JP4120887B2 - In4Sn3O12 composite oxide fine particles for solar radiation shielding, method for producing the same, coating liquid for solar radiation shielding film formation, solar radiation shielding film, and solar radiation shielding substrate - Google Patents

In4Sn3O12 composite oxide fine particles for solar radiation shielding, method for producing the same, coating liquid for solar radiation shielding film formation, solar radiation shielding film, and solar radiation shielding substrate Download PDF

Info

Publication number
JP4120887B2
JP4120887B2 JP2004564540A JP2004564540A JP4120887B2 JP 4120887 B2 JP4120887 B2 JP 4120887B2 JP 2004564540 A JP2004564540 A JP 2004564540A JP 2004564540 A JP2004564540 A JP 2004564540A JP 4120887 B2 JP4120887 B2 JP 4120887B2
Authority
JP
Japan
Prior art keywords
solar radiation
radiation shielding
fine particles
composite oxide
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004564540A
Other languages
Japanese (ja)
Other versions
JPWO2004060807A1 (en
Inventor
武 長南
健治 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Publication of JPWO2004060807A1 publication Critical patent/JPWO2004060807A1/en
Application granted granted Critical
Publication of JP4120887B2 publication Critical patent/JP4120887B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/25Oxides by deposition from the liquid phase
    • C03C17/253Coating containing SnO2
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/32Radiation-absorbing paints
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/206Filters comprising particles embedded in a solid matrix
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/23Mixtures
    • C03C2217/231In2O3/SnO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/111Deposition methods from solutions or suspensions by dipping, immersion

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Description

本発明は車両、ビル、事務所、一般住宅などの窓、電話ボックス、ショーウィンドー、照明用ランプ、透明ケース、単板ガラス、合わせガラス、プラスチックスや、その他の日射遮蔽機能を必要とする基材に用いる日射遮蔽用InSn12複合酸化物微粒子及びその製造方法並びに日射遮蔽用塗布液及び日射遮蔽膜及び日射遮蔽用基材に関する。The present invention is a vehicle, a building, an office, a window for a general house, a telephone box, a show window, a lamp for lighting, a transparent case, a single plate glass, a laminated glass, a plastic, and other bases that require a solar radiation shielding function. The present invention relates to a solar radiation shielding In 4 Sn 3 O 12 composite oxide fine particle used for a material, a method for producing the same, a solar radiation shielding coating liquid, a solar radiation shielding film, and a solar radiation shielding substrate.

太陽光や電球などの外部光源から熱成分を除去・減少する方法として、従来、ガラス表面に赤外線を反射する材料からなる膜を形成して熱線反射ガラスとして使用することが行われていた。その材料にはFe,FeOx,CoOx,CrOx,TiOxなどの金属酸化物やAg,Au,Cu,Ni,Alなどの自由電子を多量にもつ金属材料が選択されてきた。
しかし、これらの材料では熱効果に大きく寄与する赤外線以外に、可視光も同時に反射もしくは吸収する性質があるため、可視光透過率が低下する問題があった。そして、建材、乗り物、電話ボックスなどに用いる透明基材では可視光領域の高い透過率が必要とされることから、上記材料を利用する場合は膜厚を非常に薄くしなければならなかった。このため、スプレー焼付けやCVD法、あるいはスパッタリング法や真空蒸着法などの物理成膜法を用いて10nmレベルの薄膜を成膜して用いられることが通常行われてきた。
しかしながら、これらの成膜方法は大がかりな装置や真空設備を必要とし、生産性や大面積化に問題があり、膜の製造コストが高くなるといった欠点がある。また、これ等材料で日射遮蔽特性(波長域300〜2100nmの光を遮蔽する特性)を高くしようとすると、可視光領域の吸収率および反射率も同時に高くなってしまう傾向があり、鏡のようなギラギラした外観を与えて美観を損ねてしまう。さらに、これらの材料では膜の導電性が高いものが多く、膜の導電性が高いと携帯電話やTV、ラジオなどの電波を反射して受信不能になったり、周辺地域に電波障害を引き起こすなどの問題がある。
このような従来の欠点を改善するには、膜の物理特性として、可視光領域の光の反射率が低くて赤外線領域の吸収率または反射率が高く、かつ膜の表面抵抗が概ね10Ω/□以上必要であると考えられる。
ところで、可視光透過率が高くしかも赤外領域の透過率が低い特性(以下、日射遮蔽特性と記載する。)を持つ材料の一つとしてインジウム錫酸化物(以下、ITOと略して記載する。)が知られている。このITOを利用すれば、日射遮蔽機能を有する材料が得られると考えられる。
ここで、このITO粉末を得るには、一般的に、インジウム塩と錫塩の混合水溶液に沈殿剤を添加して共沈させ、この沈殿物を乾燥焼成する方法(共沈法)が知られている。例えば、特許文献1には、1000nm以下の赤外線領域内またはその近傍のある波長から長波長側の赤外線を全面的に90%以上カットオフする機能を持たせるために、ITO粉末の原料、若しくは大気中で焼成したITO粉末を加圧不活性ガス中で熱処理する方法が記載されている。
また、特許文献2には、ITOの低抵抗化を安定的に行なう処理方法としてアルコール雰囲気下で加熱処理する方法が記載されている。特許文献3には、透明性および赤外線遮蔽性に優れたITO膜を得るためのITO微粉末の製造方法として、錫塩およびインジウム塩の混合溶液を30℃以下に保持しながら、反応系のpHが最終的に5.0〜9.0となるように、アルカリ水溶液を0.5〜12時間の添加時間で添加して得られた水和物を不活性ガス雰囲気下あるいは還元性ガス雰囲気下で加熱処理する方法等が記載されている。
特許文献4には、量産性に優れ、導電特性が均一で、ばらつきの少ない超微粒、低抵抗導電性ITO粉末の製造方法として、2種以上の遷移金属の組み合わせから成る導電性酸化物原料を加圧不活性ガス中で熱処理する方法が記載されている。
しかし、上述のITO粉末は、いずれもインジウム化合物にSn化合物がSn換算で約1〜15重量%添加されたものであり、主金属が高価なインジウムであることから材料コストが高いという問題があった。そこで、本発明者らは、所定の日射遮蔽特性を有しながら、上述したITOを代替できる、安価で製造が容易な日射遮蔽材料を探索した。
ここで、インジウム含有量の少ない物質として、従来、導電材料の開発分野において、少なくとも1種のドーパントを含む酸化インジウム系導電性粉末と、少なくとも1種のドーパントを含む酸化スズ系導電性粉末とを、3:7〜7:3で混合し焼成した複合導電性粉末(特許文献5)、導電膜材料として酸化インジウムと酸化スズを混合し空気中で焼成することで得られたInSn12(非特許文献1)、スパッタリング法を用いて成膜されたInSn12透明導電膜(非特許文献2)等が知られていた。
特許文献1:特開平7−69632号公報
特許文献2:特開平5−24837号公報
特許文献3:特許第3122375号公報
特許文献4:特開平7−21831号公報
特許文献5:特開平7−335031号公報
非特許文献1:H.Enoki and J.Echigoya:Phys.Status Solidi(a),132,K1(1992)
非特許文献2:透明導電膜の新展開,シーエムシー,p.58(1993)
As a method for removing and reducing a heat component from an external light source such as sunlight or a light bulb, conventionally, a film made of a material that reflects infrared rays is formed on a glass surface and used as a heat ray reflecting glass. As the material, metal materials such as Fe, FeOx, CoOx, CrOx, and TiOx and metal materials having a large amount of free electrons such as Ag, Au, Cu, Ni, and Al have been selected.
However, these materials have a problem of reducing visible light transmittance because they have the property of simultaneously reflecting or absorbing visible light in addition to infrared rays that greatly contribute to the thermal effect. And since the transparent base material used for a building material, a vehicle, a telephone box, etc. needs the high transmittance | permeability of visible region, when using the said material, the film thickness had to be made very thin. For this reason, it has been usually performed to form a thin film of 10 nm level using a physical film forming method such as spray baking, CVD method, sputtering method or vacuum deposition method.
However, these film forming methods require a large-scale apparatus and vacuum equipment, have a problem in productivity and an increase in area, and have a drawback that the manufacturing cost of the film becomes high. Moreover, when it is going to make the solar radiation shielding characteristic (characteristic which shields the light of wavelength range 300-2100 nm) with these materials, there is a tendency that the absorptivity and the reflectance in the visible light region also increase at the same time, like a mirror. Gives a glaring appearance and damages the beauty. Furthermore, many of these materials have high film conductivity. If the film conductivity is high, radio waves from mobile phones, TVs, radios, etc. are reflected and reception becomes impossible, or radio interference is caused in the surrounding area. There is a problem.
In order to improve such a conventional defect, as the physical properties of the film, the reflectance of light in the visible light region is low, the absorption factor or reflectance in the infrared region is high, and the surface resistance of the film is approximately 10 6 Ω. / □ or more is considered necessary.
By the way, indium tin oxide (hereinafter abbreviated as ITO) is described as one of materials having a high visible light transmittance and a low transmittance in the infrared region (hereinafter referred to as solar radiation shielding characteristics). )It has been known. If this ITO is utilized, it is thought that the material which has a solar radiation shielding function will be obtained.
Here, in order to obtain this ITO powder, generally, a method (coprecipitation method) is known in which a precipitant is added to a mixed aqueous solution of indium salt and tin salt and coprecipitated, and this precipitate is dried and fired (coprecipitation method). ing. For example, in Patent Document 1, in order to have a function of cutting off 90% or more of infrared rays on a long wavelength side from a certain wavelength in or near the infrared region of 1000 nm or less, the raw material of ITO powder or the atmosphere A method of heat-treating ITO powder fired in a pressurized inert gas is described.
Patent Document 2 describes a heat treatment method in an alcohol atmosphere as a treatment method for stably reducing the resistance of ITO. In Patent Document 3, as a method for producing ITO fine powder for obtaining an ITO film excellent in transparency and infrared shielding properties, the pH of the reaction system is maintained while maintaining a mixed solution of tin salt and indium salt at 30 ° C. or lower. Hydrate obtained by adding an alkaline aqueous solution at an addition time of 0.5 to 12 hours so that the final value becomes 5.0 to 9.0 in an inert gas atmosphere or a reducing gas atmosphere The method of heat-treating with is described.
Patent Document 4 discloses a conductive oxide raw material comprising a combination of two or more transition metals as a method for producing ultra-fine, low-resistance conductive ITO powder having excellent mass productivity, uniform conductive characteristics and little variation. A method for heat treatment in a pressurized inert gas is described.
However, all of the above-mentioned ITO powders are obtained by adding about 1 to 15% by weight of an Sn compound to an indium compound, and the main metal is expensive indium. It was. Accordingly, the present inventors have searched for an inexpensive and easy-to-manufacture solar shading material that can replace the above-mentioned ITO while having predetermined solar shading characteristics.
Here, as a substance having a low indium content, conventionally, in the field of development of conductive materials, an indium oxide-based conductive powder containing at least one dopant and a tin oxide-based conductive powder containing at least one dopant are used. Composite conductive powder (patent document 5) mixed and fired at 3: 7 to 7: 3, In 4 Sn 3 O obtained by mixing indium oxide and tin oxide as a conductive film material and firing in air 12 (Non-patent Document 1), In 4 Sn 3 O 12 transparent conductive film (Non-patent Document 2) and the like formed by sputtering.
Patent Document 1: Japanese Patent Application Laid-Open No. 7-69632 Patent Document 2: Japanese Patent Application Laid-Open No. 5-24837 Patent Document 3: Japanese Patent No. 312375 Patent Document 4: Japanese Patent Application Laid-Open No. 7-21831 Patent Document 5: Japanese Patent Application Laid-Open No. 7-2008 No. 335031 Non-patent document 1: H. Enoki and J.M. Echigoya: Phys. Status Solidi (a), 132, K1 (1992)
Non-Patent Document 2: New development of transparent conductive film, CMC, p. 58 (1993)

しかし、特許文献5や非特許文献1に記載されたインジウム化合物を用いて日射遮蔽膜を形成しても、本明細書において後述する、所望の可視光透過率を確保しながら日射透過率を低減することができないことに加え、所謂、高ヘイズな膜となってしまい、日射遮蔽用の膜としての特性を有していないものであった。
また、非特許文献2に記載の発明は、生産コストの高い物理的成膜法で形成される透明導電膜に関するものであり、本発明が目的とする生産コストの安い日射遮蔽膜には適用できないものであった。
本発明は、上述の課題を解決するためになされたものであり、従来のITO等に比べて原料コストが安価で、かつ容易に製造することが可能で生産性も高い、日射遮蔽用複合酸化物微粒子及びその製造方法並びに日射遮蔽膜形成用塗布液及び日射遮蔽膜及び日射遮蔽用基材を提供することを目的とする。
上述の課題を解決する第1の手段は、微粒子の平均1次粒子径が400nm以下であり、かつ、L表色系における粉体色がLは30〜70、aは−9.0〜−0.1、bは−15.0〜4.0であることを特徴とする日射遮蔽用InSn12複合酸化物微粒子である。
第2の手段は、Sb、V、Nb、Ta、W、Zr、F、Zn、Al、Ti、Pb、Ga、Re、Ru、PおよびGeから選択された少なくとも1種の元素を含むことを特徴とする請求の範囲第1項記載の日射遮蔽用InSn12複合酸化物微粒子である。
第3の手段は、錫化合物及びインジウム化合物を含有した原料混合溶液とアルカリ溶液とを反応させると共に継続的に攪拌しながら熟成させて沈殿物を得る工程と、前記沈殿物をデカンテーションにより洗浄した後、乾燥してインジウムと錫とから成る水酸化物又は水和物粉末を得る工程と、前記水酸化物又は水和物粉末を、不活性ガス若しくは不活性ガスと還元性ガスとの混合ガス雰囲気下で、1200℃以上で焼成してInSn12複合酸化物微粒子を得る工程と、を具備することを特徴とする日射遮蔽用InSn12複合酸化物微粒子の製造方法である。
第4の手段は、錫化合物と、インジウム化合物と、Sb、V、Nb、Ta、W、Zr、F、Zn、Al、Ti、Pb、Ga、Re、Ru、PおよびGeから選択された少なくとも1種の元素を含む化合物とを含有した原料混合溶液と、アルカリ溶液と、を反応させると共に継続的に攪拌しながら熟成させて沈殿物を得る第1の工程と、前記第1の工程で得られた沈殿物をデカンテーションにより洗浄した後、乾燥してインジウムと錫とSb、V、Nb、Ta、W、Zr、F、Zn、Al、Ti、Pb、Ga、Re、Ru、PおよびGeから選択された少なくとも1種の元素を含む水酸化物又は水和物粉末を得る第2の工程と、前記第2の工程で得られた水酸化物又は水和物粉末を、不活性ガス若しくは不活性ガスと還元性ガスとの混合ガス雰囲気下において、1200℃以上で焼成して、Sb、V、Nb、Ta、W、Zr、F、Zn、Al、Ti、Pb、Ga、Re、Ru、PおよびGeから選択された少なくとも1種の元素を含むInSn12複合酸化物微粒子を得る第3の工程と、を具備することを特徴とする日射遮蔽用InSn12複合酸化物微粒子の製造方法である。
第5の手段は、前記InSn12複合酸化物微粒子をメカニカル法によって解砕する工程、を具備することを特徴とする請求の範囲第3項または第4項記載の日射遮蔽用InSn12複合酸化物微粒子の製造方法である。
第6の手段は、前記原料混合溶液とアルカリ溶液とを反応させた後の溶液のpHが4.0〜9.0であることを特徴とする請求の範囲第3項〜第5項のいずれか1項に記載の日射遮蔽用InSn12複合酸化物微粒子の製造方法である。
第7の手段は、前記沈殿物をデカンテーションする時に、洗浄液の電導度が1mS/cm以下になるまで行うことを特徴とする請求の範囲第3項〜第6項のいずれか1項に記載の日射遮蔽用InSn12複合酸化物微粒子の製造方法である。
第8の手段は、溶媒中に日射遮蔽材料が分散している日射遮蔽膜形成用塗布液において、前記日射遮蔽材料が請求の範囲第1項または第2項に記載の日射遮蔽用InSn12複合酸化物微粒子を含有しているものであることを特徴とする日射遮蔽膜形成用塗布液である。
第9の手段は、ホウ化物微粒子、アンチモン錫酸化物微粒子、タングステン酸化物微粒子から選択される少なくとも1種の微粒子が添加されていることを特徴とする請求の範囲第8項記載の日射遮蔽膜形成用塗布液である。
第10の手段は、無機バインダー若しくは樹脂バインダーが含まれていることを特徴とする請求の範囲第8項または第9項記載の日射遮蔽膜形成用塗布液である。
第11の手段は、請求の範囲第8項〜第10項のいずれか1項に記載の日射遮蔽膜形成用塗布液を用いて形成されたことを特徴とする日射遮蔽膜である。
第12の手段は、ガラスまたはプラスチック上に、請求の範囲第11項記載の日射遮蔽膜が形成されたことを特徴とする日射遮蔽用基材である。
第13の手段は、請求の範囲第1項または第2項に記載の日射遮蔽用InSn12複合酸化物微粒子または請求の範囲第8項〜第10項のいずれか1項に記載の日射遮蔽膜形成用塗布液を、基材形成用母材に練り込み、板状、シート状、またはフィルム状に形成したことを特徴とする日射遮蔽用基材である。
第14の手段は、請求の範囲第12項記載の日射遮蔽用基材の日射遮蔽膜を挟み込むように他の基材を前記日射遮蔽用基材に積層させるか、または、請求の範囲第13項記載の日射遮蔽用基材を他の基材によって挟み込んで積層させたことを特徴とする日射遮蔽用基材である。
以上詳述したように、本発明によれば、従来のITO等に比べて、安価にかつ簡便に製造することを可能とする日射遮蔽用InSn12複合酸化物微粒子及びその製造方法並びに日射遮蔽膜形成用塗布液及び日射遮蔽膜及び日射遮蔽用基材を提供することができる。
However, even if the solar radiation shielding film is formed using the indium compound described in Patent Document 5 and Non-Patent Document 1, the solar radiation transmittance is reduced while ensuring the desired visible light transmittance, which will be described later in this specification. In addition to being unable to do so, it becomes a so-called high haze film and does not have characteristics as a film for shielding solar radiation.
The invention described in Non-Patent Document 2 relates to a transparent conductive film formed by a physical film formation method with high production cost, and cannot be applied to a solar radiation shielding film with low production cost, which is an object of the present invention. It was a thing.
The present invention has been made to solve the above-mentioned problems, and is a composite oxidation for solar radiation shielding, which is cheaper in raw material cost than conventional ITO and can be easily manufactured and has high productivity. An object of the present invention is to provide a fine particle, a production method thereof, a coating solution for forming a solar shading film, a solar shading film, and a solar shading base material.
A first means for solving the above-mentioned problems is that the average primary particle diameter of the fine particles is 400 nm or less, and the powder color in the L * a * b * color system is L * is 30 to 70, a *. Is -9.0 to -0.1 and b * is -15.0 to 4.0. In 4 Sn 3 O 12 composite oxide fine particles for solar radiation shielding.
The second means includes at least one element selected from Sb, V, Nb, Ta, W, Zr, F, Zn, Al, Ti, Pb, Ga, Re, Ru, P, and Ge. The In 4 Sn 3 O 12 composite oxide fine particles for solar radiation shielding according to claim 1, characterized in that they are characteristic.
The third means is a step of reacting a raw material mixed solution containing a tin compound and an indium compound with an alkali solution and aging the mixture continuously to obtain a precipitate, and washing the precipitate by decantation. And drying to obtain a hydroxide or hydrate powder comprising indium and tin, and the hydroxide or hydrate powder is mixed with an inert gas or an inert gas and a reducing gas. atmosphere, a method of manufacturing calcined to in 4 Sn 3 O 12 composite oxide obtained microparticles step and, solar radiation shielding in 4 Sn 3 O 12 composite oxide fine particles, characterized by comprising at 1200 ° C. or higher It is.
The fourth means is a tin compound, an indium compound, and at least selected from Sb, V, Nb, Ta, W, Zr, F, Zn, Al, Ti, Pb, Ga, Re, Ru, P, and Ge. A first step of reacting a raw material mixed solution containing a compound containing one kind of element with an alkaline solution and aging with continuous stirring to obtain a precipitate, obtained in the first step The resulting precipitate is washed by decantation and then dried to form indium, tin, Sb, V, Nb, Ta, W, Zr, F, Zn, Al, Ti, Pb, Ga, Re, Ru, P, and Ge. A second step of obtaining a hydroxide or hydrate powder containing at least one element selected from the above, and the hydroxide or hydrate powder obtained in the second step, an inert gas or Mixed gas atmosphere of inert gas and reducing gas At least one selected from Sb, V, Nb, Ta, W, Zr, F, Zn, Al, Ti, Pb, Ga, Re, Ru, P, and Ge after firing at 1200 ° C. or higher And a third step of obtaining In 4 Sn 3 O 12 composite oxide microparticles containing the above elements. The method for producing In 4 Sn 3 O 12 composite oxide microparticles for solar radiation shielding is provided.
5. The solar radiation shielding In according to claim 3 , wherein the fifth means comprises a step of crushing the In 4 Sn 3 O 12 composite oxide fine particles by a mechanical method. This is a method for producing 4 Sn 3 O 12 composite oxide fine particles.
The sixth means is characterized in that the pH of the solution after reacting the raw material mixed solution and the alkali solution is 4.0 to 9.0. The method for producing In 4 Sn 3 O 12 composite oxide fine particles for solar radiation shielding according to claim 1.
The seventh means is carried out until the conductivity of the cleaning liquid becomes 1 mS / cm or less when the precipitate is decanted. In 4 Sn 3 O 12 composite oxide fine particles for solar radiation shielding.
The eighth means is a solar shading film-forming coating solution in which a solar shading material is dispersed in a solvent, wherein the solar shading material is the solar shading In 4 Sn according to claim 1 or 2. A coating solution for forming a solar shading film, characterized in that it contains 3 O 12 composite oxide fine particles.
9. The solar radiation shielding film according to claim 8, wherein at least one kind of fine particles selected from boride fine particles, antimony tin oxide fine particles, and tungsten oxide fine particles is added to the ninth means. This is a forming coating solution.
The tenth means is the solar shading film-forming coating solution according to claim 8 or 9, wherein an inorganic binder or a resin binder is contained.
The eleventh means is a solar shading film formed by using the solar shading film forming coating solution according to any one of claims 8 to 10.
A twelfth means is a solar shading base material characterized in that the solar shading film according to claim 11 is formed on glass or plastic.
The thirteenth means is the solar shielding In 4 Sn 3 O 12 composite oxide fine particles according to claim 1 or 2, or the claims 8 to 10 according to any one of claims 8 to 10. This solar shading film-forming coating liquid is kneaded into a base material forming base material and formed into a plate shape, a sheet shape, or a film shape.
The fourteenth means is a method in which another substrate is laminated on the solar shading base material so as to sandwich the solar shading film of the solar shading base material according to claim 12. A solar radiation shielding base material characterized in that the solar radiation shielding base material described in the item is sandwiched and laminated by another base material.
As described above in detail, according to the present invention, the In 4 Sn 3 O 12 composite oxide fine particles for solar radiation shielding, which can be produced inexpensively and easily compared with conventional ITO and the like, and a method for producing the same In addition, it is possible to provide a coating solution for forming a solar radiation shielding film, a solar radiation shielding film, and a solar radiation shielding substrate.

第1図は、実施例および比較例に係る、複合酸化物微粒子の性状、および日射遮蔽膜の膜特性の一覧表である。  FIG. 1 is a list of properties of composite oxide fine particles and film characteristics of solar radiation shielding films according to Examples and Comparative Examples.

上述の手段において、微粒子の種類をInSn12複合酸化物微粒子としたのは、以下の理由からである。まず、日射遮蔽用に用いる物質として、基本的に日射遮蔽機能を発揮できる光学特性を備えたものでなければならない。すなわち、光に対する透過・反射の特性が、可視光は透過し、赤外領域は透過しない特性を備えている物質でなければならない。
ここで、本発明者は、物質の光透過性の波長依存性が、物質固有のプラズマ周波数に依存することに着目した。すなわち、光と物質内の電子の相互作用の結果として、物質にはそれぞれ固有のプラズマ周波数があるが、この固有プラズマ周波数より長波長の光は反射され、短波長の光は透過されることが知られている。プラズマ周波数ωは式(1)で表される。
ω =nq/εm (1)
ここで、nは伝導電子密度、qは電子の電荷、εは誘電率、mは電子の有効質量である。
プラズマ周波数は、一般に、物質の伝導電子密度に依存し、伝導電子密度が増加するとプラズマ周波数も大きくなり、短波長側の光まで反射されることになる。
例えば、金属の伝導電子密度は、1022/cm台であるのに対して、従来のITOは、1021/cm台である。このため、金属では可視光領域からすでに反射率が高くなるが、ITOでは、可視光線は透過し近赤外線域から反射率が高くなる。
本願発明者は、従来のITOの伝導電子密度と同程度の伝導電子密度を有する物質を探索した。その結果、InSn12複合酸化物が見出された。このInSn12複合酸化物は、従来のITOと同じ酸化インジウム−酸化スズ系の物質であるが、従来のITOが、Snを有する物質をSn換算で約1〜15重量%含むものであるのに対して、InSn12複合酸化物は、Snを有する物質をSn換算で約39重量%含むものである点で相違する。つまり、高価なInの含有量が従来のITOに比較して非常に少ないので、安価である。しかし、従来の技術に係るInSn12複合酸化物(例えば、非特許文献1に記載されたInSn12複合酸化物)は、上述したように所望の可視光透過率を確保しながら日射透過率を低減することができないことに加え、所謂、高ヘイズな膜となってしまい、日射遮蔽用の膜としての特性を有していないものであった。
ここで、本発明者らは試行錯誤を重ね、日射遮蔽材料として所定の特性を有する、平均1次粒子径400nm以下であり、かつ、L表色系における粉体色Lが30〜70、aが−9.0〜−0.1、bが−15.0〜4.0である日射遮蔽用InSn12複合酸化物に想到した。
当該日射遮蔽用InSn12複合酸化物の平均1次粒子径を400nm以下としたのは、平均1次粒子径を400nm以下とすることで、当該複合酸化物が散乱源となって膜に曇り、つまりヘイズを生じたり、可視光透過率が減少する原因となるのを回避できるからである。なお、本明細書において粒子の大きさは、平均1次粒子径をもって表しているが、前記の理由により、400nmを超えるような粗粉の割合が少ない粒度分布の狭い微粉であることが好ましい。
さらに、InSn12複合酸化物微粒子は、L表色系における粉体色Lが30〜70、aが−9.0〜−0.1、bが−15.0〜4.0である理由は、以下のように考えられる。
InSn12複合酸化物微粒子を、不活性ガス単独、還元性ガスと不活性ガスとの混合ガスやアルコール含有不活性ガス雰囲気下で熱処理すると、その粉体色が黄色→黄緑色→淡青色→暗青色と変化すると同時に、その圧粉抵抗も減少する。これは、InSn12複合酸化物微粒子を前記のようなガス雰囲気下で熱処理することによって微粒子中に空孔が生じ、この空孔の増加によって、微粒子中の自由電子が増加したと考えられる。即ち、微粒子の粉体色と伝導電子密度、つまりプラズマ周波数とは深い関係があることが予想される。
そこで、InSn12複合酸化物微粒子と、これらを成膜したときの日射透過率との関係を詳しく調査して、850nmの透過率が高く、かつ高い日射遮蔽性能を発揮する条件を求めたところ、InSn 複合酸化物微粒子のL表色系による粉体色Lが30〜70、aが−9.0〜−0.1、bが−15.0〜4.0の範囲にあるとき、上記所望の日射遮蔽機能を発揮することに想到したものである。
また、必要に応じ、所望の機能における特性改善の目的で、InSn12複合酸化物微粒子へ、Sb、V、Nb、Ta、W、Zr、F、Zn、Al、Ti、Pb、Ga、Re、Ru、PおよびGeから選択された少なくとも1種の元素を添加することも好ましい構成である。
次に、上述の手段に係る日射遮蔽用InSn12複合酸化物微粒子の製造方法について説明する。
第1の工程は、錫化合物とインジウム化合物、または、錫化合物とインジウム化合物へ、さらに必要に応じてSb、V、Nb、Ta、W、Zr、F、Zn、Al、Ti、Pb、Ga、Re、Ru、PおよびGeから選択された少なくとも1種の元素を含む化合物を含有させた原料混合溶液と、アルカリ溶液とを反応させると共に継続的に攪拌しながら熟成させて沈殿物を得る工程である。
第2の工程は、第1の工程で得た沈殿物を、デカンテーションにより十分洗浄した後、乾燥してインジウムと錫から成る水酸化物粉末を得る工程である。
第3の工程は、第2の工程で得た水酸化物粉末を、不活性ガス若しくは不活性ガスと還元性ガスとの混合ガス雰囲気下で、1200℃以上で焼成してInSn12複合酸化物粒子を得る工程である。
第4の工程は、第3の工程で得たInSn12複合酸化物粒子を、メカニカルな方法によって解砕して該InSn12複合酸化物微粒子から成る日射遮蔽材料を得る工程である。
以下、各工程について、さらに詳細に説明する。
まず、第1の工程において、本発明において適用されるインジウム化合物および錫化合物は特に限定されるものでなく、例えば、硝酸インジウム、塩化インジウム、塩化錫、硝酸錫などが挙げられる。
必要に応じて添加するSb、V、Nb、Ta、W、Zr、F、Zn、Al、Ti、Pb、Ga、Re、Ru、PおよびGeから選択された少なくとも1種の元素を含む化合物は、特に限定されないが、水溶性もしくは有機溶媒に可溶のものが好ましい。添加量は、添加する化合物の元素をXとした場合、X/(InもしくはSnO+X)が、0.1〜15重量%であることが好ましい。この範囲内であれば、所望とする日射遮蔽特性を得ることができるためである。
また、本発明で用いるアルカリ溶液も特に限定されず、例えば、炭酸水素アンモニウム、水酸化アンモニウム、水酸化ナトリウム、水酸化カリウム、アンモニアなどの各水溶液が挙げられる。アルカリ分の濃度は、各塩が水酸化物あるいは水和物となるに必要な化学当量以上、好ましくはアルカリ残留による洗浄時間の観点から当量〜当量の1.5倍過剰量とすることが良い。このときの溶液温度は特に限定されないが、生産性の観点からは通常100℃以下とすることが好ましい。溶液温度の下限は、得られるInSn12複合酸化物微粒子の特性から特に限定されないが、低すぎると新たに冷却装置などが必要になってくることから、生産性の観点より、そのような装置を要しない温度とすることが好ましい。
中和反応の時間は特に限定されないが、生産性の観点から30分未満、好ましくは25分以下とする事が望ましい。中和反応終了後、系内の均一化を図るために継続的に攪拌しながら熟成を行うが、そのときの温度は共沈温度と同温とする。また、時間は特に限定されないが、生産性の観点から30分以下、好ましくは15分以下であると良い。
ここで沈殿物として、水酸化物あるいは水和物が得られるが、InSn12複合酸化物微粒子の平均1次粒子の大きさは、およそこの段階で定まるため、数nm〜100nmとなるよう条件を制御する必要がある。このためには、溶液中の原料濃度を高くして沈殿成分イオンの濃度(Q)を大きくし、溶液温度を低くして沈殿の溶解度(S)を低下させ、相対過飽和度比(但し、相対過飽和度比=(Q−S)/Sである。)の値を大きくすることが好ましい。当該相対過飽和度比の値が大きい状態から沈殿を生成すると、一度に多数の沈殿成分の核が発生し、均一で微細な沈殿物が得られる。また、原料混合溶液と、アルカリ溶液とを反応させた後の溶液のpHを4.0〜9.0とすることが粒径制御の上で好ましい。pHが低い方が析出する沈殿の粒径が細かくなる傾向にあるが、低すぎると沈殿物の析出が不十分となり、一方、高すぎると、一部の沈殿物の再溶解によって沈殿物の粒径が大きくなり過ぎるからである。
次に、第2の工程において、第1の工程で熟成させて得られた沈殿物を、デカンテーションにより十分洗浄する。このとき、沈殿物中の残留不純物が、InSn12複合酸化物の光学特性、特に日射遮蔽率が低下する原因となる等の影響から、洗浄上澄み液の電導度が1mS/cm以下(残留する塩素不純物量が0.2重量%以下に相当する。)まで洗浄した後、乾燥する。洗浄処理後の乾燥温度やその時間は特に限定されるものではない。
次に、第3の工程において、第2の工程で乾燥処理された水酸化物あるいは水和物粉末を、不活性ガス若しくは不活性ガスと還元性ガスとの混合ガス雰囲気下で熱処理を行う。当該熱処理を大気中で行ってもInSn12複合酸化物が得られるが、当該InSn12複合酸化物は電子密度が不十分であることから日射遮蔽特性が低い。このときの熱処理温度はInSn12複合酸化物粒子生成の観点から1200℃以上、より好ましくは1300℃以上、さらに好ましくは1400℃以上である。1200℃以上であれば、酸化インジウムと酸化スズの二相に分離した混相ではなく複合酸化物を得ることができるからである。上限温度は特に限定されないが、1600℃以下であれば焼結による粒子の過度の成長を回避することができる。粒子が過度に成長すると後工程における粉砕操作、例えば塗布液調製時のビーズミルによる解砕・分散効率が低下し、日射遮蔽膜を形成した段階で高ヘイズの原因となる。従って、熱処理温度としては1400〜1600℃が好ましく、最も好ましいのは1500℃である。
なお、InSn12複合酸化物粒子前駆体である第2の工程で乾燥処理された水酸化物粉末あるいは水和物を、一旦大気中で焼成して酸化インジウムと酸化スズの混相を生成させた後、不活性ガス若しくは不活性ガスと還元性ガスとの混合ガス雰囲気下で熱処理を施した場合も、本発明と同様のInSn12複合酸化物微粒子が得られる。しかし、この場合は、焼成工程が2工程となるため、生産性の観点からは、上述したように始めから不活性ガス若しくは不活性ガスと還元性ガスとの混合ガス雰囲気下で熱処理を行うことが好ましい。
次に、第4の工程において、InSn12複合酸化物粒子の解砕処理はメカニカルな方法によって行うことが望ましい。解砕処理方法は、複合酸化物粒子の一次粒子の凝集を壊し、一部粒成長した粒子を粉砕して微粒子化できるものであれば特に限定されないが、解砕効率を考慮するとジェットミルのような自粉衝突型粉砕機やビーズミルのようなメディア媒介型の解砕装置が好ましい。以上説明した、工程により、可視光透過率が高く、かつ高い日射遮蔽性能を発揮する日射遮蔽用InSn12複合酸化物微粒子を得ることができる。
次に、当該日射遮蔽用InSn12複合酸化物微粒子を用いた、上記手段に係る日射遮蔽膜形成用塗布液、および、その製造方法について詳細に説明する。
上記手段に係る日射遮蔽膜形成用塗布液は、上記InSn12複合酸化物粒子を日射遮蔽材料として溶媒中に分散したものである。分散溶媒は特に限定されるものではなく、塗布条件、塗布環境に合わせて適宜選択できる。さらに、日射遮蔽膜形成用塗布液中へ無機バインダーや樹脂バインダーを含有させた時は当該バインダーに合わせて適宜選択できる。具体例としては、水やエタノール、プロパノール、ブタノール、イソプロピルアルコール、イソブチルアルコール、ジアセトンアルコールなどのアルコール類、メチルエーテル,エチルエーテル,プロピルエーテルなどのエーテル類、エステル類、アセトン、メチルエチルケトン、ジエチルケトン、シクロヘキサノン、イソブチルケトンなどのケトン類といった各種の有機溶媒が使用可能であり、また必要に応じて酸やアルカリを添加してpH調整してもよい。さらに、塗布液中の微粒子の分散安定性を一層向上させるため各種の界面活性剤、カップリング剤などの添加も勿論可能である。
また、必要に応じて日射遮蔽膜形成用塗布液中へ配合される無機バインダーや樹脂バインダーについても、その種類は特に限定されるものではない。例えば、無機バインダーとして、珪素、ジルコニウム、チタン、もしくはアルミニウムの金属アルコキシドやこれらの部分加水分解縮重合物あるいはオルガノシラザンが利用でき、樹脂バインダーとして、アクリル樹脂などの熱可塑性樹脂、エポキシ樹脂などの熱硬化性樹脂などが利用できる。
日射遮蔽膜形成用塗布液製造時における、InSn12複合酸化物粒子の分散方法は、溶媒中に均一に分散される方法であれば特に限定されず、例えば、ビーズミル、ボールミル、サンドミル、ペイントシェーカー、超音波ホモジナイザーなどが挙げられる。
この塗布液を用いて日射遮蔽膜を形成したときの膜の導電性は、InSn12複合酸化物微粒子の接触箇所を経由した導電パスに沿って電子が移動することで得られる。そこで、日射遮蔽膜形成用塗布液中の、例えば界面活性剤やカップリング剤の量を加減することで、導電パスを部分的に切断することができ、膜の導電性を10Ω/□以上の表面抵抗値へ低下させることは容易である。また、日射遮蔽膜形成用塗布液中への、無機バインダーあるいは樹脂バインダーの含有量の加減によっても日射遮蔽膜の導電性を制御できる。
次に、当該日射遮蔽膜形成用塗布液により形成される日射遮蔽膜について説明する。
上記手段に係る日射遮蔽膜は、上述したInSn12複合酸化物微粒子分散塗布液である日射遮蔽膜形成用塗布液を、透明基板上に塗布して形成される。該日射遮蔽膜は、上記InSn12複合酸化物微粒子が高密度に堆積して膜形成されたものであり、塗布液中に含まれる樹脂バインダーまたは無機バインダーは、塗布硬化後にInSn12複合酸化物微粒子の基材への密着性を向上させ、さらに膜の硬度を向上させる効果がある。
このようにして得られた日射遮蔽膜上に、さらに珪素、ジルコニウム、チタン、もしくはアルミニウムの金属アルコキシド、これらの部分加水分解縮重合物からなる被膜を第2層として被着し、珪素、ジルコニウム、チタン、もしくはアルミニウムの酸化物膜を形成することで、InSn12複合酸化物微粒子を主成分とする膜の基材への結着力や膜の硬度、耐候性を一層向上させることができる。
また、塗布液中に樹脂バインダーまたは無機バインダーを含まない塗布液を用い得られる膜は、基材上に上記InSn12複合酸化物微粒子のみが堆積した膜構造になる。このままでも日射遮蔽効果を示すが、この膜上にさらに珪素、ジルコニウム、チタン、もしくはアルミニウムの金属アルコキシドやこれらの部分加水分解縮重合物などの無機バインダーまたは樹脂バインダーを含む塗布液を塗布して被膜を形成して多層膜とすると良い。このようにすることにより、塗布液成分が第1層のInSn12複合酸化物微粒子の堆積した間隙を埋めて成膜されるため、膜のヘイズがさらに低減して可視光透過率が向上し、また粒子の基材への結着性が向上する。
また、上記手段に係る日射遮蔽膜形成用塗布液の、塗布方法および本発明で用いる被膜形成用の塗布方法は特に限定されず、例えば、スピンコート法、バーコート法、スプレーコート法、ディップコート法、スクリーン印刷法、ロールコート法、流し塗りなど、処理液を平坦かつ薄く均一に塗布できる方法であればいずれの方法でもよい。
また、上記手段に係る日射遮蔽膜形成用塗布液が無機バインダーとして、珪素、ジルコニウム、チタン、もしくはアルミニウムの金属アルコキシドおよびその加水分解重合物を含む場合、塗布液の塗布後の基材加熱温度が100℃未満では、塗膜中に含まれるアルコキシドまたはその加水分解重合物の重合反応が未完結で残ることが多く、また水や有機溶媒が膜中に残留して加熱後の日射遮蔽膜において可視光透過率の低下の原因となることがある。そこで、塗布後の基材加熱温度は100℃以上が好ましく、さらに好ましくは塗布液中の溶媒の沸点以上で加熱を行うことがよい。他方、日射遮蔽膜形成用塗布液中に樹脂バインダーを含有する場合は、それぞれの硬化方法に従って硬化させればよい。例えば、紫外線硬化樹脂であれば紫外線を適宜照射すればよく、また常温硬化樹脂であれば塗布後そのまま放置しておけばよい。当該構成を用いることで、既存の窓ガラスなどへの現場での塗布が可能となる。
そして、本発明に係る日射遮蔽膜では、InSn12複合酸化物微粒子が分散しているため、物理成膜法により製造された酸化物薄膜のように結晶が緻密に膜内を埋めた鏡面状表面をもつ膜に比べると可視光領域での反射が少なく、ギラギラした外観を呈することを回避できる。その一方で、近赤外域にプラズマ周波数をもつため、これに伴うプラズマ反射が近赤外域で大きくなる。さらに可視光領域の反射を抑制したい場合には、InSn12微粒子分散膜の上に、SiOやMgFのような低屈折率の膜を成膜することにより、容易に視感反射率1%以下の多層膜を得ることができる。
また、上記手段に係る日射遮蔽材料、塗布液並びに日射遮蔽膜のさらなる紫外線遮蔽機能を付与させるため、無機系の酸化チタンや酸化亜鉛、酸化セリウムなどの微粒子や、有機系のベンゾフェノンやベンゾトリアゾールなどの1種もしくは2種以上を添加してもよい。
このように、上記手段によれば、日射遮蔽用としての機能を発揮する粉体特性と製造方法を確立し、インジウム含量を低減させた安価な材料として安定なInSn12複合酸化物を用いた日射遮蔽膜形成用塗布液を製造でき、該塗布液を使用し、日射遮蔽効果を発揮する塗布膜製造が可能である。InSn12複合酸化物微粒子は無機材料であるので、有機材料と比べて耐候性が非常に高く、例えば太陽光線(紫外線)の当たる部位に使用しても色や諸機能の劣化はほとんど生じない。
また、上記手段に係る塗布液は、焼成時の熱によって塗布成分の分解あるいは化学反応を利用して目的の日射遮蔽膜を形成するものではないため、特性の安定した均一な膜厚の透過膜を形成することができる。
In the above-described means, the type of fine particles is In 4 Sn 3 O 12 composite oxide fine particles for the following reason. First, as a material used for solar radiation shielding, it must basically have an optical characteristic capable of exhibiting the solar radiation shielding function. That is, the material must have a property of transmitting / reflecting light that transmits visible light but does not transmit infrared light.
Here, the inventor has paid attention to the fact that the wavelength dependency of the light transmittance of a substance depends on the plasma frequency inherent to the substance. That is, as a result of the interaction between light and electrons in the substance, each substance has its own plasma frequency, but light with a wavelength longer than this intrinsic plasma frequency is reflected and light with a shorter wavelength is transmitted. Are known. The plasma frequency ω p is expressed by equation (1).
ω p 2 = nq 2 / εm (1)
Here, n is the conduction electron density, q is the charge of the electron, ε is the dielectric constant, and m is the effective mass of the electron.
In general, the plasma frequency depends on the conduction electron density of the substance. When the conduction electron density increases, the plasma frequency also increases, and light on the short wavelength side is reflected.
For example, the conduction electron density of metal is 10 22 / cm 3 , whereas the conventional ITO is 10 21 / cm 3 . For this reason, in the case of metal, the reflectance is already high from the visible light region, but in the case of ITO, visible light is transmitted and the reflectance is high from the near infrared region.
The inventor of the present application searched for a substance having a conduction electron density comparable to that of conventional ITO. As a result, an In 4 Sn 3 O 12 composite oxide was found. This In 4 Sn 3 O 12 composite oxide is the same indium oxide-tin oxide based material as that of conventional ITO, but the conventional ITO contains about 1 to 15% by weight of Sn-containing material in terms of Sn. On the other hand, the In 4 Sn 3 O 12 composite oxide is different in that it contains about 39% by weight of a Sn-containing substance in terms of Sn. That is, it is inexpensive because the content of expensive In is very small compared to conventional ITO. However, the In 4 Sn 3 O 12 composite oxide according to the conventional technology (for example, the In 4 Sn 3 O 12 composite oxide described in Non-Patent Document 1) has a desired visible light transmittance as described above. In addition to being unable to reduce the solar transmittance while ensuring, it becomes a so-called high-haze film and does not have the characteristics as a film for shielding solar radiation.
Here, the present inventors have repeated trial and error, have an average primary particle diameter of 400 nm or less, having a predetermined characteristic as a solar radiation shielding material, and a powder color L * in the L * a * b * color system . but 30 to 70, a * is -9.0~-0.1, b * was conceived sunlight shielding in 4 Sn 3 O 12 composite oxide is -15.0~4.0.
The reason why the average primary particle diameter of the In 4 Sn 3 O 12 composite oxide for solar radiation shielding is 400 nm or less is that the composite oxide becomes a scattering source when the average primary particle diameter is 400 nm or less. This is because the film can be prevented from becoming cloudy, that is, haze, or causing a decrease in visible light transmittance. In the present specification, the particle size is expressed as an average primary particle diameter. However, for the reasons described above, a fine powder having a narrow particle size distribution with a small proportion of coarse powder exceeding 400 nm is preferable.
Further, the In 4 Sn 3 O 12 composite oxide fine particles have a powder color L * of 30 to 70, a * of −9.0 to −0.1, and b * in the L * a * b * color system. The reason for being -15.0 to 4.0 is considered as follows.
When the In 4 Sn 3 O 12 composite oxide fine particles are heat-treated in an inert gas alone, a mixed gas of a reducing gas and an inert gas, or an alcohol-containing inert gas atmosphere, the powder color is yellow → yellowish green → At the same time as the change from light blue to dark blue, the dust resistance also decreases. This is because the In 4 Sn 3 O 12 composite oxide fine particles were heat-treated in the gas atmosphere as described above to generate vacancies in the fine particles, and the increase in the vacancies increased the free electrons in the fine particles. Conceivable. That is, it is expected that the powder color of fine particles and the conduction electron density, that is, the plasma frequency have a deep relationship.
Therefore, the relationship between the In 4 Sn 3 O 12 composite oxide fine particles and the solar transmittance when these are formed is investigated in detail, and the conditions under which high transmittance at 850 nm and high solar shielding performance are exhibited. were determined, in 4 Sn 3 O 1 2 composite oxide fine particles of the L * a * b * color system powder color L * is 30 to 70 by, a * is -9.0~-0.1, b When * is in the range of -15.0 to 4.0, it is conceived that the desired solar radiation shielding function is exhibited.
Further, if necessary, for the purpose of improving the characteristics in a desired function, the In 4 Sn 3 O 12 composite oxide fine particles are changed to Sb, V, Nb, Ta, W, Zr, F, Zn, Al, Ti, Pb, It is also a preferred configuration to add at least one element selected from Ga, Re, Ru, P and Ge.
Next, a method for producing the solar shielding In 4 Sn 3 O 12 composite oxide fine particles according to the above-described means will be described.
The first step is to convert a tin compound and an indium compound, or a tin compound and an indium compound, and if necessary, Sb, V, Nb, Ta, W, Zr, F, Zn, Al, Ti, Pb, Ga, In the process of obtaining a precipitate by reacting a raw material mixed solution containing a compound containing at least one element selected from Re, Ru, P and Ge with an alkali solution and aging with continuous stirring. is there.
The second step is a step in which the precipitate obtained in the first step is sufficiently washed by decantation and then dried to obtain a hydroxide powder composed of indium and tin.
In the third step, the hydroxide powder obtained in the second step is calcined at 1200 ° C. or higher in an inert gas or a mixed gas atmosphere of an inert gas and a reducing gas, and In 4 Sn 3 O This is a step of obtaining 12 composite oxide particles.
In the fourth step, the In 4 Sn 3 O 12 composite oxide particles obtained in the third step are crushed by a mechanical method to obtain a solar radiation shielding material comprising the In 4 Sn 3 O 12 composite oxide fine particles. It is a process to obtain.
Hereinafter, each step will be described in more detail.
First, in the first step, the indium compound and the tin compound applied in the present invention are not particularly limited, and examples thereof include indium nitrate, indium chloride, tin chloride, and tin nitrate.
A compound containing at least one element selected from Sb, V, Nb, Ta, W, Zr, F, Zn, Al, Ti, Pb, Ga, Re, Ru, P and Ge, which is added as necessary, Although not particularly limited, those that are water-soluble or soluble in organic solvents are preferred. As for the addition amount, when the element of the compound to be added is X, X / (In 2 O 3 or SnO 2 + X) is preferably 0.1 to 15% by weight. This is because a desired solar shading characteristic can be obtained within this range.
Moreover, the alkaline solution used by this invention is not specifically limited, either, For example, each aqueous solution, such as ammonium hydrogencarbonate, ammonium hydroxide, sodium hydroxide, potassium hydroxide, ammonia, is mentioned. The concentration of the alkali component is not less than the chemical equivalent necessary for each salt to become a hydroxide or a hydrate, preferably from an equivalent to an equivalent 1.5-fold excess from the viewpoint of washing time due to residual alkali. . The solution temperature at this time is not particularly limited, but it is usually preferably 100 ° C. or less from the viewpoint of productivity. The lower limit of the solution temperature is not particularly limited due to the characteristics of the obtained In 4 Sn 3 O 12 composite oxide fine particles, but if it is too low, a cooling device or the like is newly required. It is preferable to set the temperature so as not to require such an apparatus.
The time for the neutralization reaction is not particularly limited, but is preferably less than 30 minutes, preferably 25 minutes or less from the viewpoint of productivity. After completion of the neutralization reaction, aging is carried out with continuous stirring to make the system uniform, and the temperature at that time is the same as the coprecipitation temperature. Moreover, although time is not specifically limited, From a viewpoint of productivity, it is 30 minutes or less, Preferably it is 15 minutes or less.
Here, although a hydroxide or a hydrate is obtained as a precipitate, the average primary particle size of the In 4 Sn 3 O 12 composite oxide fine particles is determined at this stage, and therefore, several nm to 100 nm. It is necessary to control the conditions so that For this purpose, the concentration of the raw material in the solution is increased to increase the concentration (Q) of the precipitation component ions, the solution temperature is decreased to decrease the solubility (S) of the precipitate, and the relative supersaturation ratio (however, It is preferable to increase the value of the supersaturation ratio = (Q−S) / S). When a precipitate is generated from a state where the value of the relative supersaturation ratio is large, a large number of precipitation component nuclei are generated at one time, and a uniform and fine precipitate is obtained. Moreover, it is preferable in terms of particle size control that the pH of the solution after reacting the raw material mixed solution and the alkaline solution is 4.0 to 9.0. When the pH is lower, the particle size of the precipitate tends to be finer.However, if the pH is too low, the precipitation of the precipitate is insufficient. This is because the diameter becomes too large.
Next, in the second step, the precipitate obtained by aging in the first step is sufficiently washed by decantation. At this time, the electrical conductivity of the cleaning supernatant liquid is 1 mS / cm or less due to the influence that the residual impurities in the precipitate cause the optical properties of the In 4 Sn 3 O 12 composite oxide, particularly the solar radiation shielding rate, to decrease. After washing up to (the amount of residual chlorine impurities corresponds to 0.2% by weight or less), it is dried. There is no particular limitation on the drying temperature and the time after the washing treatment.
Next, in the third step, the hydroxide or hydrate powder dried in the second step is heat-treated in an inert gas or a mixed gas atmosphere of an inert gas and a reducing gas. Although the In 4 Sn 3 O 12 composite oxide can be obtained even when the heat treatment is performed in the air, the In 4 Sn 3 O 12 composite oxide has low electron shielding properties due to insufficient electron density. The heat treatment temperature at this time is 1200 ° C. or higher, more preferably 1300 ° C. or higher, and further preferably 1400 ° C. or higher from the viewpoint of producing In 4 Sn 3 O 12 composite oxide particles. This is because if it is 1200 ° C. or higher, a composite oxide can be obtained instead of a mixed phase separated into two phases of indium oxide and tin oxide. Although the upper limit temperature is not particularly limited, excessive growth of particles due to sintering can be avoided if it is 1600 ° C. or lower. If the particles grow excessively, the pulverization operation in the subsequent process, for example, the crushing / dispersing efficiency by the bead mill at the time of preparing the coating liquid is lowered, and this causes high haze at the stage where the solar radiation shielding film is formed. Accordingly, the heat treatment temperature is preferably 1400 to 1600 ° C, and most preferably 1500 ° C.
In addition, the hydroxide powder or hydrate dried in the second step, which is the In 4 Sn 3 O 12 composite oxide particle precursor, is once fired in the atmosphere to form a mixed phase of indium oxide and tin oxide. In 4 Sn 3 O 12 composite oxide fine particles similar to the present invention can also be obtained when heat treatment is performed in an atmosphere of an inert gas or a mixed gas of an inert gas and a reducing gas after formation. However, in this case, since the firing step is two steps, from the viewpoint of productivity, heat treatment is performed in an inert gas or a mixed gas atmosphere of an inert gas and a reducing gas from the beginning as described above. Is preferred.
Next, in the fourth step, it is desirable to perform the crushing treatment of the In 4 Sn 3 O 12 composite oxide particles by a mechanical method. The crushing treatment method is not particularly limited as long as it breaks the aggregation of the primary particles of the composite oxide particles and can pulverize the partially grown particles to form fine particles, but considering the crushing efficiency, it is like a jet mill. A media-mediated crushing apparatus such as a self-pulverized impact crusher or a bead mill is preferred. By the steps described above, In 4 Sn 3 O 12 composite oxide fine particles for solar shading that have high visible light transmittance and exhibit high solar shading performance can be obtained.
Next, a solar shading film-forming coating solution according to the above-described means using the solar shading In 4 Sn 3 O 12 composite oxide fine particles and a manufacturing method thereof will be described in detail.
The coating solution for forming a solar shading film according to the above means is obtained by dispersing the In 4 Sn 3 O 12 composite oxide particles in a solvent as a solar shading material. The dispersion solvent is not particularly limited, and can be appropriately selected according to coating conditions and coating environment. Furthermore, when an inorganic binder or a resin binder is contained in the coating solution for forming a solar shading film, it can be appropriately selected according to the binder. Specific examples include alcohols such as water, ethanol, propanol, butanol, isopropyl alcohol, isobutyl alcohol, diacetone alcohol, ethers such as methyl ether, ethyl ether, propyl ether, esters, acetone, methyl ethyl ketone, diethyl ketone, Various organic solvents such as ketones such as cyclohexanone and isobutyl ketone can be used, and the pH may be adjusted by adding acid or alkali as necessary. Furthermore, various surfactants and coupling agents can of course be added to further improve the dispersion stability of the fine particles in the coating solution.
Moreover, the kind of the inorganic binder and the resin binder that are blended into the coating solution for forming the solar shading film as needed is not particularly limited. For example, a silicon, zirconium, titanium, or aluminum metal alkoxide, a partially hydrolyzed polycondensation product thereof, or an organosilazane can be used as an inorganic binder. A thermoplastic resin such as an acrylic resin or a heat such as an epoxy resin can be used as a resin binder. A curable resin can be used.
The method for dispersing In 4 Sn 3 O 12 composite oxide particles at the time of producing the coating solution for forming a solar shading film is not particularly limited as long as it is a method of uniformly dispersing in a solvent. For example, a bead mill, ball mill, sand mill , Paint shaker, ultrasonic homogenizer and the like.
The electroconductivity of the film when the solar radiation shielding film is formed using this coating solution can be obtained by the movement of electrons along the conductive path passing through the contact portion of the In 4 Sn 3 O 12 composite oxide fine particles. Therefore, by adjusting the amount of, for example, a surfactant or a coupling agent in the coating solution for forming the solar shading film, the conductive path can be partially cut, and the conductivity of the film is 10 6 Ω / □. It is easy to reduce to the above surface resistance value. The conductivity of the solar shading film can also be controlled by adjusting the content of the inorganic binder or the resin binder in the solar shading film forming coating solution.
Next, the solar shading film formed with the solar shading film forming coating solution will be described.
The solar shading film according to the above means is formed by applying the solar shading film forming coating liquid, which is the above-described In 4 Sn 3 O 12 composite oxide fine particle dispersed coating liquid, onto a transparent substrate. The solar shading film is a film formed by depositing the above In 4 Sn 3 O 12 composite oxide fine particles at a high density, and the resin binder or inorganic binder contained in the coating liquid is In 4 after coating and curing. There is an effect of improving the adhesion of the Sn 3 O 12 composite oxide fine particles to the substrate and further improving the hardness of the film.
On the solar shading film obtained in this way, a film made of a metal alkoxide of silicon, zirconium, titanium, or aluminum, or a partially hydrolyzed polycondensation product thereof is applied as a second layer, and silicon, zirconium, By forming an oxide film of titanium or aluminum, it is possible to further improve the binding force to the base material of the film mainly composed of In 4 Sn 3 O 12 composite oxide fine particles, the hardness of the film, and the weather resistance. it can.
Further, the film to be obtained using a coating solution containing no resin binder or an inorganic binder in the coating solution, only the In 4 Sn 3 O 12 composite oxide fine particles is the film structure deposited on a substrate. Although the solar radiation shielding effect is exhibited as it is, a coating liquid containing an inorganic binder or a resin binder such as a metal alkoxide of silicon, zirconium, titanium, or aluminum or a partially hydrolyzed polycondensation product thereof is further coated on this film. It is preferable to form a multilayer film. By doing so, the coating liquid component is formed to fill the gap where the first layer of In 4 Sn 3 O 12 composite oxide fine particles are deposited, so that the haze of the film is further reduced and the visible light transmittance is reduced. And the binding property of the particles to the base material is improved.
Further, the coating method for the solar shading film-forming coating solution according to the above means and the coating method for forming a film used in the present invention are not particularly limited. For example, spin coating method, bar coating method, spray coating method, dip coating Any method may be used as long as the processing liquid can be applied flatly, thinly and uniformly, such as a coating method, a screen printing method, a roll coating method, or a flow coating method.
Further, when the coating solution for forming a solar shading film according to the above means contains a metal alkoxide of silicon, zirconium, titanium, or aluminum and a hydrolysis polymer thereof as an inorganic binder, the substrate heating temperature after coating of the coating solution is Below 100 ° C., the polymerization reaction of the alkoxide or its hydrolysis polymer contained in the coating film often remains incomplete, and water and organic solvents remain in the film and are visible in the solar shading film after heating. It may cause a decrease in light transmittance. Therefore, the substrate heating temperature after coating is preferably 100 ° C. or higher, more preferably heating at the boiling point of the solvent in the coating solution. On the other hand, when the resin binder is contained in the solar shading film-forming coating solution, it may be cured according to the respective curing method. For example, if it is an ultraviolet curable resin, it may be irradiated with ultraviolet rays as appropriate, and if it is a room temperature curable resin, it may be left as it is after application. By using the configuration, application to an existing window glass or the like can be performed on site.
In the solar shading film according to the present invention, since the In 4 Sn 3 O 12 composite oxide fine particles are dispersed, the crystal is densely filled like an oxide thin film manufactured by a physical film forming method. Compared with a film having a mirror-like surface, there is less reflection in the visible light region, and it can be avoided that it has a glaring appearance. On the other hand, since it has a plasma frequency in the near-infrared region, the resulting plasma reflection is increased in the near-infrared region. Further, when it is desired to suppress reflection in the visible light region, a film having a low refractive index such as SiO 2 or MgF 2 is formed on the In 4 Sn 3 O 12 fine particle dispersion film, thereby making it easy to observe A multilayer film having a reflectance of 1% or less can be obtained.
In addition, in order to provide further ultraviolet shielding function of the solar shading material, coating liquid and solar shading film according to the above means, fine particles such as inorganic titanium oxide, zinc oxide, cerium oxide, organic benzophenone, benzotriazole, etc. One or more of these may be added.
As described above, according to the above means, a stable In 4 Sn 3 O 12 composite oxide as an inexpensive material with a reduced indium content has been established by establishing powder characteristics and a manufacturing method that exhibit functions for solar radiation shielding. It is possible to produce a coating solution for forming a solar shading film using a coating film, and to produce a coating film exhibiting a solar shading effect by using the coating solution. Since In 4 Sn 3 O 12 composite oxide fine particles are inorganic materials, they have extremely high weather resistance as compared with organic materials. For example, even if they are used in areas exposed to sunlight (ultraviolet rays), the deterioration of color and various functions will not occur. Almost does not occur.
In addition, the coating liquid according to the above means does not form the desired solar radiation shielding film by utilizing the decomposition or chemical reaction of the coating components by the heat at the time of baking. Can be formed.

以下、本発明についてその実施例を挙げさらに具体的に説明する。なお、以下においては、日射遮蔽材料粉末の結晶構造は、粉末X線回折(CuKα、理学電機(株)製Rotaflex RAD−γVB)によって測定した。また、日射遮蔽膜形成用塗布液を用いて得られた膜の可視光透過率および日射透過率は、日立製作所(株)製の分光光度計U−4000を用いて測定し、JIS R 3106に基づいて算出した。膜評価としては、バーコーターで成膜して得られた膜の可視光透過率および日射透過率を測定した。  Hereinafter, the present invention will be described more specifically with reference to examples. In the following, the crystal structure of the solar shading material powder was measured by powder X-ray diffraction (CuKα, Rotaflex RAD-γVB manufactured by Rigaku Corporation). Moreover, the visible light transmittance and solar transmittance of the film obtained using the coating solution for forming the solar shading film were measured using a spectrophotometer U-4000 manufactured by Hitachi, Ltd., and JIS R 3106 Based on the calculation. For film evaluation, the visible light transmittance and solar transmittance of the film obtained by film formation with a bar coater were measured.

10%In(NO・3HO水溶液500gと10%SnCl・5HO水溶液370.6g(Sn39.1重量%相当)との混合水溶液を20℃制御下で攪拌しながら、15%NHHCO水溶液450gを17分かけて滴下し、滴下後さらに10分間攪拌して沈殿物を熟成した。
得られた沈殿物に対し、デカンテーションにて1回につき2000mlのイオン交換水での洗浄を繰り返し行い、上澄み液の電導度が1mS/cm以下の時点で洗浄を終了した。その後105℃で沈殿物を乾燥した。なお、乾燥物中の残留Cl量は0.07%であった。次に、粉砕処理を施した該乾燥物を炉内に設置し、雰囲気を0.02Paまで真空引きしたあと窒素ガスで1気圧まで置換し、窒素を供給しながら1500℃で3時間焼成して酸化物微粒子Aを得た。
この複合酸化物微粒子A粉末は、X線回折によりInSn12と同定された。
また、この微粒子Aの粉体色はLが45.0075、aが−1.9325、bが−5.6953であった。
次に、該複合酸化物微粒子A30重量%、イソブチルアルコール56重量%、分散剤14重量%を混合し、0.15mmΦのガラスビーズと共に容器に充填した後、1時間のビーズミル分散処理を施してInSn12複合酸化物微粒子分散液を調製した。該分散液67.5重量%、バインダーとしてメチルイソブチルケトンに溶解したアクリル樹脂溶液27.5重量%および硬化剤5重量%を含む塗布液を、バーコーターで100mm×100mm×3mmのソーダライムガラス基板に塗布した後、180℃で1時間焼成して日射遮蔽膜aを得た。日射遮蔽膜aの可視光透過率70%のときの日射透過率は、58.0%であった。
[実施例2〜実施例4および比較例1〜比較例4]
(実施例2)焼成条件を、1450℃で3時間とした以外は実施例1と同様にして、複合酸化物微粒子Bを製造し、さらに実施例1と同様にして日射遮蔽膜bを形成した。
(実施例3)焼成条件の雰囲気をN、0.12MPaの加圧下とした以外は実施例1と同様にして複合酸化物微粒子Cを製造し、さらに実施例1と同様にして日射遮蔽膜cを形成した。
(実施例4)実施例1の乾燥物を炉内に設置し、大気中1200℃で1時間焼成した後、炉内雰囲気を0.02Paまで真空引きし、さらに窒素ガスで1気圧まで置換してから1500℃で3時間焼成した以外は実施例1と同様にして複合酸化物微粒子Dを製造し、さらに実施例1と同様にして日射遮蔽膜dを形成した。
(比較例1)焼成条件を、1100℃で1時間とした以外は実施例1と同様にして、複合酸化物微粒子Eを製造した。ところが、微粒子EのX線回折パターンを解析するとIn相およびSnO相のみであったため、日射遮蔽膜eは形成しなかった。
(比較例2)焼成条件を、大気中1400℃で1時間焼成した後、9%H/N雰囲気下380℃で30分とした以外は実施例1と同様にして、複合酸化物微粒子Fを製造し、さらに実施例1と同様にして日射遮蔽膜fを形成した。
(比較例3)焼成条件を、大気中1400℃で1時間焼成した後、9%H/N雰囲気下430℃で30分とした以外は実施例1と同様にして、複合酸化物微粒子Gを製造し、さらに実施例1と同様にして日射遮蔽膜gを形成した。
(比較例4)In粉体とSnO粉体とを2:3のモル比で物理混合した混合粉体を製造し、当該混合粉体を炉内に設置した。そして、炉内の雰囲気を0.02Paまで真空引きしたあと窒素ガスで1気圧まで置換し、窒素を供給しながら1500℃で3時間焼成して、複合酸化物微粒子Hを製造し、さらに実施例1と同様にして日射遮蔽膜hを形成した。
第1図は、上述した実施例および比較例における、複合酸化物微粒子の性状および日射遮蔽膜の膜特性を表にして示したものである。第1図に示す実施例の複合酸化物微粒子B(実施例2)〜D(実施例4)はX線回折によりInSn12と同定され、その粉体色はLが30〜70、aが−9.0〜−0.1、bが−15.0〜4.0の範囲内で、平均粒径は400nm以下であった。また、可視光透過率70%のときの日射透過率はいずれも59%以下であった。
一方、微粒子E(比較例1)〜H(比較例4)の平均粒径は、いずれも400nm以下であったが、比較例1に係る微粒子E、および比較例4に係る微粒子HのX線回折パターンを解析すると、比較例1はIn相およびSnO相のみであり、比較例4はIn相、SnO相およびInSn12相の混合相であった。また、比較例2の微粒子Fの粉体色はLとbが本発明の範囲外であり、比較例3の微粒子Gの粉体色はbが本発明の範囲外であり、可視光透過率70%のときの日射透過率はいずれも60%以上であった。
While stirring a mixed aqueous solution of 500 g of 10% In (NO 3 ) 3 · 3H 2 O aqueous solution and 370.6 g of 10% SnCl 4 · 5H 2 O aqueous solution (equivalent to Sn 39.1% by weight) at 20 ° C., 15 450 g of a% NH 4 HCO 3 aqueous solution was added dropwise over 17 minutes, and after the addition, the mixture was further stirred for 10 minutes to age the precipitate.
The obtained precipitate was repeatedly washed with 2,000 ml of ion-exchanged water at a time by decantation, and the washing was terminated when the supernatant liquid had a conductivity of 1 mS / cm or less. Thereafter, the precipitate was dried at 105 ° C. The residual Cl content in the dried product was 0.07%. Next, the pulverized dried product is placed in a furnace, and the atmosphere is evacuated to 0.02 Pa, then replaced with nitrogen gas to 1 atm, and baked at 1500 ° C. for 3 hours while supplying nitrogen. Oxide fine particles A were obtained.
This composite oxide fine particle A powder was identified as In 4 Sn 3 O 12 by X-ray diffraction.
The powder color of the fine particles A was L * of 45.0075, a * of 1.9325, and b * of −5.6953.
Next, 30% by weight of the composite oxide fine particles A, 56% by weight of isobutyl alcohol, and 14% by weight of a dispersant are mixed and filled into a container together with 0.15 mmφ glass beads, and then subjected to a bead mill dispersion treatment for 1 hour. A 4 Sn 3 O 12 composite oxide fine particle dispersion was prepared. A soda lime glass substrate having a size of 100 mm × 100 mm × 3 mm was applied to a coating solution containing 67.5 wt% of the dispersion, 27.5 wt% of an acrylic resin solution dissolved in methyl isobutyl ketone as a binder, and 5 wt% of a curing agent. After being applied to the film, it was baked at 180 ° C. for 1 hour to obtain a solar radiation shielding film a. The solar radiation transmittance was 58.0% when the visible light transmittance of the solar light shielding film a was 70%.
[Examples 2 to 4 and Comparative Examples 1 to 4]
Example 2 A composite oxide fine particle B was produced in the same manner as in Example 1 except that the firing conditions were changed to 1450 ° C. for 3 hours, and a solar radiation shielding film b was formed in the same manner as in Example 1. .
(Example 3) A composite oxide fine particle C was produced in the same manner as in Example 1 except that the atmosphere of the firing conditions was N 2 and under a pressure of 0.12 MPa. Further, in the same manner as in Example 1, the solar radiation shielding film was produced. c was formed.
(Example 4) The dried product of Example 1 was placed in a furnace and baked at 1200 ° C in the air for 1 hour, and then the atmosphere in the furnace was evacuated to 0.02 Pa and further replaced with nitrogen gas to 1 atm. Thereafter, composite oxide fine particles D were produced in the same manner as in Example 1 except that the calcination was performed at 1500 ° C. for 3 hours, and a solar radiation shielding film d was formed in the same manner as in Example 1.
Comparative Example 1 Composite oxide fine particles E were produced in the same manner as in Example 1 except that the firing condition was 1100 ° C. for 1 hour. However, when the X-ray diffraction pattern of the fine particles E was analyzed, only the In 2 O 3 phase and the SnO 2 phase were found, so the solar shading film e was not formed.
(Comparative Example 2) Fine composite oxide particles as in Example 1 except that the firing conditions were 1 hour at 1400 ° C in the air and then 30 minutes at 380 ° C in a 9% H 2 / N 2 atmosphere. F was manufactured, and further a solar shading film f was formed in the same manner as in Example 1.
(Comparative Example 3) Composite oxide fine particles in the same manner as in Example 1 except that the firing conditions were fired at 1400 ° C in the air for 1 hour and then 30 minutes at 430 ° C in a 9% H 2 / N 2 atmosphere. G was produced, and a solar shading film g was formed in the same manner as in Example 1.
Comparative Example 4 A mixed powder obtained by physically mixing In 2 O 3 powder and SnO 2 powder at a molar ratio of 2: 3 was manufactured, and the mixed powder was placed in a furnace. Then, the atmosphere in the furnace was evacuated to 0.02 Pa, replaced with nitrogen gas to 1 atm, and fired at 1500 ° C. for 3 hours while supplying nitrogen to produce composite oxide fine particles H. Further Examples The solar shading film h was formed in the same manner as in 1.
FIG. 1 is a table showing the properties of the composite oxide fine particles and the film characteristics of the solar radiation shielding film in the above-described Examples and Comparative Examples. The composite oxide fine particles B (Example 2) to D (Example 4) of the example shown in FIG. 1 were identified as In 4 Sn 3 O 12 by X-ray diffraction, and the powder color of L * was 30 to 70, a * was −9.0 to −0.1, b * was within the range of −15.0 to 4.0, and the average particle size was 400 nm or less. Further, the solar radiation transmittance when the visible light transmittance was 70% was 59% or less.
On the other hand, the average particle diameters of the fine particles E (Comparative Example 1) to H (Comparative Example 4) were all 400 nm or less, but the X-rays of the fine particles E according to Comparative Example 1 and the fine particles H according to Comparative Example 4 were used. When the diffraction pattern was analyzed, Comparative Example 1 was only an In 2 O 3 phase and an SnO 2 phase, and Comparative Example 4 was a mixed phase of In 2 O 3 phase, SnO 2 phase, and In 4 Sn 3 O 12 phase. . In addition, the powder color of the fine particles F of Comparative Example 2 is outside the scope of the present invention for L * and b * , and the powder color of the fine particles G of Comparative Example 3 is visible outside the scope of the present invention, b *. The solar radiation transmittance was 60% or more when the light transmittance was 70%.

実施例5〜実施例9Example 5 to Example 9

(実施例5)実施例1における沈殿物生成のための混合溶液調製において、さらに4.19%SbClのエタノール溶液79.3gを混合した以外は、実施例1と同様にして複合酸化物微粒子Iを製造し、さらに実施例1と同様にして日射遮蔽膜iを形成した。
(実施例6)実施例1における沈殿物生成のための混合溶液調製において、さらに1.02gのSnFを混合した以外は、実施例1と同様にして複合酸化物微粒子Jを製造し、さらに実施例1と同様にして日射遮蔽膜jを形成した。
(実施例7)実施例1における沈殿物生成のための混合溶液調製において、さらに25%[(CHCHO]Geのエタノール溶液6.8gを混合した以外は、実施例1と同様にして複合酸化物微粒子Kを製造し、さらに実施例1と同様にして日射遮蔽膜kを形成した。
(実施例8)実施例1における沈殿物生成のための混合溶液調製において、さらに60%HReO溶液2.6gを混合した以外は、実施例1と同様にして複合酸化物微粒子Lを製造し、さらに実施例1と同様にして日射遮蔽膜lを形成した。
(実施例9)実施例1における沈殿物生成のための混合溶液調製において、さらに10%TaClのエタノール溶液7.9gを混合した以外は、実施例1と同様にして複合酸化物微粒子Mを製造し、さらに実施例1と同様にして日射遮蔽膜mを形成した。
第1図には、上述した実施例における、複合酸化物微粒子の性状および日射遮蔽膜の膜特性等を表にして示した。第1図に示す実施例の複合酸化物微粒子I(実施例5)〜M(実施例9)はX線回折によりInSn12と同定され、その粉体色はLが30〜70、aが−9.0〜−0.1、bが−15.0〜4.0の範囲内で、平均粒径は400nm以下であった。また、可視光透過率70%のときの日射透過率はいずれも59%以下であった。
(Example 5) The composite oxide fine particles were prepared in the same manner as in Example 1 except that in the preparation of the mixed solution for producing the precipitate in Example 1, an ethanol solution of 4.19% SbCl 3 was further mixed with 79.3 g. I was produced, and a solar shading film i was formed in the same manner as in Example 1.
(Example 6) A composite oxide fine particle J was produced in the same manner as in Example 1, except that 1.02 g of SnF 4 was further mixed in the preparation of the mixed solution for producing the precipitate in Example 1, and A solar shading film j was formed in the same manner as in Example 1.
(Example 7) Same as Example 1 except that 6.8 g of ethanol solution of 25% [(CH 3 ) 2 CHO] 4 Ge was further mixed in the preparation of the mixed solution for producing the precipitate in Example 1. Then, composite oxide fine particles K were produced, and a solar radiation shielding film k was formed in the same manner as in Example 1.
(Example 8) A composite oxide fine particle L was produced in the same manner as in Example 1 except that in the preparation of the mixed solution for producing precipitates in Example 1, 2.6 g of 60% HReO 4 solution was further mixed. Further, a solar radiation shielding film 1 was formed in the same manner as in Example 1.
(Example 9) In the mixed solution preparation for producing a precipitate in Example 1, the composite oxide fine particles M were prepared in the same manner as in Example 1 except that 7.9 g of an ethanol solution of 10% TaCl 5 was further mixed. Then, a solar shading film m was formed in the same manner as in Example 1.
FIG. 1 is a table showing the properties of the composite oxide fine particles, the film characteristics of the solar shading film, and the like in the above-described embodiment. The composite oxide fine particles I (Example 5) to M (Example 9) of the example shown in FIG. 1 were identified as In 4 Sn 3 O 12 by X-ray diffraction, and the powder color of L * was 30 to 70, a * was −9.0 to −0.1, b * was within the range of −15.0 to 4.0, and the average particle size was 400 nm or less. Further, the solar radiation transmittance when the visible light transmittance was 70% was 59% or less.

平均1次粒子径67nmの六ホウ化ランタン微粒子0.09重量%、実施例1のInSn12複合酸化物微粒子A16.92重量%、常温硬化性のバインダー22.7重量%、トルエン1.3重量%、イソブチルアルコール9.8重量%、メチルイソブチルケトン34.9重量%および分散剤14.3重量%からなる分散液を、バーコーターで100mm×100mm×約2mm厚のグリーンガラス基板に塗布した後、180℃で1時間焼成して日射遮蔽膜nを得た。日射遮蔽膜nにおいて可視光透過率78%のときの日射透過率は50.7%であった。これを第1図に示す。0.09% by weight of lanthanum hexaboride fine particles having an average primary particle size of 67 nm, 16.92% by weight of In 4 Sn 3 O 12 composite oxide fine particles A of Example 1, 22.7% by weight of a room temperature curable binder, toluene A green glass substrate having a thickness of 100 mm × 100 mm × about 2 mm in thickness of a dispersion comprising 1.3 wt%, isobutyl alcohol 9.8 wt%, methyl isobutyl ketone 34.9 wt%, and dispersant 14.3 wt% After being applied to the film, it was baked at 180 ° C. for 1 hour to obtain a solar shading film n. In the solar radiation shielding film n, the solar radiation transmittance was 50.7% when the visible light transmittance was 78%. This is shown in FIG.

実施例1で得た日射遮蔽ガラス上の日射遮蔽膜a面が内側になるようにして、もう一方のクリアーガラス基板の間に0.76mm厚の中間膜用ポリビニルブチラールで挟み込み、80℃に加熱して仮装着した後、140℃で14Kg/cmの条件でオートクレーブによる本接着を行って合わせガラスoを作製した。合わせガラスoにおいて可視光透過率72%のときの日射透過率は44.3%であった。これを第1図に示す。The solar radiation shielding film a surface on the solar radiation shielding glass obtained in Example 1 was sandwiched between the other clear glass substrates with 0.76 mm thick polyvinyl butyral for interlayer film, and heated to 80 ° C. Then, after temporarily mounting, main bonding by an autoclave was performed at 140 ° C. under the condition of 14 kg / cm 2 to prepare a laminated glass o. In the laminated glass o, the solar radiation transmittance was 44.3% when the visible light transmittance was 72%. This is shown in FIG.

実施例1にて製造したInSn12複合酸化物微粒子分散液を、ポリビニルブチラールに添加し、可塑剤としてトリエチレングリコール−ジ−2−エチルブチレートを加え、InSn12複合酸化物微粒子Aの濃度が0.20重量%、実施例5で用いた六ホウ化ランタン微粒子濃度が0.0041重量%、ポリビニルブチラール濃度が71.1重量%となる中間膜用組成物を調製した。該中間膜用組成物をロールで混練して0.76mm厚のシート状に成形して中間膜を作製した。この中間膜を100mm×100mm×約2mm厚のグリーンガラス基板2枚の間に挟み込み、80℃に加熱して仮接着した後、140℃、14Kg/cmのオートクレーブにより本接着を行い、合わせガラスpを作製した。合わせガラスpにおいて可視光透過率74%のときの日射透過率は44.7%であった。これを第1図に示す。In 4 Sn 3 O 12 composite oxide fine particle dispersion produced in Example 1 is added to polyvinyl butyral, triethylene glycol-di-2-ethylbutyrate is added as a plasticizer, and In 4 Sn 3 O 12 is added. An intermediate film composition having a composite oxide fine particle A concentration of 0.20% by weight, a lanthanum hexaboride fine particle concentration of 0.0041% by weight, and a polyvinyl butyral concentration of 71.1% by weight used in Example 5. Prepared. The intermediate film composition was kneaded with a roll and formed into a 0.76 mm thick sheet to prepare an intermediate film. This intermediate film is sandwiched between two 100 mm × 100 mm × about 2 mm thick green glass substrates, heated to 80 ° C. and temporarily bonded, then subjected to main bonding by an autoclave at 140 ° C. and 14 kg / cm 2 , and laminated glass p was produced. In the laminated glass p, the solar radiation transmittance was 44.7% when the visible light transmittance was 74%. This is shown in FIG.

Claims (14)

微粒子の平均1次粒子径が400nm以下であり、かつ、L表色系における粉体色がLは30〜70、aは−9.0〜−0.1、bは−15.0〜4.0であることを特徴とする日射遮蔽用InSn12複合酸化物微粒子。The average primary particle diameter of the fine particles is 400 nm or less, and the powder color in the L * a * b * color system is L * is 30 to 70, a * is −9.0 to −0.1, b In 4 Sn 3 O 12 composite oxide fine particles for solar radiation shielding, characterized in that -15.0 to 4.0. Sb、V、Nb、Ta、W、Zr、F、Zn、Al、Ti、Pb、Ga、Re、Ru、PおよびGeから選択された少なくとも1種の元素を含むことを特徴とする請求の範囲第1項記載の日射遮蔽用InSn12複合酸化物微粒子。It contains at least one element selected from Sb, V, Nb, Ta, W, Zr, F, Zn, Al, Ti, Pb, Ga, Re, Ru, P, and Ge. In 4 Sn 3 O 12 composite oxide fine particles for solar radiation shielding according to item 1. 錫化合物及びインジウム化合物を含有した原料混合溶液とアルカリ溶液とを反応させると共に継続的に攪拌しながら熟成させて沈殿物を得る工程と、
前記沈殿物をデカンテーションにより洗浄した後、乾燥してインジウムと錫とから成る水酸化物又は水和物粉末を得る工程と、
前記水酸化物又は水和物粉末を、不活性ガス若しくは不活性ガスと還元性ガスとの混合ガス雰囲気下で、1200℃以上で焼成してInSn12複合酸化物微粒子を得る工程と、
を具備することを特徴とする日射遮蔽用InSn12複合酸化物微粒子の製造方法。
A step of reacting a raw material mixed solution containing a tin compound and an indium compound with an alkali solution and aging with continuous stirring to obtain a precipitate;
Washing the precipitate by decantation and drying to obtain a hydroxide or hydrate powder comprising indium and tin;
A step of calcining the hydroxide or hydrate powder at 1200 ° C. or higher in an inert gas or a mixed gas atmosphere of an inert gas and a reducing gas to obtain In 4 Sn 3 O 12 composite oxide fine particles. When,
Method of manufacturing a solar radiation shielding In 4 Sn 3 O 12 composite oxide fine particles, characterized by comprising.
錫化合物と、インジウム化合物と、Sb、V、Nb、Ta、W、Zr、F、Zn、Al、Ti、Pb、Ga、Re、Ru、PおよびGeから選択された少なくとも1種の元素を含む化合物とを含有した原料混合溶液と、アルカリ溶液と、を反応させると共に継続的に攪拌しながら熟成させて沈殿物を得る第1の工程と、
前記第1の工程で得られた沈殿物をデカンテーションにより洗浄した後、乾燥して、インジウムと、錫と、Sb、V、Nb、Ta、W、Zr、F、Zn、Al、Ti、Pb、Ga、Re、Ru、PおよびGeから選択された少なくとも1種の元素と、を含む水酸化物又は水和物粉末を得る第2の工程と、
前記第2の工程で得られた水酸化物又は水和物粉末を、不活性ガス若しくは不活性ガスと還元性ガスとの混合ガス雰囲気下において1200℃以上で焼成して、Sb、V、Nb、Ta、W、Zr、F、Zn、Al、Ti、Pb、Ga、Re、Ru、PおよびGeから選択された少なくとも1種の元素を含むInSn12複合酸化物微粒子を得る第3の工程と、
を具備することを特徴とする日射遮蔽用InSn12複合酸化物微粒子の製造方法。
A tin compound, an indium compound, and at least one element selected from Sb, V, Nb, Ta, W, Zr, F, Zn, Al, Ti, Pb, Ga, Re, Ru, P, and Ge A first step of reacting a raw material mixed solution containing a compound with an alkaline solution and aging with continuous stirring to obtain a precipitate;
The precipitate obtained in the first step is washed by decantation and then dried, and then indium, tin, Sb, V, Nb, Ta, W, Zr, F, Zn, Al, Ti, Pb A second step of obtaining a hydroxide or hydrate powder comprising, at least one element selected from Ga, Re, Ru, P and Ge;
The hydroxide or hydrate powder obtained in the second step is baked at 1200 ° C. or higher in an inert gas or a mixed gas atmosphere of an inert gas and a reducing gas to obtain Sb, V, Nb. In 4 Sn 3 O 12 composite oxide microparticles containing at least one element selected from Ta, W, Zr, F, Zn, Al, Ti, Pb, Ga, Re, Ru, P and Ge 3 steps,
Method of manufacturing a solar radiation shielding In 4 Sn 3 O 12 composite oxide fine particles, characterized by comprising.
前記InSn12複合酸化物微粒子をメカニカル法によって解砕する工程を具備することを特徴とする請求の範囲第3項または第4項記載の日射遮蔽用InSn12複合酸化物微粒子の製造方法。Wherein an In 4 Sn 3 O 12 composite oxide microparticles solutions claim 3, characterized in that it comprises a step of grinding or the fourth term sunlight shielding an In 4 Sn 3 O 12 composite oxide according by a mechanical method Method for manufacturing fine particles. 前記原料混合溶液とアルカリ溶液とを反応させた後の溶液のpHが4.0〜9.0であることを特徴とする請求の範囲第3項〜第5項のいずれか1項に記載の日射遮蔽用InSn12複合酸化物微粒子の製造方法。The pH of the solution after reacting the raw material mixed solution and the alkali solution is 4.0 to 9.0, according to any one of claims 3 to 5, A method for producing In 4 Sn 3 O 12 composite oxide fine particles for solar radiation shielding. 前記沈殿物をデカンテーションする時に、洗浄液の電導度が1mS/cm以下になるまで行うことを特徴とする請求の範囲第3項〜第6項のいずれか1項に記載の日射遮蔽用InSn12複合酸化物微粒子の製造方法。The solar radiation shielding In 4 according to any one of claims 3 to 6, wherein the precipitate is decanted until the conductivity of the cleaning liquid becomes 1 mS / cm or less. A method for producing Sn 3 O 12 composite oxide fine particles. 溶媒中に日射遮蔽材料が分散している日射遮蔽膜形成用塗布液において、前記日射遮蔽材料が請求の範囲第1項または第2項に記載の日射遮蔽用InSn12複合酸化物微粒子を含有しているものであることを特徴とする日射遮蔽膜形成用塗布液。The solar radiation shielding In 4 Sn 3 O 12 composite oxide according to claim 1 or 2, wherein the solar radiation shielding material is a solar radiation shielding film forming coating solution in which a solar radiation shielding material is dispersed in a solvent. A coating solution for forming a solar shading film, characterized by containing fine particles. ホウ化物微粒子、アンチモン錫酸化物微粒子、タングステン酸化物微粒子から選択された少なくとも1種の微粒子が添加されていることを特徴とする請求の範囲第8項記載の日射遮蔽膜形成用塗布液。9. The coating solution for forming a solar shading film according to claim 8, wherein at least one kind of fine particles selected from boride fine particles, antimony tin oxide fine particles, and tungsten oxide fine particles is added. 無機バインダー若しくは樹脂バインダーが含まれていることを特徴とする請求の範囲第8項または第9項記載の日射遮蔽膜形成用塗布液。The coating solution for forming a solar shading film according to claim 8 or 9, wherein an inorganic binder or a resin binder is contained. 請求の範囲第8項〜第10項のいずれか1項に記載の日射遮蔽膜形成用塗布液を用いて形成されたことを特徴とする日射遮蔽膜。A solar shading film formed by using the solar shading film forming coating solution according to any one of claims 8 to 10. ガラスまたはプラスチック上に、請求の範囲第11記載の日射遮蔽膜が形成されたことを特徴とする日射遮蔽用基材。A solar radiation shielding base material, wherein the solar radiation shielding film according to claim 11 is formed on glass or plastic. 請求の範囲第1項または第2項に記載の日射遮蔽用InSn12複合酸化物微粒子または請求の範囲第8項〜第10項のいずれか1項に記載の日射遮蔽膜形成用塗布液を、基材形成用母材に練り込み、板状、シート状、またはフィルム状に形成したことを特徴とする日射遮蔽用基材。The In 4 Sn 3 O 12 composite oxide fine particles for solar radiation shielding according to claim 1 or 2, or for the formation of a solar radiation shielding film according to any one of claims 8 to 10. A solar radiation shielding base material, wherein the coating liquid is kneaded into a base material forming base material and formed into a plate shape, a sheet shape, or a film shape. 請求の範囲第12項記載の日射遮蔽用基材の日射遮蔽膜を挟み込むように他の基材を前記日射遮蔽用基材に積層させるか、または、請求の範囲第13項記載の日射遮蔽用基材を他の基材によって挟み込んで積層させたことを特徴とする日射遮蔽用基材。The solar radiation shielding substrate according to claim 12 is laminated with the solar radiation shielding substrate so as to sandwich the solar radiation shielding film of the solar radiation shielding substrate according to claim 12, or the solar radiation shielding substrate according to claim 13. A solar radiation shielding base material characterized in that the base material is sandwiched and laminated by another base material.
JP2004564540A 2002-12-27 2003-12-26 In4Sn3O12 composite oxide fine particles for solar radiation shielding, method for producing the same, coating liquid for solar radiation shielding film formation, solar radiation shielding film, and solar radiation shielding substrate Expired - Fee Related JP4120887B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002380369 2002-12-27
JP2002380369 2002-12-27
PCT/JP2003/016886 WO2004060807A1 (en) 2002-12-27 2003-12-26 FINE In4Sn3O12 COMPOSITE OXIDE PARTICLE FOR SOLAR RADIATION SHIELDING, PROCESS FOR PRODUCING THE SAME, COATING FLUID FOR FORMING SOLAR RADIATION SHIELDING FILM, SOLAR RADIATION SHIELDING FILM, AND SUBSTRATE FOR SOLAR RADIATION SHIELDING

Publications (2)

Publication Number Publication Date
JPWO2004060807A1 JPWO2004060807A1 (en) 2006-05-11
JP4120887B2 true JP4120887B2 (en) 2008-07-16

Family

ID=32708433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004564540A Expired - Fee Related JP4120887B2 (en) 2002-12-27 2003-12-26 In4Sn3O12 composite oxide fine particles for solar radiation shielding, method for producing the same, coating liquid for solar radiation shielding film formation, solar radiation shielding film, and solar radiation shielding substrate

Country Status (3)

Country Link
JP (1) JP4120887B2 (en)
AU (1) AU2003292677A1 (en)
WO (1) WO2004060807A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7101477B2 (en) 2017-12-27 2022-07-15 株式会社Lixil Double sash

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006112370A1 (en) * 2005-04-15 2008-12-11 旭硝子株式会社 Glass plate with infrared shielding layer and method for producing the same
JP2007119289A (en) * 2005-10-27 2007-05-17 Idemitsu Kosan Co Ltd Oxide particle, sintered compact and their producing methods
JP2008115025A (en) * 2006-11-01 2008-05-22 Idemitsu Kosan Co Ltd Ito fine particles comprising small amount of indium base and production process
JP5559483B2 (en) * 2009-03-17 2014-07-23 株式会社ブリヂストン Heat ray shielding glass and multilayer glass using the same
JP5559486B2 (en) * 2009-03-23 2014-07-23 株式会社ブリヂストン Heat ray shielding glass and multilayer glass using the same
JP6111538B2 (en) * 2012-06-12 2017-04-12 三菱マテリアル株式会社 Manufacturing method of ITO powder used for manufacturing ITO film
JP7177737B2 (en) * 2019-03-25 2022-11-24 日本化薬株式会社 METAL OXIDE, ITS DISPERSION, RESIN COMPOSITION, AND HEAT RAY SHIELDING FILM
CN109813741B (en) * 2019-04-03 2021-11-19 广西壮族自治区冶金产品质量检验站 Method for carrying out phase analysis on tin-doped indium oxide powder by adopting X-ray diffraction method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3367149B2 (en) * 1993-06-30 2003-01-14 三菱マテリアル株式会社 Method for producing conductive oxide powder
JP3122375B2 (en) * 1996-10-18 2001-01-09 富士チタン工業株式会社 Infrared shielding material
JP4253907B2 (en) * 1999-03-31 2009-04-15 住友化学株式会社 Method for producing indium oxide-tin oxide powder
JP2002201027A (en) * 2000-11-02 2002-07-16 Sumitomo Metal Mining Co Ltd Ito microparticle for daylight screening, method for producing the same, and coating liquid and daylight screening film using the same
JP2002146229A (en) * 2000-11-10 2002-05-22 Sumitomo Metal Mining Co Ltd Method for treating fine indium-tin oxide particle for forming insolation-screening film and insolation- screening film
JP2002146228A (en) * 2000-11-10 2002-05-22 Sumitomo Metal Mining Co Ltd Method for treating fine indium-tin oxide particle for forming sunshine-screening film and sunshine-screening film
JP2003327429A (en) * 2002-05-14 2003-11-19 Sumitomo Metal Mining Co Ltd Fine particle for shielding solar radiation, coating solution for forming solar radiation shielding film containing the fine particle and solar radiation shielding film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7101477B2 (en) 2017-12-27 2022-07-15 株式会社Lixil Double sash

Also Published As

Publication number Publication date
WO2004060807A1 (en) 2004-07-22
JPWO2004060807A1 (en) 2006-05-11
AU2003292677A1 (en) 2004-07-29

Similar Documents

Publication Publication Date Title
JP4626284B2 (en) Method for producing tungsten oxide fine particles for forming solar shield, and tungsten oxide fine particles for forming solar shield
KR102371492B1 (en) Near-infrared shielding material fine particles, method for preparing the same, and near-infrared shielding material fine particle dispersion
KR102371493B1 (en) Near-infrared shielding material particle dispersion, near-infrared shielding body and laminated structure for near-infrared shielding, and manufacturing method thereof
JP4488623B2 (en) Suspension and powder preparation method based on indium tin oxide and use thereof
JP5070796B2 (en) Solar radiation shielding film forming coating solution, solar radiation shielding film, and substrate having solar radiation shielding function
JP2005226008A (en) Dispersion for forming solar radiation-shielding body, and solar radiation-shielding body and method for producing the same
JP3262098B2 (en) Heat ray shielding material, heat ray shielding equipment using the same, coating liquid and heat ray shielding film
JP4120887B2 (en) In4Sn3O12 composite oxide fine particles for solar radiation shielding, method for producing the same, coating liquid for solar radiation shielding film formation, solar radiation shielding film, and solar radiation shielding substrate
JP2008230954A (en) Manufacturing method for antimony-containing tin oxide fine particles for forming solar radiation shielding body, dispersion for forming solar radiation shielding body, solar radiation shielding body, and solar radiation shielding base material
JP2006010759A (en) Near-infrared shielding material fine particle dispersion, near-infrared shielding body, and method for adjusting color tone of visible light passing through the near-infrared shielding material
JP4182825B2 (en) Antimony tin oxide fine particles for sunscreen, dispersion for forming sunscreen using the same, sunscreen and transparent substrate for sunscreen
EP1967495B1 (en) Manufacturing method for antimony-containing tin oxide fine particles for forming solar radiation shielding body, dispersion for forming solar radiation shielding body, solar radiation sheilding body, and solar radiation shielding base material
JPH11263639A (en) Coating liquid for formation of heat ray shielding film, and heat ray shielding film
JP4487787B2 (en) Solar-shielding boride fine particles, solar-shielding-body-forming dispersion liquid and solar-light shielding body using the boride-fine particles, method for producing solar-shielding boride fine particles, and method for producing solar-shielding body-forming dispersion liquid
JP4941637B2 (en) Method for producing boride particles and boride particles
JP3915880B2 (en) Method for producing fine particles for solar radiation shielding film formation
JP4375531B2 (en) Method for producing boride fine particles
JP4200424B2 (en) Manufacturing method of solar shading material, coating liquid for forming solar shading film, solar shading film, and transparent base material for solar shading
JP4399707B2 (en) Method for producing boride fine particles for solar shading
JP2012082109A (en) Method for producing tungsten oxide fine particle for forming highly heat-resistant heat ray-shielding material, tungsten oxide fine particle for forming highly heat-resistant heat ray-shielding material and dispersion for forming highly heat-resistant heat ray-shielding material, and highly heat-resistant heat ray-shielding material
JP2017030989A (en) Dispersion for forming solar radiation shielding body and solar radiation shielding body using the same dispersion
JP4737419B2 (en) Boride particles, production method thereof, boride fine particle dispersion using the boride particles, and solar shield
JP2004284904A (en) Method of producing sunbeam shielding material, sunbeam shielding material, coating liquid for forming sunbeam shielding film, and sunbeam shielding film
JP2004210570A (en) METHOD OF MANUFACTURING SOLAR INSOLATION SHADING In4Sn3O12 MULTIPLE OXIDE FINE PARTICLE AND SOLAR INSOLATION SHADING In4Sn3O12 MULTIPLE OXIDE FINE PARTICLE
JP2017039880A (en) Infrared ray-shielding material fine particle and production method of the same, dispersion of infrared ray-shielding material fine particle and infrared shielding body manufactured from the dispersion

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080416

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4120887

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140509

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees