JPH11263639A - Coating liquid for formation of heat ray shielding film, and heat ray shielding film - Google Patents

Coating liquid for formation of heat ray shielding film, and heat ray shielding film

Info

Publication number
JPH11263639A
JPH11263639A JP10064903A JP6490398A JPH11263639A JP H11263639 A JPH11263639 A JP H11263639A JP 10064903 A JP10064903 A JP 10064903A JP 6490398 A JP6490398 A JP 6490398A JP H11263639 A JPH11263639 A JP H11263639A
Authority
JP
Japan
Prior art keywords
fine particles
heat ray
ray shielding
shielding film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10064903A
Other languages
Japanese (ja)
Other versions
JP3744188B2 (en
Inventor
Hiroko Kuno
裕子 久野
Hiromitsu Takeda
広充 武田
Kenji Adachi
健治 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP06490398A priority Critical patent/JP3744188B2/en
Publication of JPH11263639A publication Critical patent/JPH11263639A/en
Application granted granted Critical
Publication of JP3744188B2 publication Critical patent/JP3744188B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Optical Filters (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat ray shielding film having high transmittance and low reflectance for light in a visible ray region and low transmittance and high reflectance for light in a near infrared region, in which the conductivity of the film can be controlled almost to >10<6> Ω/sq., and to provide a coating liquid which can be easily applied to form the film above described. SOLUTION: The coating liquid for a heat ray shielding film has dispersion of at least one kind of titanium nitride fine particles, zirconium nitride fine particles, hafnium nitride fine particles, vanadium nitride fine particles, niobium nitride fine particles and tantalum nitride fine particles having <100 nm average particle size. Further, the coating liquid contains at least one kind of ruthenium oxide fine particles and iridium oxide fine particles having <=100 nm average particle size. The heat ray shielding film is obtd. by applying the coating liquid above described on a base body and heating.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、車両、ビル、事務
所、一般住宅などの窓、電話ボックス、ショーウインド
ー、照明用ランプなど、ガラス、プラスチックスその他
の各種熱線遮蔽機能を必要とする透明もしくは半透明基
材に塗布して熱線遮蔽膜とするための塗布液、及び、こ
れにより得られる熱線遮蔽膜に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transparent or transparent glass or plastics or any other heat ray shielding function, such as a window for a vehicle, a building, an office or a general house, a telephone box, a show window, a lighting lamp and the like. The present invention relates to a coating liquid for applying to a translucent substrate to form a heat ray shielding film, and a heat ray shielding film obtained by the application liquid.

【0002】[0002]

【従来の技術】従来、太陽光や電球などの外部光源から
熱成分を除去・減少する方法として、ガラス表面に可視
・赤外域の波長を反射する材料を利用して熱線反射ガラ
スとすることが行なわれていた。そして、熱線反射のた
めの材料には、FeOX,CoOX,CrOX,TiOX
の金属酸化物や、Ag、Au、Cu、Ni、Alなどの
自由電子を多量にもつ金属材料が選択されてきた。
2. Description of the Related Art Conventionally, as a method of removing or reducing a heat component from an external light source such as sunlight or a light bulb, a heat ray reflecting glass using a material which reflects a visible / infrared wavelength on a glass surface is used. Was being done. As a material for heat ray reflection, a metal oxide such as FeO x , CoO x , CrO x , or TiO x or a metal material having a large amount of free electrons such as Ag, Au, Cu, Ni, or Al is selected. It has been.

【0003】しかし、これらの材料では熱効果に大きく
寄与する近赤外線以外に、可視光領域の光も同時に反射
もしくは吸収する性質があり、可視光透過率が低下して
しまう欠点があった。建材、乗り物、電話ボックスなど
に用いられる透明基材では、可視光領域の高い透過率が
必要とされ、これらの材料を利用する場合は可視光透過
率を高くするため膜厚を非常に薄くしなければならず、
従ってスプレー焼き付けやCVD法、或いはスパッタ法
や真空蒸着法などの物理成膜法を用いて10nm厚レベ
ルの極めて薄い膜に成膜して用いられることが通常行な
われてきた。
However, these materials have the property of simultaneously reflecting or absorbing light in the visible light region in addition to near infrared rays which greatly contribute to the thermal effect, and have a drawback that the visible light transmittance is reduced. Transparent base materials used for building materials, vehicles, telephone boxes, etc., require high transmittance in the visible light region, and when using these materials, the thickness must be extremely thin to increase the visible light transmittance. Must be
Therefore, it has been common practice to form a very thin film having a thickness of 10 nm by using a physical film forming method such as spray baking, a CVD method, or a sputtering method or a vacuum evaporation method.

【0004】これらの成膜方法は大がかりな装置や真空
設備を必要とし、生産性、大面積化に問題があり、また
膜の製造コストが高かった。
[0004] These film forming methods require large-scale equipment and vacuum equipment, have problems in productivity and enlargement of the area, and have a high film manufacturing cost.

【0005】また、これらの膜では膜厚を薄くして透過
率を高くすると熱線遮蔽特性が低下し、逆に膜厚を厚く
して熱線遮蔽特性を高くすると膜が暗くなってしまう。
さらに、これらの材料は熱線遮蔽特性を高くしようとす
ると可視光領域の反射率も同時に高くなってしまう傾向
があり、鏡のようなギラギラした外観を与えて美観を損
ねてしまった。
[0005] In these films, when the film thickness is reduced and the transmittance is increased, the heat ray shielding characteristics are degraded. Conversely, when the film thickness is increased and the heat ray shielding characteristics are increased, the films become dark.
Further, these materials tend to have a high reflectance in the visible light region at the same time when trying to enhance the heat ray shielding properties, giving a glare-like appearance like a mirror and impairing the aesthetic appearance.

【0006】さらに、これらの材料では膜の導電性が高
くなるものが多く、膜の導電性が高いと携帯電話やT
V、ラジオなどの電波を反射して受信不能になったり、
周辺地域に電波障害を引き起こすなどの欠点があった。
In addition, many of these materials have high conductivity of the film, and if the conductivity of the film is high, a cellular phone or a T
V, radio and other radio waves are reflected and become unreceivable,
There were drawbacks such as causing radio interference in the surrounding area.

【0007】上記従来の欠点を改善するためには、膜の
物理特性として、可視光領域の光の反射率が低く、近赤
外領域の光の反射率が高く、かつ、膜の導電性が概ね1
6Ω/□以上に制御可能な膜を形成する必要があっ
た。しかしながら従来このような膜、或いはこのような
膜を形成する材料は知られていなかった。
[0007] In order to improve the above-mentioned drawbacks, the physical properties of the film are such that the reflectance of light in the visible light region is low, the reflectance of light in the near infrared region is high, and the conductivity of the film is low. Generally 1
0 6 Ω / □ has been necessary to form a controllable membrane above. However, conventionally, such a film or a material for forming such a film has not been known.

【0008】可視光透過率が高く、かつ熱線遮蔽機能を
もつ材料としては、アンチモン含有酸化錫(ATO)
や、錫含有酸化インジウム(ITO)が知られている。
これらの材料は可視光反射率が比較的低く、ギラギラし
た外観を与えることはないが、プラズマ波長が近赤外域
の比較的長波長側にあり、可視光に近い近赤外域におけ
るこれらの膜の反射・吸収効果は十分ではなかった。ま
た、物理成膜法でこれらの膜を形成した場合には、膜の
導電性が上がって電波を反射してしまう欠点があった。
As a material having a high visible light transmittance and a heat ray shielding function, antimony-containing tin oxide (ATO)
Also, tin-containing indium oxide (ITO) is known.
Although these materials have a relatively low visible light reflectance and do not give a glare-like appearance, the plasma wavelength is relatively long in the near infrared region, and these films have a near-infrared region close to visible light. The reflection and absorption effects were not sufficient. Further, when these films are formed by a physical film forming method, there is a disadvantage that the conductivity of the films is increased and radio waves are reflected.

【0009】[0009]

【発明が解決しようとする課題】本発明は、上記従来の
問題を解決し、可視光領域の光の透過率が高くて反射率
が低く、近赤外領域の光の透過率が低くて反射率が高
く、膜の導電性が概ね106Ω/□以上に制御可能な膜
を、高コストの物理成膜法を用いずに簡便な塗布法で成
膜できる塗布液と、これを用いた熱線遮蔽膜とを提供す
ることを目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems and has a high transmittance of light in the visible light region and a low reflectance, and a low transmittance of light in the near infrared region and a low reflectance. A coating solution that can form a film having a high rate and a film conductivity of approximately 10 6 Ω / □ or more by a simple coating method without using a high-cost physical film forming method; An object is to provide a heat ray shielding film.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明者らは、材料そのものの特性として自由電子
を多量に保有する窒化物に着目し、種々検討の結果、こ
れを超微粒子化し、かつ高度に分散された膜を得ること
により、可視光領域に透過率の極大をもつとともに、可
視光領域に近い近赤外域に強いプラズマ反射を発現して
透過率の極小をもつようになるという事実を見出し、本
発明を完成した。
Means for Solving the Problems In order to achieve the above object, the present inventors have focused on a nitride having a large amount of free electrons as a characteristic of the material itself, and as a result of various studies, have found that the And obtain a highly dispersed film to have a maximum transmittance in the visible light region and a strong plasma reflection in the near infrared region near the visible light region to minimize the transmittance. The present invention was completed, and the present invention was completed.

【0011】すなわち、本発明の熱線遮蔽膜用塗布液
は、平均粒径100nm以下の窒化チタン微粒子、平均
粒径100nm以下の窒化ジルコニウム微粒子、平均粒
径100nm以下の窒化ハフニウム微粒子、平均粒径1
00nm以下の窒化バナジウム微粒子、平均粒径100
nm以下の窒化ニオブ微粒子、および、平均粒径100
nm以下の窒化タンタル微粒子のうち少なくとも1種が
分散されたことを特徴とする。
That is, the coating liquid for a heat ray shielding film of the present invention comprises titanium nitride fine particles having an average particle diameter of 100 nm or less, zirconium nitride fine particles having an average particle diameter of 100 nm or less, hafnium nitride fine particles having an average particle diameter of 100 nm or less, and an average particle diameter of 1 nm.
Vanadium nitride fine particles of not more than 00 nm, average particle diameter 100
nm or less niobium nitride fine particles and an average particle diameter of 100
At least one of tantalum nitride fine particles having a diameter of not more than nm is dispersed.

【0012】また、本発明の他の熱線遮蔽膜形成用塗布
液は、平均粒径100nm以下の窒化チタン微粒子、平
均粒径100nm以下の窒化ジルコニウム微粒子、平均
粒径100nm以下の窒化ハフニウム微粒子、平均粒径
100nm以下の窒化バナジウム微粒子、平均粒径10
0nm以下の窒化ニオブ微粒子、および、平均粒径10
0nm以下の窒化タンタル微粒子のうち少なくとも1種
と、平均粒径100nm以下の酸化ルテニウム微粒子、
および、平均粒径100nm以下の酸化イリジウム微粒
子のうち少なくとも1種とを含有することを特徴とす
る。
Further, another coating solution for forming a heat ray shielding film of the present invention comprises titanium nitride fine particles having an average particle diameter of 100 nm or less, zirconium nitride fine particles having an average particle diameter of 100 nm or less, hafnium nitride fine particles having an average particle diameter of 100 nm or less, and Vanadium nitride fine particles having a particle size of 100 nm or less, average particle size of 10
Niobium nitride fine particles of 0 nm or less and an average particle size of 10
At least one of tantalum nitride fine particles having a diameter of 0 nm or less, and ruthenium oxide fine particles having an average particle diameter of 100 nm or less;
Further, it is characterized by containing at least one kind of iridium oxide fine particles having an average particle diameter of 100 nm or less.

【0013】また、本発明の他の熱線遮蔽膜形成用塗布
液は、上記いずれかの構成で更に、珪素、ジルコニウ
ム、チタン、もしくは、アルミニウムの金属アルコキシ
ド、または、金属アルコキシドの部分加水分解重合物の
うちの少なくとも1種を含有することを特徴とする。
[0013] In another aspect of the present invention, the coating solution for forming a heat ray shielding film further comprises a metal alkoxide of silicon, zirconium, titanium or aluminum or a partially hydrolyzed polymer of metal alkoxide. Characterized in that at least one of them is contained.

【0014】上記いずれかの構成の熱線遮蔽膜形成用塗
布液は、樹脂バインダーを含有していてもよい。
The coating solution for forming a heat ray shielding film having any one of the above constitutions may contain a resin binder.

【0015】また、本発明の熱線遮蔽膜は、上記いずれ
かの熱線遮蔽膜形成用塗布液を基材に塗布後加熱して得
た微粒子分散膜であって、熱線遮蔽特性を示す主成分
が、窒化チタン、窒化ジルコニウム、窒化ハフニウム、
窒化バナジウム、窒化ニオブ、窒化タンタル、酸化ルテ
ニウム、および、酸化イリジウムのうち少なくとも1種
の微粒子であり、該微粒子成分が、樹脂バインダー中、
または、珪素、ジルコニウム、チタン、および、アルミ
ニウムのいずれかの金属酸化物のうちの少なくとも1種
を含有する酸化物バインダー中に分散されたことを特徴
とする。
Further, the heat ray shielding film of the present invention is a fine particle dispersion film obtained by applying any one of the above-mentioned coating solutions for forming a heat ray shielding film to a substrate and then heating the substrate. , Titanium nitride, zirconium nitride, hafnium nitride,
Vanadium nitride, niobium nitride, tantalum nitride, ruthenium oxide, and at least one kind of fine particles of iridium oxide, the fine particle component is a resin binder,
Alternatively, it is characterized by being dispersed in an oxide binder containing at least one of metal oxides of silicon, zirconium, titanium, and aluminum.

【0016】また、上記熱線遮蔽膜上に更に、珪素、ジ
ルコニウム、チタン、および、アルミニウムのいずれか
の金属酸化物のうちの少なくとも1種を含有する酸化物
膜を被膜して、もしくは、上記熱線遮蔽膜上に更に、樹
脂膜を被膜して多層熱線遮蔽膜としてもよい。
Further, the heat ray shielding film is further coated with an oxide film containing at least one of metal oxides of silicon, zirconium, titanium, and aluminum. A resin film may be further coated on the shielding film to form a multilayer heat ray shielding film.

【0017】上記いずれかの熱線遮蔽膜は、透過率が、
波長400〜700nmに極大値を、波長700〜18
00nmに極小値をもち、かつ、極大値と極小値との差
が百分率で15ポイント以上である特性を有することを
特徴とし、また、表面抵抗値が106Ω/□以上である
ことを特徴とする。
Any one of the above heat ray shielding films has a transmittance of
A maximum value at a wavelength of 400 to 700 nm and a wavelength of 700 to 18
It has a characteristic that it has a minimum value at 00 nm and the difference between the maximum value and the minimum value is 15 points or more in percentage, and the surface resistance value is 10 6 Ω / □ or more. And

【0018】[0018]

【発明の実施の形態】本発明に使用される窒化物微粒子
としては、窒化チタン(TiN)、窒化ジルコニウム
(ZrN)、窒化ハフニウム(HfN)、窒化バナジウ
ム(VN)、窒化ニオブ(NbN)、窒化タンタル(T
aN)などがその代表的なものとして挙げられる。ま
た、本発明に使用される窒化物微粒子は、一部または全
量がオキシ窒化物で代替されたものであっても良い。ま
たこれらの窒化物微粒子は、その表面が酸化していない
ことが好ましいが、通常は僅かに酸化していることが多
く、また微粒子の分散工程で表面の酸化が起こることは
ある程度避けられない。しかしその場合でも熱線遮蔽効
果を発現する有効性に変わりはない。またこれらの窒化
物微粒子は、結晶としての完全性が高いほど大きい熱線
遮蔽効果が得られるが、結晶性が低くX線回折で極めて
ブロードな回折ピークを生じるようなものであっても、
微粒子内部の基本的な結合が各金属と窒素の結合から成
り立っているものであるならば熱線遮蔽効果を発現す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Nitride fine particles used in the present invention include titanium nitride (TiN), zirconium nitride (ZrN), hafnium nitride (HfN), vanadium nitride (VN), niobium nitride (NbN), and nitrided nitride. Tantalum (T
aN) and the like. Further, the nitride fine particles used in the present invention may be partially or entirely replaced with oxynitride. It is preferable that the surface of these nitride fine particles is not oxidized, but usually the surface is often slightly oxidized, and it is inevitable to some extent that the surface is oxidized in the fine particle dispersion step. However, even in that case, there is no change in the effectiveness of exhibiting the heat ray shielding effect. In addition, these nitride fine particles can obtain a larger heat ray shielding effect as the perfection as a crystal is higher, but even if the crystallinity is low and an X-ray diffraction causes an extremely broad diffraction peak,
If the basic bond inside the fine particles is composed of the bond between each metal and nitrogen, a heat ray shielding effect is exhibited.

【0019】また、本発明に使用される酸化ルテニウム
または酸化イリジウムの微粒子としては、二酸化ルテニ
ウム(RuO2)、ルテニウム酸鉛(Pb2Ru
26.5)、ルテニウム酸ビスマス(Bi2Ru27)、
二酸化イリジウム(IrO2)、イリジウム酸ビスマス
(Bi2Ir27)、イリジウム酸鉛(Pb2Ir
26.5)などの微粒子がその代表的な例として挙げられ
る。これらの微粒子は酸化物として安定であり、また多
量の自由電子を保持しており極めて有効な熱線遮蔽機能
をもっている。
The fine particles of ruthenium oxide or iridium oxide used in the present invention include ruthenium dioxide (RuO 2 ) and lead ruthenate (Pb 2 Ru).
2 O 6.5 ), bismuth ruthenate (Bi 2 Ru 2 O 7 ),
Iridium dioxide (IrO 2 ), bismuth iridate (Bi 2 Ir 2 O 7 ), lead iridate (Pb 2 Ir)
Fine particles such as 2 O 6.5 ) are typical examples. These fine particles are stable as oxides, retain a large amount of free electrons, and have an extremely effective heat ray shielding function.

【0020】これらの窒化物微粒子、酸化ルテニウム微
粒子、酸化イリジウム微粒子は、灰黒色、茶黒色、緑黒
色などに着色した粉末であるが、粒径が可視光波長に比
べて十分小さく、薄膜中に分散された状態においては膜
に可視光透過性が生じる。しかし、赤外光遮蔽能は十分
強く保持できる。この理由は詳細には理解されていない
が、これら微粒子中の自由電子の量が多く、微粒子内部
及び表面の自由電子プラズモンによるプラズマ周波数が
ちょうど、可視〜近赤外の付近にあるために、この波長
領域の熱線が選択的に反射・吸収されると考えられる。
実験によれば、これら微粒子を十分細かく、かつ、均一
に分散された膜では、透過率が波長400〜700nm
に極大値をもち、かつ、波長700〜1800nmに極
小値をもち、さらに透過率の極大値と極小値の差が百分
率で15ポイント以上であることが観察される。可視光
波長が380〜780nmであり、視感度が550nm
付近をピークとする釣鐘型であることを考慮すると、こ
のような膜では可視光を有効に透過し,それ以外の熱線
を有効に反射・吸収することが理解できる。
These nitride fine particles, ruthenium oxide fine particles, and iridium oxide fine particles are powders colored in gray black, brown black, green black or the like. In the dispersed state, the film has visible light transmittance. However, the infrared light shielding ability can be maintained sufficiently strong. Although the reason for this is not understood in detail, the amount of free electrons in these fine particles is large, and the plasma frequency due to free electron plasmons inside and on the fine particles is just in the vicinity of the visible to near-infrared. It is considered that heat rays in the wavelength region are selectively reflected and absorbed.
According to the experiment, the transmittance of a film in which these fine particles are sufficiently fine and uniformly dispersed has a wavelength of 400 to 700 nm.
At the wavelength of 700 to 1800 nm, and the difference between the maximum value and the minimum value of the transmittance is 15 points or more as a percentage. Visible light wavelength is 380-780 nm, visibility is 550 nm
Considering that the film has a bell shape with a peak in the vicinity, it can be understood that such a film effectively transmits visible light and effectively reflects and absorbs other heat rays.

【0021】本発明において、塗布液中の窒化物微粒
子、酸化ルテニウム微粒子、酸化イリジウム微粒子の平
均粒径は、100nm以下が好ましい。粒子径が100
nmよりも大きくなると、上に述べたような特有の透過
率プロファイル、すなわち透過率が波長400〜700
nmに極大値をもち、かつ、波長700〜1800nm
に極小値をもち、さらに極大値と極小値との差が百分率
で15ポイント以上であるようなプロファイルが得られ
ず、単調に透過率が減少した灰色っぽい膜になる。また
粒子径が100nmよりも大きい場合には、分散液中の
微粒子同士の凝集傾向が強くなり、微粒子の沈降原因と
なる。また100nm以上の微粒子もしくはそれらの凝
集した粗大粒子は光散乱源となって膜に曇り(ヘイズ)
を生じたり、可視光透過率が減少する原因となる。従っ
て、上記無機微粒子の平均粒径は100nm以下とする
必要がある。なお、経済的に入手可能な最低の粒径は2
nm程度であるが下限をこれに限定するものではない。
In the present invention, the average particle diameter of the nitride fine particles, ruthenium oxide fine particles, and iridium oxide fine particles in the coating solution is preferably 100 nm or less. Particle size 100
When it is larger than nm, the specific transmittance profile as described above, that is, the transmittance is 400 to 700 wavelengths
nm with a maximum value and a wavelength of 700 to 1800 nm
Further, a profile in which the difference between the maximum value and the minimum value is 15 points or more in percentage cannot be obtained, and a grayish film having a monotonously reduced transmittance is obtained. If the particle diameter is larger than 100 nm, the tendency of the fine particles in the dispersion liquid to agglomerate becomes strong, which causes sedimentation of the fine particles. Fine particles having a size of 100 nm or more or their aggregated coarse particles serve as a light scattering source and cause clouding (haze) on the film.
Or the visible light transmittance is reduced. Therefore, the average particle size of the inorganic fine particles needs to be 100 nm or less. The lowest economically available particle size is 2
Although it is about nm, the lower limit is not limited to this.

【0022】塗布液中の微粒子の分散媒は特に限定され
るものではなく、塗布条件や塗布環境、塗布液中のアル
コキシド、合成樹脂バインダーなどに合わせて選択可能
であり、例えば、水や、アルコール、エーテル、エステ
ル、ケトンなどの有機溶媒の各種が使用可能である。ま
た、必要に応じて酸やアルカリを添加してpHを調整し
ても良い。更に塗布液中微粒子の分散安定性を一層向上
させるために、各種の界面活性剤、カップリング剤など
を添加することも可能である。そのときのそれぞれの添
加量は、無機微粒子に対して30重量%以下、好ましく
は5重量%以下である。
The dispersion medium of the fine particles in the coating liquid is not particularly limited, and can be selected according to the coating conditions and coating environment, the alkoxide in the coating liquid, the synthetic resin binder, and the like. Various organic solvents such as ethers, ethers, esters and ketones can be used. Further, if necessary, acid or alkali may be added to adjust the pH. Further, in order to further improve the dispersion stability of the fine particles in the coating liquid, it is possible to add various surfactants, coupling agents and the like. The amount of each addition at that time is 30% by weight or less, preferably 5% by weight or less based on the inorganic fine particles.

【0023】この塗布液を用いて膜としたときの膜の導
電性は、微粒子の接触箇所を経由した導電パスに沿って
行われるため、例えば界面活性剤やカップリング剤の量
を加減することで導電パスを部分的に切断することがで
き、106Ω/□以上の表面抵抗値へ膜の導電性を低下
させることは容易に可能である。また、珪素、ジルコニ
ウム、チタン、アルミニウムの金属アルコキシド、もし
くはこれら金属の部分加水分解重合物、または合成樹脂
バインダーの含有量を加減することによっても導電性の
制御が可能である。
When the film is formed by using this coating solution, the conductivity of the film is formed along the conductive path passing through the contact portion of the fine particles. Therefore, for example, the amount of the surfactant or the coupling agent may be adjusted. , The conductive path can be partially cut, and the conductivity of the film can be easily reduced to a surface resistance value of 10 6 Ω / □ or more. The conductivity can also be controlled by adjusting the content of a metal alkoxide of silicon, zirconium, titanium, or aluminum, or a partially hydrolyzed polymer of these metals, or a synthetic resin binder.

【0024】上記微粒子の分散方法は、微粒子が均一に
溶液中に分散する方法であれば任意に選択できるが、例
としては、ビーズミル、ボールミル、サンドミル、超音
波分散などの方法を挙げることができる。
The method for dispersing the fine particles can be arbitrarily selected as long as the fine particles are uniformly dispersed in the solution. Examples of the method include a bead mill, a ball mill, a sand mill, and an ultrasonic dispersion method. .

【0025】本発明における熱線遮蔽膜は、基材上に上
記微粒子が高密度に堆積し膜を形成するものであり、塗
布液中に含まれる珪素、ジルコニウム、チタン、アルミ
ニウムの金属アルコキシド、もしくはこれら金属の部分
加水分解重合物、または合成樹脂バインダーは、塗布、
硬化後、微粒子の基材への結着性を向上させ、更に膜の
硬度を向上させる効果がある。またこのようにして得ら
れた膜上に、更に珪素、ジルコニウム、チタン、アルミ
ニウムなどの金属アルコキシドもしくはこれら金属アル
コキシドの加水分解重合物、または、合成樹脂を含有す
る被膜を第2層として被膜することで、微粒子を主成分
とする膜の基材への結着力や、膜の硬度及び耐候性を一
層向上させることも可能となる。
The heat ray shielding film in the present invention is a film in which the fine particles are deposited at high density on a substrate to form a film, and a metal alkoxide of silicon, zirconium, titanium, or aluminum contained in a coating solution or The metal partially hydrolyzed polymer or synthetic resin binder is applied,
After curing, there is an effect of improving the binding property of the fine particles to the base material and further improving the hardness of the film. Further, a film containing a metal alkoxide such as silicon, zirconium, titanium, and aluminum, a hydrolyzed polymer of these metal alkoxides, or a synthetic resin is further coated as a second layer on the film thus obtained. Thus, it becomes possible to further improve the binding force of the film containing fine particles as a main component to the substrate, and the hardness and weather resistance of the film.

【0026】塗布液中に珪素、ジルコニウム、チタン、
アルミニウムの金属アルコキシド、もしくはこれら金属
の加水分解重合物、または合成樹脂バインダーを含まな
い場合、この塗布液を基材に塗布後に得られる膜は、基
材上に上記微粒子のみが堆積した膜構造になる。このま
までも熱線遮蔽効果を示すが、この膜に上記と同様に、
更に珪素、ジルコニウム、チタン、アルミニウムの金属
アルコキシド、もしくはこれら金属の加水分解重合物、
または合成樹脂バインダーを含む塗布液を塗布して被膜
を形成して多層膜とすることにより、塗布液成分が第1
層の微粒子の堆積した間隙を埋めて成膜されるため、膜
のヘイズが低減し可視光透過率が向上し、また微粒子の
基材への結着性が向上する。
Silicon, zirconium, titanium,
When a metal alkoxide of aluminum, or a hydrolyzed polymer of these metals, or a synthetic resin binder is not contained, a film obtained after applying this coating solution to a substrate has a film structure in which only the fine particles are deposited on the substrate. Become. Although it shows a heat ray shielding effect as it is, this film has the same
Further, silicon, zirconium, titanium, metal alkoxide of aluminum, or hydrolyzed polymer of these metals,
Alternatively, a coating liquid containing a synthetic resin binder is applied to form a coating to form a multilayer film, so that the coating liquid component
Since the film is formed so as to fill the gap where the fine particles of the layer are deposited, the haze of the film is reduced, the visible light transmittance is improved, and the binding property of the fine particles to the base material is improved.

【0027】上記微粒子を主成分とする膜を、珪素、ジ
ルコニウム、チタン、もしくは、アルミニウムの金属ア
ルコキシド、または、これら金属の加水分解重合物から
なる被膜で結着する方法としては、スパッタ法や蒸着法
も可能であるが、成膜工程の容易さやコストが低いなど
の利点から塗布法が有効である。この被膜用塗布液は、
水やアルコール中に珪素、ジルコニウム、チタン、もし
くは、アルミニウムの金属アルコキシド、または、これ
ら金属の加水分解重合物を1種以上含むものであり、そ
の含有液は加熱後に得られる酸化物換算で全溶液中の4
0重量%以下が好ましい。また必要に応じて酸やアルカ
リを添加してpHを調整することも可能である。このよ
うな液を上記微粒子を主成分とする膜上に更に第2層と
して塗布し加熱することで、珪素、ジルコニウム、チタ
ン、アルミニウムなどの酸化物被膜を容易に作製するこ
とが可能である。
As a method of binding a film containing the above fine particles as a main component with a metal alkoxide of silicon, zirconium, titanium, or aluminum, or a film made of a hydrolyzed polymer of these metals, a sputtering method or a vapor deposition method is used. A coating method is also possible, but a coating method is effective because of advantages such as easy film formation process and low cost. This coating solution for coating is
It contains at least one metal alkoxide of silicon, zirconium, titanium, or aluminum in water or alcohol, or a hydrolyzed polymer of these metals, and contains a total solution in terms of oxides obtained after heating. 4 in
It is preferably 0% by weight or less. If necessary, the pH can be adjusted by adding an acid or an alkali. By coating such a liquid as a second layer on a film containing the above fine particles as a main component and heating, an oxide film of silicon, zirconium, titanium, aluminum or the like can be easily formed.

【0028】塗布液及び被膜用の塗布液の塗布方法は特
に限定されるものではなく、スピンコート法、スプレー
コート法、ディップコート法、スクリーン印刷法、ロー
ルコート法、流し塗りなど、処理液を平坦かつ薄く均一
に塗布できる方法であれば如何なる方法でも適宜採用す
ることができる。
The method of applying the coating liquid and the coating liquid for forming a coating is not particularly limited, and the processing liquid may be applied by spin coating, spray coating, dip coating, screen printing, roll coating, flow coating, or the like. Any method can be appropriately adopted as long as it can be applied flat and thinly and uniformly.

【0029】上記金属アルコキシド及びその加水分解重
合物を含む塗布液の塗布後の基材加熱温度は、100℃
未満では塗膜中に含まれるアルコキシドまたはその加水
分解重合物の重合反応が未完結で残る場合が多く、また
水や有機溶媒が膜中に残留し、加熱後の膜の可視光透過
率の低減の原因となるので、100℃以上が好ましく、
更に好ましくは塗布液中の溶媒の沸点以上で加熱を実施
することができる。
The substrate heating temperature after application of the coating solution containing the metal alkoxide and its hydrolyzed polymer is 100 ° C.
If it is less than 1, the polymerization reaction of the alkoxide or its hydrolyzed polymer contained in the coating film often remains uncompleted, and water or an organic solvent remains in the film, reducing the visible light transmittance of the film after heating. 100 ° C. or higher is preferable,
More preferably, heating can be performed at a temperature equal to or higher than the boiling point of the solvent in the coating solution.

【0030】また合成樹脂バインダーを使用した場合
は、それぞれの硬化方法に従って硬化させれば良く、例
えば紫外線硬化樹脂であれば紫外線を適宜照射すれば良
く、また常温硬化樹脂であれば塗布後そのまま放置して
おけばよいため、既存の窓ガラスなどへの現場での塗布
が可能であり、汎用性が広がる。
When a synthetic resin binder is used, it may be cured according to the respective curing method. For example, an ultraviolet curable resin may be appropriately irradiated with ultraviolet light, and a room temperature curable resin may be left as it is after application. Since it is sufficient to apply it, it can be applied to an existing window glass or the like on site, and the versatility is expanded.

【0031】本発明の塗布液に使用するバインダー成分
として、或いはオーバーコート用の塗布液としては、オ
ルガノシラザン溶液を用いても良い。オルガノシザラン
溶液としては、側鎖基の修正や酸化触媒の添加で重合硬
化温度が100℃以下のものも市販されており、これら
を用いることによって成膜温度をかなり低くできる。常
温硬化性バインダーとしては、市販のシリケート系のも
のを用いることも可能である。どちらも硬化後はSiO
2の無機膜を形成し、耐候性や膜強度において樹脂膜よ
りも優れている。
An organosilazane solution may be used as a binder component used in the coating solution of the present invention or as a coating solution for overcoating. As organosizaran solutions, those having a polymerization curing temperature of 100 ° C. or lower due to modification of a side chain group or addition of an oxidation catalyst are commercially available, and by using these, the film forming temperature can be considerably lowered. As the room temperature curable binder, a commercially available silicate-based binder can be used. Both are cured after SiO
Forming an inorganic film of No. 2 , it is superior to a resin film in weather resistance and film strength.

【0032】本発明の膜では上記超微粒子の分散された
膜であるために、物理成膜法により製造された酸化物薄
膜のように結晶が緻密に膜内を埋めた鏡面状表面をもつ
膜に比べると、可視光領域での反射が少なく、ギラギラ
した外観を呈することが回避できる。その一方で、上記
のように、可視〜近赤外域にプラズマ周波数をもつため
に、これに伴うプラズマ反射が近赤外域で大きくなる、
という非常に好ましい特性をもっている。また可視光領
域の反射をさらに抑制したい場合は、本微粒子分散膜の
上に、SiO2やMgFのような低屈折率の膜を成膜す
ることにより、容易に視感反射率1%以下の多層膜が製
造可能である。
Since the film of the present invention is a film in which the ultrafine particles are dispersed, a film having a mirror-like surface in which crystals are densely filled like a thin film of an oxide produced by a physical film-forming method. The reflection in the visible light region is less than that of the above, and it is possible to avoid giving a glare-like appearance. On the other hand, as described above, due to having a plasma frequency in the visible to near-infrared region, the accompanying plasma reflection increases in the near-infrared region,
It has very favorable characteristics. When it is desired to further suppress the reflection in the visible light region, a film having a low refractive index such as SiO 2 or MgF can be easily formed on the fine particle dispersion film to have a luminous reflectance of 1% or less. Multilayer films can be manufactured.

【0033】本発明の塗布液には、透過率を向上させる
ために、更に、ATOやITOやアルミニウム添加酸化
亜鉛などの超微粒子を混合することも可能である。これ
らの透明超微粒子は添加量を増すと可視光に近い近赤外
線領域での吸収が増加するため、可視光透過率の高い熱
線遮蔽膜とすることが可能である。また逆に、ATOや
ITOやアルミニウム添加酸化亜鉛などの超微粒子が分
散された液に本発明の塗布液を添加して、膜に着色する
と同時にその熱線遮蔽効果を補助することも可能であ
る。この場合、主体となるITOなどに対してほんの僅
かの添加量で熱線遮蔽効果を補助できるため、ITOの
必要量の大幅な減少が可能となり、液のコストを下げら
れるという利点がある。
In order to improve the transmittance, the coating solution of the present invention may further contain ultrafine particles such as ATO, ITO, and aluminum-added zinc oxide. As the amount of these transparent ultrafine particles increases, the absorption in the near infrared region close to visible light increases, so that a heat ray shielding film having high visible light transmittance can be obtained. Conversely, it is also possible to add the coating solution of the present invention to a solution in which ultrafine particles such as ATO, ITO, and aluminum-added zinc oxide are dispersed, to color the film and at the same time assist its heat ray shielding effect. In this case, since the heat ray shielding effect can be assisted with a very small addition amount to ITO or the like as a main component, the required amount of ITO can be greatly reduced, and there is an advantage that the cost of the liquid can be reduced.

【0034】また、本発明の塗布液には、膜になったと
きの赤外線の遮蔽能と同時に、人体に有害な紫外線の遮
蔽機能を向上させるために、無機系の酸化チタンや酸化
亜鉛、酸化セリウムなどの微粒子や、有機系のベンゾフ
ェノンやベンゾトリアゾールなどの1種もしくは2種以
上を添加することも可能である。
The coating solution of the present invention contains inorganic titanium oxide, zinc oxide, and titanium oxide in order to improve the function of shielding ultraviolet rays harmful to the human body at the same time as the ability to shield infrared rays when the coating solution is formed. Fine particles such as cerium and one or more of organic benzophenone and benzotriazole may be added.

【0035】本発明による塗布液は、上記無機微粒子が
分散されたものであり、焼成時の熱による塗布成分の分
解或いは化学反応を利用して目的の熱線遮蔽膜を形成す
るものではないため、特性の安定した均一な膜厚の透過
膜を形成することができる。
The coating liquid according to the present invention is a liquid in which the above-mentioned inorganic fine particles are dispersed, and does not form a desired heat ray shielding film by utilizing decomposition or chemical reaction of coating components due to heat during firing. It is possible to form a permeable film having stable characteristics and a uniform film thickness.

【0036】本発明における微粒子分散膜は、基材上に
微粒子が高密度に堆積し膜を形成するものであり、塗布
液中に含まれる珪素、ジルコニウム、チタン、もしくは
アルミニウムの金属アルコキシド、またはこれらの加水
分解重合物、または合成樹脂バインダーは、塗膜の硬化
後、微粒子の基材上への結着性を向上させ、さらに膜の
強度を向上させる効果がある。
The fine particle-dispersed film of the present invention is a film in which fine particles are deposited at a high density on a substrate to form a film, and a metal alkoxide of silicon, zirconium, titanium, or aluminum contained in a coating solution or The hydrolyzed polymer of (1) or the synthetic resin binder has an effect of improving the binding property of the fine particles to the substrate after the coating film is cured, and further improving the strength of the film.

【0037】このように本発明によれば、上記無機微粒
子の材料を適当に混合することで熱線遮蔽効果を有する
膜の製造が可能であるが、これらの微粒子材料は無機材
料であるので、有機材料と比べて耐候性は非常に高く、
例えば太陽光線(紫外線)の当たる部位に使用しても、
色や諸機能の劣化はほとんど生じない。
As described above, according to the present invention, it is possible to produce a film having a heat ray shielding effect by appropriately mixing the above-mentioned inorganic fine particle materials. Weather resistance is very high compared to materials,
For example, even if it is used in the area where sunlight (ultraviolet rays) hits,
Deterioration of color and functions hardly occurs.

【0038】[0038]

【実施例】以下本発明の実施例を比較例と共に説明す
る。
EXAMPLES Examples of the present invention will be described below together with comparative examples.

【0039】(実施例1) 平均粒径40nmのTiN
微粒子8g、ジアセトンアルコール(DAA)80g、
水及び分散剤適量を混合し、直径4mmのジルコニアボ
ールを用いて100時間ボールミル混合して、TiN分
散液100gを作製した。これをA液とする。次に、平
均重合度で4〜5量体である多摩化学工業株式会社製エ
チルシリケート40を6g、エタノール31g、5%塩
酸水溶液8g、水5gで調製したエチルシリケート溶液
50gと、水800g、及びエタノール300gを良く
混合・攪拌して、エチルシリケート混合液1150gを
調製した。これをB液とする。
Example 1 TiN having an average particle size of 40 nm
8 g of fine particles, 80 g of diacetone alcohol (DAA),
An appropriate amount of water and a dispersant were mixed, and the mixture was ball-milled using zirconia balls having a diameter of 4 mm for 100 hours to prepare 100 g of a TiN dispersion. This is designated as solution A. Next, 6 g of ethyl silicate 40 (manufactured by Tama Chemical Industry Co., Ltd.) having an average degree of polymerization of 4 to pentamer, 31 g of ethanol, 8 g of 5% hydrochloric acid aqueous solution, 50 g of an ethyl silicate solution prepared with 5 g of water, 800 g of water, and 300 g of ethanol was mixed and stirred well to prepare 1150 g of a mixed solution of ethyl silicate. This is designated as solution B.

【0040】A液とB液とを、TiN濃度が1.0%、
TiN/SiO2比が4:1となるような割合で混合・
攪拌し、塗布液を作製した。これをC液とする。このC
液15gを、145rpmで回転する200×200×
3mmのソーダライム板ガラス基板上にビーカから滴下
し、そのまま3分間振り切った後、回転を止めた。これ
を180℃の電気炉に入れて30分間加熱し目的とする
膜を得た。
The solution A and the solution B were mixed at a TiN concentration of 1.0%,
Mix at a ratio such that the TiN / SiO 2 ratio is 4: 1.
The mixture was stirred to prepare a coating solution. This is designated as liquid C. This C
200 g x 200 x rotating 15 g of liquid at 145 rpm
The solution was dropped on a 3 mm soda lime glass substrate from a beaker, shaken for 3 minutes, and then stopped rotating. This was placed in an electric furnace at 180 ° C. and heated for 30 minutes to obtain a target film.

【0041】形成された膜の分光特性は、日立製作所製
の分光光度計を用いて測定した。TiN微粒子を用いた
本実施例の膜の透過プロファイル及び反射プロファイル
を図1及び図2に示す。透過率の極大値が425nm、
極小値が745nm、反射率の極大値が1000nm付
近にあり、透過率の極大値と極小値の差が百分率で22
ポイントあって、可視光波長で透過率が高く近赤外波長
で透過率が小さいプロファイルになっており、JIS−
R−3106に基づいて可視光透過率44%、日射透過
率42%が得られた。
The spectral characteristics of the formed film were measured using a spectrophotometer manufactured by Hitachi, Ltd. 1 and 2 show the transmission profile and the reflection profile of the film of this example using TiN fine particles. The maximum value of the transmittance is 425 nm,
The minimum value is 745 nm, the maximum value of the reflectance is around 1000 nm, and the difference between the maximum value and the minimum value of the transmittance is 22% in percentage.
At a certain point, the profile is such that the transmittance is high at the wavelength of visible light and the transmittance is low at the wavelength of near infrared.
Based on R-3106, a visible light transmittance of 44% and a solar radiation transmittance of 42% were obtained.

【0042】この膜付きガラスを100×100×60
mmの塩化ビニル製の升型小ボックスの上面にセットし
て晴れた日の日射下に1hr放置し、ボックス内の温度
変化を測定した。この膜付きガラスを配置した場合には
45℃で一定になったが、市販の熱線吸収ブロンズガラ
ス(可視光透過率64%)を配置した場合には55℃、
透明なクリアガラスを配置した場合には61℃となり、
日射による熱線の明らかな遮蔽効果が観察された。この
ように可視光に透過率の極大があり、近赤外に透過率の
極小があり、さらに近赤外に反射率の極大をもつような
本実施例による膜では、優れた熱線遮蔽効果をもつこと
が確認された。
The glass with the film was 100 × 100 × 60
It was set on the upper surface of a small box-shaped box made of vinyl chloride of 1 mm and left for 1 hour under sunlight on a sunny day, and the temperature change in the box was measured. When the glass with the film was arranged, the temperature became constant at 45 ° C., but when a commercially available heat ray absorbing bronze glass (visible light transmittance: 64%) was arranged, the temperature became 55 ° C.
When transparent clear glass is placed, it will be 61 ° C,
A clear shielding effect of heat rays due to solar radiation was observed. As described above, the film according to the present embodiment in which the visible light has the transmittance maximum, the near infrared has the transmittance minimum, and the near infrared has the reflectance maximum, the excellent heat ray shielding effect is obtained. It was confirmed that it had.

【0043】本実施例による膜の透過色は美しい深青色
であった。また日射反射率18%と高い一方で、可視光
反射率は12%と低く、市販の熱線反射ガラスのような
膜面のギラツキ感は感じられなかった。
The transmission color of the film according to this example was a beautiful deep blue. In addition, while the solar reflectance was as high as 18%, the visible light reflectance was as low as 12%, and the film surface did not feel as glaring as a commercially available heat ray reflective glass.

【0044】更にこの膜の表面抵抗値を、三菱化学製の
表面抵抗計を用いて測定したところ8×108Ω/□が
得られ、膜抵抗値が十分高いために電波透過性には全く
問題がないことが分かった。
Further, when the surface resistance of this film was measured using a surface resistance meter manufactured by Mitsubishi Chemical Corporation, it was found to be 8 × 10 8 Ω / □. I found that there was no problem.

【0045】(比較例1) 塗布法に比べて高コストの
物理成膜法により作製された市販の熱線反射ブロンズガ
ラスについて、340〜1800nmの分光透過率を測
定し、JIS−R−3106に従って可視光透過率、日
射透過率を求めたところ、それぞれ45%、51%とな
り、上記実施例1の膜よりも日射透過率がやや高い値が
得られた。また日射反射率は23%と良い値であるが、
可視光反射率は30%と非常に高く、外観もギラギラし
たミラー状の外観を呈していた。また膜面の表面抵抗値
は83Ω/□と低く、電波透過性及び反射性には問題が
あることが明らかである。
Comparative Example 1 A commercially available heat-reflective bronze glass produced by a physical film forming method, which is more expensive than the coating method, was measured for its spectral transmittance at 340 to 1800 nm and was visible according to JIS-R-3106. When the light transmittance and the solar transmittance were determined, they were 45% and 51%, respectively, and the solar transmittance was slightly higher than that of the film of Example 1 described above. The solar reflectance is a good value of 23%,
The visible light reflectance was as high as 30%, and the appearance was a mirror-like appearance. Further, the surface resistance of the film surface is as low as 83 Ω / □, and it is clear that there is a problem in radio wave transmission and reflection.

【0046】(実施例2) 実施例1で作製したC液を
板ガラスの1層目としてスピンコートした後、そのまま
3分間回転を続け、続いてB液をSiO2固形分換算で
0.9%になるようにエタノールで希釈したシリケート
液15gを板ガラス上にビーカから滴下してさらに回転
を3分間続けた後、回転を止めた。このようにして塗布
した2層膜のガラス基板を180℃の電気炉に入れ、3
0分間加熱して目的とする2層膜を得た。
Example 2 After spin coating the liquid C prepared in Example 1 as the first layer of the sheet glass, the rotation was continued for 3 minutes, and then the liquid B was 0.9% in terms of SiO 2 solid content. Then, 15 g of a silicate solution diluted with ethanol was dropped from a beaker onto a plate glass, and the rotation was further continued for 3 minutes. Then, the rotation was stopped. The glass substrate of the two-layer film coated in this manner is placed in an electric furnace at 180 ° C.
After heating for 0 minutes, the desired two-layer film was obtained.

【0047】形成された膜の分光特性を実施例1と同様
にして評価した。可視光透過率は51.8%と上昇した
反面、可視光反射率は4.6%となって反射光が非常に
抑えられた。さらに裏面に黒テープを貼って裏面からの
反射を無くして測定すると可視光反射率は1.5%とな
り、無反射ガラスに近い外観になった。この膜の透過率
の極大・極小値の位置は、実施例1での単層膜とほぼ同
じであり、同様の熱線遮蔽効果をもつことは明らかであ
る。
The spectral characteristics of the formed film were evaluated in the same manner as in Example 1. While the visible light transmittance increased to 51.8%, the visible light reflectance was 4.6%, and the reflected light was extremely suppressed. Further, when a black tape was stuck on the back surface and the measurement was performed without reflection from the back surface, the visible light reflectance was 1.5%, and the appearance was close to that of non-reflective glass. The positions of the maximum value and the minimum value of the transmittance of this film are almost the same as those of the single-layer film in Example 1, and it is apparent that the film has the same heat ray shielding effect.

【0048】以下の実施例3〜16において成膜された
膜の可視光透過率と透過率の極大・極小値、及び表面抵
抗値は、実施例1に述べたと同様な方法で評価し、実施
例1、2の結果も含めてまとめて表1に示した。
The visible light transmittance, the maximum / minimum value of the transmittance, and the surface resistance of the films formed in the following Examples 3 to 16 were evaluated in the same manner as described in Example 1, and Table 1 collectively includes the results of Examples 1 and 2.

【0049】(実施例3) 平均粒径40nmのTiN
微粒子8g、イソホロン80g、水及び分散剤適量を混
合し、ジルコニアボールを用いて100時間ボールミル
混合して、TiNイソホロン分散液100gを作製し
た。これをD液とする。バインダーとして、エポキシ樹
脂50重量%をイソホロンに溶解して、エポキシ樹脂バ
インダー溶液を作製した。これをE液とする。D液とE
液とエタノールを強力に混合・攪拌して、TiNとエポ
キシ樹脂の固形分が全体の1.4重量%、TiNとエポ
キシ樹脂の重量比が70:30となるようにして塗布液
を作製し、実施例1と同様にして塗布液を作製し、成膜
・加熱して膜を得た。
Example 3 TiN having an average particle size of 40 nm
8 g of the fine particles, 80 g of isophorone, water and an appropriate amount of a dispersant were mixed, and the mixture was ball-milled using zirconia balls for 100 hours to prepare 100 g of a TiN isophorone dispersion. This is designated as solution D. As a binder, 50% by weight of an epoxy resin was dissolved in isophorone to prepare an epoxy resin binder solution. This is designated as solution E. Liquid D and E
The liquid and ethanol were mixed and stirred vigorously to prepare a coating liquid such that the solid content of TiN and the epoxy resin was 1.4% by weight and the weight ratio of TiN and the epoxy resin was 70:30, A coating solution was prepared in the same manner as in Example 1, and a film was formed and heated to obtain a film.

【0050】(実施例4) バインダーとして、信越シ
リコーン製常温硬化型シリケート液X−40−9740
をB液の代わりに用いて、実施例1と同様にして塗布液
を作製し、成膜して膜を得た。ただし加熱はせずに、2
5℃の室温内2日間放置で乾燥膜となったものを評価し
た。
Example 4 A cold-setting silicate liquid X-40-9740 manufactured by Shin-Etsu Silicone was used as a binder.
Was used in place of the B solution to prepare a coating solution in the same manner as in Example 1, and formed into a film. However, without heating, 2
A film that was dried at room temperature of 5 ° C. for 2 days was evaluated.

【0051】(実施例5) バインダーとして、NEケ
ムキャット(株)製低温硬化型ポリペルヒドロシラザン
溶液をE液の代わりに用いて、実施例3に示したTiN
イソホロン分散液(D液)及びキシレンを混合・攪拌し
て、TiN濃度が1.0%、TiN/SiO2比が4:
1となるようにして、これを塗布液とした。これを用い
て実施例1と同様にして成膜し、80℃の電気炉で加熱
して膜を得た。
Example 5 A low-temperature curing type polyperhydrosilazane solution manufactured by NE Chemcat Co., Ltd. was used as a binder instead of the solution E, and TiN shown in Example 3 was used.
The isophorone dispersion (solution D) and xylene were mixed and stirred to obtain a TiN concentration of 1.0% and a TiN / SiO 2 ratio of 4:
This was used as a coating liquid so as to be 1. Using this, a film was formed in the same manner as in Example 1, and heated in an electric furnace at 80 ° C. to obtain a film.

【0052】(実施例6) A液調製において、TiN
の代わりに平均粒径35nmのZrN微粒子を用いた他
は、実施例1と全く同様にして塗布液を調製し、これを
成膜・加熱して目的の膜を得た。
Example 6 In the preparation of solution A, TiN
Was used in the same manner as in Example 1 except that ZrN fine particles having an average particle diameter of 35 nm were used instead of the above, and a coating film was prepared and heated to obtain a target film.

【0053】(実施例7) A液調製において、TiN
の代わりに平均粒径47nmのHfN微粒子を用いた他
は、実施例1と全く同様にして塗布液を調製し、これを
成膜・加熱して目的の膜を得た。
Example 7 In the preparation of solution A, TiN
Was used in the same manner as in Example 1 except that HfN fine particles having an average particle diameter of 47 nm were used, and a coating film was prepared and heated to obtain a target film.

【0054】(実施例8) A液調製において、TiN
の代わりに平均粒径64nmのVN微粒子を用いた他
は、実施例1と全く同様にして塗布液を調製し、これを
成膜・加熱して目的の膜を得た。
Example 8 In the preparation of solution A, TiN
Was used in the same manner as in Example 1 except that VN fine particles having an average particle diameter of 64 nm were used instead of the above, and a coating film was prepared and heated to obtain a target film.

【0055】(実施例9) A液調製において、TiN
の代わりに平均粒径55nmのNbN微粒子を用いた他
は、実施例1と全く同様にして塗布液を調製し、これを
成膜・加熱して目的の膜を得た。
Example 9 In the preparation of solution A, TiN
Was used in the same manner as in Example 1 except that NbN fine particles having an average particle size of 55 nm were used instead of the above, and a coating film was prepared and heated to obtain a target film.

【0056】(実施例10) A液調製において、Ti
Nの代わりに平均粒径43nmのTaN微粒子を用いた
他は、実施例1と全く同様にして塗布液を調製し、これ
を成膜・加熱して目的の膜を得た。
Example 10 In the preparation of solution A, Ti
A coating liquid was prepared in exactly the same manner as in Example 1 except that TaN fine particles having an average particle diameter of 43 nm were used instead of N, and this was formed and heated to obtain a target film.

【0057】(実施例11) 平均粒径30nmの酸化
ルテニウム(RuO2)微粒子15g、N−メチル−2
−ピロリドン(NMP)23g、ジアセトンアルコール
(DAA)57g、水及び分散剤適量を混合し、直径4
mmのジルコニアボールを用いて100時間ボールミル
混合して、RuO2分散液100gを作製した。このR
uO2分散液に、RuO2濃度が1%、RuO2:SiO2
=4:1となるようにB液のシリケート液を混合・攪拌
してRuO2分散シリケート液とした。これをF液とす
る。F液に、RuO2:TiN=1.0:0.01の重
量比になるようにA液を混合して十分攪拌し、塗布液を
調製した。この塗布液を用いて、実施例1と全く同様に
して成膜・加熱して目的の膜を得た。
Example 11 15 g of ruthenium oxide (RuO 2 ) fine particles having an average particle diameter of 30 nm, N-methyl-2
-Mix 23 g of pyrrolidone (NMP), 57 g of diacetone alcohol (DAA), water and an appropriate amount of dispersant,
Using a zirconia ball having a diameter of 100 mm, ball mill mixing was carried out for 100 hours to prepare 100 g of a RuO 2 dispersion. This R
In the uO 2 dispersion, a RuO 2 concentration of 1%, RuO 2 : SiO 2
= 4: 1, and the silicate liquid of the liquid B was mixed and stirred to obtain a RuO 2 dispersed silicate liquid. This is designated as solution F. The solution A was mixed with the solution F so that the weight ratio of RuO 2 : TiN = 1.0: 0.01, and the mixture was sufficiently stirred to prepare a coating solution. Using this coating solution, a film was formed and heated in exactly the same manner as in Example 1 to obtain a target film.

【0058】(実施例12) F液とA液の混合時に、
RuO2:TiNの重量比を1.0:0.25とした以
外は、実施例11と全く同様にして塗布液を調製し、こ
れを成膜・加熱して目的の塗膜を得た。
Example 12 At the time of mixing the solution F and the solution A,
A coating solution was prepared in exactly the same manner as in Example 11 except that the weight ratio of RuO 2 : TiN was changed to 1.0: 0.25, and this was formed into a film and heated to obtain a target coating film.

【0059】(実施例13) F液とA液の混合時に、
RuO2:TiNの重量比を1.0:0.5とした以外
は、実施例11と全く同様にして塗布液を調製し、これ
を成膜・加熱して目的の塗膜を得た。
Example 13 At the time of mixing the solution F and the solution A,
A coating solution was prepared in exactly the same manner as in Example 11 except that the weight ratio of RuO 2 : TiN was changed to 1.0: 0.5, and this was formed into a film and heated to obtain a target coating film.

【0060】(実施例14) F液とA液の混合時に、
RuO2:TiNの重量比を1.0:1.0とした以外
は、実施例11と全く同様にして塗布液を調製し、これ
を成膜・加熱して目的の塗膜を得た。
Example 14 At the time of mixing the solution F and the solution A,
A coating solution was prepared in exactly the same manner as in Example 11 except that the weight ratio of RuO 2 : TiN was changed to 1.0: 1.0, and this was formed into a film and heated to obtain a target coating film.

【0061】(実施例15) 平均粒径28nmのIr
2微粒子を用いた他は、実施例11と全く同様にし
て、IrO2:TiN混合分散シリケート塗布液を作製
し、これを成膜・加熱して目的の膜を得た。
Example 15 Ir having an average particle size of 28 nm
An IrO 2 : TiN mixed and dispersed silicate coating solution was prepared, and the film was formed and heated to obtain a target film in exactly the same manner as in Example 11 except that O 2 fine particles were used.

【0062】(実施例16) 平均粒径28nmのIr
2微粒子を用いた他は、実施例12と全く同様にし
て、IrO2:TiN混合分散シリケート塗布液を作製
し、これを成膜・加熱して目的の膜を得た。
Example 16 Ir having an average particle size of 28 nm
An IrO 2 : TiN mixed and dispersed silicate coating solution was prepared and formed into a film and heated to obtain a target film in exactly the same manner as in Example 12 except that O 2 fine particles were used.

【0063】以上の実施例1〜16では全ての膜につい
て、透過率の極大が波長400〜700nmの間にあ
り、極小値が波長700〜1800nmの間にあってか
つ極大値と極小値の差が15ポイント以上であることが
観測され、これらの膜が熱線遮蔽膜として有用であるこ
とが確認された。また実施例の全ての膜は可視光領域で
の反射率が14%以下であってミラー状のギラツキが無
く、さらに表面抵抗値が全ての膜で107Ω/□以上で
あって電波透過性において問題のないことが確かめられ
た。
In the above Examples 1 to 16, for all the films, the maximum of the transmittance is between 400 and 700 nm, the minimum is between 700 and 1800 nm, and the difference between the maximum and the minimum is 15 It was confirmed that these films were useful as a heat-ray shielding film. In addition, all the films of the examples had a reflectance in the visible light region of 14% or less, no mirror-like glare, and had a surface resistance value of 10 7 Ω / □ or more for all films, indicating radio wave transmittance. It was confirmed that there was no problem in.

【0064】(比較例2) 平均粒径120nmのTi
Nを用いた他は、実施例1と全く同様にして、TiN分
散シリケート塗布液を作製し、これを成膜・加熱して目
的の膜を得た。しかしこの膜は曇りが大きくて(ヘイズ
値14%)透明性に欠き、また青みがかった灰色とな
り、熱線遮蔽膜として実用に供することは困難と判断さ
れた。
Comparative Example 2 Ti having an average particle size of 120 nm
Except for using N, a TiN-dispersed silicate coating solution was prepared in exactly the same manner as in Example 1, and this was formed and heated to obtain a target film. However, this film was largely cloudy (hazing value: 14%), lacked transparency, and became bluish-gray, and was judged to be difficult to be practically used as a heat ray shielding film.

【0065】(比較例3) 平均粒径22nmのITO
超微粒子を用いた他は、実施例1と全く同様にして、I
TO分散シリケート塗布液を作製し、これを成膜・加熱
して目的の膜を得た。しかしこの膜は透過率が、可視光
域から1500nmの赤外域に至るまで90%以上であ
り、近赤外線を遮蔽するという目的にはこの濃度では使
用できないことが分かった。
Comparative Example 3 ITO having an average particle size of 22 nm
Except for using ultrafine particles, I
A TO-dispersed silicate coating solution was prepared, formed into a film, and heated to obtain a target film. However, this film had a transmittance of 90% or more from the visible light region to the infrared region of 1500 nm, and it was found that this film could not be used at this concentration for the purpose of shielding near infrared light.

【0066】[0066]

【表1】 [Table 1]

【0067】[0067]

【発明の効果】以上の実施例に示されるように、本発明
によれば、可視光領域の光の透過率が高くて反射率が低
く、近赤外領域の光の透過率が低くて反射率が高く、膜
の導電性が概ね106Ω/□以上に制御可能な膜を、高
コストの物理成膜法を用いずに簡便な塗布法で成膜でき
る塗布液と、これを用いた熱線遮蔽膜とが提供できた。
本発明の膜は、従来膜に比べて表面のギラツキ感が無
く、また電波透過性にも優れた熱線遮蔽膜である。ま
た、本発明の塗布液を用いることにより、コスト面や大
面積膜の面から工業的有用性が高い。
As shown in the above embodiments, according to the present invention, the transmittance of light in the visible light region is high and the reflectance is low, and the transmittance of light in the near infrared region is low and the reflection is low. A coating solution that can form a film having a high rate and a film conductivity of approximately 10 6 Ω / □ or more by a simple coating method without using a high-cost physical film forming method; A heat ray shielding film could be provided.
The film of the present invention is a heat ray shielding film which has less glare on the surface and is excellent in radio wave permeability as compared with the conventional film. In addition, the use of the coating liquid of the present invention has high industrial utility in terms of cost and large-area film.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1、11、12、13、14の
透過率を示すグラフである。
FIG. 1 is a graph showing the transmittance of Examples 1, 11, 12, 13, and 14 of the present invention.

【図2】本発明の実施例1、11、12、13、14の
反射率を示すグラフである。
FIG. 2 is a graph showing the reflectance of Examples 1, 11, 12, 13, and 14 of the present invention.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径100nm以下の窒化チタン微
粒子、平均粒径100nm以下の窒化ジルコニウム微粒
子、平均粒径100nm以下の窒化ハフニウム微粒子、
平均粒径100nm以下の窒化バナジウム微粒子、平均
粒径100nm以下の窒化ニオブ微粒子、および、平均
粒径100nm以下の窒化タンタル微粒子のうち少なく
とも1種が分散された熱線遮蔽膜形成用塗布液。
1. A titanium nitride fine particle having an average particle diameter of 100 nm or less, a zirconium nitride fine particle having an average particle diameter of 100 nm or less, a hafnium nitride fine particle having an average particle diameter of 100 nm or less,
A coating liquid for forming a heat ray shielding film, in which at least one of vanadium nitride fine particles having an average particle diameter of 100 nm or less, niobium nitride fine particles having an average particle diameter of 100 nm or less, and tantalum nitride fine particles having an average particle diameter of 100 nm or less is dispersed.
【請求項2】 平均粒径100nm以下の窒化チタン微
粒子、平均粒径100nm以下の窒化ジルコニウム微粒
子、平均粒径100nm以下の窒化ハフニウム微粒子、
平均粒径100nm以下の窒化バナジウム微粒子、平均
粒径100nm以下の窒化ニオブ微粒子、および、平均
粒径100nm以下の窒化タンタル微粒子のうち少なく
とも1種と、平均粒径100nm以下の酸化ルテニウム
微粒子、および、平均粒径100nm以下の酸化イリジ
ウム微粒子のうち少なくとも1種とを含有する熱線遮蔽
膜形成用塗布液。
2. Titanium nitride fine particles having an average particle size of 100 nm or less, zirconium nitride fine particles having an average particle size of 100 nm or less, hafnium nitride fine particles having an average particle size of 100 nm or less,
Vanadium nitride fine particles having an average particle size of 100 nm or less, niobium nitride fine particles having an average particle size of 100 nm or less, and at least one of tantalum nitride fine particles having an average particle size of 100 nm or less, and ruthenium oxide fine particles having an average particle size of 100 nm or less, A coating liquid for forming a heat ray shielding film, comprising at least one kind of iridium oxide fine particles having an average particle diameter of 100 nm or less.
【請求項3】 請求項1または請求項2に記載の熱線遮
蔽膜形成用塗布液であって、更に、珪素、ジルコニウ
ム、チタン、もしくは、アルミニウムの金属アルコキシ
ド、または、金属アルコキシドの部分加水分解重合物の
うちの少なくとも1種を含有する熱線遮蔽膜形成用塗布
液。
3. The coating solution for forming a heat ray shielding film according to claim 1, further comprising a metal alkoxide of silicon, zirconium, titanium, or aluminum, or a partial hydrolysis polymerization of a metal alkoxide. A coating solution for forming a heat ray shielding film, comprising at least one of the following:
【請求項4】 樹脂バインダーを含有する請求項1〜請
求項3いずれかに記載の熱線遮蔽膜形成用塗布液。
4. The coating solution for forming a heat ray shielding film according to claim 1, further comprising a resin binder.
【請求項5】 請求項1〜請求項4いずれかに記載の熱
線遮蔽膜形成用塗布液を基材に塗布後加熱して得た微粒
子分散膜であって、熱線遮蔽特性を示す主成分が、窒化
チタン、窒化ジルコニウム、窒化ハフニウム、窒化バナ
ジウム、窒化ニオブ、窒化タンタル、酸化ルテニウム、
および、酸化イリジウムのうち少なくとも1種の微粒子
であり、該微粒子成分が、樹脂バインダー中、または、
珪素、ジルコニウム、チタン、および、アルミニウムの
いずれかの金属酸化物のうちの少なくとも1種を含有す
る酸化物バインダー中に分散された熱線遮蔽膜。
5. A fine particle dispersed film obtained by applying the coating solution for forming a heat ray shielding film according to any one of claims 1 to 4 to a substrate, followed by heating. , Titanium nitride, zirconium nitride, hafnium nitride, vanadium nitride, niobium nitride, tantalum nitride, ruthenium oxide,
And at least one kind of fine particles of iridium oxide, wherein the fine particle component is contained in a resin binder, or
A heat ray shielding film dispersed in an oxide binder containing at least one of metal oxides of silicon, zirconium, titanium, and aluminum.
【請求項6】 請求項1〜請求項4いずれかに記載の熱
線遮蔽膜形成用塗布液を基材に塗布後加熱して得た熱線
遮蔽膜上に、更に、珪素、ジルコニウム、チタン、およ
び、アルミニウムのいずれかの金属酸化物のうちの少な
くとも1種を含有する酸化物膜が被膜された多層熱線遮
蔽膜。
6. A heat ray shielding film obtained by applying the heat ray shielding film forming coating solution according to any one of claims 1 to 4 to a substrate and then heating, further comprising silicon, zirconium, titanium, and And a multilayer heat ray shielding film coated with an oxide film containing at least one of metal oxides of aluminum.
【請求項7】 請求項1〜請求項4いずれかに記載の熱
線遮蔽膜形成用塗布液を基材に塗布後加熱して得た熱線
遮蔽膜の上に、更に、樹脂膜が被膜された多層熱線遮蔽
膜。
7. A resin film is further coated on the heat ray shielding film obtained by applying the heat ray shielding film forming coating liquid according to any one of claims 1 to 4 to a substrate and heating the same. Multilayer heat ray shielding film.
【請求項8】 透過率が、波長400〜700nmに極
大値を、波長700〜1800nmに極小値をもち、か
つ、極大値と極小値との差が百分率で15ポイント以上
である請求項5〜請求項7いずれかに記載の熱線遮蔽
膜。
8. The transmittance has a maximum value at a wavelength of 400 to 700 nm, a minimum value at a wavelength of 700 to 1800 nm, and a difference between the maximum value and the minimum value is 15 points or more in percentage. The heat ray shielding film according to claim 7.
【請求項9】 表面抵抗値が106Ω/□以上である請
求項5〜請求項8いずれかに記載の熱線遮蔽膜。
9. The heat ray shielding film according to claim 5, which has a surface resistance value of 10 6 Ω / □ or more.
JP06490398A 1998-03-16 1998-03-16 Heat ray shielding film forming coating solution and heat ray shielding film Expired - Lifetime JP3744188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06490398A JP3744188B2 (en) 1998-03-16 1998-03-16 Heat ray shielding film forming coating solution and heat ray shielding film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06490398A JP3744188B2 (en) 1998-03-16 1998-03-16 Heat ray shielding film forming coating solution and heat ray shielding film

Publications (2)

Publication Number Publication Date
JPH11263639A true JPH11263639A (en) 1999-09-28
JP3744188B2 JP3744188B2 (en) 2006-02-08

Family

ID=13271498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06490398A Expired - Lifetime JP3744188B2 (en) 1998-03-16 1998-03-16 Heat ray shielding film forming coating solution and heat ray shielding film

Country Status (1)

Country Link
JP (1) JP3744188B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005097462A (en) * 2003-09-26 2005-04-14 Kansai Paint Co Ltd Coloring paint having heat blocking property and method of forming coating film
WO2005037942A1 (en) * 2003-10-17 2005-04-28 Oki Electric Industry Co., Ltd. Optical reflection paint
WO2008011780A1 (en) * 2006-07-18 2008-01-31 Huawei Technologies Co., Ltd. Method, system and apparatus for detecting a faulty network terminal in pon
JP2010000460A (en) * 2008-06-20 2010-01-07 Tohoku Univ Radiation heat transfer control film
JP2012027288A (en) * 2010-07-24 2012-02-09 Konica Minolta Holdings Inc Near infrared reflecting film and near infrared reflecting body provided with the same
WO2013031464A1 (en) * 2011-08-31 2013-03-07 Fujifilm Corporation Gray composition
CN103073941A (en) * 2012-01-19 2013-05-01 中国科学院上海硅酸盐研究所 Vanadium dioxide powder slurry and preparation method thereof
CN103073942A (en) * 2012-01-19 2013-05-01 中国科学院上海硅酸盐研究所 Vanadium dioxide composite powder and preparation method thereof
WO2014126425A1 (en) * 2013-02-18 2014-08-21 (주)씨에프씨테라메이트 Film having property of blocking visible rays and near-infrared rays
WO2018096874A1 (en) * 2016-11-22 2018-05-31 三菱マテリアル電子化成株式会社 Black-film-forming mixed powder and production method therefor
JP2019026502A (en) * 2017-07-28 2019-02-21 三菱マテリアル電子化成株式会社 Method of producing mixed powder for black film formation
JP2019089706A (en) * 2014-01-29 2019-06-13 コーニング インコーポレイテッド Bendable glass stack assembly, article and manufacturing method therefor
JPWO2018061644A1 (en) * 2016-09-30 2019-09-05 富士フイルム株式会社 Metal nitride-containing particles, dispersion composition, curable composition, cured film, and production method thereof, color filter, solid-state imaging device, solid-state imaging device, infrared sensor

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005097462A (en) * 2003-09-26 2005-04-14 Kansai Paint Co Ltd Coloring paint having heat blocking property and method of forming coating film
WO2005037942A1 (en) * 2003-10-17 2005-04-28 Oki Electric Industry Co., Ltd. Optical reflection paint
WO2008011780A1 (en) * 2006-07-18 2008-01-31 Huawei Technologies Co., Ltd. Method, system and apparatus for detecting a faulty network terminal in pon
JP2010000460A (en) * 2008-06-20 2010-01-07 Tohoku Univ Radiation heat transfer control film
JP2012027288A (en) * 2010-07-24 2012-02-09 Konica Minolta Holdings Inc Near infrared reflecting film and near infrared reflecting body provided with the same
WO2013031464A1 (en) * 2011-08-31 2013-03-07 Fujifilm Corporation Gray composition
JP2013049809A (en) * 2011-08-31 2013-03-14 Fujifilm Corp Gray composition
CN103073941A (en) * 2012-01-19 2013-05-01 中国科学院上海硅酸盐研究所 Vanadium dioxide powder slurry and preparation method thereof
CN103073942A (en) * 2012-01-19 2013-05-01 中国科学院上海硅酸盐研究所 Vanadium dioxide composite powder and preparation method thereof
WO2014126425A1 (en) * 2013-02-18 2014-08-21 (주)씨에프씨테라메이트 Film having property of blocking visible rays and near-infrared rays
US10809766B2 (en) 2014-01-29 2020-10-20 Corning Incorporated Bendable glass stack assemblies, articles and methods of making the same
JP2019089706A (en) * 2014-01-29 2019-06-13 コーニング インコーポレイテッド Bendable glass stack assembly, article and manufacturing method therefor
US10824200B2 (en) 2014-01-29 2020-11-03 Corning Incorporated Bendable glass stack assemblies, articles and methods of making the same
US11358372B2 (en) 2014-01-29 2022-06-14 Corning Incorporated Bendable glass stack assemblies, articles and methods of making the same
US11745471B2 (en) 2014-01-29 2023-09-05 Corning Incorporated Bendable glass stack assemblies, articles and methods of making the same
JPWO2018061644A1 (en) * 2016-09-30 2019-09-05 富士フイルム株式会社 Metal nitride-containing particles, dispersion composition, curable composition, cured film, and production method thereof, color filter, solid-state imaging device, solid-state imaging device, infrared sensor
JP2022079500A (en) * 2016-09-30 2022-05-26 富士フイルム株式会社 Metal nitride-containing particles, dispersion composition, curable composition, curable film, production method thereof, color filter, solid-state imaging element, solid-state imaging device, and infrared sensor
JP2018083730A (en) * 2016-11-22 2018-05-31 三菱マテリアル電子化成株式会社 Mixed powder for forming black film and manufacturing method therefor
WO2018096874A1 (en) * 2016-11-22 2018-05-31 三菱マテリアル電子化成株式会社 Black-film-forming mixed powder and production method therefor
US10870578B2 (en) 2016-11-22 2020-12-22 Mitsubishi Materials Electronic Chemicals Co., Ltd. Black-film-forming mixed powder
JP2019026502A (en) * 2017-07-28 2019-02-21 三菱マテリアル電子化成株式会社 Method of producing mixed powder for black film formation

Also Published As

Publication number Publication date
JP3744188B2 (en) 2006-02-08

Similar Documents

Publication Publication Date Title
US6277187B1 (en) Film for cutting off heat rays and a coating liquid for forming the same
JP4096277B2 (en) Solar shading material, coating liquid for solar shading film, and solar shading film
JP4626284B2 (en) Method for producing tungsten oxide fine particles for forming solar shield, and tungsten oxide fine particles for forming solar shield
JP3262098B2 (en) Heat ray shielding material, heat ray shielding equipment using the same, coating liquid and heat ray shielding film
JP3744188B2 (en) Heat ray shielding film forming coating solution and heat ray shielding film
JP2005226008A (en) Dispersion for forming solar radiation-shielding body, and solar radiation-shielding body and method for producing the same
JPH0841441A (en) Indium-tin oxide powder for shielding ultraviolet and near infrared rays, ultraviolet and near-infrared ray-shielding glass and production thereof
US20090216492A1 (en) Solar radiation shielding member and solar radiation shielding member forming fluid dispersion
JP2003176132A (en) Antimony-tin oxide particle for shielding insolation, coating solution for forming insolation shielding film and insolation shielding film
JP2002131531A (en) Heat wave reflecting transparent substrate, method for manufacturing the same and display device for which heat wave reflecting transparent substrate is applied
KR100471098B1 (en) Coating solution for heat shield film and how to manufacture the heat shield film using it
JP4182825B2 (en) Antimony tin oxide fine particles for sunscreen, dispersion for forming sunscreen using the same, sunscreen and transparent substrate for sunscreen
JP2003215328A (en) Fine particles for sun protection, coating liquid for forming sun protection film containing the same and sun protection film
JP4200424B2 (en) Manufacturing method of solar shading material, coating liquid for forming solar shading film, solar shading film, and transparent base material for solar shading
JPH06144874A (en) Heat ray reflective film and its production
JP2002265236A (en) Producing method for fine particle for forming insolation shielding film and application liquid for forming insolation shielding film using the fine particle obtained by the producing method
JPH11258418A (en) Coating liquid for forming heat-ray-shielding film and heat-ray-shielding film
JP2002201027A (en) Ito microparticle for daylight screening, method for producing the same, and coating liquid and daylight screening film using the same
JPH11258417A (en) Coating liquid for forming heat-ray-shielding film and heat-ray-shielding film
JPH1036774A (en) Coating liquid for sun light-shading film and sun light-shading film using the same
JP2003327429A (en) Fine particle for shielding solar radiation, coating solution for forming solar radiation shielding film containing the fine particle and solar radiation shielding film
JP4194121B2 (en) Coating liquid for heat ray reflective film and heat ray reflective film using the same
JPH10212138A (en) Display device
JPH09156963A (en) Coating liquid for heat ray-screening film and heat ray-screening film using the liquid
JP2003327917A (en) Method for producing sun-shielding material, coating liquid produced by using the sun-shielding material and sun-shielding film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050323

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050323

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051003

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

EXPY Cancellation because of completion of term