JPH09188545A - Electroconductive film, its production and glass article - Google Patents

Electroconductive film, its production and glass article

Info

Publication number
JPH09188545A
JPH09188545A JP328596A JP328596A JPH09188545A JP H09188545 A JPH09188545 A JP H09188545A JP 328596 A JP328596 A JP 328596A JP 328596 A JP328596 A JP 328596A JP H09188545 A JPH09188545 A JP H09188545A
Authority
JP
Japan
Prior art keywords
conductive film
solution
fine particles
film
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP328596A
Other languages
Japanese (ja)
Inventor
Yasuhiro Sanada
恭宏 真田
Keisuke Abe
啓介 阿部
Kenji Ishizeki
健二 石関
Manami Hiroya
真奈美 廣谷
Takeshi Morimoto
剛 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP328596A priority Critical patent/JPH09188545A/en
Publication of JPH09188545A publication Critical patent/JPH09188545A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Glass (AREA)
  • Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)
  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an electroconductive film enabling the shielding of electromagnetic wave by a low temperature treatment, i.e., applying a coating liquid containing sol prepared by dispersing specific fine particles of electroconductive compound oxide on a base body and curing the coating. SOLUTION: A ruthenium salt and a soluble salt of one element or more selected from Co, Ni, Fe, Zn, Cr, Mn, Cu, Bi, Sb and lanthanoids excluding promethium are hydrolyzed in a medium at pH of 3-13 to obtain a coprecipitate. The obtained coprecipitate is dried and baked at 300-700 deg.C to obtain fine particles of electroconductive compound oxide having an average particle diameter of <=100nm. The fine particles are dispersed in an organic solvent having a permittivity of >=5 and a boiling point of 50-250 deg.C or in water to prepare a coating liquid having a solid concentration of 0.01-10wt.%. This coating liquid is applied on a base body, and the liquid is dried and heated at 100-500 deg.C to cure the coating. Thus, an electroconductive film having a thickness of 50-400nm is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、導電膜、その製造
方法及びガラス物品に関し、例えば、ブラウン管パネル
等のガラス基体表面に形成された導電膜、その製造方法
及び該導電膜を有するガラス物品に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive film, a method for manufacturing the same, and a glass article, for example, a conductive film formed on the surface of a glass substrate such as a cathode ray tube panel, a method for manufacturing the same, and a glass article having the conductive film. .

【0002】[0002]

【従来の技術】従来、ブラウン管等の陰極線管(CR
T)パネルは高電圧で作動するために、起動時又は終了
時に該パネル表面に静電気が誘発される。この静電気に
よりブラウン管パネル表面にほこりが付着し、表示画像
のコントラスト低下を引き起こしたり、人の手が直接触
れた際に軽い電気ショックによる不快感を生じたりする
ことが多い。
2. Description of the Related Art Conventionally, cathode ray tubes such as cathode ray tubes (CR
T) Since the panel operates at a high voltage, static electricity is induced on the surface of the panel at the time of starting or ending. This static electricity often causes dust to adhere to the surface of the cathode ray tube panel, causing a reduction in the contrast of the display image, or causing discomfort due to a slight electric shock when directly touched by a human hand.

【0003】従来、上述の事柄を防止するために、ブラ
ウン管パネル表面に透光性の帯電防止膜を付与する試み
がかなりなされてきた。例えば、特開昭63−7624
7には、ブラウン管パネル表面を350℃程度に加熱
し、CVD法により酸化錫及び酸化インジウム等の透光
性導電性酸化物層を設ける方法が提案されている。
In the past, in order to prevent the above-mentioned matters, many attempts have been made to provide a transparent antistatic film on the surface of the cathode ray tube panel. For example, JP-A-63-7624
No. 7, there is proposed a method in which the surface of a cathode ray tube panel is heated to about 350 ° C. and a translucent conductive oxide layer such as tin oxide and indium oxide is provided by a CVD method.

【0004】しかし、この方法では装置コストがかかる
ことに加え、ブラウン管表面を高温に加熱するためにブ
ラウン管内の蛍光体の脱落を生じたり、寸法精度が低下
する等の問題があった。また、導電層に用いる材料とし
ては酸化錫が最も一般的であるが、この場合低温処理で
は高性能な膜が得にくい欠点があった。
However, in this method, there is a problem in that in addition to the cost of the apparatus, the phosphor in the cathode ray tube is dropped off because the surface of the cathode ray tube is heated to a high temperature, and the dimensional accuracy is lowered. Further, tin oxide is the most common material used for the conductive layer, but in this case, there is a drawback that it is difficult to obtain a high-performance film by low temperature treatment.

【0005】また、近年、電磁波ノイズによる電子機器
への電波障害が社会問題となり、それらを防止するため
の規格の作成や規制が行なわれている。電磁波ノイズは
人体について、CRT上の静電気チャージによる皮膚癌
の恐れ、低周波電界による胎児への影響、その他X線、
紫外線等による害が各国で問題視されている。これらの
問題に対処するために、導電性塗膜をブラウン管パネル
表面に介在させることにより、導電性塗膜に電磁波が当
たり、塗膜内に渦電流を誘導して、この作用で電磁波を
反射させる方法が提案されている。
Further, in recent years, radio wave interference to electronic equipment due to electromagnetic wave noise has become a social problem, and standards and regulations are being made to prevent it. Electromagnetic noise may cause skin cancer in human body due to electrostatic charge on CRT, influence of low frequency electric field on fetus, other X-rays,
The harm caused by ultraviolet rays is regarded as a problem in each country. In order to deal with these problems, by interposing a conductive coating film on the surface of the cathode ray tube panel, an electromagnetic wave hits the conductive coating film, induces an eddy current in the coating film, and the electromagnetic wave is reflected by this action. A method has been proposed.

【0006】しかし、このような効果を得るためには高
い電界強度に耐えうる良導電性の塗膜が必要であるが、
それほどの良導電性の膜を得ることは、導電性塗料を使
用する方法ではさらに困難であった。
However, in order to obtain such an effect, it is necessary to have a coating film having good conductivity which can withstand high electric field strength.
It was more difficult to obtain a film having such good conductivity by the method using a conductive paint.

【0007】一般に金属等や酸化ルテニウム等の良導電
性物質は、その軌道電子の構造上バンドギャップを持た
ないために、可視光領域で吸収が生じて膜が着色するの
で、ディスプレイ等の表面処理にそのまま適用すること
は難しい。
In general, a metal or ruthenium oxide or other good conductive material does not have a band gap due to the structure of its orbital electrons, so that absorption occurs in the visible light region and the film is colored. It is difficult to apply as is.

【0008】一方、SbドープSnO2 、FドープSn
2 、ITO、AlドープZnO等の半導体型酸化物
は、そのバンドギャップが3.1eV以上あり、透光性
を有する。しかし、透光性は有するものの高性能電磁波
シールドに供するほどの導電性の発現は困難であった。
On the other hand, Sb-doped SnO 2 and F-doped Sn
Semiconductor-type oxides such as O 2 , ITO, and Al-doped ZnO have a band gap of 3.1 eV or more and are translucent. However, although it has a light-transmitting property, it has been difficult to exhibit conductivity enough to be used for a high-performance electromagnetic wave shield.

【0009】また、導電膜及び低反射膜を形成するため
のコーティング法は、従来より光学機器の分野のみなら
ず、民生用機器、特にTV、コンピュータ装置端末のC
RTに関して数多くの検討がなされてきた。従来の方法
は例えば特開昭61−118931記載のように、ブラ
ウン管パネル表面に防眩効果をもたせるために、表面に
微細な凹凸を有するSiO2 層を付着させたり、フッ酸
により表面をエッチングして凹凸を設ける等の方法がと
られてきた。
Further, the coating method for forming the conductive film and the low-reflection film has been used not only in the field of optical equipment, but also in consumer equipment, especially TV and computer equipment terminals.
Many studies have been made regarding RT. The conventional method is, for example, as described in JP-A-61-118931, in order to have an antiglare effect on the surface of a cathode ray tube panel, a SiO 2 layer having fine irregularities is attached to the surface or the surface is etched with hydrofluoric acid. Therefore, methods such as providing unevenness have been taken.

【0010】しかし、これらの方法は外部光を散乱させ
るノングレア処理と呼ばれ、本質的に低反射層を設ける
方法でないために、反射率の低減には限界があり、また
ブラウン管等のパネルに応用した場合においては、表示
画像の解像度を低下させる原因ともなっている。
However, these methods are called non-glare treatments for scattering external light, and since there is essentially no method of providing a low reflection layer, there is a limit to the reduction of reflectance, and they are applied to panels such as cathode ray tubes. In such a case, it also causes a reduction in the resolution of the display image.

【0011】[0011]

【発明が解決しようとする課題】本発明の目的は、従来
技術の前述の欠点を解消しようとするものであり、低温
熱処理により形成が可能な高性能導電膜、低反射導電膜
及びこれらの膜を有するガラス物品を新規に提供するこ
とである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned drawbacks of the prior art, and it is possible to form a high performance conductive film, a low reflection conductive film and films thereof which can be formed by low temperature heat treatment. To provide a glass article having the following.

【0012】[0012]

【課題を解決するための手段】本発明は、コバルト、ニ
ッケル、鉄、亜鉛、クロム、マンガン、銅、ビスマス、
アンチモン及びランタノイド元素(ただしプロメチウム
を除く)のうちの1種以上の元素(以下単に併用元素と
いう)とルテニウムとを金属成分とする導電性複合酸化
物微粒子が分散したゾルを含む塗布液を、基体上に塗布
し硬化して形成されてなることを特徴とする導電膜、該
導電膜の製造方法及び該導電膜を有するガラス物品を提
供する。
The present invention provides cobalt, nickel, iron, zinc, chromium, manganese, copper, bismuth,
A substrate is coated with a coating solution containing a sol in which conductive complex oxide fine particles containing ruthenium as a metal component, one or more of antimony and lanthanoid elements (excluding promethium) (hereinafter simply referred to as combination elements) are dispersed. (EN) Provided are a conductive film formed by being applied and cured on the above, a method for producing the conductive film, and a glass article having the conductive film.

【0013】導電膜の構成成分として酸化ルテニウムの
みを用いる場合、得られる膜に十分に導電性が発現され
るが、膜の可視光吸収が大きくなって着色する場合があ
り、実用上問題となる場合がある。
When only ruthenium oxide is used as a constituent component of the conductive film, the resulting film exhibits sufficient conductivity, but the visible light absorption of the film may be large and may cause coloration, which is a practical problem. There are cases.

【0014】本発明では、導電膜の構成成分として酸化
ルテニウムに加えて、併用元素の酸化物を用いて、導電
性複合酸化物微粒子による導電膜を形成することによ
り、所定の導電性の発現と所定の透光性を有する導電膜
が提供できる。
In the present invention, a conductive film formed of conductive composite oxide fine particles is formed by using an oxide of a combined element in addition to ruthenium oxide as a constituent component of the conductive film, thereby exhibiting a predetermined conductivity. A conductive film having a predetermined light-transmitting property can be provided.

【0015】なお、併用元素としてプロメチウムを使用
しない理由は、ランタン系列中において、プロメチウム
145は半減期17.7年でα崩壊及び電子捕獲を生
じ、それぞれプラセオジム、及びネオジムに変換し、プ
ロメチウム147は半減期2.62年でβ崩壊を生じ、
サマリウムに変換するという性質を有し、したがってプ
ロメチウムは自然界においては安定に存在せず、かつ放
射性崩壊に伴いα粒子及び電子線が放出され、人体に影
響を及ぼすので好ましくないためである。
The reason why promethium is not used as a concomitant element is that in the lanthanum series, promethium 145 undergoes α-decay and electron capture with a half-life of 17.7 years and is converted to praseodymium and neodymium, respectively, and promethium 147 Β decay occurred with a half-life of 2.62 years,
This is because it has the property of converting to samarium, and therefore promethium does not exist stably in the natural world, and α particles and electron beams are emitted due to radioactive decay, which adversely affects the human body, which is not preferable.

【0016】また、本発明による導電膜は、その使用目
的によっては膜の透過色調を変える必要も生じうるが、
併用する元素の酸化物を組み合わせて複合化することに
よって、形成される膜の色調を変えうる。特にコバルト
を用いた場合その効果は著しい。上記複合酸化物粒子自
体ではITO粒子ほどの優れた透光性は得られないが、
上記複合酸化物の粒子の一次粒径を小さくし、超微粒子
化することにより、光学薄膜等に適用した場合にも量子
サイズ効果等の寄与もあり、所定の導電性を維持しなが
ら透光性を向上させることができた。
The conductive film according to the present invention may need to change the transmission color tone of the film depending on the purpose of use.
The color tone of the formed film can be changed by combining and combining the oxides of the elements used together. In particular, the effect is remarkable when cobalt is used. Although the composite oxide particles themselves do not have the excellent light-transmitting properties of ITO particles,
By reducing the primary particle size of the above composite oxide particles and making them ultrafine particles, there is also a contribution of quantum size effect etc. even when applied to optical thin films, etc. Was able to improve.

【0017】[0017]

【発明の実施の形態】本発明では、ルテニウムと併用元
素とを使用して導電性複合酸化物微粒子を作成するが、
ルテニウム:併用元素の使用比率は、モル比で約99:
1〜約5:95の比率の範囲で使用することが好まし
く、ルテニウムの使用量が上記範囲の下限未満であると
膜の導電性の点で好ましくなく、一方、上記範囲の上限
を超えると所定の透光性が得られない点で好ましくな
い。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, conductive complex oxide fine particles are prepared by using ruthenium and a concomitant element.
The molar ratio of ruthenium to the combined element is about 99:
It is preferable to use in the range of 1 to about 5:95, and if the amount of ruthenium used is less than the lower limit of the above range, it is not preferable in terms of conductivity of the film, while if it exceeds the upper limit of the above range, Is not preferable in that the translucency is not obtained.

【0018】併用元素とルテニウムとを金属成分とする
導電性複合酸化物微粒子は、例えば、塩化ルテニウム等
のルテニウム塩と、併用元素の可溶性塩、例えば塩化コ
バルト、硫酸ニッケル、塩化亜鉛等、各種金属の可溶性
塩を適当な媒体中でpH3〜13の範囲で同時に加水分
解し、得られた共沈殿物を乾燥し、300〜700℃の
範囲で焼成して導電性複合酸化物微粒子を得ることが好
ましい。
The conductive complex oxide fine particles containing the concomitant element and ruthenium as metal components include, for example, ruthenium salts such as ruthenium chloride and soluble salts of the concomitant element such as cobalt chloride, nickel sulfate and zinc chloride. Can be obtained by simultaneously hydrolyzing the soluble salt of the above in a suitable medium in the range of pH 3 to 13, drying the obtained coprecipitate, and calcining in the range of 300 to 700 ° C. to obtain conductive composite oxide fine particles. preferable.

【0019】上記共沈殿物の焼成温度としては、上記温
度範囲よりも低温における焼成では得られる導電性複合
酸化物微粒子はアモルファスであり、充分な導電性が得
られないために好ましくない。また、上記温度範囲より
も高温で焼成すると得られる導電性複合酸化物微粒子に
おいて異常粒成長等が生じ、塗膜化したときのヘーズ等
の外観上の欠点が生じやすく好ましくない。以上のよう
にして得られる併用元素とルテニウムからなる導電性複
合酸化物微粒子の粉末は、あまり大きいと分散媒体中に
おいて粒子が分散しにくくなるために、平均粒径が10
0nm以下となっていることが好ましい。
The firing temperature of the co-precipitate is not preferable because the firing is carried out at a temperature lower than the above temperature range because the fine particles of the conductive complex oxide obtained are amorphous and sufficient conductivity cannot be obtained. In addition, abnormal grain growth or the like occurs in the conductive complex oxide fine particles obtained by firing at a temperature higher than the above temperature range, and appearance defects such as haze when formed into a coating film are unfavorable. If the powder of the conductive complex oxide fine particles composed of the combined element and ruthenium obtained as described above is too large, the particles are difficult to disperse in the dispersion medium, so that the average particle diameter is 10
It is preferably 0 nm or less.

【0020】かかる併用元素とルテニウムとを金属成分
とする導電性複合酸化物微粒子は、水又はアルコール等
の分散媒体中に均一に分散させて塗布液として用いられ
る。分散媒体である溶媒には特に限定はないが、水を用
いた場合は特に上記微粒子の分散性が向上するために水
が好ましい。上記微粒子を分散する際には、分散媒体と
微粒子との接触を容易とするために撹拌を行うことが好
ましい。この撹拌には、コロイドミル、ボールミル、サ
ンドミル、ホモミキサー等の市販の分散機又は粉砕機を
用いうる。
The conductive complex oxide fine particles containing the combination element and ruthenium as metal components are uniformly dispersed in a dispersion medium such as water or alcohol and used as a coating liquid. The solvent that is a dispersion medium is not particularly limited, but when water is used, water is preferable because the dispersibility of the fine particles is particularly improved. When the fine particles are dispersed, it is preferable to carry out stirring in order to facilitate contact between the dispersion medium and the fine particles. A commercially available disperser or crusher such as a colloid mill, a ball mill, a sand mill and a homomixer can be used for this stirring.

【0021】また、上記微粒子を分散させる際には、2
0〜200℃の範囲で加熱することもできる。分散媒体
である溶媒の沸点以上で撹拌する場合には加圧して液層
が保持できるようにする。このようにして併用元素とル
テニウムを金属成分とする導電性複合酸化物微粒子が分
散媒体中にコロイド粒子として分散したゾルが得られ
る。
When the fine particles are dispersed, 2
It is also possible to heat in the range of 0 to 200 ° C. When stirring above the boiling point of the solvent that is the dispersion medium, pressure is applied so that the liquid layer can be retained. In this way, a sol is obtained in which the conductive complex oxide fine particles containing the combined element and ruthenium as the metal component are dispersed as colloidal particles in the dispersion medium.

【0022】本発明における上記ゾルはそのまま塗布液
として用いうるが、基体に対する塗布性を増すために、
前記微粒子を有機溶媒に分散、又は水中分散体の場合に
は分散媒体である水を有機溶媒に置換して用いることも
できる。
The above-mentioned sol in the present invention can be used as it is as a coating solution, but in order to improve the coating property to the substrate,
The fine particles may be dispersed in an organic solvent, or in the case of a dispersion in water, water as a dispersion medium may be replaced with an organic solvent for use.

【0023】分散媒体として用いる有機溶媒としては誘
電率が5以上であり、沸点が50℃以上250℃以下で
ある有機溶媒が好ましい。沸点が50℃未満の有機溶媒
の場合は塗布液を基体に塗布する際に溶媒の蒸発が早
く、得られる膜の外観上の欠点が生じる。また、沸点が
250℃超の有機溶媒を用いた場合は、塗布液を基体に
塗布後、乾燥する際の蒸発速度が著しく遅く、かつ膜焼
成後に有機溶媒が膜中に残留することがあり、膜の特性
を劣化させる要因となる。
The organic solvent used as the dispersion medium is preferably an organic solvent having a dielectric constant of 5 or more and a boiling point of 50 ° C. or more and 250 ° C. or less. In the case of an organic solvent having a boiling point of less than 50 ° C., the solvent evaporates quickly when the coating liquid is applied to the substrate, which causes a defect in the appearance of the obtained film. When an organic solvent having a boiling point of more than 250 ° C. is used, the evaporation rate when the coating liquid is applied to the substrate and then dried is extremely slow, and the organic solvent may remain in the film after baking the film, It becomes a factor that deteriorates the characteristics of the film.

【0024】塗布液の形成に使用する分散媒体は以上の
点より特に限定されないが、例えば、メタノール、エタ
ノール、プロパノール、ブタノール等のアルコール類、
エチルセロソルブ、メチルセロソルブ、ブチルセロソル
ブ、プロピレングリコールメチルエーテル等のエーテル
類、2,4−ペンタンジオン、ジアセトンアルコール等
のケトン類、乳酸エチル、乳酸メチル等のエステル類が
好ましい。
The dispersion medium used for forming the coating solution is not particularly limited in view of the above points, and examples thereof include alcohols such as methanol, ethanol, propanol and butanol,
Ethers such as ethyl cellosolve, methyl cellosolve, butyl cellosolve and propylene glycol methyl ether, ketones such as 2,4-pentanedione and diacetone alcohol, and esters such as ethyl lactate and methyl lactate are preferable.

【0025】また、本発明で用いる併用元素とルテニウ
ムを金属成分とする導電性複合酸化物微粒子を含む塗布
液には、液の粘度、表面張力、広がり性等を調整する点
から、Si(OR)y ・R’4-y (yは3又は4、R及
びR’はアルキル基)等のケイ素化合物を添加できる。
さらに基体との濡れ性を向上させるために種々の界面活
性剤も添加できる。
Further, in the coating liquid containing the combined element used in the present invention and the conductive complex oxide fine particles containing ruthenium as the metal component, Si (OR) is used from the viewpoint of adjusting the viscosity, surface tension, spreadability and the like of the liquid. ) A silicon compound such as y · R ′ 4-y (y is 3 or 4, R and R ′ are alkyl groups) can be added.
Further, various surfactants can be added to improve the wettability with the substrate.

【0026】以上の塗布液は、約0.01〜10重量%
の固形分を含むよう調整することが好ましく、固形分の
含有量が上記範囲の下限未満であると得られる膜の導電
性の点で好ましくなく、一方固形分の含有量が上記範囲
の上限を超えると得られる膜の透光性及び外観の点で好
ましくない。
The above coating solution is approximately 0.01 to 10% by weight.
It is preferable to adjust so that the solid content of the solid content is less than the lower limit of the above range in terms of the conductivity of the obtained film, while the solid content is the upper limit of the above range. When it exceeds the above range, it is not preferable from the viewpoints of translucency and appearance of the obtained film.

【0027】上記のように調整した塗布液を基体上へ塗
布する方法としては、例えばスピンコート法、ディップ
コート法、スプレーコート法等が好適に採用できる。ま
た、スプレーコート法を用いて表面に凹凸を有する導電
膜を形成して、得られる膜に導電性とともに防眩効果を
併せて付与してもよく、またその上にシリカ被膜等のハ
ードコートを設けてもよい。さらには、本発明の導電膜
をスピンコート法又はスプレーコート法のいずれかの方
法で形成し、その上にSiアルコキシドを含む溶液をス
プレーコートして、表面に凹凸を有するシリカ被膜のノ
ングレアコートを設けてもよい。
As a method for applying the coating liquid prepared as described above onto a substrate, for example, a spin coating method, a dip coating method, a spray coating method and the like can be preferably adopted. In addition, a conductive film having irregularities on the surface may be formed by using a spray coating method, and the resulting film may have conductivity as well as an antiglare effect, and a hard coat such as a silica coating may be provided thereon. It may be provided. Further, the conductive film of the present invention is formed by either a spin coating method or a spray coating method, and a solution containing Si alkoxide is spray coated thereon to form a non-glare coating of a silica coating having irregularities on the surface. It may be provided.

【0028】本発明における導電性複合酸化物微粒子ゾ
ルを含む塗布液は、それ自体で基体上への塗布液として
供しうるために、分散媒体として低沸点溶媒を用いた場
合、室温での乾燥で均一な導電性複合酸化物膜が得られ
るが、沸点が100℃〜250℃の中〜高沸点溶媒を用
いる場合は、室温乾燥では溶媒が塗膜中に残留するため
に加熱処理を行う。加熱処理温度の上限は基板に用いら
れるガラス、プラスチック等の軟化点によって決定され
る。この点も考慮すると好ましい加熱処理の温度範囲は
100〜500℃である。
Since the coating solution containing the conductive complex oxide fine particle sol of the present invention can be provided as a coating solution on a substrate by itself, when a low boiling point solvent is used as a dispersion medium, it can be dried at room temperature. Although a uniform conductive complex oxide film can be obtained, when a medium to high boiling point solvent having a boiling point of 100 ° C. to 250 ° C. is used, heat treatment is performed because the solvent remains in the coating film at room temperature drying. The upper limit of the heat treatment temperature is determined by the softening point of glass, plastic, etc. used for the substrate. Considering this point, the preferable temperature range of the heat treatment is 100 to 500 ° C.

【0029】本発明においては、光の干渉作用を利用し
て上記導電膜を低反射性膜となしうる。例えば基体がガ
ラス(屈折率n=1.52)の場合、上記導電膜の上
に、(導電膜の屈折率)/(低屈折率膜の屈折率)の比
の値が約1.23となるような低屈折率膜を形成する
と、導電膜の反射率を最も低減させうる。反射率の低減
には可視光領域において、特に波長555nmの光の反
射率を低減することが好ましいが、実用上は反射外観等
を考慮して適宜決定するのがよい。このような低反射膜
の膜厚は50〜400nm程度が好ましい。
In the present invention, the conductive film can be made into a low reflective film by utilizing the interference effect of light. For example, when the substrate is glass (refractive index n = 1.52), the ratio value of (refractive index of conductive film) / (refractive index of low refractive index film) is about 1.23 on the conductive film. By forming such a low refractive index film, the reflectance of the conductive film can be most reduced. In order to reduce the reflectance, it is preferable to reduce the reflectance of light having a wavelength of 555 nm, particularly in the visible light region, but in practice, it may be appropriately determined in consideration of the reflection appearance and the like. The film thickness of such a low reflection film is preferably about 50 to 400 nm.

【0030】かかる2層からなる低反射導電膜の最外層
の低屈折率膜としては、MgF2 ゾルを含む溶液や、S
iアルコキシドを含む溶液のうちから選ばれる1種以上
からなる溶液を用いて形成する。屈折率の点からは該材
料のうちではMgF2 が最も低く、反射率低減のために
はMgF2 ゾルを含む溶液を用いることが好ましいが、
膜の硬度や耐擦傷性の点ではSiO2 を主成分とする膜
が好ましい。
The outermost low-refractive-index film of the two-layer low-reflection conductive film is a solution containing MgF 2 sol or S.
It is formed by using a solution composed of one or more kinds selected from solutions containing i-alkoxide. From the viewpoint of the refractive index, MgF 2 is the lowest among the materials, and it is preferable to use a solution containing MgF 2 sol to reduce the reflectance.
From the viewpoint of film hardness and scratch resistance, a film containing SiO 2 as a main component is preferable.

【0031】かかる低屈折率膜形成用のSiアルコキシ
ドを含む溶液としては種々のものが使用でき、Si(O
R)y ・R’4-y (yは3又は4、R及びR’はアルキ
ル基)で示されるSiアルコキシド、又はその部分加水
分解物を含む液が挙げられる。例えばシリコンエトキシ
ド、シリコンメトキシド、シリコンイソプロポキシド、
シリコンブトキシド等のモノマー又はそれらの重合体が
好ましく使用できる。
Various solutions can be used as the solution containing the Si alkoxide for forming the low refractive index film.
R) y · R ′ 4-y (y is 3 or 4, R and R ′ are alkyl groups), and a liquid containing a Si alkoxide or a partial hydrolyzate thereof can be mentioned. For example, silicon ethoxide, silicon methoxide, silicon isopropoxide,
Monomers such as silicon butoxide or polymers thereof can be preferably used.

【0032】シリコンアルコキシドは、アルコール、エ
ステル、エーテル等に溶解して用いてもよく、また前記
溶液に塩酸、硝酸、硫酸、酢酸、ギ酸、マレイン酸、フ
ッ酸、又はアンモニア水溶液を添加して加水分解して用
いてもよい。また、前記Siアルコキシドは溶媒に対し
て30重量%以下含まれていることが好ましい。30重
量%を超えると、固形分量が大きいため保存安定性が悪
くなる。
The silicon alkoxide may be used by dissolving it in alcohol, ester, ether or the like, or by adding hydrochloric acid, nitric acid, sulfuric acid, acetic acid, formic acid, maleic acid, hydrofluoric acid, or aqueous ammonia solution to the solution. You may decompose and use it. The Si alkoxide is preferably contained in the solvent in an amount of 30% by weight or less. If it exceeds 30% by weight, the solid content is large and the storage stability becomes poor.

【0033】また、この溶液には膜の強度向上のための
バインダーとして、Zr、Ti、Sn、Al等のアルコ
キシドや、これらの部分加水分解物を添加して、ZrO
2 、TiO2 、SnO2 、Al23 の1種以上、又は
2種以上の複合物をMgF2及び/又はSiO2 と同時
に析出させてもよい。上記溶液又は分散液へのこれらの
アルコキシド等の添加量は、Siアルコキシド及び/又
はMgF2 に対して0.1〜10重量%程度が好まし
い。さらに基体との濡れ性を上げるために界面活性剤を
添加してもよい。添加される界面活性剤としては、直鎖
アルキルベンゼンスルホン酸ナトリウム、アルキルエー
テル硫酸エステル等が挙げられる。
To this solution, an alkoxide of Zr, Ti, Sn, Al or the like or a partial hydrolyzate thereof is added as a binder for improving the strength of the film, and ZrO is added.
One or more kinds of 2 , 2 , TiO 2 , SnO 2 , and Al 2 O 3 or a composite of two or more kinds may be simultaneously precipitated with MgF 2 and / or SiO 2 . The addition amount of these alkoxides and the like to the solution or dispersion is preferably about 0.1 to 10% by weight with respect to the Si alkoxide and / or MgF 2 . Further, a surfactant may be added to improve wettability with the substrate. Examples of the surfactant to be added include linear sodium alkylbenzene sulfonate, alkyl ether sulfate, and the like.

【0034】本発明の低反射導電膜(複層導電膜)の製
造方法は、多層干渉効果による低反射導電膜にも応用で
きる。反射防止性能を有する多層の低反射膜の構成とし
ては、反射防止をしたい光の波長をλとして、基体側よ
り高屈折率層−低屈折率層を光学厚みλ/2−λ/4、
又はλ/4−λ/4で形成した2層の低反射膜、基体側
より中屈折率層−高屈折率層−低屈折率層を光学厚みλ
/4−λ/2−λ/4で形成した3層の低反射膜、基体
側より低屈折率層−中屈折率層−高屈折率層−低屈折率
層を光学厚みλ/2−λ/2−λ/2−λ/4で形成し
た4層の低反射膜等が典型例として知られている。
The method for producing a low-reflection conductive film (multi-layer conductive film) of the present invention can be applied to a low-reflection conductive film due to the multilayer interference effect. The structure of the multilayer low-reflection film having the antireflection property is as follows. The wavelength of the light to be antireflection is λ, and the high refractive index layer-the low refractive index layer has an optical thickness λ / 2-λ / 4 from the substrate side.
Alternatively, a two-layer low-reflection film formed by λ / 4-λ / 4, a medium-refractive-index layer-a high-refractive-index layer-a low-refractive-index layer having an optical thickness λ
3 / 4- [lambda] / 2- [lambda] / 4, three layers of low reflection film, from the side of the substrate: low refractive index layer-medium refractive index layer-high refractive index layer-low refractive index layer with optical thickness [lambda] 2- [lambda]. A four-layer low-reflection film formed of / 2-? / 2-? / 4 is known as a typical example.

【0035】本発明における導電性複合酸化物微粒子に
よる導電膜を形成する基体としては、ブラウン管パネ
ル、複写機用ガラス板、計算機用パネル、クリーンルー
ム用ガラス、CRT又はLCD等の表示装置の前面板等
の各種ガラス、プラスチック基板を用いうる。特に、陰
極線管用のガラス(パネル等)に本発明の導電膜を設け
た場合、充分な電磁波遮蔽効果が得られ、塗膜外観に優
れるため美しい映像が得られるので好ましい。
As the substrate for forming the conductive film by the conductive complex oxide fine particles in the present invention, a cathode ray tube panel, a glass plate for a copying machine, a computer panel, a glass for a clean room, a front plate of a display device such as a CRT or LCD, etc. Various glass and plastic substrates can be used. In particular, when the conductive film of the present invention is provided on the glass (panel or the like) for a cathode ray tube, a sufficient electromagnetic wave shielding effect is obtained and the appearance of the coating film is excellent, so that a beautiful image can be obtained, which is preferable.

【0036】[0036]

【実施例】次に実施例(例1〜例22)及び比較例(例
23、24)を挙げて本発明をさらに具体的に説明する
が、本発明はこれらに限定されない。以下の実施例及び
比較例において得られた膜の評価方法は次の通りであ
る。
EXAMPLES Next, the present invention will be described in more detail with reference to Examples (Examples 1 to 22) and Comparative Examples (Examples 23 and 24), but the present invention is not limited thereto. The evaluation methods of the films obtained in the following examples and comparative examples are as follows.

【0037】(1)導電性評価:ローレスタ抵抗測定器
(三菱油化製)により膜表面の表面抵抗を測定した。
(1) Conductivity evaluation: The surface resistance of the film surface was measured with a Loresta resistance measuring instrument (manufactured by Mitsubishi Yuka).

【0038】(2)耐擦傷性:1kg荷重下で(LIO
N製50−50)で膜表面を50回往復後、その表面の
傷の付きを目視で判断した。評価基準は、○:傷が全く
付かない、△:傷が多少つく、×:一部に膜剥離が生じ
る、とした。
(2) Scratch resistance: Under a load of 1 kg (LIO
After 50 times reciprocating the surface of the membrane with 50-50) manufactured by N, scratches on the surface were visually judged. The evaluation criteria were as follows: が: no scratches were formed, Δ: some scratches were formed, and x: film peeling occurred in part.

【0039】(3)鉛筆硬度:1kg荷重下において、
鉛筆で膜表面を走査しその後目視により表面に傷が生じ
はじめる鉛筆の硬度を膜の鉛筆硬度と判断した。
(3) Pencil hardness: under a load of 1 kg,
The surface of the film was scanned with a pencil, and the pencil hardness at which scratches on the surface began to be visually observed was judged to be the pencil hardness of the film.

【0040】(4)視感反射率:ガンマ分光反射率スペ
クトル測定器により多層膜の400〜700nmでの視
感反射率を測定した。
(4) Luminous reflectance: The luminous reflectance of the multilayer film at 400 to 700 nm was measured with a gamma spectroscopic reflectance spectrophotometer.

【0041】(5)視感透過率:日立製作所製スペクト
ロフォトメータU−3500により380〜780nm
での視感透過率を測定した。また、色座標値より定性的
に透過色調を評価した。
(5) Luminous transmittance: 380 to 780 nm by spectrophotometer U-3500 manufactured by Hitachi Ltd.
The luminous transmittance was measured. Further, the transmission color tone was qualitatively evaluated from the color coordinate values.

【0042】[例1]塩化ルテニウム水溶液と塩化コバ
ルトをRu/Co=9/1モル比となるようにアンモニ
ア水でpH10に調整し、50℃に保持した溶液中に同
時に添加を行い、沈殿を共析出させた。この共沈殿物を
洗浄濾別し、100℃で12時間乾燥後空気中で500
℃で3時間焼成し、Ru−Co複合酸化物微粒子を得
た。この複合酸化物微粒子をサンドミルで2時間粉砕し
た。このときの分散液中の粒子の平均粒径は100nm
であった。その後濃縮し5重量%(固形分)ゾル液を得
た(A液)。
[Example 1] A ruthenium chloride aqueous solution and cobalt chloride were adjusted to pH 10 with aqueous ammonia so that the Ru / Co = 9/1 molar ratio was obtained, and simultaneously added to the solution kept at 50 ° C to precipitate. Co-precipitated. The coprecipitate was washed and filtered, dried at 100 ° C. for 12 hours, and then dried in air at 500
The mixture was baked at 3 ° C for 3 hours to obtain Ru-Co composite oxide fine particles. The composite oxide fine particles were pulverized with a sand mill for 2 hours. The average particle size of the particles in the dispersion liquid at this time is 100 nm.
Met. After that, the solution was concentrated to obtain a 5 wt% (solid content) sol solution (solution A).

【0043】ケイ酸メチルをエタノールに溶かし塩酸酸
性水溶液で加水分解を行い、SiO2 換算で5重量%と
なるようにエタノールで調整した(A2液)。
Methyl silicate was dissolved in ethanol, hydrolyzed with an acidic aqueous solution of hydrochloric acid, and adjusted with ethanol so as to be 5% by weight in terms of SiO 2 (solution A2).

【0044】A液:A2液=8:2(重量比)となるよ
うに混合後、酸化物換算の固形分が1.0重量%かつ溶
媒組成が水:EGMBE(エチレングリコールモノブチ
ルエーテル):NMP(N−メチルピロリドン)=8
0:16:4の重量比となるように希釈した(B液)。
B液を14インチブラウン管(パネル)表面にスピンコ
ート法で塗布し、180℃で30分間加熱しておよそ1
00nm厚の導電膜を得た。
Liquid A: Liquid A2 = 8: 2 (weight ratio), and then the solid content in terms of oxide was 1.0% by weight and the solvent composition was water: EGMBE (ethylene glycol monobutyl ether): NMP. (N-methylpyrrolidone) = 8
It diluted so that it might become a weight ratio of 0: 16: 4 (B liquid).
Liquid B is applied to the surface of a 14-inch cathode ray tube (panel) by spin coating and heated at 180 ° C. for 30 minutes to about 1
A conductive film having a thickness of 00 nm was obtained.

【0045】[例2]ケイ酸エチルをエタノールに溶か
し塩酸酸性水溶液で加水分解を行い、SiO2 換算で5
重量%となるようにエタノールで調整した。この後この
液をエチルセロソルブ:イソプロパノール:ジアセトン
アルコール=5:4:1の重量比の希釈溶媒で1.0重
量%となるように希釈した(C液)。
[Example 2] Ethyl silicate was dissolved in ethanol and hydrolyzed with an acidic aqueous solution of hydrochloric acid to obtain 5 in terms of SiO 2.
It was adjusted with ethanol so that it would be wt%. After this, this liquid was diluted to 1.0 wt% with a diluting solvent having a weight ratio of ethyl cellosolve: isopropanol: diacetone alcohol = 5: 4: 1 (Liquid C).

【0046】例1におけるA液を酸化物換算の固形分が
1.0重量%かつ溶媒組成が水:EGMBE:NMP=
80:16:4の重量比となるように希釈した後、14
インチブラウン管表面にスピンコート法で塗布し、その
後C液を同様なスピンコート法によりその膜上に塗布
し、180℃で10分間加熱しておよそ180nm厚の
低反射導電膜を得た。
Liquid A in Example 1 had a solid content of 1.0% by weight in terms of oxide and a solvent composition of water: EGMBE: NMP =
After diluting to a weight ratio of 80: 16: 4,
It was applied on the surface of an inch Braun tube by a spin coating method, and then the solution C was applied on the film by a similar spin coating method and heated at 180 ° C. for 10 minutes to obtain a low reflection conductive film having a thickness of about 180 nm.

【0047】[例3]塩化ルテニウム水溶液と塩化ニッ
ケルをRu:Ni=9:1モル比となるようにアンモニ
ア水でpH10に調整し、50℃に保持した溶液中に同
時に添加を行い、沈殿を共析出させた。この共沈殿物を
洗浄濾別し、100℃で12時間乾燥後空気中で500
℃で3時間焼成し、Ru−Ni複合酸化物微粒子を得
た。この複合酸化物微粒子をサンドミルで2時間粉砕し
た。このときの分散液中の粒子の平均粒径は105nm
であった。その後濃縮し5重量%(固形分)ゾル液を得
た(D液)。
Example 3 A ruthenium chloride aqueous solution and nickel chloride were adjusted to pH 10 with aqueous ammonia so that the Ru: Ni = 9: 1 molar ratio was obtained, and simultaneously added to the solution kept at 50 ° C. to precipitate. Co-precipitated. The coprecipitate was washed and filtered, dried at 100 ° C. for 12 hours, and then dried in air at 500
The mixture was baked at 3 ° C for 3 hours to obtain Ru-Ni composite oxide fine particles. The composite oxide fine particles were pulverized with a sand mill for 2 hours. The average particle size of the particles in the dispersion liquid at this time is 105 nm.
Met. Then, the solution was concentrated to obtain a 5 wt% (solid content) sol solution (solution D).

【0048】D液を酸化物換算の固形分が1.0重量%
かつ溶媒組成が水:EGMBE:NMP=80:16:
4の重量比となるように希釈した(E液)。E液を14
インチブラウン管表面にスピンコート法で塗布し、その
後C液を同様なスピンコート法によりその膜上に塗布
し、180℃で10分間加熱しておよそ100nm厚の
低反射導電膜を得た。
Liquid D has a solid content in terms of oxide of 1.0% by weight.
And the solvent composition is water: EGMBE: NMP = 80: 16:
It was diluted to give a weight ratio of 4 (solution E). Liquid E 14
It was applied on the surface of an inch cathode ray tube by spin coating, and then C liquid was applied on the film by the same spin coating method, and heated at 180 ° C. for 10 minutes to obtain a low reflection conductive film having a thickness of about 100 nm.

【0049】[例4]塩化ルテニウム水溶液と塩化鉄を
Ru:Fe=9:1モル比となるようにアンモニア水で
pH10に調整し、50℃に保持した溶液中に同時に添
加を行い、沈殿を共析出させた。この共沈殿物を洗浄濾
別し、100℃で12時間乾燥後空気中で500℃で3
時間焼成し、Ru−Fe複合酸化物微粒子を得た。この
複合酸化物微粒子をサンドミルで2時間粉砕した。この
ときの分散液中の粒子の平均粒径は120nmであっ
た。その後濃縮し5重量%(固形分)ゾル液を得た(F
液)。
Example 4 A ruthenium chloride aqueous solution and iron chloride were adjusted to pH 10 with aqueous ammonia so that the Ru: Fe = 9: 1 molar ratio was obtained, and simultaneously added to the solution kept at 50 ° C. to precipitate. Co-precipitated. The coprecipitate was washed and filtered, dried at 100 ° C for 12 hours, and then dried in air at 500 ° C for 3 hours.
Firing was carried out for a period of time to obtain Ru-Fe composite oxide fine particles. The composite oxide fine particles were pulverized with a sand mill for 2 hours. The average particle size of the particles in the dispersion liquid at this time was 120 nm. Then, the solution was concentrated to obtain a 5 wt% (solid content) sol liquid (F
liquid).

【0050】F液を酸化物換算の固形分が1.0重量%
かつ溶媒組成が水:EGMBE:NMP=80:16:
4の重量比となるように希釈した(G液)。G液を14
インチブラウン管表面にスピンコート法で塗布し、その
後C液を同様なスピンコート法によりその膜上に塗布
し、180℃で10分間加熱しておよそ200nm厚の
低反射導電膜を得た。
Liquid F has a solid content of 1.0% by weight in terms of oxide.
And the solvent composition is water: EGMBE: NMP = 80: 16:
It diluted so that it might become the weight ratio of 4 (G liquid). G liquid 14
The solution was applied to the surface of an inch CRT by spin coating, and then the solution C was applied on the film by the same spin coating, and heated at 180 ° C. for 10 minutes to obtain a low-reflection conductive film having a thickness of about 200 nm.

【0051】[例5]塩化ルテニウム水溶液と塩化亜鉛
をRu:Zn=9:1モル比となるようにアンモニア水
でpH10に調整し、50℃に保持した溶液中に同時に
添加を行い、沈殿を共析出させた。この共沈殿物を洗浄
濾別し、100℃で12時間乾燥後空気中で500℃で
3時間焼成し、Ru−Zn複合酸化物微粒子を得た。こ
の複合酸化物微粒子をサンドミルで2時間粉砕した。こ
のときの分散液中の粒子の平均粒径は130nmであっ
た。その後濃縮し5重量%(固形分)ゾル液を得た(H
液)。H液を酸化物換算の固形分が1.0重量%かつ溶
媒組成が水:EGMBE:NMP=80:16:4の重
量比となるように希釈した(I液)。
[Example 5] A ruthenium chloride aqueous solution and zinc chloride were adjusted to pH 10 with aqueous ammonia so that the Ru: Zn = 9: 1 molar ratio was obtained, and simultaneously added to the solution kept at 50 ° C to precipitate. Co-precipitated. The coprecipitate was washed and filtered, dried at 100 ° C. for 12 hours, and then calcined in air at 500 ° C. for 3 hours to obtain Ru—Zn composite oxide fine particles. The composite oxide fine particles were pulverized with a sand mill for 2 hours. The average particle size of the particles in the dispersion liquid at this time was 130 nm. After that, the solution was concentrated to obtain a 5 wt% (solid content) sol liquid (H
liquid). The solution H was diluted so that the solid content in terms of oxide was 1.0% by weight and the solvent composition was water: EGMBE: NMP = 80: 16: 4 by weight (solution I).

【0052】I液を14インチブラウン管表面にスピン
コート法で塗布しその後C液を同様なスピンコート法に
よりその膜上に塗布し、180℃で10分間加熱してお
よそ210nm厚の低反射導電膜を得た。
Solution I is applied to the surface of a 14-inch cathode ray tube by spin coating, and then solution C is applied on the film by the same spin coating method, and heated at 180 ° C. for 10 minutes to form a low-reflection conductive film having a thickness of about 210 nm. Got

【0053】[例6]塩化ルテニウム水溶液と塩化クロ
ムをRu:Cr=9:1モル比となるようにアンモニア
水でpH10に調整し、50℃に保持した溶液中に同時
に添加を行い、沈殿を共析出させた。この共沈殿物を洗
浄濾別し、100℃で12時間乾燥後空気中で500℃
で3時間焼成し、Ru−Cr複合酸化物微粒子を得た。
この複合酸化物微粒子をサンドミルで2時間粉砕した。
このときの分散液中の粒子の平均粒径は115nmであ
った。その後濃縮し5重量%(固形分)ゾル液を得た
(J液)。
Example 6 A ruthenium chloride aqueous solution and chromium chloride were adjusted to pH 10 with aqueous ammonia so that the Ru: Cr = 9: 1 molar ratio was obtained, and simultaneously added to the solution kept at 50 ° C. to precipitate. Co-precipitated. The coprecipitate was washed and filtered, dried at 100 ° C for 12 hours, and then dried in air at 500 ° C.
And baked for 3 hours to obtain Ru-Cr composite oxide fine particles.
The composite oxide fine particles were pulverized with a sand mill for 2 hours.
The average particle size of the particles in the dispersion liquid at this time was 115 nm. Then, the solution was concentrated to obtain a 5 wt% (solid content) sol solution (solution J).

【0054】J液を酸化物換算の固形分が1.0重量%
かつ溶媒組成が水:EGMBE:NMP=80:16:
4の重量比となるように希釈した(K液)。K液を14
インチブラウン管表面にスピンコート法で塗布し、その
後C液を同様なスピンコート法によりその膜上に塗布
し、180℃で10分間加熱しておよそ190nm厚の
低反射導電膜を得た。
Liquid J has a solid content of 1.0% by weight in terms of oxide.
And the solvent composition is water: EGMBE: NMP = 80: 16:
It diluted so that it might become the weight ratio of 4 (K liquid). K liquid 14
The solution was applied on the surface of an inch CRT by spin coating, and then the solution C was applied on the film by the same spin coating and heated at 180 ° C. for 10 minutes to obtain a low-reflection conductive film having a thickness of about 190 nm.

【0055】[例7]塩化ルテニウム水溶液と塩化マン
ガンをRu:Mn=9:1モル比となるようにアンモニ
ア水でpH10に調整し、50℃に保持した溶液中に同
時に添加を行い、沈殿を共析出させた。この共沈殿物を
洗浄濾別し、100℃で12時間乾燥後空気中で500
℃で3時間焼成し、Ru−Mn複合酸化物微粒子を得
た。この複合酸化物微粒子をサンドミルで2時間粉砕し
た。このときの分散液中の粒子の平均粒径は100nm
であった。その後濃縮し5重量%(固形分)ゾル液を得
た(L液)。
Example 7 A ruthenium chloride aqueous solution and manganese chloride were adjusted to pH 10 with aqueous ammonia so that the Ru: Mn = 9: 1 molar ratio was obtained, and simultaneously added to the solution kept at 50 ° C. to precipitate. Co-precipitated. The coprecipitate was washed and filtered, dried at 100 ° C. for 12 hours, and then dried in air at 500
The mixture was baked at 3 ° C for 3 hours to obtain Ru-Mn composite oxide fine particles. The composite oxide fine particles were pulverized with a sand mill for 2 hours. The average particle size of the particles in the dispersion liquid at this time is 100 nm.
Met. Then, the solution was concentrated to obtain a 5 wt% (solid content) sol liquid (liquid L).

【0056】L液を酸化物換算の固形分が1.0重量%
かつ溶媒組成が水:EGMBE:NMP=80:16:
4の重量比となるように希釈した(M液)。
Liquid L has a solid content in terms of oxide of 1.0% by weight.
And the solvent composition is water: EGMBE: NMP = 80: 16:
It diluted so that it might become the weight ratio of 4 (M liquid).

【0057】M液を14インチブラウン管表面にスピン
コート法で塗布し、その後C液を同様なスピンコート法
によりその膜上に塗布し、180℃で10分間加熱して
およそ220nm厚の低反射導電膜を得た。
The solution M was applied to the surface of a 14-inch cathode ray tube by spin coating, and then the solution C was applied on the film by the same spin coating method, and heated at 180 ° C. for 10 minutes to obtain a low reflection conductive film having a thickness of about 220 nm. A film was obtained.

【0058】[例8]塩化ルテニウム水溶液と塩化銅を
Ru/Cu=9/1モル比となるようにアンモニア水で
pH10に調整し、50℃に保持した溶液中に同時に添
加を行い、沈殿を共析出させた。この共沈殿物を洗浄濾
別し、100℃で12時間乾燥後空気中で500℃で3
時間焼成し、Ru−Cu複合酸化物微粒子を得た。この
複合酸化物微粒子をサンドミルで2時間粉砕した。この
ときの分散液中の粒子の平均粒径は125nmであっ
た。その後濃縮し5重量%(固形分)ゾル液を得た(N
液)。
[Example 8] A ruthenium chloride aqueous solution and copper chloride were adjusted to pH 10 with aqueous ammonia so that the Ru / Cu = 9/1 molar ratio was obtained, and simultaneously added to the solution kept at 50 ° C to precipitate. Co-precipitated. The coprecipitate was washed and filtered, dried at 100 ° C for 12 hours, and then dried in air at 500 ° C for 3 hours.
Firing was performed for a period of time to obtain Ru-Cu composite oxide fine particles. The composite oxide fine particles were pulverized with a sand mill for 2 hours. The average particle size of the particles in the dispersion liquid at this time was 125 nm. Then, the solution was concentrated to obtain a 5 wt% (solid content) sol liquid (N
liquid).

【0059】N液を酸化物換算の固形分が1.0重量%
かつ溶媒組成が水:EGMBE:NMP=80:16:
4の重量比となるように希釈した(O液)。
Liquid N has a solid content of 1.0% by weight in terms of oxide.
And the solvent composition is water: EGMBE: NMP = 80: 16:
It diluted so that it might become the weight ratio of 4 (O liquid).

【0060】O液を14インチブラウン管表面にスピン
コート法で塗布し、その後C液を同様なスピンコート法
によりその膜上に塗布し、180℃で10分間加熱しお
よそ180nm厚の低反射導電膜を得た。
Liquid O was applied on the surface of a 14-inch cathode ray tube by spin coating, and then liquid C was applied on the film by the same spin coating method, and heated at 180 ° C. for 10 minutes, and a low-reflection conductive film having a thickness of about 180 nm was applied. Got

【0061】[例9]塩化ルテニウム水溶液と塩化ラン
タンをRu:La=9:1モル比となるようにアンモニ
ア水でpH9.5に調整し60℃に保持した溶液中に同
時に添加を行い、沈殿を共析出させた。この共沈殿物を
洗浄濾別し、100℃で8時間乾燥後空気中で500℃
で3時間焼成し、Ru−La複合酸化物微粒子を得た。
この複合酸化物微粒子をサンドミルで3時間粉砕した。
このときの分散液中の粒子の平均粒径は105nmであ
った。その後濃縮し5重量%(固形分)ゾル液を得た
(P液)。
Example 9 A ruthenium chloride aqueous solution and lanthanum chloride were adjusted to pH 9.5 with aqueous ammonia so that the Ru: La = 9: 1 molar ratio was obtained, and added simultaneously to the solution kept at 60 ° C. Was co-precipitated. The coprecipitate was washed and filtered, dried at 100 ° C for 8 hours, and then dried in air at 500 ° C.
And baked for 3 hours to obtain Ru-La composite oxide fine particles.
The composite oxide fine particles were pulverized with a sand mill for 3 hours.
The average particle size of the particles in the dispersion liquid at this time was 105 nm. Then, the mixture was concentrated to obtain a 5 wt% (solid content) sol liquid (P liquid).

【0062】P液を酸化物換算の固形分が1.2重量%
かつ溶媒組成が水:EGMBE:NMP=80:16:
4の重量比となるように希釈し、14インチブラウン管
表面にスピンコート法で塗布し、その後C液を同様なス
ピンコート法によりその膜上に塗布し、180℃で10
分間加熱しておよそ230nm厚の低反射導電膜を得
た。
The liquid P has a solid content of 1.2% by weight in terms of oxide.
And the solvent composition is water: EGMBE: NMP = 80: 16:
It was diluted so as to have a weight ratio of 4 and applied on the surface of a 14-inch cathode ray tube by spin coating, and then liquid C was applied on the film by the same spin coating method, and the solution was applied at 180 ° C. for 10 minutes.
After heating for a minute, a low reflective conductive film having a thickness of about 230 nm was obtained.

【0063】[例10]塩化ルテニウム水溶液と塩化第
一セリウムをRu:Ce=8:2モル比となるようにア
ンモニア水でpH10.5に調整し60℃に保持した溶
液中に同時に添加を行い、沈殿を共析出させた。この共
沈殿物を洗浄濾別し、100℃で8時間乾燥後空気中で
550℃で3時間焼成し、Ru−Ce複合酸化物微粒子
を得た。この複合酸化物微粒子をサンドミルで1時間粉
砕した。このときの分散液中の粒子の平均粒径は95n
mであった。その後濃縮し5重量%(固形分)ゾル液を
得た(Q液)。
Example 10 An aqueous solution of ruthenium chloride and cerium chloride were adjusted to pH 10.5 with aqueous ammonia so that the molar ratio of Ru: Ce was 8: 2, and added simultaneously to a solution kept at 60 ° C. , The precipitate was co-precipitated. The coprecipitate was washed and filtered, dried at 100 ° C. for 8 hours, and then calcined in air at 550 ° C. for 3 hours to obtain Ru—Ce composite oxide fine particles. The composite oxide fine particles were pulverized with a sand mill for 1 hour. The average particle diameter of the particles in the dispersion liquid at this time is 95 n.
m. After that, the solution was concentrated to obtain a 5 wt% (solid content) sol solution (solution Q).

【0064】Q液を酸化物換算の固形分が1.1重量%
かつ溶媒組成が水:EGMBE:NMP=80:16:
4の重量比となるように希釈し、14インチブラウン管
表面にスピンコート法で塗布し、その後C液を同様なス
ピンコート法によりその膜上に塗布し、180℃で10
分間加熱しておよそ190nm厚の低反射導電膜を得
た。
Liquid Q has a solid content of 1.1% by weight in terms of oxide.
And the solvent composition is water: EGMBE: NMP = 80: 16:
It was diluted so as to have a weight ratio of 4 and applied on the surface of a 14-inch cathode ray tube by spin coating, and then liquid C was applied on the film by the same spin coating method, and the solution was applied at 180 ° C. for 10 minutes.
After heating for a minute, a low reflective conductive film having a thickness of about 190 nm was obtained.

【0065】[例11]塩化ルテニウム水溶液と塩化プ
ラセオジムをRu:Pr=9:1モル比となるようにア
ンモニア水でpH8.5に調整し60℃に保持した溶液
中に同時に添加を行い、沈殿を共析出させた。この共沈
殿物を洗浄濾別し、100℃で8時間乾燥後空気中で4
80℃で3時間焼成し、Ru−Pr複合酸化物微粒子を
得た。この複合酸化物微粒子をサンドミルで2.5時間
粉砕した。このときの分散液中の粒子の平均粒径は89
nmであった。その後濃縮し5重量%(固形分)ゾル液
を得た(R液)。
[Example 11] An aqueous solution of ruthenium chloride and praseodymium chloride was adjusted to pH 8.5 with aqueous ammonia so that the molar ratio of Ru: Pr was 9: 1, and the mixture was added at the same time to a solution kept at 60 ° C to cause precipitation. Was co-precipitated. The coprecipitate was washed and filtered, dried at 100 ° C. for 8 hours, and then dried in air 4
It was baked at 80 ° C. for 3 hours to obtain Ru—Pr composite oxide fine particles. The composite oxide fine particles were pulverized with a sand mill for 2.5 hours. At this time, the average particle size of the particles in the dispersion is 89.
was nm. Then, the solution was concentrated to obtain a 5 wt% (solid content) sol liquid (R liquid).

【0066】R液を酸化物換算の固形分が1.1重量%
かつ溶媒組成が水:EGMBE:NMP=80:16:
4の重量比となるように希釈し、14インチブラウン管
表面にスピンコート法で塗布し、その後C液を同様なス
ピンコート法によりその膜上に塗布し、180℃で10
分間加熱しておよそ180nm厚の低反射導電膜を得
た。
Liquid R has a solid content of 1.1% by weight in terms of oxide.
And the solvent composition is water: EGMBE: NMP = 80: 16:
It was diluted so as to have a weight ratio of 4 and applied on the surface of a 14-inch cathode ray tube by spin coating, and then liquid C was applied on the film by the same spin coating method, and the solution was applied at 180 ° C. for 10 minutes.
After heating for a minute, a low reflective conductive film having a thickness of about 180 nm was obtained.

【0067】[例12]塩化ルテニウム水溶液と塩化ネ
オジムをRu:Nd=9:1モル比となるようにアンモ
ニア水でpH10.5に調整し70℃に保持した溶液中
に同時に添加を行い、沈殿を共析出させた。この共沈殿
物を洗浄濾別し、100℃で8時間乾燥後空気中で50
0℃で3時間焼成し、Ru−Nd複合酸化物微粒子を得
た。この複合酸化物微粒子をサンドミルで3.0時間粉
砕した。このときの分散液中の粒子の平均粒径は109
nmであった。その後濃縮し5重量%(固形分)ゾル液
を得た(S液)。
[Example 12] A ruthenium chloride aqueous solution and neodymium chloride were adjusted to pH 10.5 with aqueous ammonia so that the Ru: Nd = 9: 1 molar ratio was obtained, and simultaneously added to a solution kept at 70 ° C to precipitate the solution. Was co-precipitated. The coprecipitate was washed and filtered, dried at 100 ° C. for 8 hours, and then dried in air at 50
The mixture was baked at 0 ° C for 3 hours to obtain Ru-Nd composite oxide fine particles. The composite oxide fine particles were pulverized with a sand mill for 3.0 hours. At this time, the average particle size of the particles in the dispersion is 109
was nm. Then, the solution was concentrated to obtain a 5 wt% (solid content) sol solution (S solution).

【0068】S液を酸化物換算の固形分が1.1重量%
かつ溶媒組成が水:EGMBE:NMP=80:16:
4の重量比となるように希釈し、14インチブラウン管
表面にスピンコート法で塗布し、その後C液を同様なス
ピンコート法によりその膜上に塗布し、180℃で10
分間加熱しておよそ220nm厚の低反射導電膜を得
た。
The liquid S has a solid content of 1.1% by weight in terms of oxide.
And the solvent composition is water: EGMBE: NMP = 80: 16:
It was diluted so as to have a weight ratio of 4 and applied on the surface of a 14-inch cathode ray tube by spin coating, and then liquid C was applied on the film by the same spin coating method, and the solution was applied at 180 ° C. for 10 minutes.
After heating for a minute, a low reflective conductive film having a thickness of about 220 nm was obtained.

【0069】[例13]塩化ルテニウム水溶液と塩化サ
マリウムをRu:Sm=9:1モル比となるようにアン
モニア水でpH9.5に調整し65℃に保持した溶液中
に同時に添加を行い、沈殿を共析出させた。この共沈殿
物を洗浄濾別し、100℃で8時間乾燥後空気中で50
0℃で5時間焼成し、Ru−Sm複合酸化物微粒子を得
た。この複合酸化物微粒子をサンドミルで2.5時間粉
砕した。このときの分散液中の粒子の平均粒径は119
nmであった。その後濃縮し5重量%(固形分)ゾル液
を得た(T液)。
Example 13 A ruthenium chloride aqueous solution and samarium chloride were adjusted to pH 9.5 with aqueous ammonia so that the Ru: Sm = 9: 1 molar ratio was obtained, and added simultaneously to a solution kept at 65 ° C. Was co-precipitated. The coprecipitate was washed and filtered, dried at 100 ° C. for 8 hours, and then dried in air at 50
The mixture was baked at 0 ° C for 5 hours to obtain Ru-Sm composite oxide fine particles. The composite oxide fine particles were pulverized with a sand mill for 2.5 hours. The average particle size of the particles in the dispersion at this time was 119
was nm. Then, the solution was concentrated to obtain a 5 wt% (solid content) sol solution (solution T).

【0070】T液を酸化物換算の固形分が1.3重量%
かつ溶媒組成が水:EGMBE:NMP=80:16:
4の重量比となるように希釈し、14インチブラウン管
表面にスピンコート法で塗布し、その後C液を同様なス
ピンコート法によりその膜上に塗布し、180℃で10
分間加熱しておよそ230nm厚の低反射導電膜を得
た。
The liquid T has a solid content of 1.3% by weight in terms of oxide.
And the solvent composition is water: EGMBE: NMP = 80: 16:
It was diluted so as to have a weight ratio of 4 and applied on the surface of a 14-inch cathode ray tube by spin coating, and then liquid C was applied on the film by the same spin coating method, and the solution was applied at 180 ° C. for 10 minutes.
After heating for a minute, a low reflective conductive film having a thickness of about 230 nm was obtained.

【0071】[例14]塩化ルテニウム水溶液と塩化ユ
ーロピウムをRu:Eu=8:2モル比となるようにア
ンモニア水でpH10に調整し60℃に保持した溶液中
に同時に添加を行い、沈殿を共析出させた。この共沈殿
物を洗浄濾別し、100℃で8時間乾燥後空気中で50
0℃で2.5時間焼成し、Ru−Eu複合酸化物微粒子
を得た。この複合酸化物微粒子をサンドミルで2.5時
間粉砕した。このときの分散液中の粒子の平均粒径は1
19nmであった。その後濃縮し5重量%(固形分)ゾ
ル液を得た(U液)。
Example 14 A ruthenium chloride aqueous solution and europium chloride were adjusted to pH 10 with aqueous ammonia so that the Ru: Eu = 8: 2 molar ratio was obtained, and the mixture was added at the same time to a solution kept at 60 ° C. to precipitate the precipitate. It was deposited. The coprecipitate was washed and filtered, dried at 100 ° C. for 8 hours, and then dried in air at 50
The mixture was baked at 0 ° C for 2.5 hours to obtain Ru-Eu composite oxide fine particles. The composite oxide fine particles were pulverized with a sand mill for 2.5 hours. At this time, the average particle size of the particles in the dispersion is 1
It was 19 nm. Then, the solution was concentrated to obtain a 5 wt% (solid content) sol solution (solution U).

【0072】U液を酸化物換算の固形分が1.1重量%
かつ溶媒組成が水:EGMBE:NMP=80:16:
4の重量比となるように希釈し、14インチブラウン管
表面にスピンコート法で塗布し、その後C液を同様なス
ピンコート法によりその膜上に塗布し、180℃で10
分間加熱しておよそ190nm厚の低反射導電膜を得
た。
The liquid U has a solid content of 1.1% by weight in terms of oxide.
And the solvent composition is water: EGMBE: NMP = 80: 16:
It was diluted so as to have a weight ratio of 4 and applied on the surface of a 14-inch cathode ray tube by spin coating, and then liquid C was applied on the film by the same spin coating method, and the solution was applied at 180 ° C. for 10 minutes.
After heating for a minute, a low reflective conductive film having a thickness of about 190 nm was obtained.

【0073】[例15]塩化ルテニウム水溶液と塩化ガ
ドリニウムをRu:Gd=8:2モル比となるようにア
ンモニア水でpH9に調整し60℃に保持した溶液中に
同時に添加を行い、沈殿を共析出させた。この共沈殿物
を洗浄濾別し、100℃で8時間乾燥後空気中で500
℃で3.5時間焼成し、Ru−Eu複合酸化物微粒子を
得た。この複合酸化物微粒子をサンドミルで2.5時間
粉砕した。このときの分散液中の粒子の平均粒径は11
9nmであった。その後濃縮し5重量%(固形分)ゾル
液を得た(V液)。
Example 15 An aqueous solution of ruthenium chloride and gadolinium chloride were adjusted to pH 9 with ammonia water so that the molar ratio of Ru: Gd was 8: 2 and added simultaneously to a solution kept at 60 ° C. to precipitate the precipitate. It was deposited. This coprecipitate was washed and filtered, dried at 100 ° C. for 8 hours, and then dried in air at 500
Firing at 3.5 ° C. for 3.5 hours gave Ru—Eu composite oxide fine particles. The composite oxide fine particles were pulverized with a sand mill for 2.5 hours. At this time, the average particle size of the particles in the dispersion is 11
It was 9 nm. Then, the solution was concentrated to obtain a 5 wt% (solid content) sol solution (solution V).

【0074】V液を酸化物換算の固形分が1.0重量%
かつ溶媒組成が水:EGMBE:NMP=80:16:
4の重量比となるように希釈し、14インチブラウン管
表面にスピンコート法で塗布し、その後C液を同様なス
ピンコート法によりその膜上に塗布し、180℃で10
分間加熱しておよそ180nm厚の低反射導電膜を得
た。
Liquid V has a solid content of 1.0% by weight in terms of oxide.
And the solvent composition is water: EGMBE: NMP = 80: 16:
It was diluted so as to have a weight ratio of 4 and applied on the surface of a 14-inch cathode ray tube by spin coating, and then liquid C was applied on the film by the same spin coating method, and the solution was applied at 180 ° C. for 10 minutes.
After heating for a minute, a low reflective conductive film having a thickness of about 180 nm was obtained.

【0075】[例16]塩化ルテニウム水溶液と塩化ジ
スプロシウムをRu:Dy=8:2モル比となるように
アンモニア水でpH9.5に調整し、50℃に保持した
溶液中に同時に添加を行い、沈殿を共析出させた。この
共沈殿物を洗浄濾別し、100℃で8時間乾燥後空気中
で500℃で2時間焼成し、Ru−Dy複合酸化物微粒
子を得た。この複合酸化物微粒子をサンドミルで3.5
時間粉砕した。このときの分散液中の粒子の平均粒径は
98nmであった。その後濃縮し5重量%(固形分)ゾ
ル液を得た(X液)。
Example 16 Aqueous ruthenium chloride and dysprosium chloride were adjusted to pH 9.5 with aqueous ammonia so that the Ru: Dy = 8: 2 molar ratio was obtained, and added simultaneously to the solution kept at 50 ° C. The precipitate was co-precipitated. This coprecipitate was washed and filtered, dried at 100 ° C. for 8 hours, and then calcined in air at 500 ° C. for 2 hours to obtain Ru-Dy composite oxide fine particles. The composite oxide fine particles are 3.5 in a sand mill.
Crushed for hours. The average particle size of the particles in the dispersion liquid at this time was 98 nm. Then, the mixture was concentrated to obtain a 5 wt% (solid content) sol liquid (liquid X).

【0076】X液を酸化物換算の固形分が1.0重量%
かつ溶媒組成が水:EGMBE:NMP=80:16:
4の重量比となるように希釈し、14インチブラウン管
表面にスピンコート法で塗布し、その後C液を同様なス
ピンコート法によりその膜上に塗布し、180℃で10
分間加熱しておよそ180nm厚の低反射導電膜を得
た。
Liquid X has a solid content in terms of oxide of 1.0% by weight.
And the solvent composition is water: EGMBE: NMP = 80: 16:
It was diluted so as to have a weight ratio of 4 and applied on the surface of a 14-inch cathode ray tube by spin coating, and then liquid C was applied on the film by the same spin coating method, and the solution was applied at 180 ° C. for 10 minutes.
After heating for a minute, a low reflective conductive film having a thickness of about 180 nm was obtained.

【0077】[例17]塩化ルテニウム水溶液と塩化ホ
ルミウムをRu:Ho=9:1モル比となるようにアン
モニア水でpH10.5に調整し70℃に保持した溶液
中に同時に添加を行い、沈殿を共析出させた。この共沈
殿物を洗浄濾別し、100℃で8時間乾燥後空気中で5
00℃で3時間焼成し、Ru−Ho複合酸化物微粒子を
得た。この複合酸化物微粒子をサンドミルで4時間粉砕
した。このときの分散液中の粒子の平均粒径は112n
mであった。その後濃縮し5重量%(固形分)ゾル液を
得た。
[Example 17] A ruthenium chloride aqueous solution and holmium chloride were adjusted to pH 10.5 with aqueous ammonia so that the molar ratio of Ru: Ho was 9: 1, and added simultaneously to a solution kept at 70 ° C to precipitate. Was co-precipitated. The coprecipitate was washed and filtered, dried at 100 ° C. for 8 hours, and then dried in air at 5 ° C.
The mixture was baked at 00 ° C for 3 hours to obtain Ru-Ho composite oxide fine particles. The composite oxide fine particles were pulverized with a sand mill for 4 hours. At this time, the average particle diameter of the particles in the dispersion is 112 n.
m. Then, the solution was concentrated to obtain a 5 wt% (solid content) sol liquid.

【0078】この液を酸化物換算の固形分が1.3重量
%かつ溶媒組成が水:EGMBE:NMP=80:1
6:4の重量比となるように希釈し、14インチブラウ
ン管表面にスピンコート法で塗布し、その後C液を同様
なスピンコート法によりその膜上に塗布し、180℃で
10分間加熱しておよそ220nm厚の低反射導電膜を
得た。
This liquid had a solid content of oxide of 1.3% by weight and a solvent composition of water: EGMBE: NMP = 80: 1.
It was diluted so as to have a weight ratio of 6: 4, and was applied to the surface of a 14-inch cathode ray tube by spin coating, then liquid C was applied on the film by the same spin coating method, and heated at 180 ° C. for 10 minutes. A low-reflection conductive film having a thickness of about 220 nm was obtained.

【0079】[例18]塩化ルテニウム水溶液と塩化エ
ルビウムをRu:Er=9:1モル比となるようにアン
モニア水でpH11に調整し60℃に保持した溶液中に
同時に添加を行い、沈殿を共析出させた。この共沈殿物
を洗浄濾別し、100℃で8時間乾燥後空気中で500
℃で2.5時間焼成し、Ru−Er複合酸化物微粒子を
得た。この複合酸化物微粒子をサンドミルで4時間粉砕
した。このときの分散液中の粒子の平均粒径は95nm
であった。その後濃縮し5重量%(固形分)ゾル液を得
た。
Example 18 An aqueous solution of ruthenium chloride and erbium chloride were adjusted to pH 11 with aqueous ammonia so that the molar ratio of Ru: Er was 9: 1 and added simultaneously to a solution kept at 60 ° C. to precipitate the precipitate. It was deposited. This coprecipitate was washed and filtered, dried at 100 ° C. for 8 hours, and then dried in air at 500
Firing at 2.5 ° C. for 2.5 hours gave Ru—Er composite oxide fine particles. The composite oxide fine particles were pulverized with a sand mill for 4 hours. The average particle size of the particles in the dispersion liquid at this time is 95 nm.
Met. Then, the solution was concentrated to obtain a 5 wt% (solid content) sol liquid.

【0080】この液を酸化物換算の固形分が1.2重量
%かつ溶媒組成が水:EGMBE:NMP=80:1
6:4の重量比となるように希釈し、14インチブラウ
ン管表面にスピンコート法で塗布し、その後C液を同様
なスピンコート法によりその膜上に塗布し、180℃で
10分間加熱しておよそ180nm厚の低反射導電膜を
得た。
This liquid has a solid content of 1.2% by weight in terms of oxide and a solvent composition of water: EGMBE: NMP = 80: 1.
It was diluted so as to have a weight ratio of 6: 4, and was applied to the surface of a 14-inch cathode ray tube by spin coating, then liquid C was applied on the film by the same spin coating method, and heated at 180 ° C. for 10 minutes. A low reflective conductive film having a thickness of about 180 nm was obtained.

【0081】[例19]塩化ルテニウム水溶液と塩化ツ
リウムをRu:Tm=9:1モル比となるようにアンモ
ニア水でpH8.5に調整し60℃に保持した溶液中に
同時に添加を行い、沈殿を共析出させた。この共沈殿物
を洗浄濾別し、100℃で8時間乾燥後空気中で500
℃で3時間焼成し、Ru−Tm複合酸化物微粒子を得
た。この複合酸化物微粒子をサンドミルで4時間粉砕し
た。このときの分散液中の粒子の平均粒径は125nm
であった。その後濃縮し5重量%(固形分)ゾル液を得
た。
Example 19 An aqueous solution of ruthenium chloride and thulium chloride were adjusted to pH 8.5 with ammonia water so that the molar ratio of Ru: Tm was 9: 1 and added simultaneously to a solution kept at 60 ° C. to cause precipitation. Was co-precipitated. This coprecipitate was washed and filtered, dried at 100 ° C. for 8 hours, and then dried in air at 500
The mixture was baked at 3 ° C for 3 hours to obtain Ru-Tm composite oxide fine particles. The composite oxide fine particles were pulverized with a sand mill for 4 hours. The average particle size of the particles in the dispersion liquid at this time is 125 nm.
Met. Then, the solution was concentrated to obtain a 5 wt% (solid content) sol liquid.

【0082】この液を酸化物換算の固形分が1.1重量
%かつ溶媒組成が水:EGMBE:NMP=80:1
6:4の重量比となるように希釈し、14インチブラウ
ン管表面にスピンコート法で塗布し、その後C液を同様
なスピンコート法によりその膜上に塗布し、180℃で
10分間加熱しておよそ220nm厚の低反射導電膜を
得た。
This liquid had a solid content in terms of oxide of 1.1% by weight and a solvent composition of water: EGMBE: NMP = 80: 1.
It was diluted so as to have a weight ratio of 6: 4, and was applied to the surface of a 14-inch cathode ray tube by spin coating, then liquid C was applied on the film by the same spin coating method, and heated at 180 ° C. for 10 minutes. A low-reflection conductive film having a thickness of about 220 nm was obtained.

【0083】[例20]エタノール50gに水を3g添
加し、さらにMgCl2 を0.05モル、BF3 ・C2
5 OHを0.033モル加え完全に溶解させた後、還
流冷却器つきフラスコに入れ、85℃で1時間反応させ
MgF2 ゾルを得た。このゾルをフッ化物換算固形分量
で5%となるように、エタノールで希釈し、SiO2
MgF2=6:4となるようにA2液と混合し、さらに
エチルセロソルブ:イソプロパノール:ジアセトンアル
コール=5:4:1の重量比の希釈溶媒で1.0%とな
るように希釈した(Y液)。
[0083] [Example 20] was added to ethanol 50g water 3g, further MgCl 2 0.05 mol, BF 3 · C 2
After 0.033 mol of H 5 OH was added and completely dissolved, the mixture was placed in a flask equipped with a reflux condenser and reacted at 85 ° C. for 1 hour to obtain a MgF 2 sol. This sol was diluted with ethanol so that the solid content in terms of fluoride was 5%, and SiO 2 :
It was mixed with the A2 solution so that MgF 2 = 6: 4, and further diluted with a diluting solvent having a weight ratio of ethyl cellosolve: isopropanol: diacetone alcohol = 5: 4: 1 to 1.0% (Y liquid).

【0084】塩化ルテニウム水溶液と塩化ルテチウムを
Ru:Lu=9:1モル比となるようにアンモニア水で
pH10に調整し70℃に保持した溶液中に同時に添加
を行い、沈殿を共析出させた。この共沈殿物を洗浄濾別
し、100℃で8時間乾燥後空気中で500℃で4時間
焼成し、Ru−Lu複合酸化物微粒子を得た。この複合
酸化物微粒子をサンドミルで4時間粉砕した。このとき
の分散液中の粒子の平均粒径は106nmであった。そ
の後濃縮し5重量%(固形分)ゾル液を得た。
A ruthenium chloride aqueous solution and lutetium chloride were adjusted to pH 10 with aqueous ammonia so that the Ru: Lu = 9: 1 molar ratio was obtained, and simultaneously added to a solution kept at 70 ° C. to coprecipitate a precipitate. The coprecipitate was washed and filtered, dried at 100 ° C. for 8 hours, and then calcined in air at 500 ° C. for 4 hours to obtain Ru—Lu composite oxide fine particles. The composite oxide fine particles were pulverized with a sand mill for 4 hours. The average particle size of the particles in the dispersion liquid at this time was 106 nm. Then, the solution was concentrated to obtain a 5 wt% (solid content) sol liquid.

【0085】この液を酸化物換算の固形分が1.1重量
%かつ溶媒組成が水:EGMBE:NMP=80:1
6:4の重量比となるように希釈し、14インチブラウ
ン管表面にスピンコート法で塗布し、その後Y液を同様
なスピンコート法によりその膜上に塗布し、180℃で
10分間加熱しておよそ190nm厚の低反射導電膜を
得た。
This liquid had a solid content in terms of oxide of 1.1% by weight and a solvent composition of water: EGMBE: NMP = 80: 1.
The mixture was diluted to a weight ratio of 6: 4, applied on the surface of a 14-inch cathode ray tube by spin coating, and then Y solution was applied on the film by the same spin coating method, and heated at 180 ° C. for 10 minutes. A low-reflection conductive film having a thickness of about 190 nm was obtained.

【0086】[例21]塩化ルテニウム水溶液と五塩化
アンチモンをRu:Sb=7.5:2.5モル比となる
ようにアンモニア水でpH10に調整し70℃に保持し
た溶液中に同時に添加を行い、沈殿を共析出させた。こ
の共沈殿物を洗浄濾別し、100℃で8時間乾燥後空気
中で500℃で1.8時間焼成し、Ru−Sb複合酸化
物微粒子を得た。この複合酸化物微粒子をサンドミルで
4時間粉砕した。このときの分散液中の粒子の平均粒径
は88nmであった。その後濃縮し5重量%(固形分)
ゾル液を得た。
Example 21 An aqueous solution of ruthenium chloride and antimony pentachloride were adjusted to pH 10 with ammonia water so that the Ru: Sb = 7.5: 2.5 molar ratio was obtained, and added simultaneously to a solution kept at 70 ° C. Was performed and the precipitate was co-precipitated. This coprecipitate was washed and filtered, dried at 100 ° C. for 8 hours, and then calcined in air at 500 ° C. for 1.8 hours to obtain Ru—Sb composite oxide fine particles. The composite oxide fine particles were pulverized with a sand mill for 4 hours. The average particle size of the particles in the dispersion liquid at this time was 88 nm. Then concentrated to 5% by weight (solid content)
A sol solution was obtained.

【0087】この液を酸化物換算の固形分が1.1重量
%かつ溶媒組成が水:EGMBE:NMP=80:1
6:4の重量比となるように希釈し、14インチブラウ
ン管表面にスピンコート法で塗布し、その後C液を同様
なスピンコート法によりその膜上に塗布し、180℃で
10分間加熱しておよそ170nm厚の低反射導電膜を
得た。
This liquid had a solid content in terms of oxide of 1.1% by weight and a solvent composition of water: EGMBE: NMP = 80: 1.
It was diluted so as to have a weight ratio of 6: 4, and was applied to the surface of a 14-inch cathode ray tube by spin coating, then liquid C was applied on the film by the same spin coating method, and heated at 180 ° C. for 10 minutes. A low reflective conductive film having a thickness of about 170 nm was obtained.

【0088】[例22]硝酸ビスマスをアセチルアセト
ンに溶解させ、塩化ルテニウム水溶液とともにRu:B
i=8:2モル比となるようにアンモニア水でpH10
に調整し70℃に保持した溶液中に同時に添加を行い、
沈殿を共析出させた。この共沈殿物を洗浄濾別し、10
0℃で8時間乾燥後空気中で500℃で3時間焼成し、
Ru−Bi複合酸化物微粒子を得た。この複合酸化物微
粒子をサンドミルで2時間粉砕した。このときの分散液
中の粒子の平均粒径は89nmであった。その後濃縮し
5重量%(固形分)ゾル液を得た。
Example 22 Bismuth nitrate was dissolved in acetylacetone, and Ru: B was added together with an aqueous ruthenium chloride solution.
pH = 10 with ammonia water so that i = 8: 2 molar ratio
And added at the same time to the solution kept at 70 ° C.
The precipitate was co-precipitated. The co-precipitate was washed and filtered to obtain 10
After drying at 0 ° C for 8 hours, baking in air at 500 ° C for 3 hours,
Ru-Bi composite oxide fine particles were obtained. The composite oxide fine particles were pulverized with a sand mill for 2 hours. The average particle size of the particles in the dispersion liquid at this time was 89 nm. Then, the solution was concentrated to obtain a 5 wt% (solid content) sol liquid.

【0089】この液を酸化物換算の固形分が1.2重量
%かつ溶媒組成が水:EGMBE:NMP=80:1
6:4の重量比となるように希釈し、14インチブラウ
ン管表面にスピンコート法で塗布し、その後C液を同様
なスピンコート法によりその膜上に塗布し、180℃で
10分間加熱しておよそ190nm厚の低反射導電膜を
得た。
This liquid had a solid content of 1.2% by weight as oxide and a solvent composition of water: EGMBE: NMP = 80: 1.
It was diluted so as to have a weight ratio of 6: 4, and was applied to the surface of a 14-inch cathode ray tube by spin coating, then liquid C was applied on the film by the same spin coating method, and heated at 180 ° C. for 10 minutes. A low-reflection conductive film having a thickness of about 190 nm was obtained.

【0090】[例23]塩化ルテニウム水溶液をアンモ
ニア水でpH7に調整し45℃に保持した溶液中に添加
を行い、沈殿を共析出させた。この共沈殿物を洗浄濾別
し、100℃で12時間乾燥後空気中で500℃で3時
間焼成し、Ru酸化物微粒子を得た。この複合酸化物微
粒子をサンドミルで0.5時間粉砕した。このときの分
散液中の粒子の平均粒径は118nmであった。その後
濃縮し5重量%(固形分)ゾル液を得た。
Example 23 An aqueous ruthenium chloride solution was adjusted to pH 7 with aqueous ammonia and added to the solution kept at 45 ° C. to coprecipitate a precipitate. This coprecipitate was washed and filtered, dried at 100 ° C. for 12 hours, and then calcined in air at 500 ° C. for 3 hours to obtain Ru oxide fine particles. The composite oxide fine particles were pulverized with a sand mill for 0.5 hours. The average particle size of the particles in the dispersion liquid at this time was 118 nm. Then, the solution was concentrated to obtain a 5 wt% (solid content) sol liquid.

【0091】さらに、この液を酸化物換算の固形分が
1.0重量%かつ溶媒組成が水:EGMBE:NMP=
80:16:4の重量比となるように希釈した後14イ
ンチブラウン管表面にスピンコート法で塗布し、その後
C液を同様なスピンコート法によりその膜上に塗布し、
180℃で10分間加熱しおよそ190nm厚の低反射
導電膜を得た。
Further, the liquid was mixed with the solid content of oxide of 1.0% by weight and the solvent composition was water: EGMBE: NMP =
After diluting to a weight ratio of 80: 16: 4, it was applied on the surface of a 14-inch cathode ray tube by spin coating, and then liquid C was applied on the film by the same spin coating method.
It was heated at 180 ° C. for 10 minutes to obtain a low reflective conductive film having a thickness of about 190 nm.

【0092】[例24]塩化インジウムと塩化錫をI
n:Sn=9:1モル比となるように調製した水溶液を
アンモニアでpH10に調製した溶液中に添加し、沈殿
を共析出させた。この共沈殿物を洗浄濾別した後100
℃で12時間乾燥後、空気中で650℃で3時間焼成
し、SnドープIn23 酸化物微粒子を得た。この酸
化物微粒子をサンドミルで1.0時間粉砕した。このと
きの分散液中の粒子の平均粒径は120nmであった。
その後濃縮し固形分を5%とし、さらに酸化物換算の固
形分が1.0重量%かつ溶媒組成が水:EGMBE:N
MP=80:16:4の重量比となるように希釈し、1
4インチブラウン管表面にスピンコート法で塗布し、そ
の後C液を同様なスピンコート法によりその膜上に塗布
し、180℃で10分間加熱しておよそ200nm厚の
低反射導電膜を得た。
Example 24 Indium chloride and tin chloride were mixed with I
An aqueous solution prepared to have a molar ratio of n: Sn = 9: 1 was added to a solution adjusted to pH 10 with ammonia to coprecipitate a precipitate. This coprecipitate is washed and filtered and then 100
After being dried at ℃ for 12 hours, it was baked in air at 650 ℃ for 3 hours to obtain Sn-doped In 2 O 3 oxide fine particles. The oxide fine particles were pulverized with a sand mill for 1.0 hour. The average particle size of the particles in the dispersion liquid at this time was 120 nm.
Then, the mixture is concentrated to a solid content of 5%, the solid content in terms of oxide is 1.0% by weight, and the solvent composition is water: EGMBE: N.
Dilute so that the weight ratio of MP = 80: 16: 4, and
It was applied on the surface of a 4-inch cathode ray tube by a spin coating method, and then the solution C was applied on the film by a similar spin coating method and heated at 180 ° C. for 10 minutes to obtain a low reflection conductive film having a thickness of about 200 nm.

【0093】例1〜24で得られた膜の諸特性を以下の
表1、表2に示す。
Various properties of the films obtained in Examples 1 to 24 are shown in Tables 1 and 2 below.

【0094】[0094]

【表1】 [Table 1]

【0095】[0095]

【表2】 [Table 2]

【0096】[0096]

【発明の効果】本発明によれば、スプレーコート法又は
スピンコート法等の簡便な方法により、低温処理で効率
よく優れた導電膜を提供できる。また、本発明は電磁波
をシールドできる導電膜を比較的安価に製造でき、特に
CRTのパネルフェイス面等の大面積の基体にも充分適
用でき、量産も可能であるために工業的価値は非常に高
い。
EFFECTS OF THE INVENTION According to the present invention, it is possible to efficiently provide an excellent conductive film by low-temperature treatment by a simple method such as a spray coating method or a spin coating method. In addition, the present invention can produce a conductive film capable of shielding electromagnetic waves at a relatively low cost, is particularly applicable to a large area substrate such as a panel face surface of a CRT, and can be mass-produced. high.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 廣谷 真奈美 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社中央研究所内 (72)発明者 森本 剛 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Manami Hirotani, Manami Hiroya 1150, Hazawa-machi, Kanagawa-ku, Yokohama, Kanagawa Prefecture Asahi Glass Co., Ltd. Central Research Laboratory (72) Inventor, Go Morimoto 1150, Hazawa-machi, Kanagawa-ku, Yokohama Asahi Glass Co., Ltd. Central Research Center

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】コバルト、ニッケル、鉄、亜鉛、クロム、
マンガン、銅、ビスマス、アンチモン及びランタノイド
元素(ただしプロメチウムを除く)のうちの1種以上の
元素とルテニウムとを金属成分とする導電性複合酸化物
微粒子を含むことを特徴とする導電膜。
1. Cobalt, nickel, iron, zinc, chromium,
A conductive film comprising conductive complex oxide fine particles containing ruthenium and at least one element of manganese, copper, bismuth, antimony and lanthanoid elements (excluding promethium) and a ruthenium metal component.
【請求項2】請求項1に記載の導電膜の上に前記導電膜
の屈折率よりも低屈折率の膜が積層され、低反射性を有
する複層導電膜。
2. A multi-layer conductive film having a low reflectivity, wherein a film having a refractive index lower than that of the conductive film is laminated on the conductive film according to claim 1.
【請求項3】コバルト、ニッケル、鉄、亜鉛、クロム、
マンガン、銅、ビスマス、アンチモン及びランタノイド
元素(ただしプロメチウムを除く)のうちの1種以上の
元素とルテニウムとを金属成分とする導電性複合酸化物
微粒子が分散したゾルを含む塗布液を、基体上に塗布し
硬化させて形成することを特徴とする導電膜の製造方
法。
3. Cobalt, nickel, iron, zinc, chromium,
On a substrate, a coating liquid containing a sol in which conductive complex oxide fine particles containing ruthenium as a metal component and one or more elements of manganese, copper, bismuth, antimony and lanthanoid elements (excluding promethium) are dispersed A method for producing a conductive film, which comprises applying the composition to a substrate and curing the composition.
【請求項4】前記塗布液が、水、又は誘電率が5以上で
沸点が50℃〜250℃である有機溶媒のうちの1種以
上を含む請求項3に記載の導電膜の製造方法。
4. The method for producing a conductive film according to claim 3, wherein the coating liquid contains at least one of water or an organic solvent having a dielectric constant of 5 or more and a boiling point of 50 ° C. to 250 ° C.
【請求項5】前記塗布液が、ケイ素化合物を含む請求項
3又は4に記載の導電膜の製造方法。
5. The method for producing a conductive film according to claim 3, wherein the coating liquid contains a silicon compound.
【請求項6】コバルト、ニッケル、鉄、亜鉛、クロム、
マンガン、銅、ビスマス、アンチモン及びランタノイド
元素(ただしプロメチウムを除く)のうちの1種以上の
元素とルテニウムとを金属成分とする導電性複合酸化物
微粒子が分散したゾルを含む塗布液を、表面に塗布し硬
化して導電膜を形成したことを特徴とするガラス物品。
6. Cobalt, nickel, iron, zinc, chromium,
A coating solution containing a sol in which fine particles of a conductive complex oxide containing ruthenium as a metal component and one or more elements of manganese, copper, bismuth, antimony and lanthanoid elements (excluding promethium) are dispersed on the surface. A glass article, characterized by being applied and cured to form a conductive film.
【請求項7】前記導電膜の上に前記導電膜の屈折率より
も低屈折率の膜が積層され、低反射性を有する複層導電
膜を形成した請求項6に記載のガラス物品。
7. The glass article according to claim 6, wherein a film having a refractive index lower than that of the conductive film is laminated on the conductive film to form a multilayer conductive film having low reflectivity.
【請求項8】前記ガラス物品が、陰極線管用のガラスで
ある請求項6又は7に記載のガラス物品。
8. The glass article according to claim 6, which is glass for a cathode ray tube.
JP328596A 1996-01-11 1996-01-11 Electroconductive film, its production and glass article Pending JPH09188545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP328596A JPH09188545A (en) 1996-01-11 1996-01-11 Electroconductive film, its production and glass article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP328596A JPH09188545A (en) 1996-01-11 1996-01-11 Electroconductive film, its production and glass article

Publications (1)

Publication Number Publication Date
JPH09188545A true JPH09188545A (en) 1997-07-22

Family

ID=11553140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP328596A Pending JPH09188545A (en) 1996-01-11 1996-01-11 Electroconductive film, its production and glass article

Country Status (1)

Country Link
JP (1) JPH09188545A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1143480A1 (en) * 2000-04-04 2001-10-10 Tokin Corporation Light emitting element, plasma display panel, and CRT display device capable of considerably suppressing a high-frequency noise
JP2014520056A (en) * 2011-05-02 2014-08-21 コーニング インコーポレイテッド Glass article having antireflection layer and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1143480A1 (en) * 2000-04-04 2001-10-10 Tokin Corporation Light emitting element, plasma display panel, and CRT display device capable of considerably suppressing a high-frequency noise
SG106053A1 (en) * 2000-04-04 2004-09-30 Nec Tokin Corp Light emitting element, plasma display panel, and crt display device capable of considerably suppressing a high-frequency noise
JP2014520056A (en) * 2011-05-02 2014-08-21 コーニング インコーポレイテッド Glass article having antireflection layer and method for producing the same

Similar Documents

Publication Publication Date Title
KR970001594B1 (en) Coating material for antistatic high refractive index film formation, antistatic anti-reflection film-covered transparent material laminated body and cathode ray tube provided therewith
JP2003176132A (en) Antimony-tin oxide particle for shielding insolation, coating solution for forming insolation shielding film and insolation shielding film
JP3473272B2 (en) Coating liquid for conductive film formation and conductive film
US20040197549A1 (en) Conductive film, manufactruing method thereof, substrate having the same
EP1020891A2 (en) Low-transmission transparent layered structure
JP3697760B2 (en) Coating liquid
JP3219450B2 (en) Method for producing conductive film, low reflection conductive film and method for producing the same
JPH0656478A (en) Composite functional material
JPH05107403A (en) High refractivity conductive film or low reflective anti-static film and manufacture thereof
JPH0748543A (en) Low-refractive index film forming coating material, and transparent laminated body and cathode ray tube with antistatic and antireflection film
JPH09188545A (en) Electroconductive film, its production and glass article
JP4200424B2 (en) Manufacturing method of solar shading material, coating liquid for forming solar shading film, solar shading film, and transparent base material for solar shading
JP3288417B2 (en) CRT panel having low reflection conductive film formed thereon and method of manufacturing the same
JP3449123B2 (en) Coating solution for forming low-resistance film or low-refractive-index film, and method for producing low-resistance film or low-reflection low-refractive-index film
JPH05166423A (en) Manufacture of conductive film and low reflective conductive film
JP3979967B2 (en) Manufacturing method of low reflection low resistance film
JPH09331187A (en) Anti-reflection colored transparent conductive film and cathode ray tube
JP3315673B2 (en) CRT with conductive film
JP3484903B2 (en) Coating liquid for forming low-resistance film, low-resistance film and method for manufacturing the same, and low-reflection low-resistance film and method for manufacturing the same
JPH08290943A (en) Coating liquid for forming electroconductive film, production of electroconductive film, electroconductive film and glass article having electroconductive film formed thereon
JP3308511B2 (en) Method of forming CRT panel with conductive film
JP3520705B2 (en) Coating liquid for forming conductive film, conductive film and method for manufacturing the same
JP2000153223A (en) Formation of low reflective conductive film
JP3661244B2 (en) Method for forming conductive film and low reflective conductive film
JPH115929A (en) Coating liquid for use in forming electrically conductive film, method for forming electrically conductive film, and method for forming electrically conductive film of low reflectivity