JP6413969B2 - Dispersion for forming solar shading body and solar shading body using the dispersion - Google Patents

Dispersion for forming solar shading body and solar shading body using the dispersion Download PDF

Info

Publication number
JP6413969B2
JP6413969B2 JP2015149771A JP2015149771A JP6413969B2 JP 6413969 B2 JP6413969 B2 JP 6413969B2 JP 2015149771 A JP2015149771 A JP 2015149771A JP 2015149771 A JP2015149771 A JP 2015149771A JP 6413969 B2 JP6413969 B2 JP 6413969B2
Authority
JP
Japan
Prior art keywords
fine particles
dispersion
solar
forming
solar radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015149771A
Other languages
Japanese (ja)
Other versions
JP2017030989A (en
Inventor
長南 武
武 長南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2015149771A priority Critical patent/JP6413969B2/en
Publication of JP2017030989A publication Critical patent/JP2017030989A/en
Application granted granted Critical
Publication of JP6413969B2 publication Critical patent/JP6413969B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、車両、ビル、事務所、一般住宅などの窓材や、電話ボックス、ショーウィンドー、照明用ランプ、透明ケースなどに使用される単板ガラス、合わせガラス、プラスチックスや繊維などに適用される、可視光領域の光には透明で、近赤外線領域の光に吸収を持つ日射遮蔽用微粒子を用いた日射遮蔽体形成用分散液、および、当該分散液を用いた日射遮蔽体に関する。   The present invention is applied to window materials for vehicles, buildings, offices, general houses, etc., as well as single glass, laminated glass, plastics and fibers used for telephone boxes, show windows, lighting lamps, transparent cases, etc. The present invention relates to a dispersion for forming a solar shading body using solar shading particles that are transparent to light in the visible light region and absorb in light in the near infrared region, and a solar shading body using the dispersion.

太陽光や電球などの外部光源から熱成分を除去・減少する方法として、従来、例えば、ガラス表面に赤外線を反射する材料からなる被膜を形成して、当該ガラスを熱線反射ガラス等として用いることが行われていた。その赤外線反射材料には、FeO、CoO、CrO、TiOなどの金属酸化物や、Ag、Au、Cu、Ni、Alなどの金属材料が選択されて使用されていた。 As a method for removing and reducing heat components from an external light source such as sunlight or a light bulb, conventionally, for example, a film made of a material that reflects infrared rays is formed on the glass surface, and the glass is used as a heat ray reflective glass or the like. It was done. As the infrared reflecting material, metal oxides such as FeO x , CoO x , CrO x , and TiO x and metal materials such as Ag, Au, Cu, Ni, and Al have been selected and used.

ところが、これらの金属酸化物や金属材料には、熱に大きく寄与する赤外線のみならず、可視光も同時に反射もしくは吸収する性質がある。このため、これらの金属酸化物や金属材料の被膜が形成された熱線反射ガラス等では、可視光透過率が低下してしまう問題があった。
特に、建材、乗り物、電話ボックスなどに用いられる熱線遮蔽基材においては、可視光領域で高い透過率が必要とされる。従って、熱成分を除去・減少するために、前記金属酸化物や金属材料の赤外線反射材料を用いる場合には、その被膜の膜厚を非常に薄くしなければならなかった。
However, these metal oxides and metal materials have the property of reflecting or absorbing visible light as well as infrared rays that greatly contribute to heat. For this reason, in the heat ray reflective glass etc. in which the film of these metal oxides or metal materials was formed, there existed a problem that visible light transmittance fell.
In particular, a heat ray shielding base material used for building materials, vehicles, telephone boxes and the like requires high transmittance in the visible light region. Therefore, in order to remove / reduce the heat component, when using the metal oxide or the infrared reflecting material of the metal material, the film thickness of the coating has to be very thin.

膜厚の薄い金属酸化物や金属材料の被膜を形成するためには、スプレー焼付け法、CVD法、スパッタリング法、または真空蒸着法などの物理成膜法を用いて、膜厚10nmレベルの薄膜として成膜する方法が採られている。しかし、これらの成膜方法は大がかりな装置や真空設備を必要とし、生産性や大面積化に難点があり、膜の製造コストが高くなる欠点がある。   In order to form a thin film of metal oxide or metal material, a thin film having a thickness of 10 nm is formed by using a physical film forming method such as a spray baking method, a CVD method, a sputtering method, or a vacuum evaporation method. A method of forming a film is employed. However, these film forming methods require a large-scale apparatus and vacuum equipment, and there are drawbacks in productivity and large area, and there is a drawback that the manufacturing cost of the film becomes high.

さらに、金属酸化物や金属材料から選ばれる赤外線反射材料では、太陽光などの外部光源から熱成分を除去・減少して熱線遮蔽特性を高くしようとすると、可視光領域の反射率も同時に高くなってしまう傾向がある。このため、熱線遮蔽基材に鏡のようなギラギラした外観を与えて、美観を損ねてしまう欠点もあった。   Furthermore, with infrared reflective materials selected from metal oxides and metal materials, if the heat component is removed / reduced from an external light source such as sunlight to increase heat ray shielding characteristics, the reflectance in the visible light region also increases at the same time. There is a tendency to end up. For this reason, there also existed a fault which gave the heat-shielding base material the glossy appearance like a mirror and impaired the beauty | look.

一方、これらの材料を用いて成膜された膜は、電気抵抗値が比較的低くなる。このため、電波に対する反射が高くなり、例えば、建材、乗り物等に用いられる場合、携帯電話やテレビ、ラジオなどの電波を反射して受信不能になったり、周辺地域に電波障害を引き起こしたりするなどの欠点もあった。当該欠点を改善するために、可視光領域の光の反射率が低く赤外線領域の光の反射率が高く、かつ表面抵抗値が概ね10Ω/□(オーム・パー・スクエアと読む。)以上に制御可能な日射遮蔽体が求められている。 On the other hand, a film formed using these materials has a relatively low electric resistance value. For this reason, the reflection of radio waves becomes high. For example, when used in building materials, vehicles, etc., radio waves from mobile phones, TVs, radios, etc. are reflected and cannot be received, or radio interference is caused in the surrounding area. There were also disadvantages. In order to improve the defect, the reflectance of light in the visible light region is low and the reflectance of light in the infrared region is high, and the surface resistance value is approximately 10 6 Ω / □ (read as ohm-per-square) or more. There is a need for a solar radiation shield that can be controlled easily.

ここで、可視光透過率が高く、しかも優れた日射遮蔽機能を持つ材料として、アンチモン含有錫酸化物(本発明において「ATO」と記載する場合がある。)や、インジウム含有錫酸化物(本発明において「ITO」と記載する場合がある。)が知られている。これらの材料は、可視光反射率が比較的低いためギラギラした外観を与えることはない。
しかし、これらの材料の有するプラズマ周波数は近赤外線領域にあるために、可視光に近い近赤外域においては、反射・吸収効果が未だ十分ではなかった。さらに、これらの材料は、単位質量当たりの日射遮蔽力が低いため、高い日射遮蔽機能を得るには使用量が多くなり、コストが割高となるという問題を有していた。
Here, antimony-containing tin oxide (sometimes referred to as “ATO” in the present invention) or indium-containing tin oxide (this material) is a material having high visible light transmittance and excellent solar radiation shielding function. In the invention, it may be described as “ITO”). These materials do not give a glaring appearance due to their relatively low visible light reflectivity.
However, since the plasma frequency of these materials is in the near infrared region, the reflection / absorption effect is not yet sufficient in the near infrared region close to visible light. Furthermore, since these materials have a low solar shielding power per unit mass, there is a problem that the amount of use is increased to obtain a high solar shielding function, and the cost is high.

また、日射遮蔽材料微粒子を含有する塗布液を適宜な基材上に塗布し、日射遮蔽膜を当該基材上に形成することによって簡単、かつ低コストで日射遮蔽機能を持たせた透明基材を製造することも提案されている。   In addition, a transparent base material that has a simple and low cost solar shading function by applying a coating solution containing the solar shading material fine particles on an appropriate base material and forming a solar shading film on the base material. It has also been proposed to manufacture.

例えば、特許文献1には、六ホウ化物が自由電子を多量に保有していること、当該六ホウ化物を微粒子化し高度に分散させることによって、可視光領域に透過率の極大を持つとともに、可視光領域に近い近赤外領域に強いプラズマ反射を発現して透過率の極小を持つようになることが開示されている。   For example, Patent Document 1 discloses that the hexaboride possesses a large amount of free electrons, and the hexaboride has a maximum transmittance in the visible light region by being finely dispersed into fine particles. It is disclosed that a strong plasma reflection occurs in the near-infrared region close to the light region and the transmittance becomes minimum.

特許文献2には、バインダー中に日射遮蔽材料として六ホウ化物微粒子を含有した日射遮蔽膜形成用塗布液について開示されている。   Patent Document 2 discloses a coating solution for forming a sunscreen film containing hexaboride fine particles as a sunscreen material in a binder.

また、特許文献3には、既存の各種基材に適応でき、可視光透過率を高く保ったまま、赤外線の透過率を低くできる日射遮蔽体に用いる日射遮蔽材料として、タングステン酸化物微粒子とその製造方法、当該タングステン酸化物微粒子を用いた日射遮蔽体形成用分散液および日射遮蔽体が開示されている。   Patent Document 3 discloses that tungsten oxide fine particles and a solar radiation shielding material used for a solar radiation shielding material that can be applied to various existing base materials and can reduce infrared transmittance while keeping visible light transmittance high. A manufacturing method, a dispersion for forming a sunscreen using the tungsten oxide fine particles, and a sunscreen are disclosed.

特許文献4には、上述した可視光透過率が高くしかも優れた熱線遮蔽機能を持つ各種材料の中から、ATO微粒子と六ホウ化物微粒子とを選択し、これらを併せて使用することが開示されている。当該併用使用により、それぞれの単独使用よりも日射遮蔽特性を向上させ、ATOの使用量を減少して材料コストを低減した、熱線遮蔽成分微粒子が分散されている熱線遮蔽樹脂シート材製造用添加液が得られ、可視光領域の光の透過率が高くて反射率は低く、近赤外線領域の光の透過率は低い熱線遮蔽樹脂シート材が得られることが開示されている。   Patent Document 4 discloses that ATO fine particles and hexaboride fine particles are selected from various materials having a high visible light transmittance and an excellent heat ray shielding function, and these are used in combination. ing. Additive liquid for producing heat ray shielding resin sheet material in which fine particles of heat ray shielding component are dispersed, the solar radiation shielding characteristics are improved by using the combined use, and the amount of ATO used is reduced to reduce the material cost. It is disclosed that a heat ray shielding resin sheet material having a high light transmittance in the visible light region, a low reflectance, and a low light transmittance in the near infrared region can be obtained.

特開2000−72484号公報JP 2000-72484 A 特開2001−262061号公報JP 2001-262061 A 特開2005−187323号公報JP 2005-187323 A 特開2003−327717号公報JP 2003-327717 A

本発明者らの検討によると、前記ATO微粒子と前記六ホウ化物微粒子とを使用した日射遮蔽体形成用分散液を用いて得られる日射遮蔽体は、優れた日射遮蔽特性を有している。しかしながら、前記日射遮蔽体形成用分散液を、日射遮蔽体形成用母材に練り込み、板状、シート状、またはフィルム状に成形する日射遮蔽体において、耐候性、特に湿熱特性、つまり、湿熱雰囲気下における耐加水分解性は満足すべきものではなく、改善の余地を有していることを知見した。   According to the study by the present inventors, a solar radiation shielding body obtained using a dispersion for forming a solar radiation shielding body using the ATO fine particles and the hexaboride fine particles has excellent solar radiation shielding properties. However, in the solar shield formed by kneading the solar shield-forming dispersion into the solar shield-forming base material and forming it into a plate shape, sheet shape, or film shape, weather resistance, particularly wet heat characteristics, that is, wet heat It was found that the hydrolysis resistance under the atmosphere is not satisfactory and has room for improvement.

本発明は上述した状況のもとになされたものであり、その解決しようとする課題は、優れた日射遮蔽特性を有するとともに耐候性、特に湿熱特性に優れた日射遮蔽体と、当該日射遮蔽体を形成するための日射遮蔽体形成用分散液を提供することである。   The present invention has been made under the above-described circumstances, and the problem to be solved is a solar radiation shielding body having excellent solar radiation shielding characteristics and weather resistance, particularly wet heat characteristics, and the solar radiation shielding body. It is providing the dispersion liquid for solar radiation shielding body formation for forming.

本発明者等は、上記課題を解決するため鋭意研究を行った。
具体的には、ATO微粒子と六ホウ化物微粒子とを併せた日射遮蔽用微粒子と分散剤とを、溶媒中に分散させた日射遮蔽体形成用分散液において、当該分散剤の奏する効果に着目して検討を行った。そして、アミン価を有し、かつ酸価が19mgKOH/g以下である分散剤を含有する日射遮蔽体形成用分散液を用いて日射遮蔽体を形成すると、得られた日射遮蔽体の耐湿熱特性が向上することを知見し、本発明を完成するに至った。
The present inventors have conducted intensive research to solve the above problems.
Specifically, in a dispersion for forming a solar shading material in which a solar shading fine particle and a dispersing agent in which ATO fine particles and hexaboride fine particles are combined are dispersed in a solvent, attention is paid to the effect of the dispersing agent. And examined. And when a solar radiation shielding body is formed using the dispersion liquid for solar radiation shielding body containing the dispersing agent which has an amine value and an acid value is 19 mgKOH / g or less, the heat-and-moisture resistance characteristic of the obtained solar radiation shielding body As a result, the present invention has been completed.

上述の課題を解決するための第1の発明は、
日射遮蔽用微粒子と分散剤とを溶媒中に分散させた日射遮蔽体形成用分散液であって、
前記日射遮蔽用微粒子は、一般式XB(但し、Xは、La、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Y、Sm、Eu、Er、Tm、Yb、Lu、Sr、Caの群から選択される1種以上)で表される六ホウ化物微粒子と、アンチモン含有錫酸化物(ATO微粒子とを含有し、前記六ホウ化物微粒子と前記ATO微粒子との平均一次粒子径は200nm以下であり、 前記日射遮蔽体形成用分散液中の前記六ホウ化物微粒子の含有量は0.01質量%以上3.0質量%以下であり、前記ATO微粒子の含有量は10.0質量%以上30.0質量%以下であり、前記六ホウ化物微粒子と前記ATO微粒子とが質量比で0.1:99.9〜13.8:86.2の範囲で配合され、
前記分散剤は、アミン価が10mgKOH/g以上29mgKOH/g以下であり、かつ、酸価が19mgKOH/g以下である、ことを特徴とする日射遮蔽体形成用分散液である。
第2の発明は、
前記ATO微粒子はタップ密度が1.85g/cm以下で、比表面積が5〜110m/gであり、かつ、L表色系による粉体色Lが40〜65であり、aが−5〜−1であり、bが−11〜−1であり、
前記六ホウ化物微粒子は、格子定数が0.4100〜0.4160nmであり、L表色系による粉体色Lが30〜60であり、aが−5〜10であり、bが−10〜2である、ことを特徴とする日射遮蔽体形成用分散液である。
第3の発明は、
前記日射遮蔽体形成用分散液が、さらに、ZrO、TiO、Si、SiC、SiO、Al、Y、ZnO、CeO、Fe(OH)、FeOOHから選択される少なくとも1種以上の化合物を含有する、ことを特徴とする日射遮蔽体形成用分散液である。
第4の発明は、
前記日射遮蔽体形成用分散液を含む膜が基材上に成膜されている、ことを特徴とする日射遮蔽体である。
第5の発明は、
前記基材が透明基材である、ことを特徴とする日射遮蔽体である。
第6の発明は、
前記透明基材が、ガラス、樹脂フィルム、樹脂ボードから選択される1種である、ことを特徴とする日射遮蔽体である。
第7の発明は、
前記日射遮蔽体形成用分散液が練り込まれた日射遮蔽体形成用母材が、板状、シート状、フィルム状から選択される形状に成形されたものである、ことを特徴とする日射遮蔽体である。

The first invention for solving the above-described problems is as follows.
A dispersion for forming a sunscreen, in which sunscreen particles and a dispersant are dispersed in a solvent,
The solar shading fine particles have the general formula XB 6 (where X is La, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Y, Sm, Eu, Er, Tm, Yb, Lu, Sr, Ca 1 or more selected from the group of the above) and antimony-containing tin oxide ( ATO ) fine particles, and the average primary particle size of the hexaboride fine particles and the ATO fine particles is It is 200 nm or less, the content of the hexaboride fine particles in the dispersion for forming the sunscreen is 0.01% by mass to 3.0% by mass, and the content of the ATO fine particles is 10.0% by mass. % To 30.0% by mass, and the hexaboride fine particles and the ATO fine particles are blended in a mass ratio of 0.1: 99.9 to 13.8: 86.2,
The dispersant is a dispersion for forming a solar radiation shielding body, wherein the amine value is 10 mgKOH / g or more and 29 mgKOH / g or less , and the acid value is 19 mgKOH / g or less.
The second invention is
The ATO fine particles have a tap density of 1.85 g / cm 3 or less, a specific surface area of 5 to 110 m 2 / g, and a powder color L * of 40 to 65 according to the L * a * b * color system. Yes, a * is -5 to -1, b * is -11 to -1,
The hexaboride fine particles have a lattice constant of 0.4100 to 0.4160 nm, a powder color L * according to L * a * b * color system of 30 to 60, and a * of −5 to 10. And b * is -10 to 2, which is a dispersion for forming a solar shading body.
The third invention is
The dispersion for forming the sunscreen further comprises ZrO 2 , TiO 2 , Si 3 N 4 , SiC, SiO 2 , Al 2 O 3 , Y 2 O 3 , ZnO, CeO 2 , Fe (OH) 3 , FeOOH. A dispersion for forming a sunscreen, comprising at least one compound selected from the group consisting of:
The fourth invention is:
The solar shading body is characterized in that a film including the solar shading body forming dispersion is formed on a substrate.
The fifth invention is:
The solar radiation shielding body is characterized in that the base material is a transparent base material.
The sixth invention is:
The said transparent base material is 1 type selected from glass, a resin film, and a resin board, It is a solar radiation shielding body characterized by the above-mentioned.
The seventh invention
The solar shading material, wherein the solar shading material forming base material into which the solar shading material forming dispersion is kneaded is formed into a shape selected from a plate shape, a sheet shape, and a film shape. Is the body.

本発明に係る日射遮蔽体形成用分散液を用いて基材上に塗膜形成して得られた日射遮蔽体や、当該日射遮蔽体形成用分散液を日射遮蔽体形成用母材に練り込み、板状、シート状、フィルム状のいずれかの形状に成形した日射遮蔽体は、耐候性、特に耐湿熱特性に優れた日射遮蔽体であって工業的に有用である。   The solar shield obtained by forming a coating film on a substrate using the dispersion for forming a solar shield according to the present invention, and the dispersion for forming the solar shield are kneaded into the base material for forming the solar shield. The solar shield formed into any one of a plate shape, a sheet shape, and a film shape is an industrially useful solar shield that is excellent in weather resistance, particularly moisture and heat resistance.

以下、本発明を実施するための形態について詳細に説明する。
本発明に係る日射遮蔽体形成用分散液は、日射遮蔽用微粒子と分散剤とを溶媒中に分散させた日射遮蔽体形成用分散液であって、前記日射遮蔽用微粒子は、一般式XB(但し、Xは、La、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Y、Sm、Eu、Er、Tm、Yb、Lu、Sr、Caの群から選択される1種以上)で表される六ホウ化物微粒子と、ATO微粒子とを含有し、前記六ホウ化物微粒子と前記ATO微粒子との平均一次粒子径は200nm以下であり、前記日射遮蔽体形成用分散液中の前記六ホウ化物微粒子の含有量は0.01質量%以上3.0質量%以下であり、前記ATO微粒子の含有量は10.0質量%以上30.0質量%以下であり、前記六ホウ化物微粒子と前記ATO微粒子とが質量比で0.1:99.9〜13.8:86.2の範囲で配合され、前記分散剤は、アミン価を有し、かつ酸価が19mgKOH/g以下である日射遮蔽体形成用分散液である。
Hereinafter, embodiments for carrying out the present invention will be described in detail.
The dispersion for forming solar radiation shielding material according to the present invention is a dispersion for forming solar radiation shielding material in which solar radiation shielding particles and a dispersing agent are dispersed in a solvent, and the solar radiation shielding fine particles have the general formula XB 6. (However, X is one or more selected from the group of La, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Y, Sm, Eu, Er, Tm, Yb, Lu, Sr, Ca) The hexaboride fine particles and the ATO fine particles, wherein the hexaboride fine particles and the ATO fine particles have an average primary particle size of 200 nm or less, The content of the fluoride fine particles is 0.01% by mass or more and 3.0% by mass or less, the content of the ATO fine particles is 10.0% by mass or more and 30.0% by mass or less, the hexaboride fine particles and the above ATO fine particles are 0.1: 99.9 in mass ratio 13.8: formulated in a range of 86.2, the dispersant has an amine value and acid value is for forming a solar radiation-shielding body dispersions or less 19 mgKOH / g.

本発明に係る日射遮蔽体形成用分散液について、以下(1)日射遮蔽用微粒子、(2)分散剤、(3)溶媒、(4)バインダー、(5)その他添加物、について順に説明し、さらに本発明に係る(6)日射遮蔽体形成用分散液、(7)日射遮蔽体、について説明する。   The dispersion for solar radiation shielding body according to the present invention will be described in order of (1) solar radiation shielding fine particles, (2) dispersant, (3) solvent, (4) binder, (5) other additives, Further, (6) a dispersion for forming a solar shield and (7) a solar shield according to the present invention will be described.

(1)日射遮蔽用微粒子
本発明に係る日射遮蔽体形成用分散液において用いられる日射遮蔽用微粒子は、六ホウ化物微粒子とATO微粒子とを併せたものである。
当該日射遮蔽用微粒子について、以下a)六ホウ化物微粒子、b)ATO微粒子、c)日射遮蔽用微粒子、の順に説明する。
(1) Fine particles for solar shading The fine particles for solar shading used in the dispersion for forming a solar shield according to the present invention are a combination of hexaboride fine particles and ATO fine particles.
The solar shielding fine particles will be described below in the order of a) hexaboride fine particles, b) ATO fine particles, and c) solar shielding fine particles.

a)六ホウ化物微粒子
本発明に係る六ホウ化物微粒子は、その平均1次粒子径が200nm以下、結晶構造は単純立方格子で、格子定数が0.4100〜0.4160nmであり、かつ、L表色系における粉体色は、Lが30〜60、aが−5〜10、bが−10〜2であることが好ましい。
a) Hexaboride fine particles The hexaboride fine particles according to the present invention have an average primary particle size of 200 nm or less, a crystal structure of a simple cubic lattice, a lattice constant of 0.4100 to 0.4160 nm, and L The powder color in the * a * b * color system is preferably such that L * is 30 to 60, a * is -5 to 10, and b * is -10 to 2.

ここで、平均1次粒子径は以下のように算出した値である。
すなわち、溶媒中に六ホウ化物微粒子、分散剤、ビーズ等を入れて、例えば、ペイントシェーカーに装填し、六ホウ化物粒子を粉砕・分散処理する。当該処理後に溶媒を蒸発させて除去し、分散剤を加熱分解により除去した後に、得られた六ホウ化物微粒子のTEM−EDS解析により算出した値である。
Here, the average primary particle diameter is a value calculated as follows.
That is, hexaboride fine particles, a dispersing agent, beads, and the like are placed in a solvent and loaded into, for example, a paint shaker, and the hexaboride particles are pulverized and dispersed. It is a value calculated by TEM-EDS analysis of the obtained hexaboride fine particles after removing the solvent by evaporating and removing the dispersant by thermal decomposition after the treatment.

ホウ化物微粒子は、一般式XB(但し、Xは、La、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Y、Sm、Eu、Er、Tm、Yb、Lu、Sr、Caの群から選択される1種以上)で表され、XB4、XB6、XB12等で表されるホウ化物が挙げられる。尤も、日射遮蔽体の材料として用いる場合は、4≦m<6.3であることが好ましい。すなわち、本発明に係る六ホウ化物微粒子としては、上述したホウ化物のうちXB、XBが主体となっていることが好ましく、さらに一部XB12を含んでいても良い。 The boride fine particles are represented by the general formula XB m (where X is La, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Y, Sm, Eu, Er, Tm, Yb, Lu, Sr, Ca). Borides represented by XB 4, XB 6, XB 12, and the like. However, when it is used as a material for solar radiation shielding, it is preferable that 4 ≦ m <6.3. That is, the hexaboride fine particles according to the present invention are preferably mainly composed of XB 4 and XB 6 among the borides described above, and may further partially include XB 12 .

ここで、mとは、得られたホウ化物微粒子を含む粉体を化学分析し、X元素の1原子に対するBの原子数比を示すものである。製造されたホウ化物微粒子を含む粉体は、実際には、XB4、XB6、XB12等の混合物である。例えば、代表的なホウ化物微粒子である六ホウ化物においても、X線回折測定では単一相であっても、実際には5.8<m<6.2となり、微量に他相を含んでいると考えられる。
ここで、m>4となる場合は、XB、XBなどの生成が抑制されており、理由は不明であるが、日射遮蔽特性が向上する。
一方、m≦6.3となる場合は、ホウ化物微粒子以外のホウ素化合物である、酸化ホウ素粒子の生成が抑制されている。当該酸化ホウ素粒子は吸湿性があるため、ホウ化物微粒子の粉体中において酸化ホウ素粒子の生成が抑制されていると、当該ホウ化物微粒子の粉体の耐湿性が担保され、日射遮蔽特性の経時劣化が抑制され好ましい。そこで、m≦6.3として、酸化ホウ素粒子の生成を抑制することが好ましい。
Here, m is a chemical analysis of the obtained powder containing boride fine particles, and indicates the atomic ratio of B to one atom of the X element. The produced powder containing boride fine particles is actually a mixture of XB 4, XB 6, XB 12, and the like. For example, even in the case of hexaboride which is a typical boride fine particle, even if it is a single phase in X-ray diffraction measurement, 5.8 <m <6.2 is actually obtained, and a small amount of other phases are included. It is thought that there is.
Here, when m> 4, the generation of XB, XB 2 and the like is suppressed, and the reason is unknown, but the solar radiation shielding characteristics are improved.
On the other hand, when m ≦ 6.3, the generation of boron oxide particles, which are boron compounds other than boride fine particles, is suppressed. Since the boron oxide particles are hygroscopic, if the formation of boron oxide particles in the boride fine particle powder is suppressed, the moisture resistance of the boride fine particle powder is ensured, and the solar radiation shielding characteristics are maintained over time. Deterioration is suppressed, which is preferable. Therefore, it is preferable to suppress the formation of boron oxide particles by setting m ≦ 6.3.

本発明に係る六ホウ化物微粒子は、例えば、固相反応法や蒸発急冷法、その他、プラズマCVD法などの気相法で製造することができる。
本発明に係る六ホウ化物微粒子の製造方法について、固相反応法によるLaB(六ホウ化ランタン)の製造方法を、具体例の一例として説明するが、上述した粉体特性を具備するものであれば、製造方法は限定されるものではない。
The hexaboride fine particles according to the present invention can be produced by, for example, a solid phase reaction method, an evaporation quenching method, or a gas phase method such as a plasma CVD method.
As a method for producing hexaboride fine particles according to the present invention, a method for producing LaB 6 (lanthanum hexaboride) by a solid-phase reaction method will be described as an example, and the above-described powder characteristics are provided. If so, the manufacturing method is not limited.

固相反応法では、ホウ素化合物とランタン化合物とへ還元剤を添加し、これらを高温で反応させて六ホウ化ランタンを生成する。但し、通常の六ホウ化ランタンの生成反応条件では、平均1次粒子径が400nmを越える粗大な粉末になり所望の光学特性が得られない。
そこで、例えば、後工程においてジェットミルやビーズミルのようなメカニカル法によって、六ホウ化ランタン粒子を粉砕する、または、ホウ素化合物とランタン化合物との固相反応時に粒成長抑制剤を添加することにより、粒径分布を制御して調製する。この結果、平均1次粒子径が200nm以下の六ホウ化ランタン微粒子を得ることができる。
In the solid phase reaction method, a reducing agent is added to a boron compound and a lanthanum compound, and these are reacted at a high temperature to produce lanthanum hexaboride. However, under normal reaction conditions for producing lanthanum hexaboride, the average primary particle diameter becomes coarse powder exceeding 400 nm, and desired optical characteristics cannot be obtained.
Therefore, for example, by pulverizing lanthanum hexaboride particles by a mechanical method such as a jet mill or a bead mill in the subsequent step, or by adding a grain growth inhibitor during the solid phase reaction between the boron compound and the lanthanum compound, Prepare by controlling the particle size distribution. As a result, lanthanum hexaboride fine particles having an average primary particle diameter of 200 nm or less can be obtained.

得られた六ホウ化ランタン微粒子を、本発明の日射遮蔽体形成用分散液に用いるためには、粒子による光の散乱が少なく、透明性に優れることが必要である。このため、六ホウ化ランタン微粒子の平均1次粒子径は200nm以下であることが好ましく、100nm以下であることが更に好ましい。   In order to use the obtained lanthanum hexaboride fine particles in the dispersion for forming a solar shield according to the present invention, it is necessary that light scattering by the particles is small and the transparency is excellent. For this reason, the average primary particle diameter of the lanthanum hexaboride fine particles is preferably 200 nm or less, and more preferably 100 nm or less.

六ホウ化ランタン微粒子の平均1次粒子径が200nm以下であることが、好ましい理由は、当該微粒子の平均1次粒子径が200nm以下であれば、幾何学散乱若しくはミー散乱によって、波長380〜780nmの可視光線領域の光を散乱して曇りガラスのようになり、鮮明な透明性が得られなくなる現象を回避出来るからである。   It is preferable that the average primary particle diameter of the lanthanum hexaboride fine particles is 200 nm or less. If the average primary particle diameter of the fine particles is 200 nm or less, the wavelength is 380 to 780 nm due to geometric scattering or Mie scattering. This is because it is possible to avoid a phenomenon in which the light in the visible light region is scattered to become frosted glass, and clear transparency cannot be obtained.

さらに、六ホウ化ランタン微粒子の平均1次粒子径が200nm以下になると、上記幾何学散乱およびミー散乱が低減して、レイリー散乱領域になる。レイリー散乱領域では、散乱光は粒子径の6乗に反比例して低減するため、平均1次粒子径の減少に伴い散乱が低減して透明性が向上する。従って、平均1次粒子径が100nm以下になると、散乱光は非常に少なくなり、透過性が一層向上する。
もっとも、用途によっては透明性が要求されない場合もあるため、六ホウ化ランタン微粒子の平均1次粒子径は、2nm〜10μmの範囲内で適宜設定すればよい。
Furthermore, when the average primary particle diameter of the lanthanum hexaboride fine particles is 200 nm or less, the geometric scattering and Mie scattering are reduced, and a Rayleigh scattering region is obtained. In the Rayleigh scattering region, the scattered light decreases in inverse proportion to the sixth power of the particle diameter, so that the scattering is reduced and the transparency is improved as the average primary particle diameter decreases. Therefore, when the average primary particle diameter is 100 nm or less, the scattered light becomes very small and the transmittance is further improved.
However, since transparency may not be required depending on the application, the average primary particle diameter of the lanthanum hexaboride fine particles may be appropriately set within a range of 2 nm to 10 μm.

一般的に六ホウ化物微粒子は、その製造条件により灰黒色、茶黒色、緑黒色などに着色した粉体であるが、当該粉体の粒子径を可視光波長に比べて十分小さくし、日射遮蔽体中に均一に分散させると、赤外光遮蔽能を十分強く保持させながら可視光透過性を確保することができる。
この理由は詳細には判明していないが、これら六ホウ化物微粒子は、粒子中の自由電子の量が多く、微粒子内部および表面の自由電子によるバンド間の間接遷移の吸収エネルギーが、丁度、可視〜近赤外領域の付近にあるために、この波長領域の熱線が選択的に反射・吸収されるものと考えられる。
In general, hexaboride fine particles are powders colored in gray black, brown black, green black, etc. depending on the production conditions, but the particle diameter of the powder is sufficiently small compared to the visible light wavelength, and is shielded from sunlight. When uniformly dispersed in the body, visible light permeability can be ensured while sufficiently maintaining the infrared light shielding ability.
The reason for this is not known in detail, but these hexaboride particles have a large amount of free electrons in the particles, and the absorption energy of indirect transition between bands due to free electrons inside and on the surface of the particles is just visible. ~ Because it is near the near infrared region, it is considered that heat rays in this wavelength region are selectively reflected and absorbed.

本発明者らの研究によれば、六ホウ化物微粒子の比表面積を10m/g以上とし、かつ、当該六ホウ化物微粒子を溶媒中に均一に分散した日射遮蔽膜形成用分散液を用いて成膜した日射遮蔽膜は、波長400nm〜700nmの間に透過率の極大値を持ち、また波長700nm〜1800nmの間に透過率の極小値を持っていた。さらに当該透過率の極大値と極小値との差が15ポイント以上であることが判明した。
一方、人間の視覚において可視光波長の波長領域は380nm〜780nmであり、視感度が波長550nm付近をピークとする釣鐘型であることを考慮すると、当該日射遮蔽膜において可視光は透過し、それ以外の熱線は有効に反射もしくは吸収されていることが理解出来る。
According to the study by the present inventors, a specific surface area of hexaboride fine particles is set to 10 m 2 / g or more, and a dispersion for forming a solar shading film in which the hexaboride fine particles are uniformly dispersed in a solvent is used. The formed solar radiation shielding film had a maximum value of transmittance between wavelengths of 400 nm and 700 nm, and had a minimum value of transmittance between wavelengths of 700 nm and 1800 nm. Furthermore, it was found that the difference between the maximum value and the minimum value of the transmittance was 15 points or more.
On the other hand, in view of human vision, the wavelength range of visible light wavelength is 380 nm to 780 nm, and considering that the visibility is a bell-shaped peak with a wavelength near 550 nm, visible light is transmitted through the solar radiation shielding film. It can be understood that other heat rays are effectively reflected or absorbed.

さらに、本発明に係る六ホウ化物微粒子の単位質量当たりにおける日射遮蔽能力は非常に高く、例えば、ITO微粒子、ATO微粒子と比較して、10分の1以下(質量比)の使用量でその効果を発揮する。
その上、本発明者らは、六ホウ化物微粒子と、ITO微粒子および/またはATO微粒子とを併用することによって、一定の可視光透過率を保ちながら日射遮蔽特性のみをさらに向上させることができることも知見した。この結果、日射遮蔽体粒子の使用総量の削減、および生産コストの削減ができることも判明した。
Furthermore, the solar radiation shielding ability per unit mass of the hexaboride fine particles according to the present invention is very high. For example, the effect can be obtained when the amount used is 1/10 or less (mass ratio) compared to ITO fine particles and ATO fine particles. Demonstrate.
In addition, the present inventors can further improve only the solar radiation shielding property while maintaining a certain visible light transmittance by using the hexaboride fine particles in combination with the ITO fine particles and / or the ATO fine particles. I found out. As a result, it was also found that the total amount of solar shielding particles used can be reduced and the production cost can be reduced.

さらに加えて、本発明に係る六ホウ化物微粒子は可視光領域にも吸収性を有する。このため、日射遮蔽体への六ホウ化物微粒子添加量を制御することにより、当該日射遮蔽膜の可視光領域における吸収を制御することができる。この結果、本発明に係る日射遮蔽膜へ、明るさ調整やプライバシー保護などの付加機能を持たせることも可能である。   In addition, the hexaboride microparticles according to the present invention are also absorbent in the visible light region. For this reason, the absorption in the visible light region of the solar shading film can be controlled by controlling the amount of hexaboride fine particles added to the solar shading body. As a result, the solar radiation shielding film according to the present invention can have additional functions such as brightness adjustment and privacy protection.

また、本発明に係る六ホウ化物微粒子は、国際照明委員会(CIE)が推奨しているL表色系(JIS Z8729)における粉体色Lが30〜60であり、aが−5〜10であり、bが−10〜2である範囲内にあるものを用いることが好ましい。これは、粉体色が上述した範囲内にあると、六ホウ化物微粒子の自由電子による局在表面プラズモン共鳴に由来する吸収が発揮されて、日射遮蔽効果が担保されるからである。 The hexaboride fine particles according to the present invention have a powder color L * of 30 to 60 in the L * a * b * color system (JIS Z8729) recommended by the International Commission on Illumination (CIE). It is preferable to use those in the range where a * is −5 to 10 and b * is −10 to 2. This is because, when the powder color is in the above-described range, absorption derived from localized surface plasmon resonance due to free electrons of hexaboride fine particles is exhibited, and the solar radiation shielding effect is ensured.

日射遮蔽体に適用されるホウ化物微粒子はその表面が酸化していないことが好ましいが、通常得られるホウ化物微粒子は僅かに酸化していることが多く、また、微粒子の分散工程で表面酸化が起こることはある程度避けられない。しかし、僅かに酸化した場合であれば日射遮蔽効果を発現する有効性に変わりはない。上述した粉体色の特性範囲は、ホウ化物微粒子が日射遮蔽効果を担保出来る粒子表面酸化の度合いと、関連していると考えられる。   It is preferable that the boride fine particles applied to the solar shield are not oxidized on the surface, but usually the boride fine particles obtained are often slightly oxidized, and the surface is oxidized during the fine particle dispersion process. Something is unavoidable. However, if it is slightly oxidized, there is no change in the effectiveness of expressing the solar radiation shielding effect. The above-described characteristic range of the powder color is considered to be related to the degree of particle surface oxidation at which the boride fine particles can secure the solar shading effect.

六ホウ化物微粒子(XB)では、結晶としての完全性が高いほど大きい日射遮蔽効果が得られる。しかし、結晶性が低くX線回折で極めてブロード゛な回折ピークを生じるようなものであっても、微粒子内部の基本的な結合がX元素とBの結合から成り立って、平均1次粒子径200nm以下で、結晶構造は単純立方格子で、格子定数が0.4100〜0.4160nm、かつ、L表色系による粉体色がLが30〜60であり、aが−5〜10であり、bが−10〜2である範囲内であるならば所望の日射遮蔽効果を発現することが可能である。 In the hexaboride fine particles (XB 6 ), the higher the completeness as a crystal, the greater the solar radiation shielding effect. However, even if the crystallinity is low and an extremely broad diffraction peak is generated by X-ray diffraction, the basic bonds inside the fine particles are composed of X element and B bonds, and the average primary particle diameter is 200 nm. In the following, the crystal structure is a simple cubic lattice, the lattice constant is 0.4100 to 0.4160 nm, the powder color according to the L * a * b * color system is L * is 30 to 60, and a * is If it is -5-10 and b * is in the range which is -10-2, it is possible to express a desired solar shading effect.

b)ATO微粒子
本発明に係るATO微粒子は、平均一次粒子径が200nm以下であることが好ましい。そして、タップ密度が1.85g/cm以下であることが好ましい。当該ATO微粒子が上記微粒子性状を有していると、本発明に係る日射遮蔽体形成用分散液を製造する際の混合工程において、媒体攪拌ミル等による粉砕と分散とがスムーズに進行する。
b) ATO fine particles The ATO fine particles according to the present invention preferably have an average primary particle diameter of 200 nm or less. And it is preferable that a tap density is 1.85 g / cm < 3 > or less. When the ATO fine particles have the above-mentioned fine particle properties, pulverization and dispersion with a medium stirring mill or the like proceed smoothly in the mixing step when producing the dispersion for forming a sunscreen according to the present invention.

また、本発明に係るATO微粒子は、比表面積が5〜110m/gの範囲にあることが好ましい。ATO微粒子の比表面積が当該範囲内にあると、本発明に係る日射遮蔽体形成用分散液において日射遮蔽効果が担保される。 The ATO fine particles according to the present invention preferably have a specific surface area of 5 to 110 m 2 / g. When the specific surface area of the ATO fine particles is within the range, the solar shading effect is secured in the solar shading body forming dispersion according to the present invention.

上述した平均一次粒子径、タップ密度および比表面積を有するATO微粒子を、溶媒中に分散して当該日射遮蔽体形成用分散液を製造すれば、当該ATO微粒子の分散は安定し、その際の分散粒子径は200nm以下とすることができる。   If the ATO fine particles having the above average primary particle diameter, tap density and specific surface area are dispersed in a solvent to produce the dispersion for forming the solar shielding body, the dispersion of the ATO fine particles becomes stable, and the dispersion at that time The particle diameter can be 200 nm or less.

本発明に係るATO微粒子の粉体色は、国際照明委員会(CIE)が推奨しているL表色系にて評価した粉体色において、Lが40〜65であり、aが−5〜−1であり、bが−11〜−1であることが好ましい。粉体色が上述した範囲内にあると、所望の日射遮蔽効果が得られるからである。 The powder color of the ATO fine particles according to the present invention is such that L * is 40 to 65 in the powder color evaluated by the L * a * b * color system recommended by the International Commission on Illumination (CIE). , A * is preferably -5 to -1, and b * is preferably -11 to -1. This is because if the powder color is within the above-described range, a desired solar radiation shielding effect can be obtained.

本発明に係るATO微粒子の結晶子径は、4〜125nmであることが好ましい。さらに好ましくは5〜80nm、より好ましくは6〜60nmである。結晶子径が4nm以上、125nm以下であれば、本発明に係る日射遮蔽体形成用分散液において所望する日射遮蔽効果が得られ好ましい。   The crystallite diameter of the ATO fine particles according to the present invention is preferably 4 to 125 nm. More preferably, it is 5-80 nm, More preferably, it is 6-60 nm. If the crystallite diameter is 4 nm or more and 125 nm or less, the desired solar radiation shielding effect is obtained in the solar radiation shielding body-forming dispersion according to the present invention.

本発明に係るATO微粒子において、結晶子径が日射遮蔽機能におよぼす影響に関しては、比表面積が大きくなる程、結晶子径が小さくなっていることから、比表面積と結晶子径との間には負の相関があることが判る。ここで、詳細は不明であるが、結晶子径も比表面積と同様に日射遮蔽機能へ影響をおよぼし、日射遮蔽機能に対して結晶子径の最適範囲があることが推察される。   In the ATO fine particles according to the present invention, regarding the influence of the crystallite diameter on the solar radiation shielding function, the larger the specific surface area, the smaller the crystallite diameter. It can be seen that there is a negative correlation. Here, although details are unknown, it is presumed that the crystallite diameter has an influence on the solar radiation shielding function similarly to the specific surface area, and there is an optimum range of the crystallite diameter with respect to the solar radiation shielding function.

そして、本発明に係るATO微粒子を溶媒中に分散して、本発明に係る日射遮蔽体形成用分散液としたときの分散粒子径が200nm以下となるように、分散状態を調整した日射遮蔽体形成用分散液を用いて日射遮蔽体を形成することが望ましい。分散粒子径が200nm以下であればヘイズ値を抑制出来るし、所望の日射遮蔽効果が得られる。
ここで、分散粒子径とは、溶媒中に分散しているATO微粒子の凝集粒子径を意味するものであり、市販されている種々の粒度分布計で測定することができる。例えば、ATO微粒子が溶媒中に分散された分散液からサンプリングを行い、動的光散乱法を原理とした大塚電子(株)製のESL−800を用いて測定することができる。
And the solar shielding body which adjusted the dispersion state so that the dispersion particle diameter when dispersing the ATO microparticles | fine-particles which concern on this invention in a solvent, and setting it as the dispersion liquid for solar radiation shielding formation concerning this invention will be 200 nm or less. It is desirable to form a solar shield using a forming dispersion. If the dispersed particle diameter is 200 nm or less, the haze value can be suppressed, and a desired solar radiation shielding effect can be obtained.
Here, the dispersed particle diameter means the aggregate particle diameter of the ATO fine particles dispersed in the solvent, and can be measured by various commercially available particle size distribution meters. For example, sampling can be performed from a dispersion in which ATO fine particles are dispersed in a solvent, and measurement can be performed using ESL-800 manufactured by Otsuka Electronics Co., Ltd. based on the principle of dynamic light scattering.

本発明に係るATO微粒子の製造方法の一例を、以下に説明する。
まず、液温50℃以下とした錫化合物の溶液へ、アンチモン化合物を溶解したアルコール溶液とアルカリ溶液とを並行滴下、もしくは50℃以下のアルカリ溶液に、錫化合物の溶液とアンチモン化合物を溶解したアルコール溶液とを並行滴下して錫とアンチモンとを含む微粒子前駆体である水酸化物を、生成沈殿させる。なお、当該錫化合物の溶液へ予めHClを添加しても良い。溶液温度が50℃以下であれば、溶媒である水の蒸発などによって系内の錫化合物やアンチモン化合物の濃度が変化することがないため、得られる前記微粒子前駆体の粒径などの再現性が得られやすい。さらに、溶液温度が50℃以下であれば、前記微粒子前駆体の成長が抑制され、ATO微粒子において所望の光学特性が得られるからである。一方、溶液温度の下限は特に限定されないが、例えば、室温より低くするためには新たに冷却装置などが必要となり、装置コストや生産コストが発生することから、そのような装置を要しない温度とすることが好ましい。
An example of the method for producing ATO fine particles according to the present invention will be described below.
First, an alcohol solution in which an antimony compound is dissolved and an alkali solution are dropped in parallel to a tin compound solution having a liquid temperature of 50 ° C. or lower, or an alcohol in which a tin compound solution and an antimony compound are dissolved in an alkali solution at 50 ° C. or lower. The solution is dropped in parallel to form and precipitate a hydroxide, which is a fine particle precursor containing tin and antimony. Note that HCl may be added to the tin compound solution in advance. If the solution temperature is 50 ° C. or lower, the concentration of tin compound and antimony compound in the system will not change due to evaporation of water as a solvent, etc. Easy to obtain. Furthermore, if the solution temperature is 50 ° C. or lower, the growth of the fine particle precursor is suppressed, and desired optical characteristics can be obtained in the ATO fine particles. On the other hand, the lower limit of the solution temperature is not particularly limited, but for example, a cooling device or the like is newly required to lower the temperature below room temperature, and device costs and production costs are generated. It is preferable to do.

上述した錫化合物溶液へのアンチモン化合物添加量は、所望とする光学特性の観点から、酸化錫に対して元素換算で1〜20質量%とするのが好ましく、さらに好ましくは3〜15質量%である。尚、用いる錫化合物やアンチモン化合物は、特に限定されるものではなく、例えば塩化錫、硝酸錫、硫化錫、塩化アンチモン、臭化アンチモンなどが挙げられる。上記沈殿剤として用いるアルカリ溶液としては、炭酸水素アンモンニウム、アンモニア水、水酸化ナトリウム、水酸化カリウムなどの各水溶液が挙げられるが、特に炭酸水素アンモニウムやアンモニア水が好ましい。そして、当該アルカリ溶液のアルカリ濃度は、錫化合物とアンチモン化合物が水酸化物となるのに必要な化学当量以上であれば良く、より好ましくは当量〜当量の3倍とすることが良い。前記アルコール溶液とアルカリ溶液、もしくは前記アルコール溶液と錫化合物の溶液との並行滴下時間は、沈殿する水酸化物の粒子径と生産性との観点から、0.5分間以上であって、60分間以下、好ましくは30分間以下とすることが望ましい。滴下終了後も系内の均一化を図るために、水溶液の攪拌を継続して行うが、そのときの水溶液の温度は、並行滴下の際の温度と同温とし、50℃以下とすることが好ましい。攪拌の継続時間は特に限定されないが、生産性の観点から0.5分間以上であって、30分間以下、好ましくは15分間以下が良い。   The amount of antimony compound added to the above-described tin compound solution is preferably 1 to 20% by mass, more preferably 3 to 15% by mass in terms of element with respect to tin oxide, from the viewpoint of desired optical properties. is there. In addition, the tin compound and antimony compound to be used are not particularly limited, and examples thereof include tin chloride, tin nitrate, tin sulfide, antimony chloride, and antimony bromide. Examples of the alkaline solution used as the precipitating agent include aqueous solutions of ammonium hydrogen carbonate, ammonia water, sodium hydroxide, potassium hydroxide, and the like, and ammonium hydrogen carbonate and ammonia water are particularly preferable. And the alkali concentration of the said alkali solution should just be more than the chemical equivalent required for a tin compound and an antimony compound to become a hydroxide, More preferably, it is good to set it as 3 times the equivalent-equivalent. The parallel dropping time of the alcohol solution and the alkali solution or the alcohol solution and the tin compound solution is 0.5 minutes or more from the viewpoint of the particle size and productivity of the precipitated hydroxide, and is 60 minutes. In the following, it is desirable to set it for 30 minutes or less. In order to make the system uniform after completion of the dropping, the aqueous solution is continuously stirred, and the temperature of the aqueous solution at that time should be the same as the temperature at the time of the parallel dropping, and should be 50 ° C. or less. preferable. The duration of stirring is not particularly limited, but it is 0.5 minutes or more from the viewpoint of productivity, and 30 minutes or less, preferably 15 minutes or less.

次に、前記沈殿物へデカンテーションを繰り返し行い、当該デカンテーションにおける洗浄液の上澄み液の導電率が1mS/cm以下となるまで十分洗浄し、濾過する。当該沈殿物中に残留する塩素イオン、硫酸イオンなどの不純物が1.5質量%を超えると、焼成工程において酸化錫に対するアンチモンの固溶が阻害され、所望とする光学特性を発揮しないため、当該デカンテーションにおける洗浄液の上澄み液の導電率が1mS/cm以下となるまで十分洗浄、濾過することが好ましい。当該上澄み液の導電率が1mS/cm以下であれば、当該沈殿物中に残留する不純物量を1.5質量%以下とすることができる。   Next, decantation is repeatedly performed on the precipitate, and the precipitate is sufficiently washed until the electrical conductivity of the supernatant of the washing solution in the decantation is 1 mS / cm or less, and filtered. When impurities such as chloride ions and sulfate ions remaining in the precipitate exceed 1.5% by mass, the solid solution of antimony with respect to tin oxide is inhibited in the firing step, and the desired optical characteristics are not exhibited. It is preferable to sufficiently wash and filter until the conductivity of the supernatant of the cleaning liquid in decantation is 1 mS / cm or less. If the electrical conductivity of the supernatant is 1 mS / cm or less, the amount of impurities remaining in the precipitate can be 1.5% by mass or less.

前記洗浄された沈殿物をアルコール溶液で湿潤処理して湿潤処理物とし、その後焼成する前に、必要に応じてSi、Al、Zr、Tiから選択された1種以上の元素を酸化物換算で15質量%未満含有させたアルコール溶液に浸漬処理した後、乾燥を施してもよい。当該処理を行うことでSi、Al、Zr、Tiから選択された1種以上の元素がATO微粒子の近傍に独立して存在することとなり、ATO微粒子の焼成の際に粒成長を抑制する。一方、これらの元素の酸化物換算での含有量が、15質量%未満であれば、ATO微粒子の日射遮蔽特性が担保され好ましい。
上述した湿潤処理を行うとき、アルコール溶液の濃度は50%以上であることが好ましい。アルコール溶液の濃度が50%以上であれば、ATO微粒子が塊状の強凝集体となることを回避できるからである。ここで、当該アルコール溶液に用いられるアルコールは特に限定されないが、水に対する溶解性に優れ、沸点100℃以下のアルコールが好ましい。例えば、メタノール、エタノール、プロパノール、tert−ブチルアルコールが挙げられる。
The washed precipitate is wet-treated with an alcohol solution to obtain a wet-treated product, and then calcined, if necessary, one or more elements selected from Si, Al, Zr, and Ti are converted into oxides. You may dry, after immersing in the alcohol solution made to contain less than 15 mass%. By performing the treatment, one or more elements selected from Si, Al, Zr, and Ti exist independently in the vicinity of the ATO fine particles, and the grain growth is suppressed during the firing of the ATO fine particles. On the other hand, if the content of these elements in terms of oxides is less than 15% by mass, the solar shielding properties of the ATO fine particles are ensured, which is preferable.
When the above-described wet treatment is performed, the concentration of the alcohol solution is preferably 50% or more. This is because if the concentration of the alcohol solution is 50% or more, the ATO fine particles can be prevented from becoming a massive strong aggregate. Here, the alcohol used in the alcohol solution is not particularly limited, but is preferably an alcohol having excellent solubility in water and having a boiling point of 100 ° C. or lower. Examples include methanol, ethanol, propanol, and tert-butyl alcohol.

上述した湿潤処理は、濾過洗浄された沈殿物をアルコール溶液中へ投入して攪拌すればよく、このときの時間や攪拌速度は処理量に応じて適宜選択すればよい。沈殿物をアルコール溶液中に投入する際のアルコール溶液量は、沈殿物を容易に攪拌できる流動性を確保できる液量があれば良い。攪拌時間や攪拌速度は、濾過洗浄時に一部凝集した部分を含む沈殿物がアルコール溶液中において、凝集部が無くなるまで均一に混合されることを条件に適宜選択される。また、湿潤処理の温度は通常室温下で行えば良いが、必要に応じて、アルコ−ルが蒸発して失われない程度に加温しながら行うことも勿論可能である。好ましくは、アルコールの沸点以下の温度で加熱することがよい。アルコールの沸点以下の温度で加熱すると、湿潤処理中にアルコールが蒸発して失われる事態が回避され、湿潤処理の効果が担保されることで、当該湿潤処理物が強凝集体となる事態を回避出来るからである。   In the above-described wet treatment, the filtered and washed precipitate may be put into an alcohol solution and stirred, and the time and stirring speed at this time may be appropriately selected according to the amount of treatment. The amount of the alcohol solution at the time when the precipitate is put into the alcohol solution may be a liquid amount that can ensure fluidity that can easily stir the precipitate. The stirring time and the stirring speed are appropriately selected on the condition that a precipitate containing a part that has been partially aggregated during filtration and washing is uniformly mixed in the alcohol solution until there is no aggregated part. In addition, the temperature of the wet treatment may be usually performed at room temperature, but it is of course possible to carry out the heating while heating to the extent that the alcohol is not lost by evaporation. Preferably, the heating is performed at a temperature below the boiling point of the alcohol. When heated at a temperature below the boiling point of the alcohol, the situation where the alcohol is evaporated and lost during the wet process is avoided, and the effect of the wet process is ensured, thereby avoiding the situation where the wet processed product becomes a strong aggregate. Because you can.

上述した湿潤処理後、湿潤処理物をアルコールに湿潤した状態のまま加熱乾燥する。当該湿潤処理物の乾燥温度や乾燥時間は特に限定されるものではない。湿潤処理後であれば、当該湿潤処理物の乾燥を行っても強凝集体となることはないので、当該湿潤処理物の処理量や処理装置などの条件に合わせて乾燥温度や乾燥時間を適宜選択することができる。当該乾燥処理により、湿潤処理を受けたATO微粒子前駆体を得ることができる。   After the above-described wet treatment, the wet-treated product is heat-dried while being wet with alcohol. The drying temperature and drying time of the wet processed product are not particularly limited. After the wet treatment, even if the wet processed product is dried, it does not become a strong agglomerate. Therefore, the drying temperature and the drying time are appropriately set according to the processing amount of the wet processed product and the conditions of the processing apparatus. You can choose. By the drying treatment, the ATO fine particle precursor subjected to the wet treatment can be obtained.

当該湿潤処理を受けたATO微粒子前駆体を、大気雰囲気下にて500℃以上1100℃未満に加熱し、30分間〜5時間焼成することで本発明に係るATO微粒子を製造することができる。500℃以上に加熱することで、アンチモンを錫酸化物中へ十分に固溶させることができる。一方、1100℃を超えずに加熱することで、ATO微粒子の粒径の粗大化を回避でき、後述するように可視光に対して透明性が高い日射遮蔽体を得ることができる。   The ATO fine particles precursor subjected to the wet treatment can be heated to 500 ° C. or higher and lower than 1100 ° C. in an air atmosphere and baked for 30 minutes to 5 hours to produce the ATO fine particles according to the present invention. By heating to 500 ° C. or higher, antimony can be sufficiently dissolved in tin oxide. On the other hand, by heating without exceeding 1100 ° C., coarsening of the particle diameter of the ATO fine particles can be avoided, and a solar radiation shielding body having high transparency to visible light can be obtained as described later.

製造されたATO微粒子は、可視光領域での光の吸収が殆どなく、波長1000nm以上の領域ではプラズモン共鳴に由来する吸収が大きく、近赤外線領域から長波長側に向かうにしたがって透過率は減少していく。   The manufactured ATO fine particles have almost no light absorption in the visible light region, and the absorption derived from plasmon resonance is large in the wavelength region of 1000 nm or more, and the transmittance decreases from the near infrared region toward the longer wavelength side. To go.

この結果、本発明に係る六ホウ化物微粒子とATO微粒子とを併せて使用することで、高い可視光透過率を維持したまま、近赤外線領域の太陽光線を効率よく遮蔽することが可能であり、六ホウ化物微粒子とATO微粒子とをそれぞれ単独で使用するよりも日射遮蔽特性が向上する。   As a result, by using the hexaboride fine particles and ATO fine particles according to the present invention in combination, it is possible to efficiently shield sunlight in the near infrared region while maintaining high visible light transmittance. The solar shading characteristics are improved as compared with the case where hexaboride fine particles and ATO fine particles are used alone.

上述したように、本発明に用いるATO微粒子の平均一次粒子径は200nm以下、さらに好ましくは100nm以下であることが好ましい。平均一次粒子径が200nmよりも小さい微粒子、もしくは凝集して粗大粒子化しておらず分散粒子径が200nm以下であれば光散乱源とならず、曇り(ヘイズ)を発生させず、可視光透過率を担保できる。   As described above, the average primary particle diameter of the ATO fine particles used in the present invention is preferably 200 nm or less, more preferably 100 nm or less. Fine particles having an average primary particle size smaller than 200 nm, or aggregated and not coarse particles, and if the dispersed particle size is 200 nm or less, it does not become a light scattering source, does not generate haze, and has a visible light transmittance. Can be secured.

c)日射遮蔽用微粒子
本発明に係る日射遮蔽体形成用分散液は、日射遮蔽用微粒子と分散剤とを溶媒中に分散させたものである。そして、当該分散液中の、前記六ホウ化物微粒子の含有量を0.01質量%以上3.0質量%以下とし、前記ATO微粒子の含有量を10.0質量%以上30.0質量%以下としたものである。各微粒子の含有量が前記範囲にあることで、十分な日射遮蔽効果を得ることが出来、分散液の粘度が保たれ、当該分散液のポットライフが担保される。
また、六ホウ化物微粒子とATO微粒子との混合は、光学特性とコスト削減との観点から、質量比で0.1:99.9〜13.8:86.2の範囲が好ましい。
c) Solar shading fine particles The dispersion for forming a solar shading body according to the present invention is obtained by dispersing solar shading fine particles and a dispersant in a solvent. The content of the hexaboride fine particles in the dispersion is 0.01% by mass to 3.0% by mass, and the content of the ATO fine particles is 10.0% by mass to 30.0% by mass. It is what. When the content of each fine particle is within the above range, a sufficient solar radiation shielding effect can be obtained, the viscosity of the dispersion liquid is maintained, and the pot life of the dispersion liquid is ensured.
Further, the mixing of the hexaboride fine particles and the ATO fine particles is preferably in the range of 0.1: 99.9 to 13.8: 86.2 in terms of mass ratio from the viewpoint of optical characteristics and cost reduction.

以上、説明した六ホウ化物微粒子とATO微粒子とを用いて、本発明に係る日射遮蔽体形成用分散液を作製することによって、当該日射遮蔽体形成用分散液は分散性に優れ、ヘイズが低いものとなる。そして、当該日射遮蔽体形成用分散液を用いることにより、赤外域や近赤外域の遮蔽性能に優れ、かつ、可視光線領域での光透過性も高い日射遮蔽体を得ることができる。   As described above, by using the hexaboride fine particles and ATO fine particles described above to produce the solar shield-forming dispersion according to the present invention, the solar shield-forming dispersion has excellent dispersibility and low haze. It will be a thing. By using the dispersion for forming a sunscreen, it is possible to obtain a sunscreen that has excellent shielding performance in the infrared region and near-infrared region and has high light transmittance in the visible light region.

(2)分散剤
本発明に係る日射遮蔽体形成用分散液は、日射遮蔽用微粒子である前記ATO微粒子と六ホウ化物微粒子と分散剤とが溶媒中に分散したものである。
当該分散剤は、アミン価を有し、かつ酸価が19mgKOH/g以下である分散剤を含有していることが必要である。当該アミン価を有し、かつ酸価が19mgKOH/g以下である分散剤は、上述した固相反応法等により得られた粒径が0.1μm以上30μm以下程度の範囲にあるATO微粒子と六ホウ化物粒子とを、日射遮蔽材用途に適した200nm以下の粒子径に微細化し、且つ、その再凝集を抑制するように、粉砕分散するために添加するものである。
(2) Dispersant The dispersion for forming a sunscreen according to the present invention is a dispersion of the ATO fine particles, hexaboride fine particles, and a dispersant, which are sunscreen fine particles, in a solvent.
The dispersant needs to contain a dispersant having an amine value and an acid value of 19 mgKOH / g or less. The dispersant having the amine value and an acid value of 19 mgKOH / g or less is composed of an ATO fine particle having a particle size obtained by the above-described solid-phase reaction method or the like in the range of about 0.1 μm to 30 μm. The boride particles are added to pulverize and disperse the particles so as to be refined to a particle diameter of 200 nm or less suitable for use as a solar shading material and to suppress reaggregation.

これは、六ホウ化物粒子を媒体攪拌ミルによって粉砕する際、例えば溶媒として無極性溶媒であるトルエンを用い、六ホウ化物粒子の平均一次粒子径を70nm以下の微粒子にしようとしても、当該六ホウ化物微粒子が再凝集することでスラリーがゲル化し、六ホウ化物粒子の粉砕処理が出来なくなることを本発明者らが知見したことによる。   This is because, when pulverizing hexaboride particles with a medium stirring mill, for example, toluene, which is a nonpolar solvent, is used, and even if an average primary particle diameter of hexaboride particles is made to be fine particles having a diameter of 70 nm or less, This is because the inventors of the present invention have found that the slurry fine particles are re-agglomerated to gel the slurry and the hexaboride particles cannot be pulverized.

当該六ホウ化物微粒子の再凝集とスラリーのゲル化とを回避するため、本発明者らは研究を行った。そして、六ホウ化物粒子と、沸点が60℃以上、140℃以下の範囲にあるアルコールとを混合してスラリーとし、当該スラリーへ、アミン価を有し、かつ酸価が19mgKOH/g以下である分散剤を添加した後に、六ホウ化物粒子の粉砕処理をすることにより、ATO微粒子と六ホウ化物微粒子との媒体攪拌ミル等による粉砕分散が効率的に進行し、かつ得られた分散液は、好適な液状を有する日射遮蔽体形成用分散液となることを知見したことによる。
以上、説明した本発明に係るATO微粒子と六ホウ化物微粒子とを併せた日射遮蔽用微粒子と、前記分散剤とを溶媒中に分散させた日射遮蔽体形成用分散液を用いて日射遮蔽体を形成すると、得られた日射遮蔽体の耐湿熱特性が向上することができる。
In order to avoid reaggregation of the hexaboride fine particles and gelation of the slurry, the present inventors conducted research. Then, hexaboride particles and an alcohol having a boiling point in the range of 60 ° C. or higher and 140 ° C. or lower are mixed to form a slurry, and the slurry has an amine value and an acid value of 19 mgKOH / g or less. After adding the dispersant, the pulverization treatment of the hexaboride particles is performed so that the pulverization and dispersion of the ATO fine particles and the hexaboride fine particles by a medium stirring mill or the like proceeds efficiently, and the obtained dispersion is It is because it discovered that it became the dispersion liquid for solar radiation shielding body which has a suitable liquid state.
As described above, a solar shading body is formed by using a solar shading fine particle in which the ATO fine particles and hexaboride fine particles according to the present invention described above are combined, and the dispersion for dispersing the sunscreen in the solvent. When formed, the heat-and-moisture resistance characteristics of the solar radiation shield obtained can be improved.

上述した、本発明に係る分散剤についてさらに説明する。
本発明に係る分散剤は、上述したようアミン価を有し、かつ酸価が19mgKOH/g以下である分散剤を含有していることが必要である。ここで、アミン価については、アミン価を有していればよく、特に限定されるものではないが、5〜100mgKOH/gであることが好ましく、5〜30mgKOH/gであることがさらに好ましい。
一方、酸価は19mgKOH/g以下であることが求められる。これは、酸価が19mgKOH/g以下であることにより、詳細は不明であるが、得られる日射遮蔽体の耐湿熱特性が向上することが見出されている。
The above-described dispersant according to the present invention will be further described.
As described above, the dispersant according to the present invention needs to contain a dispersant having an amine value and an acid value of 19 mgKOH / g or less. Here, the amine value is not particularly limited as long as it has an amine value, but is preferably 5 to 100 mgKOH / g, and more preferably 5 to 30 mgKOH / g.
On the other hand, the acid value is required to be 19 mgKOH / g or less. Although the details are unknown because the acid value is 19 mgKOH / g or less, it has been found that the heat-and-moisture resistance characteristics of the solar radiation shield obtained are improved.

本発明に適用出来る、アミン価を有し、かつ酸価が19mgKOH/g以下である分散剤として市販品を用いるのであれば、DISPERBYK−161、DISPERBYK−162、DISPERBYK−163、DISPERBYK−164、DISPERBYK−170、DISPERBYK−182、DISPERBYK−184、DISPERBYK−2155(ビックケミー・ジャパン社製)等のアミノ基を有する分散剤、SOLSPERSE製品群である11200、13940、20000、32000、33000、39000、71000(日本ルーブリゾール社製)等のアミノ基を有する分散剤、アジスパーPB821、アジスパーPB822、アジスパーPB824(味の素ファインテクノ社製)等のアミノ基を有する分散剤を、好ましい例として挙げることができる。   If a commercially available product is used as a dispersant having an amine value and an acid value of 19 mgKOH / g or less that can be applied to the present invention, DISPERBYK-161, DISPERBYK-162, DISPERBYK-163, DISPERBYK-164, DISPERBYK. -170, DISPERBYK-182, DISPERBYK-184, DISPERBYK-2155 (manufactured by Big Chemie Japan Co., Ltd.) An amino group such as a dispersant having an amino group such as Alusper PB821, Azisper PB822, Azisper PB824 (Ajinomoto Fine Techno Co., Ltd.) The dispersing agent, and the like are preferable.

(3)溶媒
本発明に係る日射遮蔽体形成用分散液に用いられる溶媒は、特に限定されるものではないが、塗布条件、塗布環境、および、無機バインダーや樹脂バインダーの添加の有無に合わせて適宜選択すればよい。
例えば、水やエタノール、プロパノール、ブタノール、イソプロピルアルコール、イソブチルアルコール、ジアセトンアルコールなどのアルコール類、メチルエーテル,エチルエーテル、プロピルエーテルなどのエーテル類、エステル類、アセトン、メチルエチルケトン、ジエチルケトン、シクロヘキサノン、イソブチルケトンなどのケトン類といった各種の有機溶媒が使用可能である。また、必要に応じて酸やアルカリを添加してpH調整してもよい。
(3) Solvent The solvent used in the dispersion for forming a sunscreen according to the present invention is not particularly limited, but according to coating conditions, coating environment, and whether or not an inorganic binder or resin binder is added. What is necessary is just to select suitably.
For example, water, ethanol, propanol, butanol, isopropyl alcohol, isobutyl alcohol, diacetone alcohol and other alcohols, ethers such as methyl ether, ethyl ether, propyl ether, esters, acetone, methyl ethyl ketone, diethyl ketone, cyclohexanone, isobutyl Various organic solvents such as ketones such as ketones can be used. Moreover, you may adjust pH by adding an acid and an alkali as needed.

(4)バインダー
無機バインダーとしては、珪素、ジルコニウム、チタン、もしくはアルミニウムの金属アルコキシドおよびその加水分解重合物を用いることができる。また、樹脂バインダーとしては、アクリル樹脂等の熱可塑性樹脂、エポキシ樹脂等の熱硬化性樹脂、紫外線硬化性樹脂、電子線硬化性樹脂等の樹脂を含むものを用いることが可能である。
(4) Binder As the inorganic binder, a metal alkoxide of silicon, zirconium, titanium, or aluminum and a hydrolysis polymer thereof can be used. Moreover, as a resin binder, it is possible to use what contains resins, such as thermoplastic resins, such as an acrylic resin, thermosetting resins, such as an epoxy resin, ultraviolet curable resin, and electron beam curable resin.

(5)その他添加物
本発明に係る日射遮蔽体形成用分散液には、日射遮蔽用微粒子と分散剤と溶媒に加えて、さらに、ZrO、TiO、Si、SiC、SiO、Al、Y、ZnO、CeO、Fe(OH)、FeOOHから選択される、少なくとも1種以上の化合物の微粒子を添加することも好ましい。
(5) Other Additives In addition to the solar shielding fine particles, the dispersant and the solvent, the dispersion for forming the solar shielding body according to the present invention further includes ZrO 2 , TiO 2 , Si 3 N 4 , SiC, SiO 2. It is also preferable to add fine particles of at least one compound selected from Al 2 O 3 , Y 2 O 3 , ZnO, CeO 2 , Fe (OH) 3 , and FeOOH.

(6)日射遮蔽体形成用分散液
上述した六ホウ化物微粒子とATO微粒子と分散剤とを、所定の溶媒と混合し、当該溶媒中へ均一に分散させることで、本発明に係る日射遮蔽体形成用分散液が得られる。
当該分散方法は、六ホウ化物微粒子とATO微粒子と分散剤とが、分散液中に均一に分散する方法であれば特に限定されず、例えば、ビーズミル、ボールミル、サンドミル、ペイントシェーカー、超音波ホモジナイザーなどを用いた分散処理が挙げられる。これらの分散処理器材を用いた分散処理条件によって、微粒子の溶媒中への分散と同時に粒子同士の衝突等による微粒子化も進行し(すなわち、粉砕・分散処理され)、より微粒子化して分散させることができる。
(6) Dispersion for forming solar shielding body The above-described hexaboride microparticles, ATO microparticles, and a dispersing agent are mixed with a predetermined solvent and uniformly dispersed in the solvent, so that the solar shielding body according to the present invention is used. A forming dispersion is obtained.
The dispersion method is not particularly limited as long as the hexaboride fine particles, the ATO fine particles, and the dispersant are uniformly dispersed in the dispersion. For example, a bead mill, a ball mill, a sand mill, a paint shaker, an ultrasonic homogenizer, and the like. And distributed processing using. Depending on the dispersion treatment conditions using these dispersion treatment equipment, the fine particles are also dispersed by the collision of the particles at the same time as the dispersion of the fine particles in the solvent (that is, pulverized / dispersed), and the finer particles are dispersed. Can do.

なお、(4)で説明したバインダーや(5)で説明したその他添加物の微粒子を添加するのであれば、日射遮蔽用微粒子と分散剤と溶媒を混合してスラリーとし、当該スラリーに、アミン価を有し、かつ酸価が19mgKOH/g以下である分散剤を添加する時に添加することが好ましい。
本発明に係る日射遮蔽体形成用分散液へ、上述したその他添加物の微粒子を添加することによって、形成される日射遮蔽体の膜強度を高めることができる。尚、上述した化合物の微粒子の添加量としては、[上述したその他添加物の微粒子の質量/本発明に係る日射遮蔽用微粒子の質量]×100の値が、0.1〜250%の範囲に設定されることが好ましい。これは、添加量が0.1%以上であれば、上述したその他添加物の添加効果が認められ、250%以下であれば、日射遮蔽用微粒子の割合が低下して日射遮蔽機能が低下することを回避出来るからである。
If the fine particles of the binder described in (4) and the other additives described in (5) are added, the solar shielding fine particles, the dispersant and the solvent are mixed to form a slurry, and the amine value is added to the slurry. And a dispersant having an acid value of 19 mgKOH / g or less is preferably added.
By adding the fine particles of the above-mentioned other additives to the dispersion for forming a solar shield according to the present invention, the film strength of the solar shield to be formed can be increased. In addition, as the addition amount of the fine particles of the compound described above, the value of [mass of fine particles of other additives described above / mass of fine particles for solar shading according to the present invention] × 100 is in the range of 0.1 to 250%. It is preferably set. If the addition amount is 0.1% or more, the effect of addition of the above-mentioned other additives is recognized. If the addition amount is 250% or less, the ratio of the solar shielding fine particles is reduced and the solar shielding function is lowered. This is because it can be avoided.

また、本発明に係る日射遮蔽体へ紫外線遮蔽機能を付与させる観点から、上述した化合物の中からTiO、ZnO、CeO、等の微粒子、および/または、有機系紫外線吸収剤であるベンゾフェノン、ベンゾトリアゾール、等の1種または2種以上を添加してもよい。 Further, from the viewpoint of imparting an ultraviolet shielding function to the solar radiation shielding body according to the present invention, fine particles such as TiO 2 , ZnO, CeO 2 , and / or benzophenone that is an organic ultraviolet absorber, You may add 1 type, or 2 or more types, such as benzotriazole.

(7)日射遮蔽体
本発明に係る日射遮蔽体は、上述した日射遮蔽体形成用分散液を適宜な基材上に塗布形成する、または、上述した日射遮蔽体形成用分散液を、日射遮蔽体形成用母材に練り込み、板状、シート状、フィルム状、等のいずれかの形状に成形することで得られる。
当該適宜な基材としては、主に透明基材が用いられる。そして当該透明基材としては、透明であれば特に制限はなく、有機系基材、無機系基材のいずれも使用することができる。
例えば、ポリカーボネート樹脂、アクリル系樹脂、ポリエチレン樹脂、ポリエステル系樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリ塩化ビニル樹脂、等の有機系基材、ガラス、等の無機系基材を挙げることができる。また、当該透明基材の形状や製法はどのようなものでもよく、特に限定はない。尚、本発明でいう透明基材とは、無色透明基材のみならず、有色透明基材、半透明基材を含む概念である。
(7) Solar shield The solar shield according to the present invention is formed by applying the above-described dispersion for forming a solar shield on an appropriate base material, or by applying the above-described dispersion for forming a solar shield to solar radiation shielding. It is obtained by kneading into a body-forming base material and molding it into any shape such as a plate, sheet, or film.
As the appropriate base material, a transparent base material is mainly used. The transparent substrate is not particularly limited as long as it is transparent, and either an organic substrate or an inorganic substrate can be used.
Examples thereof include organic base materials such as polycarbonate resin, acrylic resin, polyethylene resin, polyester resin, polypropylene resin, polystyrene resin, and polyvinyl chloride resin, and inorganic base materials such as glass. Moreover, the shape and manufacturing method of the said transparent base material may be whatever, and there is no limitation in particular. In addition, the transparent base material said by this invention is the concept containing not only a colorless and transparent base material but a colored transparent base material and a semi-transparent base material.

以下、本発明に係る日射遮蔽体の製造方法について、(a)日射遮蔽体形成用分散液を適宜な基材上に塗布形成する方法、(b)日射遮蔽体形成用分散液を日射遮蔽体形成用母材に練り込み所定の形状に成形する方法、の順に説明し、さらに(c)本発明に係る日射遮蔽体の耐候性について説明する。   Hereinafter, with respect to the method for producing a solar shading body according to the present invention, (a) a method of applying and forming a solar shading body-forming dispersion liquid on an appropriate substrate, and (b) a solar shading body forming dispersion liquid. The method of kneading into the forming base material and forming it into a predetermined shape will be described in this order, and (c) the weather resistance of the solar shading body according to the present invention will be described.

(a)日射遮蔽体形成用分散液を適宜な基材上に塗布形成する方法
本発明に係る日射遮蔽体形成用分散液を基材上に塗布して被膜を形成する場合、塗布方法は特に限定されない。例えば、スピンコート法、バーコート法、スプレーコート法、ディップコート法、スクリーン印刷法、ロールコート法、流し塗りなど、分散液を平坦かつ薄く均一に塗布できる方法であればいずれの方法でもよい。
(A) Method of applying and forming a dispersion for forming a sunscreen on an appropriate substrate When forming a film by applying a dispersion for forming a sunscreen according to the present invention on a substrate, the coating method is particularly It is not limited. For example, any method may be used as long as the dispersion can be applied flatly and thinly and uniformly, such as spin coating, bar coating, spray coating, dip coating, screen printing, roll coating, and flow coating.

本発明に係る日射遮蔽体へ可視光透過性を求める場合は、前記基材に透明基材を用いることとなる。具体的には、ガラス、樹脂フィルム、樹脂ボード等の透明基材から所望のものを選択することができる。   When the visible light permeability is required for the solar radiation shielding body according to the present invention, a transparent substrate is used as the substrate. Specifically, a desired material can be selected from transparent substrates such as glass, resin film, and resin board.

上述したように、本発明に係る日射遮蔽体形成用分散液へ、無機バインダーや樹脂バインダーを含有させることも好ましい構成である。
尤も、上述した無機バインダーを含む日射遮蔽体形成用分散液を塗布した場合は、塗布後の基材加熱温度を100℃以上、さらに好ましくは分散液中の溶媒の沸点以上として、塗膜中に含まれるアルコキシドまたはその加水分解重合物の重合反応を完結させることが好ましい。また、塗布後の基材加熱温度を100℃以上、さらに好ましくは分散液中の溶媒の沸点以上とすることで塗膜中の水や有機溶媒を膜中から除去し、塗膜の可視光透過率低下の原因を除去することができ好ましい。
As described above, it is also a preferable configuration that an inorganic binder or a resin binder is included in the dispersion for forming a solar shading body according to the present invention.
However, when the above-described dispersion for forming a sunscreen containing an inorganic binder is applied, the substrate heating temperature after application is set to 100 ° C. or higher, more preferably the boiling point of the solvent in the dispersion, or higher in the coating film. It is preferable to complete the polymerization reaction of the alkoxide contained or its hydrolysis polymer. In addition, the substrate heating temperature after coating is set to 100 ° C. or higher, more preferably the boiling point of the solvent in the dispersion liquid, thereby removing water and organic solvent in the coating film from the film, and visible light transmission through the coating film. The cause of the rate reduction can be removed, which is preferable.

また、樹脂バインダーを含む日射遮蔽体形成用分散液を塗布した場合は、含有されている樹脂バインダーに適した硬化方法に従って硬化させればよい。例えば、紫外線硬化樹脂であれば紫外線を適宜照射すればよく、また常温硬化樹脂であれば塗布後そのまま放置しておけばよい。この場合は、現場での、既存の窓ガラスなどへの塗布が可能である。   Moreover, what is necessary is just to harden | cure according to the hardening method suitable for the resin binder contained, when the dispersion liquid for solar radiation shielding body containing a resin binder is apply | coated. For example, if it is an ultraviolet curable resin, it may be irradiated with ultraviolet rays as appropriate, and if it is a room temperature curable resin, it may be left as it is after application. In this case, application to an existing window glass or the like is possible on site.

さらに、基材とこの上に形成された日射遮蔽体の塗膜とで構成された本発明に係る日射遮蔽体は、日射遮蔽用微粒子である六ホウ化物微粒子とATO微粒子とが当該塗膜内に好適に分散している。
このため、本発明に係る日射遮蔽体は、物理成膜法によって得られ膜内を結晶が緻密に埋めているために鏡面状表面をもつ従来の技術に係る酸化物薄膜を有する日射遮蔽体に比べて、可視光領域での反射が少なく、ギラギラした外観を呈することが回避できる。その上、本発明に係る日射遮蔽体は、可視光領域から近赤外光領域にプラズマ周波数をもつため、これに起因するプラズマ反射が近赤外光領域で大きくなり、遮熱効果に優れる。
上記特性に加えて、可視光領域の反射をさらに抑制したい場合には、本発明の日射遮蔽用微粒子が分散された日射遮蔽体の塗膜の上へ、さらにSiOやMgFのような低屈折率の膜を成膜することにより、容易に視感反射率1%以下の多層膜を得ることができる。
Furthermore, the solar radiation shielding body according to the present invention composed of the base material and the solar radiation shielding film formed thereon is composed of hexaboride fine particles and ATO fine particles, which are solar radiation shielding fine particles, in the coating film. Are preferably dispersed.
For this reason, the solar radiation shielding body according to the present invention is a solar radiation shielding body having an oxide thin film according to the prior art having a mirror-like surface because crystals are densely embedded in the film obtained by a physical film formation method. In comparison, the reflection in the visible light region is less, and it can be avoided that it has a glaring appearance. In addition, since the solar radiation shielding body according to the present invention has a plasma frequency from the visible light region to the near infrared light region, the plasma reflection resulting from this increases in the near infrared light region, and is excellent in the heat shielding effect.
In addition to the above characteristics, when it is desired to further suppress the reflection in the visible light region, the coating film of the solar radiation shielding material in which the solar radiation shielding fine particles of the present invention are dispersed is further reduced to a low level such as SiO 2 or MgF 2. By forming a film having a refractive index, a multilayer film having a luminous reflectance of 1% or less can be easily obtained.

(b)日射遮蔽体形成用分散液を日射遮蔽体形成用母材に練り込み所定の形状に成形する方法
本発明に係る日射遮蔽体を製造するために、当該日射遮蔽体の形成用母材である樹脂へ上述した日射遮蔽体形成用分散液を練り込むときは、上述した六ホウ化物微粒子とATO微粒子とが当該母材樹脂中へ均一に分散する方法であれば、公知の方法を適宜選択すればよい。
(B) A method for kneading a dispersion for forming a solar shading body into a base material for forming a solar shading body and forming it into a predetermined shape In order to manufacture the solar shading body according to the present invention, a base material for forming the solar shading body When kneading the above-described dispersion for forming a sunscreen into the resin, any known method can be used as long as the hexaboride fine particles and ATO fine particles are uniformly dispersed in the matrix resin. Just choose.

さらに、上述した練り込みの後、当該母材樹脂の融点付近の温度で溶融混合し、さらにペレット化し、公知の樹脂成形方法、具体的には、射出成形法や、圧縮成形法、押出成形法、等により、板状、シート状、またはフィルム状等、種々の形状に成形することも可能である。当該成形により、所望の形状に成形された日射遮蔽体が得られる。なお、成形条件は各種成形法に応じて適宜所望の形状が得られるような条件が選ばれる。
当該母材樹脂としては、PET樹脂、アクリル樹脂、ポリアミド樹脂、塩化ビニル樹脂、ポリカーボネート樹脂、オレフィン樹脂、エポキシ樹脂、ポリイミド樹脂、フッ素樹脂、等が好ましく挙げられる。
Further, after kneading as described above, the mixture is melt-mixed at a temperature near the melting point of the base resin, and further pelletized to form a known resin molding method, specifically, an injection molding method, a compression molding method, an extrusion molding method. , Etc., it can be formed into various shapes such as a plate shape, a sheet shape, or a film shape. By the said shaping | molding, the solar radiation shielding body shape | molded by the desired shape is obtained. The molding conditions are appropriately selected according to various molding methods so that a desired shape can be obtained.
Preferred examples of the base resin include PET resin, acrylic resin, polyamide resin, vinyl chloride resin, polycarbonate resin, olefin resin, epoxy resin, polyimide resin, and fluororesin.

上述した日射遮蔽体形成用分散液を練り込む方法で成形した樹脂フィルムの膜を、ガラス等に貼り付けられるようにするため、当該樹脂フィルムの一方の面に接着剤層と離型フィルム層とを積層してもよい。その際、当該接着剤中へベンゾフェノン系やトリアゾール系などの有機系紫外線吸収剤や、CeO、TiO、ZnO等の無機系酸化物微粒子を含有させて、紫外線遮蔽機能を付与することも好ましい構成である。 In order to be able to affix the film of the resin film formed by the method of kneading the dispersion for forming the solar shading body described above to glass or the like, an adhesive layer and a release film layer on one surface of the resin film May be laminated. At that time, it is also preferable to add an organic ultraviolet absorber such as benzophenone or triazole to the adhesive and inorganic oxide fine particles such as CeO 2 , TiO 2 , and ZnO to impart an ultraviolet shielding function. It is a configuration.

(c)本発明に係る日射遮蔽体の耐候性
本発明に係る日射遮蔽体形成用分散液を適宜な基材上に塗布形成して得た日射遮蔽体、または、前記日射遮蔽体形成用分散液を日射遮蔽体形成用母材に練り込み、板状、シート状、フィルム状等のいずれかの形状に成形して得た日射遮蔽体の耐候性、特に湿熱特性、即ち、湿熱雰囲気下における耐加水分解性は、当該日射遮蔽体を65℃の温水に2日間浸漬し、浸漬前後における可視光透過率の変化率(本発明において「ΔVLT」と記載する場合がある。)を測定することで評価できる。本発明に係る日射遮蔽体のΔVLTの値は、従来の技術に係る日射遮蔽体のΔVLTの値より小さく、本発明に係る日射遮蔽体形成用分散液を用いて基材上に塗膜形成して得られた日射遮蔽体、および、本発明に係る日射遮蔽体形成用分散液を日射遮蔽体形成用母材に練り込み、板状、シート状、フィルム状等のいずれかの形状に成形して得られた日射遮蔽体は、耐候性、特に耐湿熱特性に優れた日射遮蔽体であることが確認できた(詳細は、後述する実施例、比較例を参照のこと。)。
(C) Weather resistance of the solar shading body according to the present invention The solar shading body obtained by coating and forming the solar shading body forming dispersion according to the present invention on an appropriate substrate, or the solar shading body forming dispersion The liquid is kneaded into a base material for forming a solar shading body, and formed into any shape such as a plate, sheet, film, etc., the weather resistance of the solar shading body, particularly wet heat characteristics, that is, in a moist heat atmosphere The hydrolysis resistance is measured by immersing the sunscreen in warm water at 65 ° C. for 2 days, and measuring the change rate of visible light transmittance before and after the immersion (may be described as “ΔVLT” in the present invention). Can be evaluated. The value of ΔVLT of the solar shading material according to the present invention is smaller than the value of ΔVLT of the solar shading material according to the prior art, and a coating film is formed on the substrate using the solar shading material forming dispersion according to the present invention. The solar shading body obtained in this manner and the solar shading body forming dispersion according to the present invention are kneaded into the solar shading body forming base material and molded into any shape such as a plate, sheet, or film. It was confirmed that the solar shading body obtained in this way was a solar shading body excellent in weather resistance, particularly moisture and heat resistance characteristics (for details, refer to Examples and Comparative Examples described later).

以下、本発明について実施例、比較例を挙げて具体的に説明する。但し、本発明は以下の実施例に限定されるものではない。
(実施例1)
1.ATO微粒子の作製
25℃の水340gにSnCl・5HOを55.74g溶解し、溶液とした。当該溶液へ、SbClを4.2g溶解したメタノール溶液12.7mlと、16%NHOH水溶液とを並行滴下した。当該並行滴下は、当該溶液のpHが7.5となるまで約25分間かけて行った。そして、当該並行滴下により沈殿物を生成させ、滴下終了後さらに10分間攪拌を継続した。
次に、この沈殿物をデカンテーションによって繰り返し洗浄した。当該デカンテーションは、洗浄液の上澄み部分の導電率が1mS/cm以下になるまで、繰り返し行った。当該デカンテーションが完了したら、沈殿物を濾過した。
次に、濾過した沈殿物を無水のエチルアルコール溶液で湿潤処理した。当該湿潤処理の際、濾過した沈殿物:無水のエチルアルコール溶液の質量比を1:4の割合(アルコールの割合が80%相当)とし、濾過した沈殿物と無水のエチルアルコール溶液とを室温下で1時間攪拌することで湿潤処理し前駆体を得た。
当該湿潤処理の完了後に、当該前駆体を90℃で10時間乾燥させ、乾燥物を得た。得られた乾燥物を、大気雰囲気下700℃で1時間焼成して実施例に係るATO微粒子を得た。
当該ATO微粒子のタップ密度は1.39g/cmで、粉体色は、Lが55.0874、aが−3.8119、bが−8.0813で、比表面積は67.1m/gであった。
Hereinafter, the present invention will be specifically described with reference to examples and comparative examples. However, the present invention is not limited to the following examples.
Example 1
1. Preparation of ATO fine particles 55.74 g of SnCl 4 .5H 2 O was dissolved in 340 g of water at 25 ° C. to prepare a solution. To the solution, 12.7 ml of a methanol solution in which 4.2 g of SbCl 3 was dissolved and a 16% NH 4 OH aqueous solution were dropped in parallel. The parallel dropping was performed over about 25 minutes until the pH of the solution reached 7.5. And the precipitate was produced | generated by the said parallel dripping, and stirring was further continued for 10 minutes after completion | finish of dripping.
The precipitate was then washed repeatedly by decantation. The decantation was repeated until the conductivity of the supernatant of the cleaning liquid became 1 mS / cm or less. When the decantation was complete, the precipitate was filtered.
The filtered precipitate was then wet treated with anhydrous ethyl alcohol solution. During the wet treatment, the mass ratio of the filtered precipitate: anhydrous ethyl alcohol solution was set to a ratio of 1: 4 (the alcohol ratio was equivalent to 80%), and the filtered precipitate and the anhydrous ethyl alcohol solution were kept at room temperature. The precursor was obtained by wet treatment by stirring for 1 hour.
After completion of the wet treatment, the precursor was dried at 90 ° C. for 10 hours to obtain a dried product. The obtained dried product was fired at 700 ° C. for 1 hour in an air atmosphere to obtain ATO fine particles according to the example.
The tap density of the ATO fine particles is 1.39 g / cm 3 , the powder color is L * is 55.0874, a * is 3.8119, b * is −8.0813, and the specific surface area is 67.1 m. 2 / g.

2.LaB粒子の作製
平均粒径が約10μmのLa粒子粉と平均粒径が約22μmのBC粒子粉とを、La元素とB元素との原子比が1:6となるよう混合して均一混合物とした。得られた均一混合物を真空雰囲気下(約0.02Pa)、1500℃で3時間焼成して平均粒径約1.5μmのLaB粒子粉を得た。
当該LaB粒子の格子定数は0.4157nmで、粉体色はLが36.3706、aが2.1309で、bが−4.4973であった。
2. Preparation of LaB 6 particles La 2 O 3 particle powder having an average particle diameter of about 10 μm and B 4 C particle powder having an average particle diameter of about 22 μm are set so that the atomic ratio of La element to B element is 1: 6. Mix to make a uniform mixture. The obtained uniform mixture was fired at 1500 ° C. for 3 hours in a vacuum atmosphere (about 0.02 Pa) to obtain LaB 6 particle powder having an average particle size of about 1.5 μm.
The LaB 6 particles had a lattice constant of 0.4157 nm, powder colors of L * of 36.3706, a * of 2.1309, and b * of −4.4973.

尚、以下の各実施例および比較例において測定している微粒子の粉体色(標準光源D65,10°視野)、および、各微粒子が分散された日射遮蔽体形成用分散液を用いて得られた日射遮蔽体の光学特性については、日立製作所(株)製の分光光度計U−4100を用いて測定した。   In addition, the powder color of the fine particles (standard light source D65, 10 ° field of view) measured in each of the following Examples and Comparative Examples, and a solar shield-forming dispersion in which each fine particle is dispersed are obtained. The optical characteristics of the solar radiation shield were measured using a spectrophotometer U-4100 manufactured by Hitachi, Ltd.

3.日射遮蔽体の製造
1)ATO微粒子粉、LaB粒子粉、分散剤、トルエンを混合粉砕処理して得られる分散液(A液)を作製するために、上述した1.で得られた実施例に係るATO微粒子粉20質量%とLaB粒子粉3.5質量%とを準備した。
2)分散剤(アミン価18mgKOH/g、酸価0mgKOH/g:以下アミン価、酸価の単位「mgKOH/g」は省略する。)商品名:DISPERBYK−164(ビックケミ−・ジャパン社製)15質量%を準備した。
3)トルエン61.5質量%を準備した。
4)1)〜3)とを0.3mmφZrOビーズを入れたペイントシェーカーに装填し、6.5時間粉砕・分散処理することによって分散液を調製した(A液)。
A液中のATO微粒子、LaB微粒子の平均一次粒子径は、TEM−EDS解析によって測定した。そしてATO微粒子は25nm、LaB微粒子は80nmとなっていることを確認した。
5)日射遮蔽体形成用分散液aを作製するために、前記A液55.45質量%を準備した。
6)トルエン20.79質量%を準備した。
7)紫外線硬化樹脂23.76質量%を準備した。
8)5)〜7)とを混合し、日射遮蔽体形成用分散液aを調製した。
9)番手No8のバーを用いて、膜厚50μmのPET(ポリエチレンテレフタレート)フィルム上へ、当該日射遮蔽体形成用分散液aを塗布した後、70℃で1分間の条件で高圧水銀ランプの紫外線を照射し、実施例1に係る日射遮蔽体Aを得た。
3. Manufacture of solar radiation shield 1) In order to prepare dispersion liquid (A liquid) obtained by mixing and grinding ATO fine particle powder, LaB 6 particle powder, dispersant, and toluene, the above-mentioned 1. ATO fine particle powder 20% by mass and LaB 6 particle powder 3.5% by mass according to the example obtained in the above were prepared.
2) Dispersant (amine value 18 mgKOH / g, acid value 0 mgKOH / g: hereinafter, amine value, acid value unit “mgKOH / g” is omitted.) Product name: DISPERBYK-164 (manufactured by BYK-Chemie Japan) 15 A mass% was prepared.
3) 61.5% by mass of toluene was prepared.
4) 1) to 3) were loaded into a paint shaker containing 0.3 mmφZrO 2 beads, and the mixture was pulverized and dispersed for 6.5 hours to prepare a dispersion (solution A).
The average primary particle diameter of ATO fine particles and LaB 6 fine particles in the liquid A was measured by TEM-EDS analysis. It was confirmed that the ATO fine particles were 25 nm and the LaB 6 fine particles were 80 nm.
5) In order to prepare the dispersion liquid a for forming a solar shading body, 55.45% by mass of the liquid A was prepared.
6) 20.79% by mass of toluene was prepared.
7) 23.76 mass% of ultraviolet curable resin was prepared.
8) 5) to 7) were mixed to prepare a dispersion a for forming a sunscreen.
9) After applying the solar shield-forming dispersion a onto a PET (polyethylene terephthalate) film having a film thickness of 50 μm using a No. 8 bar, the ultraviolet rays of a high-pressure mercury lamp are used at 70 ° C. for 1 minute. The solar shading body A according to Example 1 was obtained.

4.日射遮蔽体の特性測定
実施例1に係る日射遮蔽体Aの光学特性を、日立製作所(株)製の分光光度計U−4100を用いて測定した。すると、可視光透過率68.1%、日射透過率44.2%、ヘイズ1.0%であった。
次に、得られた実施例1に係る日射遮蔽体の加速劣化試験として、当該日射遮蔽体を65℃の温水に2日間浸漬し、浸漬前後におけるΔVLTを測定した。当該加速劣化試験の結果、ΔVLTは5.1%であった。
以上の結果を、表1に記載した。
4). Measurement of characteristics of solar shield The optical characteristics of the solar shield A according to Example 1 were measured using a spectrophotometer U-4100 manufactured by Hitachi, Ltd. The visible light transmittance was 68.1%, the solar radiation transmittance was 44.2%, and the haze was 1.0%.
Next, as an accelerated deterioration test of the solar radiation shielding body according to Example 1, the solar radiation shielding body was immersed in 65 ° C. hot water for 2 days, and ΔVLT before and after immersion was measured. As a result of the accelerated deterioration test, ΔVLT was 5.1%.
The above results are shown in Table 1.

(実施例2)
実施例1に係るアミン価18、酸価0の分散剤に代えて、アミン価29、酸価19の分散剤、商品名(DISPERBYK−2001、ビックケミ−・ジャパン社製)を用いた以外は実施例1と同様の操作を行って、実施例2に係る日射遮蔽体Bを得た。
実施例2に係る日射遮蔽体Bの光学特性測定、加速劣化試験を実施した。
以上の結果を、表1に記載した。
(Example 2)
Instead of the dispersant having an amine value of 18 and an acid value of 0 according to Example 1, a dispersant having an amine value of 29 and an acid value of 19 and a trade name (DISPERBYK-2001, manufactured by Big Chemi Japan Co., Ltd.) were used. The same operation as in Example 1 was performed to obtain a solar radiation shield B according to Example 2.
The optical characteristic measurement and the accelerated deterioration test of the solar radiation shielding body B according to Example 2 were performed.
The above results are shown in Table 1.

(実施例3)
実施例1に係るアミン価18、酸価0の分散剤に代えて、アミン価10、酸価0の分散剤、商品名(DISPERBYK−163、ビックケミ−・ジャパン社製)を用いた以外は実施例1と同様の操作を行って、実施例3に係る日射遮蔽体Cを得た。
実施例3に係る日射遮蔽体Cの光学特性測定、加速劣化試験を実施した。
以上の結果を、表1に記載した。
(Example 3)
Instead of the dispersant having an amine value of 18 and an acid value of 0 according to Example 1, a dispersant having an amine value of 10, an acid value of 0 and a trade name (DISPERBYK-163, manufactured by Big Chemi Japan) was used. The same operation as in Example 1 was performed to obtain a solar radiation shield C according to Example 3.
An optical characteristic measurement and an accelerated deterioration test of the solar radiation shielding body C according to Example 3 were performed.
The above results are shown in Table 1.

(実施例4)
実施例1に係るアミン価18、酸価0の分散剤に代えて、アミン価13、酸価0の分散剤、商品名(DISPERBYK−162、ビックケミ−・ジャパン社製)を用いた以外は実施例1と同様の操作を行って、実施例4に係る日射遮蔽体Dを得た。
実施例4に係る日射遮蔽体Dの光学特性測定、加速劣化試験を実施した。
以上の結果を、表1に記載した。
Example 4
Implemented except that the amine value 13, the acid value 0 dispersant, and the trade name (DISPERBYK-162, manufactured by Big Chemi Japan) were used instead of the amine value 18 and acid value 0 dispersant according to Example 1. The same operation as in Example 1 was performed to obtain a solar radiation shield D according to Example 4.
An optical characteristic measurement and an accelerated deterioration test of the solar shading body D according to Example 4 were performed.
The above results are shown in Table 1.

(比較例1)
実施例1に係るアミン価18、酸価0の分散剤に代えて、アミン価44、酸価38の分散剤、商品名(BYK−9076、ビックケミ−・ジャパン社製)を用いた以外は実施例1と同様の操作を行って、比較例1に係る日射遮蔽体Eを得た。
比較例1に係る日射遮蔽体Eの光学特性測定、加速劣化試験を実施した。
以上の結果を、表1に記載した。
(Comparative Example 1)
Implemented except that the dispersant having an amine value of 44 and an acid value of 38 and a trade name (BYK-9076, manufactured by BYK-Chemical Japan Co., Ltd.) were used instead of the dispersant having an amine value of 18 and an acid value of 0 according to Example 1. The same operation as in Example 1 was performed to obtain a solar radiation shield E according to Comparative Example 1.
The optical characteristic measurement and the accelerated deterioration test of the solar radiation shield E according to Comparative Example 1 were performed.
The above results are shown in Table 1.

(比較例2)
実施例1に係るアミン価18、酸価0の分散剤に代えて、アミン価43、酸価46の分散剤、商品名(DISPERBYK−142、ビックケミ−・ジャパン社製)を用いた以外は実施例1と同様の操作を行った。しかし、日射遮蔽体形成用分散液が白濁し、日射遮蔽体の形成に至らなかった。
(Comparative Example 2)
Instead of the dispersant having an amine value of 18 and an acid value of 0 according to Example 1, a dispersant having an amine value of 43, an acid value of 46, and a trade name (DISPERBYK-142, manufactured by Big Chemi Japan) were used. The same operation as in Example 1 was performed. However, the dispersion for forming the solar shading body became cloudy, and the solar shading body was not formed.

(比較例3)
実施例1に係るアミン価18、酸価0の分散剤に代えて、アミン価0、酸価22の分散剤、商品名(DISPERBYK−174、ビックケミ−・ジャパン社製)を用いた以外は実施例1と同様の操作を行った。しかし、フィラ−の凝集による沈降が見られたため、日射遮蔽体の形成に至らなかった。
以上の結果を、表1に記載した。
(Comparative Example 3)
Instead of the dispersant having an amine value of 18 and an acid value of 0 according to Example 1, a dispersant having an amine value of 0 and an acid value of 22 and a trade name (DISPERBYK-174, manufactured by Big Chemi Japan) were used. The same operation as in Example 1 was performed. However, since sedimentation due to the aggregation of the filler was observed, the formation of the solar radiation shield was not achieved.
The above results are shown in Table 1.

Figure 0006413969
Figure 0006413969

(まとめ)
日射遮蔽体B〜Eの光学特性を測定したところ、日射遮蔽体Bは、可視光透過率67.9%、日射透過率44.0%、ヘイズ1.0%、ΔVLTは3.9%であり、日射遮蔽体Cは、可視光透過率68.4%、日射透過率45.2%、ヘイズ1.2%、ΔVLTは4.6%であり、日射遮蔽体Dは、可視光透過率68.1%、日射透過率44.5%、ヘイズ1.0%、ΔVLTは4.8%であり、日射遮蔽体Eは、可視光透過率67.5%、日射透過率43.3%、ヘイズ1.0%、ΔVLTは7.5%であり、比較例2に係る日射遮蔽体形成用分散液が白濁し、日射遮蔽体形成に至らなかった。
(Summary)
When the optical characteristics of the solar shields B to E were measured, the solar shield B had a visible light transmittance of 67.9%, a solar transmittance of 44.0%, a haze of 1.0%, and ΔVLT of 3.9%. Yes, the solar shield C has a visible light transmittance of 68.4%, a solar transmittance of 45.2%, a haze of 1.2%, and ΔVLT of 4.6%, and the solar shield D has a visible light transmittance of 68.1%, solar transmittance 44.5%, haze 1.0%, ΔVLT is 4.8%, and the solar shield E has a visible light transmittance of 67.5% and a solar transmittance of 43.3%. The haze was 1.0% and ΔVLT was 7.5%, and the dispersion for forming a solar shading body according to Comparative Example 2 became cloudy, and the solar shading body was not formed.

以上のように、実施例1〜4の日射遮蔽体A〜Dの日射透過率は46%以下で、ヘイズは1.2%以下となっており、かつΔVLTは5.1%以下であった。一方、比較例1の日射遮蔽体Eの日射透過率とヘイズは、前記実施例と同様であるが、ΔVLTは7%を超えるものであり、本実施例の日射遮蔽体A〜Dに比較し、耐候性(湿熱特性)が劣ることが判明した。この結果は、比較例1で用いた分散剤の酸価が38と大きかったためと考えられる。また、比較例2に係る日射遮蔽体形成用分散液は白濁し、さらに比較例3に係る日射遮蔽体形成用分散液はフィラ−が凝集し、いずれの場合も日射遮蔽体の形成に至らなかった。これは、比較例2では用いた分散剤の酸価が46と大きかったためと考えられる。また、比較例3では用いた分散剤のアミン価が0であり、アミン価を有していなかったためと考えられる。   As described above, the solar radiation transmittances of the solar shields A to D of Examples 1 to 4 were 46% or less, the haze was 1.2% or less, and ΔVLT was 5.1% or less. . On the other hand, the solar radiation transmittance and haze of the solar shield E of Comparative Example 1 are the same as those of the above example, but ΔVLT exceeds 7%, compared with the solar shields A to D of this example. It was found that the weather resistance (wet heat characteristics) was inferior. This result is considered because the acid value of the dispersant used in Comparative Example 1 was as large as 38. Moreover, the dispersion for solar radiation shielding body which concerns on the comparative example 2 becomes cloudy, and also the dispersion liquid for solar radiation shielding body which concerns on the comparative example 3 aggregates a filler, and does not result in formation of a solar radiation shielding body in any case. It was. This is probably because the acid value of the dispersant used in Comparative Example 2 was as large as 46. Further, in Comparative Example 3, it is considered that the amine value of the dispersant used was 0 and did not have an amine value.

Claims (7)

日射遮蔽用微粒子と分散剤とを溶媒中に分散させた日射遮蔽体形成用分散液であって、
前記日射遮蔽用微粒子は、一般式XB(但し、Xは、La、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Y、Sm、Eu、Er、Tm、Yb、Lu、Sr、Caの群から選択される1種以上)で表される六ホウ化物微粒子と、アンチモン含有錫酸化物(ATO微粒子とを含有し、前記六ホウ化物微粒子と前記ATO微粒子との平均一次粒子径は200nm以下であり、 前記日射遮蔽体形成用分散液中の前記六ホウ化物微粒子の含有量は0.01質量%以上3.0質量%以下であり、前記ATO微粒子の含有量は10.0質量%以上30.0質量%以下であり、前記六ホウ化物微粒子と前記ATO微粒子とが質量比で0.1:99.9〜13.8:86.2の範囲で配合され、
前記分散剤は、アミン価が10mgKOH/g以上29mgKOH/g以下であり、かつ、酸価が19mgKOH/g以下である、ことを特徴とする日射遮蔽体形成用分散液。
A dispersion for forming a sunscreen, in which sunscreen particles and a dispersant are dispersed in a solvent,
The solar shading fine particles have the general formula XB 6 (where X is La, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Y, Sm, Eu, Er, Tm, Yb, Lu, Sr, Ca 1 or more selected from the group of the above) and antimony-containing tin oxide ( ATO ) fine particles, and the average primary particle size of the hexaboride fine particles and the ATO fine particles is It is 200 nm or less, the content of the hexaboride fine particles in the dispersion for forming the sunscreen is 0.01% by mass to 3.0% by mass, and the content of the ATO fine particles is 10.0% by mass. % To 30.0% by mass, and the hexaboride fine particles and the ATO fine particles are blended in a mass ratio of 0.1: 99.9 to 13.8: 86.2,
The dispersion for forming a solar shading body, wherein the dispersant has an amine value of 10 mgKOH / g or more and 29 mgKOH / g or less and an acid value of 19 mgKOH / g or less.
前記ATO微粒子はタップ密度が1.85g/cm以下で、比表面積が5〜110m/gであり、かつ、L表色系による粉体色Lが40〜65であり、aが−5〜−1であり、bが−11〜−1であり、
前記六ホウ化物微粒子は、格子定数が0.4100〜0.4160nmであり、L表色系による粉体色Lが30〜60であり、aが−5〜10であり、bが−10〜2である、ことを特徴とする請求項1に記載の日射遮蔽体形成用分散液。
The ATO fine particles have a tap density of 1.85 g / cm 3 or less, a specific surface area of 5 to 110 m 2 / g, and a powder color L * of 40 to 65 according to the L * a * b * color system. Yes, a * is -5 to -1, b * is -11 to -1,
The hexaboride fine particles have a lattice constant of 0.4100 to 0.4160 nm, a powder color L * according to L * a * b * color system of 30 to 60, and a * of −5 to 10. The dispersion for forming a solar radiation shielding body according to claim 1, wherein b * is −10 to 2.
前記日射遮蔽体形成用分散液が、さらに、ZrO、TiO、Si、SiC、SiO、Al、Y、ZnO、CeO、Fe(OH)、FeOOHから選択される少なくとも1種以上の化合物を含有する、ことを特徴とする請求項1または2のいずれかに記載の日射遮蔽体形成用分散液。 The dispersion for forming the sunscreen further comprises ZrO 2 , TiO 2 , Si 3 N 4 , SiC, SiO 2 , Al 2 O 3 , Y 2 O 3 , ZnO, CeO 2 , Fe (OH) 3 , FeOOH. The dispersion for forming a solar shading body according to claim 1, comprising at least one compound selected from the group consisting of: 請求項1〜3のいずれかに記載の日射遮蔽体形成用分散液を含む膜が基材上に成膜されている、ことを特徴とする日射遮蔽体。   The solar radiation shielding body characterized by the film | membrane containing the dispersion liquid for solar radiation shielding body formation in any one of Claims 1-3 being formed into a film on the base material. 前記基材が透明基材である、ことを特徴とする請求項4に記載の日射遮蔽体。   The solar radiation shielding body according to claim 4, wherein the base material is a transparent base material. 前記透明基材が、ガラス、樹脂フィルム、樹脂ボードから選択される1種である、ことを特徴とする請求項5に記載の日射遮蔽体。   The solar radiation shielding body according to claim 5, wherein the transparent substrate is one selected from glass, a resin film, and a resin board. 請求項1〜3のいずれかに記載の日射遮蔽体形成用分散液が練り込まれた日射遮蔽体形成用母材が、板状、シート状、フィルム状から選択される形状に成形されたものである、ことを特徴とする日射遮蔽体。   A solar shading body forming base material into which the solar shading body forming dispersion according to any one of claims 1 to 3 is kneaded is formed into a shape selected from a plate shape, a sheet shape, and a film shape. A solar shading body characterized by that.
JP2015149771A 2015-07-29 2015-07-29 Dispersion for forming solar shading body and solar shading body using the dispersion Expired - Fee Related JP6413969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015149771A JP6413969B2 (en) 2015-07-29 2015-07-29 Dispersion for forming solar shading body and solar shading body using the dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015149771A JP6413969B2 (en) 2015-07-29 2015-07-29 Dispersion for forming solar shading body and solar shading body using the dispersion

Publications (2)

Publication Number Publication Date
JP2017030989A JP2017030989A (en) 2017-02-09
JP6413969B2 true JP6413969B2 (en) 2018-10-31

Family

ID=57987569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015149771A Expired - Fee Related JP6413969B2 (en) 2015-07-29 2015-07-29 Dispersion for forming solar shading body and solar shading body using the dispersion

Country Status (1)

Country Link
JP (1) JP6413969B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6902424B2 (en) * 2017-08-01 2021-07-14 日揮触媒化成株式会社 Method for producing composite metal oxide
CN108178191B (en) * 2017-09-05 2020-06-16 中国船舶重工集团公司第七二五研究所 Uniform ATO nano-particles with good water dispersibility and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5040330B2 (en) * 2007-01-25 2012-10-03 住友金属鉱山株式会社 Method of grinding and dispersing boride particles, boride particle dispersion and optical material
ES2703740T3 (en) * 2008-08-20 2019-03-12 Solasia Pharma K K Organo-arsenic compounds and procedures for the treatment of cancer
JP5344261B2 (en) * 2011-04-14 2013-11-20 住友金属鉱山株式会社 Heat ray shielding film, method for producing the same, and heat ray shielding laminated transparent substrate
JP5895895B2 (en) * 2013-04-23 2016-03-30 住友金属鉱山株式会社 Heat ray shielding vinyl chloride film production composition and method for producing the same, and heat ray shielding vinyl chloride film, heat ray shielding laminated transparent base material
JP2015115314A (en) * 2013-12-12 2015-06-22 ペルノックス株式会社 Electroconductive silver paste for laser etching, substrate for circuit board, and circuit board

Also Published As

Publication number Publication date
JP2017030989A (en) 2017-02-09

Similar Documents

Publication Publication Date Title
JP4626284B2 (en) Method for producing tungsten oxide fine particles for forming solar shield, and tungsten oxide fine particles for forming solar shield
JP5120661B2 (en) Laminated structure
JP2009269946A (en) Ultraviolet-shielding transparent resin molded body and its manufacturing method
JP5585812B2 (en) Near-infrared shielding material fine particle dispersion, near-infrared shielding material, method for producing near-infrared shielding material fine particles, and near-infrared shielding material fine particles
JP6086261B2 (en) Near infrared absorption filter and imaging device
JP2005226008A (en) Dispersion for forming solar radiation-shielding body, and solar radiation-shielding body and method for producing the same
JP2011026440A (en) Near-infrared shielding polyester resin composition, near-infrared shielding polyester resin laminate and molded article
JP2008230954A (en) Manufacturing method for antimony-containing tin oxide fine particles for forming solar radiation shielding body, dispersion for forming solar radiation shielding body, solar radiation shielding body, and solar radiation shielding base material
JP6413969B2 (en) Dispersion for forming solar shading body and solar shading body using the dispersion
JP4487787B2 (en) Solar-shielding boride fine particles, solar-shielding-body-forming dispersion liquid and solar-light shielding body using the boride-fine particles, method for producing solar-shielding boride fine particles, and method for producing solar-shielding body-forming dispersion liquid
JP4941637B2 (en) Method for producing boride particles and boride particles
EP1967495B1 (en) Manufacturing method for antimony-containing tin oxide fine particles for forming solar radiation shielding body, dispersion for forming solar radiation shielding body, solar radiation sheilding body, and solar radiation shielding base material
JP6627556B2 (en) Method for producing boride particles
JP5344131B2 (en) Ultraviolet shielding material fine particle manufacturing method, ultraviolet shielding material fine particle dispersion, and ultraviolet shielding material
JP2001049190A (en) Coating liquid for forming solar radiation filter film
JP4120887B2 (en) In4Sn3O12 composite oxide fine particles for solar radiation shielding, method for producing the same, coating liquid for solar radiation shielding film formation, solar radiation shielding film, and solar radiation shielding substrate
JP4375531B2 (en) Method for producing boride fine particles
JP4399707B2 (en) Method for producing boride fine particles for solar shading
JP4200424B2 (en) Manufacturing method of solar shading material, coating liquid for forming solar shading film, solar shading film, and transparent base material for solar shading
JP2002138271A (en) Manufacturing method of fine particle for heat ray shielding and manufacturing method of coating liquid for forming heat ray shielding film using the fine particle manufactured by the former method
KR102575326B1 (en) Near-infrared absorbing material particle dispersion, near-infrared absorber, near-infrared absorber laminate, and bonded structure for near-infrared absorption
JP2017145163A (en) Method for selecting substituted element of boride particle and manufacturing method of boride particle
JP4737419B2 (en) Boride particles, production method thereof, boride fine particle dispersion using the boride particles, and solar shield
JP6575443B2 (en) Heat ray shielding film and heat ray shielding glass
JP2004284904A (en) Method of producing sunbeam shielding material, sunbeam shielding material, coating liquid for forming sunbeam shielding film, and sunbeam shielding film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180917

R150 Certificate of patent or registration of utility model

Ref document number: 6413969

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees