JPH10110123A - Coating material for forming transparent conductive membrane and its production, transparent conductive low reflective membrane and its production, and display with the transparent conductive low reflective membrane - Google Patents

Coating material for forming transparent conductive membrane and its production, transparent conductive low reflective membrane and its production, and display with the transparent conductive low reflective membrane

Info

Publication number
JPH10110123A
JPH10110123A JP8267538A JP26753896A JPH10110123A JP H10110123 A JPH10110123 A JP H10110123A JP 8267538 A JP8267538 A JP 8267538A JP 26753896 A JP26753896 A JP 26753896A JP H10110123 A JPH10110123 A JP H10110123A
Authority
JP
Japan
Prior art keywords
transparent conductive
forming
fine particles
conductive film
paint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8267538A
Other languages
Japanese (ja)
Inventor
Noboru Kinoshita
暢 木下
Tetsuya Nakabeppu
哲也 中別府
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP8267538A priority Critical patent/JPH10110123A/en
Publication of JPH10110123A publication Critical patent/JPH10110123A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a coating material for forming a transparent conductive membrane capable of providing an excellent conductivity, transparency, low discoloring properties and useful as a transparent, conductive and low reflective membrane by including a colloidal metal fine powder, a dispersed stabilizer adsorbed thereon, an aggregation inducer and water. SOLUTION: This coating material for forming a transparent conductive membrane comprises (A) a colloidal metal fine powder (e.g. the one made of gold, silver, copper, aluminum, etc., and containing fine particles having <=0.1μm average particle diameter and <=0.005μm first particle diameter), (B) a dispersion stabilizer adsorbed on the component A (e. g. a water-soluble polymer compound such as a carboxylic acid, a sulfonic acid, polyvinyl alcohol, etc.), (C) an aggregation inducer (e.g. an alkali metal ion or ammonium ion) for aggregating the component A when being dried and (D) water, and if necessary (E) a water-soluble solvent such as alcohols or cellosolves having a boiling point higher than that of the water.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、透明性、導電性が
高く、かつ静電気帯電防止効果、電磁波遮蔽効果、反射
防止効果に優れた透明導電膜を形成し得る透明導電膜形
成用塗料およびその製造方法、透明導電低反射性膜およ
びその製造方法、ならびに透明導電低反射性膜付き表示
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a paint for forming a transparent conductive film capable of forming a transparent conductive film having high transparency and conductivity and having excellent antistatic effects, electromagnetic wave shielding effects and antireflection effects. The present invention relates to a manufacturing method, a transparent conductive low-reflection film, a method for manufacturing the same, and a display device with a transparent conductive low-reflection film.

【0002】[0002]

【従来の技術】近年、透明導電膜形成用塗料は、静電気
帯電防止や電磁波遮蔽を必要とする。例えば、陰極線
管、液晶表示装置等のディスプレー装置の表示面、それ
らの表面カバー材料、建物や自動車等の窓ガラス表面の
塗装にと、その利用範囲が広がっており、その塗布製品
は人体あるいは諸々の電気製品の保護等に広く利用され
るようになってきた。
2. Description of the Related Art In recent years, a paint for forming a transparent conductive film has been required to prevent electrostatic charge and shield electromagnetic waves. For example, it is widely used for the display surfaces of display devices such as cathode ray tubes and liquid crystal display devices, their surface covering materials, and the coating of window glass surfaces of buildings and automobiles. It has come to be widely used for the protection of electrical products.

【0003】一般に、ガラスやプラスチックのような誘
電率の大きい透明基材は、静電気が帯電しやすいことが
知られている。したがって、これらの透明基材を使用し
たディスプレー装置の表示面や窓ガラス表面では、この
静電気によってゴミ・埃等が付着し、表示画質や透明感
を低下させる等の問題点が知られている。また、各種電
気製品などから発生する電磁波が人体に悪影響を及ぼし
たり、周辺の電気・電子機器の誤作動の原因になること
も判明しつつあり、電磁波を遮蔽して漏電を防止する必
要性も高まってきている。
Generally, it is known that a transparent substrate having a large dielectric constant, such as glass or plastic, is easily charged with static electricity. Therefore, on the display surface or window glass surface of a display device using such a transparent base material, there is known a problem that dust and dirt adhere to the display surface due to the static electricity, thereby deteriorating display quality and transparency. In addition, it has been found that electromagnetic waves generated from various electrical products have a negative effect on the human body and cause malfunctions of surrounding electric and electronic devices.Therefore, it is necessary to shield electromagnetic waves to prevent electrical leakage. Is growing.

【0004】このため、透明基材表面に透明導電膜をコ
ーティングして形成させることにより前記各種問題点を
軽減できることが知られており、多くの透明導電膜形成
用塗料や、この透明導電膜形成用塗料を利用した透明導
電膜付き基材が検討されており、例えば、特開平8−7
7832号には平均粒径 2〜200 nmの金属微粒子から
なる透明導電性微粒子層を基材上に形成させ、この微粒
子層よりも屈折率の低い透明被膜を前記微粒子層上に形
成させた透明導電性被膜付き基材が提案されている。
For this reason, it is known that the above-mentioned various problems can be reduced by forming a transparent conductive film on the surface of a transparent substrate by coating the same with a transparent conductive film. A substrate with a transparent conductive film using a paint for use is being studied.
No. 7832 discloses a transparent conductive fine particle layer comprising metal fine particles having an average particle diameter of 2 to 200 nm formed on a substrate, and a transparent film having a lower refractive index than the fine particle layer formed on the fine particle layer. A substrate with a conductive coating has been proposed.

【0005】しかし、この透明導電性被膜付き基材のよ
うな単に金属微粒子で構成される透明導電性微粒子層で
は、導電性が必ずしも十分ではなく、また、金属微粒子
表面におけるプラズマ共鳴吸収があり、金,銀,銅等の
良好な導電性を有する金属種のプラズマ共鳴吸収が可視
光領域(波長 400〜700 nm) に存在しているため、金
属微粒子特有の強く着色した膜しか得られないものであ
った。また、透明導電性微粒子層が膜厚 50 〜200 nm
の平滑な被膜であるため、十分な透明性が得られず、表
示装置等の高い透明性が必要とされる用途への利用は困
難であった。
However, a transparent conductive fine particle layer composed of metal fine particles, such as a substrate with a transparent conductive film, does not always have sufficient conductivity, and has a plasma resonance absorption on the surface of the metal fine particles. Since the plasma resonance absorption of metals with good conductivity such as gold, silver, and copper exists in the visible light region (wavelength 400 to 700 nm), only strongly colored films unique to metal fine particles can be obtained. Met. The transparent conductive fine particle layer has a thickness of 50 to 200 nm.
, It was difficult to obtain sufficient transparency, and it was difficult to use it for applications requiring high transparency, such as display devices.

【0006】このため、静電気帯電防止、紫外線、赤外
線を含めた電磁波遮蔽等の機能を有し、透明性、導電性
に優れた透明導電膜を形成可能であり、その透明導電膜
が強く着色することがない透明導電膜形成用塗料、およ
び、この透明導電膜形成用塗料を使用した透明導電低反
射性膜等を開発することが強く望まれていた。
For this reason, it is possible to form a transparent conductive film having a function of preventing electrostatic charge, shielding electromagnetic waves including ultraviolet rays and infrared rays, and having excellent transparency and conductivity, and the transparent conductive film is strongly colored. It has been strongly desired to develop a paint for forming a transparent conductive film, which does not have any, and a transparent conductive low-reflection film using the paint for forming a transparent conductive film.

【0007】[0007]

【発明が解決しようとする課題】本発明は、前記問題点
に鑑みてなされたものであり、導電性(静電気帯電防止
性、電磁波遮蔽性)、透明性に優れ、かつ着色性が弱い
透明導電膜形成用塗料およびその製造方法、透明導電低
反射性膜およびその製造方法、ならびに透明導電低反射
性膜付き表示装置を提供することを課題とする。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and has been made of a transparent conductive material which is excellent in conductivity (antistatic property, electromagnetic wave shielding property), transparency and weak coloring property. It is an object of the present invention to provide a coating material for forming a film, a method for manufacturing the same, a transparent conductive low-reflection film, a method for manufacturing the same, and a display device with a transparent conductive low-reflection film.

【0008】[0008]

【課題を解決するための手段】本発明は前記課題を達成
できるようにするため、請求項1記載の透明導電膜形成
用塗料は、コロイド状金属微粒子と、該コロイド状金属
微粒子の表面に吸着した分散安定化剤と、塗料乾燥時に
おいて前記コロイド状金属微粒子を凝集させる凝集誘引
剤と、水を少なくとも含有することを特徴とする。
In order to achieve the above object, according to the present invention, a paint for forming a transparent conductive film according to claim 1 comprises a colloidal metal fine particle and a surface of the colloidal metal fine particle. A dispersion stabilizing agent, an aggregation inducer that aggregates the colloidal metal fine particles when the paint is dried, and at least water.

【0009】また、請求項2記載の透明導電膜形成用塗
料は、水より沸点の高いアルコール類またはセロソルブ
類等の水溶性溶剤を少なくとも1種含有することを特徴
とする。
Further, the paint for forming a transparent conductive film according to the second aspect is characterized in that it contains at least one water-soluble solvent such as alcohols or cellosolves having a higher boiling point than water.

【0010】また、請求項3記載の透明導電膜形成用塗
料は、前記分散安定化剤が、カルボン酸またはスルホン
酸、あるいはポリビニルアルコール、ポリビニルピロリ
ドン、ポリエチレングリコール等の水溶性高分子化合物
であることを特徴とする。
In a third aspect of the present invention, the dispersion stabilizing agent is a carboxylic acid or a sulfonic acid, or a water-soluble polymer compound such as polyvinyl alcohol, polyvinyl pyrrolidone, and polyethylene glycol. It is characterized by.

【0011】また、請求項4記載の透明導電膜形成用塗
料は、前記凝集誘引剤が、アルカリ金属イオン、アンモ
ニウムイオンのうちの少なくとも1種であることを特徴
とする。
[0011] The coating material for forming a transparent conductive film according to claim 4 is characterized in that the aggregation attractant is at least one of an alkali metal ion and an ammonium ion.

【0012】また、請求項5記載の透明導電膜形成用塗
料は、前記コロイド状金属微粒子が、平均粒径 0.1μm
以下であって、かつ一次粒子径が 0.005μm以下の微粒
子を少なくとも含有することを特徴とする。
Further, in the paint for forming a transparent conductive film according to claim 5, the colloidal metal fine particles have an average particle diameter of 0.1 μm.
And at least fine particles having a primary particle diameter of 0.005 μm or less.

【0013】また、請求項6記載の透明導電膜形成用塗
料は、前記コロイド状金属微粒子が、金、銀、銅、アル
ミニウム、ニッケル、鉄、錫、インジウム、鉛のうちの
少なくとも1種のコロイド状金属微粒子であることを特
徴とする。
According to a sixth aspect of the present invention, in the coating material for forming a transparent conductive film, the colloidal metal fine particles may be at least one of gold, silver, copper, aluminum, nickel, iron, tin, indium and lead. Metal fine particles.

【0014】また、請求項7記載の透明導電膜形成用塗
料は、前記コロイド状金属微粒子が、銀のコロイド状金
属微粒子であることを特徴とする。
Further, in the paint for forming a transparent conductive film according to claim 7, the colloidal metal fine particles are silver colloidal metal fine particles.

【0015】また、請求項8記載の透明導電膜形成用塗
料の製造方法は、請求項1〜7のいずれかに記載の透明
導電膜形成用塗料の製造方法であって、金属塩を溶解し
た溶液またはスラリー状に分散させた分散液に分散安定
化剤と還元剤とを導入して前記分散安定化剤が表面に吸
着したコロイド状金属微粒子の分散液を生成させ、該分
散液中に凝集誘引剤を共存せしめることを特徴とする。
According to a eighth aspect of the present invention, there is provided a method for producing a transparent conductive film-forming paint according to any one of the first to seventh aspects, wherein the metal salt is dissolved. A dispersion stabilizer and a reducing agent are introduced into the dispersion dispersed in a solution or slurry to form a dispersion of the colloidal metal fine particles having the dispersion stabilizer adsorbed on the surface, and the dispersion is aggregated in the dispersion. It is characterized by having an attractant coexist.

【0016】また、請求項9記載の透明導電膜形成用塗
料の製造方法は、前記還元剤が、2価の鉄塩、2価の錫
塩、3価のセリウム塩、3価のチタン塩から選ばれた少
なくとも1種であることを特徴とする。
In a preferred embodiment of the present invention, the reducing agent comprises a divalent iron salt, a divalent tin salt, a trivalent cerium salt, or a trivalent titanium salt. It is characterized by being at least one selected.

【0017】また、請求項10記載の透明導電低反射性
膜は、融着されて連続した金属膜であり、かつその金属
膜の断面形状が凹凸状である透明導電膜と、この透明導
電膜上に被覆された低屈折率透明膜とからなることを特
徴とする。
Further, the transparent conductive low-reflection film according to claim 10 is a continuous metal film that is fused and continuous, and the cross-sectional shape of the metal film is uneven. And a low refractive index transparent film coated thereon.

【0018】また、請求項11記載の透明導電低反射性
膜は、前記凹凸状に形成された金属膜における凸部の基
板表面からの最大高さは 30 nm以下であることを特徴
とする。
Further, the transparent conductive low-reflection film according to the eleventh aspect is characterized in that the maximum height of the projections of the metal film formed in the uneven shape from the substrate surface is 30 nm or less.

【0019】また、請求項12記載の透明導電低反射性
膜の製造方法は、請求項10または11記載の透明導電
低反射性膜の製造方法であって、請求項1〜7のいずれ
かに記載の透明導電膜形成用塗料を塗布し、乾燥させて
金属微粒子の凝集粒子からなる凝集層を形成し、この凝
集層上に低屈折率透明膜形成用塗料を塗布し、所定加熱
温度で加熱して、前記金属微粒子の凝集粒子を融解させ
るとともに、前記低屈折率透明膜形成用塗料を硬化させ
ることを特徴とする。
The method for producing a transparent conductive low-reflection film according to claim 12 is the method for producing a transparent conductive low-reflection film according to claim 10 or 11, wherein the method comprises the steps of: The coating material for forming a transparent conductive film according to the above is applied and dried to form an agglomerated layer composed of agglomerated particles of metal fine particles. Then, the aggregated particles of the metal fine particles are melted, and the coating material for forming a low-refractive-index transparent film is cured.

【0020】また、請求項13記載の透明導電低反射性
膜の製造方法は、前記加熱温度が、250℃以下であるこ
とを特徴とする。
Further, in the method for producing a transparent conductive low-reflection film according to claim 13, the heating temperature is 250 ° C. or less.

【0021】また、請求項14記載の透明導電低反射性
膜の製造方法は、前記金属微粒子の凝集粒子の粒径が
0.3μm以上であることを特徴とする。
Further, in the method of manufacturing a transparent conductive low-reflection film according to claim 14, the aggregated particles of the metal fine particles have a particle size of
It is characterized by being at least 0.3 μm.

【0022】また、請求項15記載の透明導電低反射性
膜付き表示装置は、請求項10または11記載の透明導
電低反射性膜を透明基材表面に設けたことを特徴とす
る。
According to a fifteenth aspect of the present invention, there is provided a display device with a transparent conductive low-reflection film, wherein the transparent conductive low-reflection film according to the tenth or eleventh aspect is provided on the surface of a transparent substrate.

【0023】[0023]

【発明の実施の形態】本発明の透明導電膜形成用塗料
は、コロイド状金属微粒子と、該コロイド状金属微粒子
の表面に吸着した分散安定化剤と、塗料乾燥時において
前記コロイド状金属微粒子を凝集させる凝集誘引剤と、
水を少なくとも含有する。すなわち、分散させるコロイ
ド状金属微粒子の表面に分散安定化剤を吸着させること
により、コロイド状金属微粒子が安定に分散するように
し、また、透明導電膜形成用塗料を乾燥させるときにコ
ロイド状金属微粒子が凝集していくようにするため凝集
誘引剤を混入させておく。
BEST MODE FOR CARRYING OUT THE INVENTION The transparent conductive film forming paint of the present invention comprises a colloidal metal fine particle, a dispersion stabilizer adsorbed on the surface of the colloidal metal fine particle, and the colloidal metal fine particle when the paint is dried. An aggregation inducer for aggregation,
Contains at least water. That is, the dispersion stabilizer is adsorbed on the surface of the colloidal metal fine particles to be dispersed, so that the colloidal metal fine particles are stably dispersed, and when the paint for forming the transparent conductive film is dried, the colloidal metal fine particles are dried. In order to make the particles aggregate, an aggregation inducer is mixed.

【0024】また、コロイド状金属微粒子の凝集を補完
的に制御する目的で、水よりも沸点が高いアルコール類
やセロソルブ類の水溶性溶剤を透明導電膜形成用塗料中
に配合するのが好ましい。水よりも沸点が高い水溶性溶
剤としては、n−ブタノール、2−ブタノール、ペンタ
ノール、アミルアルコール、ベンジルアルコール、シク
ロヘキサノール、フルフリルアルコール、テトラヒドロ
フルフリルアルコール、メチルセロソルブ、エチルセロ
ソルブ、ブチルセロソルブ、2−メトキシメトキシエタ
ノール、2−イソプロポキシエタノール、イソアミルセ
ロソルブ、ヘキシルセロソルブ、プロピレングリコール
モノメチルエーテル、プロピレングリコールモノエチル
エーテル等を少なくとも1種以上配合する。水よりも沸
点が高い水溶性溶剤の配合量については、特に制限はな
いが、塗膜の乾燥温度や乾燥方法によって異なる。通常
は、透明導電膜形成用塗料中に 0.5〜 30 重量%配合す
るのが好ましい。
For the purpose of complementarily controlling the aggregation of the colloidal metal fine particles, it is preferable to incorporate a water-soluble solvent such as alcohols or cellosolves having a boiling point higher than that of water into the paint for forming a transparent conductive film. Examples of the water-soluble solvent having a higher boiling point than water include n-butanol, 2-butanol, pentanol, amyl alcohol, benzyl alcohol, cyclohexanol, furfuryl alcohol, tetrahydrofurfuryl alcohol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, -At least one compound of methoxymethoxyethanol, 2-isopropoxyethanol, isoamyl cellosolve, hexyl cellosolve, propylene glycol monomethyl ether, propylene glycol monoethyl ether and the like is blended. The amount of the water-soluble solvent having a boiling point higher than that of water is not particularly limited, but varies depending on the drying temperature and the drying method of the coating film. Usually, it is preferable to add 0.5 to 30% by weight in the paint for forming a transparent conductive film.

【0025】コロイド状金属微粒子を透明導電膜形成用
塗料中で安定に分散させるために使用する分散安定化剤
としては、クエン酸、ステアリン酸、ラウリン酸、オレ
イン酸等のカルボン酸や、フェニルジアゾスルホン酸、
ドデシルベンゼンスルホン酸等のスルホン酸、あるいは
ポリビニルアルコール、ポリビニルピロリドン、ポリエ
チレングリコール等の水溶性高分子化合物を用いるのが
好ましい。また、N−メチルピロリドンやメチルホルム
アミド等のような塩基性の水溶性溶剤を併用すると、コ
ロイド状金属微粒子の分散安定性が更に向上するので好
ましい。
Examples of the dispersion stabilizer used for stably dispersing the colloidal metal fine particles in the paint for forming a transparent conductive film include carboxylic acids such as citric acid, stearic acid, lauric acid and oleic acid, and phenyldiazoic acid. Sulfonic acid,
It is preferable to use a sulfonic acid such as dodecylbenzenesulfonic acid or a water-soluble polymer compound such as polyvinyl alcohol, polyvinylpyrrolidone, or polyethylene glycol. Further, it is preferable to use a basic water-soluble solvent such as N-methylpyrrolidone or methylformamide in order to further improve the dispersion stability of the colloidal metal fine particles.

【0026】このうち、クエン酸は、カルボキシル基を
3個有しているため、コロイド状金属微粒子の表面に吸
着させると液中での粒子表面電位が大きく、透明導電膜
形成用塗料中でのコロイド状金属微粒子の分散安定性が
最も良好なものとなる。
Among them, citric acid has three carboxyl groups, and therefore, when adsorbed on the surface of the colloidal metal fine particles, the particle surface potential in the liquid is large and the citric acid in the paint for forming a transparent conductive film is used. The dispersion stability of the colloidal metal fine particles becomes the best.

【0027】高い透明性と導電性を得るためには、透明
導電膜形成用塗料が基板上で乾燥する際に、コロイド状
金属微粒子を凝集させる必要がある。このため、凝集作
用を引き起こす成分を透明導電膜形成用塗料中に配合す
る。このための凝集誘引剤としては、ナトリウム(N
a),カリウム(K)等のアルカリ金属イオンまたはア
ンモニウムイオンのうちの少なくとも1種を用いるのが
好ましい。
In order to obtain high transparency and conductivity, it is necessary to agglomerate the colloidal metal fine particles when the transparent conductive film forming coating is dried on the substrate. For this reason, a component that causes an aggregating action is blended in the paint for forming a transparent conductive film. As an aggregation inducer for this purpose, sodium (N
a) It is preferable to use at least one of alkali metal ions such as potassium (K) and ammonium ions.

【0028】アルカリ金属イオン、アンモニウムイオン
等の凝集誘引剤の透明導電膜形成用塗料中への配合率
は、 30 〜300 ppm程度が望ましい。30 ppm未満
では、乾燥の際に、コロイド状金属微粒子の凝集がほと
んど起こらないために、透明性の改善効果がほとんどみ
られない。一方、300 ppmを越えると、乾燥の際、凝
集が著しくなり、凝集した金属微粒子間隔が大きくなり
すぎるために、加熱して金属微粒子が融解する際に金属
微粒子同士の連結がおこりずらいので金属の連続膜は得
られ難い。そのために導電性が悪化するので好ましくな
い。
The compounding ratio of the aggregation inducer, such as an alkali metal ion or an ammonium ion, in the paint for forming a transparent conductive film is preferably about 30 to 300 ppm. If it is less than 30 ppm, the aggregation of the colloidal metal fine particles hardly occurs during drying, so that the effect of improving the transparency is hardly observed. On the other hand, if it exceeds 300 ppm, agglomeration becomes remarkable during drying, and the distance between the agglomerated metal fine particles becomes too large. Is difficult to obtain. Therefore, the conductivity is deteriorated, which is not preferable.

【0029】透明導電膜形成用塗料に分散させるコロイ
ド状金属微粒子としては、平均粒子径が 0.1μm以下で
あって、かつ一次粒子径が 0.005μm以下の微粒子を少
なくとも含有する金(Au),銀(Ag),アルミニウ
ム(Al),ニッケル(Ni),鉄(Fe),錫(S
n),インジウム(In),鉛(Pb)が好ましい。こ
のうち、電気伝導性が良好で、かつ、可視光領域 (波長
400〜700 nm )にバンド間遷移がなく、金属色を有しな
い銀(Ag)が最も好ましい。また、一次粒子径が 0.0
05μm以下の微粒子が含まれない場合には、コロイド状
金属微粒子の融着が起こりずらく、その結果、着色した
膜となったり、十分な導電性が得られなかったりする不
具合が生じる。
As the colloidal metal fine particles dispersed in the paint for forming a transparent conductive film, gold (Au), silver containing at least fine particles having an average particle diameter of 0.1 μm or less and a primary particle diameter of 0.005 μm or less are used. (Ag), aluminum (Al), nickel (Ni), iron (Fe), tin (S
n), indium (In) and lead (Pb) are preferred. Among them, the electric conductivity is good and the visible light region (wavelength
Silver (Ag) having no transition between bands at 400 to 700 nm) and having no metallic color is most preferred. The primary particle size is 0.0
When the fine particles having a particle size of not more than 05 μm are not contained, the fusion of the colloidal metal fine particles hardly occurs. As a result, a problem occurs in which a colored film is formed or sufficient conductivity cannot be obtained.

【0030】透明導電膜形成用塗料の乾燥の際に起こる
コロイド状金属微粒子の凝集機構について以下に説明す
る。分散安定化剤が吸着したコロイド状金属微粒子を分
散した溶液中に、例えばアルカリ金属イオンを添加する
と、このアルカリ金属イオンはコロイド状金属微粒子の
表面層に配位した状態で存在すると考えられる。例え
ば、安定化剤としてのクエン酸が表面に吸着しているコ
ロイド状金属微粒子に凝集誘引剤としてのナトリウム
(Na)イオンを配合させた場合には、下記化学式のよ
うになっていると考えられる。
The mechanism of agglomeration of the colloidal metal fine particles occurring when the transparent conductive film forming paint is dried will be described below. When, for example, an alkali metal ion is added to a solution in which the colloidal metal fine particles having the dispersion stabilizer adsorbed thereon are dispersed, it is considered that the alkali metal ion exists in a state coordinated to the surface layer of the colloidal metal fine particles. For example, when sodium (Na) ions as an aggregation inducer are blended with colloidal metal fine particles having citric acid as a stabilizer adsorbed on the surface, the chemical formula is considered to be as shown below. .

【0031】[0031]

【化1】 Embedded image

【0032】一般には、分散安定化剤としてのカルボン
酸、スルホン酸、ポリビニルアルコール等の水溶性高分
子化合物は、前記水溶性溶剤の水への溶解性を低下させ
る働きをする。したがって、上記のようにクエン酸の一
部のカルボキシル基に凝集誘引剤としてのナトリウム
(Na)イオンが配位していると、透明導電膜形成用塗
料中の水溶性溶剤の割合が増すにつれて、水溶性溶剤と
水との分離が起こり易くなる。一方、透明導電膜形成用
塗料の乾燥に際して、配合されている水溶性溶剤の沸点
は水のそれよりも高いため、乾燥するにつれて塗膜中の
水溶性溶剤の割合が増加する。その結果、親水性表面で
ある前記コロイド状金属微粒子は凝集する。
Generally, a water-soluble polymer compound such as carboxylic acid, sulfonic acid, or polyvinyl alcohol as a dispersion stabilizer functions to reduce the solubility of the water-soluble solvent in water. Therefore, when sodium (Na) ion as an aggregation inducer is coordinated to a part of the carboxyl groups of citric acid as described above, as the proportion of the water-soluble solvent in the transparent conductive film forming coating increases, Separation of the water-soluble solvent and water easily occurs. On the other hand, when the paint for forming a transparent conductive film is dried, the boiling point of the compounded water-soluble solvent is higher than that of water, so that the proportion of the water-soluble solvent in the coating film increases as the film is dried. As a result, the colloidal metal fine particles that are hydrophilic surfaces aggregate.

【0033】透明導電膜形成用塗料中の水分量について
も、配合する水溶性溶剤の種類により異なるが、通常、
50 重量%以上配合するのが好ましい。水分の配合量が
少なすぎると、透明導電膜形成用塗料中のコロイド状金
属微粒子の分散安定性が悪く、沈降などが発生するため
に好ましくない。
The amount of water in the paint for forming a transparent conductive film also varies depending on the type of water-soluble solvent to be blended.
It is preferable to add 50% by weight or more. If the amount of water is too small, the dispersion stability of the colloidal metal fine particles in the coating material for forming a transparent conductive film is poor, and sedimentation or the like is not preferred.

【0034】透明導電膜形成用塗料には、屈折率の調
整、導電性の調整、色調の調整、粘性の調整、紫外線遮
蔽性の付与などの目的で、シリカ、アルミナ、ジルコニ
ア、酸化亜鉛、酸化セリウム、酸化錫、酸化ガリウム等
の無機酸化物粉末や、あるいは有機顔料、有機染料、無
機顔料等の着色成分を配合しても差し支えない。ただ
し、これら添加剤の配合量は、金属成分に対して 10 重
量%以下にすることが好ましい。その理由は、 10 重量
%を超えるようになると透明導電膜の導電性が低下した
り、着色性が増加するために実用的でなくなるからであ
る。また、透明導電膜形成用塗料は、バインダー成分を
加えなくとも塗布膜の乾燥程度の加熱処理で膜形成可能
であるが、膜強度を増すために、電子線硬化型、熱硬化
型等の各種バインダー成分を添加することも可能で、室
温〜200 ℃程度の低い温度での加熱処理により導電性に
優れた透明導電膜を形成することが可能となる。さら
に、透明導電膜形成用塗料には、メチルアルコール、エ
チルアルコール、イソプロピルアルコール等の溶剤を添
加することも可能である。
For the purpose of adjusting the refractive index, adjusting the conductivity, adjusting the color tone, adjusting the viscosity, and imparting the ultraviolet shielding property, the coating material for forming the transparent conductive film includes silica, alumina, zirconia, zinc oxide, and oxide. Inorganic oxide powders such as cerium, tin oxide and gallium oxide, or coloring components such as organic pigments, organic dyes and inorganic pigments may be blended. However, the amount of these additives is preferably 10% by weight or less based on the metal component. The reason for this is that when the content exceeds 10% by weight, the conductivity of the transparent conductive film decreases, and the coloring property increases, so that it becomes impractical. In addition, the transparent conductive film forming paint can be formed by a heat treatment such as drying of the applied film without adding a binder component. However, in order to increase the film strength, various coatings such as an electron beam curing type and a thermosetting type can be used. It is also possible to add a binder component, and it is possible to form a transparent conductive film having excellent conductivity by heat treatment at a low temperature of room temperature to about 200 ° C. Further, a solvent such as methyl alcohol, ethyl alcohol, or isopropyl alcohol can be added to the paint for forming a transparent conductive film.

【0035】透明導電膜形成用塗料を製造するには、金
属塩を溶解した溶液またはスラリー状に分散させた分散
液に分散安定化剤と還元剤を導入し、前記分散安定化剤
が表面に吸着したコロイド状金属微粒子の分散液を生成
させ、その分散液中に凝集誘引剤を共存せしめる。
In order to produce a coating for forming a transparent conductive film, a dispersion stabilizer and a reducing agent are introduced into a solution in which a metal salt is dissolved or dispersed in a slurry, and the dispersion stabilizer is applied to the surface. A dispersion of the adsorbed colloidal metal fine particles is formed, and the aggregation attractant is allowed to coexist in the dispersion.

【0036】金属塩としては、無機金属塩、有機金属
塩、あるいは前記無機金属塩や前記有機金属塩にアンモ
ニア、ピリジン、イミダゾール等の配位子が配位した金
属錯体から選ばれた少なくとも1種が好ましい。また、
還元剤としては、水素ガス、水素化硼素ナトリウムや水
素化硼素リチウム等の水素化物、ヒドラジン、ホルムア
ルデヒド、あるいは被還元金属種よりもイオン化傾向の
大きい金属塩溶液等を使用することができる。
The metal salt is at least one selected from inorganic metal salts, organic metal salts, and metal complexes in which a ligand such as ammonia, pyridine or imidazole is coordinated with the inorganic metal salt or the organic metal salt. Is preferred. Also,
Examples of the reducing agent include hydrogen gas, hydrides such as sodium borohydride and lithium borohydride, hydrazine, formaldehyde, and a metal salt solution having a higher ionization tendency than the metal to be reduced.

【0037】これらの還元剤のうち、被還元金属種より
もイオン化傾向の大きい金属塩が好ましく、特に2価の
鉄塩、2価の錫塩、3価のセリウム塩、3価のチタン塩
が好ましい。2価の鉄塩としては硫酸鉄、硝酸鉄、塩化
鉄等、2価の錫塩としては塩化錫、沃化錫等、3価のセ
リウム塩としては硝酸セリウム、硫酸セリウム等、3価
のチタン塩としては塩化チタン等が、工業的に入手しや
すいので、好適である。
Among these reducing agents, metal salts having a higher ionization tendency than the metal to be reduced are preferable. In particular, divalent iron salts, divalent tin salts, trivalent cerium salts, and trivalent titanium salts are preferable. preferable. Examples of divalent iron salts include iron sulfate, iron nitrate, and iron chloride. Examples of divalent tin salts include tin chloride and tin iodide. Examples of trivalent cerium salts include cerium nitrate and cerium sulfate. As the salt, titanium chloride and the like are preferable because they are industrially easily available.

【0038】上述のように還元剤として被還元金属種よ
りもイオン化傾向の大きい金属塩を用いるのが好ましい
理由は、分散安定化剤がコロイド状金属微粒子の表面に
吸着する際に、還元剤に由来する金属イオンも同時にコ
ロイド状金属微粒子の表面に取り込まれて、この還元剤
に由来する金属イオンがコロイド状金属微粒子の融解温
度を低下させるためである。また、コロイド状金属微粒
子の融解温度を低下させるために、一次粒子径が 0.005
μm以下の金属微粒子を少なくとも含むコロイド状金属
微粒子を透明導電膜形成用塗料中に含めることも重要で
ある。
As described above, it is preferable to use a metal salt having a higher ionization tendency than the metal species to be reduced as the reducing agent, because the dispersion stabilizing agent adsorbs to the surface of the colloidal metal fine particles. This is because the derived metal ions are simultaneously taken into the surface of the colloidal metal fine particles, and the metal ions derived from the reducing agent lower the melting temperature of the colloidal metal fine particles. In addition, in order to lower the melting temperature of the colloidal metal fine particles, the primary particle diameter is 0.005.
It is also important to include colloidal metal fine particles containing at least metal fine particles of μm or less in the paint for forming a transparent conductive film.

【0039】還元剤を用いた還元反応の際には、生成す
るコロイド状金属微粒子の表面に吸着して保護層を形成
する分散安定化剤を添加しておく。これにより、生成す
るコロイド状金属微粒子の微細化および安定化が達成さ
れる。
In the reduction reaction using a reducing agent, a dispersion stabilizer which forms a protective layer by adsorbing on the surface of the formed colloidal metal fine particles is added. As a result, miniaturization and stabilization of the generated colloidal metal fine particles are achieved.

【0040】凝集誘引剤を透明導電膜形成用塗料中に共
存せしめる手段としては、分散安定化剤として用いられ
るカルボン酸やスルホン酸を、アルカリ金属塩、アンモ
ニウム塩として、例えばクエン酸ソーダ、クエン酸アン
モニウム、ステアリン酸ソーダ、オレイン酸ソーダ、ド
デシルベンゼンスルホン酸ソーダ等として添加する手
段、または苛性ソーダ等のアルカリ金属の水酸化物の水
溶液、アンモニア水を添加する手段、あるいはコロイド
状金属微粒子を生成せしめる際に、原料成分に同伴して
混入するアルカリ金属イオン、アンモニウムイオンの量
を脱塩時に制御する手段等を挙げることができる。
As a means for allowing the aggregation inducer to coexist in the coating for forming a transparent conductive film, carboxylic acid or sulfonic acid used as a dispersion stabilizer may be converted into an alkali metal salt or an ammonium salt, for example, sodium citrate or citric acid. Means of adding ammonium, sodium stearate, sodium oleate, sodium dodecylbenzenesulfonate, etc., or an aqueous solution of an alkali metal hydroxide such as caustic soda, means of adding aqueous ammonia, or when forming colloidal metal fine particles In addition, means for controlling the amounts of alkali metal ions and ammonium ions mixed with the raw material components at the time of desalting may be used.

【0041】調整されたコロイド状金属微粒子の懸濁液
中には、金属源や還元剤より硝酸イオン、硫酸イオン、
有機酸イオン、アルカリ金属イオン、アンモニウムイオ
ン、金属イオン等が混入するので限外濾過、イオン交
換、電気透析等の通常の方法で脱塩を行い、透明導電膜
形成用塗料中に必要な凝集誘引剤としてのアルカリ金属
イオンやアンモニウムイオン、還元剤に由来する金属イ
オンの量を調整する。
In the prepared suspension of colloidal metal fine particles, nitrate ion, sulfate ion,
Since organic acid ions, alkali metal ions, ammonium ions, metal ions, etc. are mixed, desalination is carried out by a usual method such as ultrafiltration, ion exchange, electrodialysis, etc., and aggregation is induced in the paint for forming a transparent conductive film. The amount of an alkali metal ion or ammonium ion as an agent or a metal ion derived from a reducing agent is adjusted.

【0042】また、透明導電膜形成用塗料中には、上述
したように、無機酸化物、着色成分、バインダー成分、
イソプロピルアルコール等の溶剤を添加することが可能
であるが、これら各種添加剤を添加して分散化する場合
には、超音波分散機やサンドミル等の通常の分散機を用
いることができる。
As described above, the paint for forming a transparent conductive film contains an inorganic oxide, a coloring component, a binder component,
It is possible to add a solvent such as isopropyl alcohol, but when these various additives are added and dispersed, an ordinary disperser such as an ultrasonic disperser or a sand mill can be used.

【0043】形成される透明導電低反射性膜は、図1に
示されるように、融着されて連続した金属膜であって、
かつその金属膜の断面形状が凹凸状の、基材1の表面に
形成された導電性が高い透明導電膜(高屈折率膜)2
と、この透明導電膜上に形成された低屈折率透明膜3と
からなる、平滑な表面を有する疑似的な屈折率傾斜膜で
ある。
As shown in FIG. 1, the formed transparent conductive low-reflection film is a fused and continuous metal film,
A transparent conductive film (high-refractive-index film) 2 having high conductivity formed on the surface of the substrate 1, the metal film having an uneven cross section.
And a low refractive index transparent film 3 formed on the transparent conductive film.

【0044】すなわち、この透明導電低反射性膜は、透
明導電膜を金属が融着して連続した凹凸膜としたことに
より、金属微粒子を基板上に積層する従来の透明導電膜
よりも、高い導電性と金属特有の着色性が少なく、さら
に、低屈折率膜/高屈折率膜の組み合わせによる疑似的
な屈折率連続変化膜と見做せる膜であるため、可視光の
幅広い波長領域において優れた反射防止効果が得られ
る。また、透明導電低反射性膜の膜厚は、透明性および
低反射性の観点からみて、0.05 〜 0.2μmにするのが
好ましい。
That is, the transparent conductive low-reflection film is higher than a conventional transparent conductive film in which metal fine particles are laminated on a substrate, because the transparent conductive film is a continuous uneven film formed by fusing a metal. It is a film that can be regarded as a pseudo-refractive index continuous change film formed by a combination of a low refractive index film and a high refractive index film. An anti-reflection effect is obtained. The thickness of the transparent conductive low-reflection film is preferably 0.05 to 0.2 μm from the viewpoint of transparency and low reflectivity.

【0045】前記透明導電膜は、図1に模式的に示され
るように、金属が基材1に対して凹凸状に融着してお
り、凹部では金属膜が薄く、凸部に比較して凹部を相対
的に大きくして平均膜厚を薄くし、かつ、可視光領域の
吸収が小さい金属を選択することで著しく光透過性が向
上するから、全光線透過率を 80 %程度まで高くするこ
とができ、実用上全く問題のない高い透過率を得ること
ができる。
In the transparent conductive film, as schematically shown in FIG. 1, a metal is fused to the substrate 1 in an uneven shape, the metal film is thin in the concave portion, and is thinner than the convex portion. By selecting a metal having a relatively large concave portion to reduce the average film thickness and a metal having a small absorption in the visible light region, the light transmittance is remarkably improved, so that the total light transmittance is increased to about 80%. Thus, a high transmittance having no practical problem can be obtained.

【0046】そして、このような高い透過率を有する凹
凸状の連続した金属膜を形成するには、透明導電膜形成
用塗料中の凝集誘引剤、分散安定化剤、水溶性溶剤の量
を制御してコロイド状金属微粒子の凝集粒子の粒径を
0.3μm以上に調整することにより、得られる透明導電
膜の凸−凸間(または凹−凹間)の間隔を 0.3μm以上
となるようにすることが好ましい。
In order to form such a continuous metal film having a high transmittance, the amounts of the aggregation inducer, the dispersion stabilizer and the water-soluble solvent in the paint for forming the transparent conductive film are controlled. The particle size of the aggregated colloidal metal particles
By adjusting the distance to 0.3 μm or more, it is preferable that the distance between the protrusions (or between the recesses) of the obtained transparent conductive film is 0.3 μm or more.

【0047】また、前記透明導電膜は、基材1に対して
融着した連続した金属膜であるために、前記の高い透過
性に加えて金属特有の着色性の少ない透明膜を得ること
ができるとともに、粒界や空隙等の電子移動度を低下さ
せる要因がなく、金属本来の値に近い導電性を得ること
ができる。前記透明導電膜における凸部の基板表面から
の最大高さは、透明性の観点から30 nm( 0.03 μ
m)以下にするのが好ましい。
Further, since the transparent conductive film is a continuous metal film fused to the substrate 1, it is possible to obtain a transparent film having little coloring characteristic of a metal in addition to the above-mentioned high transparency. In addition to this, there is no factor that lowers the electron mobility such as grain boundaries and voids, and conductivity close to the original value of the metal can be obtained. The maximum height of the projections of the transparent conductive film from the substrate surface is 30 nm (0.03 μm) from the viewpoint of transparency.
m)

【0048】電磁波遮蔽効果と導電膜の体積固有抵抗値
の関係は、一般に、
The relationship between the electromagnetic wave shielding effect and the volume resistivity of the conductive film is generally expressed as follows.

【数1】 ここで S(dB) ;電磁波遮蔽効果 ρ(Ω・cm);導電膜の体積固有抵抗 f(MHz) ;電磁波周波数 t(cm) ;導電膜の膜厚 で表現される。(Equation 1) Here, S (dB); electromagnetic wave shielding effect ρ (Ω · cm); volume resistivity of conductive film f (MHz); electromagnetic wave frequency t (cm);

【0049】本発明の透明導電膜形成用塗料で透明導電
膜を作成する場合の膜厚は、透過率の観点から1μm
(1×10-4cm)程度以下とすることが好ましいの
で、 (1)式は、
The thickness of the transparent conductive film formed from the paint for forming a transparent conductive film of the present invention is 1 μm from the viewpoint of transmittance.
(1 × 10 −4 cm) or less is preferable.

【0050】[0050]

【数2】 となる。(Equation 2) Becomes

【0051】Sは値が大きいほど、電磁波遮蔽効果が大
きくなり、S>30dBのときに、電磁波遮蔽効果があ
るとみなされる。また、規制対象となる電磁波の周波数
は 10 KHz〜 1000 MHzの範囲が一般的であるの
で、透明導電膜の導電性としては、103 Ω・cm以下の
体積固有抵抗値が必要である。すなわち、透明導電膜の
固有抵抗値は、より低い方が、より広範な周波数の電磁
波を有効に遮蔽することが可能となる。前記透明導電膜
では、コロイド状金属微粒子が融着されて連続した透明
導電膜が形成されるために、膜厚が薄くても導電性を容
易に確保することができ、静電気帯電防止効果に加えて
電磁波遮蔽効果に優れる。
The larger the value of S, the greater the electromagnetic wave shielding effect. When S> 30 dB, it is considered that the electromagnetic wave shielding effect is obtained. In addition, the frequency of the electromagnetic wave to be regulated is generally in the range of 10 KHz to 1000 MHz, so that the conductivity of the transparent conductive film needs to have a volume resistivity of 10 3 Ω · cm or less. That is, the lower the specific resistance value of the transparent conductive film, the more effectively it is possible to effectively shield electromagnetic waves of a wider range of frequencies. In the transparent conductive film, since a continuous transparent conductive film is formed by fusing the colloidal metal fine particles, the conductivity can be easily ensured even if the film thickness is small, and in addition to the effect of preventing electrostatic charge, Excellent electromagnetic wave shielding effect.

【0052】前記透明導電膜は、前記透明導電膜形成用
塗料をガラスやプラスチック等の基材の表面に塗布し、
温度約 30 〜100 ℃で乾燥させ、コロイド状金属微粒子
を粒径約 0.3μm以上の凝集粒子2aとして凝集させ
(図2(イ))、その後に低屈折率透明膜形成用塗料を
塗布し、温度約 80 〜250 ℃で加熱処理することによ
り、凝集粒子2aを融解させて凹凸状を有する連続した
透明導電膜を形成させる(図2(ロ))。
The transparent conductive film is formed by applying the transparent conductive film forming paint on the surface of a substrate such as glass or plastic,
After drying at a temperature of about 30 to 100 ° C., the colloidal metal fine particles are agglomerated as agglomerated particles 2a having a particle size of about 0.3 μm or more (FIG. 2A), and then a low refractive index transparent film forming paint is applied. By performing a heat treatment at a temperature of about 80 to 250 ° C., the aggregated particles 2a are melted to form a continuous transparent conductive film having irregularities (FIG. 2B).

【0053】透明導電低反射性膜の生成過程は、基材1
に前記透明導電膜形成用塗料を塗布すると、乾燥前の状
態では図3(イ)に示すように一様な塗布膜4を形成し
た面となり、乾燥が進行するに従ってコロイド状金属微
粒子が凝集し、図3(ロ)に示すように基材1の表面上
に凝集粒子2aが島のように盛り上がった状態になって
点在するようになり、この状態で低屈折率透明膜形成用
塗料を塗布すると、図3(ハ)に示すように低屈折率膜
3の中に凝集粒子2aが包み込まれた状態となり、加熱
処理後には、図3(ニ)に示すように凝集を緩めた金属
微粒子が裾野を広げて互いに融着し、点在状態から全面
的に繋がった凹凸を有するメッシュ膜状態となり、その
凹凸を有するメッシュ状の透明導電膜2の上から低屈折
率透明膜3が積層して表面が一様で平滑な面である透明
導電低反射性膜が得られる。
The process of forming the transparent conductive low-reflection film is based on the base material 1
When the paint for forming a transparent conductive film is applied to the surface, the surface before the drying becomes a surface on which a uniform coating film 4 is formed as shown in FIG. 3A, and as the drying proceeds, the colloidal metal fine particles aggregate. As shown in FIG. 3B, the agglomerated particles 2a are scattered on the surface of the base material 1 in a state of being raised like an island. When applied, the aggregated particles 2a are wrapped in the low-refractive-index film 3 as shown in FIG. 3 (c), and after the heat treatment, the metal fine particles whose aggregation has been loosened as shown in FIG. 3 (d) Are spread from each other and fused to each other to form a mesh film state having irregularities connected entirely from the dotted state, and a low refractive index transparent film 3 is laminated on the mesh-shaped transparent conductive film 2 having the irregularities. A transparent conductive low-reflection film with a uniform and smooth surface It is.

【0054】低屈折率透明膜形成用塗料には、バインダ
ー成分として、ポリエステル樹脂、アクリル樹脂、エポ
キシ樹脂、メラミン樹脂、ウレタン樹脂、ブチラール樹
脂、紫外線硬化樹脂等の有機樹脂や、珪素、チタン、ジ
ルコニウム等の金属アルコキシドの加水分解物や、シリ
コーンモノマー、シリコーンオリゴマー等を含む無機系
バインダーを添加することが可能であり、特に、膜強
度、屈折率の点から、 M(OR)m n ここに〔M=Si,Ti,Zr. m+n=4, m=1〜4〕 〔R=C1 〜C4 のアルキル基 n=0〜3〕 で示される化合物あるいは部分加水分解縮合物を、単独
で、または混合物として用いるのが好ましい。
In the coating material for forming a low refractive index transparent film, as a binder component, an organic resin such as a polyester resin, an acrylic resin, an epoxy resin, a melamine resin, a urethane resin, a butyral resin, an ultraviolet curable resin, silicon, titanium, and zirconium. It is possible to add a hydrolyzate of a metal alkoxide such as, or an inorganic binder containing a silicone monomer, a silicone oligomer, or the like. In particular, from the viewpoint of film strength and refractive index, M (OR) m R n [M = Si, Ti, Zr. m + n = 4, m = 1 to 4] [R = C 1 to C 4 alkyl group n = 0 to 3] or a partially hydrolyzed condensate is preferably used alone or as a mixture.

【0055】ただし、非水溶性のバインダーを使用する
場合には、コロイド状金属微粒子をシリコーンカップリ
ング剤、チタネートカップリング剤等のカップリング剤
や、カルボン酸塩、ポリカルボン酸塩、リン酸エステル
塩、スルホン酸塩、ポリスルホン酸塩等の親油化表面処
理剤で、あらかじめ親油化の表面処理を施されたコロイ
ド状金属微粒子を使用する必要がある。
However, when a water-insoluble binder is used, the colloidal metal fine particles are mixed with a coupling agent such as a silicone coupling agent or a titanate coupling agent, a carboxylate, a polycarboxylate, or a phosphate. It is necessary to use colloidal metal fine particles which have been subjected to a lipophilic surface treatment with a lipophilic surface treating agent such as a salt, a sulfonate, or a polysulfonate.

【0056】なお、透明導電膜形成用塗料、低屈折率透
明膜形成用塗料の塗布方法としては、スピンコート法、
ロールコート法、スプレー法、バーコート法、デイップ
法、メニスカスコート法等の通常の成膜方法が使用可能
である。成膜条件は、所望とする導電性および透明性を
考慮して設計する。
The coating methods for the transparent conductive film forming paint and the low refractive index transparent film forming paint include spin coating,
Usual film forming methods such as a roll coating method, a spray method, a bar coating method, a dipping method, and a meniscus coating method can be used. The film forming conditions are designed in consideration of desired conductivity and transparency.

【0057】[0057]

【実施例】【Example】

A.銀コロイドの調整 クエン酸ソーダ2水和物 50 gを溶解させた溶液 1500
gにクエン酸銀 26.2gを添加して懸濁液とし、5℃に
保持した状態で、還元剤である硫酸第1鉄7水和物 150
gを溶解した溶液 900gを、約5秒間で加えて、銀コロ
イドを生成させた。この銀コロイド分散液を限外濾過方
式の脱塩洗浄装置にて不純物イオン(主としてナトリウ
ム(Na)イオン、鉄(Fe)イオン)量を調整した
後、濃縮し、固形分 1.0重量%の銀コロイド分散液を得
た。
A. Preparation of silver colloid Solution containing 50 g of sodium citrate dihydrate 1500
g of silver citrate was added to the mixture to form a suspension, and the suspension was maintained at 5 ° C.
900 g of the dissolved g were added in about 5 seconds to form a silver colloid. This silver colloid dispersion liquid was subjected to ultrafiltration-type desalting and washing equipment to adjust the amount of impurity ions (mainly sodium (Na) ions and iron (Fe) ions), and then concentrated to obtain a silver colloid having a solid content of 1.0% by weight. A dispersion was obtained.

【0058】上記銀コロイド分散液中の銀コロイド粒子
は、透過型電子顕微鏡観察によれば、1次粒子径が 0.0
02〜0.02μmの範囲にあり、そのうち1次粒子径が0.00
2 〜0.005 μmの銀コロイド粒子を個数的に約 20 %程
度含有していた。また、上記銀コロイド分散液中のナト
リウム(Na)イオン、鉄(Fe)イオンの含有量は、
原子吸光法による分析結果によれば、それぞれ 15 pp
m, 60ppmであった。また、上記銀コロイド分散液を
60 ℃で乾燥して、銀コロイド粒子を取り出し、示差熱
分析した結果、銀コロイド粒子に対し 22 重量%のクエ
ン酸が吸着していた。
According to the transmission electron microscope observation, the silver colloid particles in the silver colloid dispersion have a primary particle diameter of 0.0
02 to 0.02 μm, of which the primary particle diameter is 0.00
It contained about 20% by number of silver colloid particles of 2 to 0.005 μm. Further, the content of sodium (Na) ion and iron (Fe) ion in the silver colloid dispersion is as follows:
According to the analysis results by the atomic absorption method, each was 15 pp
m, 60 ppm. Further, the above silver colloid dispersion is
After drying at 60 ° C., the silver colloid particles were taken out and subjected to differential thermal analysis. As a result, it was found that 22% by weight of citric acid was adsorbed on the silver colloid particles.

【0059】B.低屈折率透明膜形成用塗料の調整 テトラエトキシシラン 2.4gと、 0.1N硝酸 0.8gと、
エチルアルコール98.4gとを混合して均一な溶液とし、
この溶液を原液とした。 (1) 低屈折率透明膜形成用塗料(a) 上記原液と重量比で1:1となるようにエタノールを加
えて均一な溶液とし、これを低屈折率透明膜形成用塗料
(a)とした。 (2) 低屈折率透明膜形成用塗料(b) 上記原液と重量比で1:2となるようにエタノールを加
えて均一な溶液とし、これを低屈折率透明膜形成用塗料
(b)とした。 (3) 低屈折率透明膜形成用塗料(c) 上記原液と重量比で1:3となるようにエタノールを加
えて均一な溶液とし、これを低屈折率透明膜形成用塗料
(c)とした。
B. Preparation of paint for forming low refractive index transparent film 2.4 g of tetraethoxysilane, 0.8 g of 0.1 N nitric acid,
Mix with 98.4 g of ethyl alcohol to make a uniform solution,
This solution was used as a stock solution. (1) Low refractive index transparent film forming paint (a) Ethanol is added to the above undiluted solution at a weight ratio of 1: 1 to form a uniform solution, which is referred to as a low refractive index transparent film forming paint (a). did. (2) Low refractive index transparent film forming paint (b) Ethanol is added to the stock solution at a weight ratio of 1: 2 to form a uniform solution, which is referred to as low refractive index transparent film forming paint (b). did. (3) Low refractive index transparent film forming paint (c) Ethanol is added to the stock solution at a weight ratio of 1: 3 to form a uniform solution, which is referred to as low refractive index transparent film forming paint (c). did.

【0060】C.膜評価方法 膜の評価は、以下の内容を、その右側に記載の装置を用
いて行った。 (1)表面抵抗:三菱油化株式会社製 ロレスタAP(4端針法) (2)ヘーズ :東京電色株式会社製 Automatic Haze Meter (3)透過率 :日本分光株式会社製 U-Best 50 (測定波長 450nm, 550nm ) (4)反射率 :日本分光株式会社製(入射角5度の正反射,測定波長 550nm) (5)膜厚 :DEKTAK (接触指針型膜厚計)
C. Film Evaluation Method The film was evaluated using the apparatus described below on the right side. (1) Surface resistance: Loresta AP manufactured by Mitsubishi Yuka Co., Ltd. (4 end needle method) (2) Haze: Automatic Haze Meter manufactured by Tokyo Denshoku Co., Ltd. (3) Transmittance: U-Best 50 manufactured by JASCO Corporation ( (Measurement wavelength 450nm, 550nm) (4) Reflectance: manufactured by JASCO Corporation (specular reflection at an incident angle of 5 degrees, measurement wavelength 550nm) (5) Film thickness: DEKTAK (contact pointer type film thickness meter)

【0061】実施例1 A.透明導電膜形成用塗料(1) の調整 前記銀コロイド分散液 50.00g 0.1%NaOH水溶液 2.23g 純水 27.77g イソプロピルアルコール(IPA) 10.00g ブチルセロソルブ 10.00g を配合して超音波分散機で分散し、透明導電膜形成用塗
料を調整した。 B.成膜 前記透明導電膜形成用塗料(1) をソーダライムガラス板
上に、スピンコーターを用いて回転数 150rpm、時間
30 秒間の条件下で塗布し、ドライヤーで乾燥した後、
引き続き、前記低屈折率透明膜形成用塗料(b)をスピ
ンコーターを用いて回転数 150rpm、時間 30 秒間の
条件下で塗布し、温度 150℃の乾燥機中で1時間焼き付
けて実施例1としての透明導電低反射性膜を形成した。
得られた膜の評価結果を表1,2に示す。
Example 1 A. Preparation of Transparent Conductive Film Forming Paint (1) Silver colloid dispersion 50.00 g 0.1% NaOH aqueous solution 2.23 g pure water 27.77 g isopropyl alcohol (IPA) 10.00 g butyl cellosolve 10.00 g was mixed and ultrasonically dispersed The dispersion was performed by a machine to prepare a coating material for forming a transparent conductive film. B. Film formation The above-mentioned paint (1) for forming a transparent conductive film was coated on a soda-lime glass plate using a spin coater at a rotation speed of 150 rpm for a time.
After applying for 30 seconds and drying with a dryer,
Subsequently, the coating material (b) for forming a low-refractive-index transparent film was applied using a spin coater under the conditions of a rotation speed of 150 rpm and a time of 30 seconds, and baked in a dryer at a temperature of 150 ° C. for 1 hour to obtain Example 1. Was formed.
Tables 1 and 2 show the evaluation results of the obtained films.

【0062】実施例2 A.透明導電膜形成用塗料(2) の調整 前記銀コロイド分散液 50.00g 0.1%NaOH水溶液 2.23g 純水 24.77g イソプロピルアルコール(IPA) 10.00g ブチルセロソルブ 10.00g メチルホルムアミド 3.00g を配合して超音波分散機で分散し、透明導電膜形成用塗
料を調整した。 B.成膜 前記透明導電膜形成用塗料(2) を使用した以外は実施例
1に準じて、実施例2としての透明導電低反射性膜を形
成した。得られた膜の評価結果を表1,2に示す。な
お、この透明導電低反射性膜は、図4に示すように、可
視光領域における光透過性が 70 %以上という非常に優
れた光透過性を有し、さらに、図5に示すように、波長
480〜750 nmの領域で反射率が1%以下という非常に
良好な反射防止性を有することが判明した。
Example 2 A. Preparation of Transparent Conductive Film Forming Paint (2) 50.00 g of the above-mentioned silver colloid dispersion solution 2.23 g of a 0.1% aqueous NaOH solution 24.77 g of pure water 10.00 g of isopropyl alcohol (IPA) 10.00 g of butyl cellosolve 3.00 g of methylformamide Then, the mixture was dispersed by an ultrasonic dispersing machine to prepare a paint for forming a transparent conductive film. B. Film formation A transparent conductive low-reflection film as Example 2 was formed in the same manner as in Example 1 except that the transparent conductive film forming paint (2) was used. Tables 1 and 2 show the evaluation results of the obtained films. As shown in FIG. 4, the transparent conductive low-reflection film has a very high light transmittance of 70% or more in the visible light region, and further, as shown in FIG. wavelength
It has been found that the film has a very good antireflection property with a reflectance of 1% or less in the region of 480 to 750 nm.

【0063】実施例3 A.透明導電膜形成用塗料(3) の調整 前記銀コロイド(a)分散液 50.00g 0.1%NaOH水溶液 2.23g 純水 24.77g イソプロピルアルコール(IPA) 10.00g ブチルセロソルブ 10.00g N−メチルピロリドン 3.00g を配合して超音波分散機で分散し、透明導電膜形成用塗
料を調整した。 B.成膜 前記透明導電膜形成用塗料(3) を使用した以外は実施例
1に準じて、実施例3としての透明導電低反射性膜を形
成した。得られた膜の評価結果を表1,2に示す。
Example 3 A. Preparation of paint (3) for forming transparent conductive film Dispersion of the silver colloid (a) 50.00 g 0.1% NaOH aqueous solution 2.23 g pure water 24.77 g isopropyl alcohol (IPA) 10.00 g butyl cellosolve 10.00 g N-methylpyrrolidone 3.00 g was blended and dispersed by an ultrasonic disperser to prepare a paint for forming a transparent conductive film. B. Film formation A transparent conductive low-reflection film as Example 3 was formed in the same manner as in Example 1 except that the paint (3) for forming a transparent conductive film was used. Tables 1 and 2 show the evaluation results of the obtained films.

【0064】実施例4 A.透明導電膜形成用塗料(4) の調整 前記銀コロイド分散液 50.00g 0.1%NaOH水溶液 5.13g 純水 21.87g イソプロピルアルコール(IPA) 10.00g ブチルセロソルブ 10.00g メチルホルムアルデヒド 3.00g を配合して超音波分散機で分散し、透明導電膜形成用塗
料を調整した。 B.成膜 前記透明導電膜形成用塗料(4) を使用した以外は実施例
1に準じて、実施例4としての透明導電低反射性膜を形
成した。得られた膜の評価結果を表1,2に示す。
Example 4 A. Preparation of Transparent Conductive Film Forming Coating (4) Silver colloid dispersion 50.00 g 0.1% NaOH aqueous solution 5.13 g pure water 21.87 g isopropyl alcohol (IPA) 10.00 g butyl cellosolve 10.00 g methylformaldehyde 3.00 g Then, the mixture was dispersed by an ultrasonic dispersing machine to prepare a paint for forming a transparent conductive film. B. Film formation A transparent conductive low-reflection film as Example 4 was formed in the same manner as in Example 1 except that the transparent conductive film forming paint (4) was used. Tables 1 and 2 show the evaluation results of the obtained films.

【0065】実施例5 A.透明導電膜形成用塗料(5) の調整 前記銀コロイド分散液 50.00g 0.1%NaOH水溶液 10.50g 純水 16.50g イソプロピルアルコール(IPA) 10.00g ブチルセロソルブ 10.00g メチルホルムアルデヒド 3.00g を配合して超音波分散機で分散し、透明導電膜形成用塗
料を調整した。 B.成膜 前記透明導電膜形成用塗料(5) を使用した以外は実施例
1に準じて、実施例5としての透明導電低反射性膜を形
成した。得られた膜の評価結果を表1,2に示す。
Example 5 A. Preparation of Transparent Conductive Film Forming Coating (5) Silver Colloid Dispersion 50.00 g 0.1% NaOH aqueous solution 10.50 g Pure water 16.50 g Isopropyl alcohol (IPA) 10.00 g Butyl cellosolve 10.00 g Methyl formaldehyde 3.00 g Then, the mixture was dispersed by an ultrasonic dispersing machine to prepare a paint for forming a transparent conductive film. B. Film formation A transparent conductive low-reflection film as Example 5 was formed in the same manner as in Example 1 except that the transparent conductive film forming paint (5) was used. Tables 1 and 2 show the evaluation results of the obtained films.

【0066】実施例6 A.透明導電膜形成用塗料(6) の調整 前記銀コロイド分散液 50.00g 0.1%NaOH水溶液 14.50g 純水 12.50g イソプロピルアルコール(IPA) 10.00g ブチルセロソルブ 10.00g メチルホルムアルデヒド 3.00g を配合して超音波分散機で分散し、透明導電膜形成用塗
料を調整した。 B.成膜 前記透明導電膜形成用塗料(6) を使用した以外は実施例
1に準じて、実施例6としての透明導電低反射性膜を形
成した。得られた膜の評価結果を表1,2に示す。
Example 6 A. Preparation of Transparent Conductive Film Forming Paint (6) 50.00 g of the above-mentioned silver colloid dispersion liquid 0.150% aqueous NaOH 14.50 g pure water 12.50 g isopropyl alcohol (IPA) 10.00 g butyl cellosolve 10.00 g methylformaldehyde 3.00 g Then, the mixture was dispersed by an ultrasonic dispersing machine to prepare a paint for forming a transparent conductive film. B. Film formation A transparent conductive low-reflection film as Example 6 was formed in the same manner as in Example 1 except that the transparent conductive film forming paint (6) was used. Tables 1 and 2 show the evaluation results of the obtained films.

【0067】実施例7 B.成膜 前記透明導電膜形成用塗料(2) と前記低屈折率透明膜形
成用塗料(a) を使用した以外は実施例1に準じて、実施
例7としての透明導電低反射性膜を形成した。得られた
膜の評価結果を表1,2に示す。
Example 7 B. Film formation A transparent conductive low-reflection film as Example 7 was formed in accordance with Example 1 except that the transparent conductive film forming paint (2) and the low refractive index transparent film forming paint (a) were used. did. Tables 1 and 2 show the evaluation results of the obtained films.

【0068】実施例8 B.成膜 前記透明導電膜形成用塗料(2) と前記低屈折率透明膜形
成用塗料(c) を使用したこと、および透明導電膜形成時
のスピンコーターの回転数を 120rpmとしたこと以外
は実施例1に準じて、実施例8としての透明導電低反射
性膜を形成した。得られた膜の評価結果を表1,2に示
す。
Example 8 B. Film formation was performed except that the transparent conductive film forming paint (2) and the low refractive index transparent film forming paint (c) were used, and that the number of revolutions of the spin coater during the formation of the transparent conductive film was 120 rpm. According to Example 1, a transparent conductive low-reflection film as Example 8 was formed. Tables 1 and 2 show the evaluation results of the obtained films.

【0069】表1,表2の結果から、本発明の透明導電
低反射性膜は表面抵抗値が 1×102〜 9×102 Ω・c
m、ヘーズ値が 0.1〜0.5 (従来技術、例えば特開平8
−77832の実施例では表面抵抗が 10 3 〜 10 4 Ω
・cm、ヘーズ値が 0.3〜1.9)、波長 420nmの光の
透過率が 68 〜 73 %、波長 550nmの光の透過率が 7
6 〜 82 %、透過光は薄く黄色に着色するのみ、視感反
射率は 0.5〜3.2 であるから、優れた導電性、透明性を
有し、金属微粒子特有の着色性を有していないことが判
明する。
From the results shown in Tables 1 and 2, the transparent conductive low-reflection film of the present invention has a surface resistance of 1 × 10 2 to 9 × 10 2 Ω · c.
m, haze value is 0.1 to 0.5 (prior art, for example,
In the embodiment of −77832, the surface resistance is 10 3 to 10 4 Ω.
Cm, haze value is 0.3 to 1.9), transmittance of light with a wavelength of 420 nm is 68 to 73%, and transmittance of light with a wavelength of 550 nm is 7
6-82%, transmitted light is only colored yellow, and luminous reflectance is 0.5-3.2, so it has excellent conductivity and transparency, and does not have the coloring characteristic of metal fine particles. Turns out.

【0070】[0070]

【表1】 [Table 1]

【0071】[0071]

【表2】 [Table 2]

【0072】[0072]

【発明の効果】以上のように本発明では、請求項1記載
の透明導電膜形成用塗料では、コロイド状金属微粒子の
表面に分散安定化剤が吸着しているから、凝集誘引剤を
含む塗料中であっても分散性に優れているとともに、凝
集誘引剤が配合されているから、塗布後の乾燥時におい
て、水分の減少とともに凝集誘引剤による凝集作用が強
くなり、コロイド状に分散している金属微粒子が凝集
し、金属微粒子が一様に広がることなく、凝集粒子の形
態で金属微粒子の分布の疎密が生じるようになり、加熱
を伴う成膜処理後に得られる透明導電膜は、融着されて
連続した金属膜であって断面形状が凹凸の透明導電膜と
なるため、優れた透明性と導電性とを兼ね備え、さらに
金属微粒子特有の着色性を有していないものとなる。
As described above, according to the present invention, since the dispersion stabilizer is adsorbed on the surface of the colloidal metal fine particles in the coating material for forming a transparent conductive film according to the first aspect, the coating material contains an aggregation inducer. It is excellent in dispersibility even in medium, and because the aggregation inducer is blended, during drying after application, the aggregation effect of the aggregation inducer becomes stronger with decreasing water, and it is dispersed in colloidal form. The fine metal particles are agglomerated, the metal fine particles do not spread uniformly, and the distribution of the metal fine particles in the form of aggregated particles occurs, and the transparent conductive film obtained after the film forming process involving heating is fused. As a result, a transparent conductive film having a concavo-convex shape is formed as a continuous metal film, and thus has both excellent transparency and conductivity, and does not have coloring properties unique to metal fine particles.

【0073】請求項2記載の透明導電膜形成用塗料で
は、凝集誘引剤による凝集作用を補完する目的で水より
も沸点の高い水溶性溶剤が配合されてなるから、塗布後
の乾燥時における水分の減少とともに凝集作用がより強
く作用するようになり、透明導電膜の透明性、導電性が
優れたものとなる。
In the paint for forming a transparent conductive film according to the second aspect, a water-soluble solvent having a boiling point higher than that of water is blended for the purpose of complementing the aggregating action of the aggregating attractant, so that the water content during drying after coating is reduced. With the decrease in agglomeration, the coagulation action becomes stronger, and the transparency and conductivity of the transparent conductive film become excellent.

【0074】請求項3記載の透明導電膜形成用塗料で
は、分散安定化剤として水溶性高分子化合物が配合され
てなるから、コロイド状金属微粒子の表面に強く吸着し
て金属微粒子の液中における粒子表面電位を大きくし、
凝集誘引剤の凝集作用を抑え、もってコロイド状金属微
粒子の分散性を向上させるとともに、塗布後の乾燥時に
おいては水溶性溶剤の水への溶解性を低下させるため、
金属微粒子の凝集が促進される。
In the paint for forming a transparent conductive film according to the third aspect, since a water-soluble polymer compound is blended as a dispersion stabilizer, the paint is strongly adsorbed on the surface of the colloidal metal fine particles and is contained in the liquid of the metal fine particles. Increase the particle surface potential,
In order to suppress the aggregation effect of the aggregation inducer, thereby improving the dispersibility of the colloidal metal fine particles, and at the time of drying after coating, to reduce the solubility of the water-soluble solvent in water,
Aggregation of metal fine particles is promoted.

【0075】請求項4記載の透明導電膜形成用塗料で
は、凝集誘引剤としてアルカリ土類金属イオン、アンモ
ニウムイオンのうちの少なくとも1種が配合されてなる
ものであるから、塗布後の乾燥時における凝集作用が特
に強くなり、透明導電膜の透明性、導電性が優れたもの
となる。
In the coating for forming a transparent conductive film according to the fourth aspect, at least one of an alkaline earth metal ion and an ammonium ion is blended as a cohesion inducer. The coagulation action becomes particularly strong, and the transparency and conductivity of the transparent conductive film become excellent.

【0076】請求項5記載の透明導電膜形成用塗料で
は、コロイド状金属微粒子の平均粒子径が 0.1μm以下
であって、かつ一次粒子径が 0.005μm以下の微粒子を
少なくとも含有するものであるから、波長 400〜700 n
mの可視光領域で優れた透過性を有し、透明導電膜の透
明性が向上するとともに、コロイド状金属微粒子の融着
が促進され、着色することない優れた導電性を有する透
明導電膜を形成することができる。
In the coating material for forming a transparent conductive film according to the fifth aspect, the average particle diameter of the colloidal metal fine particles is 0.1 μm or less and at least the fine particles having a primary particle diameter of 0.005 μm or less are contained. , Wavelength 400-700 n
m has excellent transparency in the visible light region, improves the transparency of the transparent conductive film, promotes fusion of the colloidal metal fine particles, and provides a transparent conductive film having excellent conductivity without coloring. Can be formed.

【0077】請求項6記載の透明導電膜形成用塗料で
は、導電性に優れた金属微粒子を使用することとしたた
め、透明導電膜の導電性が向上し、静電気帯電防止効
果、電磁波遮蔽効果が向上する。
In the paint for forming a transparent conductive film according to the sixth aspect, since fine metal particles having excellent conductivity are used, the conductivity of the transparent conductive film is improved, and the antistatic effect and the electromagnetic wave shielding effect are improved. I do.

【0078】請求項7記載の透明導電膜形成用塗料で
は、導電性に優れた銀の微粒子を使用することとしたた
め、透明導電膜の導電性が向上し、静電気帯電防止効
果、電磁波遮蔽効果が向上するとともに、着色のない透
明膜が得られる。
In the paint for forming a transparent conductive film according to the seventh aspect, since fine silver particles having excellent conductivity are used, the conductivity of the transparent conductive film is improved, and the antistatic effect and the electromagnetic wave shielding effect are improved. As a result, a transparent film without coloring can be obtained.

【0079】請求項8記載の透明導電膜形成用塗料の製
造方法では、金属源から微細な金属微粒子を析出させ、
表面に分散安定化剤が吸着したコロイド状金属微粒子を
生成でき、凝集誘引剤を含有する透明導電膜形成用塗料
を製造することができる。
In the method for producing a coating material for forming a transparent conductive film according to claim 8, fine metal fine particles are precipitated from a metal source.
Colloidal metal fine particles having a dispersion stabilizer adsorbed on the surface can be produced, and a paint for forming a transparent conductive film containing an aggregation inducer can be produced.

【0080】請求項9記載の透明導電膜形成用塗料の製
造方法では、還元剤が工業的に入手し易いため、利用性
が良く、量産に適し、生産性を向上させることができ
る。
In the method for producing a paint for forming a transparent conductive film according to the ninth aspect, the reducing agent is easily available industrially, so that it is easy to use, suitable for mass production, and can improve productivity.

【0081】請求項10記載の透明導電低反射性膜で
は、融着されて連続した金属膜であって断面形状が凹凸
の透明導電膜と、この上に形成された低屈折率透明膜と
から構成されているので、可視光透過性と静電気帯電防
止・電磁波遮蔽性の両特性を併せ持つ、透明性が高く、
導電性の良い、低反射性膜を提供することができる。
According to a tenth aspect of the present invention, the transparent conductive low-reflection film is a continuous metal film which is fused and continuous, and has a concave-convex cross-sectional shape and a low-refractive-index transparent film formed thereon. Because it is composed, it has both transparency of visible light and antistatic / electromagnetic shielding properties, high transparency,
A low-reflection film having good conductivity can be provided.

【0082】請求項11記載の透明導電低反射性膜で
は、透明導電膜の凸状部の基板表面からの高さが最大で
も 30 nmを超えないものであるため、高い透明性を有
するものとなる。
In the transparent conductive low-reflection film according to the eleventh aspect, the height of the projecting portion of the transparent conductive film from the substrate surface does not exceed 30 nm at the maximum, so that the transparent conductive film has high transparency. Become.

【0083】請求項12記載の透明導電低反射性膜の製
造方法では、金属微粒子の凝集粒子を融解させて連続形
成させた金属膜に低屈折率透明膜を積層させたことによ
り、金属膜の凸状部では導電性が高く、凹状部では可視
光透過性が高くなり、疑似的な屈折率傾斜膜を形成で
き、透明で導電性が高い低反射性の膜を形成することが
できる。
In the method for producing a transparent conductive low-reflection film according to the twelfth aspect, the low-refractive-index transparent film is laminated on the metal film continuously formed by melting the aggregated particles of the metal fine particles. The convex portions have high conductivity, and the concave portions have high visible light transmittance, so that a pseudo refractive index gradient film can be formed, and a transparent and highly conductive low-reflection film can be formed.

【0084】請求項13記載の透明導電低反射性膜の製
造方法では、膜形成時の処理温度が比較的低温であるた
め、使用可能な基材や工程上の制約を低減させることが
できる。
In the method for producing a transparent conductive low-reflection film according to the thirteenth aspect, since the processing temperature at the time of film formation is relatively low, it is possible to reduce restrictions on usable substrates and steps.

【0085】請求項14記載の透明導電低反射性膜の製
造方法では、凝集後の粒径を比較的大きく形成すること
により、融解時に凹凸状を有する連続した金属膜を形成
することができ、更に、その上から低屈折率透明膜を被
覆することによって疑似的な屈折率傾斜膜を形成でき、
従来よりも薄い膜厚の透明導電低反射性膜を形成するこ
とができる。
In the method for producing a transparent conductive low-reflection film according to the fourteenth aspect, by forming the particle size after aggregation to be relatively large, a continuous metal film having irregularities can be formed at the time of melting. Furthermore, a pseudo-refractive-index gradient film can be formed by coating a low-refractive-index transparent film thereon.
It is possible to form a transparent conductive low-reflection film having a smaller film thickness than before.

【0086】請求項15記載の透明導電低反射性膜付き
表示装置では、透明基材表面に疑似的な屈折率傾斜膜と
なる透明導電低反射性膜を設けたことにより、従来より
も優れた静電気帯電防止・電磁波遮蔽効果を有し、着色
のない、そして優れた反射防止効果を併せ持つ表示装置
を提供することができる。
In the display device with a transparent conductive low-reflection film according to the fifteenth aspect, a transparent conductive low-reflection film serving as a pseudo-refractive-index gradient film is provided on the surface of the transparent base material. A display device having an antistatic effect and an electromagnetic wave shielding effect, having no coloring, and having an excellent antireflection effect can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による透明導電低反射性膜を示す縦断面
図である。
FIG. 1 is a longitudinal sectional view showing a transparent conductive low-reflection film according to the present invention.

【図2】本発明による透明導電低反射性膜の生成過程を
示す縦断面説明図であり、(イ)は基材に凝集粒子を形
成させた塗布乾燥後の状態を示す縦断面説明図、(ロ)
は基材に透明導電低反射性膜を形成させた状態を示す縦
断面説明図である。
FIG. 2 is a vertical cross-sectional explanatory view showing a process of forming a transparent conductive low-reflection film according to the present invention, and (A) is a vertical cross-sectional explanatory view showing a state after application and drying in which aggregated particles are formed on a substrate; (B)
FIG. 3 is an explanatory longitudinal sectional view showing a state in which a transparent conductive low-reflection film is formed on a substrate.

【図3】本発明による透明導電低反射性膜の製造過程を
示す説明図であり、(イ)は基材に本発明の透明導電膜
形成用塗料を塗布した乾燥前の状態を示す縦断面説明
図、(ロ)は乾燥処理後の状態を示す縦断面説明図、
(ハ)は低屈折率透明膜形成用塗料を塗布した後の状態
を示す縦断面説明図、(ニ)は融解処理後の状態を示す
縦断面説明図である。
FIG. 3 is an explanatory view showing a process of manufacturing a transparent conductive low-reflection film according to the present invention. FIG. 3 (A) is a longitudinal sectional view showing a state before a transparent conductive film forming paint of the present invention is applied to a base material before drying. Explanatory drawing, (b) is a longitudinal sectional explanatory view showing a state after the drying process,
(C) is an explanatory longitudinal sectional view showing a state after applying a coating material for forming a low refractive index transparent film, and (D) is an explanatory longitudinal sectional view showing a state after a melting treatment.

【図4】本発明による実施例2により得られた透明導電
低反射性膜の透過スペクトルを示すグラフである。
FIG. 4 is a graph showing a transmission spectrum of a transparent conductive low-reflection film obtained in Example 2 according to the present invention.

【図5】本発明による実施例2により得られた透明導電
低反射性膜の反射スペクトルを示すグラフである。
FIG. 5 is a graph showing a reflection spectrum of a transparent conductive low-reflection film obtained in Example 2 according to the present invention.

【符号の説明】[Explanation of symbols]

1 基材 2 透明導電膜(高屈折率膜) 3 低屈折率透明膜 1 base material 2 transparent conductive film (high refractive index film) 3 low refractive index transparent film

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C09C 3/10 C09C 3/10 C09D 5/00 C09D 5/00 P 5/38 5/38 7/12 7/12 A Z H05K 9/00 H05K 9/00 W ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C09C 3/10 C09C 3/10 C09D 5/00 C09D 5/00 P 5/38 5/38 7/12 7/12 AZ H05K 9/00 H05K 9/00 W

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】コロイド状金属微粒子と、該コロイド状金
属微粒子の表面に吸着した分散安定化剤と、塗料乾燥時
において前記コロイド状金属微粒子を凝集させる凝集誘
引剤と、水を少なくとも含有することを特徴とする透明
導電膜形成用塗料。
Claims: 1. A composition comprising at least one of colloidal metal fine particles, a dispersion stabilizer adsorbed on the surface of the colloidal metal fine particles, an aggregation inducer for aggregating the colloidal metal fine particles when a paint is dried, and water. A paint for forming a transparent conductive film, comprising:
【請求項2】水より沸点の高いアルコール類またはセロ
ソルブ類等の水溶性溶剤を少なくとも1種含有すること
を特徴とする請求項1記載の透明導電膜形成用塗料。
2. The coating for forming a transparent conductive film according to claim 1, further comprising at least one water-soluble solvent having a higher boiling point than water, such as alcohols or cellosolves.
【請求項3】前記分散安定化剤は、カルボン酸またはス
ルホン酸、あるいはポリビニルアルコール、ポリビニル
ピロリドン、ポリエチレングリコール等の水溶性高分子
化合物であることを特徴とする請求項1または2記載の
透明導電膜形成用塗料。
3. The transparent conductive material according to claim 1, wherein the dispersion stabilizer is a carboxylic acid or a sulfonic acid, or a water-soluble polymer compound such as polyvinyl alcohol, polyvinyl pyrrolidone, and polyethylene glycol. Paint for film formation.
【請求項4】前記凝集誘引剤は、アルカリ金属イオン、
アンモニウムイオンのうちの少なくとも1種であること
を特徴とする請求項1〜3のいずれかに記載の透明導電
膜形成用塗料。
4. The aggregation inducer comprises an alkali metal ion,
The coating for forming a transparent conductive film according to claim 1, wherein the coating is at least one of ammonium ions.
【請求項5】前記コロイド状金属微粒子は、平均粒径
0.1μm以下であって、かつ一次粒子径が 0.005μm以
下の微粒子を少なくとも含有することを特徴とする請求
項1〜4のいずれかに記載の透明導電膜形成用塗料。
5. The colloidal metal fine particles have an average particle size.
The paint for forming a transparent conductive film according to any one of claims 1 to 4, wherein the paint contains at least fine particles having a primary particle diameter of not more than 0.1 µm and not more than 0.005 µm.
【請求項6】前記コロイド状金属微粒子は、金、銀、
銅、アルミニウム、ニッケル、鉄、錫、インジウム、鉛
のうちの少なくとも1種のコロイド状金属微粒子である
ことを特徴とする請求項1〜5のいずれかに記載の透明
導電膜形成用塗料。
6. The colloidal metal fine particles include gold, silver,
The transparent conductive film forming paint according to any one of claims 1 to 5, wherein the paint is at least one kind of colloidal metal fine particles of copper, aluminum, nickel, iron, tin, indium, and lead.
【請求項7】前記コロイド状金属微粒子は、銀のコロイ
ド状金属微粒子であることを特徴とする請求項1〜5の
いずれかに記載の透明導電膜形成用塗料。
7. The coating for forming a transparent conductive film according to claim 1, wherein said colloidal metal fine particles are silver colloidal metal fine particles.
【請求項8】請求項1〜7のいずれかに記載の透明導電
膜形成用塗料の製造方法であって、該製造方法は、金属
塩を溶解した溶液またはスラリー状に分散させた分散液
に分散安定化剤と還元剤とを導入して前記分散安定化剤
が表面に吸着したコロイド状金属微粒子の分散液を生成
させ、該分散液中に凝集誘引剤を共存せしめることを特
徴とする透明導電膜形成用塗料の製造方法。
8. A method for producing a coating material for forming a transparent conductive film according to claim 1, wherein the method comprises the steps of: preparing a solution in which a metal salt is dissolved or a dispersion in which the metal salt is dispersed in a slurry. A dispersion comprising introducing a dispersion stabilizer and a reducing agent to form a dispersion of the colloidal metal fine particles having the dispersion stabilizer adsorbed on the surface thereof, and allowing the aggregation attractant to coexist in the dispersion; A method for producing a paint for forming a conductive film.
【請求項9】前記還元剤は、2価の鉄塩、2価の錫塩、
3価のセリウム塩、3価のチタン塩から選ばれた少なく
とも1種であることを特徴とする請求項8記載の透明導
電膜形成用塗料の製造方法。
9. The reducing agent is a divalent iron salt, a divalent tin salt,
The method for producing a transparent conductive film forming paint according to claim 8, wherein the paint is at least one selected from a trivalent cerium salt and a trivalent titanium salt.
【請求項10】融着されて連続した金属膜であり、かつ
その金属膜の断面形状が凹凸状である透明導電膜と、こ
の透明導電膜上に被覆された低屈折率透明膜とからなる
ことを特徴とする透明導電低反射性膜。
10. A transparent conductive film which is a continuous metal film which has been fused and has an uneven cross section, and a low refractive index transparent film coated on the transparent conductive film. A transparent conductive low-reflection film characterized by the above-mentioned.
【請求項11】前記凹凸状に形成された金属膜における
凸部の基板表面からの最大高さは 30nm以下であるこ
とを特徴とする請求項10記載の透明導電低反射性膜。
11. The transparent conductive low-reflection film according to claim 10, wherein the maximum height of the projections of the metal film formed in the uneven shape from the substrate surface is 30 nm or less.
【請求項12】請求項10または11記載の透明導電低
反射性膜の製造方法であって、該製造方法は、請求項1
〜7のいずれかに記載の透明導電膜形成用塗料を塗布
し、乾燥させて金属微粒子の凝集粒子からなる凝集層を
形成し、この凝集層上に低屈折率透明膜形成用塗料を塗
布し、所定加熱温度で加熱して、前記金属微粒子の凝集
粒子を融解させるとともに、前記低屈折率透明膜形成用
塗料を硬化させることを特徴とする透明導電低反射性膜
の製造方法。
12. A method for producing a transparent conductive low-reflection film according to claim 10 or 11, wherein said production method comprises the steps of:
7. A coating for forming a transparent conductive film according to any one of (1) to (7) is applied and dried to form an agglomerated layer composed of agglomerated particles of metal fine particles. Heating at a predetermined heating temperature to melt the aggregated particles of the metal fine particles and to cure the low refractive index transparent film forming paint.
【請求項13】前記加熱温度が 250℃以下であることを
特徴とする請求項12記載の透明導電低反射性膜の製造
方法。
13. The method according to claim 12, wherein the heating temperature is 250 ° C. or lower.
【請求項14】前記金属微粒子の凝集粒子の粒径が 0.3
μm以上であることを特徴とする請求項12 記載の透明
導電低反射性膜の製造方法。
14. The method according to claim 14, wherein the particle size of the aggregated metal fine particles is 0.3.
13. The method for producing a transparent conductive low-reflection film according to claim 12, wherein the thickness is not less than μm.
【請求項15】請求項10または11記載の透明導電低
反射性膜を透明基材表面に設けたことを特徴とする透明
導電低反射性膜付き表示装置。
15. A display device with a transparent conductive low-reflection film, wherein the transparent conductive low-reflection film according to claim 10 is provided on the surface of a transparent base material.
JP8267538A 1996-10-08 1996-10-08 Coating material for forming transparent conductive membrane and its production, transparent conductive low reflective membrane and its production, and display with the transparent conductive low reflective membrane Pending JPH10110123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8267538A JPH10110123A (en) 1996-10-08 1996-10-08 Coating material for forming transparent conductive membrane and its production, transparent conductive low reflective membrane and its production, and display with the transparent conductive low reflective membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8267538A JPH10110123A (en) 1996-10-08 1996-10-08 Coating material for forming transparent conductive membrane and its production, transparent conductive low reflective membrane and its production, and display with the transparent conductive low reflective membrane

Publications (1)

Publication Number Publication Date
JPH10110123A true JPH10110123A (en) 1998-04-28

Family

ID=17446222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8267538A Pending JPH10110123A (en) 1996-10-08 1996-10-08 Coating material for forming transparent conductive membrane and its production, transparent conductive low reflective membrane and its production, and display with the transparent conductive low reflective membrane

Country Status (1)

Country Link
JP (1) JPH10110123A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004076104A1 (en) * 2003-02-28 2004-09-10 Tanaka Kikinzoku Kogyo K.K. Single-element or multielement metal colloid and method for producing single-element or multielement metal colloid
KR100477912B1 (en) * 2002-02-20 2005-03-17 (주)엔피텍 A Method for Manufacturing of Colloidal Silver in Organic Solvents containing Ethanol
KR100544252B1 (en) * 1997-09-05 2006-03-23 미쓰비시 마테리알 가부시키가이샤 Transparent Conductive Film and Composition for Forming Same
US7053126B2 (en) 2002-03-25 2006-05-30 Sumitomo Metal Mining Co., Ltd. Process for producing noble-metal type fine-particle dispersion, coating liquid for forming transparent conductive layer, transparent conductive layered structure and display device
WO2006093398A1 (en) * 2005-03-04 2006-09-08 Inktec Co., Ltd. Conductive inks and manufacturing method thereof
WO2007013393A1 (en) * 2005-07-25 2007-02-01 Sumitomo Metal Mining Co., Ltd. Copper fine particle dispersion liquid and method for producing same
JP2007220332A (en) * 2006-02-14 2007-08-30 Dowa Holdings Co Ltd Silver powder and its manufacturing method, paste, electronic circuit component, and electric product using the same
JP2008019504A (en) * 2006-07-10 2008-01-31 Samsung Electro-Mechanics Co Ltd Manufacturing method of metal nanoparticle
KR100856508B1 (en) 2007-06-15 2008-09-04 주식회사 잉크테크 Transpatent conductive layer and preparation method thereof
US7438835B2 (en) 2002-03-25 2008-10-21 Sumitomo Metal Mining Co., Ltd. Transparent conductive film, coating liquid for forming such film, transparent conductive layered structure, and display device
JP2008282014A (en) * 2007-05-10 2008-11-20 Samsung Sdi Co Ltd Filter and display apparatus having the same
JP2010095796A (en) * 2008-10-14 2010-04-30 Xerox Corp Process for producing carboxylic acid stabilized silver nanoparticle
JP2010284603A (en) * 2009-06-12 2010-12-24 Kyushu Univ Multilayer film substrate having multilayer formed from metal fine particles and method of manufacturing the same
JP2011179002A (en) * 2000-08-11 2011-09-15 Ishihara Sangyo Kaisha Ltd Metal colloidal solution and coating using the same
KR20160141170A (en) * 2015-05-28 2016-12-08 주식회사 세일하이텍 Method for maunfacturing transparent and flexible film for electro-magnetic wave shield
JP2018059035A (en) * 2016-10-07 2018-04-12 小林 博 Manufacturing method of transparent conductive coating and forming method of transparent conductive film using the coating

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100544252B1 (en) * 1997-09-05 2006-03-23 미쓰비시 마테리알 가부시키가이샤 Transparent Conductive Film and Composition for Forming Same
JP2011179002A (en) * 2000-08-11 2011-09-15 Ishihara Sangyo Kaisha Ltd Metal colloidal solution and coating using the same
KR100477912B1 (en) * 2002-02-20 2005-03-17 (주)엔피텍 A Method for Manufacturing of Colloidal Silver in Organic Solvents containing Ethanol
US7438835B2 (en) 2002-03-25 2008-10-21 Sumitomo Metal Mining Co., Ltd. Transparent conductive film, coating liquid for forming such film, transparent conductive layered structure, and display device
US7053126B2 (en) 2002-03-25 2006-05-30 Sumitomo Metal Mining Co., Ltd. Process for producing noble-metal type fine-particle dispersion, coating liquid for forming transparent conductive layer, transparent conductive layered structure and display device
WO2004076104A1 (en) * 2003-02-28 2004-09-10 Tanaka Kikinzoku Kogyo K.K. Single-element or multielement metal colloid and method for producing single-element or multielement metal colloid
WO2006093398A1 (en) * 2005-03-04 2006-09-08 Inktec Co., Ltd. Conductive inks and manufacturing method thereof
US7955528B2 (en) 2005-03-04 2011-06-07 Inktec Co., Ltd Conductive inks and manufacturing method thereof
US7691294B2 (en) 2005-03-04 2010-04-06 Inktec Co., Ltd. Conductive inks and manufacturing method thereof
WO2007013393A1 (en) * 2005-07-25 2007-02-01 Sumitomo Metal Mining Co., Ltd. Copper fine particle dispersion liquid and method for producing same
JP4978844B2 (en) * 2005-07-25 2012-07-18 住友金属鉱山株式会社 Copper fine particle dispersion and method for producing the same
US8083972B2 (en) 2005-07-25 2011-12-27 Sumitomo Metal Mining Co., Ltd. Copper particulate dispersions and method for producing the same
KR100967371B1 (en) 2005-07-25 2010-07-05 스미토모 긴조쿠 고잔 가부시키가이샤 Copper fine particle dispersion liquid and method for producing same
JPWO2007013393A1 (en) * 2005-07-25 2009-02-05 住友金属鉱山株式会社 Copper fine particle dispersion and method for producing the same
JP2007220332A (en) * 2006-02-14 2007-08-30 Dowa Holdings Co Ltd Silver powder and its manufacturing method, paste, electronic circuit component, and electric product using the same
JP2008019504A (en) * 2006-07-10 2008-01-31 Samsung Electro-Mechanics Co Ltd Manufacturing method of metal nanoparticle
JP2008282014A (en) * 2007-05-10 2008-11-20 Samsung Sdi Co Ltd Filter and display apparatus having the same
WO2008153356A3 (en) * 2007-06-15 2009-02-12 Inktec Co Ltd Transparent conductive layer and preparation method thereof
KR100856508B1 (en) 2007-06-15 2008-09-04 주식회사 잉크테크 Transpatent conductive layer and preparation method thereof
TWI386955B (en) * 2007-06-15 2013-02-21 Inktec Co Ltd Transparent conductive layer and preparation method thereof
US9556065B2 (en) 2007-06-15 2017-01-31 Inktec Co., Ltd. Transparent conductive layer and preparation method thereof
JP2010095796A (en) * 2008-10-14 2010-04-30 Xerox Corp Process for producing carboxylic acid stabilized silver nanoparticle
JP2010284603A (en) * 2009-06-12 2010-12-24 Kyushu Univ Multilayer film substrate having multilayer formed from metal fine particles and method of manufacturing the same
KR20160141170A (en) * 2015-05-28 2016-12-08 주식회사 세일하이텍 Method for maunfacturing transparent and flexible film for electro-magnetic wave shield
JP2018059035A (en) * 2016-10-07 2018-04-12 小林 博 Manufacturing method of transparent conductive coating and forming method of transparent conductive film using the coating

Similar Documents

Publication Publication Date Title
JPH10110123A (en) Coating material for forming transparent conductive membrane and its production, transparent conductive low reflective membrane and its production, and display with the transparent conductive low reflective membrane
JP3302186B2 (en) Substrate with transparent conductive film, method for producing the same, and display device provided with the substrate
TW539734B (en) Transparent conductive layered structure and method of producing the same, and coating liquid for forming transparent conductive layer used in production of transparent conductive layered structure and method of producing the same
TW201016603A (en) Hollow particle, method for producing the same, coating composition and article
JP3262098B2 (en) Heat ray shielding material, heat ray shielding equipment using the same, coating liquid and heat ray shielding film
JP3882419B2 (en) Coating liquid for forming conductive film and use thereof
JP2000090737A (en) Conductive membrane and coating liquid for forming conductive membrane
JP3473272B2 (en) Coating liquid for conductive film formation and conductive film
JP2008230954A (en) Manufacturing method for antimony-containing tin oxide fine particles for forming solar radiation shielding body, dispersion for forming solar radiation shielding body, solar radiation shielding body, and solar radiation shielding base material
JP2005139026A (en) Chain-like antimony oxide fine particles, method for producing dispersion including the fine particles, and application of the dispersion
JP3697760B2 (en) Coating liquid
EP1967495B1 (en) Manufacturing method for antimony-containing tin oxide fine particles for forming solar radiation shielding body, dispersion for forming solar radiation shielding body, solar radiation sheilding body, and solar radiation shielding base material
JP2000196287A (en) Coating liquid for forming transparent conductive film, base with the transparent conductive film, and indicator
JP3876811B2 (en) Production method of coating liquid for forming transparent conductive layer
JP3002327B2 (en) Paint for forming conductive / high refractive index film and transparent material laminate with conductive / high refractive index film
JPH06144874A (en) Heat ray reflective film and its production
JP6413969B2 (en) Dispersion for forming solar shading body and solar shading body using the dispersion
JPH0953030A (en) Clear conductive coating material and clear conductive film
JP2000357414A (en) Transparent conductive film and display device
JP3449123B2 (en) Coating solution for forming low-resistance film or low-refractive-index film, and method for producing low-resistance film or low-reflection low-refractive-index film
JP3979967B2 (en) Manufacturing method of low reflection low resistance film
JP3520705B2 (en) Coating liquid for forming conductive film, conductive film and method for manufacturing the same
JPH1135855A (en) Transparent conductive film and display device
JP2002367428A (en) Application liquid for forming colored transparent conductive film, base body with the colored transparent conductive film, method of manufacture and display device
JPH11329071A (en) Transparent conductive film forming coating, transparent conductive film and display device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050823