JP3661244B2 - Method for forming conductive film and low reflective conductive film - Google Patents

Method for forming conductive film and low reflective conductive film Download PDF

Info

Publication number
JP3661244B2
JP3661244B2 JP28098995A JP28098995A JP3661244B2 JP 3661244 B2 JP3661244 B2 JP 3661244B2 JP 28098995 A JP28098995 A JP 28098995A JP 28098995 A JP28098995 A JP 28098995A JP 3661244 B2 JP3661244 B2 JP 3661244B2
Authority
JP
Japan
Prior art keywords
conductive film
liquid
film
solution
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28098995A
Other languages
Japanese (ja)
Other versions
JPH09129130A (en
Inventor
啓介 阿部
真奈美 廣谷
恭宏 真田
健二 石関
剛 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP28098995A priority Critical patent/JP3661244B2/en
Publication of JPH09129130A publication Critical patent/JPH09129130A/en
Application granted granted Critical
Publication of JP3661244B2 publication Critical patent/JP3661244B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、ブラウン管パネルなどのガラス基体表面に導電膜または低反射性導電膜を形成する方法に関する。
【0002】
【従来の技術】
従来、ブラウン管パネルは高電圧で作動するため、起動時あるいは終了時に該表面に静電気が誘発される。この静電気によりブラウン管パネル表面にほこりが付着してコントラスト低下を引き起こしたり、あるいは直接触れた際に軽い電気ショックによる不快感を生じることが多い。従来、上述の現象を防止するために、ブラウン管パネル表面に帯電防止膜を付与する試みが種々なされてきた。例えば、特開昭63−76247号公報には、ブラウン管パネル表面を350℃程度に加熱し、CVD法により酸化錫および酸化インジウムなどの導電性酸化物層を設ける方法が開示されている。
【0003】
しかしながら、この方法では成膜装置にコストがかかることに加え、ブラウン管パネル表面を高温に加熱するために、ブラウン管内の蛍光体の脱落を生じたり、寸法精度が低下するなどの問題があった。また、導電層に用いる材料としては酸化錫が最も一般的であるが、酸化錫の場合、低温処理では高性能な膜が得にくいという欠点があった。
【0004】
また、近年、電磁波ノイズによる電子機器への電波障害が社会問題となり、それらを防止するため規格の作成および規制が行われている。電磁波ノイズは、人体について陰極線管(CRT)上の静電気チャージによる皮膚癌の恐れ、低周波電界(ELF)による胎児への影響、その他、X線、紫外線などによる障害が各国で問題視されている。
【0005】
電磁波ノイズの遮断は、導電性塗膜をブラウン管パネル表面に介在させることにより、導電性塗膜に電磁波が当たり、塗膜内に渦電流を誘導して、この作用で電磁波を反射させることによって可能である。しかし、このためには高い電界強度に耐え得る良導電性が必要であるが、それほどの良導電性の膜を得ることはさらに困難であった。
【0006】
また、導電膜および低反射性膜のコーティング方法は、従来より光学機器においては言うまでもなく、民生用機器、特にTV、コンピューター端末のCRTに関して数多くの検討がなされてきた。従来の方法としては、例えば、特開昭61−118931号に、ブラウン管パネル表面に防眩効果をもたせるために、表面に微細な凹凸を有するSiO2 層を付着させたり、フッ酸により表面をエッチングして凹凸を設けるなどの方法が開示されている。
【0007】
【発明が解決しようとする課題】
しかしながら、これらの方法は、外部光を散乱させるノングレア処理と呼ばれ、本質的に低反射層を設ける方法でないため、反射率の低減には限界があり、また、ブラウン管パネルなどにおいては、解像度を低下させる原因ともなっている。本発明は、従来技術が有していた上述の欠点を解消しようとするものであり、低温熱処理により形成が可能な高性能導電膜の形成方法および低反射性導電膜の形成方法を新規に提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は、Ti、Zr、Hf、V、Ta、NbおよびCrからなる群から選ばれる少なくとも1種の元素と窒素よりなる窒化物の微粒子が分散したゾルを含み、かつ銀コロイドを含まない塗布液を基体上に塗布し、加熱することを特徴とする導電膜の形成方法であって、前記窒化物微粒子の比抵抗が2Ωcm以下である導電膜の形成方法を提供する。
また本発明は、前記導電膜の形成方法により導電膜を形成した後、前記導電膜上に、該導電膜より低屈折率の膜を形成することを特徴とする低反射性導電膜の形成方法を提供する。
【0009
【0010】
【発明の実施の形態】
以下に発明の実施の形態を挙げて本発明をさらに詳細に説明する。
【0011】
本発明の導電膜は、Ti、Zr、Hf、V、Ta、NbおよびCrからなる群から選ばれる少なくとも1種の元素と窒素からなる窒化物を含む膜である。
【0012】
かかる導電膜の形成方法は、Ti、Zr、Hf、V、Ta、NbおよびCrからなる群から選ばれる少なくとも1種の元素と窒素よりなる窒化物微粒子のゾルを含む塗布液を基体上に塗布し、加熱する方法である。
【0013】
本発明で使用される上記元素の窒化物としては、例えば、三塩化チタン、四塩化チタン、オキシ塩化ジルコニウム、オキシ塩化ハフニウム、三塩化バナジウム、五塩化タンタル、オキシ塩化ニオブ、五塩化ニオブ、塩化第二クロムなどの塩化物、オキシ塩化物やオキシ硝酸ジルコニウム、硝酸第二クロムなどの硝酸塩などをpH3〜13の範囲で加水分解し、得られた沈殿物を乾燥し、250℃〜800℃の範囲で焼成して得たものが好ましい。250℃よりも低温における焼成では、得られる窒化物はアモルファスであり、かつ窒化が充分進行しないために好ましくない。
【0014】
また、800℃よりも高温で焼成すると粒子の異常成長などが生じ、塗膜化したときのヘイズなどの外観上の欠点が生じやすく好ましくない。上記元素と窒素よりなる窒化物微粒子の粉末は、粒子径が大きすぎると塗布液の製造において分散しにくくなるため、平均粒径は1000Å以下であることが好ましく、導電性の点から50Å以上が好ましい。また、良好な導電性を有する導電膜が形成されるためには、窒化物微粒子の比抵抗は2Ωcm以下であることが好ましい。
【0015】
かかる窒化物微粒子粉末を用いる導電膜形成用の塗布液を調製するためには、窒化物微粒子を水などの溶媒に均一に分散させることが重要である。分散させる際には、溶媒と粉末の接触を容易ならしめるために撹拌を充分に行うことが好ましい。撹拌分散手段としては、例えば、コロイドミル、ボールミル、サンドミル、ホモミキサーなどの市販の粉砕・分散機を用いることができる。また、分散させる際には、20〜200℃の範囲で加熱することもできる。溶媒の沸点以上で撹拌する場合には加圧して液相が保持できるようにする。
【0016】
このようにして、Ti、Zr、Hf、V、Ta、NbおよびCrからなる群から選ばれる少なくとも1種の元素と窒素よりなる窒化物微粒子がコロイド粒子として分散した水性ゾルが得られる。
【0017】
本発明における水性ゾルはそのまま塗布液として用いることもできるが、基体に対する塗布性を増すために、上記コロイド粒子を有機溶媒に分散させた塗布液、または水性ゾルの水分を有機溶媒で置換して用いることも可能である。有機溶媒としては、比誘電率が5以上で、沸点が50℃以上250℃以下の親水性有機溶媒が好ましい。沸点が50℃未満の場合は有機溶媒の蒸発が早く、膜の外観上の欠点が生じる。沸点が250℃を超えると蒸発速度が著しく遅く、かつ膜焼成後に膜中に有機溶媒が残留することがあり膜の特性を劣化させる要因となる。
【0018】
例えば、メタノール、エタノール、プロピルアルコール、ブタノールなどのアルコール類、エチルセロソルブ、メチルセロソルブ、ブチルセロソルブ、プロピレングリコールメチルエーテルなどのエーテル類、2,4−ペンタジオン、ジアセトアルコールなどのケトン類、乳酸エチル、乳酸メチルなどのエステル類が挙げられる。
【0019】
また、上記の元素と窒素よりなる窒化物微粒子を含む塗布液には、液の粘度、表面張力、広がり性を調整する点からSi(OR)y ・R′4-y (yは3または4、R,R′はアルキル基)などの珪素化合物を添加することも可能である。さらに、基体との濡れ性を向上させるために種々の界面活性剤を添加することもできる。塗布液中の窒化物微粒子の濃度は0.05〜10重量%程度が好ましい。
【0020】
上記のようにして調整した塗布液を基体上に塗布する方法としては、例えば、スピンコート、ディップコート、スプレーコートなどの方法が好適に使用可能である。また、スプレーコート法を用いて表面に凹凸を形成して防眩効果を付与してもよく、また、その上にシリカ被膜などのハードコートを設けてもよい。さらには、本発明の導電膜をスピンコート、スプレーコートのいずれかの方法で形成し、その上にシリコンアルコキシドなどを含む溶液をスプレーコートして、表面に凹凸を有するシリカ被膜のノングレアコートを設けてもよい。
【0021】
本発明におけるTi、Zr、Hf、V、Ta、NbおよびCrからなる群から選ばれる少なくとも1種の元素と窒素よりなる窒化物微粒子のゾルを含む塗布液を、それ自体で基体上への塗布液として供し得るためには、塗布液が水性ゾルの場合には低沸点有機溶媒を添加すると室温下の乾燥で塗膜が得られる。あるいは塗布液がオルガノゾルの場合には、低沸点有機溶媒をそのまま溶媒として使用すると、室温下の乾燥で塗膜が得られる。
【0022】
また塗布液が水性ゾルの場合に、前記塗布液に沸点が100〜250℃にある中、高沸点溶媒を添加すると、室温乾燥では溶媒が塗膜中に残留するために加熱処理を行う。あるいは塗布液がオルガノゾルの場合に、前記中、高沸点溶媒をそのまま溶媒として使用すると、室温乾燥では溶媒が塗膜中に残留するために加熱処理を行う。加熱温度の上限は基板に用いられるガラス、プラスチックなどの軟化点によって決定される。この点も考慮すると好ましい加熱温度範囲は100〜500℃である。
【0023
【0024
【0025
【0026】
本発明においては、前記の方法で基体上に形成させた前記元素の窒化物からなる導電膜の上に、光の干渉作用を利用して低反射性膜を形成することができる。例えば、基体がガラス(屈折率n=1.52)の場合には、上記導電膜の上に、(導電膜の屈折率)/(低屈折率膜の屈折率)の比の値が約1.23となるような低屈折率膜を形成すると反射率を最も低減することができる。反射率の低減には可視光領域において、特に555nmの反射率を低減することが好ましいが、実用上は反射外観などを考慮して適宜決定することが好ましい。このような低反射性膜の膜厚は500〜4000Å程度が好ましい。
【0027】
かかる2層からなる低反射性導電膜の最外層の低屈折率膜としては、MgF2 ゾルを含む溶液や、Siアルコキシドを含む溶液の内から選ばれる少なくとも1種よりなる溶液を用いて形成することができる。屈折率の点より、該材料の内ではMgF2 が最も低く、反射率低減のためにはMgF2 ゾルを含む溶液を用いることが好ましいが、膜の硬度や耐擦傷性の点ではSiO2 を主成分とする膜が好ましい。
【0028】
かかる低屈折率膜形成用のSiアルコキシドを含む溶液としては種々のものが使用可能であるが、Si(OR)y ・R′4-y (yは3または4、R,R′はアルキル基)で示されるSiアルコキシド、あるいはその部分加水分解物を含む液が好ましいものとして挙げられる。Siアルコキシドとしては、例えば、シリコンエトキシド、シリコンメトキシド、シリコンイソプロポキシド、シリコンブトキシドなどのモノマー、あるいはこれらの重合体が好ましく使用可能である。
【0029】
Siアルコキシドは、アルコール、エステル、エーテルなどに溶解して用いることもでき、また、前記溶液に塩酸、硝酸、硫酸、酢酸、ぎ酸、マレイン酸、フッ酸、あるいはアンモニア水溶液などを添加して加水分解して用いることもできる。Siアルコキシドは、溶媒に対して30重量%以下の濃度で含まれていることが好ましい。固形分量が大きすぎると保存安定性が悪くなるため、かかる固形分量が好ましい。
【0030】
MgF2 を使用する場合には、前記の窒化物微粒子の場合と同様に水などの溶媒にコロイド粒子として分散させたMgF2 ゾルとして使用する。分散液中のMgF2 の濃度は窒化物微粒子の場合と同様である。
【0031】
また、低屈折率膜形成用の塗布液には、膜の強度を向上させるためにバインダーとして、Zr、Ti、Sn、Alなどのアルコキシドや、これらの部分加水分解物を添加して、ZrO2 、TiO2 、SnO2 、Al23 などの内の1種または2種以上の複合物をMgF2 やSiO2 と同時に析出させてもよい。これらのアルコキシドの添加量はアルコキシドの種類によって相違はあるが、夫々の酸化物としてMgF2 やSiO2 に対して40重量%以下の量で添加することが好ましく、膜強度と屈折率を考慮して最適量を決める。
【0032】
さらに、塗布液には、基体との濡れ性を向上させるために界面活性剤を添加してもよい。添加される界面活性剤としては、直鎖アルキルベンゼンスルホン酸ナトリウム、アルキルエーテル硫酸エステルなどが挙げられる。
【0033】
本発明の低反射性導電膜の形成方法は、多層干渉効果による低反射性導電膜にも応用することができる。反射防止性能を有する多層の低反射性膜の構成としては、例えば、反射防止をしたい光の波長をλとして、基体側より高屈折率層−低屈折率層を光学厚みλ/2−λ/4、あるいはλ/4−λ/4で形成した2層の低反射性膜、基体側より中屈折率層−高屈折率層−低屈折率層を光学厚みλ/4−λ/2−λ/4で形成した3層の低反射性膜、基体側より低屈折率層−中屈折率層−高屈折率層−低屈折率層を光学厚みλ/2−λ/2−λ/2−λ/4で形成した4層の低反射性膜などが典型的な例として知られている。
【0034】
なお、本発明のTi、Zr、Hf、V、Ta、NbおよびCrからなる群から選ばれる少なくとも1種の元素の窒化物を含有する膜は、窒化物により可視光領域全般にわたって吸収を生じるため、コントラストの向上にも寄与し、かつ低反射性においても優れている。
【0035】
上記元素と窒素とからなる窒化物微粒子が分散したゾルなどを用いて形成される導電膜およびその上層に形成される珪素化合物を主成分とする膜よりなる低反射性導電膜を形成する基体としては、ブラウン管パネル、複写機用ガラス板、計算機用パネル、クリーンルーム用ガラス、CRT、あるいはLCDなどの表示装置の前面板などの各種ガラス、プラスチック基板を用いることができる。
【0036】
【実施例】
以下に実施例および比較例を挙げ本発明を更に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、以下の実施例、比較例における使用割合、%は重量基準(重量%)である。また、各実施例および比較例で得られた膜の評価方法は下記の通りである。
【0037】
(1)導電性評価
ローレスタ抵抗測定器(三菱化学(株)製)により膜表面の表面抵抗を測定した。
【0038】
(2)耐擦傷性
擦傷性測定器(ライオン(株)製50−50)を用い、1kg荷重下で膜表面を50回往復させた後、その表面の傷付き状態を目視で判断した。評価基準は、○:傷が全く付かない、△:傷が多少つく、×:一部に膜剥離が生じる、とした。
【0039】
(3)鉛筆硬度
1kg荷重下において、種々の硬度の鉛筆で膜表面を走査し、その後目視により表面に傷が生じ始める鉛筆の硬度を膜の鉛筆硬度と判断した。
【0040】
(4)視感反射率
γ分光反射率スペクトル測定器により多層膜の400〜700nmでの視感反射率を測定した。
【0041】
(5)視感透過率
日立製作所製スペクトロフォトメーター U−3500により380〜780nmでの視感透過率を測定した。
【0042
【0043】
[例
三塩化チタニウム水溶液(固形分20%)を、アンモニア水でpH10に調整して50℃に保持した溶液中に添加し、水酸化物を沈澱析出させた。この沈殿物を洗浄、濾過分離し、100℃で12時間乾燥させた。これを650℃で3時間アンモニア雰囲気下で焼成して窒化チタニウム微粒子を得た。この窒化物微粒子をサンドミルで20分間粉砕した。この時の液中の該微粒子の平均粒径は80nmで、比抵抗は0.003Ωcmであった。その後濃縮を行い固形分5%の液を得た(B液)。
【0044】
珪酸エチルをエタノールに溶かし、塩酸酸性水溶液で加水分解を行い、SiO2 換算で固形分が5%となるようにエタノールで希釈した(C液)。B液とC液をB液/C液=8/2となるように混合し、その後超音波を1時間照射して混合液を得た(D液)。水:エタノール:メタノール:プロピレングリコールモノメチルエーテルが50:42:5:3の割合である溶液を調製した(E液)。D液をE液で固形分が2.0%となるように希釈して得たF液を、14インチブラウン管パネル表面にスピンコート法で塗布し、180℃で30分間加熱して1500Å厚の導電膜を形成させた。
【0045】
[例
オキシ塩化ジルコニウムを、アンモニア水でpH11に調整して50℃に保持した溶液中に添加し、水酸化物を沈澱析出させた。この沈殿物を洗浄、濾過分離し、100℃で12時間乾燥させた後、これを750℃で3時間アンモニア雰囲気中で焼成し、窒化ジルコニウム微粒子を得た。この窒化物微粒子をサンドミルで25分間粉砕した。この時の液中の該微粒子の平均粒径は92nmで、比抵抗は0.005Ωcmであった。その後濃縮を行い固形分5%の液を得た(G液)。
【0046】
C液とG液をC液/G液=2/8となるように混合し、その後超音波を2.3時間照射して混合液を得た(H液)。H液をE液で固形分が2.2%となるように希釈したI液を、14インチブラウン管パネル表面にスピンコート法で塗布し、180℃で30分間加熱して1200Å厚の導電膜を形成させた。
【0047】
[例
オキシ塩化ハフニウムを、アンモニア水でpH11に調整して80℃に保持した溶液中に添加し、水酸化物を沈澱析出させた。この沈殿物を洗浄、濾過分離し、100℃で12時間乾燥させた後、空気中で300℃で30分間焼成し、さらに800℃で3時間アンモニア雰囲気中で焼成し、窒化ハフニウム微粒子を得た。この窒化物微粒子をサンドミルで2.0時間粉砕した。この時の液中の該微粒子の平均粒径は96nmで、比抵抗は0.01Ωcmであった。その後濃縮を行い固形分5%の液を得た(J液)。
【0048】
C液とJ液をC液/J液=1/9となるように混合し、その後超音波を4.2時間照射して混合液を得た(K液)。K液をE液で固形分が2.2%となるように希釈して得たL液を、14インチブラウン管パネル表面にスピンコート法で塗布し、180℃で30分間加熱して1700Å厚の導電膜を形成させた。
【0049】
[例
三塩化バナジウムを、アンモニア水でpH10に調整して80℃に保持した溶液中に添加し、水酸化物を沈澱析出させた。この沈殿物を洗浄、濾過分離し、100℃で12時間乾燥させた後、空気中で300℃で30分間焼成し、さらにアンモニア雰囲気中で850℃で3時間焼成し、窒化バナジウム微粒子を得た。この窒化物微粒子をサンドミルで4.2時間粉砕した。この時の液中の該微粒子の平均粒径は75nmで、比抵抗は0.009Ωcmであった。その後濃縮を行い固形分5%の液を得た(M液)。
【0050】
C液とM液をC液/M液=1/9となるように混合し、その後超音波を1.0時間照射して混合液を得た(N液)。N液をE液で固形分が2.2%となるように希釈して得たO液を、14インチブラウン管パネル表面にスピンコート法で塗布し、180℃で30分間加熱して1800Å厚の導電膜を形成させた。
【0051】
[例
塩化第二クロムを、アンモニア水でpH8.8に調整して50℃に保持した溶液中に添加し、水酸化物を沈澱析出させた。この沈殿物を洗浄、濾過分離し、100℃で12時間乾燥させた後、650℃で3時間アンモニア雰囲気中で焼成し、窒化クロム微粒子を得た。この窒化物微粒子をサンドミルで1.8時間粉砕した。この時の液中の該微粒子の平均粒径は82nmで、比抵抗は0.004Ωcmであった。その後濃縮を行い固形分5%の液を得た(P液)。
【0052】
C液とP液をC液/P液=2.5/7.5となるように混合し、その後超音波を1.0時間照射して混合液を得た(Q液)。Q液をE液で固形分が2.2%となるように希釈して得たR液を、14インチブラウン管パネル表面にスピンコート法で塗布し、180℃で30分間加熱して1400Å厚の導電膜を形成させた。
【0053】
[例
オキシ塩化ニオブを、アンモニアでpH12に調整して50℃に保持した溶液中に添加し、水酸化物を沈澱析出させた。この沈殿物を洗浄、濾過分離し、100℃で12時間乾燥させた後、900℃で5時間アンモニア雰囲気中で焼成し、窒化ニオブ微粒子を得た。この窒化物微粒子をサンドミルで3.5時間粉砕した。この時の液中の該微粒子の平均粒径は68nmで、比抵抗は0.002Ωcmであった。その後濃縮を行い固形分5%の液を得た(S液)。
【0054】
C液とS液をC液/S液=1.5/8.5となるように混合し、その後超音波を1.0時間照射して混合液を得た(T液)。T液をE液で固形分が2.7%となるように希釈して得たU液を、14インチブラウン管パネル表面にスピンコート法で塗布し、180℃で30分間加熱して1900Å厚の導電膜を形成させた。
【0055】
[例
タンタルペンタイソプロポキシドを、塩酸でpH3に調整して50℃に保持した溶液中に添加し、水酸化物を沈澱析出させた。この沈殿物を洗浄、濾過分離し、100℃で12時間乾燥させた後、700℃で5時間アンモニア雰囲気中で焼成し、窒化タンタル微粒子を得た。この窒化物微粒子をサンドミルで3.5時間粉砕した。この時の液中の該微粒子の平均粒径は59nmで、比抵抗は0.005Ωcmであった。その後濃縮を行い固形分5%の液を得た(V液)。
【0056】
C液とV液をC液/V液=1/9となるように混合し、その後超音波を1.0時間射して得た混合液を得た(W液)。W液をE液で固形分が2.8%となるように希釈して得たX液を、14インチブラウン管パネル表面にスピンコート法で塗布し、180℃で30分間加熱して1200Å厚の導電膜を形成させた。
【0057】
[例
B液をE液で1.5%に希釈した液を14インチブラウン管パネル表面にスピンコート法で塗布し、60℃で10分間乾燥させた。その後この膜の上に、C液をE液で1.0%に希釈した液をスピンコート法で塗布し、180℃で20分間焼成して2000Å厚の低反射性導電膜を形成させた。
【0058】
[例
におけるB液をG液に変更した以外は例と同様にして2400Å厚の低反射性導電膜を形成させた。
【0059】
[例10
におけるB液をJ液に変更した以外は例と同様にして2300Å厚の低反射性導電膜を形成させた。
【0060】
[例11
におけるB液をS液に変更した以外は例と同様にして1900Å厚の低反射性導電膜を形成させた。
【0061】
[例12
におけるB液をP液に変更した以外は例と同様にして2300Å厚の低反射性導電膜を形成させた。
【0062
【0063】
[例13
エタノール50gに水3gを添加し、更にMgCl2 を0.05モル、BF3 ・C25 OHを0.033モル加え、完全に溶解させた後、還流冷却器付フラスコに入れ、85℃で1時間反応させてMgF2 ゾルを得た。このゾル液を弗化物換算固形分で5%となるようにエタノールで希釈し、SiO2 :MgF2 =4:6の重量比となるようにC液と混合した(X液)。例12におけるP液をX液に変更した以外は例12と同様にして2200Å厚の低反射性導電膜を形成させた。
【0064】
[例14
塩化スズと塩化アンチモンをSb/Sn=85/15となるように混合し、これをアンモニア水でpH10に調整して50℃に保持した溶液中に添加し、水酸化物を沈澱析出させた。この沈殿物を洗浄、濾別し、100℃で12時間乾燥させた後、650℃で3時間大気中で焼成し、アンチモンドープ酸化錫微粒子を得た。この微粒子をサンドミルで2時間粉砕した。この時の液中の該微粒子の平均粒径は65nmで、比抵抗は2.3Ωcmであった。その後濃縮を行い固形分5%の液を得た。
【0065】
この液をE液で固形分1.2%に希釈した液を、14インチブラウン管パネル表面にスピンコートして1200Å厚の導電膜を形成させた。さらにこの膜の上に、C液をE液で1.0%に希釈した液をスピンコート法で塗布し、180℃で20分間焼成して2層膜を形成させた。
【0066】
以上の例1〜13が実施例であり、例14が比較例である。各実施例および比較例の膜の評価結果をまとめて表1に示す。
【0067】
表1

Figure 0003661244
【0068】
【発明の効果】
本発明によれば、スプレーまたはスピンコートなどの簡便な方法により効率よく優れた導電膜を提供することが可能となる。本発明は窒化物による導電膜を提供するため、電磁波を容易にシールドすることができ、かつ比較的安価に上記導電膜を製造することができる。特に、CRTのパネルフェイス面などの大面積の基体にも充分適用することができ、量産も可能であるために工業的価値は非常に高い。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to how to form a conductive film or a low reflective conductive film on the glass substrate surface, such as a cathode ray tube panel.
[0002]
[Prior art]
Conventionally, since a cathode ray tube panel operates at a high voltage, static electricity is induced on the surface at the time of start-up or termination. This static electricity often causes dust to adhere to the surface of the CRT panel, causing a decrease in contrast, or causing a sense of discomfort due to a light electric shock when directly touched. Conventionally, in order to prevent the above-described phenomenon, various attempts have been made to provide an antistatic film on the surface of a cathode ray tube panel. For example, Japanese Patent Application Laid-Open No. 63-76247 discloses a method in which a cathode ray tube panel surface is heated to about 350 ° C. and a conductive oxide layer such as tin oxide and indium oxide is provided by a CVD method.
[0003]
However, in this method, in addition to the cost of the film forming apparatus, the surface of the cathode ray tube panel is heated to a high temperature, so that there is a problem that the phosphor in the cathode ray tube is dropped or the dimensional accuracy is lowered. Further, tin oxide is the most common material used for the conductive layer. However, tin oxide has a drawback that it is difficult to obtain a high-performance film by low-temperature treatment.
[0004]
In recent years, radio wave interference to electronic devices due to electromagnetic noise has become a social problem, and standards have been created and regulated to prevent them. As for electromagnetic noise, there are fears of skin cancer due to electrostatic charge on the cathode ray tube (CRT) on the human body, the influence on the fetus by low frequency electric field (ELF), and other obstacles due to X-rays, ultraviolet rays, etc. .
[0005]
Electromagnetic noise can be blocked by interposing a conductive coating film on the surface of a cathode ray tube panel, so that electromagnetic waves hit the conductive coating film, induce eddy currents in the coating film, and reflect the electromagnetic waves by this action. It is. However, this requires good conductivity that can withstand high electric field strength, but it has been more difficult to obtain such a highly conductive film.
[0006]
In addition, the coating methods for the conductive film and the low-reflective film have been conventionally studied not only for optical equipment but also for consumer equipment, particularly TV and computer terminal CRT. Conventional methods include, for example, Japanese Patent Application Laid-Open No. 61-118931, where an SiO 2 layer having fine irregularities is attached to the surface of the cathode ray tube panel, or the surface is etched with hydrofluoric acid. Thus, a method of providing unevenness is disclosed.
[0007]
[Problems to be solved by the invention]
However, these methods are called non-glare treatment that scatters external light and are not essentially methods of providing a low reflection layer, so there is a limit to the reduction of reflectance. It is also a cause of lowering. The present invention is intended to eliminate the above-mentioned drawbacks of the prior art, and provides a new method for forming a high-performance conductive film and a method for forming a low-reflective conductive film that can be formed by low-temperature heat treatment. The purpose is to do.
[0008]
[Means for Solving the Problems]
The present invention does not include Ti, Zr, Hf, V, Ta, looking containing a sol in which fine particles are dispersed in at least one element and a nitride consisting of nitrogen selected from the group consisting of Nb and Cr, and the silver colloid A method of forming a conductive film, which comprises applying a coating liquid onto a substrate and heating, wherein the specific resistance of the nitride fine particles is 2 Ωcm or less.
According to another aspect of the present invention, there is provided a method for forming a low-reflective conductive film, wherein a conductive film is formed by the method for forming a conductive film, and then a film having a lower refractive index than the conductive film is formed on the conductive film. I will provide a.
[0009 ]
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to embodiments of the invention.
[0011]
The conductive film of the present invention is a film containing a nitride composed of at least one element selected from the group consisting of Ti, Zr, Hf, V, Ta, Nb and Cr and nitrogen.
[0012]
Formation how such conductive film, Ti, Zr, Hf, V , Ta, a coating solution containing at least one element and the sol of the nitride particles consisting of nitrogen selected from the group consisting of Nb and Cr on the substrate It is a method of applying and heating.
[0013]
Examples of the nitride of the element used in the present invention include titanium trichloride, titanium tetrachloride, zirconium oxychloride, hafnium oxychloride, vanadium trichloride, tantalum pentachloride, niobium oxychloride, niobium pentachloride, Chloride such as dichrome, nitrate such as oxychloride, zirconium oxynitrate and dichromium nitrate are hydrolyzed in the range of pH 3 to 13, and the resulting precipitate is dried, and the range of 250 ° C. to 800 ° C. What was obtained by baking with is preferable. When firing at a temperature lower than 250 ° C., the resulting nitride is amorphous, and nitriding does not proceed sufficiently.
[0014]
In addition, when firing at a temperature higher than 800 ° C., abnormal growth of particles or the like occurs, and appearance defects such as haze when formed into a coating film are likely to occur, which is not preferable. The powder of nitride fine particles composed of the above elements and nitrogen is difficult to disperse in the production of a coating solution if the particle size is too large. Therefore, the average particle size is preferably 1000 mm or less, and from the viewpoint of conductivity, 50 mm or more is preferable. preferable. In order to form a conductive film having good conductivity, the specific resistance of the nitride fine particles is preferably 2 Ωcm or less.
[0015]
In order to prepare a coating solution for forming a conductive film using such nitride fine particle powder, it is important to uniformly disperse the nitride fine particles in a solvent such as water. When dispersing, it is preferable to sufficiently stir in order to facilitate contact between the solvent and the powder. As the stirring and dispersing means, for example, a commercially available pulverizing / dispersing machine such as a colloid mill, a ball mill, a sand mill, or a homomixer can be used. Moreover, when making it disperse | distribute, it can also heat in the range of 20-200 degreeC. When stirring above the boiling point of the solvent, pressurization is performed so that the liquid phase can be maintained.
[0016]
In this way, an aqueous sol is obtained in which nitride fine particles composed of at least one element selected from the group consisting of Ti, Zr, Hf, V, Ta, Nb, and Cr and nitrogen are dispersed as colloidal particles.
[0017]
The aqueous sol in the present invention can be used as a coating solution as it is. However, in order to increase the coating property to the substrate, the coating solution in which the colloidal particles are dispersed in an organic solvent or the water in the aqueous sol is replaced with an organic solvent. It is also possible to use it. As the organic solvent, a hydrophilic organic solvent having a relative dielectric constant of 5 or more and a boiling point of 50 ° C. or more and 250 ° C. or less is preferable. When the boiling point is less than 50 ° C., the organic solvent evaporates quickly, resulting in defects in the appearance of the film. When the boiling point exceeds 250 ° C., the evaporation rate is remarkably slow, and an organic solvent may remain in the film after the film is fired, which causes deterioration of the film characteristics.
[0018]
For example, alcohols such as methanol, ethanol, propyl alcohol and butanol, ethers such as ethyl cellosolve, methyl cellosolve, butyl cellosolve and propylene glycol methyl ether, ketones such as 2,4-pentadione and diacetalcohol, ethyl lactate and lactic acid Examples include esters such as methyl.
[0019]
In addition, the coating solution containing nitride fine particles composed of the above elements and nitrogen has Si (OR) y · R ′ 4-y (y is 3 or 4) from the viewpoint of adjusting the viscosity, surface tension, and spreadability of the solution. It is also possible to add a silicon compound such as R and R ′ are alkyl groups). Further, various surfactants can be added to improve the wettability with the substrate. The concentration of the nitride fine particles in the coating solution is preferably about 0.05 to 10% by weight.
[0020]
As a method for applying the coating solution prepared as described above onto the substrate, for example, methods such as spin coating, dip coating, and spray coating can be suitably used. Further, an unevenness may be formed on the surface using a spray coating method to impart an antiglare effect, and a hard coat such as a silica coating may be provided thereon. Furthermore, the conductive film of the present invention is formed by either spin coating or spray coating, and a solution containing silicon alkoxide or the like is spray coated thereon to provide a non-glare coating of a silica coating having irregularities on the surface. May be.
[0021]
A coating solution containing at least one element selected from the group consisting of Ti, Zr, Hf, V, Ta, Nb and Cr in the present invention and a sol of nitride fine particles composed of nitrogen is itself coated on a substrate. In order to be used as a liquid, when the coating liquid is an aqueous sol, a coating film can be obtained by drying at room temperature when a low-boiling organic solvent is added. Alternatively, when the coating solution is an organosol, a coating film can be obtained by drying at room temperature when a low-boiling organic solvent is used as it is.
[0022]
Further, when the coating solution is an aqueous sol, if a high boiling point solvent is added to the coating solution having a boiling point of 100 to 250 ° C., heat treatment is performed because the solvent remains in the coating film at room temperature drying. Alternatively, when the coating solution is an organosol, if a high-boiling solvent is used as it is, the solvent remains in the coating film at room temperature drying, so that heat treatment is performed. The upper limit of the heating temperature is determined by the softening point of glass or plastic used for the substrate. Considering this point, a preferable heating temperature range is 100 to 500 ° C.
[0023 ]
[0024 ]
[0025 ]
[0026]
In the present invention, over the conductive film made of a nitride of the element which is formed on a substrate in the manner described, by utilizing the interference of light can be formed low-reflectivity film. For example, when the substrate is glass (refractive index n = 1.52), the ratio of (refractive index of conductive film) / (refractive index of low refractive index film) is about 1 on the conductive film. When the low refractive index film having a thickness of .23 is formed, the reflectance can be reduced most. In order to reduce the reflectivity, it is preferable to reduce the reflectivity of 555 nm in the visible light region, but in practice it is preferable to determine the reflectivity appropriately in consideration of the reflective appearance. The thickness of such a low reflective film is preferably about 500 to 4000 mm.
[0027]
The low-refractive index film as the outermost layer of the two-layer low-reflective conductive film is formed using a solution comprising at least one selected from a solution containing MgF 2 sol and a solution containing Si alkoxide. be able to. Among these materials, MgF 2 is the lowest in terms of refractive index, and it is preferable to use a solution containing MgF 2 sol in order to reduce reflectivity. However, in terms of film hardness and scratch resistance, SiO 2 is used. A film containing the main component is preferred.
[0028]
Various solutions containing Si alkoxide for forming such a low refractive index film can be used. Si (OR) y · R ′ 4-y (y is 3 or 4, R and R ′ are alkyl groups) ) Or a liquid containing a partial hydrolyzate thereof is preferable. As the Si alkoxide, for example, monomers such as silicon ethoxide, silicon methoxide, silicon isopropoxide, silicon butoxide, or a polymer thereof can be preferably used.
[0029]
Si alkoxide can be used by dissolving in alcohol, ester, ether or the like. Hydrochloric acid, nitric acid, sulfuric acid, acetic acid, formic acid, maleic acid, hydrofluoric acid, aqueous ammonia solution or the like is added to the solution to add water. It can also be decomposed and used. The Si alkoxide is preferably contained at a concentration of 30% by weight or less based on the solvent. When the solid content is too large, the storage stability is deteriorated, so such a solid content is preferable.
[0030]
When MgF 2 is used, it is used as an MgF 2 sol dispersed as colloidal particles in a solvent such as water as in the case of the nitride fine particles. The concentration of MgF 2 in the dispersion is the same as in the case of nitride fine particles.
[0031]
Further, the coating solution for low refractive index film formation, as a binder in order to improve the strength of the film, Zr, Ti, Sn, and alkoxides such as Al, with the addition of these partial hydrolysates, ZrO 2 , TiO 2 , SnO 2 , Al 2 O 3 or the like may be precipitated simultaneously with MgF 2 or SiO 2 . Although the addition amount of these alkoxides varies depending on the type of alkoxide, it is preferable to add 40% by weight or less of each oxide as MgF 2 or SiO 2 in consideration of the film strength and refractive index. To determine the optimal amount.
[0032]
Further, a surfactant may be added to the coating solution in order to improve wettability with the substrate. Examples of the surfactant added include linear sodium alkylbenzene sulfonate and alkyl ether sulfate.
[0033]
The method for forming a low-reflective conductive film of the present invention can also be applied to a low-reflective conductive film due to a multilayer interference effect. As the configuration of the multilayer low-reflection film having antireflection performance, for example, λ is the wavelength of light to be antireflection, and the optical thickness is λ / 2−λ / 4 or λ / 4-λ / 4, two layers of low-reflectivity film, and medium refractive index layer-high refractive index layer-low refractive index layer from the substrate side with an optical thickness of λ / 4-λ / 2-λ / 4 of the low-reflective film formed of / 4, and the optical thickness λ / 2-λ / 2-λ / 2-2- A typical example is a four-layer low-reflective film formed at λ / 4.
[0034]
Note that the film containing nitride of at least one element selected from the group consisting of Ti, Zr, Hf, V, Ta, Nb and Cr of the present invention causes absorption over the entire visible light region by the nitride. It also contributes to the improvement of contrast and is excellent in low reflectivity.
[0035]
As a substrate for forming a conductive film formed by using a sol in which nitride fine particles composed of the above elements and nitrogen are dispersed and a low-reflective conductive film made of a silicon compound as a main component formed thereon. Various types of glass such as a cathode ray tube panel, a glass plate for a copying machine, a computer panel, a glass for a clean room, a CRT, or a front plate of a display device such as an LCD, and a plastic substrate can be used.
[0036]
【Example】
EXAMPLES The present invention will be described more specifically with reference to examples and comparative examples below, but the present invention is not limited to these examples. In the following examples and comparative examples, the use ratios and% are based on weight (% by weight). Moreover, the evaluation method of the film | membrane obtained by each Example and the comparative example is as follows.
[0037]
(1) Conductivity evaluation The surface resistance of the film surface was measured with a Loresta resistance measuring instrument (manufactured by Mitsubishi Chemical Corporation).
[0038]
(2) Scratch resistance After scratching the membrane surface 50 times under a 1 kg load using a scratch resistance measuring instrument (Lion Corporation 50-50), the scratched state of the surface was judged visually. The evaluation criteria were as follows: ○: no scratches were given, Δ: some scratches were made, ×: film peeling occurred in part.
[0039]
(3) Pencil hardness Under a load of 1 kg, the surface of the film was scanned with pencils of various hardnesses, and the pencil hardness at which scratches started to appear on the surface was visually determined as the pencil hardness of the film.
[0040]
(4) Luminous reflectance The luminous reflectance at 400 to 700 nm of the multilayer film was measured with a γ spectral reflectance spectrum measuring instrument.
[0041]
(5) Luminous transmittance The luminous transmittance at 380 to 780 nm was measured with a spectrophotometer U-3500 manufactured by Hitachi, Ltd.
[0042 ]
[0043]
[Example 1 ]
An aqueous solution of titanium trichloride (solid content 20%) was added to a solution adjusted to pH 10 with aqueous ammonia and kept at 50 ° C. to precipitate the hydroxide. This precipitate was washed, separated by filtration, and dried at 100 ° C. for 12 hours. This was fired at 650 ° C. for 3 hours in an ammonia atmosphere to obtain titanium nitride fine particles. The nitride fine particles were pulverized with a sand mill for 20 minutes. At this time, the average particle diameter of the fine particles in the liquid was 80 nm, and the specific resistance was 0.003 Ωcm. Thereafter, concentration was performed to obtain a liquid having a solid content of 5% (liquid B).
[0044]
Ethyl silicate was dissolved in ethanol, hydrolyzed with an aqueous hydrochloric acid solution, and diluted with ethanol so that the solid content was 5% in terms of SiO 2 (solution C). Liquid B and liquid C were mixed so that liquid B / liquid C = 8/2, and then irradiated with ultrasonic waves for 1 hour to obtain a liquid mixture (liquid D). A solution in which water: ethanol: methanol: propylene glycol monomethyl ether was in a ratio of 50: 42: 5: 3 was prepared (solution E). F liquid obtained by diluting D liquid with E liquid to a solid content of 2.0% was applied to the surface of a 14-inch CRT tube by spin coating, and heated at 180 ° C. for 30 minutes to give a thickness of 1500 mm. A conductive film was formed.
[0045]
[Example 2 ]
Zirconium oxychloride was added to a solution adjusted to pH 11 with aqueous ammonia and maintained at 50 ° C. to precipitate the hydroxide. This precipitate was washed, separated by filtration, dried at 100 ° C. for 12 hours, and then calcined at 750 ° C. for 3 hours in an ammonia atmosphere to obtain zirconium nitride fine particles. The nitride fine particles were pulverized with a sand mill for 25 minutes. At this time, the average particle diameter of the fine particles in the liquid was 92 nm, and the specific resistance was 0.005 Ωcm. Thereafter, concentration was performed to obtain a liquid having a solid content of 5% (liquid G).
[0046]
C liquid and G liquid were mixed so that C liquid / G liquid = 2/8, and then ultrasonic waves were irradiated for 2.3 hours to obtain a mixed liquid (H liquid). Liquid I diluted with liquid E to a solid content of 2.2% is applied to the surface of a 14-inch CRT by spin coating, and heated at 180 ° C. for 30 minutes to form a 1200-thick conductive film. Formed.
[0047]
[Example 3 ]
Hafnium oxychloride was added to a solution adjusted to pH 11 with aqueous ammonia and kept at 80 ° C. to precipitate the hydroxide. This precipitate was washed, separated by filtration, dried at 100 ° C. for 12 hours, calcined at 300 ° C. for 30 minutes in air, and further calcined at 800 ° C. for 3 hours in an ammonia atmosphere to obtain hafnium nitride fine particles. . The nitride fine particles were pulverized with a sand mill for 2.0 hours. At this time, the average particle diameter of the fine particles in the liquid was 96 nm and the specific resistance was 0.01 Ωcm. Thereafter, concentration was performed to obtain a liquid having a solid content of 5% (liquid J).
[0048]
C liquid and J liquid were mixed so that C liquid / J liquid = 1/9, and then irradiated with ultrasonic waves for 4.2 hours to obtain a mixed liquid (liquid K). Liquid L obtained by diluting liquid K with liquid E to a solid content of 2.2% was applied to the surface of a 14-inch CRT tube by spin coating, and heated at 180 ° C. for 30 minutes to a thickness of 1700 mm. A conductive film was formed.
[0049]
[Example 4 ]
Vanadium trichloride was added to a solution adjusted to pH 10 with aqueous ammonia and kept at 80 ° C. to precipitate the hydroxide. This precipitate was washed, separated by filtration, dried at 100 ° C. for 12 hours, calcined in air at 300 ° C. for 30 minutes, and further calcined in ammonia atmosphere at 850 ° C. for 3 hours to obtain vanadium nitride fine particles. . The nitride fine particles were pulverized by a sand mill for 4.2 hours. At this time, the average particle diameter of the fine particles in the liquid was 75 nm, and the specific resistance was 0.009 Ωcm. Thereafter, concentration was performed to obtain a liquid having a solid content of 5% (M liquid).
[0050]
C liquid and M liquid were mixed so that C liquid / M liquid = 1/9, and then irradiated with ultrasonic waves for 1.0 hour to obtain a mixed liquid (N liquid). The solution O obtained by diluting solution N with solution E to a solid content of 2.2% was applied to the surface of a 14-inch CRT by spin coating, heated at 180 ° C. for 30 minutes, and 1800 mm thick. A conductive film was formed.
[0051]
[Example 5 ]
Chromium chloride was added to a solution adjusted to pH 8.8 with aqueous ammonia and kept at 50 ° C. to precipitate the hydroxide. This precipitate was washed, separated by filtration, dried at 100 ° C. for 12 hours, and then calcined at 650 ° C. for 3 hours in an ammonia atmosphere to obtain chromium nitride fine particles. The nitride fine particles were pulverized by a sand mill for 1.8 hours. At this time, the average particle diameter of the fine particles in the liquid was 82 nm, and the specific resistance was 0.004 Ωcm. Thereafter, concentration was performed to obtain a liquid having a solid content of 5% (P liquid).
[0052]
C liquid and P liquid were mixed so that C liquid / P liquid = 2.5 / 7.5, and then irradiated with ultrasonic waves for 1.0 hour to obtain a mixed liquid (Q liquid). The solution R obtained by diluting solution Q with solution E to a solid content of 2.2% was applied to the surface of a 14-inch CRT tube by spin coating, heated at 180 ° C. for 30 minutes, and 1400 mm thick. A conductive film was formed.
[0053]
[Example 6 ]
Niobium oxychloride was added to a solution adjusted to pH 12 with ammonia and maintained at 50 ° C. to precipitate a hydroxide. This precipitate was washed, separated by filtration, dried at 100 ° C. for 12 hours, and then calcined at 900 ° C. for 5 hours in an ammonia atmosphere to obtain niobium nitride fine particles. The nitride fine particles were pulverized with a sand mill for 3.5 hours. At this time, the average particle diameter of the fine particles in the liquid was 68 nm, and the specific resistance was 0.002 Ωcm. Thereafter, concentration was performed to obtain a liquid having a solid content of 5% (S liquid).
[0054]
C liquid and S liquid were mixed so that C liquid / S liquid = 1.5 / 8.5, and then irradiated with ultrasonic waves for 1.0 hour to obtain a mixed liquid (T liquid). The solution U obtained by diluting solution T with solution E to a solid content of 2.7% was applied to the surface of a 14-inch CRT by spin coating and heated at 180 ° C. for 30 minutes to a thickness of 1900 mm. A conductive film was formed.
[0055]
[Example 7 ]
Tantalum pentaisopropoxide was added to a solution adjusted to pH 3 with hydrochloric acid and kept at 50 ° C. to precipitate the hydroxide. This precipitate was washed, separated by filtration, dried at 100 ° C. for 12 hours, and then calcined at 700 ° C. for 5 hours in an ammonia atmosphere to obtain tantalum nitride fine particles. The nitride fine particles were pulverized with a sand mill for 3.5 hours. At this time, the average particle diameter of the fine particles in the liquid was 59 nm and the specific resistance was 0.005 Ωcm. Thereafter, concentration was performed to obtain a liquid having a solid content of 5% (liquid V).
[0056]
C liquid and V liquid were mixed so that C liquid / V liquid = 1/9, and then an ultrasonic wave was applied for 1.0 hour to obtain a mixed liquid (W liquid). The solution X obtained by diluting solution W with solution E to a solid content of 2.8% was applied to the surface of a 14-inch cathode ray tube panel by spin coating, heated at 180 ° C. for 30 minutes to have a thickness of 1200 mm. A conductive film was formed.
[0057]
[Example 8 ]
A solution obtained by diluting solution B to 1.5% with solution E was applied to the surface of a 14-inch CRT tube by spin coating, and dried at 60 ° C. for 10 minutes. Thereafter, a liquid obtained by diluting C liquid to 1.0% with E liquid was applied onto this film by spin coating, and baked at 180 ° C. for 20 minutes to form a low reflective conductive film having a thickness of 2000 mm.
[0058]
[Example 9 ]
A low-reflective conductive film having a thickness of 2400 mm was formed in the same manner as in Example 8 except that the B liquid in Example 8 was changed to the G liquid.
[0059]
[Example 10 ]
A low-reflective conductive film having a thickness of 2300 mm was formed in the same manner as in Example 8 except that the B liquid in Example 8 was changed to the J liquid.
[0060]
[Example 11 ]
A 1900-thick low-reflective conductive film was formed in the same manner as in Example 8 except that the B solution in Example 8 was changed to the S solution.
[0061]
[Example 12 ]
A low-reflective conductive film having a thickness of 2300 mm was formed in the same manner as in Example 8 except that the B liquid in Example 8 was changed to the P liquid.
[0062 ]
[0063]
[Example 13 ]
3 g of water was added to 50 g of ethanol, 0.05 mol of MgCl 2 and 0.033 mol of BF 3 · C 2 H 5 OH were added and completely dissolved, and then placed in a flask equipped with a reflux condenser. For 1 hour to obtain a MgF 2 sol. This sol solution was diluted with ethanol so that the solid content in terms of fluoride would be 5%, and mixed with solution C so as to have a weight ratio of SiO 2 : MgF 2 = 4: 6 (solution X). A low reflective conductive film having a thickness of 2200 mm was formed in the same manner as in Example 12 except that the P solution in Example 12 was changed to the X solution.
[0064]
[Example 14 ]
Tin chloride and antimony chloride were mixed so that Sb / Sn = 85/15, and this was adjusted to pH 10 with aqueous ammonia and added to a solution maintained at 50 ° C. to precipitate the hydroxide. The precipitate was washed, filtered, dried at 100 ° C. for 12 hours, and then fired in the air at 650 ° C. for 3 hours to obtain antimony-doped tin oxide fine particles. The fine particles were pulverized with a sand mill for 2 hours. At this time, the average particle diameter of the fine particles in the liquid was 65 nm, and the specific resistance was 2.3 Ωcm. Thereafter, concentration was performed to obtain a liquid having a solid content of 5%.
[0065]
A solution obtained by diluting this solution with solution E to a solid content of 1.2% was spin-coated on the surface of a 14-inch cathode ray tube panel to form a 1200-thick conductive film. Further, a liquid obtained by diluting C liquid to 1.0% with E liquid was applied onto this film by spin coating, and baked at 180 ° C. for 20 minutes to form a two-layer film.
[0066]
Examples 1 to 13 above are examples, and example 14 is a comparative example. Table 1 summarizes the evaluation results of the films of each Example and Comparative Example.
[0067]
[ Table 1 ]
Figure 0003661244
[0068]
【The invention's effect】
According to the present invention, it is possible to provide an excellent conductive film efficiently by a simple method such as spraying or spin coating. Since the present invention provides a conductive film made of nitride, electromagnetic waves can be easily shielded, and the conductive film can be manufactured at a relatively low cost. In particular, the present invention can be sufficiently applied to a large-area substrate such as a panel face of a CRT, and can be mass-produced. Therefore, the industrial value is very high.

Claims (4)

Ti、Zr、Hf、V、Ta、NbおよびCrからなる群から選ばれる少なくとも1種の元素と窒素よりなる窒化物の微粒子が分散したゾルを含み、かつ銀コロイドを含まない塗布液を基体上に塗布し、加熱することを特徴とする導電膜の形成方法であって、前記窒化物微粒子の比抵抗が2Ωcm以下である導電膜の形成方法。Ti, substrate Zr, Hf, V, Ta, looking containing a sol in which fine particles are dispersed in at least one element and a nitride consisting of nitrogen selected from the group consisting of Nb and Cr, a coating solution containing no and the silver colloid A method for forming a conductive film, wherein the conductive film is applied and heated, wherein the specific resistance of the nitride fine particles is 2 Ωcm or less. 窒化物微粒子の平均粒径が、1000Å以下である請求項1に記載の導電膜の形成方法。  The method for forming a conductive film according to claim 1, wherein the average particle diameter of the nitride fine particles is 1000 μm or less. 塗布液が、珪素化合物を含む請求項1または2に記載の導電膜の形成方法。  The method for forming a conductive film according to claim 1, wherein the coating solution contains a silicon compound. 請求項1〜3のいずれかに記載の導電膜の形成方法により導電膜を形成した後、前記導電膜上に、該導電膜より低屈折率の膜を形成することを特徴とする低反射性導電膜の形成方法。  After forming a conductive film by the conductive film formation method according to any one of claims 1 to 3, a film having a lower refractive index than the conductive film is formed on the conductive film. A method for forming a conductive film.
JP28098995A 1995-10-27 1995-10-27 Method for forming conductive film and low reflective conductive film Expired - Fee Related JP3661244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28098995A JP3661244B2 (en) 1995-10-27 1995-10-27 Method for forming conductive film and low reflective conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28098995A JP3661244B2 (en) 1995-10-27 1995-10-27 Method for forming conductive film and low reflective conductive film

Publications (2)

Publication Number Publication Date
JPH09129130A JPH09129130A (en) 1997-05-16
JP3661244B2 true JP3661244B2 (en) 2005-06-15

Family

ID=17632713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28098995A Expired - Fee Related JP3661244B2 (en) 1995-10-27 1995-10-27 Method for forming conductive film and low reflective conductive film

Country Status (1)

Country Link
JP (1) JP3661244B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101553439B1 (en) * 2013-04-30 2015-10-01 주식회사 잉크테크 Method for manufacturing blackening conductive pattern

Also Published As

Publication number Publication date
JPH09129130A (en) 1997-05-16

Similar Documents

Publication Publication Date Title
US5085888A (en) Method for forming thin mgf2 film and low-reflection film
JP3697760B2 (en) Coating liquid
JP3473272B2 (en) Coating liquid for conductive film formation and conductive film
JP3219450B2 (en) Method for producing conductive film, low reflection conductive film and method for producing the same
JPWO2003049123A1 (en) Conductive film, method for producing the same, and substrate having the same
JPH05107403A (en) High refractivity conductive film or low reflective anti-static film and manufacture thereof
JP3661244B2 (en) Method for forming conductive film and low reflective conductive film
JP3288417B2 (en) CRT panel having low reflection conductive film formed thereon and method of manufacturing the same
JP3514192B2 (en) Method for forming low reflective conductive film
JP3308511B2 (en) Method of forming CRT panel with conductive film
JP2892250B2 (en) Paint for forming antistatic / high refractive index film, transparent laminate with antistatic / antireflective film and display device
JPH0854502A (en) Coating liquid for forming colored low resistance film, colored low resistance film and glass product having colored low resistance film
JP3979967B2 (en) Manufacturing method of low reflection low resistance film
JP3315673B2 (en) CRT with conductive film
JPH05166423A (en) Manufacture of conductive film and low reflective conductive film
JPH115929A (en) Coating liquid for use in forming electrically conductive film, method for forming electrically conductive film, and method for forming electrically conductive film of low reflectivity
JPH08290943A (en) Coating liquid for forming electroconductive film, production of electroconductive film, electroconductive film and glass article having electroconductive film formed thereon
JP3484903B2 (en) Coating liquid for forming low-resistance film, low-resistance film and method for manufacturing the same, and low-reflection low-resistance film and method for manufacturing the same
JPH1036975A (en) Low resistance film or coating liquid for low refractive index film formation, and manufacture of low resistance film or low reflective and low refractive index film
JPH0687632A (en) Low-reflection conductive film having antidazzle effect and its production
JPH10147886A (en) Conductive film forming coating solution, conductive film and its production
JPH0611602A (en) Low-refractive-index film, low-reflectance film, low-reflectance conductive film and low-reflectance glare-proof conductive film
JPH05132341A (en) Production of electrically conductive film and electrically conductive film with low reflectance
JPH09188545A (en) Electroconductive film, its production and glass article
JP2005232272A (en) Coating liquid for forming conductive film and manufacturing method of low reflection conductive film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050314

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees