JP3302186B2 - Substrate with transparent conductive film, method for producing the same, and display device provided with the substrate - Google Patents

Substrate with transparent conductive film, method for producing the same, and display device provided with the substrate

Info

Publication number
JP3302186B2
JP3302186B2 JP20897294A JP20897294A JP3302186B2 JP 3302186 B2 JP3302186 B2 JP 3302186B2 JP 20897294 A JP20897294 A JP 20897294A JP 20897294 A JP20897294 A JP 20897294A JP 3302186 B2 JP3302186 B2 JP 3302186B2
Authority
JP
Japan
Prior art keywords
transparent conductive
substrate
particle layer
fine particle
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20897294A
Other languages
Japanese (ja)
Other versions
JPH0877832A (en
Inventor
井 俊 晴 平
松 通 郎 小
Original Assignee
触媒化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16565215&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3302186(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 触媒化成工業株式会社 filed Critical 触媒化成工業株式会社
Priority to JP20897294A priority Critical patent/JP3302186B2/en
Publication of JPH0877832A publication Critical patent/JPH0877832A/en
Application granted granted Critical
Publication of JP3302186B2 publication Critical patent/JP3302186B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の技術分野】本発明は、透明導電性被膜付基材お
よび該基材を前面板として備えた表示装置に関し、さら
に詳しくは反射防止性能に優れ、しかも電磁遮蔽効果に
優れた透明導電性被膜付基材、その製造方法およびこの
ような透明導電性被膜付基材で構成された前面板を備え
た表示装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a substrate having a transparent conductive film and a display device having the substrate as a front plate, and more particularly, to a transparent conductive film having excellent antireflection performance and excellent electromagnetic shielding effect. The present invention relates to a coated substrate, a method for manufacturing the same, and a display device including a front plate formed of such a transparent conductive coated substrate.

【0002】[0002]

【発明の技術的背景】従来から、陰極線管、蛍光表示
管、液晶表示板などの表示パネルのような透明基材の表
面の帯電防止および反射防止を目的として、これらの表
面に帯電防止機能および反射防止機能を有する透明被膜
を形成することが行われている。
BACKGROUND OF THE INVENTION Hitherto, for the purpose of preventing the surface of a transparent substrate such as a display panel such as a cathode ray tube, a fluorescent display tube, and a liquid crystal display panel from being charged and anti-reflective, an antistatic function has been provided on these surfaces. 2. Description of the Related Art A transparent film having an antireflection function has been formed.

【0003】このような帯電防止と反射防止の機能を備
えた透明基材を得る方法として、透明基材の表面に、ま
ず、帯電防止機能を有する高屈折率の導電性被膜を形成
し、この被膜の上に、さらにこの被膜より低屈折率の透
明被膜を形成する方法が知られている。
As a method for obtaining a transparent substrate having such antistatic and antireflection functions, a conductive film having a high refractive index having an antistatic function is first formed on the surface of a transparent substrate. There is known a method of forming a transparent film having a lower refractive index than this film on the film.

【0004】たとえば、特開平5−290634号公報
には、基材上に透明導電性被膜を形成し、次いでこの透
明導電性被膜上に、この透明導電性被膜よりも屈折率の
低い透明被膜を形成する透明導電性被膜付基材の製造方
法、およびこのような方法で得られた帯電防止・反射防
止膜付基材が開示されている。このうち、前記透明導電
性被膜は、導電性物質としてアンチモンがドープされた
酸化錫の微粉末を含む塗布液から形成されている。
For example, JP-A-5-290634 discloses a method in which a transparent conductive film is formed on a substrate, and then a transparent film having a lower refractive index than the transparent conductive film is formed on the transparent conductive film. A method for producing a substrate with a transparent conductive film to be formed and a substrate with an antistatic / antireflection film obtained by such a method are disclosed. Of these, the transparent conductive film is formed from a coating solution containing fine powder of tin oxide doped with antimony as a conductive substance.

【0005】また、特開平5−341103号公報に
は、導電性物質を含む電導性塗膜を基材上に形成し、こ
の電導性塗膜上に特定の珪素化合物から誘導される反射
防止膜を形成することによって得られた反射防止性、帯
電防止性に優れた導電性被膜付基材が開示されている。
また、この公報には、前記導電性物質として、アルカリ
金属、アルカリ土類金属、遷移金属などの過塩素酸塩、
チオシアン塩、トリフルオロメチル硫酸塩、ハロゲン化
塩などの無機化合物からなる電解質、または酸化錫系微
粒子、酸化インジウム系微粒子などのような透明導電性
無機酸化物微粒子が例示されているが、導電性無機酸化
物微粒子が好ましいと記載されている。
Japanese Patent Application Laid-Open No. 5-341103 discloses a conductive coating containing a conductive substance formed on a base material, and an antireflection coating derived from a specific silicon compound on the conductive coating. Discloses a substrate with a conductive coating having excellent antireflection properties and antistatic properties obtained by forming the same.
Further, in this publication, as the conductive material, perchlorates such as alkali metals, alkaline earth metals, and transition metals;
Examples of the electrolyte include inorganic electrolytes such as thiocyanate, trifluoromethyl sulfate, and halide salts, and transparent conductive inorganic oxide fine particles such as tin oxide-based fine particles and indium oxide-based fine particles. It is stated that inorganic oxide fine particles are preferred.

【0006】ところで、最近、陰極線管(CRT)など
から放出される電磁波が人体に及ぼす影響が問題とさ
れ、従来の帯電防止、反射防止の機能に加えてこれらの
電磁波および電磁波の放出に伴って形成される電磁場を
遮蔽することが望まれている。
[0006] Recently, the effect of electromagnetic waves emitted from a cathode ray tube (CRT) or the like on the human body has become a problem, and in addition to the conventional antistatic and antireflection functions, these electromagnetic waves and the emission of the electromagnetic waves are accompanied. It is desired to shield the electromagnetic field formed.

【0007】これらを遮蔽する方法の一つとして、陰極
線管などの表示パネルの前面板の表面に、上述した帯電
防止性被膜と同様の導電性被膜を形成する方法が知られ
ている。
As one of the methods of shielding these, a method of forming a conductive film similar to the above-described antistatic film on the surface of a front panel of a display panel such as a cathode ray tube is known.

【0008】しかし、従来の帯電防止のみを目的とした
導電性被膜は、少なくとも105Ω/□程度の表面抵抗
を有していれば充分であるのに対し、電磁遮蔽用の導電
性被膜は、102〜104Ω/□のような低い表面抵抗を
有することが必要である。
However, a conventional conductive film for the purpose of preventing static electricity only needs to have a surface resistance of at least about 10 5 Ω / □, whereas a conductive film for electromagnetic shielding is sufficient. It is necessary to have a low surface resistance such as 10 2 to 10 4 Ω / □.

【0009】このように表面抵抗の低い導電性被膜を従
来のSbドープ酸化錫またはSnドープ酸化インジウム
のような導電性酸化物を含む塗布液を用いて形成しよう
とすると、従来の帯電防止性被膜の場合よりも膜厚を厚
くしなければならない。
When an attempt is made to form a conductive film having a low surface resistance using a conventional coating solution containing a conductive oxide such as Sb-doped tin oxide or Sn-doped indium oxide, the conventional antistatic coating is required. In this case, the film thickness must be larger than in the case of (1).

【0010】そこで、透明基材の表面に導電性物質とし
て、このようなSbドープ酸化錫またはSnドープ酸化
インジウムを含む塗布液を用いて電磁遮蔽効果を示す導
電性被膜を形成し、さらにその上に低屈折率の被膜を積
層して形成して、電磁遮蔽と反射防止の機能を有する透
明積層被膜を形成しようとすると、上述したような塗布
液から形成された導電性被膜は1.5〜2.0という高
屈折率を有しているため、その上に積層される低屈折率
の被膜と合わせて反射防止効果を発現するように導電性
被膜の光学的膜厚を設計するためには、導電性被膜の実
際の膜厚を100〜200nm程度にしなければならな
い。しかし、この程度の膜厚では電磁遮蔽効果を発揮す
るのに充分な表面抵抗を得ることはできない。
Therefore, a conductive film having an electromagnetic shielding effect is formed on the surface of the transparent substrate using a coating solution containing such Sb-doped tin oxide or Sn-doped indium oxide as a conductive material, and further formed thereon. In order to form a transparent laminated film having a function of electromagnetic shielding and anti-reflection, the conductive film formed from the coating solution as described above is 1.5 to Since it has a high refractive index of 2.0, it is necessary to design the optical film thickness of the conductive film so as to exhibit an antireflection effect in combination with a low refractive index film laminated thereon. The actual thickness of the conductive film must be about 100 to 200 nm. However, with such a film thickness, it is not possible to obtain a sufficient surface resistance to exhibit the electromagnetic shielding effect.

【0011】上述した特開平5−290634号公報お
よび特開平5−341103号公報でも、導電性被膜の
膜厚は、たとえば0.1μM(100nm)程度と薄
く、したがって、積層被膜の表面抵抗は107Ω/□程
度であり、電磁遮蔽の機能を有するとはいい難い。
[0011] Also in the above-mentioned JP-A-5-290634 and JP-A-5-341103, the thickness of the conductive film is as small as, for example, about 0.1 μM (100 nm). It is about 7 Ω / □, and it is difficult to say that it has a function of electromagnetic shielding.

【0012】[0012]

【発明の目的】本発明は、上記事情に鑑みてなされたも
ので、反射防止性能に優れ、しかも102 〜104 Ω/
□の表面抵抗を有し、電磁遮蔽効果に優れる透明導電性
被膜付基材、その製造方法、およびこのような透明導電
性被膜付基材で構成された前面板を備えた表示装置を提
供することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, has excellent antireflection performance, and has a resistance of 10 2 to 10 4 Ω /.
Provided is a substrate with a transparent conductive film having a surface resistance of □ and excellent in electromagnetic shielding effect, a method for producing the same, and a display device provided with a front plate composed of such a substrate with a transparent conductive film. It is intended to be.

【0013】[0013]

【発明の概要】本発明に係る透明導電性被膜付基材は、
平均粒径2〜200nmの金属微粒子からなる透明導電
性微粒子層が基材上に形成され、前記微粒子層上に該微
粒子層よりも屈折率の低い透明被膜が形成されているこ
とを特徴としている。
SUMMARY OF THE INVENTION The substrate with a transparent conductive film according to the present invention comprises:
A transparent conductive fine particle layer made of metal fine particles having an average particle diameter of 2 to 200 nm is formed on a substrate, and a transparent film having a lower refractive index than the fine particle layer is formed on the fine particle layer. .

【0014】本発明に係る透明導電性被膜付基材の製造
方法は、平均粒径が2〜200nmの金属微粒子を水お
よび/または有機溶媒中に分散してなる透明導電性微粒
子層形成用塗布液を、基材上に塗布・乾燥して透明導電
性微粒子層を形成し、次いで前記微粒子層上に該微粒子
層よりも屈折率の低い透明被膜を形成することを特徴と
している。
The method for producing a substrate with a transparent conductive film according to the present invention is a method for forming a transparent conductive fine particle layer comprising dispersing metal fine particles having an average particle size of 2 to 200 nm in water and / or an organic solvent. The liquid is applied on a substrate and dried to form a transparent conductive fine particle layer, and then a transparent film having a lower refractive index than the fine particle layer is formed on the fine particle layer.

【0015】本発明に係る表示装置は、上記のような透
明導電性被膜付基材で構成された前面板を備えているこ
とを特徴としている。
[0015] A display device according to the present invention is characterized in that it has a front plate made of the above-mentioned substrate with a transparent conductive film.

【0016】[0016]

【発明の具体的説明】透明導電性被膜付基材 まず、本発明に係る透明導電性被膜付基材について具体
的に説明する。
DETAILED DESCRIPTION OF THE INVENTION Substrate with a transparent conductive film First, the substrate with a transparent conductive film according to the present invention will be specifically described.

【0017】本発明に係る透明導電性被膜付基材では、
平均粒径2〜200nm、好ましくは5〜100nmの
金属微粒子からなる透明導電性微粒子層が、ガラス、プ
ラスチック、金属、セラミックなどからなる平板、立体
物、フィルムなどの基材上に形成されている。
In the substrate with a transparent conductive film according to the present invention,
A transparent conductive fine particle layer made of metal fine particles having an average particle size of 2 to 200 nm, preferably 5 to 100 nm is formed on a substrate such as a flat plate, a three-dimensional object, or a film made of glass, plastic, metal, ceramic, or the like. .

【0018】本発明で用いられる金属微粒子としては、
平均粒径が上記範囲内にあれば特に制限はなく、例えば
Au、Ag、Pt、Pd、Rh、Cu、Fe、Ni、C
o、Sn、In、Ti、Al、Taなどの金属微粒子が
挙げられる。
The metal fine particles used in the present invention include:
There is no particular limitation as long as the average particle size is within the above range. For example, Au, Ag, Pt, Pd, Rh, Cu, Fe, Ni, C
fine particles of metal such as o, Sn, In, Ti, Al, and Ta.

【0019】これら金属微粒子の平均粒径が200nm
を越える場合には、金属による光の吸収が大きくなり、
このために粒子層の光透過率が低下すると同時にヘーズ
が大きくなる。このような被膜付基材を、例えば陰極線
管の前面板として用いると、表示画像の解像度が低下す
る。
The average particle diameter of these metal fine particles is 200 nm.
If it exceeds, the absorption of light by the metal increases,
For this reason, the light transmittance of the particle layer is reduced, and at the same time, the haze is increased. When such a coated substrate is used, for example, as a front plate of a cathode ray tube, the resolution of a displayed image is reduced.

【0020】また、これら金属微粒子の平均粒径が2n
m未満の場合には粒子層の表面抵抗が急激に大きくなる
ため、本発明の目的を達成しうる程度の低抵抗値を有す
る被膜を得ることができない。
The average particle diameter of these metal fine particles is 2n.
If it is less than m, the surface resistance of the particle layer increases rapidly, and it is not possible to obtain a coating having a low resistance enough to achieve the object of the present invention.

【0021】本発明では、透明導電性微粒子層は、平均
粒径が上記範囲内にある金属微粒子のみで構成されてい
てもよく、また、このような金属微粒子に加えて金属微
粒子以外の導電性微粒子、少量の添加剤、例えば有機又
は無機の染料または顔料を含有していてもよい。
In the present invention, the transparent conductive fine particle layer may be composed of only metal fine particles having an average particle diameter within the above range, and in addition to such metal fine particles, a conductive material other than metal fine particles may be used. It may contain fine particles, small amounts of additives such as organic or inorganic dyes or pigments.

【0022】金属微粒子以外の導電性微粒子としては、
公知の透明導電性無機酸化物微粒子あるいはカーボンな
どの着色導電性微粒子を用いることができる。透明導電
性無機酸化物微粒子としては、例えば酸化錫、Sb、F
またはPがドーピングされた酸化錫、酸化インジウム、
SnまたはFがドーピングされた酸化インジウム、酸化
アンチモン、低次酸化チタンなどが挙げられる。
Examples of the conductive fine particles other than the metal fine particles include:
Known transparent conductive inorganic oxide fine particles or colored conductive fine particles such as carbon can be used. Examples of the transparent conductive inorganic oxide fine particles include tin oxide, Sb, F
Or tin oxide, indium oxide doped with P,
Examples thereof include indium oxide, antimony oxide, and lower titanium oxide doped with Sn or F.

【0023】透明導電性微粒子層が金属微粒子以外の導
電性微粒子を含有する場合、前記金属微粒子と同様に、
これらの導電性微粒子の平均粒径は2〜200nmであ
ることが好ましい。
When the transparent conductive fine particle layer contains conductive fine particles other than metal fine particles, similar to the above metal fine particles,
The average particle size of these conductive fine particles is preferably 2 to 200 nm.

【0024】特に透明導電性微粒子層に金属微粒子に加
えて透明導電性無機酸化物微粒子を含有させると、透明
導電性微粒子層を金属微粒子のみで構成した場合に比較
して透明性に優れた透明導電性微粒子層を基材上に形成
することができる。また、このように透明導電性微粒子
層に金属微粒子以外の導電性微粒子を含有させた場合に
は、透明導電性微粒子層を高価な金属微粒子のみで構成
した場合に比較して安価な透明導電性被膜付基材を製造
することができる。
In particular, when the transparent conductive fine particle layer contains transparent conductive inorganic oxide fine particles in addition to the metal fine particles, the transparent conductive fine particle layer has excellent transparency compared to the case where the transparent conductive fine particle layer is composed of only the metal fine particles. The conductive fine particle layer can be formed on the substrate. In addition, when the transparent conductive fine particle layer contains conductive fine particles other than metal fine particles as described above, the transparent conductive fine particle layer is less expensive than the case where the transparent conductive fine particle layer is composed of only expensive metal fine particles. A coated substrate can be manufactured.

【0025】これら透明導電性微粒子層は、導電性微粒
子のバインダーとして作用するマトリックスを含んでい
てもよい。このようなマトリックスとしては、公知のマ
トリックスを採用することができ、たとえばアルコキシ
シランなどの有機珪素化合物を加水分解して得られる重
縮合物から得られるシリカなどが挙げられる。また、マ
トリックスとして塗料用合成樹脂を用いることもでき
る。
These transparent conductive fine particle layers may include a matrix that functions as a binder for the conductive fine particles. As such a matrix, a known matrix can be employed, and examples thereof include silica obtained from a polycondensate obtained by hydrolyzing an organosilicon compound such as alkoxysilane. Further, a synthetic resin for paint can be used as the matrix.

【0026】透明導電性微粒子層に含有される金属微粒
子以外の導電性微粒子およびマトリックスの量は、帯電
防止能のみを付与する場合、電磁遮蔽能をも付与する場
合に応じて、1010Ω/□以下の表面抵抗が得られる範
囲内で任意に調整され、また、それぞれの種類、透明導
電性微粒子層に含有される金属微粒子の金属種、平均粒
径、透明導電性微粒子層の厚さ、透明導電性微粒子層上
に形成される透明被膜の材質、厚さに応じても異なり、
一概に特定できるものではない。しかし、電磁遮蔽効果
が発現できる102〜104Ω/□の表面抵抗を有する透
明導電性被膜付基材を得る場合には、透明導電性微粒子
層に含まれている金属微粒子以外の導電性微粒子は金属
微粒子1重量部当たり、4重量部以下であることが望ま
しく、またマトリックスの含有量は全導電性微粒子1重
量部当たり0.2重量部以下であることが望ましい。
The amount of the conductive fine particles other than the metal fine particles and the matrix contained in the transparent conductive fine particle layer is determined to be 10 10 Ω / cm depending on whether only the antistatic function is provided or the electromagnetic shielding function is provided. □ Arbitrarily adjusted within the range where the following surface resistance can be obtained, and each type, metal type of metal fine particles contained in the transparent conductive fine particle layer, average particle diameter, thickness of the transparent conductive fine particle layer, It depends on the material and thickness of the transparent coating formed on the transparent conductive fine particle layer,
It cannot be specified unambiguously. However, when obtaining a substrate with a transparent conductive film having a surface resistance of 10 2 to 10 4 Ω / □ capable of exhibiting an electromagnetic shielding effect, the conductive material other than the metal fine particles contained in the transparent conductive fine particle layer is required. The fine particles are desirably 4 parts by weight or less per 1 part by weight of metal fine particles, and the content of the matrix is desirably 0.2 parts by weight or less per 1 part by weight of all the conductive fine particles.

【0027】透明導電性微粒子層の膜厚は、この透明導
電性微粒子層の屈折率が、通常、1.6〜2.5である
ことを考慮すると、透明導電性被膜付基材が優れた反射
防止効果を発揮するためには50〜200nmの範囲に
あることが望ましい。
The film thickness of the transparent conductive fine particle layer is excellent in consideration of the fact that the refractive index of the transparent conductive fine particle layer is usually 1.6 to 2.5. In order to exhibit the antireflection effect, it is desirable that the thickness be in the range of 50 to 200 nm.

【0028】上記のような透明導電性微粒子層を有する
透明導電性被膜付基材は、1010Ω/□以下の広い範囲
の表面抵抗を有しており、このうち、102〜104Ω/
□の表面抵抗を有する透明導電性被膜付基材は、電磁遮
蔽効果に優れている。したがって、この102〜104Ω
/□の表面抵抗を有する透明導電性被膜付基材で陰極線
管の前面板などを構成した場合、これにより、従来、前
面板などから放出された電磁波、およびこのような電磁
波の放出に伴って生じる電磁場を遮蔽することができ
る。
The substrate with a transparent conductive film having the above-described transparent conductive fine particle layer has a wide range of surface resistance of 10 10 Ω / □ or less, and among them, 10 2 to 10 4 Ω. /
The substrate with a transparent conductive film having a surface resistance of □ has an excellent electromagnetic shielding effect. Therefore, this 10 2 to 10 4 Ω
When the front plate or the like of a cathode ray tube is composed of a substrate having a transparent conductive film having a surface resistance of / □, the electromagnetic wave emitted from the front plate or the like, and the emission of such an electromagnetic wave, The resulting electromagnetic field can be shielded.

【0029】本発明に係る透明導電性被膜付基材は、上
記透明導電性微粒子層上にさらにこの微粒子層よりも屈
折率の低い透明被膜が形成されている。この透明被膜
は、例えば上記マトリックスと同様、被膜形成後の屈折
率が1.45のシリカなどで形成することができる。ま
た、この透明被膜は、フッ化マグネシウムなどの低屈折
率材料で構成された微粒子、さらに必要に応じて、透明
被膜の透明度および反射防止性能を阻害しない程度に少
量の導電性微粒子および/または添加剤、例えば染料ま
たは顔料を含んでいてもよい。
In the substrate with a transparent conductive film according to the present invention, a transparent film having a lower refractive index than the fine particle layer is further formed on the transparent conductive fine particle layer. This transparent film can be formed of, for example, silica having a refractive index of 1.45 after the film is formed, similarly to the matrix. The transparent coating is made of fine particles composed of a material having a low refractive index such as magnesium fluoride, and, if necessary, a small amount of conductive fine particles and / or added to such an extent that the transparency and antireflection performance of the transparent coating are not impaired. Agents such as dyes or pigments may be included.

【0030】上記のような透明被膜は、透明導電性微粒
子層よりも屈折率が小さく、反射防止性能に優れた透明
導電性被膜付基材を提供する上で充分な大きさの透明導
電性微粒子層との屈折率差を有している。
The transparent coating as described above has a refractive index smaller than that of the transparent conductive fine particle layer, and is sufficiently large to provide a substrate with a transparent conductive coating excellent in antireflection performance. It has a refractive index difference from the layer.

【0031】この透明被膜の膜厚は、透明導電性被膜付
基材が優れた反射防止効果を発揮するためには100〜
300nmの範囲にあることが望ましい。本発明に係る
透明導電性被膜付基材は、上記のような透明導電性微粒
子層と透明被膜とを備え、基材上に透明導電性微粒子層
が形成され、この透明導電性微粒子層上に透明被膜が形
成されており、電磁遮蔽をする上で必要な102〜104
Ω/□の表面抵抗を有し、かつ可視光領域および近赤外
領域で充分な反射防止性能を有するように調整すること
が可能である。このように表面抵抗および反射防止性能
が調整された透明導電性被膜付基材を、電磁波が放出さ
れる陰極線管などの表示装置の前面板に用いると、電磁
波、および電磁波の放出に伴って生じる電磁場を遮蔽す
ることができる上、前面板からの反射光が防止できる。
The thickness of the transparent coating is preferably 100 to 100% for the substrate with a transparent conductive coating to exhibit an excellent antireflection effect.
It is desirable to be in the range of 300 nm. The substrate with a transparent conductive film according to the present invention includes a transparent conductive fine particle layer and a transparent coating as described above, a transparent conductive fine particle layer is formed on the substrate, and the transparent conductive fine particle layer is formed on the transparent conductive fine particle layer. and a transparent film is formed, 2 10 necessary for electromagnetic shielding 10 4
It can be adjusted to have a surface resistance of Ω / □ and to have sufficient antireflection performance in the visible light region and the near infrared region. When a substrate with a transparent conductive film whose surface resistance and antireflection performance are adjusted as described above is used for a front plate of a display device such as a cathode ray tube from which an electromagnetic wave is emitted, the electromagnetic wave is generated with the emission of the electromagnetic wave. Electromagnetic fields can be shielded, and reflected light from the front panel can be prevented.

【0032】透明導電性被膜付基材の製造方法 次いで、上記のような本発明に係る透明導電性被膜付基
材の製造方法について説明する。
Method for Producing a Substrate with a Transparent Conductive Film Next, a method for producing the substrate with a transparent conductive film according to the present invention as described above will be described.

【0033】上記のような透明導電性被膜付基材は、基
材上に平均粒径2〜200nmの金属微粒子からなる透
明導電性微粒子層を形成し、次いでこの微粒子層上に該
微粒子層よりも屈折率の低い透明被膜を形成することに
よって製造される。
In the substrate with a transparent conductive film as described above, a transparent conductive fine particle layer composed of metal fine particles having an average particle size of 2 to 200 nm is formed on the substrate, and then the fine particle layer is formed on this fine particle layer. Is also produced by forming a transparent film having a low refractive index.

【0034】上記のような透明導電性微粒子層は、基材
上に平均粒径が2〜200nm、好ましくは5〜100
nmの金属微粒子を水および/または有機溶媒中に分散
してなる透明導電性微粒子層形成用塗布液を塗布・乾燥
することによって形成されうる。
The transparent conductive fine particle layer as described above has an average particle size of 2 to 200 nm, preferably 5 to 100 nm on the substrate.
It can be formed by applying and drying a coating liquid for forming a transparent conductive fine particle layer formed by dispersing metal fine particles of nm in water and / or an organic solvent.

【0035】前記透明導電性微粒子層形成用塗布液中に
は、必要に応じて上述したような金属微粒子以外の導電
性微粒子および/またはマトリックス形成成分、さらに
必要に応じて少量の添加剤、例えば染料または顔料を含
んでいる。
In the coating liquid for forming the transparent conductive fine particle layer, if necessary, conductive fine particles other than the above-mentioned metal fine particles and / or matrix forming components, and if necessary, a small amount of additives, for example, Contains dyes or pigments.

【0036】このうち、導電性微粒子については、金属
微粒子を含めて粉末状、あるいは水などの分散媒に分散
したゾル状態で用いられる。金属微粒子、金属微粒子以
外の導電性微粒子、マトリックス形成成分の配合量は、
既に説明した通りである。すなわち、基材上に形成され
た透明導電性微粒子層に含まれている金属微粒子量1重
量部当たり、金属微粒子以外の導電性微粒子が4重量部
以下となり、マトリックスの含有量が全導電性微粒子1
重量部当たり0.2重量部以下となるような量で、本発
明で用いられる透明導電性微粒子層形成用塗布液中に金
属微粒子、金属微粒子以外の導電性微粒子、マトリック
ス形成成分および添加剤が含まれていることが望まし
い。
Among these, the conductive fine particles are used in the form of powder including metal fine particles or in a sol state dispersed in a dispersion medium such as water. Metal fine particles, conductive fine particles other than metal fine particles, the compounding amount of the matrix forming component,
As described above. That is, the amount of the conductive fine particles other than the metal fine particles is 4 parts by weight or less per 1 part by weight of the metal fine particles contained in the transparent conductive fine particle layer formed on the base material, and the content of the matrix is all the conductive fine particles. 1
In such an amount as to be 0.2 parts by weight or less per part by weight, metal fine particles, conductive fine particles other than metal fine particles, matrix forming components and additives are contained in the coating liquid for forming a transparent conductive fine particle layer used in the present invention. It is desirable to be included.

【0037】本明細書中で、マトリックス形成成分とは
導電性微粒子などのような粒状成分のバインダーとして
機能する成分をいい、例えばマトリックスがシリカであ
る場合、加水分解重縮合性有機珪素化合物またはシリカ
ゾルなどを意味する。
In the present specification, the matrix-forming component refers to a component that functions as a binder for a particulate component such as conductive fine particles. For example, when the matrix is silica, a hydrolytic polycondensable organic silicon compound or a silica sol is used. And so on.

【0038】また、加水分解重縮合性有機珪素化合物と
しては、下記式〔I〕で表されるアルコキシシラン: Ra Si(OR’)4-a …〔I〕 (式中、Rは、ビニル基、アリール基、アクリル基、炭
素原子数1〜8のアルキル基、水素原子またはハロゲン
原子であり、R’は、ビニル基、アリール基、アクリル
基、炭素原子数1〜8のアルキル基、−C2 4 OCn
2n+1(n=1〜4)または水素原子であり、aは、0
〜3の整数である)が挙げられる。
Further, as the hydrolysis polycondensable organic silicon compounds, alkoxysilane represented by the following formula [I]: wherein R a Si (OR ') 4 -a ... [I] (wherein, R is vinyl Group, an aryl group, an acryl group, an alkyl group having 1 to 8 carbon atoms, a hydrogen atom or a halogen atom, and R ′ is a vinyl group, an aryl group, an acryl group, an alkyl group having 1 to 8 carbon atoms,- C 2 H 4 OC n
H 2n + 1 (n = 1 to 4) or a hydrogen atom, and a is 0
To 3).

【0039】このようなアルコキシシランを具体的に例
示すると、テトラメトキシシラン、テトラエトキシシラ
ン、テトライソプロポキシシラン、テトラブトキシシラ
ン、テトラオクチルシラン、メチルトリメチルシラン、
メチルトリエトキシシラン、エチルトリエトキシシラ
ン、メチルトリイソプロポキシシラン、ビニルトリメト
キシシラン、フェニルトリメトキシシラン、ジメチルジ
メトキシシランなどが挙げられる。
Specific examples of such alkoxysilanes include tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, tetrabutoxysilane, tetraoctylsilane, methyltrimethylsilane,
Examples include methyltriethoxysilane, ethyltriethoxysilane, methyltriisopropoxysilane, vinyltrimethoxysilane, phenyltrimethoxysilane, dimethyldimethoxysilane, and the like.

【0040】上記マトリックス形成成分としては、例え
ば上記アルコキシシランの1種または2種以上を用いる
ことができる。なお、上記アルコキシシランを、例えば
水−アルコールなどの混合溶媒中で硝酸、塩酸、酢酸な
どの酸の存在下で加水分解すると、アルコキシシランの
加水分解物が重縮合したシリカ重合体が得られる。
As the matrix-forming component, for example, one or more of the above-mentioned alkoxysilanes can be used. When the alkoxysilane is hydrolyzed in a mixed solvent such as water-alcohol in the presence of an acid such as nitric acid, hydrochloric acid, or acetic acid, a silica polymer obtained by polycondensation of a hydrolyzate of alkoxysilane is obtained.

【0041】上記のようなアルコキシシランの加水分解
は、 酸/SiO2 =0.0001〜0.05(重量/重量) および 水/SiO2 =4〜16(モル・モル) (上記式中、SiO2 は、アルコキシシランをSiO2
に換算した値である。)の条件下で行うことが好まし
い。
The hydrolysis of the alkoxysilane as described above is carried out by acid / SiO 2 = 0.0001 to 0.05 (weight / weight) and water / SiO 2 = 4 to 16 (mol / mol) (in the above formula, SiO 2 is obtained by converting alkoxysilane to SiO 2
It is the value converted to. It is preferable to carry out under the condition of).

【0042】本発明で用いられる透明導電性微粒子層形
成用塗布液を調製する際には、金属微粒子の分散媒とし
て水および/または有機溶媒が用いられ、この分散媒中
に上述したような金属微粒子、さらに必要に応じて金属
微粒子以外の導電性微粒子、その他の添加剤、マトリッ
クス形成成分が添加される。
In preparing the coating liquid for forming the transparent conductive fine particle layer used in the present invention, water and / or an organic solvent is used as a dispersion medium of the metal fine particles. Fine particles, and if necessary, conductive fine particles other than metal fine particles, other additives, and matrix forming components are added.

【0043】このうち、有機溶媒としては、例えばメタ
ノール、エタノール、プロパノール、ブタノール、ジア
セトンアルコール、フルフリルアルコール、エチレング
リコール、ヘキシレングリコールなどのアルコール類、
酢酸メチルエステル、酢酸エチルエステルなどのエステ
ル類、ジエチルエーテル、エチレングリコールモノメチ
ルエーテル、エチレングリコールモノエチルエーテル、
エチレングリコールモノブチルエーテル、ジエチレング
リコールモノメチルエーテル、ジエチレングリコールモ
ノエチルエーテルなどのエーテル類、アセトン、メチル
エチルケトン、アセチルアセトン、アセト酢酸エステル
などのケトン類などが挙げられ、これらのうちの1種ま
たは2種以上が用いられる。
Among them, examples of the organic solvent include alcohols such as methanol, ethanol, propanol, butanol, diacetone alcohol, furfuryl alcohol, ethylene glycol and hexylene glycol;
Methyl acetate, esters such as ethyl acetate, diethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether,
Examples thereof include ethers such as ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, and diethylene glycol monoethyl ether; ketones such as acetone, methyl ethyl ketone, acetylacetone, and acetoacetate; and one or more of these are used.

【0044】本発明で用いられる透明導電性微粒子層形
成用塗布液中の固形分濃度、すなわち透明導電性微粒子
層を形成する成分の濃度は、塗布液の流動性、塗布液中
の金属微粒子などのような粒状成分の分散性などの点か
ら、15重量%以下であることが好ましい。なお、透明
導電性微粒子層形成用塗布液中にマトリックス形成成分
が含まれている場合、このマトリックス形成成分の濃度
は、前記固形分濃度の一部であり、例えば、マトリック
ス形成成分がテトラエトキシシランである場合、マトリ
ックス形成成分の濃度はSiO2 濃度に換算した値であ
る。
The solid content concentration in the coating liquid for forming the transparent conductive fine particle layer used in the present invention, ie, the concentration of the components forming the transparent conductive fine particle layer, depends on the fluidity of the coating liquid, the fine metal particles in the coating liquid, and the like. From the viewpoint of the dispersibility of the particulate component as described above, the content is preferably 15% by weight or less. When the coating liquid for forming a transparent conductive fine particle layer contains a matrix forming component, the concentration of the matrix forming component is a part of the solid content concentration. For example, when the matrix forming component is tetraethoxysilane In the case of, the concentration of the matrix forming component is a value converted into the SiO 2 concentration.

【0045】また、本発明で用いられる透明導電性微粒
子層形成用塗布液では、塗布液中に存在するアルカリ金
属イオン、アンモニアイオンおよび多価金属イオンなど
の陽イオン、ならびに鉱酸などの無機陰イオン、酢酸、
蟻酸などの有機陰イオンのイオン濃度の合計量が、塗布
液中に含まれる全固形分100g当り10ミリモル以下
であることが好ましい。このような透明導電性微粒子層
形成用塗布液では、塗布液中に含まれている粒状成分、
特に導電性微粒子の分散状態が良好となり、凝集粒子を
ほんとんど含んでいない塗布液が得られる。この塗布液
中での粒状成分の単分散状態は、透明導電性微粒子層の
形成過程でも維持され、この結果、粒状成分が単分散し
ている透明導電性微粒子層が基材上に形成できる。すな
わち、上記のようなイオン濃度の低い塗布液から形成さ
れた透明導電性微粒子層には凝集粒子は観察されない。
このように上記のようなイオン濃度の低い塗布液から形
成された透明導電性微粒子層では金属微粒子などの導電
性微粒子を良好に分散させることができるので、透明導
電性微粒子層中で導電性微粒子が凝集している場合に比
較して、より少ない導電性微粒子で同等の導電性を有す
る透明導電性微粒子層を提供することが可能である。ま
た、粒状成分同士の凝集に起因すると思われる点欠陥お
よび厚さむらのない透明導電性微粒子層を基材上に形成
することができる。
In the coating liquid for forming a transparent conductive fine particle layer used in the present invention, cations such as alkali metal ions, ammonia ions and polyvalent metal ions, and inorganic anions such as mineral acids, which are present in the coating liquid. Ion, acetic acid,
It is preferable that the total amount of ion concentrations of organic anions such as formic acid is 10 mmol or less per 100 g of the total solids contained in the coating solution. In such a coating liquid for forming a transparent conductive fine particle layer, the granular component contained in the coating liquid,
In particular, the dispersion state of the conductive fine particles is improved, and a coating liquid containing almost no aggregated particles can be obtained. The monodispersed state of the particulate component in the coating liquid is maintained during the process of forming the transparent conductive fine particle layer. As a result, a transparent conductive fine particle layer in which the particulate component is monodispersed can be formed on the substrate. That is, no aggregated particles are observed in the transparent conductive fine particle layer formed from the coating solution having a low ion concentration as described above.
As described above, in the transparent conductive fine particle layer formed from the coating solution having a low ion concentration as described above, conductive fine particles such as metal fine particles can be dispersed well. It is possible to provide a transparent conductive fine particle layer having the same conductivity with less conductive fine particles as compared with the case where is aggregated. Further, a transparent conductive fine particle layer free from point defects and uneven thickness, which is considered to be caused by aggregation of the particulate components, can be formed on the substrate.

【0046】上記のようなイオン濃度の低い塗布液を得
るための脱イオン処理の方法は、最終的に塗布液中に含
まれているイオン濃度が上記のような範囲になるような
方法であれば特に制限されないが、好ましい脱イオン処
理の方法としては、塗布液の原料として用いられる粒状
成分の分散液および/またはマトリックス形成成分を含
む液、およびそれぞれの液から調製された塗布液のいず
れかを陽イオン交換樹脂および/または陰イオン交換樹
脂と接触させる方法、あるいはこれらの液のいずれかに
限外ろ過膜を用いて液を洗浄処理する方法などが挙げら
れる。
The deionizing method for obtaining a coating solution having a low ion concentration as described above may be a method in which the ion concentration finally contained in the coating solution falls within the above range. The method of the deionization treatment is not particularly limited, but a preferred method of the deionization treatment is any one of a dispersion liquid containing a particulate component used as a raw material of a coating liquid and / or a liquid containing a matrix forming component, and a coating liquid prepared from each liquid. With an cation exchange resin and / or an anion exchange resin, or a method of subjecting any of these liquids to a washing treatment using an ultrafiltration membrane.

【0047】基材上に透明導電性微粒子層を形成する際
には、上記のような透明導電性微粒子層形成用塗布液を
基材上に塗布・乾燥して透明導電性微粒子層を形成しう
るあらゆる方法を採用することができる。例えば、この
ような方法として、透明導電性微粒子層形成用塗布液を
基材上にディッピング法、スピナー法、スプレー法、ロ
ールコーター法、フレキソ印刷法などの方法で塗布し、
次いで得られた塗膜を乾燥する方法などが挙げられる。
この塗膜の乾燥は、通常、常温〜90℃でなされ、さら
に塗布液中にマトリックス形成成分が含まれている場合
には、乾燥後の塗膜を150℃以上に加熱処理すること
が好ましい。
When the transparent conductive fine particle layer is formed on the substrate, the above-mentioned coating liquid for forming a transparent conductive fine particle layer is applied to the substrate and dried to form the transparent conductive fine particle layer. Any method available can be employed. For example, as such a method, a coating solution for forming a transparent conductive fine particle layer is applied on a substrate by a method such as a dipping method, a spinner method, a spray method, a roll coater method, and a flexographic printing method.
Next, a method of drying the obtained coating film and the like can be mentioned.
The coating is usually dried at room temperature to 90 ° C., and when the coating solution contains a matrix-forming component, it is preferable to heat the dried coating to 150 ° C. or higher.

【0048】さらに、塗布液中にマトリックス形成成分
が含まれている場合には、必要に応じて、上記塗布工程
または乾燥工程の後に、あるいは乾燥工程中に、未硬化
のマトリックス形成成分を含む透明導電性微粒子層に可
視光線よりも波長の短い電磁波を照射するか、あるいは
該透明導電性微粒子層をマトリックス形成成分の硬化反
応を促進するガス雰囲気中に晒すことにより、透明導電
性微粒子層中に含まれるマトリックス形成成分の硬化が
促進され、透明導電性微粒子層の硬度が高められること
がある。このガス処理は、前記加熱処理の後に行っても
よい。
Further, when the coating solution contains a matrix-forming component, if necessary, after the coating step or the drying step, or during the drying step, the transparent liquid containing the uncured matrix-forming component may be used. By irradiating the conductive fine particle layer with electromagnetic waves having a shorter wavelength than visible light, or by exposing the transparent conductive fine particle layer to a gas atmosphere that promotes the curing reaction of the matrix forming component, the transparent conductive fine particle layer Curing of the contained matrix forming component is promoted, and the hardness of the transparent conductive fine particle layer may be increased. This gas treatment may be performed after the heat treatment.

【0049】このようなマトリックス形成成分の硬化を
促進するために照射する電磁波としては、マトリックス
形成成分の種類に応じて紫外線、電子線、X線、γ線な
どが用いられる。例えば紫外線硬化性マトリックス形成
成分の硬化を促進するためには、例えば、発光強度が約
250nmと360nmとにおいて極大となり、光強度
が10mW/m2 以上である高圧水銀ランプを紫外線源
として用い、100mJ/cm2 以上のエネルギー量の
紫外線が照射される。
As the electromagnetic wave to be applied to accelerate the curing of the matrix-forming component, ultraviolet rays, electron beams, X-rays, γ-rays and the like are used according to the type of the matrix-forming component. For example, in order to accelerate the curing of the UV-curable matrix-forming component, for example, a high-pressure mercury lamp having an emission intensity of about 250 nm and 360 nm and a light intensity of 10 mW / m 2 or more is used as an ultraviolet light source, and UV rays having an energy amount of / cm 2 or more are applied.

【0050】また、マトリックス形成成分のなかには、
アンモニア、オゾンなどの活性ガスで硬化が促進される
マトリックス形成成分がある。このようなマトリックス
形成成分を含む透明導電性微粒子層を、ガス濃度が10
0〜100,000ppm、好ましくは1000〜1
0,000ppmであるような硬化促進性ガス雰囲気下
で1〜60分処理することによってマトリックス形成成
分の硬化を大幅に促進することができる。
Further, among the matrix forming components,
There is a matrix-forming component whose curing is promoted by an active gas such as ammonia or ozone. A transparent conductive fine particle layer containing such a matrix-forming component is formed with a gas concentration of 10%.
0-100,000 ppm, preferably 1000-1
By performing the treatment for 1 to 60 minutes in a curing accelerating gas atmosphere having a concentration of 000 ppm, the curing of the matrix forming component can be greatly promoted.

【0051】本発明では、以上のようにして基材上に透
明導電性微粒子層を形成した後、この透明導電性微粒子
層上に、さらにこの層よりも屈折率の低い透明被膜が形
成される。
In the present invention, after the transparent conductive fine particle layer is formed on the substrate as described above, a transparent film having a lower refractive index than this layer is further formed on the transparent conductive fine particle layer. .

【0052】この透明被膜の形成方法としては、特に制
限はなく、この透明被膜の材質に応じて、真空蒸着法、
スパッタリング法、イオンプレーティング法などの乾式
薄膜形成方法、あるいは上述したようなディッピング
法、スピナー法、スプレー法、ロールコーター法、フレ
キソ印刷法などの湿式薄膜形成方法を採用することがで
きる。
The method for forming the transparent film is not particularly limited, and may be a vacuum deposition method,
A dry thin film forming method such as a sputtering method or an ion plating method, or a wet thin film forming method such as a dipping method, a spinner method, a spray method, a roll coater method, or a flexographic printing method as described above can be employed.

【0053】上記透明被膜を湿式薄膜形成方法で形成す
る場合には、上述したようなマトリックス形成成分が透
明被膜形成成分として水または有機溶媒に溶解または分
散されている透明被膜形成用塗布液を用いることができ
る。
When the above transparent film is formed by a wet thin film forming method, a coating liquid for forming a transparent film in which the above-mentioned matrix forming component is dissolved or dispersed in water or an organic solvent as a transparent film forming component is used. be able to.

【0054】さらに、透明被膜形成用塗布液中には、上
述したようにフッ化マグネシウムなどの低屈折率材料で
構成された微粒子、必要に応じて、透明被膜の透明度お
よび反射防止性能を阻害しない程度に少量の導電性微粒
子および/または添加剤、例えば染料または有機または
無機の顔料を含んでいてもよい。
Further, the coating liquid for forming a transparent film contains fine particles composed of a low refractive index material such as magnesium fluoride as described above, and, if necessary, does not impair the transparency and antireflection performance of the transparent film. It may contain a relatively small amount of conductive fine particles and / or additives such as dyes or organic or inorganic pigments.

【0055】この場合、上述したような脱イオン処理を
透明被膜形成用塗布液に施して塗布液中に含まれている
イオン濃度を上述した範囲内に低減させると、透明被膜
中で粒状成分の分散性が良好となり、厚さにむらのない
透明被膜を提供することが可能となる。
In this case, when the above-described deionization treatment is applied to the coating solution for forming a transparent film to reduce the ion concentration contained in the coating solution to within the above-mentioned range, the granular component of the transparent film is reduced. Dispersibility is good, and it is possible to provide a transparent film having an even thickness.

【0056】上述したような透明被膜を湿式薄膜形成方
法で形成する場合、マトリックス形成成分を含む前記透
明導電性微粒子層形成用塗布液から透明導電性微粒子層
を形成する場合と同様にして透明導電性微粒子層上に形
成することができる。
When the above-mentioned transparent film is formed by the wet thin film forming method, the transparent conductive fine particle layer is formed in the same manner as when the transparent conductive fine particle layer is formed from the coating liquid for forming the transparent conductive fine particle layer containing the matrix forming component. Can be formed on the conductive fine particle layer.

【0057】さらに、基材上に形成された透明導電性微
粒子層を約40〜90℃に予熱し、この温度を維持しな
がら透明導電性微粒子層上に前記透明被膜形成用塗布液
をスプレー法で塗布し、その後、上述したような加熱処
理を行うと、被膜の表面にリング状の凹凸が形成され、
ギラツキの少ないアンチグレアな透明導電性被膜付基材
が得られる。
Further, the transparent conductive fine particle layer formed on the base material is preheated to about 40 to 90 ° C., and the coating liquid for forming a transparent film is sprayed on the transparent conductive fine particle layer while maintaining this temperature. Applying, after that, when the above-described heat treatment is performed, ring-shaped irregularities are formed on the surface of the coating,
An antiglare substrate with a transparent conductive coating with less glare is obtained.

【0058】表示装置 以上のようにして製造された透明導電性被膜付基材のう
ち、電磁遮蔽をする上で必要な102〜104Ω/□の表
面抵抗を有し、かつ可視光領域および近赤外領域で充分
な反射防止性能を有する透明導電性被膜付基材は、表示
装置の前面板として用いられる。
Display Device Among the substrates with a transparent conductive film produced as described above, they have a surface resistance of 10 2 to 10 4 Ω / □ required for electromagnetic shielding and a visible light range. A substrate with a transparent conductive film having sufficient antireflection performance in the near infrared region is used as a front plate of a display device.

【0059】本発明に係る表示装置は、ブラウン管(C
RT)、蛍光表示管(FIP)、プラズメディスプレイ
(PDP)、液晶ディスプレイ(LCD)などのような
電気的に画像を表示する装置であり、上記のような透明
導電性被膜付基材で構成された前面板を備えている。
The display device according to the present invention comprises a cathode ray tube (C
RT), a fluorescent display tube (FIP), a plasma display (PDP), a liquid crystal display (LCD), etc., which electrically displays an image, and is composed of a substrate with a transparent conductive film as described above. Equipped with a front plate.

【0060】従来の前面板を備えた表示装置を作動させ
ると、前面板に画像が表示されると同時に電磁波が前面
板から放出され、この電磁波が観察者の人体に影響を及
ぼすが、本発明に係る表示装置では、前面板が102
104Ω/□の表面抵抗を有する透明導電性被膜付基材
で構成されているので、このような電磁波、およびこの
電磁波の放出に伴って生じる電磁場を効果的に遮蔽する
ことができる。
When a display device having a conventional front panel is operated, an electromagnetic wave is emitted from the front panel at the same time that an image is displayed on the front panel, and this electromagnetic wave affects the human body of the observer. in the display device according to the front plate 10 2 -
Since it is composed of a substrate with a transparent conductive film having a surface resistance of 10 4 Ω / □, it is possible to effectively shield such an electromagnetic wave and an electromagnetic field generated by emission of the electromagnetic wave.

【0061】また、表示装置の前面板で反射光が生じる
と、この反射光によって表示画像が見難くなるが、本発
明に係る表示装置では、前面板が可視光領域および近赤
外領域で充分な反射防止性能を有する透明導電性被膜付
基材で構成されているので、このような反射光を効果的
に防止することができる。
When reflected light is generated on the front panel of the display device, the reflected image makes it difficult to see a displayed image. However, in the display device according to the present invention, the front panel is sufficiently in the visible light region and the near infrared region. Since it is composed of a substrate with a transparent conductive film having an excellent antireflection performance, such reflected light can be effectively prevented.

【0062】さらに、ブラウン管の前面板が、本発明に
係る透明導電性被膜付基材で構成され、この透明導電性
被膜のうち、透明導電性微粒子層、その上に形成された
透明被膜の少なくとも一方に少量の染料または顔料が含
まれいる場合には、これらの染料または顔料がそれぞれ
に固有な波長の光を吸収し、これによりブラウン管から
放映される表示画像のコントラストを向上させることが
できる。
Further, the front plate of the cathode ray tube is composed of the substrate with a transparent conductive film according to the present invention, and among the transparent conductive films, at least one of the transparent conductive fine particle layer and the transparent film formed thereon. On the other hand, when a small amount of dye or pigment is contained, the dye or pigment absorbs light having a wavelength unique to each of them, thereby improving the contrast of a display image projected from the CRT.

【0063】[0063]

【発明の効果】本発明に係る透明導電性被膜付基材は、
透明基材上に透明導電性微粒子層が形成され、さらにこ
の透明導電性微粒子層上に透明導電性微粒子層よりも低
屈折率の透明被膜が形成されている。
The substrate with a transparent conductive film according to the present invention comprises:
A transparent conductive fine particle layer is formed on a transparent substrate, and a transparent coating having a lower refractive index than that of the transparent conductive fine particle layer is formed on the transparent conductive fine particle layer.

【0064】本発明によれば、透明導電性微粒子層が導
電性物質として金属微粒子を含有しており、このため、
膜厚を薄くしても、従来の導電性酸化物のみを含有する
被膜よりも表面抵抗が低い微粒子層を形成することがで
き、したがって、この導電性微粒子層の上に低屈折率の
透明被膜を形成することにより、電磁遮蔽効果に優れる
とともに反射防止効果に優れた透明導電性被膜付基材を
提供することができる。
According to the present invention, the transparent conductive fine particle layer contains fine metal particles as a conductive substance.
Even if the film thickness is reduced, a fine particle layer having a lower surface resistance than a conventional film containing only a conductive oxide can be formed. Therefore, a transparent film having a low refractive index is formed on the conductive fine particle layer. By forming, a substrate with a transparent conductive film having an excellent electromagnetic shielding effect and an excellent antireflection effect can be provided.

【0065】さらに、本発明で用いられる透明導電性微
粒子層形成用塗布液中に含まれる陽イオン、陰イオンな
どのイオン濃度を極微量に調整した場合には、塗布液中
の導電性微粒子の分散状態が極めて良好となり、この良
好な導電性微粒子の分散状態が導電性微粒子層の形成過
程でも維持され、微粒子の凝集は起こらない。
Further, when the ion concentration of cations and anions contained in the coating liquid for forming the transparent conductive fine particle layer used in the present invention is adjusted to a very small amount, the conductive fine particles in the coating liquid may be reduced. The dispersed state becomes extremely good, and this favorable dispersed state of the conductive fine particles is maintained even in the process of forming the conductive fine particle layer, and the fine particles do not aggregate.

【0066】その結果、導電性微粒子が均一に分散され
た微粒子層が形成できるので、従来よりも塗布液中の導
電性微粒子の濃度を薄くしても、同等の導電性を有する
微粒子層を得ることができる。
As a result, a fine particle layer in which conductive fine particles are uniformly dispersed can be formed, so that even if the concentration of the conductive fine particles in the coating solution is made lower than before, a fine particle layer having the same conductivity can be obtained. be able to.

【0067】このようにして、本発明によれば、102
〜104Ω/□の表面抵抗を有し、かつ、反射防止性能
に優れた透明導電性被膜付基材を提供することができ
る。また、本発明に係る表示装置は、上記のような表面
抵抗および反射防止性能に優れた透明導電性被膜付基材
が前面板に用いられているので、反射防止効果に優れる
と同時に、電磁波および電磁場遮蔽効果に優れている。
Thus, according to the present invention, 10 2
A substrate with a transparent conductive film having a surface resistance of from 10 4 Ω / □ to an anti-reflection property can be provided. Further, the display device according to the present invention, since the base material with a transparent conductive film having excellent surface resistance and anti-reflection performance as described above is used for the front plate, the anti-reflection effect is excellent, and at the same time, electromagnetic waves and Excellent electromagnetic field shielding effect.

【0068】[0068]

【実施例】以下、本発明を実施例により説明するが、本
発明はこれら実施例に限定されるものではない。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

【0069】[0069]

【製造実施例】a)導電性微粒子分散液 本実施例で用いた金属微粒子のコロイド溶液と金属微粒
子以外の導電性微粒子の分散液を下記表1に示す。
Production Examples a) Conductive Fine Particle Dispersion The colloidal solution of metal fine particles and the dispersion of conductive fine particles other than metal fine particles used in this example are shown in Table 1 below.

【0070】このうち、Au、Ag、Pdのコロイド溶
液は、それそれ真空冶金(株)製のコロイド溶液であ
り、Rhのコロイド溶液は次の方法で調製した。メタノ
ール・水混合溶媒(メタノール40重量部/水60重量
部)に金属Rh換算で2重量%になるように3塩化ロジ
ウムを加え、さらにポリビニルアルコールを金属Rh1
重量部当り0.01重量部加えて、還流器付フラスコで
90℃の温度で5時間加熱してRhのコロイド溶液を得
た。
Among these, the colloidal solutions of Au, Ag, and Pd are each a colloidal solution manufactured by Vacuum Metallurgy Co., Ltd. The colloidal solution of Rh was prepared by the following method. Rhodium trichloride was added to a methanol / water mixed solvent (40 parts by weight of methanol / 60 parts by weight of water) so as to be 2% by weight in terms of metal Rh, and polyvinyl alcohol was added to metal Rh1.
0.01 part by weight per part by weight was added, and the mixture was heated at 90 ° C. for 5 hours in a flask equipped with a reflux condenser to obtain a Rh colloid solution.

【0071】Sbドープ酸化錫(Sb−SnO2 )微粒
子、Snドープ酸化インジウム(Sn−In2 3 )微
粒子および導電性カーボン(東海カーボン(株)製)を
用いて下記表1に示す混合微粒子分散液を調製した。
Using Sb-doped tin oxide (Sb-SnO 2 ) fine particles, Sn-doped indium oxide (Sn-In 2 O 3 ) fine particles and conductive carbon (manufactured by Tokai Carbon Co., Ltd.), mixed fine particles shown in Table 1 below A dispersion was prepared.

【0072】このうち、Sbドープ酸化錫微粒子、Sn
ドープ酸化インジウム微粒子については、次のようにし
て調製した。Sbドープ酸化錫微粒子 錫酸カリウム333gと吐酒石69.5gを純水101
9gに溶解した水溶液を調製した。この水溶液を、50
℃に保持された1876gの純水中に12時間かけて添
加した。この間、系内のpHを10に維持した。得られ
たSbドープ酸化錫水和物分散液からSbドープ酸化錫
水和物を限外膜でろ過し、洗浄した後、乾燥し、次いで
空気中で550℃の温度で3時間焼成することによりS
bドープ酸化錫微粒子を得た。Snドープ酸化インジウム 硝酸インジウム79.9gを水686gに溶解して得ら
れた溶液と、錫酸カリウム12.7gを10重量%水酸
化カリウム溶液に溶解して得られた溶液とを調製した。
Of these, Sb-doped tin oxide fine particles, Sn
The doped indium oxide fine particles were prepared as follows. 333 g of Sb-doped tin oxide fine particles of potassium stannate and 69.5 g of tartar were added to pure water 101
An aqueous solution dissolved in 9 g was prepared. This aqueous solution is
The solution was added to 1876 g of pure water maintained at 0 ° C over 12 hours. During this time, the pH in the system was maintained at 10. From the obtained Sb-doped tin oxide hydrate dispersion, the Sb-doped tin oxide hydrate was filtered through an ultramembrane, washed, dried, and then calcined in air at 550 ° C. for 3 hours. S
b-doped tin oxide fine particles were obtained. A solution obtained by dissolving 79.9 g of Sn-doped indium oxide indium nitrate in 686 g of water and a solution obtained by dissolving 12.7 g of potassium stannate in a 10 wt% potassium hydroxide solution were prepared.

【0073】これらの溶液を、50℃に保持された10
00gの純水に2時間かけて添加した。この間、系内の
pHを11に保持した。得られたSnドープ酸化インジ
ウム水和物分散液からSnドープ酸化インジウム水和物
をろ別して洗浄した後、乾燥し、次いで空気中で350
℃の温度で3時間焼成し、さらに空気中で600℃の温
度で2時間焼成することによりSnドープ酸化インジウ
ム微粒子を得た。
The solutions were kept at 10 ° C.
It was added to 00 g of pure water over 2 hours. During this time, the pH in the system was maintained at 11. The Sn-doped indium oxide hydrate dispersion was filtered and washed from the obtained Sn-doped indium oxide hydrate dispersion, dried, and then dried in air in air.
By firing at a temperature of 600 ° C. for 3 hours and further firing at a temperature of 600 ° C. for 2 hours in air, Sn-doped indium oxide fine particles were obtained.

【0074】[0074]

【表1】 [Table 1]

【0075】b)マトリックス形成成分を含む液の調製 正珪酸エチル(SiO2 :28重量%)50g、エタノ
ール194.6g、濃硝酸1.4gおよび純水34gの
混合溶液を室温で5時間攪拌してSiO2 濃度5重量%
のマトリックス形成成分を含む液を調製した。c)透明被膜(上層)形成用塗布液の調製 上記マトリックス形成成分を含む液に、エタノール/ブ
タノール/ジアセトンアルコール/イソプロパノール
(2:1:1:5重量混合比)の混合溶媒を加え、Si
2 濃度1重量%の透明被膜形成用塗布液を調製した。d)透明導電性微粒子層形成用塗布液の調製 表1に示す金属微粒子のコロイド溶液、導電性微粒子混
合物の分散液と、マトリックス形成成分を含む液とから
表2に示す透明導電性微粒子層形成用塗布液C−1〜C
−8を調製した。
B) Preparation of Liquid Containing Matrix-Forming Component A mixed solution of 50 g of ethyl orthosilicate (SiO 2 : 28% by weight), 194.6 g of ethanol, 1.4 g of concentrated nitric acid and 34 g of pure water was stirred at room temperature for 5 hours. 5% by weight of SiO 2
A liquid containing a matrix-forming component was prepared. c) Preparation of coating liquid for forming transparent film (upper layer) To a liquid containing the above matrix-forming component, a mixed solvent of ethanol / butanol / diacetone alcohol / isopropanol (2: 1: 1: 5 weight mixing ratio) was added, and Si was added.
A coating liquid for forming a transparent film having an O 2 concentration of 1% by weight was prepared. d) Preparation of a coating liquid for forming a transparent conductive fine particle layer A transparent conductive fine particle layer shown in Table 2 was prepared from a colloidal solution of metal fine particles shown in Table 1, a dispersion of a conductive fine particle mixture, and a liquid containing a matrix forming component. Coating Solutions C-1 to C
-8 was prepared.

【0076】なお、表2に示すそれぞれの塗布液を両性
イオン交換樹脂(三菱化成(株)製ダイヤイオン SM
NUPB)で脱イオン処理することにより、それぞれの
塗布液中のイオン濃度の調整を行った。
Each coating solution shown in Table 2 was applied to an amphoteric ion exchange resin (Diaion SM manufactured by Mitsubishi Kasei Co., Ltd.).
The ion concentration in each coating solution was adjusted by performing deionization treatment with NUPB).

【0077】なお、塗布液中のイオン濃度は、次のよう
にして測定した。アルカリ金属イオン濃度およびアルカ
リ土類金属イオン濃度は原子吸光法で測定し、その他の
金属イオン濃度は発光分光分析法で測定し、アンモニウ
ムイオンおよびアニオンのイオン濃度は電位差滴定法で
測定した。
The ion concentration in the coating solution was measured as follows. Alkali metal ion concentration and alkaline earth metal ion concentration were measured by atomic absorption spectrometry, other metal ion concentrations were measured by emission spectroscopy, and ammonium ion and anion ion concentrations were measured by potentiometric titration.

【0078】[0078]

【表2】 [Table 2]

【0079】[0079]

【実施例1〜7、比較例1】ブラウン管用パネルガラス
(14”)の表面を40℃の温度に保持しながら、スピ
ナー法で100rpm、90秒の条件で上記透明導電性
微粒子層形成用塗布液C−1〜C−8をそれぞれ塗布し
た。
EXAMPLES 1 TO 7 AND COMPARATIVE EXAMPLE 1 While maintaining the surface of a CRT panel glass (14 ") at a temperature of 40 DEG C., the spinner method was applied at 100 rpm for 90 seconds to form the transparent conductive fine particle layer. Liquids C-1 to C-8 were applied respectively.

【0080】次いで、このようにして形成された透明導
電性微粒子層上に前記と同様にして上記透明被膜形成用
塗布液を塗布し、次いで表3に示す条件で焼成すること
により実施例1〜7、比較例1の透明導電性被膜付基材
を得た。
Next, on the transparent conductive fine particle layer thus formed, the coating liquid for forming a transparent film was applied in the same manner as described above, and then fired under the conditions shown in Table 3 to obtain Examples 1 to 3. 7. A substrate with a transparent conductive film of Comparative Example 1 was obtained.

【0081】これらの透明導電性被膜付基材の表面抵抗
を表面抵抗計(三菱油化(株)製LORESTA)で測
定し、反射率を分光光度計(日立製作所(株)製)で測
定し、ヘーズをヘーズコンピューター(スガ試験機
(株)製)で測定した。
The surface resistance of these substrates having a transparent conductive film was measured with a surface resistance meter (LORESTA manufactured by Mitsubishi Yuka Co., Ltd.), and the reflectance was measured with a spectrophotometer (manufactured by Hitachi, Ltd.). And haze were measured with a haze computer (manufactured by Suga Test Instruments Co., Ltd.).

【0082】結果を表3に示す。Table 3 shows the results.

【0083】[0083]

【表3】 [Table 3]

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H05K 9/00 H05K 9/00 V (56)参考文献 特開 平5−290634(JP,A) 特開 平5−190089(JP,A) 特開 平4−17398(JP,A) 特開 平4−323309(JP,A) 特開 平3−34211(JP,A) 特開 平3−281783(JP,A) 特開 平6−212125(JP,A) 特開 平5−190091(JP,A) 河嶋千尋編,「新しい工業材料の科学 B13.無機顔料」,金原出版,1968年 9月20日,第1版,p.25〜37 (58)調査した分野(Int.Cl.7,DB名) H01B 5/14 H01B 13/00 503 G02F 1/1333 500 G09F 9/30 370 H04N 5/65 H05K 9/00 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI H05K 9/00 H05K 9/00 V (56) References JP-A-5-290634 (JP, A) JP-A-5-190089 ( JP, A) JP-A-4-17398 (JP, A) JP-A-4-323309 (JP, A) JP-A-3-34211 (JP, A) JP-A-3-281784 (JP, A) Hei 6-212125 (JP, A) Japanese Patent Laid-Open No. 5-190091 (JP, A) Chihiro Kawashima, edited by "Science of New Industrial Materials B13. Inorganic Pigments", Kanehara Publishing, September 20, 1968, first edition, p. 25-37 (58) Field surveyed (Int.Cl. 7 , DB name) H01B 5/14 H01B 13/00 503 G02F 1/1333 500 G09F 9/30 370 H04N 5/65 H05K 9/00

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 平均粒径2〜200nmの金属微粒子か
らなる透明導電性微粒子層が基材上に形成され、前記微
粒子層上に該微粒子層よりも屈折率の低い透明被膜が形
成されていることを特徴とする透明導電性被膜付基材。
1. A transparent conductive fine particle layer composed of metal fine particles having an average particle diameter of 2 to 200 nm is formed on a substrate, and a transparent film having a lower refractive index than the fine particle layer is formed on the fine particle layer. A substrate with a transparent conductive film, characterized by comprising:
【請求項2】 前記微粒子層がさらに金属微粒子以外の
導電性微粒子を含有してなることを特徴とする請求項1
に記載の透明導電性被膜付基材。
2. The fine particle layer further comprises conductive fine particles other than metal fine particles.
The substrate with a transparent conductive film according to the above.
【請求項3】 前記微粒子層がさらにマトリックスを含
有していることを特徴とする請求項1または2に記載の
透明導電性被膜付基材。
3. The substrate with a transparent conductive film according to claim 1, wherein the fine particle layer further contains a matrix.
【請求項4】 前記マトリックスがシリカからなること
を特徴とする請求項3に記載の透明導電性被膜付基材。
4. The substrate with a transparent conductive film according to claim 3, wherein the matrix is made of silica.
【請求項5】 平均粒径が2〜200nmである金属微
粒子を水および/または有機溶媒中に分散してなる透明
導電性微粒子層形成用塗布液を、基材上に塗布・乾燥し
て透明導電性微粒子層を形成し、次いで前記微粒子層上
に該微粒子層よりも屈折率の低い透明被膜を形成するこ
とを特徴とする透明導電性被膜付基材の製造方法。
5. A coating solution for forming a transparent conductive fine particle layer formed by dispersing metal fine particles having an average particle size of 2 to 200 nm in water and / or an organic solvent is coated on a substrate and dried to form a transparent liquid. A method for producing a substrate with a transparent conductive film, comprising: forming a conductive fine particle layer; and then forming a transparent coating having a lower refractive index than the fine particle layer on the fine particle layer.
【請求項6】 前記塗布液が、さらに金属微粒子以外の
導電性微粒子を含有していることを特徴とする請求項5
に記載の透明導電性被膜付基材の製造方法。
6. The coating liquid according to claim 5, further comprising conductive fine particles other than metal fine particles.
3. The method for producing a substrate with a transparent conductive film according to item 1.
【請求項7】 前記塗布液が、さらにマトリックス形成
成分を含有していることを特徴とする請求項5または6
に記載の透明導電性被膜付基材の製造方法。
7. The coating liquid according to claim 5, wherein the coating liquid further contains a matrix forming component.
3. The method for producing a substrate with a transparent conductive film according to item 1.
【請求項8】 請求項1ないし3のいずれか1項に記載
の透明導電性被膜付基材で構成された前面板を備え、透
明導電性被膜が該前面板の外表面に形成されていること
を特徴とする表示装置。
8. A front plate comprising the substrate with a transparent conductive film according to claim 1, wherein a transparent conductive film is formed on an outer surface of the front plate. A display device characterized by the above-mentioned.
JP20897294A 1994-09-01 1994-09-01 Substrate with transparent conductive film, method for producing the same, and display device provided with the substrate Expired - Lifetime JP3302186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20897294A JP3302186B2 (en) 1994-09-01 1994-09-01 Substrate with transparent conductive film, method for producing the same, and display device provided with the substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20897294A JP3302186B2 (en) 1994-09-01 1994-09-01 Substrate with transparent conductive film, method for producing the same, and display device provided with the substrate

Publications (2)

Publication Number Publication Date
JPH0877832A JPH0877832A (en) 1996-03-22
JP3302186B2 true JP3302186B2 (en) 2002-07-15

Family

ID=16565215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20897294A Expired - Lifetime JP3302186B2 (en) 1994-09-01 1994-09-01 Substrate with transparent conductive film, method for producing the same, and display device provided with the substrate

Country Status (1)

Country Link
JP (1) JP3302186B2 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100338154C (en) * 1996-06-11 2007-09-19 住友大阪水泥株式会社 Paint for forming transparent conductive layer
JP3378441B2 (en) 1996-07-24 2003-02-17 株式会社東芝 Cathode ray tube and method of manufacturing the same
DE69739716D1 (en) 1996-09-26 2010-02-04 Asahi Glass Co Ltd Protective plate for a plasma display and method of making the same
JP3563236B2 (en) 1996-09-26 2004-09-08 触媒化成工業株式会社 Coating liquid for forming transparent conductive film, substrate with transparent conductive film, method for producing the same, and display device
JP3884110B2 (en) * 1996-10-09 2007-02-21 株式会社東芝 Cathode ray tube
TW432397B (en) 1997-10-23 2001-05-01 Sumitomo Metal Mining Co Transparent electro-conductive structure, progess for its production, transparent electro-conductive layer forming coating fluid used for its production, and process for preparing the coating fluid
AU2006201608B2 (en) * 1998-05-11 2007-06-07 Bioveris Corporation Improved Apparatus and Methods for Carrying Out Electrochemiluminescence Test Measurements
US6200531B1 (en) * 1998-05-11 2001-03-13 Igen International, Inc. Apparatus for carrying out electrochemiluminescence test measurements
US6447909B1 (en) 1999-01-14 2002-09-10 Sumitomo Metal Mining Co., Ltd. Transparent conductive layered structure and method of producing the same, and coating liquid for forming transparent conductive layer used in production of transparent conductive layered structure and method of producing the same
DE60023614T2 (en) * 1999-08-26 2006-07-27 Sumitomo Metal Mining Co. Ltd. Transparent electrolytic structure and process for its preparation, coating fluid therefor and display device having this structure
JP2002083518A (en) * 1999-11-25 2002-03-22 Sumitomo Metal Mining Co Ltd Transparent conductive substrate, its manufacturing method, display device using this transparent conductive substrate, coating solution for forming transparent conductive layer, and its manufacturing method
JP4502441B2 (en) * 2000-02-16 2010-07-14 共同印刷株式会社 Support method and layer structure of transparent conductive film by adhesive
JP2002038053A (en) * 2000-07-25 2002-02-06 Sumitomo Metal Mining Co Ltd Coating fluid for forming transparent conductive layer
JP4788852B2 (en) 2000-07-25 2011-10-05 住友金属鉱山株式会社 Transparent conductive substrate, manufacturing method thereof, transparent coating layer forming coating solution used in the manufacturing method, and display device to which transparent conductive substrate is applied
KR100366087B1 (en) * 2000-08-04 2002-12-26 삼성에스디아이 주식회사 Composition for filter layer and filter layer formed therefrom
KR100785920B1 (en) 2000-08-11 2007-12-17 스미토모 오사카 세멘토 가부시키가이샤 Transparent electrically conductive film and display
JP4781604B2 (en) 2000-08-11 2011-09-28 石原産業株式会社 Method for producing metal colloid solution, two-component coating material containing the metal colloid solution, and method and use thereof
JP5187990B2 (en) * 2000-12-22 2013-04-24 日揮触媒化成株式会社 Coating liquid for forming transparent conductive film, substrate with transparent conductive film and display device
JP4902048B2 (en) * 2001-01-11 2012-03-21 日揮触媒化成株式会社 Substrate with transparent conductive film and display device
JP3876811B2 (en) 2001-11-02 2007-02-07 住友金属鉱山株式会社 Production method of coating liquid for forming transparent conductive layer
JP4232480B2 (en) 2002-03-25 2009-03-04 住友金属鉱山株式会社 Method for producing noble metal-coated silver fine particle dispersion, coating liquid for forming transparent conductive layer, transparent conductive substrate and display device
JP4271438B2 (en) * 2002-12-24 2009-06-03 住友大阪セメント株式会社 Transparent conductive film forming paint, transparent conductive film, method for producing the same, and display device including the same
TWI265762B (en) 2003-01-14 2006-11-01 Sharp Kk Wiring material, wiring substrate and manufacturing method thereof, display panel, fine particle thin film material, substrate including thin film layer and manufacturing method thereof
EP2031030A4 (en) 2006-06-09 2012-06-06 Jemco Inc Composition for transparent electroconductive film formation, transparent electroconductive film, and display
WO2014181538A1 (en) * 2013-05-08 2014-11-13 コニカミノルタ株式会社 Transparent conductor and method for producing same
JP6019056B2 (en) * 2014-03-28 2016-11-02 大日本塗料株式会社 SUBSTRATE WITH LAMINATED COATING AND COATING COMPOSITION FOR FORMING PRIMER LAYER FOR FORMING THE LAMINATED COATING

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
河嶋千尋編,「新しい工業材料の科学 B13.無機顔料」,金原出版,1968年 9月20日,第1版,p.25〜37

Also Published As

Publication number Publication date
JPH0877832A (en) 1996-03-22

Similar Documents

Publication Publication Date Title
JP3302186B2 (en) Substrate with transparent conductive film, method for producing the same, and display device provided with the substrate
JP3563236B2 (en) Coating liquid for forming transparent conductive film, substrate with transparent conductive film, method for producing the same, and display device
JP2004055298A (en) Coating solution for forming transparent conductive film and substrate with transparent conductive coat, and display device
JP5638935B2 (en) Metal fine particle dispersion, transparent conductive film forming coating liquid, and substrate with transparent conductive film
JP3973330B2 (en) Substrate with transparent coating, coating liquid for forming transparent coating, and display device
JP5096666B2 (en) Method for producing chain conductive oxide fine particles, chain conductive oxide fine particles, transparent conductive film-forming coating material, and substrate with transparent conductive film
JP5580153B2 (en) Metal fine particle dispersion, metal fine particle, production method of metal fine particle dispersion, etc.
JP4522505B2 (en) Transparent conductive film-forming coating liquid, transparent conductive film-coated substrate, and display device
JP4343520B2 (en) Coating liquid for forming transparent film, substrate with transparent film, and display device
JP3982967B2 (en) Transparent film-forming coating solution, transparent film-coated substrate and display device
JP5068298B2 (en) Transparent conductive film-forming coating liquid, transparent conductive film-coated substrate, and display device
JP3473272B2 (en) Coating liquid for conductive film formation and conductive film
JP2003342602A (en) Indium based metal fine particle and its manufacturing method, and coating liquid for forming transparent and conductive film containing indium based metal fine particle, base material provided with transparent and conductive film and display device
JP3779088B2 (en) Transparent conductive film-forming coating liquid, transparent conductive film-coated substrate, and display device
JP4002435B2 (en) Transparent conductive film-forming coating liquid, transparent conductive film-coated substrate, and display device
JP4959067B2 (en) Coating liquid for forming transparent low-reflective conductive film, substrate with transparent low-reflective conductive film, and display device
KR100996052B1 (en) Coating agent for forming transparent film, transparent film coated substrate and display
JP4519343B2 (en) Crystalline conductive fine particles, method for producing the fine particles, coating liquid for forming transparent conductive film, substrate with transparent conductive film, and display device
JP4425530B2 (en) Method for producing indium oxide fine particles, coating liquid for forming transparent conductive film containing fine particles, substrate with transparent conductive film, and display device
JP5187990B2 (en) Coating liquid for forming transparent conductive film, substrate with transparent conductive film and display device
JP2003105268A (en) Coating liquid for forming transparent coated film, base material with transparent and electroconductive coated film, and display device
JP4902048B2 (en) Substrate with transparent conductive film and display device
JP2003261326A (en) Indium based oxide fine particle, method of producing the fine particle, coating solution for forming transparent electrically conductive film containing the fine particle, base material with transparent electrically conductive film and display
JP2004204174A (en) Coating liquid for forming transparent electeroconductive film, substrate with transparent electroconductive film and displaying device
JPH10237665A (en) Coating solution for forming electrically conductive coating, electrically conductive coating and its production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090426

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090426

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100426

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110426

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120426

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130426

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130426

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140426

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term