JP3315673B2 - CRT with conductive film - Google Patents

CRT with conductive film

Info

Publication number
JP3315673B2
JP3315673B2 JP30757899A JP30757899A JP3315673B2 JP 3315673 B2 JP3315673 B2 JP 3315673B2 JP 30757899 A JP30757899 A JP 30757899A JP 30757899 A JP30757899 A JP 30757899A JP 3315673 B2 JP3315673 B2 JP 3315673B2
Authority
JP
Japan
Prior art keywords
conductive film
solution
film
coating
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30757899A
Other languages
Japanese (ja)
Other versions
JP2000156184A (en
Inventor
健二 石関
啓介 阿部
恭宏 真田
真奈美 廣谷
剛 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17970771&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3315673(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP30757899A priority Critical patent/JP3315673B2/en
Publication of JP2000156184A publication Critical patent/JP2000156184A/en
Application granted granted Critical
Publication of JP3315673B2 publication Critical patent/JP3315673B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はブラウン管パネル表
面に導電膜を有する導電膜付きブラウン管に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a CRT with a conductive film having a conductive film on the surface of a CRT panel.

【0002】[0002]

【従来の技術】ブラウン管は高電圧で作動するために起
動時または終了時に該表面に静電気が誘発される。この
静電気によりブラウン管表面に埃が付着し、コントラス
ト低下を引き起こしたり、直接触れた際に軽い電気ショ
ックによる不快感を生じたりすることが多い。
2. Description of the Related Art A cathode ray tube operates at a high voltage, so that static electricity is induced on a surface of the cathode ray tube when the cathode ray tube is started or terminated. Dust adheres to the surface of the cathode ray tube due to the static electricity, causing a decrease in contrast or causing discomfort due to a slight electric shock when directly touched.

【0003】従来より、上述の現象を防止するためにブ
ラウン管パネル表面に帯電防止膜を付与する試みがなさ
れている。例えば特開昭63−76247記載のとお
り、ブラウン管パネル表面を350℃程度に加熱し、C
VD法により酸化スズおよび酸化インジウムなどの導電
性酸化物層を設ける方法が採用されてきた。
Conventionally, attempts have been made to provide an antistatic film on the surface of a CRT panel in order to prevent the above-mentioned phenomenon. For example, as described in JP-A-63-76247, the surface of a CRT panel is heated to about 350 ° C.
A method of providing a conductive oxide layer such as tin oxide and indium oxide by a VD method has been employed.

【0004】しかし、この方法では装置コストがかかる
うえ、ブラウン管表面を高温に加熱するために、ブラウ
ン管内の蛍光体の脱落を生じたり、寸法精度が低下する
などの問題があった。また、導電層に用いる材料として
は酸化スズが最も一般的であるが、この場合低温処理で
は高性能な膜が得にくい欠点があった。
[0004] However, in this method, the cost of the apparatus is high, and the surface of the cathode-ray tube is heated to a high temperature, so that the phosphor in the cathode-ray tube is dropped off and the dimensional accuracy is reduced. In addition, tin oxide is most commonly used as a material for the conductive layer, but in this case, there is a disadvantage that it is difficult to obtain a high-performance film by low-temperature treatment.

【0005】また、近年、電磁波の遮蔽も求められてい
る。導電性塗膜をブラウン管表面に介在させることによ
り、導電性塗膜に電磁波が当たり、塗膜内に渦電流を誘
導して、この作用で電磁波を反射する。しかし、このた
めには高い電界強度に耐えうる良導電性が必要である
が、それほどの良導電性の膜を得ることはさらに困難で
あった。
[0005] In recent years, shielding of electromagnetic waves has also been required. By interposing the conductive coating on the surface of the cathode ray tube, electromagnetic waves hit the conductive coating, induce eddy currents in the coating, and reflect the electromagnetic waves by this action. However, for this purpose, good conductivity that can withstand high electric field strength is necessary, but it was more difficult to obtain a film with such good conductivity.

【0006】一方、導電膜の製造に関して特開平6−3
10058記載の方法があるが、この方法では、金属塩
と還元剤の混合液を塗布して膜を形成するために、金属
導電膜はガラス面にメッキされた状態となり、膜の強度
が著しく弱く、かつ導電膜を洗浄し副生成塩を除去する
工程が必要となる問題があった。
On the other hand, with respect to the production of a conductive film,
Although there is a method described in 10058, in this method, since a film is formed by applying a mixed solution of a metal salt and a reducing agent, the metal conductive film is in a state of being plated on a glass surface, and the strength of the film is extremely weak. In addition, there is a problem that a step of cleaning the conductive film and removing by-product salts is required.

【0007】また、陰極線管の全面パネルに帯電防止膜
を形成する方法として特開昭63−160140に金属
粒子を少量添加し帯電防止膜を形成する方法が記載され
ているが、この方法の場合には、形成される帯電防止膜
の膜表面抵抗値が107Ω/□のオーダー以上であり、
帯電防止機能は発揮するが、電磁波を遮蔽するには導電
性が不足する問題がある。
As a method for forming an antistatic film on the entire panel of a cathode ray tube, Japanese Patent Application Laid-Open No. 63-160140 discloses a method of forming an antistatic film by adding a small amount of metal particles. Has a film surface resistance of the antistatic film to be formed of not less than 10 7 Ω / □,
Although it exhibits an antistatic function, there is a problem that conductivity is insufficient to shield electromagnetic waves.

【0008】また、導電膜および低反射膜のコーティン
グ法による形成は、従来より光学機器のみならず、民生
用機器、特にテレビ、コンピュータ端末の陰極線管(C
RT)に関して数多く検討されてきた。従来の成膜方法
は、例えば特開昭61−118931記載のように、ブ
ラウン管表面に防眩効果を持たせるために表面に微細な
凹凸を有するSiO2層を付着させたり、フッ酸により
表面をエッチングして表面に凹凸を設けるなどの方法が
採られてきた。
Further, the formation of the conductive film and the low-reflection film by the coating method has hitherto been realized not only for optical equipment but also for consumer equipment, especially televisions and cathode ray tubes (C) of computer terminals.
RT). Conventional film-forming methods include, for example, as described in JP-A-61-118931, a method of attaching a SiO 2 layer having fine irregularities to the surface of a cathode-ray tube so as to have an antiglare effect, or using hydrofluoric acid to form a surface. Methods such as providing unevenness on the surface by etching have been adopted.

【0009】しかし、これらの方法は、外部光を散乱さ
せるノングレア処理と呼ばれ、本質的に低反射層を設け
る方法でないために、反射率の低減には限界があり、ま
た、ブラウン管などにおいては、解像度を低下させる原
因ともなっている。
However, these methods are called non-glare treatments for scattering external light, and are not essentially methods of providing a low-reflection layer, so that there is a limit in reducing the reflectance. This also causes a reduction in resolution.

【0010】[0010]

【発明が解決しようとする課題】本発明の目的は、従来
技術の前述の欠点を解消し、低温熱処理により形成が可
能な高性能導電膜を有するブラウン管および低反射導電
膜を有するブラウン管を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a cathode ray tube having a high-performance conductive film and a cathode ray tube having a low-reflection conductive film which can be formed by low-temperature heat treatment and which overcomes the above-mentioned disadvantages of the prior art. It is in.

【0011】[0011]

【課題を解決するための手段】本発明は、Ru金属微粒
子が分散したゾルを含み、かつ導電膜形成成分100重
量部中の10重量部以上がRu金属微粒子となるように
調製された導電膜形成用塗布液から形成される導電膜を
ブラウン管表面に有する導電膜付きブラウン管を提供す
る。本発明は、また、導電膜形成用塗布液から形成され
る導電膜上に、該導電膜より低屈折率の膜が形成されて
なる上記の導電膜付きブラウン管を提供する。
According to the present invention, there is provided a conductive film containing a sol in which Ru metal fine particles are dispersed, and wherein at least 10 parts by weight of 100 parts by weight of the conductive film forming component are Ru metal fine particles. Provided is a cathode-ray tube with a conductive film having a conductive film formed from a coating solution for formation on the surface of the cathode-ray tube. The present invention also provides the above-described cathode-ray tube with a conductive film, wherein a film having a lower refractive index than the conductive film is formed on a conductive film formed from a coating solution for forming a conductive film.

【0012】[0012]

【発明の実施の形態】本発明における導電膜形成用塗布
液は、Ru金属微粒子を導電膜形成成分100重量部に
対して10重量部以上含むように調製されていることを
特徴とする。
BEST MODE FOR CARRYING OUT THE INVENTION The coating liquid for forming a conductive film according to the present invention is characterized in that it is prepared so as to contain at least 10 parts by weight of Ru metal fine particles per 100 parts by weight of a conductive film forming component.

【0013】本発明における導電膜形成用塗布液は、金
属微粒子をゾルの形で含有しており、これを塗布した場
合は従来のメッキ膜とは異なり、微小な孔が導電膜中に
導入される。当該導電膜の上に、ケイ素、チタンまたは
ジルコニウムなどのアルコキシドおよび/またはそれら
の部分加水分解物を含む塗布液を塗布した場合には、こ
の孔に上記塗布液が浸入して導電膜の強度が著しく向上
する。
The coating liquid for forming a conductive film according to the present invention contains fine metal particles in the form of a sol. When this is coated, unlike conventional plating films, minute holes are introduced into the conductive film. You. When a coating solution containing an alkoxide such as silicon, titanium, or zirconium and / or a partial hydrolyzate thereof is applied on the conductive film, the coating solution penetrates into the pores to reduce the strength of the conductive film. Significantly improved.

【0014】また、このように形成された導電膜は、従
来の方法である金属塩と還元液からなる塗布液を用いる
場合とは異なり、導電膜の形成時には副生成物が生成せ
ず、導電膜とその上に形成される膜との間での膜強度の
劣化も生じない。
Unlike the conventional method using a coating solution composed of a metal salt and a reducing solution, the conductive film thus formed does not produce by-products when forming the conductive film, and has a low conductivity. There is no deterioration in film strength between the film and the film formed thereon.

【0015】本発明で使用する金属微粒子としては金属
の蒸発凝縮により生成される金属微粒子または金属塩の
化学還元により生成される金属微粒子が好適である。
As the metal fine particles used in the present invention, metal fine particles generated by evaporation and condensation of metal or metal fine particles generated by chemical reduction of a metal salt are preferable.

【0016】本発明において金属微粒子の形成に用いら
れる金属塩としては、例えば、ニトロソ硝酸ルテニウム
などの硝酸塩、塩化ルテニウム、塩化ルテニウムアンモ
ニウム、塩化ルテニウムカリウム、塩化ルテニウムナト
リウムなどの塩化物、酢酸ルテニウムなどの酢酸塩など
が使用できる。
In the present invention, examples of the metal salt used for forming the metal fine particles include nitrates such as ruthenium nitroso nitrate, chlorides such as ruthenium chloride, ruthenium ammonium chloride, ruthenium potassium chloride and ruthenium sodium chloride, and ruthenium acetate. Acetate and the like can be used.

【0017】上記金属塩の還元剤としては、例えば水素
化ホウ素ナトリウム、水素化ホウ素カリウム、水素化ナ
トリウム、水素化リチウムなどの水素化物や、ギ酸、シ
ュウ酸、ホスフィン酸、ホスフィン酸ナトリウム、ロシ
ェル塩などの有機酸、無機酸、塩が使用できる。
Examples of the metal salt reducing agent include hydrides such as sodium borohydride, potassium borohydride, sodium hydride, lithium hydride, formic acid, oxalic acid, phosphinic acid, sodium phosphinate, and Rochelle salt. Organic acids, inorganic acids, salts and the like can be used.

【0018】金属微粒子は、例えば、前記金属塩を水ま
たは有機溶媒に溶解させ、必要に応じアンモニアなどで
pHを調整した後、前記還元剤を添加することにより生
成する。このとき液の種類により反応温度を調整するこ
とも好ましい。こうした方法により生成した金属微粒子
は、適宜洗浄乾燥した後、撹拌などの操作によりゾル化
を行う。このとき、微粒子の分散性向上のために、加
熱、紫外線の照射、酸化剤への浸漬などにより、上記微
粒子の表面を一部酸化してもよい。
The fine metal particles are produced, for example, by dissolving the metal salt in water or an organic solvent, adjusting the pH with ammonia or the like as necessary, and then adding the reducing agent. At this time, it is also preferable to adjust the reaction temperature depending on the type of the liquid. The metal fine particles generated by such a method are appropriately washed and dried, and then solified by an operation such as stirring. At this time, in order to improve the dispersibility of the fine particles, the surface of the fine particles may be partially oxidized by heating, irradiation with ultraviolet rays, immersion in an oxidizing agent, or the like.

【0019】Ru金属微粒子の粉末は、あまり大きいと
分散しにくくなるため、平均粒径は100nm以下、特
に10nmを超える範囲、さらには30〜50nmの範
囲が好ましい。金属微粒子の粉体体積抵抗が0.01Ω
・cm以下であると良好な結果が得られる。
Since the Ru metal particles are difficult to disperse if they are too large, the average particle size is preferably 100 nm or less, more preferably 10 nm or more, and further preferably 30 to 50 nm. Powder volume resistance of metal fine particles is 0.01Ω
-Good results are obtained when the diameter is not more than cm.

【0020】Ru金属微粒子粉末は、均一に水や有機溶
媒などに分散させることが重要である。分散する際に
は、溶液と粉末の接触を容易にするために撹拌を行うこ
とが好ましい。この場合、コロイドミル、ボールミル、
サンドミル、ホモミキサーなどの市販の粉砕機を使用で
きる。また、微粒子を分散させる際には、20〜200
℃の範囲で加熱することもできる。分散媒体の沸点以上
で撹拌する場合には加圧して液相が保持できるようにす
る。このようにしてRu金属微粒子がコロイド粒子とし
て分散した水性ゾルまたはオルガノゾルが得られる。
It is important that the Ru metal fine particle powder is uniformly dispersed in water, an organic solvent or the like. When dispersing, it is preferable to perform stirring to facilitate contact between the solution and the powder. In this case, colloid mill, ball mill,
A commercially available pulverizer such as a sand mill or a homomixer can be used. Further, when dispersing the fine particles, 20 to 200
Heating in the range of ° C. is also possible. When stirring at a temperature higher than the boiling point of the dispersion medium, pressurization is performed so that the liquid phase can be maintained. In this way, an aqueous sol or organosol in which Ru metal fine particles are dispersed as colloid particles is obtained.

【0021】上記水性ゾルはそのまま塗布液としても使
用できるが、基体に対する塗布性を増すために、金属微
粒子を有機溶媒に分散または水性ゾルの水分を親水性有
機溶媒で置換して用いることもできる。親水性有機溶媒
としては、メタノール、エタノール、プロパノール、ブ
タノールなどのアルコール類、エチルセロソルブ、メチ
ルセロソルブ、ブチルセロソルブ、プロピレングリコー
ルメチルエーテルなどのエーテル類、2,4−ペンタジ
オン、ジアセトンアルコールなどのケトン類、乳酸エチ
ル、乳酸メチルなどのエステル類が使用できる。
The above-mentioned aqueous sol can be used as a coating solution as it is, but it is also possible to disperse the fine metal particles in an organic solvent or to replace the water in the aqueous sol with a hydrophilic organic solvent in order to increase the coating property on the substrate. . As the hydrophilic organic solvent, alcohols such as methanol, ethanol, propanol and butanol, ethyl cellosolve, methyl cellosolve, butyl cellosolve, ethers such as propylene glycol methyl ether, ketones such as 2,4-pentadione and diacetone alcohol, Esters such as ethyl lactate and methyl lactate can be used.

【0022】また、本発明における上記塗布液には液の
粘度、表面張力、展延性を調整する点から、M(OR)
y・R’4-y(yは2、3または4、MはSi、Tiまた
はZr、Rはアルキル基、R’はアルキル基またはアセ
チルアセトネート基)の金属アルコキシドおよび/また
はそれらの部分加水分解物を添加することもできる。
The above-mentioned coating liquid in the present invention has M (OR) from the viewpoint of adjusting the viscosity, surface tension and spreadability of the liquid.
y · R ′ 4-y (y is 2, 3 or 4, M is Si, Ti or Zr, R is an alkyl group, R ′ is an alkyl group or an acetylacetonate group) metal alkoxide and / or a partial hydrolyzate thereof Decomposition products can also be added.

【0023】また、導電膜の膜厚調整などのために、上
記塗布液に、Sn、Sb、In、Zn、Ga、Auおよ
びRuからなる群から選ばれる1種以上の金属の酸化物
微粒子を金属微粒子と同様なゾルの形で含有させてもよ
い。このような酸化物微粒子の大きさは平均粒径で10
0nm以下、特に10〜50nmの範囲が好ましい。ま
た、以上のように金属微粒子に添加する酸化物微粒子等
の添加量は、金属微粒子100重量部当たり0〜100
重量部の割合が好ましい。さらに塗布時における基体と
の濡れ性を向上させるために種々の界面活性剤を上記塗
布液に添加できる。
For the purpose of adjusting the thickness of the conductive film, for example, oxide fine particles of at least one metal selected from the group consisting of Sn, Sb, In, Zn, Ga, Au and Ru are added to the coating solution. It may be contained in the form of a sol similar to the metal fine particles. The size of such oxide fine particles is 10
0 nm or less, especially the range of 10-50 nm is preferable. As described above, the amount of the oxide fine particles added to the metal fine particles is 0 to 100 per 100 parts by weight of the metal fine particles.
A proportion by weight is preferred. Further, various surfactants can be added to the coating solution in order to improve the wettability with the substrate at the time of coating.

【0024】本発明における塗布液においては、該塗布
液中に含有される導電膜形成成分のうち、前記金属微粒
子が主成分であることが必要であり、塗布液中における
膜形成成分を100重量部とした場合(この場合、酸化
物原料は酸化物換算で、また、金属原料は金属換算で計
算する)、前記金属微粒子は10重量部以上含有され
る。金属微粒子の量が10重量部未満であると、形成さ
れる導電膜に所望の導電性を得にくい。金属微粒子の含
有割合は、特には50重量部以上、さらには80重量部
以上が好ましい。
In the coating solution of the present invention, it is necessary that the metal fine particles are the main component among the conductive film forming components contained in the coating solution, and the film forming component in the coating solution is 100% by weight. (In this case, the oxide raw material is calculated in terms of oxide and the metal raw material is calculated in terms of metal), the metal fine particles are contained in an amount of 10 parts by weight or more. If the amount of the metal fine particles is less than 10 parts by weight, it is difficult to obtain desired conductivity in the formed conductive film. The content ratio of the metal fine particles is preferably at least 50 parts by weight, more preferably at least 80 parts by weight.

【0025】本発明における塗布液を基体上へ塗布する
方法としては、例えばスピンコート、ディップコート、
スプレーコートなどの方法が好適に使用できる。また、
スプレーコート法を用いて表面に凹凸を形成して防眩効
果を付与してもよく、また、その上にシリカ被膜などの
ハードコートを設けてもよい。さらには、本発明による
導電膜をスピンコートまたはスプレーコートで形成し、
その上にシリコンアルコキシドを含む溶液をスプレーコ
ートして、表面に凹凸を有するシリカ被膜のノングレア
コートを設けてもよい。
As a method of applying the coating solution on the substrate in the present invention, for example, spin coating, dip coating,
A method such as spray coating can be suitably used. Also,
Irregularity may be imparted by forming irregularities on the surface by using a spray coating method, and a hard coat such as a silica coating may be provided thereon. Furthermore, the conductive film according to the present invention is formed by spin coating or spray coating,
A solution containing silicon alkoxide may be spray-coated thereon to provide a non-glare coat of a silica coating having irregularities on the surface.

【0026】本発明における塗布液に低沸点溶媒を添加
した場合、室温下の乾燥で塗膜が得られるが、沸点が1
00〜250℃にある中〜高沸点溶媒を用いる場合に
は、室温乾燥では溶媒が塗膜中に残留するために塗膜の
加熱処理を行う。加熱温度の上限は基板の軟化点によっ
て決定される。この点も考慮すると好ましい加熱温度範
囲は100〜500℃である。
When a low-boiling solvent is added to the coating solution of the present invention, a coating film can be obtained by drying at room temperature.
When a medium to high boiling point solvent having a temperature of from 00 to 250 ° C. is used, the coating film is subjected to a heat treatment because the solvent remains in the coating film at room temperature. The upper limit of the heating temperature is determined by the softening point of the substrate. Considering this point, a preferable heating temperature range is 100 to 500 ° C.

【0027】本発明においては、光の干渉作用を利用す
る低反射膜を上記導電膜面に形成できる。例えば、基体
がガラスの場合(屈折率n=1.52)の場合、上記導
電膜の上に、(導電膜の屈折率)/(低屈折率膜の屈折
率)の比の値が約1.23となるような低屈折率膜を形
成すると、導電膜の反射率を最も低減させうる。反射率
の低減には可視光領域において、特に555nmの反射
率を低減することが好ましいが、実用上は反射外観など
を考慮し、適宜決定するのがよい。
In the present invention, a low reflection film utilizing the interference effect of light can be formed on the conductive film surface. For example, when the substrate is glass (refractive index n = 1.52), the ratio of (refractive index of conductive film) / (refractive index of low refractive index film) is about 1 on the conductive film. .23, the reflectance of the conductive film can be reduced most. In order to reduce the reflectance, it is preferable to reduce the reflectance in the visible light region, particularly at 555 nm. However, in practice, it is preferable to determine the reflectance appropriately in consideration of the reflection appearance and the like.

【0028】こうした2層からなる低反射導電膜の最外
層の低屈折率膜としては、MgF2ゾルを含む溶液やシ
リコンアルコキシドを含む溶液のうちから選ばれる1種
以上よりなる溶液を用いて形成できる。屈折率の点を考
慮すると該材料中ではMgF 2が最も低く、反射率低減
のためにはMgF2ゾルを含む溶液を用いることが好ま
しく、膜の硬度や耐擦傷性の点ではSiO2を主成分と
する膜が好ましい。
The outermost of such a two-layer low-reflection conductive film
As the low refractive index film of the layer, MgFTwoSolutions and sieves containing sols
One selected from solutions containing recon alkoxides
It can be formed using a solution composed of the above. Consider the refractive index
Considering that MgF TwoIs the lowest and the reflectance is reduced
For MgFTwoIt is preferable to use a solution containing a sol.
In terms of film hardness and scratch resistance, SiOTwoWith the main component
Is preferred.

【0029】こうした屈折率膜形成用のシリコンアルコ
キシドを含む溶液としては種々のものが使用でき、Si
(OR)y・R’4-y(yは3または4、Rはアルキル
基、R’はアルキル基)で示されるシリコンアルコキシ
ドまたはそれらの部分加水分解物を含む液が挙げられ
る。例えば、シリコンエトキシド、シリコンメトキシ
ド、シリコンイソプロポキシド、シリコンブトキシドの
モノマーまたは重合体が好ましく使用できる。
Various solutions can be used as the solution containing the silicon alkoxide for forming the refractive index film.
A liquid containing a silicon alkoxide represented by (OR) y · R ′ 4-y (y is 3 or 4, R is an alkyl group, and R ′ is an alkyl group) or a partial hydrolyzate thereof is exemplified. For example, a monomer or polymer of silicon ethoxide, silicon methoxide, silicon isopropoxide, or silicon butoxide can be preferably used.

【0030】シリコンアルコキシドは、アルコール、エ
ステル、エーテルなどに溶解して用いることもでき、ま
た、前記溶液に塩酸、硝酸、硫酸、酢酸、ギ酸、マレイ
ン酸、フッ酸、またはアンモニア水溶液を添加してシリ
コンアルコキシドを加水分解して用いることもできる。
また、前記シリコンアルコキシドは溶媒に対して、30
重量%以下の量で含まれていることが好ましい。シリコ
ンアルコキシドの固形分量があまり大きいと得られる塗
布液の保存安定性が悪いため、こうした固形分量が好ま
しい。
The silicon alkoxide can be used by dissolving it in an alcohol, an ester, an ether, or the like, and adding an aqueous solution of hydrochloric acid, nitric acid, sulfuric acid, acetic acid, formic acid, maleic acid, hydrofluoric acid, or ammonia to the above solution. Silicon alkoxide can be used after hydrolysis.
Further, the silicon alkoxide is used in an amount of 30 to the solvent.
It is preferably contained in an amount of not more than weight%. If the solid content of the silicon alkoxide is too large, the storage stability of the obtained coating solution is poor, and thus such a solid content is preferable.

【0031】また、この溶液には膜の強度向上のための
バインダーとして、Zr、Ti、Sn、Alなどのアル
コキシドや、これらの部分加水分解物を添加して、Zr
2、TiO2、SnO2およびAl23から選ばれるい
ずれか1種または2種以上の複合物をMgF2やSiO2
と同時に析出させてもよい。
An alkoxide such as Zr, Ti, Sn or Al or a partial hydrolyzate thereof is added to the solution as a binder for improving the strength of the film.
Any one or two or more composites selected from O 2 , TiO 2 , SnO 2, and Al 2 O 3 are formed by using MgF 2 or SiO 2
At the same time, they may be precipitated.

【0032】基体との濡れ性を上げるために界面活性剤
を添加してもよい。添加される界面活性剤としては、直
鎖アルキルベンゼンスルホン酸ナトリウム、アルキルエ
ーテル硫酸エステルなどが挙げられる。
A surfactant may be added to increase the wettability with the substrate. Examples of the surfactant to be added include sodium linear alkylbenzene sulfonate and alkyl ether sulfate.

【0033】本発明における低反射導電膜の製造方法
は、多層干渉効果による低反射導電膜にも応用できる。
反射防止性能を有する多層の低反射膜の構成としては、
反射防止をしたい光の波長をλとして、基体側より、高
屈折率層−低屈折率層を光学厚みλ/2〜λ/4、また
はλ/4〜λ/4で形成した2層の低反射膜、基体側よ
り中屈折率層−高屈折率層−低屈折率層を光学厚みλ/
4〜λ/2〜λ/4で形成した3層の低反射膜、基体側
より低屈折率層−中屈折率層−高屈折率層−低屈折率層
を光学厚みλ/2〜λ/2〜λ/2〜λ/4で形成した
4層の低反射膜などが典型例として知られている。本発
明における塗布液から形成される膜を上記中屈折率層ま
たは高屈折率層に使用できる。
The method for producing a low-reflection conductive film according to the present invention can be applied to a low-reflection conductive film by a multilayer interference effect.
As a configuration of a multilayer low reflection film having antireflection performance,
Assuming that the wavelength of the light to be antireflective is λ, the low refractive index layer having a high refractive index layer and a low refractive index layer having an optical thickness of λ / 2 to λ / 4 or λ / 4 to λ / 4 is formed from the substrate side. From the reflective film and the substrate side, the medium refractive index layer-high refractive index layer-low refractive index layer
4 to λ / 2 to λ / 4, a low-reflection film of three layers, and a low-refractive-index layer, a middle-refractive-index layer, a high-refractive-index layer, and a low-refractive-index layer from the substrate side to an optical thickness of λ / 2 to λ / A typical example is a four-layer low-reflection film formed at 2 to λ / 2 to λ / 4. The film formed from the coating solution in the present invention can be used for the above-mentioned medium refractive index layer or high refractive index layer.

【0034】また、本発明における塗布液から形成され
る膜は、可視光領域全般にわたって吸収を生じるため、
コントラストの向上にも寄与する。
Further, the film formed from the coating solution in the present invention absorbs over the entire visible light range.
It also contributes to the improvement of contrast.

【0035】本発明における導電膜、低反射導電膜を形
成する基体としてはブラウン管パネルが挙げられる。
As the substrate on which the conductive film and the low-reflection conductive film of the present invention are formed, there is a cathode ray tube panel.

【0036】こうして得られる本発明における導電膜の
厚さは任意に調整できるが、本発明の目的には約0.2
〜0.1μmであり、好ましくは約0.02〜0.05
μmの範囲である。上記膜厚が薄すぎると微粒子がアイ
ランド状に存在し、導電連鎖性が不足し、所望の導電性
が得られない等の点で不充分であり、また、膜厚が厚す
ぎると膜による光の吸収が強すぎ、可視光域での光の透
過率が下がりすぎる等の点で不充分である。
The thickness of the conductive film thus obtained in the present invention can be arbitrarily adjusted.
~ 0.1 μm, preferably about 0.02-0.05
It is in the range of μm. If the film thickness is too small, the fine particles are present in an island shape, the conductivity chain is insufficient, and it is insufficient in that the desired conductivity cannot be obtained. Absorption is too strong, and the transmittance of light in the visible light region is too low.

【0037】本発明の好ましい実施形態では、上記導電
膜の表面に低屈折率膜を形成するが、該低屈折率膜の厚
さは任意に調整できる。本発明の目的に適する厚さは約
0.03〜1μmであり、好ましくは約0.03〜0.
08μmの範囲である。上記膜厚範囲を外すと二重干渉
効果による低反射性が充分には実現しない等の点で不充
分である。
In a preferred embodiment of the present invention, a low refractive index film is formed on the surface of the conductive film, but the thickness of the low refractive index film can be arbitrarily adjusted. Suitable thicknesses for the purposes of the present invention are from about 0.03 to 1 μm, preferably from about 0.03 to 0.3 μm.
It is in the range of 08 μm. When the thickness is out of the above range, the low reflectivity due to the double interference effect is not sufficiently realized.

【0038】[0038]

【実施例】以下に本発明の実施例を挙げてさらに説明す
るが、本発明はこれらに限定されない。以下の実施例
(例1〜3)および比較例(例4)において、得られた
膜の評価方法は次のとおりである。評価結果を表1に示
した。
The present invention will be further described below with reference to examples of the present invention, but the present invention is not limited to these examples. In the following Examples (Examples 1 to 3) and Comparative Examples (Example 4), the evaluation methods of the obtained films are as follows. Table 1 shows the evaluation results.

【0039】1)導電性評価:ローレスタ抵抗測定器
(三菱化学社製)により膜表面の表面抵抗値(単位:Ω
/□)を測定した。表において7.2E2は7.2×1
2を意味し、他も同様である。 2)耐擦傷性:1kg荷重下で消しゴム(ライオン社製
50−50)で膜表面を50回往復後、その表面の傷の
付きを目視で判断した。評価基準は、○:傷が全く付か
ない、△:傷が多少付く、×:一部に膜剥離が生じる、
とした。 3)鉛筆硬度:1kg荷重下において、鉛筆で膜表面を
走査し、その後目視により表面の傷の生じ始める鉛筆の
硬度を膜の鉛筆硬度と判断した。 4)視感反射率:GAMMA分光反射率スペクトル測定
器により多層膜の400〜700nmでの視感反射率を
測定した。 5)視感透過率:日立製作所製スペクトロフォトメータ
U−3500により380〜780nmでの視感透過率
を測定した。
1) Conductivity evaluation: Surface resistance value (unit: Ω) of the film surface measured by a Loresta resistance meter (Mitsubishi Chemical Corporation)
/ □) was measured. In the table, 7.2E2 is 7.2 × 1
0 2 , and so on. 2) Scratch resistance: The membrane surface was reciprocated 50 times with an eraser (50-50, manufactured by Lion Corporation) under a load of 1 kg, and the surface was visually judged for scratches. The evaluation criteria were as follows: ○: no scratch at all, Δ: slightly scratched, ×: partial peeling of film,
And 3) Pencil hardness: Under a load of 1 kg, the film surface was scanned with a pencil, and thereafter the pencil hardness at which surface scratches began to be visually determined was determined as the pencil hardness of the film. 4) Luminous reflectance: The luminous reflectance of the multilayer film at 400 to 700 nm was measured using a GAMMA spectral reflectance spectrum measuring instrument. 5) Luminous transmittance: Luminous transmittance at 380 to 780 nm was measured with a spectrophotometer U-3500 manufactured by Hitachi, Ltd.

【0040】また、得られた金属微粒子の粉体体積抵抗
は4端子法により測定し、得られたゾルの平均粒径は大
塚電子製レーザ回折式粒径測定装置LPA−3100に
より測定した。
The powder volume resistance of the obtained metal fine particles was measured by a four-terminal method, and the average particle size of the obtained sol was measured by a laser diffraction particle size analyzer LPA-3100 manufactured by Otsuka Electronics.

【0041】[例1]三塩化ルテニウム水溶液(固形分
10重量%)に水素化ホウ素ナトリウム液をルテニウム
に対して4倍モルの量で添加して金属ルテニウムを還元
析出させた。この金属ルテニウムを充分洗浄した後、1
00℃で24時間乾燥を行い、金属ルテニウム粉末を得
た。この金属ルテニウム粉末をサンドミルで20分間粉
砕した。このときの液中の粒子の平均粒径は89nmで
あった。その後濃縮を行い固形分5重量%液を得た(A
液)。
Example 1 A sodium borohydride solution was added to a ruthenium trichloride aqueous solution (solid content: 10% by weight) in an amount of 4 times mol of ruthenium to reduce and precipitate metal ruthenium. After thoroughly washing this metal ruthenium, 1
Drying was performed at 00 ° C. for 24 hours to obtain a metal ruthenium powder. This metal ruthenium powder was ground with a sand mill for 20 minutes. At this time, the average particle size of the particles in the liquid was 89 nm. Thereafter, concentration was performed to obtain a 5% by weight solid solution (A
liquid).

【0042】ケイ酸エチルをエタノールに溶かし、塩酸
酸性水溶液で加水分解を行い、SiO2 換算で5重量%
となるようエタノール溶液を調製した(B液)。A液と
B液とを、A液/B液=8/2(重量比)となるように
混合し、その後超音波を1時間照射した(C液)。
Ethyl silicate is dissolved in ethanol and hydrolyzed with an aqueous hydrochloric acid solution to give 5% by weight in terms of SiO 2.
An ethanol solution was prepared (solution B). Solution A and solution B were mixed so that solution A / solution B = 8/2 (weight ratio), and then ultrasonic waves were applied for 1 hour (solution C).

【0043】水、エタノール、メタノールおよびプロピ
レングリコールモノメチルエーテルを重量比で水/エタ
ノール/メタノール/プロピレングリコールモノメチル
エーテル=50/42/5/3となるよう混合した(D
液)。C液をD液で固形分が1.0重量%となるように
希釈して塗布液を得た(E液)。E液を14型ブラウン
管表面にスピンコート法で塗布し、180℃で30分間
加熱し導電膜を形成した。
Water, ethanol, methanol and propylene glycol monomethyl ether were mixed at a weight ratio of water / ethanol / methanol / propylene glycol monomethyl ether = 50/42/5/3 (D
liquid). The liquid C was diluted with the liquid D so as to have a solid content of 1.0% by weight to obtain a coating liquid (liquid E). Solution E was applied to the surface of a type 14 cathode ray tube by spin coating, and heated at 180 ° C. for 30 minutes to form a conductive film.

【0044】[例2]イソプロパノール、プロピレング
リコールモノメチルエーテルアセテート、ジアセトンア
ルコールを重量比でイソプロパノール/プロピレングリ
コールモノメチルエーテルアセテート/ジアセトンアル
コール=6/3/1となるように混合した(T1液)。
Example 2 Isopropanol, propylene glycol monomethyl ether acetate and diacetone alcohol were mixed so that the weight ratio of isopropanol / propylene glycol monomethyl ether acetate / diacetone alcohol was 6/3/1 (T1 solution).

【0045】例1で調製したA液をD液で固形分が0.
8重量%となるように希釈し14型ブラウン管表面にス
ピンコート法で塗布し、60℃で10分間乾燥させた。
その後この膜の上にB液をT1液で0.85重量%に希
釈したものをスピンコート法で塗布し、160℃で30
分間焼成し低反射導電膜を得た。
The solution A prepared in Example 1 was used as the solution D and had a solid content of 0.
The solution was diluted to 8% by weight, applied to the surface of a type 14 cathode ray tube by spin coating, and dried at 60 ° C. for 10 minutes.
Thereafter, a solution obtained by diluting the solution B to 0.85% by weight with the T1 solution was applied on the film by a spin coating method.
After baking for a minute, a low reflection conductive film was obtained.

【0046】[例3]スズを9重量%置換型固溶させた
酸化インジウム粒子をサンドミルで1時間粉砕解膠を行
った。これに塩化ルテニウムをRu/In23=9/1
(重量比)となるように添加し、さらにこの液に水素化
ホウ素ナトリウムをルテニウムに対して8倍モルの量で
添加し、ルテニウムを還元析出させた。この液にさらに
陰イオン交換樹脂、陽イオン交換樹脂を順次添加し不純
物イオンを除去し、超音波を2時間照射し分散させた。
その後濃縮を行い固形分5重量%液を調製した(V1
液)。
Example 3 Indium oxide particles in which 9% by weight of tin was substituted and solid-dissolved were pulverized and pulverized by a sand mill for 1 hour. Ru / In 2 O 3 = 9/1 with ruthenium chloride
(Weight ratio), and sodium borohydride was further added to this solution in an amount of 8 times the amount of ruthenium, to thereby reduce and precipitate ruthenium. Further, an anion exchange resin and a cation exchange resin were sequentially added to this liquid to remove impurity ions, and the mixture was dispersed by irradiation with ultrasonic waves for 2 hours.
Thereafter, concentration was performed to prepare a 5% by weight solid solution (V1
liquid).

【0047】V1液をD液で固形分が0.9重量%とな
るように希釈し14型ブラウン管表面にスピンコート法
で塗布し、60℃で10分間乾燥させた。その後この膜
の上にB液をT1液で0.85重量%に希釈したものを
スピンコート法で塗布し、160℃で30分間焼成し低
反射導電膜を得た。
The solution V1 was diluted with the solution D so that the solid content was 0.9% by weight, applied to the surface of a type 14 cathode ray tube by a spin coating method, and dried at 60 ° C. for 10 minutes. Thereafter, a solution obtained by diluting Solution B to 0.85% by weight with T1 solution was applied on this film by spin coating, and baked at 160 ° C. for 30 minutes to obtain a low reflection conductive film.

【0048】[例4]スズを5重量%置換型固溶させた
酸化インジウム粒子をサンドミルで1時間粉砕し、解膠
を行った。これに硝酸銀をAg/In23=5/95
(重量比)となるように添加し、さらにこの液にアンモ
ニアを添加し、pHが11となるよう調整した。次に、
この液に銀に対して8倍モルのロシェル塩を添加し、1
時間撹拌し、銀を還元析出させた。この液にさらに陰イ
オン交換樹脂を添加しNO3 -イオンを除去し、超音波を
2時間照射し分散させた。その後濃縮を行い固形分5重
量%液を調製した(X1液)。例3におけるV1液をX
1液に変更した以外は例3と同様に行った。
Example 4 Indium oxide particles in which 5% by weight of tin was substituted and solid-dissolved were pulverized with a sand mill for 1 hour to peptize. Ag / In 2 O 3 = 5/95
(Weight ratio), and ammonia was added to the solution to adjust the pH to 11. next,
To this solution was added Rochelle's salt in an amount 8 moles per mole of silver, and 1
After stirring for an hour, silver was precipitated by reduction. The solution was further added with an anion exchange resin to remove NO 3 - ions, and dispersed by irradiating ultrasonic waves for 2 hours. Thereafter, the mixture was concentrated to prepare a solution having a solid content of 5% by weight (solution X1). Solution V1 in Example 3 was replaced with X
The same procedure as in Example 3 was carried out except that one liquid was used.

【0049】[0049]

【表1】 [Table 1]

【0050】[0050]

【発明の効果】本発明によれば、スプレーまたはスピン
コートなどの簡便な方法により効率よく優れた導電膜を
提供できる。本発明は金属微粒子による導電膜を提供す
るため、電磁波を容易にシールドでき、かつ比較的安価
に製造できる。とくにCRTのパネルフェイス面などの
大面積の基体に充分適用でき、量産も可能であるため工
業的価値は非常に高い。
According to the present invention, an excellent conductive film can be efficiently provided by a simple method such as spraying or spin coating. Since the present invention provides a conductive film made of metal fine particles, it can easily shield electromagnetic waves and can be manufactured relatively inexpensively. In particular, it can be sufficiently applied to a large-area substrate such as a panel face surface of a CRT and can be mass-produced, so that its industrial value is very high.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森本 剛 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社 中央研究所内 審査官 堀部 修平 (56)参考文献 特開 平10−1777(JP,A) 特開 平9−115438(JP,A) 特開 平5−190091(JP,A) 特開 昭63−160140(JP,A) 特開 平4−155732(JP,A) 特開 平9−55175(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01J 29/88 H01J 29/89 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Go Morimoto 1150 Hazawacho, Kanagawa-ku, Yokohama-shi, Kanagawa Prefecture Asahi Glass Co., Ltd. Examiner at Central Research Laboratory Shuhei Horibe (56) References JP10-1777 (JP, A) JP-A-9-115438 (JP, A) JP-A-5-190091 (JP, A) JP-A-63-160140 (JP, A) JP-A-4-155732 (JP, A) JP-A-9-55175 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) H01J 29/88 H01J 29/89

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Ru金属微粒子が分散したゾルを含み、か
つ導電膜形成成分100重量部中の10重量部以上がR
u金属微粒子となるように調製された導電膜形成用塗布
液から形成される導電膜を有する導電膜付きブラウン
管。
A sol containing Ru metal fine particles dispersed therein and at least 10 parts by weight of R in 100 parts by weight of a conductive film forming component.
A CRT with a conductive film having a conductive film formed from a coating solution for forming a conductive film prepared to be u-metal fine particles.
【請求項2】導電膜形成用塗布液から形成される導電膜
上に、該導電膜より低屈折率の膜が形成されてなる請求
項1に記載の導電膜付きブラウン管。
2. The CRT with a conductive film according to claim 1, wherein a film having a lower refractive index than the conductive film is formed on the conductive film formed from the coating liquid for forming a conductive film.
JP30757899A 1996-06-10 1999-10-28 CRT with conductive film Expired - Fee Related JP3315673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30757899A JP3315673B2 (en) 1996-06-10 1999-10-28 CRT with conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30757899A JP3315673B2 (en) 1996-06-10 1999-10-28 CRT with conductive film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP14751496A Division JP3473272B2 (en) 1996-06-10 1996-06-10 Coating liquid for conductive film formation and conductive film

Publications (2)

Publication Number Publication Date
JP2000156184A JP2000156184A (en) 2000-06-06
JP3315673B2 true JP3315673B2 (en) 2002-08-19

Family

ID=17970771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30757899A Expired - Fee Related JP3315673B2 (en) 1996-06-10 1999-10-28 CRT with conductive film

Country Status (1)

Country Link
JP (1) JP3315673B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100366087B1 (en) * 2000-08-04 2002-12-26 삼성에스디아이 주식회사 Composition for filter layer and filter layer formed therefrom

Also Published As

Publication number Publication date
JP2000156184A (en) 2000-06-06

Similar Documents

Publication Publication Date Title
JP3302186B2 (en) Substrate with transparent conductive film, method for producing the same, and display device provided with the substrate
TW539734B (en) Transparent conductive layered structure and method of producing the same, and coating liquid for forming transparent conductive layer used in production of transparent conductive layered structure and method of producing the same
JP3473272B2 (en) Coating liquid for conductive film formation and conductive film
JP3882419B2 (en) Coating liquid for forming conductive film and use thereof
JP3697760B2 (en) Coating liquid
US20040197549A1 (en) Conductive film, manufactruing method thereof, substrate having the same
JP3219450B2 (en) Method for producing conductive film, low reflection conductive film and method for producing the same
JPH05107403A (en) High refractivity conductive film or low reflective anti-static film and manufacture thereof
JP3315673B2 (en) CRT with conductive film
KR100996052B1 (en) Coating agent for forming transparent film, transparent film coated substrate and display
JP3449123B2 (en) Coating solution for forming low-resistance film or low-refractive-index film, and method for producing low-resistance film or low-reflection low-refractive-index film
JP3308511B2 (en) Method of forming CRT panel with conductive film
JP3979967B2 (en) Manufacturing method of low reflection low resistance film
JP2002367428A (en) Application liquid for forming colored transparent conductive film, base body with the colored transparent conductive film, method of manufacture and display device
JP3288417B2 (en) CRT panel having low reflection conductive film formed thereon and method of manufacturing the same
JP2000153223A (en) Formation of low reflective conductive film
JP2892250B2 (en) Paint for forming antistatic / high refractive index film, transparent laminate with antistatic / antireflective film and display device
JP3356968B2 (en) Transparent conductive film, method of manufacturing the same, and display device
JPH05166423A (en) Manufacture of conductive film and low reflective conductive film
JP3484903B2 (en) Coating liquid for forming low-resistance film, low-resistance film and method for manufacturing the same, and low-reflection low-resistance film and method for manufacturing the same
JPH115929A (en) Coating liquid for use in forming electrically conductive film, method for forming electrically conductive film, and method for forming electrically conductive film of low reflectivity
JPH1125759A (en) Transparent conductive film and display device
JPH09188545A (en) Electroconductive film, its production and glass article
JPH11203943A (en) Transparent conductive base material, its manufacture and display device using this base material
JPH08290943A (en) Coating liquid for forming electroconductive film, production of electroconductive film, electroconductive film and glass article having electroconductive film formed thereon

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees