JP2000357414A - Transparent conductive film and display device - Google Patents

Transparent conductive film and display device

Info

Publication number
JP2000357414A
JP2000357414A JP11165991A JP16599199A JP2000357414A JP 2000357414 A JP2000357414 A JP 2000357414A JP 11165991 A JP11165991 A JP 11165991A JP 16599199 A JP16599199 A JP 16599199A JP 2000357414 A JP2000357414 A JP 2000357414A
Authority
JP
Japan
Prior art keywords
conductive layer
film
silver
fine particles
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11165991A
Other languages
Japanese (ja)
Inventor
Naoki Takamiya
直樹 高宮
Shingo Hosoda
真吾 細田
Atsumi Wakabayashi
淳美 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP11165991A priority Critical patent/JP2000357414A/en
Publication of JP2000357414A publication Critical patent/JP2000357414A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To realize good transparent on a display surface, electromagnetic wave shielding or antistatic effect, weather resistance such as salt-water resistance, scratch resistance, and visibility having no irregularity of natural color phases and island-like aggregation on a transmissive image, by including gold, silver, and one ore more platinum group metal as micro particles in conductive layer. SOLUTION: This film preferably contains 20-70 wt.% gold, 10-40 wt.% silver, and 10-40 wt.% platinum-group metal such as Pd or Ru having good conductivity and economical efficiency, total content of gold and silver with a low specific resistance value is not less than 60 wt.%, and content of silver with relatively low chemical stability is not more than 40 wt.%. The platinum-group metal with low resistance and controllable refractive index is stable in dispersion of micro particle, and suppresses island-like aggregation in the film. Preferably, at least part of micro particles with 1-10 nm grain size form chain-like aggregates with 5-200 nm length, contact resistance between metal particles of a network structure where the aggregates are entangled is low, and light easily passes through the network. Coating having dispersed these particles is applied to a base material to form a conductive layer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は透明導電膜、および
この透明導電膜を表示面に形成した表示装置に関するも
のであり、特に陰極線管やプラズマディスプレイなどの
表示面に用いて優れた帯電防止効果と電磁波遮蔽効果と
を有し、外観上においても違和感を与えない自然な透過
色を有しており、膜のムラも少なく、耐候性にも優れた
透明導電膜、およびこの透明導電膜を表示面に形成した
表示装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transparent conductive film and a display device having the transparent conductive film formed on a display surface, and particularly to an excellent antistatic effect when used on a display surface of a cathode ray tube or a plasma display. A transparent conductive film that has a natural transmission color that does not give a sense of incongruity in appearance, has less unevenness of the film, and has excellent weather resistance, and displays this transparent conductive film. The present invention relates to a display device formed on a surface.

【0002】[0002]

【従来の技術】TVブラウン管やコンピュータのディス
プレイなどとして用いられている表示装置の1種である
陰極線管は、赤色、緑色、青色に発光する蛍光面に電子
ビームを射突させることによって文字や画像を表示面に
映し出すものであるから、この表示面に発生する静電気
により埃が付着して視認性が低下する他、電磁波を輻射
して環境に影響を及ぼす惧れがある。また最近、壁掛け
テレビなどとしての応用が進められているプラズマディ
スプレイにおいても、静電気の発生や電磁波輻射の可能
性が指摘されている。
2. Description of the Related Art A cathode ray tube, which is a kind of display device used as a TV cathode ray tube or a computer display, emits an electron beam onto a phosphor screen which emits red, green, and blue light to display characters and images. Is projected on the display surface, and the static electricity generated on the display surface causes dust to adhere to the display surface, lowering the visibility, and radiating electromagnetic waves to affect the environment. Recently, it has been pointed out that a plasma display, which is being applied to a wall-mounted television or the like, may generate static electricity or emit electromagnetic waves.

【0003】これらの表示装置における電磁波輻射の問
題を解決するため、例えば、特開平8−77832号公
報には、平均粒径2nm〜200nmの少なくとも銀を含む
金属微粒子による透明金属薄膜と、これと屈折率が異な
る透明薄膜とからなり、電磁波遮蔽効果と反射防止効果
とを共に有する透明導電膜が記載されている。
[0003] In order to solve the problem of electromagnetic wave radiation in these display devices, for example, Japanese Patent Application Laid-Open No. 8-77832 discloses a transparent metal thin film composed of metal fine particles containing at least silver having an average particle diameter of 2 nm to 200 nm. A transparent conductive film comprising transparent thin films having different refractive indices and having both an electromagnetic wave shielding effect and an antireflection effect is described.

【0004】[0004]

【発明が解決しようとする課題】しかし前記の従来の方
法では、電磁波遮蔽効果は期待できるものの、銀の光透
過スペクトルに由来して400nm〜500nmの透過光に
吸収が生じ、導電膜が黄色に着色し、透過画像の色相が
不自然に変化するという問題、前記透明金属薄膜を形成
する塗布液の分散安定性が乏しく膜に金属微粒子の島状
凝集物によるムラが発生するという問題、ならびに塩水
中に3日以上浸漬すると導電膜の表面抵抗値が上昇し電
磁波遮蔽効果が低下するので、海岸など塩霧の影響を受
け易い場所での使用には注意を要するなどの問題が解決
されなかった。本発明は、前記の課題を解決するために
なされたものであって、従ってその目的は、透明性が高
く電磁波遮蔽効果および帯電防止効果に優れ、透過画像
の色相が自然であり、耐塩水性に代表される耐候性を有
し、金属微粒子の島状凝集物によるムラがない透明導電
膜、およびこの透明導電膜が表示面に形成された表示装
置を提供することにある。
However, in the above-mentioned conventional method, although an electromagnetic wave shielding effect can be expected, absorption occurs in transmitted light of 400 nm to 500 nm due to the light transmission spectrum of silver, and the conductive film turns yellow. Coloring, the hue of the transmitted image changes unnaturally, the dispersion stability of the coating liquid for forming the transparent metal thin film is poor, and the film is uneven due to island-like aggregates of metal fine particles, and salt water. If immersed in water for more than 3 days, the surface resistance of the conductive film increases and the electromagnetic wave shielding effect decreases, so problems such as caution when using in places susceptible to salt fog, such as coasts, were not solved. . The present invention has been made in order to solve the above-mentioned problems, and therefore, the object thereof is to provide a high transparency, a high electromagnetic wave shielding effect and an excellent antistatic effect, a natural hue of a transmitted image, and a high saltwater resistance. It is an object of the present invention to provide a transparent conductive film having typical weather resistance and free from unevenness due to island-like aggregates of metal fine particles, and a display device having the transparent conductive film formed on a display surface.

【0005】[0005]

【課題を解決するための手段】本発明者らは、前記の課
題を解決すべく鋭意研究の結果、前記表示装置の表示面
に、金微粒子と銀微粒子と白金属金属微粒子とを含む導
電層、特にこれら金属微粒子の少なくとも一部が鎖状凝
集体を形成してなる導電層を有する透明導電膜を形成す
ると、優れた帯電防止効果と電磁波遮蔽効果とが得られ
ると共に、透過色が自然で耐候性にも優れ、しかも1種
または2種の金属微粒子を分散させて導電層を形成した
場合に比べ、膜に金属微粒子の凝集に由来するムラが少
なくなることを見いだし本発明に到達した。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that a conductive layer containing fine gold particles, fine silver particles and fine white metal particles is formed on the display surface of the display device. In particular, when a transparent conductive film having a conductive layer in which at least a part of these metal fine particles forms a chain aggregate is formed, an excellent antistatic effect and an electromagnetic wave shielding effect are obtained, and the transmitted color is natural. The inventors have found that the film has less unevenness due to aggregation of the metal fine particles in the film than in the case where a conductive layer is formed by dispersing one or two types of metal fine particles, and has reached the present invention.

【0006】従って本発明は、請求項1において、金、
銀、および少なくとも1種の白金族金属を微粒子として
含む導電層を有する透明導電膜を提供する。前記導電層
は、微粒子として金を20重量%〜70重量%、銀を1
0重量%〜40重量%、白金族金属を10重量%〜40
重量%の範囲内で含むことが好ましい。前記微粒子の少
なくとも一部は、鎖状凝集体を形成していることが好ま
しい。この鎖状凝集体の長さは、5nm〜200nmの範囲
内であることが好ましい。前記鎖状凝集体を含む導電層
は、前記微粒子の鎖状凝集体が分散した塗料を基材に塗
布することにより形成することができる。前記におい
て、導電層の上層または下層には、前記導電層と屈折率
の異なる少なくとも1層の透明層が積層されていること
が好ましい。この透明層は、前記導電層の上層または下
層、または双方に1層以上形成されていてよい。本発明
はまた請求項7において、前記のいずれかの透明導電膜
が表示面上に形成された表示装置を提供する。
[0006] Accordingly, the present invention is directed to claim 1, wherein gold,
Provided is a transparent conductive film having a conductive layer containing silver and at least one platinum group metal as fine particles. The conductive layer contains 20% to 70% by weight of gold and 1% of silver as fine particles.
0% to 40% by weight, and 10% to 40% by weight of platinum group metal.
It is preferred that the content be within the range of weight%. It is preferable that at least a part of the fine particles form a chain aggregate. The length of the chain aggregate is preferably in the range of 5 nm to 200 nm. The conductive layer containing the chain aggregate can be formed by applying a coating material in which the chain aggregate of the fine particles is dispersed to a base material. In the above, it is preferable that at least one transparent layer having a different refractive index from the conductive layer is laminated on the upper layer or the lower layer of the conductive layer. The transparent layer may be formed as one or more layers above or below the conductive layer, or both. The present invention also provides a display device according to claim 7, wherein any one of the transparent conductive films is formed on a display surface.

【0007】[0007]

【発明の実施の形態】以下、本発明の実施の形態を好ま
しい具体例によって説明する。本発明の透明導電膜にお
ける導電層は、金、銀、および少なくとも1種の白金族
金属を微粒子として含んでいる。すなわち、この導電層
は、前記の少なくとも3種の金属をそれぞれ単独の微粒
子として含んでいてもよく、またこれら金属のいずれか
2種以上の合金または複合体からなる微粒子を含んでい
てもよい。以下、これらの微粒子を総称して「金属微粒
子」という。前記白金族金属としては、パラジウム、ル
テニウム、白金、ロジウム、イリジウム、オスミウムな
どが好適であり、特にパラジウムとルテニウムは、導電
性能および経済的観点から優れている。また前記の導電
層は、例えば前記の金属微粒子を分散させて調製した塗
料を基材上に塗布して形成することができる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to preferred specific examples. The conductive layer in the transparent conductive film of the present invention contains gold, silver, and at least one platinum group metal as fine particles. That is, the conductive layer may contain each of the at least three kinds of metals as individual fine particles, or may contain fine particles made of an alloy or a composite of any two or more of these metals. Hereinafter, these fine particles are collectively referred to as “metal fine particles”. As the platinum group metal, palladium, ruthenium, platinum, rhodium, iridium, osmium and the like are suitable, and in particular, palladium and ruthenium are excellent from the viewpoint of conductive performance and economical aspects. The conductive layer can be formed, for example, by applying a paint prepared by dispersing the metal fine particles on a base material.

【0008】前記導電層は、微粒子として金を20重量
%〜70重量%、銀を10重量%〜40重量%、白金族
金属を10重量%〜40重量%の範囲内で含んでいるこ
とが好ましい。その理由は、固有抵抗値が極めて低い金
と銀とが合わせて60重量%以上含まれるので導電層の
低抵抗化が可能になり、一方では化学的安定性が比較的
低い銀の含有量が40重量%以下に抑えられているので
耐塩水性に代表される耐候性に優れ、また同時に、固有
抵抗値が比較的低く、導電層の屈折率制御を可能とし、
前記塗料中における微粒子の分散安定性が極めて優れた
白金族金属を10重量%〜40重量%含有していること
により、導電層の膜厚が10nm〜30nm程度の薄膜であ
っても膜の表面抵抗値が1×103 Ω/□以下という高
導電性の導電層が得られ、しかも膜中で金属微粒子が島
状に凝集し難いので膜ムラが少なく、更に導電層の上層
または下層に少なくとも1層の透明層を形成したとき、
表面反射率が1.0%以下という高い反射防止性能が得
られるからである。
The conductive layer may contain, as fine particles, 20% to 70% by weight of gold, 10% to 40% by weight of silver, and 10% to 40% by weight of a platinum group metal. preferable. The reason is that gold and silver, which have extremely low specific resistances, are contained in a total amount of 60% by weight or more, so that the resistance of the conductive layer can be reduced. On the other hand, the silver content having relatively low chemical stability is low. Since it is suppressed to 40% by weight or less, it has excellent weather resistance represented by salt water resistance, and at the same time, has a relatively low specific resistance value, and enables control of the refractive index of the conductive layer,
By containing 10% by weight to 40% by weight of a platinum group metal having extremely excellent dispersion stability of fine particles in the paint, even if the conductive layer has a thickness of about 10 nm to 30 nm, the surface of the film can be improved. A highly conductive conductive layer having a resistance value of 1 × 10 3 Ω / □ or less can be obtained. Further, since metal fine particles are hardly aggregated in an island shape in the film, film unevenness is small, and at least an upper layer or a lower layer of the conductive layer is formed. When one transparent layer is formed,
This is because high antireflection performance with a surface reflectance of 1.0% or less can be obtained.

【0009】また、前記金属微粒子の少なくとも一部が
鎖状凝集体を形成している場合には特に高い導電性と高
い光透過性が得られることがわかった。その理由は必ず
しも明確ではないが、前記金属微粒子の鎖状凝集体が互
いに絡みあって微細な網目構造を形成し、この網目を形
成する金属微粒子間の接触抵抗が小さいので膜全体とし
ての導電性が高くなり、またこの微細な網目が光を透過
する開口部となって高い光透過性が得られるものと考え
られる。
Further, it has been found that when at least a part of the metal fine particles forms a chain aggregate, particularly high conductivity and high light transmittance can be obtained. Although the reason is not necessarily clear, the chain aggregates of the metal fine particles are entangled with each other to form a fine network structure, and the contact resistance between the metal fine particles forming the network is small, so that the conductivity of the entire film is low. It is considered that the fine mesh serves as an opening for transmitting light, and high light transmittance is obtained.

【0010】前記鎖状凝集体を形成する個々の金属微粒
子の粒径は、1nm〜10nmの範囲内であることが好まし
い。個々の金属微粒子の粒径が1nm未満では金属として
の性質が損なわれ導電性が低下するので好ましくなく、
また10nmを超えると島状凝集体が生成し易くなり膜ム
ラが発生しやすくなる。
It is preferable that the particle diameter of each of the metal fine particles forming the chain aggregate is in the range of 1 nm to 10 nm. If the particle size of the individual metal fine particles is less than 1 nm, the properties as a metal are impaired and the conductivity is reduced, which is not preferable.
On the other hand, if it exceeds 10 nm, island-like aggregates are likely to be generated and film unevenness is likely to occur.

【0011】また前記鎖状凝集体の長さは、5nm〜20
0nmの範囲内であることが好ましい。鎖状凝集体の長さ
が5nm未満では粒子間の抵抗が大きくなり十分な導電性
が得られない場合があり、200nmを越えると光散乱度
が増し、導電層の透明性が損なわれる可能性がある。導
電層の透明性の観点からは、10nm〜100nmの範囲内
であることがより好ましい。
The length of the chain aggregate is 5 nm to 20 nm.
Preferably, it is within the range of 0 nm. If the length of the chain aggregate is less than 5 nm, the resistance between the particles may increase and sufficient conductivity may not be obtained. If the length exceeds 200 nm, the degree of light scattering may increase and the transparency of the conductive layer may be impaired. There is. From the viewpoint of the transparency of the conductive layer, the thickness is more preferably in the range of 10 nm to 100 nm.

【0012】前記鎖状凝集体を含む導電層は、金属微粒
子の鎖状凝集体が分散した塗料を基材に塗布し成膜する
ことにより形成することができる。この、金属微粒子の
鎖状凝集体が分散した導電層形成用塗料は、例えばこの
塗料を調製する際に用いる金属水性ゾルの調製時に、金
属塩水溶液をpH5〜pH7に調整し、この溶液中の金
属イオンに対し0.5倍モル当量〜3倍モル当量の還元
剤を添加することにより得られる。前記金属水性ゾルの
調製時に、金属塩水溶液のpHが7より大きいか、また
は還元剤が3倍モル当量より多いと、金属微粒子自体の
粒成長が進み沈殿が生じて好ましくない。また金属塩水
溶液のpHが5より小さいか、または還元剤が0.5倍
モル当量よりも少ないと、独立分散微粒子が生成するか
または還元反応が十分に進行せず金属微粒子が生成し難
くなるので好ましくない。
The conductive layer containing the chain aggregate can be formed by applying a coating material in which the chain aggregate of fine metal particles is dispersed to a substrate and forming a film. The coating material for forming a conductive layer in which chain aggregates of metal fine particles are dispersed, for example, when preparing a metal aqueous sol used in preparing the coating material, adjusts the aqueous metal salt solution to pH 5 to pH 7, It is obtained by adding 0.5 to 3 molar equivalents of the reducing agent to the metal ions. If the pH of the aqueous metal salt solution is higher than 7 or the reducing agent is more than 3 molar equivalents during the preparation of the aqueous metal sol, the metal fine particles themselves grow undesirably and precipitate, which is not preferable. If the pH of the aqueous metal salt solution is less than 5 or the amount of the reducing agent is less than 0.5 times the molar equivalent, independently dispersed fine particles are generated or the reduction reaction does not sufficiently proceed, and metal fine particles are hardly generated. It is not preferable.

【0013】前記導電層は、前記導電層形成用塗料を基
材上に塗布し成膜することによって形成することができ
る。塗布方法としては、スピンコート法、ロールコート
法、スプレー法、バーコート法、ディップ法、メニスカ
スコート法、グラビア印刷法など通常の薄膜形成方法が
いずれも使用可能である。この内スピンコート法は、短
時間で均一な厚みの薄膜を形成することができるので特
に好ましい塗布法である。塗布後、塗膜を乾燥し、例え
ば100℃〜1000℃で焼き付けて成膜することによ
って、基材の表面に前記導電層が形成される。
The conductive layer can be formed by applying the coating material for forming a conductive layer on a substrate and forming a film. As a coating method, any of ordinary thin film forming methods such as spin coating, roll coating, spraying, bar coating, dipping, meniscus coating, and gravure printing can be used. Of these, spin coating is a particularly preferred coating method since a thin film having a uniform thickness can be formed in a short time. After the application, the coating is dried and baked at, for example, 100 ° C. to 1000 ° C. to form a film, whereby the conductive layer is formed on the surface of the substrate.

【0014】本発明の透明導電膜において、前記の導電
層は、前記金属微粒子に加えて平均粒径100nm以下の
シリカ微粒子を、前記金属微粒子に対して1重量%〜6
0重量%の範囲内で含有していてもよい。前記金属微粒
子と共にシリカ微粒子を含む前記導電層形成用塗料を塗
布し成膜した導電層は、膜強度が著しく向上し、スクラ
ッチ強度が向上する。また、導電層にシリカ微粒子を含
有させることによって、その上層または下層にこの導電
層の屈折率とは異なる屈折率を有する透明層を1層以上
設ける場合に、透明層中のシリカ系バインダー成分との
濡れ性が良いので双方の層の密着性が向上する利点もあ
り、スクラッチ強度をいっそう改善することができる。
このシリカ微粒子は、膜強度の向上と導電性とを両立さ
せる観点から、金属微粒子に対して20重量%〜40重
量%の範囲内で含有させることが好ましい。
[0014] In the transparent conductive film of the present invention, the conductive layer may further comprise, in addition to the metal fine particles, silica fine particles having an average particle diameter of 100 nm or less in an amount of 1% by weight to 6% by weight based on the metal fine particles.
It may be contained within the range of 0% by weight. The conductive layer formed by applying the coating material for forming a conductive layer containing silica fine particles together with the metal fine particles has a remarkably improved film strength and improved scratch strength. Further, by containing silica fine particles in the conductive layer, when providing at least one transparent layer having a refractive index different from the refractive index of the conductive layer in the upper or lower layer, the silica-based binder component in the transparent layer and Has an advantage that the adhesion between both layers is improved, and the scratch strength can be further improved.
The silica fine particles are preferably contained in the range of 20% by weight to 40% by weight with respect to the metal fine particles from the viewpoint of achieving both improvement in film strength and conductivity.

【0015】また前記導電層は、前記の成分の他に膜強
度や導電性の向上を目的として必要なら他の成分、例え
ば珪素、アルミニウム、ジルコニウム、セリウム、チタ
ン、イットリウム、亜鉛、マグネシウム、インジウム、
錫、アンチモン、ガリウムなどの酸化物、複合酸化物、
または窒化物、特にインジウムや錫の酸化物、複合酸化
物または窒化物を主成分とする無機物の微粒子や、ポリ
エステル樹脂、アクリル樹脂、エポキシ樹脂、メラミン
樹脂、ウレタン樹脂、ブチラール樹脂、紫外線硬化樹脂
などの有機系合成樹脂、珪素、チタン、ジルコニウムな
どの金属アルコキシドの加水分解物、またはシリコーン
モノマー、シリコーンオリゴマーなどの有機・無機系バ
インダー成分などを、本発明の目的が損なわれない範囲
で含んでいてもよい。
In addition to the above-mentioned components, the above-mentioned conductive layer may contain other components if necessary for the purpose of improving film strength and conductivity, for example, silicon, aluminum, zirconium, cerium, titanium, yttrium, zinc, magnesium, indium,
Oxides such as tin, antimony and gallium, composite oxides,
Or nitrides, especially inorganic fine particles mainly composed of indium or tin oxide, composite oxide or nitride, polyester resin, acrylic resin, epoxy resin, melamine resin, urethane resin, butyral resin, ultraviolet curable resin, etc. Organic synthetic resins, silicon, titanium, hydrolysates of metal alkoxides such as zirconium, or silicone monomers, organic / inorganic binder components such as silicone oligomers, etc., as long as the object of the present invention is not impaired. Is also good.

【0016】帯電防止機能に加えて電磁波遮蔽効果を発
揮させるために必要な透明導電膜の導電性能は下記の式
1によって表わされる。 S=50+10 log(1/ρf)+1.7t√(f/ρ) …式1 式中、 S(dB) ;電磁波遮蔽効果、 ρ(Ω‐cm);導電層の体積固有抵抗、 f(MHz) ;電磁波周波数、 t(cm) ;導電層の膜厚 である。ここで膜厚tは、光透過率の観点から1μm
(1×10-4cm)以下程度とすることが好ましいので、
式1において膜厚tを含む項を無視すれば電磁波遮蔽効
果Sは近似的に下記の式2で表わすことができる。 S=50+10 log(1/ρf) …式2 ここで、S(dB)は、値が大きいほど電磁波遮蔽効果が
大きい。
The conductive property of the transparent conductive film necessary for exhibiting the electromagnetic wave shielding effect in addition to the antistatic function is represented by the following equation (1). S = 50 + 10 log (1 / ρf) + 1.7t√ (f / ρ) Formula 1 In the formula, S (dB): Electromagnetic wave shielding effect, ρ (Ω-cm): Volume resistivity of the conductive layer, f (MHz) ): Electromagnetic wave frequency, t (cm): thickness of the conductive layer. Here, the thickness t is 1 μm from the viewpoint of light transmittance.
(1 × 10 −4 cm) or less.
If the term including the film thickness t is ignored in Equation 1, the electromagnetic wave shielding effect S can be approximately expressed by Equation 2 below. S = 50 + 10 log (1 / ρf) Equation 2 Here, as the value of S (dB) increases, the electromagnetic wave shielding effect increases.

【0017】一般に、電磁波シールド効果は、S>60
dBであれば優良とみなされるが、特にディスプレイ表面
の導電膜に関しては、S>80dBの電磁波遮蔽効果が望
まれている。また、規制対象となる電磁波の周波数は一
般に10kHz〜1000MHzの範囲内とされるので、透明
導電膜の導電性としては、10-3Ω・cm以下の体積固有
抵抗値(ρ)が必要になる。すなわち、透明導電膜の体
積固有抵抗値(ρ)は、より低いほうが、より広範な周
波数の電磁波を有効に遮蔽することができることにな
る。この条件を充たすためには、透明導電膜中の導電層
の膜厚を10nm以上とし、更に金属微粒子を10重量%
以上含有させる必要がある。膜厚が10nm未満、あるい
は金属微粒子の含有率が10重量%未満では導電性が低
下し、実質的な電磁波遮蔽効果を得ることが困難にな
る。
Generally, the electromagnetic wave shielding effect is S> 60.
Although dB is considered to be excellent, especially for the conductive film on the display surface, an electromagnetic wave shielding effect of S> 80 dB is desired. In addition, since the frequency of the electromagnetic wave to be regulated is generally in the range of 10 kHz to 1000 MHz, the conductivity of the transparent conductive film requires a volume resistivity (ρ) of 10 −3 Ω · cm or less. . That is, the lower the volume specific resistance value (ρ) of the transparent conductive film, the more effectively electromagnetic waves of a wider range of frequencies can be shielded. In order to satisfy this condition, the thickness of the conductive layer in the transparent conductive film should be 10 nm or more, and the metal fine particles should be 10% by weight.
It is necessary to contain the above. If the film thickness is less than 10 nm or the content of the metal fine particles is less than 10% by weight, the conductivity is lowered, and it is difficult to obtain a substantial electromagnetic wave shielding effect.

【0018】本発明の透明導電膜は、前記の導電層の上
層または下層に、少なくとも1層の透明層が積層されて
いることが好ましい。この透明層は、導電層の屈折率と
異なる屈折率を有するものが好ましい。これによって、
得られた透明導電膜の層間界面における外光反射を有効
に除去または軽減することができるばかりでなく、透明
層が導電層の上層に形成された場合には前記導電層を保
護する効果もある。
In the transparent conductive film of the present invention, it is preferable that at least one transparent layer is laminated above or below the conductive layer. The transparent layer preferably has a refractive index different from that of the conductive layer. by this,
Not only can external light reflection at the interlayer interface of the obtained transparent conductive film be effectively removed or reduced, but also the effect of protecting the conductive layer when the transparent layer is formed on the conductive layer. .

【0019】前記透明層を形成する素材としては、例え
ばポリエステル樹脂、アクリル樹脂、エポキシ樹脂、ブ
チラール樹脂などの熱可塑性、熱硬化性、または光・電
子線硬化性樹脂;珪素、アルミニウム、チタン、ジルコ
ニウムなどの金属アルコキシドの加水分解物;シリコー
ンモノマーまたはシリコーンオリゴマーなどが単独で、
または混合して用いられる。
Materials for forming the transparent layer include thermoplastic, thermosetting, or photo / electron beam curable resins such as polyester resin, acrylic resin, epoxy resin, and butyral resin; silicon, aluminum, titanium, and zirconium. Hydrolysis products of metal alkoxides such as; silicone monomers or silicone oligomers alone,
Alternatively, they are used in combination.

【0020】特に好ましい透明層は、膜の表面硬度が高
く、屈折率が比較的低いSi02 の薄膜である。このS
i02 薄膜を形成し得る素材の例としては、例えば次
式、 M(OR)mn (式中、MはSiであり、RはC1〜C4のアルキル基で
あり、mは1〜4の整数であり、nは0〜3の整数であ
り、かつm+nは4である)で表わされる化合物、また
はその部分加水分解物の1種またはそれ以上の混合物を
挙げることができる。前記式の化合物の例として、特に
テトラエトキシシラン(Si(OC254)は、薄膜
形成能、透明性、導電層との接合性、膜強度および反射
防止性能の観点から好適に用いられる。
A particularly preferred transparent layer is a thin film of SiO 2 having a high surface hardness and a relatively low refractive index. This S
Examples of the material capable of forming a i0 2 thin film, for example, in the formula, M (OR) m R n ( wherein, M is Si, R is an alkyl group of C 1 -C 4, m is 1 And n is an integer of 0 to 3, and m + n is 4.) or a mixture of one or more of partial hydrolysates thereof. As an example of the compound of the above formula, particularly, tetraethoxysilane (Si (OC 2 H 5 ) 4 ) is preferably used from the viewpoints of thin film forming ability, transparency, bonding with a conductive layer, film strength and antireflection performance. Can be

【0021】前記透明層は、導電層と異なる屈折率に設
定できるのであれば、各種樹脂、金属酸化物、複合酸化
物、または窒化物など、または焼き付けによってこれら
を生成することができる前駆体などを含んでもよい。
If the transparent layer can be set to a refractive index different from that of the conductive layer, various resins, metal oxides, composite oxides, nitrides, etc., or precursors capable of producing these by baking, etc. May be included.

【0022】前記透明層の形成は、導電層の形成に用い
た方法と同様に、前記の成分を含む塗布液(透明層用塗
料)を均一に塗布して成膜する方法によって行うことが
できる。塗布には、スピンコート法、ロールコート法、
スプレ一法、バーコート法、ディップ法、メニスカスコ
ート法、グララビア印刷法などの通常の薄膜形成技術が
いずれも使用可能である。この内スピンコート法は、短
時間で均一な厚みの薄膜を形成することができるので特
に好ましい塗布法である。塗布後、塗膜を乾操し、例え
ば100℃〜1000℃の範囲内で焼き付けることによ
って前記透明層が得られる。
The formation of the transparent layer can be carried out by a method of forming a film by uniformly applying a coating solution (paint for a transparent layer) containing the above-mentioned components, similarly to the method used for forming the conductive layer. . For coating, spin coating, roll coating,
Any of ordinary thin film forming techniques such as a spray method, a bar coating method, a dip method, a meniscus coating method, and a gravure printing method can be used. Of these, spin coating is a particularly preferred coating method since a thin film having a uniform thickness can be formed in a short time. After the application, the transparent layer is obtained by drying the coating film and baking it within the range of, for example, 100C to 1000C.

【0023】一般に、多層薄膜における層間界面反射防
止性能は、薄膜の屈折率と膜厚、および積層薄膜数によ
り決定されるため、本発明の透明導電膜においても、導
電層および透明層の積層数を考慮してそれぞれの導電層
および透明層の厚みを設計することにより、効果的な反
射防止効果が得られる。反射防止能を有する多層膜で
は、防止しようとする反射光の波長をλとするとき、2
層構成の反射防止膜であれば基材側から高屈折率層と低
屈折率とをそれぞれλ/4、λ/4、またはλ/2、λ
/4の光学的膜厚とすることによって効果的に反射を防
止することができる。また3層構成の反射防止膜であれ
ば、基材側から中屈折率層、高屈折率層および低屈折率
層の順にλ/4、λ/2、λ/4の光学的膜厚とするこ
とが有効とされる。
In general, the interlayer interface antireflection performance of a multilayer thin film is determined by the refractive index and thickness of the thin film and the number of laminated thin films. By considering the thickness of each conductive layer and transparent layer in consideration of the above, an effective anti-reflection effect can be obtained. In a multilayer film having antireflection capability, when the wavelength of reflected light to be prevented is λ, 2
In the case of an antireflection film having a layer structure, the high refractive index layer and the low refractive index are respectively λ / 4, λ / 4, λ / 2, λ from the substrate side.
By setting the optical film thickness to / 4, reflection can be effectively prevented. In the case of a three-layer antireflection film, the optical film thicknesses are λ / 4, λ / 2, λ / 4 in the order of the medium refractive index layer, the high refractive index layer, and the low refractive index layer from the substrate side. Is valid.

【0024】特に製造上の容易さや経済性を考慮する
と、導電層の上層に、屈折率が比較的低く、しかもハー
ドコート性を兼ね備えたSi02 膜(屈折率1.46)
をλ/4の膜厚で形成することが好適である。
In particular, in consideration of ease of manufacture and economy, an SiO 2 film having a relatively low refractive index and having a hard coat property (refractive index: 1.46) is formed on the conductive layer.
Is preferably formed with a film thickness of λ / 4.

【0025】前記の導電層と透明層とを含む本発明の透
明導電膜は、導電層および透明層の焼き付けを順次に行
ってもよく、または同時に行ってもよい。例えば導電層
形成用塗料を表示装置の表示面に塗布し、その上層に透
明層形成用塗料を塗布し、乾燥後に例えば100℃〜1
000℃の範囲内の温度で一括焼き付けすることによっ
て、導電層と透明層とを同時に形成し、低反射性の透明
導電膜を形成することができる。
In the transparent conductive film of the present invention including the above-mentioned conductive layer and transparent layer, the conductive layer and the transparent layer may be baked sequentially or simultaneously. For example, a paint for forming a conductive layer is applied to the display surface of a display device, a paint for forming a transparent layer is applied thereon, and after drying, for example, 100 ° C. to 1 ° C.
By batch baking at a temperature in the range of 000 ° C., the conductive layer and the transparent layer can be formed at the same time, and a low-reflection transparent conductive film can be formed.

【0026】前記透明導電膜の最外層には、凹凸を有す
る透明凹凸層を設けることが好ましい。この透明凹凸層
は、透明導電膜の表面反射光を散乱させ、表示面に優れ
た防眩性を与える効果がある。透明凹凸層の材質として
は、表面硬度と屈折率の観点からシリカが好適である。
この透明凹凸層は、前記透明導電膜の最外層に凹凸層形
成用塗料を各種コーティング法により塗布し、乾燥後に
前記の導電層や透明層と同時に、または別個に例えば1
00℃〜1000℃の範囲内の温度で焼付けて形成する
ことができる。特に、透明凹凸層の形成方法としては、
スプレーコート法が好適である。
It is preferable to provide a transparent concavo-convex layer having irregularities on the outermost layer of the transparent conductive film. The transparent uneven layer has an effect of scattering light reflected on the surface of the transparent conductive film and giving excellent antiglare properties to the display surface. As a material of the transparent uneven layer, silica is preferable from the viewpoint of surface hardness and refractive index.
The transparent concavo-convex layer is formed by applying a coating for forming a concavo-convex layer to the outermost layer of the transparent conductive film by any of various coating methods, and after drying, at the same time as the conductive layer or the transparent layer, or separately,
It can be formed by baking at a temperature in the range of 00C to 1000C. In particular, as a method of forming the transparent uneven layer,
Spray coating is preferred.

【0027】本発明の透明導電膜の少なくとも何れか1
層には、着色材が含有されていてもよい。この着色材
は、透過画像のコントラストの向上や、透過光、反射光
の色彩調整のために用いられる。この着色材の例として
は、例えばモノアゾピグメント、キナクリドン、アイア
ンオキサイド・エロー、ジスアゾピグメント、フタロシ
アニングリーン、フタロシアニンブルー、シアニンブル
ー、フラバンスロンエロー、ジアンスラキノリルレッ
ド、インダンスロンブルー、チオインジゴボルドー、ペ
リレンオレンジ、ペリレンスカーレット、ペリレンレッ
ド178、ペリリレンマルーン、ジオキサジンバイオレ
ット、イソインドリンエロー、ニッケルニトロソエロ
ー、マダーレーキ、銅アゾメチンエロー、アニリンブラ
ック、アルカリブルー、亜鉛華、酸化チタン、弁柄、酸
化クロム、鉄黒、チタンエロ−、コバルトブルー、セル
リアンブルー、コバルトグリーン、アルミナホワイト、
ビリジアン、カドミウムエロー、カドミウムレッド、
朱、リトポン、黄鉛、モリブデートオレンジ、クロム酸
亜鉛、硫酸カルシウム、硫酸バリウム、炭酸カルシウ
ム、鉛白、群青、マンガンバイオレット、エメラルドグ
リーン、紺青、カーボンブラックなどの有機および無機
顔料、ならびにアゾ染料、アントラキノン染料、インジ
ゴイド染料、フタロシアニン染料、カルボニウム染料、
キノンイミン染料、メチン染料、キノリン染料、ニトロ
染料、ニトロソ染料、ベンゾキノン染料、ナフトキノン
染料、ナフタルイミド染料、ペリノン染料などの染料を
挙げることができる。これらの着色材は単独で、または
2種以上を組み合わせて用いることができる。
At least one of the transparent conductive films of the present invention
The layer may contain a coloring material. This coloring material is used for improving the contrast of a transmitted image and adjusting the color of transmitted light and reflected light. Examples of this coloring material include, for example, monoazo pigment, quinacridone, iron oxide yellow, disazo pigment, phthalocyanine green, phthalocyanine blue, cyanine blue, flavanthrone yellow, dianthraquinolyl red, indanthrone blue, thioindigo bordeaux, Perylene orange, perylene scarlet, perylene red 178, perylylene maroon, dioxazine violet, isoindoline yellow, nickel nitroso yellow, madake lake, copper azomethine yellow, aniline black, alkali blue, zinc white, titanium oxide, red iron oxide, chrome oxide, Iron black, titanium erotic, cobalt blue, cerulean blue, cobalt green, alumina white,
Viridian, cadmium yellow, cadmium red,
Organic and inorganic pigments such as vermilion, lithopone, graphite, molybdate orange, zinc chromate, calcium sulfate, barium sulfate, calcium carbonate, lead white, ultramarine, manganese violet, emerald green, navy blue, carbon black, and azo dyes, Anthraquinone dye, indigoid dye, phthalocyanine dye, carbonium dye,
Dyes such as quinone imine dyes, methine dyes, quinoline dyes, nitro dyes, nitroso dyes, benzoquinone dyes, naphthoquinone dyes, naphthalimide dyes and perinone dyes can be mentioned. These coloring materials can be used alone or in combination of two or more.

【0028】用いる着色材の種類と量は、対応する透明
導電膜の光学的な膜特性に対応して適宜選択されるべき
である。透明性薄膜の吸光度Aは、一般的には下記の式
で表わされる。 A=log10(I0/I)=εCD 式中、I0 は入射光、Iは透過光、Cは色濃度、Dは光
距離、εはモル吸光係数である。
The type and amount of the coloring material to be used should be appropriately selected according to the optical film characteristics of the corresponding transparent conductive film. The absorbance A of the transparent thin film is generally represented by the following equation. A = log 10 (I 0 / I) = εCD where I 0 is incident light, I is transmitted light, C is color density, D is light distance, and ε is molar extinction coefficient.

【0029】本発明の透明導電膜で着色材を用いる場合
は、一般にモル吸光係数がε>10の着色材が用いられ
る。また着色材の配合量は、使用する着色材のモル吸光
係数に依存して変わるが、着色材を配合した積層膜また
は単層膜の吸光度Aが0.0004〜0.0969abs.
の範囲内となるような量であることが好ましい。これら
の条件が満たされない場合は透明度および/または反射
防止効果が低下する。上記着色材を導電層に配合する場
合は、その配合量は、金属の含有量に対して20重量%
以下、特に10重量%以下とすることが好ましい。20
重量%を越えると導電性の低下が認められ、電磁波遮蔽
効果に支障を来すことになる。
When a colorant is used in the transparent conductive film of the present invention, a colorant having a molar extinction coefficient ε> 10 is generally used. The amount of the coloring material varies depending on the molar extinction coefficient of the coloring material used, but the absorbance A of the laminated film or the single-layer film containing the coloring material is 0.0004 to 0.0969 abs.
It is preferable that the amount is within the range of the above. If these conditions are not satisfied, the transparency and / or the antireflection effect will decrease. When the coloring material is blended in the conductive layer, the blending amount is 20% by weight based on the metal content.
Hereafter, it is particularly preferable that the content be 10% by weight or less. 20
If the content exceeds% by weight, a decrease in conductivity is recognized, which impairs the electromagnetic wave shielding effect.

【0030】本発明の表示装置は、前記の何れかの透明
導電膜が表示面上に形成されてなっている。この表示装
置は、表示面の帯電が防止されているので画像表示面に
挨などが付着せず、電磁波が遮蔽されるので各種の電磁
波障害が防止され、光透過性に優れているので画像が明
るく、透過画像の色相が自然であり、表示面の外観にム
ラがなく、しかも耐塩水性が高いので塩霧に曝されるよ
うな環境にあっても耐久性が高い。また導電層の他に、
前記の透明層および/または透明凹凸層が形成されてい
れば、外光に対する優れた反射防止効果および/または
防眩効果も得られる。
In the display device of the present invention, any one of the transparent conductive films described above is formed on a display surface. Since this display device is prevented from being charged on the display surface, it does not adhere to the image display surface, shields electromagnetic waves, prevents various electromagnetic wave disturbances, and is excellent in light transmittance, so that images can be displayed. It is bright, the hue of the transmitted image is natural, there is no unevenness in the appearance of the display surface, and since it has high salt water resistance, it has high durability even in an environment where it is exposed to salt fog. In addition to the conductive layer,
If the transparent layer and / or the transparent concavo-convex layer is formed, an excellent antireflection effect and / or an antiglare effect against external light can be obtained.

【0031】[0031]

【実施例】以下、実施例により本発明を具体的に説明す
るが、本発明はこれらの実施例によって制限されるもの
ではない。実施例および比較例に共通の原液として、下
記のものを調整した。 (金微粒子の鎖状凝集体を含む金水性ゾル)0.15ミリ
モル/リットルの塩化金酸を含むpH5.7の水溶液と、0.
15ミリモル/リットルの水素化ホウ素ナトリウムとを混合し、
得られたコロイド状分散液を濃縮し、0.102モル/リッ
トルの金微粒子の鎖状凝集体を含む金水性ゾルを得た。
EXAMPLES The present invention will be described below in more detail with reference to examples, but the present invention is not limited to these examples. The following were prepared as stock solutions common to the examples and comparative examples. (Aqueous gold sol containing chain aggregate of fine gold particles) An aqueous solution of pH 5.7 containing 0.15 mmol / l chloroauric acid,
Mixing with 15 mmol / l sodium borohydride,
The obtained colloidal dispersion was concentrated to obtain a gold aqueous sol containing a chain aggregate of 0.102 mol / liter of fine gold particles.

【0032】(銀微粒子を含む銀水性ゾル)クエン酸ナ
トリウム二水和物(14g)と硫酸第一鉄(14g)と
を溶解した5℃の水溶液(60g)に、硝酸銀(2.5
g)を溶解したpH5.9の水溶液(25g)を加え、
赤褐色の銀ゾルを得た。この銀ゾルを遠心分離により水
洗して不純物イオンを除去した後、純水を加えて0.1
85モル/リットルの独立分散した銀微粒子を含む銀水性ゾル
を得た。
(Silver aqueous sol containing silver fine particles) A silver nitrate (2.5 g) was added to a 5 ° C. aqueous solution (60 g) in which sodium citrate dihydrate (14 g) and ferrous sulfate (14 g) were dissolved.
g) was dissolved in an aqueous solution (25 g) having a pH of 5.9,
A reddish-brown silver sol was obtained. The silver sol was washed with water by centrifugation to remove impurity ions, and then pure water was added thereto for 0.1 ml.
A silver aqueous sol containing 85 mol / l of independently dispersed silver fine particles was obtained.

【0033】(パラジウム微粒子の鎖状凝集体を含むパ
ラジウム水性ゾル)0.15ミリモル/リットルの塩化パラジウ
ムを含むpH5.7の水溶液と、0.15ミリモル/リットルの
水素化ホウ素ナトリウムとを混合し、得られたコロイド
状分散液を濃縮し、0.102モル/リットルのパラジウム微
粒子の鎖状凝集体を含むパラジウム水性ゾルを得た。
(Aqueous palladium sol containing chain aggregates of fine palladium particles) An aqueous solution of pH 5.7 containing 0.15 mmol / l palladium chloride and 0.15 mmol / l sodium borohydride are mixed. The obtained colloidal dispersion was concentrated to obtain a palladium aqueous sol containing a chain aggregate of 0.102 mol / l palladium fine particles.

【0034】(コロイダルシリカ)日本化学工業社製
「シリカドール30」を用いた。 (透明層形成用塗料)テトラエトキシシラン(0.8
g)、0.1N塩酸(0.8g)、およびエチルアルコ
ール(98.4g)を混合し、均一な溶液とした。 (透明凹凸層形成用塗料)テトラエトキシシラン(3.
0g)、0.1N塩酸(10g)、およびエチルアルコ
ール(87.0g)を混合し、均一な溶液とした。
(Colloidal silica) "Silica Doll 30" manufactured by Nippon Chemical Industry Co., Ltd. was used. (Paint for forming transparent layer) Tetraethoxysilane (0.8
g), 0.1 N hydrochloric acid (0.8 g), and ethyl alcohol (98.4 g) were mixed to form a uniform solution. (Coating for forming transparent uneven layer) Tetraethoxysilane (3.
0g), 0.1 N hydrochloric acid (10 g), and ethyl alcohol (87.0 g) were mixed to form a uniform solution.

【0035】(実施例1) 導電層形成用塗料の調製:前記の金水性ゾル4.5g、
銀水性ゾル4g、パラジウム水性ゾル8g、およびコロ
イダルシリカ0.2g、エチルセロソルブ10g、エチ
ルアルコール73.3gを撹拌混合し、得られた混合液
を超音波分散機(BRANSON ULTRASONICS社製「ソニフア
イヤー450」)で分散し、導電層形成用塗料を調製し
た。塗料中のAu/Ag/Pd重量比は36/32/3
2、金属微粒子/Si02重量比は100/20であ
り、透過型電子顕微鏡による観察の結果、平均粒径6nm
の金属微粒子が鎖状に凝集し、その長さは20〜90nm
であった。 成膜:上記の導電層形成用塗料をブラウン管の表示面に
スピンコーターを用いて塗布し、乾燥後、この塗布面に
前記の透明層形成用塗料を、同様にスピンコーターを用
いて塗布し、このブラウン管を乾燥機に入れ、150℃
で1時間焼き付け処理して透明導電膜を形成することに
より、反射防止性の透明導電膜を有する実施例1の陰極
線管を作製した。透過型電子顕微鏡による観察の結果、
この透明導電膜中には金属微粒子の鎖状凝集体が認めら
れた。
Example 1 Preparation of a paint for forming a conductive layer: 4.5 g of the above gold aqueous sol,
4 g of a silver aqueous sol, 8 g of a palladium aqueous sol, 0.2 g of colloidal silica, 10 g of ethyl cellosolve, and 73.3 g of ethyl alcohol were stirred and mixed. ) To prepare a coating material for forming a conductive layer. The Au / Ag / Pd weight ratio in the paint is 36/32/3
2, fine metal particles / Si0 2 weight ratio is 100/20, the observation by a transmission electron microscope results, the average particle diameter of 6nm
Metal fine particles are aggregated in a chain, and the length is 20 to 90 nm.
Met. Film formation: The above-mentioned coating material for forming a conductive layer is applied to the display surface of a cathode ray tube using a spin coater, and after drying, the coating material for forming a transparent layer is applied to the application surface similarly using a spin coater. Put this CRT in a dryer, 150 ℃
For 1 hour to form a transparent conductive film, thereby producing a cathode ray tube of Example 1 having an antireflective transparent conductive film. As a result of observation with a transmission electron microscope,
Chain aggregates of metal fine particles were observed in this transparent conductive film.

【0036】(実施例2) 導電層形成用塗料の調製:前記金水性ゾル7g、銀水性
ゾル3.5g、パラジウム水性ゾル7g、およびコロイ
ダルシリカ0.2g、エチルセロソルブ10g、エチル
アルコール72.3gを撹拌混合し、実施例1と同様に
処理して導電層形成用塗料を調製した。塗料中のAu/
Ag/Pd重量比は50/25/25、金属微粒子/S
i02重量比は100/20であり、透過型電子顕微鏡
による観察の結果、平均粒径6nmの金属微粒子が鎖状に
凝集し、その長さは30〜100nmであった。 成膜:上記の導電層形成用塗料を用い、実施例1と同様
に処理して反射防止性の透明導電膜を有する実施例2の
陰極線管を作製した。透過型電子顕微鏡による観察の結
果、この透明導電膜中には金属微粒子の鎖状凝集体が認
められた。
(Example 2) Preparation of paint for forming conductive layer: 7 g of aqueous gold sol, 3.5 g of aqueous silver sol, 7 g of aqueous palladium sol, 0.2 g of colloidal silica, 10 g of ethyl cellosolve, 72.3 g of ethyl alcohol Was stirred and mixed, and treated in the same manner as in Example 1 to prepare a coating material for forming a conductive layer. Au in paint
Ag / Pd weight ratio 50/25/25, fine metal particles / S
i0 2 weight ratio was 100/20, the result of observation by a transmission electron microscope, the average particle size 6nm of the fine metal particles are aggregated in chain, its length was 30 to 100 nm. Film formation: Using the above-mentioned paint for forming a conductive layer, the same treatment as in Example 1 was carried out to produce a cathode ray tube of Example 2 having an antireflective transparent conductive film. As a result of observation by a transmission electron microscope, chain aggregates of metal fine particles were observed in the transparent conductive film.

【0037】(実施例3) 導電層形成用塗料の調製:前記金水性ゾル3g、銀水性
ゾル5g、パラジウム水性ゾル10g、およびコロイダ
ルシリカ0.2g、エチルセロソルブ10g、エチルア
ルコール71.8gを撹拌混合し、実施例1と同様に処
理して導電層形成用塗料を調製した。塗料中のAu/A
g/Pd重量比は24/38/38、金属微粒子/Si
2重量比は100/20であり、透過型電子顕微鏡に
よる観察の結果、平均粒径6nmの金属微粒子が鎖状に凝
集し、その長さは10〜80nmであった。 成膜:上記の導電層形成用塗料を用い、実施例1と同様
に処理して反射防止性の透明導電膜を有する実施例3の
陰極線管を作製した。透過型電子顕微鏡による観察の結
果、この透明導電膜中には金属微粒子の鎖状凝集体が認
められた。
(Example 3) Preparation of a paint for forming a conductive layer: 3 g of the gold aqueous sol, 5 g of the silver aqueous sol, 10 g of the palladium aqueous sol, 0.2 g of colloidal silica, 10 g of ethyl cellosolve, and 71.8 g of ethyl alcohol were stirred. The mixture was mixed and treated in the same manner as in Example 1 to prepare a paint for forming a conductive layer. Au / A in paint
g / Pd weight ratio: 24/38/38, fine metal particles / Si
The O 2 weight ratio was 100/20. As a result of observation with a transmission electron microscope, metal fine particles having an average particle size of 6 nm were aggregated in a chain, and the length was 10 to 80 nm. Film formation: The cathode ray tube of Example 3 having an anti-reflective transparent conductive film was prepared by using the above-mentioned paint for forming a conductive layer and treating in the same manner as in Example 1. As a result of observation by a transmission electron microscope, chain aggregates of metal fine particles were observed in the transparent conductive film.

【0038】(実施例4) 導電層形成用塗料の調製:前記金水性ゾル4.5g、銀
水性ゾル7g、パラジウム水性ゾル5g、およびコロイ
ダルシリカ0.2g、エチルセロソルブ10g、エチル
アルコール73.3gを撹拌混合し、実施例1と同様に
処理して導電層形成用塗料を調製した。塗料中のAu/
Ag/Pd重量比は32/50/18、金属微粒子/S
i02重量比は100/20であり、透過型電子顕微鏡
による観察の結果、平均粒径6nmの金属微粒子が鎖状に
凝集し、その長さは20〜90nmであった。 成膜:上記の導電層形成用塗料を用い、実施例1と同様
に処理して反射防止性の透明導電膜を有する実施例4の
陰極線管を作製した。透過型電子顕微鏡による観察の結
果、この透明導電膜中には金属微粒子の鎖状凝集体が認
められた。
Example 4 Preparation of paint for forming conductive layer: 4.5 g of the gold aqueous sol, 7 g of the silver aqueous sol, 5 g of the palladium aqueous sol, 0.2 g of colloidal silica, 10 g of ethyl cellosolve, 73.3 g of ethyl alcohol Was stirred and mixed, and treated in the same manner as in Example 1 to prepare a coating material for forming a conductive layer. Au in paint
Ag / Pd weight ratio: 32/50/18, fine metal particles / S
i0 2 weight ratio was 100/20, the result of observation by a transmission electron microscope, the average particle size 6nm of the fine metal particles are aggregated in chain, its length was 20 to 90 nm. Film formation: Using the above-mentioned paint for forming a conductive layer, the same treatment as in Example 1 was performed to produce a cathode ray tube of Example 4 having a transparent conductive film having antireflection properties. As a result of observation by a transmission electron microscope, chain aggregates of metal fine particles were observed in the transparent conductive film.

【0039】(比較例1) 導電層形成用塗料の調製:前記銀水性ゾル7g、パラジ
ウム水性ゾル6g、およびコロイダルシリカ0.2g、
エチルセロソルブ10g、エチルアルコール76.8g
を撹拌混合し、実施例1と同様に処理して導電層形成用
塗料を調製した。塗料中のAg/Pd重量比は70/3
0、金属微粒子/Si02 重量比は100/30であ
り、透過型電子顕微鏡による観察の結果、平均粒径6nm
の金属微粒子が鎖状に凝集し、その長さは10〜60nm
であった。 成膜:上記の導電層形成用塗料を用い、実施例1と同様
に処理して反射防止性の透明導電膜を有する比較例1の
陰極線管を作製した。透過型電子顕微鏡による観察の結
果、この透明導電膜中には金属微粒子の鎖状凝集体が認
められた。
Comparative Example 1 Preparation of paint for forming conductive layer: 7 g of the aqueous silver sol, 6 g of the aqueous palladium sol, and 0.2 g of colloidal silica;
10 g of ethyl cellosolve and 76.8 g of ethyl alcohol
Was stirred and mixed, and treated in the same manner as in Example 1 to prepare a coating material for forming a conductive layer. Ag / Pd weight ratio in paint is 70/3
0, the fine metal particles / Si0 2 weight ratio is 100/30, the observation by a transmission electron microscope results, the average particle diameter of 6nm
Metal fine particles aggregate in a chain, the length of which is 10 to 60 nm
Met. Film formation: The cathode ray tube of Comparative Example 1 having an anti-reflective transparent conductive film was prepared by using the above-mentioned paint for forming a conductive layer and treating in the same manner as in Example 1. As a result of observation by a transmission electron microscope, chain aggregates of metal fine particles were observed in the transparent conductive film.

【0040】(比較例2) 導電層形成用塗料の調製:前記金水性ゾル15g、銀水
性ゾル2g、およびコロイダルシリカ0.2g、エチル
セロソルブ10g、エチルアルコール72.8gを撹拌
混合し、実施例1と同様に処理して導電層形成用塗料を
調製した。塗料中のAu/Ag重量比は88/12、金
属微粒子/Si02 重量比は100/20であり、透過
型電子顕微鏡による観察の結果、平均粒径6nmの金属微
粒子が鎖状に凝集し、その長さは30〜100nmであっ
た。 成膜:上記の導電層形成用塗料を用い、実施例1と同様
に処理して反射防止性の透明導電膜を有する比較例2の
陰極線管を作製した。透過型電子顕微鏡による観察の結
果、この透明導電膜中には金属微粒子の鎖状凝集体が認
められた。
Comparative Example 2 Preparation of paint for forming conductive layer: 15 g of the aqueous gold sol, 2 g of the aqueous silver sol, 0.2 g of colloidal silica, 10 g of ethyl cellosolve, and 72.8 g of ethyl alcohol were stirred and mixed. In the same manner as in Example 1, a coating material for forming a conductive layer was prepared. Au / Ag weight ratio in the coating is 88/12, the fine metal particles / Si0 2 weight ratio is 100/20, observation with a transmission electron microscope, the average particle size 6nm of the fine metal particles are aggregated into chains, Its length was 30-100 nm. Film formation: Using the above-mentioned paint for forming a conductive layer, the same treatment as in Example 1 was carried out to produce a cathode ray tube of Comparative Example 2 having an antireflective transparent conductive film. As a result of observation by a transmission electron microscope, chain aggregates of metal fine particles were observed in the transparent conductive film.

【0041】(比較例3) 導電層形成用塗料の調製:前記銀水性ゾル3g、パラジ
ウム水性ゾル14g、およびコロイダルシリカ0.2
g、エチルセロソルブ10g、エチルアルコール72.
8gを撹拌混合し、実施例1と同様に処理して導電層形
成用塗料を調製した。塗料中のAg/Pd重量比は30
/70、金属微粒子/Si02 重量比は100/30で
あり、透過型電子顕微鏡による観察の結果、平均粒径6
nmの金属微粒子が鎖状に凝集し、その長さは10〜80
nmであった。 成膜:上記の導電層形成用塗料を用い、実施例1と同様
に処理して反射防止性の透明導電膜を有する比較例3の
陰極線管を作製した。透過型電子顕微鏡による観察の結
果、この透明導電膜中には金属微粒子の鎖状凝集体が認
められた。
Comparative Example 3 Preparation of paint for forming conductive layer: 3 g of aqueous silver sol, 14 g of aqueous palladium sol, and 0.2 of colloidal silica
g, ethyl cellosolve 10 g, ethyl alcohol
8 g was stirred and mixed, and treated in the same manner as in Example 1 to prepare a coating material for forming a conductive layer. Ag / Pd weight ratio in paint is 30
/ 70, the fine metal particles / Si0 2 weight ratio is 100/30, the observation by a transmission electron microscope results, the average particle diameter of 6
nm fine metal particles are aggregated in a chain, and the length is 10-80.
nm. Film formation: The cathode ray tube of Comparative Example 3 having an antireflective transparent conductive film was prepared by using the above-mentioned coating material for forming a conductive layer and treating in the same manner as in Example 1. As a result of observation by a transmission electron microscope, chain aggregates of metal fine particles were observed in the transparent conductive film.

【0042】(評価測定)陰極線管上に形成された透明
導電膜の性能を下記の装置または方法で測定し、また外
観を目視により評価した。 鎖状構造 :TEM観察により確認 膜厚 :SEM観察により測定 表面抵抗 :三菱化学社製「ロレスタAP」(4端子法) 電磁波遮蔽性 :0.5MHz基準で前記式1により計算 耐塩水性 :塩水浸漬3日後の0.5MHz電磁波遮蔽効果 スクラッチ試験 :1kgの荷重下に、シャープペンシル先端の金属部分で膜 表面を擦り、傷の付き具合を目視により評価 ○;傷なし △;やや傷付き ×;傷付き 透過率 :東京電色社製「Automatic Haze Meter H III DP」 ヘイズ :東京電色社製「Automatic Haze Meter H III DP」 透過率差 :日立製作所製「U‐3500」形自記分光光度計を用い、 可視光領域での最大透過率と最小透過率との差を求めた 。 (可視光領域における最大ー最小透過率差が小さいほど透 過 率がよりフラットになり、透過画像の色相が鮮明とな る。 特に10%以下では、透過画像の色彩が黒色に近づき 、よ り高度な鮮明さを持つようになる。) 視感反射率 :EG&G GAMMASCIENTIFIC社製「MODEL C-11」 反射色 :ミノルタカメラ社製「CR-300」 (ClE表色系を使用し、CIE色度図における白色点 x=0.3137,y=0.3198 からのズレの距離をΔx、Δyを用いて √(Δx2+Δy2) で表わした。これにより、√(Δx2+Δy2)の値がより 「0」に近いものほど反射色が白色、すなわち目に優しい 自然光に近いものとなる。) 視認性 :低反射性能、反射色、透過色を含む総合評価 ○ ;良好 × ;不良 膜ムラ :目視による外観色の均一性評価 ○ ;良好 × ;不良 以上の評価試験結果を表1および表2に示す。
(Evaluation Measurement) The performance of the transparent conductive film formed on the cathode ray tube was measured by the following apparatus or method, and the appearance was visually evaluated. Chain structure: Confirmed by TEM observation Film thickness: Measured by SEM observation Surface resistance: "Loresta AP" manufactured by Mitsubishi Chemical Corporation (4-terminal method) Electromagnetic wave shielding property: Calculated by the above formula 1 on the basis of 0.5 MHz Salt water resistance: Salt water immersion 0.5 MHz electromagnetic wave shielding effect after 3 days Scratch test: Under a load of 1 kg, the membrane surface was rubbed with the metal part of the tip of a mechanical pencil, and the degree of scratching was visually evaluated. With transmittance: "Automatic Haze Meter H III DP" manufactured by Tokyo Denshoku Co., Ltd. Haze: "Automatic Haze Meter H III DP" manufactured by Tokyo Denshoku Co., Ltd. Transmission difference: "U-3500" type recording spectrophotometer manufactured by Hitachi, Ltd. The difference between the maximum transmittance and the minimum transmittance in the visible light region was determined. (The smaller the maximum-minimum transmittance difference in the visible light region, the flatter the transmittance, and the sharper the hue of the transmitted image. Particularly, when the difference is 10% or less, the color of the transmitted image approaches black. Luminous reflectance: "MODEL C-11" manufactured by EG & G GAMMASCIENTIFIC Inc. Reflection color: "CR-300" manufactured by Minolta Camera (CIE chromaticity using ClE color system) The distance of the deviation from the white point x = 0.3137, y = 0.3198 in the figure is represented by √ (Δx 2 + Δy 2 ) using Δx and Δy, whereby the value of √ (Δx 2 + Δy 2 ) is obtained. Is closer to "0", the reflected color is whiter, that is, it is closer to natural light that is easy on the eyes.) Visibility: Comprehensive evaluation including low reflection performance, reflected color, and transmitted color. : Evaluation of uniformity of appearance color by visual observation: good ×: poor Tables 1 and 2 show the evaluation test results.

【0043】[0043]

【表1】 [Table 1]

【表2】 [Table 2]

【0044】上記表1、表2の結果から、透明導電膜が
金、銀、パラジウムの3種の金属微粒子を含む実施例1
〜実施例4の陰極線管は、電磁波遮蔽性、耐塩水性、ス
クラッチ試験、透過率差、反射色、視認性、膜ムラなど
の諸特性において、バランスのとれた優れた評価結果が
得られた。これに対して透明導電膜が銀とパラジウムの
2種の金属微粒子を70/30の割合で含む比較例1
は、特に耐塩水性、反射色、および視認性において実施
例1〜実施例4より劣り、金と銀の2種の金属微粒子を
含む比較例2は、特にスクラッチ試験および膜ムラにお
いて実施例1〜実施例4より劣り、銀とパラジウムの2
種の金属微粒子を30/70の割合で含む比較例3は、
特に耐塩水性、スクラッチ試験および視感反射率におい
て実施例1〜実施例4より劣っていることがわかる。
From the results of Tables 1 and 2, it is found that Example 1 in which the transparent conductive film contains three kinds of metal fine particles of gold, silver and palladium.
The cathode ray tubes of Examples 4 to 4 exhibited excellent evaluation results balanced in various characteristics such as electromagnetic wave shielding property, salt water resistance, scratch test, transmittance difference, reflection color, visibility, and film unevenness. On the other hand, Comparative Example 1 in which the transparent conductive film contained two kinds of metal fine particles of silver and palladium at a ratio of 70/30.
Is inferior to Examples 1 to 4 particularly in salt water resistance, reflection color, and visibility, and Comparative Example 2 including two kinds of metal fine particles of gold and silver is particularly inferior to the scratch test and the film unevenness in Examples 1 to 4. Inferior to Example 4, 2 of silver and palladium
Comparative Example 3 containing 30 kinds of metal fine particles at a ratio of 30/70,
In particular, it can be seen that the salt water resistance, the scratch test, and the luminous reflectance are inferior to those of Examples 1 to 4.

【0045】[0045]

【発明の効果】本発明の透明導電膜は、金、銀、および
白金族金属を微粒子として含む導電層を有するものであ
るので、この透明導電膜が表示面に形成された本発明の
表示装置は、表示面の透明性が高く電磁波遮蔽効果およ
び帯電防止効果に優れ、透過画像の色相が自然であり、
耐塩水性に代表される耐候性を有し、耐スクラッチ性に
優れ、金属微粒子の島状凝集物によるムラがなく視認性
が優れたものとなる。
Since the transparent conductive film of the present invention has a conductive layer containing fine particles of gold, silver and platinum group metals, the display device of the present invention having the transparent conductive film formed on the display surface is provided. Has high transparency of the display surface, excellent electromagnetic wave shielding effect and antistatic effect, natural color of transmitted image,
It has weather resistance represented by salt water resistance, has excellent scratch resistance, and has excellent visibility without unevenness due to island-like aggregates of metal fine particles.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 若林 淳美 千葉県船橋市豊富町585番地 住友大阪セ メント株式会社新材料事業部内 Fターム(参考) 4F100 AA20 AA20H AB24A AB25A AR00B AS00A BA02 CC00A DE01A DE10A GB41 JB02 JD08 JG01A JG03 JL09 JN01 JN01A JN01B JN18B JN30 YY00A 4J038 HA066 KA20 NA20 PA07 5C032 AA02 AA07 DD02 DE01 DF01 DF02 DF03 DF04 DG02 5G307 FA01 FB02 FC09 FC10  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Atsumi Wakabayashi 585 Tomimachi, Funabashi-shi, Chiba F-term (Reference) 4F100 AA20 AA20H AB24A AB25A AR00B AS00A BA02 CC00A DE01A DE10A GB41 JB02 JD08 JG01A JG03 JL09 JN01 JN01A JN01B JN18B JN30 YY00A 4J038 HA066 KA20 NA20 PA07 5C032 AA02 AA07 DD02 DE01 DF01 DF02 DF03 DF04 DG02 5G307 FA01 FB02 FC09 FC10

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 金、銀、および少なくとも1種の白金族
金属を微粒子として含む導電層を有することを特徴とす
る透明導電膜。
1. A transparent conductive film having a conductive layer containing fine particles of gold, silver and at least one platinum group metal.
【請求項2】 前記導電層が、微粒子として金を20重
量%〜70重量%、銀を10重量%〜40重量%、白金
族金属を10重量%〜40重量%の範囲内で含むことを
特徴とする請求項1に記載の透明導電膜。
2. The method according to claim 1, wherein the conductive layer contains, as fine particles, gold in a range of 20% to 70% by weight, silver in a range of 10% to 40% by weight, and a platinum group metal in a range of 10% to 40% by weight. The transparent conductive film according to claim 1, wherein:
【請求項3】 前記微粒子の少なくとも一部が鎖状凝集
体を形成してなることを特徴とする請求項1または請求
項2に記載の透明導電膜。
3. The transparent conductive film according to claim 1, wherein at least a part of the fine particles form a chain aggregate.
【請求項4】 前記鎖状凝集体の長さが、5nm〜200
nmの範囲内であることを特徴とする請求項3に記載の透
明導電膜。
4. The length of the chain aggregate is from 5 nm to 200 nm.
The transparent conductive film according to claim 3, wherein the thickness is in the range of nm.
【請求項5】 前記鎖状凝集体を含む導電層は、前記微
粒子の鎖状凝集体が分散した塗料を基材に塗布して形成
されたものであることを特徴とする請求項3または請求
項4に記載の透明導電膜。
5. The conductive layer containing the chain-like aggregates is formed by applying a coating material in which the chain-like aggregates of fine particles are dispersed to a substrate. Item 6. The transparent conductive film according to Item 4.
【請求項6】 前記導電層の上層または下層に、前記導
電層と屈折率の異なる少なくとも1層の透明層が積層さ
れたことを特徴とする請求項1〜請求項5のいずれかに
記載の透明導電膜。
6. The conductive layer according to claim 1, wherein at least one transparent layer having a refractive index different from that of the conductive layer is laminated on an upper layer or a lower layer of the conductive layer. Transparent conductive film.
【請求項7】 請求項1〜請求項6のいずれかに記載の
透明導電膜が表示面に形成されたことを特徴とする表示
装置。
7. A display device, wherein the transparent conductive film according to claim 1 is formed on a display surface.
JP11165991A 1999-06-11 1999-06-11 Transparent conductive film and display device Pending JP2000357414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11165991A JP2000357414A (en) 1999-06-11 1999-06-11 Transparent conductive film and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11165991A JP2000357414A (en) 1999-06-11 1999-06-11 Transparent conductive film and display device

Publications (1)

Publication Number Publication Date
JP2000357414A true JP2000357414A (en) 2000-12-26

Family

ID=15822850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11165991A Pending JP2000357414A (en) 1999-06-11 1999-06-11 Transparent conductive film and display device

Country Status (1)

Country Link
JP (1) JP2000357414A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002015201A1 (en) * 2000-08-11 2002-02-21 Sumitomo Osaka Cement Co., Ltd. Transparent electrically conductive film and display
WO2003081608A1 (en) * 2002-03-25 2003-10-02 Sumitomo Metal Mining Co.,Ltd. Transparent conductive film, coating liquid for forming the transparent conductive film, transparent conductive multilayer structure, and display
EP1489695A1 (en) * 2002-03-04 2004-12-22 Sumitomo Electric Industries, Ltd. Anisotropic conductive film and method for producing the same
KR100726167B1 (en) 2004-12-13 2007-06-13 한국전자통신연구원 Method for Preparing Transparent Electrode Using Gold Nanoparticles, and Transparent Electrode Obtained by the Method
DE112007001519T5 (en) 2006-06-22 2009-06-18 Mitsubishi Paper Mills Limited Method for producing a conductive material
US7749620B2 (en) 2002-07-12 2010-07-06 Fujimori Kogyo Co., Ltd. Electromagnetic wave shield material and process for producing the same
JP2011029098A (en) * 2009-07-28 2011-02-10 Panasonic Electric Works Co Ltd Substrate with transparent conductive film
JP2013010892A (en) * 2011-06-30 2013-01-17 Sumitomo Osaka Cement Co Ltd Composition for forming antibacterial transparent film, antibacterial transparent film, plastic base material including the transparent film, and display device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002015201A1 (en) * 2000-08-11 2002-02-21 Sumitomo Osaka Cement Co., Ltd. Transparent electrically conductive film and display
EP1231612A1 (en) * 2000-08-11 2002-08-14 Sumitomo Osaka Cement Co., Ltd. Transparent electrically conductive film and display
US6524499B1 (en) 2000-08-11 2003-02-25 Sumitomo Osaka Cement Co., Ltd. Transparent conductive film and display device
EP1231612A4 (en) * 2000-08-11 2008-12-03 Sumitomo Osaka Cement Co Ltd Transparent electrically conductive film and display
US7390442B2 (en) 2002-03-04 2008-06-24 Sumitomo Electric Industries, Ltd. Anisotropic conductive film and method for producing the same
EP1489695A4 (en) * 2002-03-04 2005-05-04 Sumitomo Electric Industries Anisotropic conductive film and method for producing the same
EP1489695A1 (en) * 2002-03-04 2004-12-22 Sumitomo Electric Industries, Ltd. Anisotropic conductive film and method for producing the same
CN1297992C (en) * 2002-03-25 2007-01-31 住友金属矿山株式会社 Transparent conductive film, coating liquid for forming the transparent conductive film, transparent conductive multilayer structure, and display
US7438835B2 (en) 2002-03-25 2008-10-21 Sumitomo Metal Mining Co., Ltd. Transparent conductive film, coating liquid for forming such film, transparent conductive layered structure, and display device
WO2003081608A1 (en) * 2002-03-25 2003-10-02 Sumitomo Metal Mining Co.,Ltd. Transparent conductive film, coating liquid for forming the transparent conductive film, transparent conductive multilayer structure, and display
US7749620B2 (en) 2002-07-12 2010-07-06 Fujimori Kogyo Co., Ltd. Electromagnetic wave shield material and process for producing the same
KR100726167B1 (en) 2004-12-13 2007-06-13 한국전자통신연구원 Method for Preparing Transparent Electrode Using Gold Nanoparticles, and Transparent Electrode Obtained by the Method
DE112007001519T5 (en) 2006-06-22 2009-06-18 Mitsubishi Paper Mills Limited Method for producing a conductive material
DE112007001519B4 (en) 2006-06-22 2022-03-10 Mitsubishi Paper Mills Limited Method of making a conductive material
JP2011029098A (en) * 2009-07-28 2011-02-10 Panasonic Electric Works Co Ltd Substrate with transparent conductive film
JP2013010892A (en) * 2011-06-30 2013-01-17 Sumitomo Osaka Cement Co Ltd Composition for forming antibacterial transparent film, antibacterial transparent film, plastic base material including the transparent film, and display device

Similar Documents

Publication Publication Date Title
JP3442082B2 (en) Transparent conductive film, low-reflection transparent conductive film, and display device
JP4232480B2 (en) Method for producing noble metal-coated silver fine particle dispersion, coating liquid for forming transparent conductive layer, transparent conductive substrate and display device
JP2000124662A (en) Transparent conductive film and display device
JPH10142401A (en) Low-reflectivity transparent conductive film as well as its production and display device
JP2000357414A (en) Transparent conductive film and display device
JP4043941B2 (en) Transparent conductive film and display device
JP3501942B2 (en) Paint for forming transparent conductive film, transparent conductive film, and display device
JP3652563B2 (en) Transparent conductive film forming paint, transparent conductive film and display device
JP3356966B2 (en) Transparent conductive film, method of manufacturing the same, and display device
JPH1135855A (en) Transparent conductive film and display device
JP3403578B2 (en) Antireflection colored transparent conductive film and cathode ray tube
JP3910393B2 (en) Transparent conductive film
JP2002003746A (en) Coating for forming transparent electroconductive film, transparent electroconductive film and display device
JPH10204336A (en) Coating material for forming transparent conductive film, low-reflectance transparent conductive film, and display
JP3356968B2 (en) Transparent conductive film, method of manufacturing the same, and display device
JP2001126540A (en) Transparent conductive film and display device
US6902815B2 (en) Coating liquid for forming colored transparent conductive film, substrate with colored transparent conductive film and method for its production, and display device
JP4271438B2 (en) Transparent conductive film forming paint, transparent conductive film, method for producing the same, and display device including the same
JP3217275B2 (en) Low reflection conductive laminated film and cathode ray tube
JP2005154453A (en) Coating liquid for forming transparent conductive layer and transparent conductive base material
JP2000228154A (en) Colored transparent conductive film and display
JP2002190214A (en) Transparent conductive film and display device using the film
JP2003162924A (en) Transparent conductive film and coating for transparent conductive film, and display device
JPH1036975A (en) Low resistance film or coating liquid for low refractive index film formation, and manufacture of low resistance film or low reflective and low refractive index film
JP2003138222A (en) Coating material for forming transparent conductive film, transparent conductive film using the same, and display equipped with the film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050816