ZrO2 、TiO、SnO2 及び
Al23 から選ばれる1種以上をMgF2 やSiO2
と同時に析出させてもよい。さらにSiアルコキシド溶
液の基体に対する濡れ性を向上させるために該溶液に界
面活性剤を添加してもよい。添加する界面活性剤として
は、直鎖アルキルベンゼンスルホン酸ナトリウムやアル
キルエーテル硫酸エステル等が挙げられる。
The Si alkoxide solution contains Zr and Zr as binders to improve the strength of the formed film.
Alkoxides such as Ti, Sn, and Al, and partial hydrolysates thereof are added, and one or more selected from ZrO 2 , TiO, SnO 2, and Al 2 O 3 are added to MgF 2 or SiO 2.
At the same time, they may be precipitated. Further, a surfactant may be added to the Si alkoxide solution in order to improve the wettability of the solution to the substrate. Examples of the surfactant to be added include sodium linear alkylbenzene sulfonate and alkyl ether sulfate.

【0033】本発明の低反射導電膜は、基体上に、本塗
布液を塗布及び成膜し、その上に、少なくとケイ素化合
物を含有してなる低屈折率膜形成用塗布液を塗布及び成
膜することにより得られる。
The low-reflection conductive film of the present invention is obtained by applying and coating the present coating solution on a substrate, and then applying a coating solution for forming a low-refractive-index film containing at least a silicon compound thereon. It is obtained by forming a film.

【0034】本塗布液は、多層干渉効果による低反射導
電膜の製造にも利用できる。反射防止性能を有する多層
の低屈折率膜の構成としては、反射防止をすべき光の波
長をλとして、基体側より、高屈折率層−低屈折率層を
光学厚みλ/2−λ/4、又はλ/4−λ/4で形成し
た2層の低屈折率膜、基体側より中屈折率層−高屈折率
層−低屈折率層を光学厚みλ/4−λ/2−λ/4で形
成した3層の低屈折率膜、基体側より低屈折率層−中屈
折率層−高屈折率層−低屈折率層を光学厚みλ/2−λ
/2−λ/2−λ/4で形成した4層の低屈折率膜等が
典型的な例として知られている。
The present coating solution can also be used for producing a low-reflection conductive film by the multilayer interference effect. As the configuration of the multilayer low refractive index film having antireflection performance, the wavelength of the light to be antireflective is λ, and the high refractive index layer−the low refractive index layer is formed from the base side to the optical thickness λ / 2−λ / 4, or two low-refractive-index films formed at λ / 4-λ / 4, and an optical thickness λ / 4-λ / 2-λ of a medium refractive index layer—a high refractive index layer—a low refractive index layer from the substrate side. / 4, and the optical thickness of the low refractive index layer, the medium refractive index layer, the high refractive index layer, and the low refractive index layer from the substrate side is λ / 2−λ.
A typical example is a four-layer low-refractive-index film formed at / 2-λ / 2-λ / 4.

【0035】本塗布液は、上記多層構成膜の中〜高屈折
率層の形成に使用でき、前述の低屈折率膜形成用塗布液
は、上記多層構成膜の低屈折率層の形成に使用できる。
本発明の導電膜又は低反射導電膜を形成する基体として
は、ブラウン管パネル、複写機用ガラス板、計算機用パ
ネル、クリーンルーム用ガラス、CRT又はLCD等の
表示装置の前面板等の各種ガラス、プラスチック基板等
が挙げられる。
The coating liquid of the present invention can be used for forming the medium to high refractive index layer of the above-mentioned multilayer constitution film, and the coating liquid for forming the low refractive index film is used for forming the low refractive index layer of the above-mentioned multilayer constitution film. it can.
Examples of the substrate on which the conductive film or the low-reflection conductive film of the present invention are formed include various types of glass such as a cathode ray tube panel, a glass plate for a copying machine, a panel for a computer, a glass for a clean room, a front plate of a display device such as a CRT or an LCD, and a plastic. Substrates and the like can be mentioned.

【0036】本塗布液の基体上への塗布方法としては、
スピンコート、ディップコート、スプレーコート等の方
法を好適に採用できる。また、スプレーコート法を用い
て表面に凹凸を形成し、形成される膜に防眩効果を付与
してもよく、また、その上にシリカ被膜等のハードコー
ト層を設けてもよい。さらには、本発明の導電膜をスピ
ンコート法又はスプレーコート法で形成し、その上にS
iアルコキシドを含む溶液をスプレーコートして、表面
に凹凸を有するシリカ被膜のノングレアコート層を設け
てもよい。
The coating method of the present coating liquid on a substrate includes:
Methods such as spin coating, dip coating and spray coating can be suitably employed. Further, the surface may be made uneven by using a spray coating method to impart an antiglare effect to the formed film, or a hard coat layer such as a silica coating may be provided thereon. Further, the conductive film of the present invention is formed by a spin coating method or a spray coating method, and S
A solution containing i-alkoxide may be spray-coated to form a silica coating non-glare coat layer having irregularities on the surface.

【0037】本塗布液と低屈折率膜形成用塗布液の基体
に対する塗布量(膜厚)は、被塗布基体の種類、被塗布
基体の使用目的等によって一概には規定されないが、本
塗布液の塗布量は一般的には硬化膜の厚みとして約5〜
150nmとなる範囲であり、低屈折率膜形成用塗布液
の塗布量は一般的には硬化膜の厚みとして約5〜150
nmとなる範囲が好適である。形成される導電膜の厚み
が5nm未満では膜の導電性及び2層膜又は多層膜形成
時の低反射性等の点で不充分であり、形成される導電膜
の厚みが150nm超では膜の透過率及び2層膜形成時
の低反射性等の点で不充分である。
The amount of coating (film thickness) of the present coating solution and the coating solution for forming a low refractive index film on the substrate is not generally defined by the type of the substrate to be coated, the purpose of use of the substrate to be coated, and the like. The coating amount is generally about 5 to 5
The coating amount of the coating liquid for forming a low refractive index film is generally about 5 to 150 as a thickness of a cured film.
The range of nm is preferable. If the thickness of the formed conductive film is less than 5 nm, it is insufficient in terms of the conductivity of the film and low reflectivity when forming a two-layer film or a multilayer film. It is insufficient in terms of transmittance and low reflectivity when forming a two-layer film.

【0038】また、形成される低屈折率膜の厚みが5n
m未満では膜の強度及び2層膜又は多層膜形成時の低反
射性等の点で不充分であり、形成される低屈折率膜の厚
みが150nm超では膜の外観及び低反射性等の点で不
充分である。なお、上記導電膜及び低屈折率膜の上下に
は、他の膜を介在させて多層構造の低反射導電膜ともな
しうる。
The low refractive index film to be formed has a thickness of 5n.
If the thickness is less than 150 m, the strength of the film and the low reflectivity during the formation of a two-layer film or a multilayer film are insufficient. Inadequate in point. Note that a low-reflection conductive film having a multilayer structure can be formed by interposing another film above and below the conductive film and the low-refractive-index film.

【0039】[0039]

【実施例】次に実施例及び比較例を挙げて本発明をさら
に具体的に説明するが、本発明はこれらの実施例に限定
されない。以下の実施例及び比較例において、得られた
ゾル中の微粒子の平均一次粒径は透過型電子顕微鏡によ
って測定した。また、得られた膜の評価方法は次のとお
りである。
Next, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples. In the following Examples and Comparative Examples, the average primary particle size of the fine particles in the obtained sol was measured by a transmission electron microscope. The evaluation method of the obtained film is as follows.

【0040】1)導電性評価:ローレスタ抵抗測定器
(三菱油化製)により膜表面の表面抵抗を測定した。 2)耐擦傷性:1kg荷重下で消しゴム(ライオン製5
0−50)で膜表面を50回往復後、その表面の傷の付
き具合を目視で判断した。評価基準は、○:傷が全く付
かない、△:傷が多少付く、×:一部に膜剥離が生じ
る、とした。 3)視感反射率:GAMMA分光反射率スペクトル測定
器により膜の400〜700nmでの視感反射率を測定
した。 4)視感透過率:日立製作所製スペクトロフォトメータ
U−3500により380〜780nmでの視感透過率
を測定した。
1) Conductivity evaluation: The surface resistance of the film surface was measured using a Loresta resistance meter (manufactured by Mitsubishi Yuka). 2) Scratch resistance: Eraser under 1 kg load (Lion 5
After the film surface was reciprocated 50 times (0-50), the degree of scratching on the surface was visually determined. The evaluation criteria were as follows: :: no scratch at all, Δ: slightly scratched, x: partial film peeling. 3) Luminous reflectance: Luminous reflectance at 400 to 700 nm of the film was measured with a GAMMA spectral reflectance spectrum measuring instrument. 4) Luminous transmittance: Luminous transmittance at 380 to 780 nm was measured with a spectrophotometer U-3500 manufactured by Hitachi, Ltd.

【0041】実施例1 「Ag微粒子分散液の調製」 (1)30重量%硫酸鉄水溶液20gに30重量%クエ
ン酸三ナトリウム水溶液35gを添加し、さらに12重
量%硝酸銀水溶液25gを添加した後5分間撹拌した。 (2)上記(1)で得られた液を遠心分離により固液分
離した後、沈殿物に純水30gを添加して撹拌した。こ
の液に10分間超音波照射した後、30重量%クエン酸
三ナトリウム水溶液30gを添加した。
Example 1 "Preparation of Ag fine particle dispersion" (1) 35 g of a 30 wt% aqueous solution of trisodium citrate was added to 20 g of a 30 wt% aqueous solution of iron sulfate, and 25 g of a 12 wt% aqueous solution of silver nitrate was added. Stirred for minutes. (2) After the liquid obtained in the above (1) was subjected to solid-liquid separation by centrifugation, 30 g of pure water was added to the precipitate and stirred. After irradiating the solution with ultrasonic waves for 10 minutes, 30 g of a 30% by weight aqueous solution of trisodium citrate was added.

【0042】(3)上記工程(2)を4回繰り返した
後、遠心分離により固液分離した後、純水50gを添加
し、さらに20分間超音波照射した。 (4)上記(3)で得られた液に、陽イオン交換樹脂を
添加し15分間撹拌した後、陽イオン交換樹脂を濾別
し、さらに陰イオン交換樹脂を添加して15分間撹拌し
た後、陰イオン交換樹脂を濾別し、Ag微粒子分散液を
得た。この分散液のAg微粒子の平均一次粒径は27n
mであり、その固形分濃度は5重量%であった(A
液)。
(3) After repeating the above step (2) four times, the mixture was separated into solid and liquid by centrifugation, 50 g of pure water was added, and ultrasonic irradiation was further performed for 20 minutes. (4) After adding the cation exchange resin to the liquid obtained in the above (3) and stirring for 15 minutes, the cation exchange resin is separated by filtration, and further the anion exchange resin is added and stirred for 15 minutes. Then, the anion exchange resin was separated by filtration to obtain a dispersion liquid of Ag fine particles. The average primary particle size of Ag fine particles in this dispersion is 27 n.
m, and its solid content concentration was 5% by weight (A
liquid).

【0043】(5)このA液に、平均分子量200,0
00のゼラチンの水溶液をAg微粒子固形分に対してゼ
ラチン固形分が30重量%となるように添加した後、エ
タノールと水でエタノール80重量%、Ag固形分0.
35重量%となるように調整した(A1液)。
(5) The solution A has an average molecular weight of 200,0
Then, an aqueous solution of gelatin was added so that the solid content of gelatin was 30% by weight based on the solid content of Ag fine particles.
It was adjusted to 35% by weight (A1 solution).

【0044】「ケイ素化合物含有液の調製」 (6)ケイ酸エチル50gをエタノール200gに溶解
し、撹拌下で濃硝酸1.5gと純水33gとの混合溶液
を滴下し、室温で2時間撹拌してSiO2 濃度4.9重
量%の液を得た(B液)。このB液を、プロピレングリ
コールモノメチルエーテル/イソプロパノール/ジアセ
トンアルコール=50:40:10(重量比)の混合溶
媒でSiO2 固形分が0.70重量%となるように希釈
した(B1液)。
"Preparation of Silicon Compound-Containing Liquid" (6) Ethyl silicate (50 g) was dissolved in ethanol (200 g), a mixed solution of concentrated nitric acid (1.5 g) and pure water (33 g) was added dropwise with stirring, and the mixture was stirred at room temperature for 2 hours. Thus, a solution having a SiO 2 concentration of 4.9% by weight was obtained (Solution B). The solution B was diluted with a mixed solvent of propylene glycol monomethyl ether / isopropanol / diacetone alcohol = 50: 40: 10 (weight ratio) so that the SiO 2 solid content was 0.70% by weight (solution B1).

【0045】「塗布及び硬化」 (7)A1液20gを、表面温度40℃に加温した14
インチ型ブラウン管パネル表面にスピンコート法で、硬
化時の膜厚が40nmになる塗布量で100rpm、6
0秒間の条件で塗布した後、B1液20gをA1液塗布
時と同一のスピンコート条件で硬化時の膜厚が60nm
になる塗布量で塗布した後、160℃で30分間加熱す
ることにより低反射導電膜を得た。
"Coating and Curing" (7) 20 g of the A1 solution was heated to a surface temperature of 40 ° C.
The spin-coating method is applied to the surface of the inch type cathode ray tube panel at a coating amount of 100 rpm and 6 rpm to give a film thickness of 40 nm upon curing.
After coating under the condition of 0 second, 20 g of the B1 solution was cured to a thickness of 60 nm under the same spin coating conditions as when the A1 solution was applied.
Then, the coating was heated at 160 ° C. for 30 minutes to obtain a low-reflection conductive film.

【0046】実施例2 前記A液に、平均分子量22,000のポリビニルアル
コールの水溶液をAg微粒子固形分に対してポリビニル
アルコール固形分が10重量%となるように添加した
後、エタノール/エチレングリコールモノメチルエーテ
ル/ジメチルホルムアミド/ジメチルスルホキシド=6
5/30/3/2(重量比)の混合溶媒(この混合溶媒
を以後混合溶媒Mと表記)でAg固形分を0.35重量
%となるように調整した(A2液)。
Example 2 An aqueous solution of polyvinyl alcohol having an average molecular weight of 22,000 was added to the solution A so that the solid content of polyvinyl alcohol was 10% by weight based on the solid content of Ag fine particles, and then ethanol / ethylene glycol monomethyl was added. Ether / dimethylformamide / dimethylsulfoxide = 6
A 5/30/3/2 (weight ratio) mixed solvent (hereinafter, this mixed solvent is referred to as mixed solvent M) was adjusted so that the Ag solid content was 0.35% by weight (A2 liquid).

【0047】A2液20gを、表面温度40℃に加温し
た14インチ型ブラウン管パネル表面にスピンコート法
で、硬化時の膜厚が40nmになる塗布量で100rp
m、60秒間の条件で塗布した後、B1液20gをA2
液塗布時と同一のスピンコート条件で硬化時の膜厚が6
0nmになる塗布量で塗布した後、160℃で30分間
加熱することにより低反射導電膜を得た。
20 g of the A2 solution was applied onto the surface of a 14-inch CRT panel heated to a surface temperature of 40 ° C. by a spin coating method at a coating amount of 100 rpm to give a film thickness of 40 nm upon curing.
m, for 60 seconds, and then apply 20 g of B1 solution to A2
Film thickness of 6 when cured under the same spin coating conditions as for liquid application
After coating with a coating amount of 0 nm, the coating was heated at 160 ° C. for 30 minutes to obtain a low-reflection conductive film.

【0048】実施例3 前記A液に、平均分子量2,000のポリアクリル酸の
水溶液をAg微粒子固形分に対して、ポリアクリル酸固
形分が1重量%となるように添加した後、混合溶媒Mで
Ag固形分を0.35重量%となるように調整した(A
3液)。
Example 3 An aqueous solution of polyacrylic acid having an average molecular weight of 2,000 was added to the solution A so that the solid content of polyacrylic acid was 1% by weight with respect to the solid content of Ag fine particles. M to adjust the Ag solid content to 0.35% by weight (A
3 liquids).

【0049】A3液20gを、表面温度40℃に加温し
た14インチ型ブラウン管パネル表面にスピンコート法
で、硬化時の膜厚が40nmになる塗布量で100rp
m、60秒間の条件で塗布した後、B1液20gをA3
液塗布時と同一のスピンコート条件で硬化時の膜厚が6
0nmになる塗布量で塗布した後、160℃で30分間
加熱することにより低反射導電膜を得た。
20 g of the A3 solution was applied to the surface of a 14-inch cathode ray tube panel heated to a surface temperature of 40 ° C. by spin coating at a coating amount of 100 rpm to give a film thickness of 40 nm upon curing.
m, for 60 seconds, and then apply 20 g of B1 solution to A3
Film thickness of 6 when cured under the same spin coating conditions as for liquid application
After coating with a coating amount of 0 nm, the coating was heated at 160 ° C. for 30 minutes to obtain a low-reflection conductive film.

【0050】実施例4 前記A液に、平均分子量630,000のポリビニルピ
ロリドンの水溶液をAg微粒子固形分に対してポリビニ
ルピロリドン固形分が15重量%となるように添加した
後、エタノール/エチレングリコールモノエチルエーテ
ル/ジメチルホルムアミド/ジメチルスルホキシド=6
5/30/3/2(重量比)の混合溶媒(この混合溶媒
を以後混合溶媒Nと表記)でAg固形分を0.35重量
%となるように調整した(A4液)。
Example 4 An aqueous solution of polyvinylpyrrolidone having an average molecular weight of 630,000 was added to the solution A so that the solid content of polyvinylpyrrolidone was 15% by weight with respect to the solid content of Ag fine particles. Ethyl ether / dimethylformamide / dimethylsulfoxide = 6
A 5/30/3/2 (weight ratio) mixed solvent (hereinafter, this mixed solvent is referred to as mixed solvent N) was adjusted so that the Ag solid content was 0.35% by weight (A4 liquid).

【0051】A4液20gを、表面温度40℃に加温し
た14インチ型ブラウン管パネル表面にスピンコート法
で、硬化時の膜厚が40nmになる塗布量で100rp
m、60秒間の条件で塗布した後、B1液20gをA4
液塗布時と同一のスピンコート条件で硬化時の膜厚が6
0nmになる塗布量で塗布した後、160℃で30分間
加熱することにより低反射導電膜を得た。
20 g of the A4 solution was applied onto the surface of a 14-inch CRT panel heated to a surface temperature of 40 ° C. by spin coating at a coating amount of 100 rpm to give a film thickness of 40 nm upon curing.
m, for 60 seconds, then apply 20 g of B1 solution to A4
Film thickness of 6 when cured under the same spin coating conditions as for liquid application
After coating with a coating amount of 0 nm, the coating was heated at 160 ° C. for 30 minutes to obtain a low-reflection conductive film.

【0052】実施例5 「Ru微粒子分散液の調製」 (1)10重量%三塩化ルテニウム水溶液200gに1
5重量%水素化ホウ素ナトリウム水溶液100gを添加
し、金属ルテニウムを析出させた。 (2)上記(1)で得られた金属ルテニウムを充分水洗
し、100℃で24時間乾燥させ、金属ルテニウム粉末
を得た。 (3)この金属ルテニウム粉末10gを水50gに懸濁
し、サンドミルで20分粉砕して、Ru微粒子分散液を
得た。この分散液のRu微粒子の平均一次粒径は50n
mであり、その固形分は8重量%であった(C液)。
Example 5 "Preparation of Ru Fine Particle Dispersion" (1) 1% in 200 g of 10% by weight aqueous ruthenium trichloride solution
100 g of a 5% by weight aqueous sodium borohydride solution was added to precipitate metal ruthenium. (2) The metal ruthenium obtained in the above (1) was sufficiently washed with water and dried at 100 ° C. for 24 hours to obtain a metal ruthenium powder. (3) 10 g of this metal ruthenium powder was suspended in 50 g of water and pulverized with a sand mill for 20 minutes to obtain a Ru fine particle dispersion. The average primary particle size of the Ru fine particles in this dispersion is 50 n.
m and its solids content was 8% by weight (Solution C).

【0053】上記(3)で得られたC液に、平均分子量
20,000のポリエチレングリコールの水溶液をRu
微粒子固形分に対してポリエチレングリコール固形分が
50重量%となるように添加した後、混合溶媒NでRu
固形分を0.35重量%となるように調整した(C1
液)。
To the solution C obtained in the above (3), an aqueous solution of polyethylene glycol having an average molecular weight of 20,000 was added to Ru.
After adding so that the polyethylene glycol solid content becomes 50% by weight with respect to the fine particle solid content, Ru is mixed with the mixed solvent N.
The solid content was adjusted to 0.35% by weight (C1
liquid).

【0054】C1液20gを、表面温度40℃に加温し
た14インチ型ブラウン管パネル表面にスピンコート法
で、硬化時の膜厚が40nmになる塗布量で100rp
m、60秒間の条件で塗布した後、B1液20gをC1
液塗布時と同一のスピンコート条件で硬化時の膜厚が6
0nmになる塗布量で塗布した後、160℃で30分間
加熱することにより低反射導電膜を得た。
20 g of the C1 solution was applied to the surface of a 14-inch CRT panel heated to a surface temperature of 40 ° C. by spin coating at a coating amount of 100 rpm to give a film thickness of 40 nm upon curing.
m, for 60 seconds, then apply 20 g of B1 solution to C1
Film thickness of 6 when cured under the same spin coating conditions as for liquid application
After coating with a coating amount of 0 nm, the coating was heated at 160 ° C. for 30 minutes to obtain a low-reflection conductive film.

【0055】実施例6 Snを5重量%置換型固溶させた酸化インジウム粒子
(以後ITOと表記)をサンドミルで1時間粉砕解膠
し、ITO微粒子分散液を得た(D液)。前記A液に、
平均分子量5,000のポリアクリル酸の水溶液をAg
微粒子固形分に対してポリアクリル酸固形分が2重量%
となるように添加した後、D液をAg/ITO=8/2
(重量比)となるように加え、混合溶媒Nで(Ag+I
TO)固形分を0.35重量%となるように調整した
(D1液)。
Example 6 Indium oxide particles (hereinafter referred to as ITO) in which 5% by weight of Sn was substituted and solid-dissolved were pulverized and pulverized with a sand mill for 1 hour to obtain an ITO fine particle dispersion (solution D). In the solution A,
Ag aqueous solution of polyacrylic acid with average molecular weight of 5,000
2% by weight of polyacrylic acid solids based on solids of fine particles
After the addition, the solution D was added to Ag / ITO = 8/2.
(Weight ratio), and (Ag + I
TO) The solid content was adjusted to 0.35% by weight (D1 solution).

【0056】D1液20gを、表面温度40℃に加温し
た14インチ型ブラウン管パネル表面にスピンコート法
で、硬化時の膜厚が40nmになる塗布量で100rp
m、60秒間の条件で塗布した後、B1液20gをD1
液塗布時と同一のスピンコート条件で硬化時の膜厚が6
0nmになる塗布量で塗布した後、160℃で30分間
加熱することにより低反射導電膜を得た。
20 g of the D1 solution was applied onto the surface of a 14-inch CRT panel heated to a surface temperature of 40 ° C. by spin coating at a coating amount of 100 rpm to give a film thickness of 40 nm upon curing.
m, for 60 seconds, and then apply 20 g of B1 solution to D1
Film thickness of 6 when cured under the same spin coating conditions as for liquid application
After coating with a coating amount of 0 nm, the coating was heated at 160 ° C. for 30 minutes to obtain a low-reflection conductive film.

【0057】実施例7 前記A液に、平均分子量210,000のポリビニルピ
ロリドンの水溶液をAg微粒子固形分に対してポリピニ
ルピロリドン固形分が20重量%となるように添加した
後、シリカゾル(触媒化成工業製、S20L)をAg/
SiO2 =9/1(重量比)となるように加え、混合溶
媒Nで(Ag+SiO2 )固形分を0.4重量%となる
ように調整した(E液)。
Example 7 An aqueous solution of polyvinylpyrrolidone having an average molecular weight of 210,000 was added to Solution A so that the solid content of polypinylpyrrolidone was 20% by weight based on the solid content of Ag fine particles. Ag / S20L)
The mixture was added so that SiO 2 = 9/1 (weight ratio), and the mixed solvent N was adjusted so that the solid content of (Ag + SiO 2 ) became 0.4% by weight (Solution E).

【0058】E液20gを、表面温度40℃に加温した
14インチ型ブラウン管パネル表面にスピンコート法
で、硬化時の膜厚が40nmになる塗布量で100rp
m、60秒間の条件で塗布した後、B1液20gをE液
塗布時と同一のスピンコート条件で硬化時の膜厚が60
nmになる塗布量で塗布した後、160℃で30分間加
熱することにより低反射導電膜を得た。
20 g of Solution E was applied to the surface of a 14-inch CRT panel heated to a surface temperature of 40 ° C. by spin coating at a coating amount of 100 rpm to give a film thickness of 40 nm upon curing.
After coating under the conditions of m and 60 seconds, 20 g of the B1 solution has a film thickness of 60 when cured under the same spin coating conditions as when applying the E solution.
After coating with a coating amount of nm, the coating was heated at 160 ° C. for 30 minutes to obtain a low-reflection conductive film.

【0059】実施例8 前記A液に、平均分子量22,000のポリビニルアル
コールの水溶液をAg微粒子固形分に対してポリビニル
アルコール固形分が20重量%となるように添加した
後、チタンラクテート(松本交商製、TC−310)を
Ag/TiO2 =9/1(重量比)となるように加え、
混合溶媒Nで(Ag+TiO2 )固形分を0.4重量%
となるように調整した(F液)。
Example 8 An aqueous solution of polyvinyl alcohol having an average molecular weight of 22,000 was added to the solution A so that the solid content of polyvinyl alcohol was 20% by weight based on the solid content of Ag fine particles. Commercially available, TC-310) was added so that Ag / TiO 2 = 9/1 (weight ratio).
0.4% by weight of (Ag + TiO 2 ) solid content in mixed solvent N
(F solution).

【0060】F液20gを、表面温度40℃に加温した
14インチ型ブラウン管パネル表面にスピンコート法
で、硬化時の膜厚が40nmになる塗布量で100rp
m、60秒間の条件で塗布した後、B1液20gをF液
塗布時と同一のスピンコート条件で硬化時の膜厚が60
nmになる塗布量で塗布した後、160℃で30分間加
熱することにより低反射導電膜を得た。
20 g of solution F is applied to the surface of a 14-inch type cathode ray tube panel heated to a surface temperature of 40 ° C. by spin coating at a coating amount of 100 rpm to give a film thickness of 40 nm upon curing.
After coating under the conditions of m and 60 seconds, 20 g of the B1 solution has a thickness of 60 when cured under the same spin coating conditions as when applying the F solution.
After coating with a coating amount of nm, the coating was heated at 160 ° C. for 30 minutes to obtain a low-reflection conductive film.

【0061】比較例1 前記A液を混合溶媒NでAg固形分を0.35重量%と
なるように調整した(G液)。G液20gを、表面温度
40℃に加温した14インチ型ブラウン管パネル表面に
スピンコート法で、硬化時の膜厚が40nmになる塗布
量で100rpm、60秒間の条件で塗布した後、B1
液20gをG液塗布時と同一のスピンコート条件で硬化
時の膜厚が60nmになる塗布量で塗布した後、160
℃で30分間加熱して比較例1の膜を形成した。
Comparative Example 1 The solution A was adjusted with the mixed solvent N so that the Ag solid content was 0.35% by weight (solution G). 20 g of solution G was applied to the surface of a 14-inch cathode ray tube panel heated to a surface temperature of 40 ° C. by a spin coating method under the conditions of 100 rpm for 60 seconds at an application amount of a film thickness of 40 nm upon curing, followed by B1
After applying 20 g of the solution under the same spin coating conditions as in the case of applying the G solution, with an application amount such that the film thickness upon curing becomes 60 nm,
C. for 30 minutes to form a film of Comparative Example 1.

【0062】実施例9 A1液を室温で6ヶ月放置した後14インチ型ブラウン
管パネルに塗布した以外は実施例1と同様にして低反射
導電膜を得た。
Example 9 A low-reflection conductive film was obtained in the same manner as in Example 1 except that the A1 solution was allowed to stand at room temperature for 6 months and then applied to a 14-inch CRT panel.

【0063】実施例10 D1液を室温で6ヶ月放置した後14インチ型ブラウン
管パネルに塗布した以外は実施例6と同様にして低反射
導電膜を得た。
Example 10 A low reflection conductive film was obtained in the same manner as in Example 6, except that the D1 solution was allowed to stand at room temperature for 6 months and then applied to a 14-inch CRT panel.

【0064】比較例2〜3 前記A液をエタノールと水を用いてエタノールが80重
量%、Ag固形分を0.35重量%となるように調整し
た(H液)。H液20gを、表面温度40℃に加温した
14インチ型ブラウン管パネル表面にスピンコート法
で、硬化時の膜厚が40nmになる塗布量で100rp
m、60秒間の条件で塗布した後、B1液20gをH液
塗布時と同一のスピンコート条件で硬化時の膜厚が60
nmになる塗布量で塗布した後、160℃で30分間加
熱して比較例2の膜を形成した。
Comparative Examples 2-3 The above solution A was adjusted using ethanol and water so that ethanol was 80% by weight and Ag solid content was 0.35% by weight (solution H). 20 g of H solution was applied to the surface of a 14-inch CRT panel heated to a surface temperature of 40 ° C. by a spin coating method at an application amount of 100 rpm at a film thickness of 40 nm when cured.
After coating under the conditions of m and 60 seconds, 20 g of the B1 solution has a thickness of 60 when cured under the same spin coating conditions as when the H solution is applied.
After coating at a coating amount of nm, the film was heated at 160 ° C. for 30 minutes to form a film of Comparative Example 2.

【0065】また、H液を室温で1ヶ月放置した後14
インチ型ブラウン管パネル表面にスピンコート法で、硬
化時の膜厚が40nmになる塗布量で100rpm、6
0秒間の条件で塗布した後、B1液20gをH液塗布時
と同一のスピンコート条件で硬化時の膜厚が60nmに
なる塗布量で塗布した後、160℃で30分間加熱して
比較例3の膜を形成した。
After leaving the solution H at room temperature for one month,
The spin-coating method is applied to the surface of the inch type cathode ray tube panel at a coating amount of 100 rpm and 6 rpm to give a film thickness of 40 nm upon curing.
After applying under the condition of 0 second, 20 g of the B1 solution was applied under the same spin coating conditions as in the H solution application with an application amount such that the film thickness when cured became 60 nm, and then heated at 160 ° C. for 30 minutes to obtain a comparative example. Film No. 3 was formed.

【0066】[評価結果」実施例1〜10及び比較例1
〜3で得られた各導電膜の物性を前記方法で測定した結
果を表1、表2に示す。表において2E2は2×102
を意味し、他も同様である。
[Evaluation Results] Examples 1 to 10 and Comparative Example 1
Tables 1 and 2 show the results of measuring the physical properties of each of the conductive films obtained in Nos. 1 to 3 by the above method. In the table, 2E2 is 2 × 10 2
And the same applies to the others.

【0067】[0067]

【表1】 [Table 1]

【0068】[0068]

【表2】 [Table 2]

【0069】[0069]

【発明の効果】本発明によれば、塗布液の状態で長期分
散安定性に優れ、ブラウン管フェイス面等のガラス基体
上に膜を形成する際、低温熱処理により、着色がなく透
明で、外観、導電性に優れた導電膜、さらには反射防止
効果にも優れた低反射導電膜を形成できる。
According to the present invention, the coating solution is excellent in long-term dispersion stability, and when a film is formed on a glass substrate such as a cathode ray tube face, it is transparent without coloration due to low-temperature heat treatment, and its appearance, A conductive film having excellent conductivity and a low-reflection conductive film having an excellent antireflection effect can be formed.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 米田 貴重 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社中央研究所内 (72)発明者 森本 剛 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社中央研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yoneda Rare 1150 Hazawa-cho, Kanagawa-ku, Yokohama, Kanagawa Prefecture Inside the Central Research Laboratory Asahi Glass Co., Ltd. Central Research Laboratory

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】平均一次粒径が10nm超100nm以下
である金属微粒子並びに分散安定剤として水溶性樹脂を
含有してなることを特徴とする導電膜形成用塗布液。
1. A coating solution for forming a conductive film, comprising fine metal particles having an average primary particle size of more than 10 nm and not more than 100 nm and a water-soluble resin as a dispersion stabilizer.
【請求項2】金属微粒子が、Ag又はRuの微粒子であ
る請求項1の導電膜形成用塗布液。
2. The coating solution for forming a conductive film according to claim 1, wherein the metal fine particles are fine particles of Ag or Ru.
【請求項3】水溶性樹脂が、ゼラチン、ポリビニルアル
コール、ポリアクリル酸、ポリビニルピロリドン及びポ
リエチレングリコールからなる群から選ばれる1種以上
である請求項1又は2の導電膜形成用塗布液。
3. The coating liquid for forming a conductive film according to claim 1, wherein the water-soluble resin is at least one selected from the group consisting of gelatin, polyvinyl alcohol, polyacrylic acid, polyvinylpyrrolidone and polyethylene glycol.
【請求項4】水溶性樹脂の分子量が500〜1,00
0,000である請求項1、2又は3の導電膜形成用塗
布液。
4. A water-soluble resin having a molecular weight of 500 to 1,000.
4. The coating liquid for forming a conductive film according to claim 1, wherein the coating liquid is 000.
【請求項5】水溶性樹脂の含有量が、金属微粒子に対し
て0.5〜100重量%である請求項1、2、3又は4
の導電膜形成用塗布液。
5. The method according to claim 1, wherein the content of the water-soluble resin is 0.5 to 100% by weight based on the metal fine particles.
Coating liquid for forming a conductive film.
【請求項6】さらにSn、Sb、In、Zn、Ga、R
u、Al、Si、Ti及びZrからなる群から選ばれる
1種以上の金属の酸化物微粒子が分散したゾルを含む請
求項1〜5のいずれかの導電膜形成用塗布液。
6. Further, Sn, Sb, In, Zn, Ga, R
The coating solution for forming a conductive film according to claim 1, further comprising a sol in which oxide particles of one or more metals selected from the group consisting of u, Al, Si, Ti, and Zr are dispersed.
【請求項7】請求項1〜6のいずれかの導電膜形成用塗
布液をガラス基体上に塗布してなることを特徴とする導
電膜。
7. A conductive film obtained by applying the coating liquid for forming a conductive film according to claim 1 on a glass substrate.
【請求項8】請求項7の導電膜上に、該導電膜よりも低
屈折率の膜が形成されてなることを特徴とする低反射導
電膜。
8. A low reflection conductive film, wherein a film having a lower refractive index than the conductive film is formed on the conductive film according to claim 7.
【請求項9】基体上に、請求項1〜6のいずれかの導電
膜形成用塗布液を塗布し、その上に、少なくともケイ素
化合物を含有する低屈折率膜形成用塗布液を塗布するこ
とを特徴とする低反射導電膜の製造方法。
9. A coating solution for forming a conductive film according to any one of claims 1 to 6, which is applied on a substrate, and a coating solution for forming a low refractive index film containing at least a silicon compound is applied thereon. A method for producing a low-reflection conductive film, comprising:
JP30523696A 1996-11-15 1996-11-15 Conductive film forming coating solution, conductive film and its production Pending JPH10147886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30523696A JPH10147886A (en) 1996-11-15 1996-11-15 Conductive film forming coating solution, conductive film and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30523696A JPH10147886A (en) 1996-11-15 1996-11-15 Conductive film forming coating solution, conductive film and its production

Publications (1)

Publication Number Publication Date
JPH10147886A true JPH10147886A (en) 1998-06-02

Family

ID=17942677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30523696A Pending JPH10147886A (en) 1996-11-15 1996-11-15 Conductive film forming coating solution, conductive film and its production

Country Status (1)

Country Link
JP (1) JPH10147886A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180099837A (en) * 2016-01-08 2018-09-05 스타쿠 안라겐바우 게엠베하 Self-lubricating electrolytically deposited phosphate coating

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180099837A (en) * 2016-01-08 2018-09-05 스타쿠 안라겐바우 게엠베하 Self-lubricating electrolytically deposited phosphate coating
US11078592B2 (en) 2016-01-08 2021-08-03 Staku Anlagenbau Gmbh Self-lubricating electrolytically deposited phosphate coating

Similar Documents

Publication Publication Date Title
JP3882419B2 (en) Coating liquid for forming conductive film and use thereof
JP3697760B2 (en) Coating liquid
JP3473272B2 (en) Coating liquid for conductive film formation and conductive film
JPWO2003049123A1 (en) Conductive film, method for producing the same, and substrate having the same
JP3219450B2 (en) Method for producing conductive film, low reflection conductive film and method for producing the same
JP3288557B2 (en) Cathode ray tube with transparent electromagnetic wave shielding film
JP3449123B2 (en) Coating solution for forming low-resistance film or low-refractive-index film, and method for producing low-resistance film or low-reflection low-refractive-index film
JP3501942B2 (en) Paint for forming transparent conductive film, transparent conductive film, and display device
JP3979967B2 (en) Manufacturing method of low reflection low resistance film
US6902815B2 (en) Coating liquid for forming colored transparent conductive film, substrate with colored transparent conductive film and method for its production, and display device
JPH10147886A (en) Conductive film forming coating solution, conductive film and its production
JP3288417B2 (en) CRT panel having low reflection conductive film formed thereon and method of manufacturing the same
JP3356966B2 (en) Transparent conductive film, method of manufacturing the same, and display device
JP3356968B2 (en) Transparent conductive film, method of manufacturing the same, and display device
JPH1135855A (en) Transparent conductive film and display device
JPH0854502A (en) Coating liquid for forming colored low resistance film, colored low resistance film and glass product having colored low resistance film
JP3520705B2 (en) Coating liquid for forming conductive film, conductive film and method for manufacturing the same
JP3661244B2 (en) Method for forming conductive film and low reflective conductive film
JP3484903B2 (en) Coating liquid for forming low-resistance film, low-resistance film and method for manufacturing the same, and low-reflection low-resistance film and method for manufacturing the same
JP3514192B2 (en) Method for forming low reflective conductive film
JP3308511B2 (en) Method of forming CRT panel with conductive film
JP2002003746A (en) Coating for forming transparent electroconductive film, transparent electroconductive film and display device
JP2004203941A (en) Transparent conductive film, coating material for forming the same, manufacturing method for the film, and display device equipped with the film
JP3315673B2 (en) CRT with conductive film
JP3651983B2 (en) Low resistance film forming coating liquid, low resistance film and method for producing the same, multilayer low resistance film and glass article