JP3915880B2 - Method for producing fine particles for solar radiation shielding film formation - Google Patents

Method for producing fine particles for solar radiation shielding film formation Download PDF

Info

Publication number
JP3915880B2
JP3915880B2 JP2001060204A JP2001060204A JP3915880B2 JP 3915880 B2 JP3915880 B2 JP 3915880B2 JP 2001060204 A JP2001060204 A JP 2001060204A JP 2001060204 A JP2001060204 A JP 2001060204A JP 3915880 B2 JP3915880 B2 JP 3915880B2
Authority
JP
Japan
Prior art keywords
fine particles
solar
oxide fine
solar radiation
shielding film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001060204A
Other languages
Japanese (ja)
Other versions
JP2002265236A (en
Inventor
武 長南
裕子 久野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2001060204A priority Critical patent/JP3915880B2/en
Publication of JP2002265236A publication Critical patent/JP2002265236A/en
Application granted granted Critical
Publication of JP3915880B2 publication Critical patent/JP3915880B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/44Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the composition of the continuous phase
    • C03C2217/445Organic continuous phases
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • C03C2217/476Tin oxide or doped tin oxide

Description

【0001】
【発明の属する技術分野】
本発明は、車両、ビル、事務所、一般住宅などの窓材、電話ボックス、ショーウインドー、照明用ランプ、透明ケースなど、ガラス、プラスチックスその他の日射遮蔽機能を必要とする透明基材に適用される日射遮蔽膜形成用微粒子に係り、特に、可視光透過率80%以上のときの日射透過率が70%未満でしかもヘイズ値が1%未満である日射遮蔽膜を形成可能な日射遮蔽膜形成用微粒子の製造方法に関するものである。
【0002】
【従来の技術】
太陽光や電球などの外部光源から熱成分を除去・減少する方法として、従来、ガラス表面に可視・赤外域の波長を反射する材料を成膜して熱線反射ガラスとする方法が行われている。そして、上記材料としては、FeOx、CoOx、CrOx、TiOxなどの金属酸化物や、Ag、Au、Cu、Ni、Alなど自由電子を多量にもつ金属材料が選択されてきた。
【0003】
しかし、これらの材料には、熱効果に大きく寄与する近赤外線以外に可視光も同時に反射もしくは吸収する性質があるため、可視光透過率が低下する問題があった。そして、建材、乗り物、電話ボックスなどに用いられる透明基材では可視光領域の高い透過率が必要とされることから、前記材料を利用する場合は膜厚を非常に薄くしなければならない。従って、スプレ−焼付けやCVD法、あるいはスパッタ法や真空蒸着法などの物理成膜法を用いて10nmレベルの薄膜に成膜して用いられることが通常行われている。そして、これらの成膜方法は大がかりな装置や真空設備を必要とし、生産性や大面積化に問題があるため膜の製造コストが高いといった欠点があった。
【0004】
また、上記成膜法を用いて膜厚を薄くし可視光の透過率を高くしようとすると膜の日射遮蔽特性が低下し、反対に膜厚を厚くして日射遮蔽特性を高くすると膜が暗くなってしまう問題もあった。
【0005】
また、これらの材料で日射遮蔽特性を高くしようとすると可視光領域の反射率も同時に高くなってしまう傾向があり、鏡のようなギラギラした外観を与えて美観を損ねてしまう問題点も存在した。
【0006】
更に、これらの材料では膜の導電性が高くなるものが多い。そして、膜の導電性が高いと携帯電話やTV、ラジオなどの電波を反射して受信不能になったり、周辺地域に電波障害を引き起こすなどの問題もあった。
【0007】
一方、フタロシアニン系や金属錯体系などの有機系近赤外線吸収剤をバインダー中に添加した樹脂フィルムも使用されている。しかし、無機系の材料に比べて熱や湿度による劣化が顕著であり、耐候性に欠点があった。
【0008】
このような従来の日射遮蔽膜の欠点を改善するためには、膜の物理特性として可視光領域の光の反射率が低くて透過率が高く、かつ、赤外線領域の透過率が低いと共に、膜の導電性が概ね106Ω/□以上に制御可能な膜を形成できることが必要であった。
【0009】
【発明が解決しようとする課題】
ところで、可視光透過率が高くしかも日射遮蔽機能を持つ材料として、アンチモン含有酸化錫(ATO)や錫含有酸化インジウム(ITO)も知られており、これら材料は可視光反射率が比較的低いため上述したギラギラした外観を与えることはなかった。
【0010】
但し、プラズマ波長が近赤外域の比較的長波長側にあることから、可視光に近い近赤外域におけるこれらの膜の反射・吸収効果は未だ十分でなかった。
【0011】
そこで、上記錫含有酸化インジウム(ITO)については以下の方法により脱酸素処理して近赤外域における膜の反射・吸収効果を改善させる提案がなされている。例えば、特開平7−70481号公報において錫含有酸化インジウム(ITO)を加圧不活性ガス中で加熱処理する方法が、特開平8−41441号公報において錫含有酸化インジウム(ITO)をアルコ−ル含有窒素ガス中で加熱処理する方法が、また、特開平10−120946号公報において錫含有酸化インジウム(ITO)を不活性ガスあるいは還元性ガス中で加熱処理する方法が提案されている。
【0012】
しかし、これらの方法ではいずれも加熱処理時間が数時間と長く、生産性に課題が存在した。
【0013】
本発明はこのような問題点に着目してなされたもので、その課題とするところは、可視光透過率80%以上のときの日射透過率が70%未満でしかもヘイズ値が1%未満である日射遮蔽膜を形成可能な日射遮蔽膜形成用微粒子を従来よりも短時間で製造可能な日射遮蔽膜形成用微粒子の製造方法を提供することにある。
【0014】
そこで、この目的を達成するため、本発明者らは上記錫含有酸化インジウム微粒子すなわちインジウム錫酸化物微粒子に対しタングステン酸化物微粒子またはレニウム酸化物微粒子を混合して上述した加熱処理を施したところ、タングステン酸化物微粒子またはレニウム酸化物微粒子の触媒作用により特定ガス雰囲気下での上記加熱処理時間が大幅に短縮できることを見出すと共に、塩素イオン、硝酸イオン、硫酸イオンからなる残留不純物量の少ないインジウム錫酸化物微粒子とタングステン酸化物微粒子またはレニウム酸化物微粒子との混合によって前記効果が一層増すことを見出して本発明を完成するに至った。
【0015】
【課題を解決するための手段】
すなわち、請求項1に係る発明は、
日射遮蔽膜形成用微粒子の製造方法を前提とし、
平均粒径が100nm以下のインジウム錫酸化物微粒子とタングステン酸化物微粒子またはレニウム酸化物微粒子とを混合し、アルコ−ルを含む不活性ガス雰囲気下、または、還元性ガスと不活性ガスとの混合ガス雰囲気下で加熱処理することを特徴とし、
請求項2に係る発明は、
日射遮蔽膜形成用微粒子の製造方法を前提とし、
平均粒径が100nm以下でかつ粒子中に含まれる塩素イオン、硝酸イオン、硫酸イオンからなる残留不純物量が0.6重量%以下であるインジウム錫酸化物微粒子とタングステン酸化物微粒子またはレニウム酸化物微粒子とを混合し、不活性ガス若しくはアルコ−ルを含む不活性ガス雰囲気下、または、還元性ガスと不活性ガスとの混合ガス雰囲気下で加熱処理することを特徴とする。
【0016】
また、請求項3に係る発明は、
請求項1または2記載の日射遮蔽膜形成用微粒子の製造方法を前提とし、
上記インジウム錫酸化物微粒子とタングステン酸化物微粒子との混合割合が、重量比で99.9:0.1〜80:20であることを特徴とし、
請求項4に係る発明は、
請求項1または2記載の日射遮蔽膜形成用微粒子の製造方法を前提とし、
上記インジウム錫酸化物微粒子とレニウム酸化物微粒子との混合割合が、重量比で99.9:0.1〜99:1であることを特徴とするものである。
【0019】
【発明の実施の形態】
以下、本発明の実施の形態について詳細に説明する。
【0020】
まず、本発明に係る日射遮蔽膜形成用微粒子の製造方法は、平均粒径が100nm以下のインジウム錫酸化物微粒子とタングステン酸化物微粒子またはレニウム酸化物微粒子とを混合した後、アルコ−ルを含む不活性ガス雰囲気下、または、還元性ガスと不活性ガスとの混合ガス雰囲気下で加熱処理することを特徴とし(請求項1)、また、本発明に係る日射遮蔽膜形成用微粒子の他の製造方法は、平均粒径が100nm以下でかつ粒子中に含有する塩素イオン、硝酸イオン、硫酸イオンからなる残留不純物量が0.6重量%以下であるインジウム錫酸化物微粒子とタングステン酸化物微粒子またはレニウム酸化物微粒子とを混合した後、不活性ガス若しくはアルコ−ルを含む不活性ガス雰囲気下、または、還元性ガスと不活性ガスとの混合ガス雰囲気下で加熱処理することを特徴(請求項2)とする。尚、上記インジウム錫酸化物微粒子の平均粒径とは、透過電子顕微鏡(TEM)で観察される微粒子の平均粒径を示している。
【0021】
これ等方法で得られた微粒子を溶媒およびバインダー中に分散して日射遮蔽膜形成用塗布液とする。混合するインジウム錫酸化物微粒子において、元素換算での錫含有量は1〜15重量%が好ましい。1重量%未満では錫の添加効果が見られず、15重量%を超えると錫の固溶が不十分となる場合があるからである。
【0022】
また、インジウム錫酸化物微粒子の平均粒径は、上述したように100nm以下であることが必要である。平均粒径が100nmを超えると光散乱源となって膜に曇り(ヘイズ)を生じたり、可視光透過率が減少する原因になるからである。尚、ここでは粒子の大きさを平均粒径で表しているが、100nmを超えるような粗粉の割合が少なく粒度分布の狭い微粉が好ましく、かつ、経済的に入手可能な最低の粒径は2nm程度の微粒子である。但し、上記粒径の下限をこれに限定するものではない。
【0023】
次に、タングステンは酸化物であればいずれの形態でもよく、例えばWO3やWO2などが挙げられる。
【0024】
また、インジウム錫酸化物微粒子とタングステン酸化物微粒子との混合割合は、処理効率と光学特性の観点から重量比で99.9:0.1〜80:20、好ましくは99:1〜85:15の範囲に設定するとよい。タングステン酸化物微粒子が0.1%未満だと添加効果が得られず、また、20%を超えてもタングステンの添加効果は発揮されるが日射遮蔽特性が悪化してくる場合があるからである。
【0025】
他方、上記レニウムは酸化物であればいずれの形態でもよく、例えばReO3、ReO2、Re27などが挙げられる。
【0026】
また、インジウム錫酸化物微粒子とレニウム酸化物微粒子との混合割合は、処理効率と光学特性の観点から重量比で99.9:0.1〜99:1の範囲に設定するとよい。レニウム酸化物微粒子が0.1%未満だと添加効果が得られず、また、1%を超えてもタングステンの添加効果は発揮されるが日射遮蔽特性が悪化してくる場合があるからである。
【0027】
次に、インジウム錫酸化物微粒子とタングステン酸化物微粒子またはレニウム酸化物微粒子の混合方法は均一に混合できれば特に限定されず、公知の方法を採用できる。
【0028】
また、インジウム錫酸化物微粒子とタングステン酸化物微粒子またはレニウム酸化物微粒子との混合物に対する加熱処理は、インジウム錫酸化物微粒子中に含有する塩素イオン、硝酸イオン、硫酸イオンからなる残留不純物量が0.6重量%以上の場合は、窒素、アルゴン、ヘリウムなどの不活性ガス単独をキャリアガスとして若しくは窒素、アルゴン、ヘリウムなどの混合ガスをキャリアガスとしてアルコールをフィードするか、または、水素や一酸化炭素などの還元性ガスと前記不活性ガスとの混合ガスをフィードする。また、インジウム錫酸化物微粒子中に含有する塩素イオン、硝酸イオン、硫酸イオンからなる残留不純物量が0.6%重量以下の場合は、窒素、アルゴン、ヘリウムなどの不活性ガス単独でフィ−ドするか、前記不活性ガス単独をキャリアガスとして若しくはこれらの混合ガスをキャリアガスとしてアルコールをフィードするか、または、水素や一酸化炭素などの還元性ガスと前記不活性ガスとの混合ガスをフィードする。
【0029】
また、適用するアルコ−ルは特に限定されるものではないが、揮発性とコストの観点からメタノ−ル、エタノ−ル、プロパノ−ルなどが好ましい。不活性ガス中のアルコ−ル、水素、一酸化炭素の各濃度やフィード量は、処理効率や所望とする光学特性が得られるように適宜選択すればよい。
【0030】
次に、処理温度は200〜400℃の範囲であることが好ましい。400℃を超えてもタングステン酸化物またはレニウム酸化物微粒子の添加効果は発揮されるが上記酸化物粒子の凝集・焼結が起こり易く、200℃未満ではタングステン酸化物またはレニウム酸化物微粒子の添加効果が十分発揮されない場合があるからである。また、加熱処理時間は雰囲気と温度を勘案して適宜選択される。
【0031】
インジウム錫酸化物微粒子中に残留する塩素イオン、硝酸イオン、硫酸イオンなどの不純物は、上記インジウム錫酸化物微粒子の脱酸素処理に対して還元阻害因子となることがあるため、0.6重量%以下、好ましくは0.3重量%以下がよい。上述したように塩素イオン、硝酸イオン、硫酸イオンからなる残留不純物量が0.6重量%以下であるインジウム錫酸化物微粒子とタングステン酸化物微粒子またはレニウム酸化物微粒子とを混合することによってタングステン酸化物またはレニウム酸化物微粒子の添加効果が一層発揮される。
【0032】
次に、日射遮蔽膜形成用塗布液は、上記インジウム錫酸化物微粒子を溶媒およびバインダー中に分散したものであるが、溶媒は特に限定されるものではなく、塗布条件、塗布環境、および無機バインダーや樹脂バインダ−に合わせて適宜選択される。例えば、水やエタノ−ル、プロパノ−ル、ブタノ−ル、イソプロピルアルコ−ル、イソブチルアルコ−ル、ジアセトンアルコ−ルなどのアルコ−ル類、メチルエ−テル,エチルエ−テル,プロピルエ−テルなどのエ−テル類、エステル類、アセトン、メチルエチルケトン、ジエチルケトン、シクロヘキサノン、イソブチルケトンなどのケトン類といった各種の有機溶媒が使用可能であり、また必要に応じて酸やアルカリを添加してpH調整してもよい。さらに、塗布液中の微粒子の分散安定性を一層向上させるためには、各種の界面活性剤、カップリング剤などの添加も勿論可能である。
【0033】
上記無機バインダーや樹脂バインダ−の種類は特に限定されるものではないが、無機バインダーとしては、珪素、ジルコニウム、チタン、もしくはアルミニウムの金属アルコキシドやこれらの部分加水分解縮重合物あるいはオルガノシラザンが、樹脂バインダーとしてはアクリル樹脂などの熱可塑性樹脂、エポキシ樹脂などの熱硬化性樹脂などが利用できる。
【0034】
インジウム錫酸化物微粒子の分散方法は塗布液中に均一に分散する方法であれば特に限定されず、例えばビーズミル、ボ−ルミル、サンドミル、ペイントシェーカー、超音波ホモジナイザーなどが挙げられる。
【0035】
日射遮蔽膜のさらなる紫外線遮蔽機能を付与させるため、無機系の酸化チタンや酸化亜鉛、酸化セリウムなどの微粒子や、有機系のベンゾフェノンやベンゾトリアゾ−ルなどの1種もしくは2種以上を添加してもよい。
【0036】
【実施例】
以下、実施例により本発明をより具体的に説明する。ただし、本発明は以下の実施例に限定されるものでない。
【0037】
尚、得られた膜の可視光透過率や日射透過率は日立製作所(株)製の分光光度計U−4000を用いて測定した。また、ヘイズ値は村上色彩技術研究所(株)製HR−200を用いて測定した。膜評価においては線径の異なる3種のバーコーターで成膜し、これらにより得られた膜厚の異なる3種類の膜の可視光透過率、日射透過率、ヘイズ値をそれぞれ測定し、これらの3点プロットからの内挿値として可視光透過率86%のときの日射透過率およびヘイズ値を求めた。
【0038】
[実施例1]
錫含有量10重量%、残留不純物量0.7重量%、平均粒径0.03μmのインジウム錫酸化物微粒子[住友金属鉱山(株)社製]と三酸化タングステン微粒子との混合割合を重量比で99:1とし、30分混合した。
【0039】
これを500mlのセパラブルフラスコに入れ、攪拌しながらメタノ−ル含有窒素キャリアガスをフィ−ドして加熱し、300℃の温度で9分処理して三酸化タングステンが添加されたインジウム錫酸化物微粒子を得た。
【0040】
上記微粒子20重量%、メチルイソブチルケトン63.3重量%、分散剤16.7重量%、および、充填率63%相当の0.3mmジルコニアビ−ズをペイントシェ−カ−で24時間分散した。
【0041】
次に、上記分散液67.5重量%、バインダ−としてメチルイソブチルケトンに溶解したアクリル樹脂溶液27.5重量%および硬化剤5重量%からなる塗布液を、バ−No.40、No.24、No.6でそれぞれ100mm×100mm×3mmのソ−ダライムガラス基板に塗布した後、180℃で30分焼成して日射遮蔽膜aを得た。この日射遮蔽膜aの日射透過率(%)およびヘイズ値(%)を以下の表1に示す。
【0042】
そして、この表1から確認されるように、実施例1に係る日射遮蔽膜aの日射透過率およびヘイズ値は、それぞれ67.0%、0.62%であった。
【0043】
[実施例2]
インジウム錫酸化物微粒子と三酸化タングステン微粒子との混合割合を重量比で98:2とした以外は実施例1と同様にして実施例2に係る日射遮蔽膜bを得た。この日射遮蔽膜bの日射透過率(%)およびヘイズ値(%)も以下の表1に示す。
【0044】
そして、この表1から確認されるように、実施例2に係る日射遮蔽膜bの日射透過率およびヘイズ値は、それぞれ68.0%、0.80%であった。
【0045】
[実施例3]
インジウム錫酸化物微粒子と三酸化タングステン微粒子との混合割合を重量比で96:4とした以外は実施例1と同様にして実施例3に係る日射遮蔽膜cを得た。この日射遮蔽膜cの日射透過率(%)およびヘイズ値(%)も以下の表1に示す。
【0046】
そして、この表1から確認されるように、実施例3に係る日射遮蔽膜cの日射透過率およびヘイズ値は、それぞれ67.1%、0.60%であった。
【0047】
[実施例4]
インジウム錫酸化物微粒子と三酸化タングステン微粒子との混合割合を重量比で88:12とした以外は実施例1と同様にして実施例4に係る日射遮蔽膜dを得た。この日射遮蔽膜dの日射透過率(%)およびヘイズ値(%)も以下の表1に示す。
【0048】
そして、この表1から確認されるように、実施例4に係る日射遮蔽膜dの日射透過率およびヘイズ値は、それぞれ67.0%、0.35%であった。
【0049】
[実施例5]
インジウム錫酸化物微粒子と三酸化タングステン微粒子との混合割合を重量比で82:18とした以外は実施例1と同様にして実施例5に係る日射遮蔽膜eを得た。この日射遮蔽膜eの日射透過率(%)およびヘイズ値(%)も以下の表1に示す。
【0050】
そして、この表1から確認されるように、実施例5に係る日射遮蔽膜eの日射透過率およびヘイズ値は、それぞれ68.9%、0.75%であった。
【0051】
[比較例1]
三酸化タングステンを添加しない条件で、上記インジウム錫酸化物微粒子を、300℃で9分間加熱処理した場合、日射透過率が70%以上となってしまったため、処理時間を60分とし、それ以外は実施例1と同様にして比較例1に係る日射遮蔽膜fを得た。この日射遮蔽膜fの日射透過率(%)およびヘイズ値(%)も以下の表1に示す。
【0052】
そして、この表1から確認されるように、比較例1に係る日射遮蔽膜fの日射透過率およびヘイズ値は、それぞれ66.0%、0.40%であった。
【0053】
[比較例2]
三酸化タングステンを添加しない条件で、処理時間を180分とし、それ以外は実施例1と同様にして比較例2に係る日射遮蔽膜gを得た。この日射遮蔽膜gの日射透過率(%)およびヘイズ値(%)も以下の表1に示す。
【0054】
そして、この表1から確認されるように、比較例2に係る日射遮蔽膜gの日射透過率およびヘイズ値は、それぞれ66.5%、0.46%であった。
【0055】
これ等の結果、各実施例に係る日射遮蔽膜と同様の特性を有する日射遮蔽膜を得るためには、処理時間を各実施例の9分間より長い60分間、180分間とする必要があることが確認された。
【0056】
[実施例6]
処理温度を350℃にした以外は実施例1と同様にして実施例6に係る日射遮蔽膜hを得た。この日射遮蔽膜hの日射透過率(%)およびヘイズ値(%)も以下の表1に示す。
【0057】
そして、この表1から確認されるように、実施例6に係る日射遮蔽膜hの日射透過率およびヘイズ値は、それぞれ68.1%、0.35%であった。
【0058】
[実施例7]
メタノ−ル含有窒素キャリアガスに代えてN2をキャリア−とした5%H2ガスを用い、300℃で60分処理した以外は実施例1と同様にして実施例7に係る日射遮蔽膜iを得た。この日射遮蔽膜iの日射透過率(%)およびヘイズ値(%)も以下の表1に示す。
【0059】
そして、この表1から確認されるように、実施例7に係る日射遮蔽膜iの日射透過率およびヘイズ値は、それぞれ66.0%、0.63%であった。
【0060】
[比較例3]
三酸化タングステンを添加しない条件で、上記インジウム錫酸化物微粒子を、300℃で60分間加熱処理した場合、日射透過率が70%以上となってしまったため、処理時間を480分とし、それ以外は実施例7と同様にして比較例3に係る日射遮蔽膜jを得た。この日射遮蔽膜jの日射透過率(%)およびヘイズ値(%)も以下の表1に示す。
【0061】
そして、この表1から確認されるように、比較例3に係る日射遮蔽膜jの日射透過率およびヘイズ値は、それぞれ67.1%、0.46%であった。
【0062】
この結果、実施例7に係る日射遮蔽膜iと同様の特性を有する日射遮蔽膜を得るためには、処理時間を実施例7の60分間より長い480分間とする必要があることが確認された。
【0063】
[実施例8]
錫含有量10重量%、残留不純物量0.1重量%、平均粒径0.03μmのインジウム錫酸化物微粒子[住友金属鉱山(株)社製]と三酸化タングステン微粒子との混合割合を重量比で99:1とし、メタノ−ル含有窒素キャリアガスをフィ−ドして加熱し、300℃で3分処理した以外は実施例1と同様にして実施例8に係る日射遮蔽膜kを得た。この日射遮蔽膜kの日射透過率(%)およびヘイズ値(%)も以下の表1に示す。
【0064】
そして、この表1から確認されるように、実施例8に係る日射遮蔽膜kの日射透過率およびヘイズ値は、それぞれ66.7%、0.58%であった。
【0065】
[実施例9]
2をキャリア−とした5%H2ガスを用い、260℃で40分処理した以外は実施例8と同様にして実施例9に係る日射遮蔽膜lを得た。この日射遮蔽膜lの日射透過率(%)およびヘイズ値(%)も以下の表1に示す。
【0066】
そして、この表1から確認されるように、実施例9に係る日射遮蔽膜lの日射透過率およびヘイズ値は、それぞれ69.9%、0.90%であった。
【0067】
[実施例10]
2ガスを用い、300℃で10分処理した以外は実施例8と同様にして実施例10に係る日射遮蔽膜mを得た。この日射遮蔽膜mの日射透過率(%)およびヘイズ値(%)も以下の表1に示す。
【0068】
そして、この表1から確認されるように、実施例10に係る日射遮蔽膜mの日射透過率およびヘイズ値は、それぞれ69.8%、0.64%であった。
【0069】
[比較例4]
2ガスを用いる条件で、錫含有量10重量%、残留不純物量0.7重量%、平均粒径0.03μmのインジウム錫酸化物微粒子[住友金属鉱山(株)社製]を300℃で9分間加熱処理した場合、日射透過率が70%以上となってしまったため、処理時間を60分とし、それ以外は実施例1と同様にして比較例4に係る日射遮蔽膜nを得た。この日射遮蔽膜nの日射透過率(%)およびヘイズ値(%)も以下の表1に示す。
【0070】
そして、この表1から確認されるように、比較例4に係る日射遮蔽膜nの日射透過率およびヘイズ値は、それぞれ69.6%、0.60%であった。
【0071】
この結果、錫含有量10重量%、残留不純物量0.1重量%、平均粒径0.03μmのインジウム錫酸化物微粒子が適用された実施例10に係る日射遮蔽膜mと同様の特性を有する日射遮蔽膜を得るためには、処理時間を実施例10の10分間より長い60分間とする必要があることが確認された。
【0072】
【表1】

Figure 0003915880
[実施例11]
錫含有量10重量%、残留不純物量0.7重量%、平均粒径0.03μmのインジウム錫酸化物微粒子[住友金属鉱山(株)社製]と三酸化レニウム微粒子との混合割合を重量比で99.5:0.5とし、30分混合した。
【0073】
これを500mlのセパラブルフラスコに入れ、攪拌しながらメタノ−ル含有窒素キャリアガスをフィ−ドして加熱し、300℃の温度で7分処理して三酸化レニウムが添加されたインジウム錫酸化物微粒子を得た。
【0074】
上記微粒子20重量%、メチルイソブチルケトン63.3重量%、分散剤16.7重量%、および、充填率63%相当の0.3mmジルコニアビ−ズをペイントシェ−カ−で24時間分散した。
【0075】
次に、上記分散液67.5重量%、バインダ−としてメチルイソブチルケトンに溶解したアクリル樹脂溶液27.5重量%および硬化剤5重量%からなる塗布液を、バ−No.40、No.24、No.6でそれぞれ100mm×100mm×3mmのソ−ダライムガラス基板に塗布した後、180℃で30分焼成して日射遮蔽膜oを得た。この日射遮蔽膜oの日射透過率(%)およびヘイズ値(%)を以下の表2に示す。
【0076】
そして、この表2から確認されるように、実施例11に係る日射遮蔽膜oの日射透過率およびヘイズ値は、それぞれ67.7%、0.30%であった。
【0077】
[実施例12]
インジウム錫酸化物微粒子と三酸化レニウム微粒子との混合割合を重量比で99.9:0.1とした以外は実施例11と同様にして実施例12に係る日射遮蔽膜pを得た。この日射遮蔽膜pの日射透過率(%)およびヘイズ値(%)も以下の表2に示す。
【0078】
そして、この表2から確認されるように、実施例12に係る日射遮蔽膜pの日射透過率およびヘイズ値は、それぞれ67.5%、0.30%であった。
【0079】
[実施例13]
インジウム錫酸化物微粒子と三酸化レニウム微粒子との混合割合を重量比で99.2:0.8とした以外は実施例11と同様にして実施例13に係る日射遮蔽膜qを得た。この日射遮蔽膜qの日射透過率(%)およびヘイズ値(%)も以下の表2に示す。
【0080】
そして、この表2から確認されるように、実施例13に係る日射遮蔽膜qの日射透過率およびヘイズ値は、それぞれ68.5%、0.29%であった。
【0081】
[比較例5]
三酸化レニウムを添加しない条件で、上記インジウム錫酸化物微粒子を、300℃で7分間加熱処理した場合、日射透過率が70%以上となってしまったため、処理時間を60分とし、それ以外は実施例11と同様にして比較例5に係る日射遮蔽膜rを得た。この日射遮蔽膜rの日射透過率(%)およびヘイズ値(%)も以下の表2に示す。
【0082】
そして、この表2から確認されるように、比較例5に係る日射遮蔽膜rの日射透過率およびヘイズ値は、それぞれ66.0%、0.40%であった。
【0083】
[比較例6]
三酸化レニウムを添加しない条件で、処理時間を180分とし、それ以外は実施例11と同様にして比較例6に係る日射遮蔽膜sを得た。この日射遮蔽膜sの日射透過率(%)およびヘイズ値(%)も以下の表2に示す。
【0084】
そして、この表2から確認されるように、比較例6に係る日射遮蔽膜sの日射透過率およびヘイズ値は、それぞれ66.5%、0.46%であった。
【0085】
これ等の結果、実施例11〜13に係る日射遮蔽膜と同様の特性を有する日射遮蔽膜を得るためには、処理時間を各実施例の7分間より長い60分間、180分間とする必要があることが確認された。
【0086】
[実施例14]
処理温度を350℃にした以外は実施例11と同様にして実施例14に係る日射遮蔽膜tを得た。この日射遮蔽膜tの日射透過率(%)およびヘイズ値(%)も以下の表2に示す。
【0087】
そして、この表2から確認されるように、実施例14に係る日射遮蔽膜tの日射透過率およびヘイズ値は、それぞれ68.6%、0.39%であった。
【0088】
[実施例15]
メタノ−ル含有窒素キャリアガスに代えてN2をキャリア−とした5%H2ガスを用い、300℃で60分処理した以外は実施例11と同様にして実施例15に係る日射遮蔽膜uを得た。この日射遮蔽膜uの日射透過率(%)およびヘイズ値(%)も以下の表2に示す。
【0089】
そして、この表2から確認されるように、実施例15に係る日射遮蔽膜uの日射透過率およびヘイズ値は、それぞれ66.8%、0.29%であった。
【0090】
[比較例7]
三酸化レニウムを添加しない条件で、上記インジウム錫酸化物微粒子を、300℃で60分間加熱処理した場合、日射透過率が70%以上となってしまったため、処理時間を480分とし、それ以外は実施例15と同様にして比較例7に係る日射遮蔽膜vを得た。この日射遮蔽膜vの日射透過率(%)およびヘイズ値(%)も以下の表2に示す。
【0091】
そして、この表2から確認されるように、比較例7に係る日射遮蔽膜vの日射透過率およびヘイズ値は、それぞれ67.1%、0.46%であった。
【0092】
この結果、実施例15に係る日射遮蔽膜uと同様の特性を有する日射遮蔽膜を得るためには、処理時間を実施例15の60分間より長い480分間とする必要があることが確認された。
【0093】
[実施例16]
錫含有量10重量%、残留不純物量0.1重量%、平均粒径0.03μmのインジウム錫酸化物微粒子[住友金属鉱山(株)社製]と三酸化レニウム微粒子との混合割合を重量比で99.5:0.5とし、メタノ−ル含有窒素キャリアガスをフィ−ドして加熱し、270℃で40分処理した以外は実施例11と同様にして実施例16に係る日射遮蔽膜wを得た。この日射遮蔽膜wの日射透過率(%)およびヘイズ値(%)も以下の表2に示す。
【0094】
そして、この表2から確認されるように、実施例16に係る日射遮蔽膜wの日射透過率およびヘイズ値は、それぞれ69.5%、0.42%であった。
【0095】
[実施例17]
2ガスを用い、300℃で10分処理した以外は実施例16と同様にして実施例17に係る日射遮蔽膜xを得た。この日射遮蔽膜xの日射透過率(%)およびヘイズ値(%)も以下の表2に示す。
【0096】
そして、この表2から確認されるように、実施例17に係る日射遮蔽膜xの日射透過率およびヘイズ値は、それぞれ69.9%、0.35%であった。
【0097】
[比較例8]
2ガスを用いる条件で、錫含有量10重量%、残留不純物量0.7重量%、平均粒径0.03μmのインジウム錫酸化物微粒子[住友金属鉱山(株)社製]を300℃で10分間加熱処理した場合、日射透過率が70%以上となってしまったため、処理時間を60分とし、それ以外は実施例11と同様にして比較例8に係る日射遮蔽膜yを得た。この日射遮蔽膜yの日射透過率(%)およびヘイズ値(%)も以下の表2に示す。
【0098】
そして、この表2から確認されるように、比較例8に係る日射遮蔽膜yの日射透過率およびヘイズ値は、それぞれ69.6%、0.33%であった。
【0099】
この結果、錫含有量10重量%、残留不純物量0.1重量%、平均粒径0.03μmのインジウム錫酸化物微粒子が適用された実施例17に係る日射遮蔽膜xと同様の特性を有する日射遮蔽膜を得るためには、処理時間を実施例17の10分間より長い60分間とする必要があることが確認された。
【0100】
【表2】
Figure 0003915880
【0101】
【発明の効果】
請求項1〜4記載の発明に係る日射遮蔽膜形成用微粒子の製造方法によれば、
加熱処理時において錫含有酸化インジウム微粒子に添加されたタングステン酸化物微粒子またはレニウム酸化物微粒子の触媒作用により、可視光透過率80%以上のときの日射透過率が70%未満でしかもヘイズ値が1%未満である日射遮蔽膜を形成可能な日射遮蔽膜形成用微粒子を従来よりも短時間で製造できる効果を有している。[0001]
BACKGROUND OF THE INVENTION
The present invention is applied to window materials for vehicles, buildings, offices, ordinary houses, telephone boxes, show windows, lighting lamps, transparent cases, etc., such as glass, plastics and other transparent base materials that require solar radiation shielding functions. In particular, it is possible to form a solar shading film capable of forming a solar shading film having a solar light transmittance of less than 70% and a haze value of less than 1% when the visible light transmittance is 80% or more. The present invention relates to a method for producing an industrial fine particle.
[0002]
[Prior art]
As a method for removing or reducing the heat component from an external light source such as sunlight or a light bulb, a method of forming a material that reflects visible / infrared wavelengths on the glass surface to form a heat ray reflective glass has been conventionally used. . As the material, metal oxides such as FeOx, CoOx, CrOx, and TiOx, and metal materials having a large amount of free electrons such as Ag, Au, Cu, Ni, and Al have been selected.
[0003]
However, since these materials have the property of simultaneously reflecting or absorbing visible light in addition to the near infrared rays that greatly contribute to the thermal effect, there has been a problem that the visible light transmittance is lowered. And since the transparent base material used for a building material, a vehicle, a telephone box etc. requires the high transmittance | permeability of visible region, when using the said material, you have to make a film thickness very thin. Therefore, it is usually performed by forming a film on a 10 nm level thin film using spray baking, CVD method, or physical film formation method such as sputtering method or vacuum deposition method. These film forming methods require a large-scale apparatus and vacuum equipment, and have a drawback in that the production cost of the film is high because of problems in productivity and large area.
[0004]
In addition, if the film formation method is used to reduce the film thickness and increase the transmittance of visible light, the film's solar shading characteristics decrease, and conversely, if the film thickness is increased and the solar radiation shielding characteristics are increased, the film becomes dark. There was also a problem that would become.
[0005]
In addition, when trying to improve the solar shading characteristics with these materials, the reflectance in the visible light region also tends to increase at the same time, and there is also a problem that the appearance is impaired by giving a mirror-like glare appearance. .
[0006]
Furthermore, many of these materials increase the conductivity of the film. Further, when the conductivity of the film is high, there are problems such as reflection of radio waves from mobile phones, TVs, radios, etc., making reception impossible, and causing radio interference in the surrounding area.
[0007]
On the other hand, a resin film in which an organic near-infrared absorber such as phthalocyanine or metal complex is added to a binder is also used. However, deterioration due to heat and humidity is remarkable as compared with inorganic materials, and there is a defect in weather resistance.
[0008]
In order to improve the drawbacks of such a conventional solar shading film, the physical properties of the film are such that the light reflectance in the visible light region is low and the transmittance is high, and the transmittance in the infrared region is low. The electrical conductivity of 10 6 It was necessary to be able to form a film that could be controlled to Ω / □ or more.
[0009]
[Problems to be solved by the invention]
By the way, antimony-containing tin oxide (ATO) and tin-containing indium oxide (ITO) are also known as materials having a high visible light transmittance and a solar radiation shielding function, and these materials have a relatively low visible light reflectance. It did not give the above-mentioned glaring appearance.
[0010]
However, since the plasma wavelength is on the relatively long wavelength side in the near-infrared region, the reflection / absorption effect of these films in the near-infrared region close to visible light has not been sufficient.
[0011]
Therefore, a proposal has been made to improve the reflection / absorption effect of the film in the near infrared region by deoxidizing the tin-containing indium oxide (ITO) by the following method. For example, Japanese Patent Laid-Open No. 7-70481 discloses a method of heat-treating tin-containing indium oxide (ITO) in a pressurized inert gas. Japanese Patent Laid-Open No. 8-41441 discloses a method of treating tin-containing indium oxide (ITO) with alcohol. A method of heat-treating in nitrogen-containing gas and a method of heat-treating tin-containing indium oxide (ITO) in an inert gas or a reducing gas are proposed in JP-A-10-120946.
[0012]
However, in these methods, the heat treatment time is as long as several hours, and there is a problem in productivity.
[0013]
The present invention has been made paying attention to such problems, and the problem is that the solar radiation transmittance when the visible light transmittance is 80% or more is less than 70% and the haze value is less than 1%. An object of the present invention is to provide a method for producing a solar shading film-forming fine particle capable of producing a solar shading film-forming fine particle capable of forming a certain solar shading film in a shorter time than before.
[0014]
Therefore, in order to achieve this object, the inventors mixed the tungsten-containing indium oxide fine particles, that is, the indium tin oxide fine particles with tungsten oxide fine particles or rhenium oxide fine particles, and performed the above-described heat treatment. The catalytic action of tungsten oxide fine particles or rhenium oxide fine particles found that the heat treatment time in a specific gas atmosphere can be greatly shortened, and indium tin oxidation with a small amount of residual impurities consisting of chlorine ions, nitrate ions and sulfate ions The present invention has been completed by finding that the effect is further increased by mixing fine particles with tungsten oxide particles or rhenium oxide particles.
[0015]
[Means for Solving the Problems]
That is, the invention according to claim 1
Assuming a manufacturing method of fine particles for forming solar shading film,
Indium tin oxide fine particles having an average particle diameter of 100 nm or less and tungsten oxide fine particles or rhenium oxide fine particles are mixed and mixed in an inert gas atmosphere containing alcohol or a reducing gas and an inert gas. It is characterized by heat treatment in a gas atmosphere,
The invention according to claim 2
Assuming a manufacturing method of fine particles for forming solar shading film,
Indium tin oxide fine particles and tungsten oxide fine particles or rhenium oxide fine particles having an average particle diameter of 100 nm or less and a residual impurity amount of chlorine ions, nitrate ions, and sulfate ions contained in the particles of 0.6% by weight or less And a heat treatment in an inert gas atmosphere containing an inert gas or alcohol or in a mixed gas atmosphere of a reducing gas and an inert gas.
[0016]
The invention according to claim 3
On the premise of the method for producing fine particles for forming a solar shading film according to claim 1 or 2,
The mixing ratio of the indium tin oxide fine particles and the tungsten oxide fine particles is 99.9: 0.1 to 80:20 by weight ratio,
The invention according to claim 4
On the premise of the method for producing fine particles for forming a solar shading film according to claim 1 or 2,
A mixing ratio of the indium tin oxide fine particles and the rhenium oxide fine particles is 99.9: 0.1 to 99: 1 in a weight ratio.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0020]
First, the method for producing the solar shading film-forming fine particles according to the present invention comprises mixing an indium tin oxide fine particle having an average particle size of 100 nm or less and a tungsten oxide fine particle or a rhenium oxide fine particle, and then containing an alcohol. Heat treatment is performed in an inert gas atmosphere or a mixed gas atmosphere of a reducing gas and an inert gas (Claim 1), and the other solar radiation shielding film-forming fine particles according to the present invention The production method includes indium tin oxide fine particles and tungsten oxide fine particles having an average particle diameter of 100 nm or less and a residual impurity amount of chlorine ions, nitrate ions, and sulfate ions contained in the particles of 0.6% by weight or less. After mixing the rhenium oxide fine particles, in an inert gas atmosphere containing an inert gas or alcohol, or mixing of a reducing gas and an inert gas Wherein (claim 2) to heat treatment under scan atmosphere. The average particle diameter of the indium tin oxide fine particles is the average particle diameter of the fine particles observed with a transmission electron microscope (TEM).
[0021]
Fine particles obtained by these methods are dispersed in a solvent and a binder to form a coating solution for forming a solar shading film. In the indium tin oxide fine particles to be mixed, the tin content in terms of element is preferably 1 to 15% by weight. If the amount is less than 1% by weight, the effect of adding tin is not observed, and if it exceeds 15% by weight, solid solution of tin may be insufficient.
[0022]
Further, the average particle diameter of the indium tin oxide fine particles needs to be 100 nm or less as described above. This is because if the average particle diameter exceeds 100 nm, the film becomes a light scattering source and the film is clouded (haze) or the visible light transmittance is reduced. In addition, although the size of the particles is represented by an average particle size here, a fine powder having a small proportion of coarse powder exceeding 100 nm and a narrow particle size distribution is preferable, and the lowest particle size that is economically available is Fine particles of about 2 nm. However, the lower limit of the particle size is not limited to this.
[0023]
Next, tungsten may be in any form as long as it is an oxide. Three And WO 2 Etc.
[0024]
The mixing ratio of the indium tin oxide fine particles and the tungsten oxide fine particles is 99.9: 0.1 to 80:20, preferably 99: 1 to 85:15 in terms of weight ratio from the viewpoint of processing efficiency and optical characteristics. It is good to set it in the range. If the tungsten oxide fine particles are less than 0.1%, the effect of addition cannot be obtained, and if it exceeds 20%, the effect of adding tungsten is exhibited, but the solar radiation shielding characteristics may be deteriorated. .
[0025]
On the other hand, the rhenium may be in any form as long as it is an oxide, such as ReO. Three , ReO 2 , Re 2 O 7 Etc.
[0026]
The mixing ratio of the indium tin oxide fine particles and the rhenium oxide fine particles is preferably set in a range of 99.9: 0.1 to 99: 1 in terms of weight ratio from the viewpoint of processing efficiency and optical characteristics. If the rhenium oxide fine particles are less than 0.1%, the effect of addition cannot be obtained, and even if it exceeds 1%, the effect of adding tungsten is exhibited, but the solar radiation shielding characteristics may be deteriorated. .
[0027]
Next, the mixing method of the indium tin oxide fine particles and the tungsten oxide fine particles or the rhenium oxide fine particles is not particularly limited as long as it can be mixed uniformly, and a known method can be adopted.
[0028]
In addition, in the heat treatment for the mixture of indium tin oxide fine particles and tungsten oxide fine particles or rhenium oxide fine particles, the amount of residual impurities composed of chlorine ions, nitrate ions, and sulfate ions contained in the indium tin oxide fine particles is 0.00. In the case of 6% by weight or more, an alcohol is fed using an inert gas such as nitrogen, argon or helium alone as a carrier gas or a mixed gas such as nitrogen, argon or helium as a carrier gas, or hydrogen or carbon monoxide. A mixed gas of the reducing gas and the inert gas is fed. In addition, when the amount of residual impurities consisting of chloride ions, nitrate ions, and sulfate ions contained in the indium tin oxide fine particles is 0.6% by weight or less, the inert gas such as nitrogen, argon, and helium alone is used as a feed. Or feed the alcohol using the inert gas alone as a carrier gas or a mixed gas thereof as a carrier gas, or feed a mixture of a reducing gas such as hydrogen or carbon monoxide and the inert gas. To do.
[0029]
The alcohol to be applied is not particularly limited, but methanol, ethanol, propanol and the like are preferable from the viewpoints of volatility and cost. Each concentration and feed amount of alcohol, hydrogen, and carbon monoxide in the inert gas may be appropriately selected so that processing efficiency and desired optical characteristics can be obtained.
[0030]
Next, it is preferable that processing temperature is the range of 200-400 degreeC. Even if the temperature exceeds 400 ° C., the effect of adding tungsten oxide or rhenium oxide fine particles is exhibited, but the above-mentioned oxide particles are likely to be aggregated and sintered. This is because may not be sufficiently exhibited. The heat treatment time is appropriately selected in consideration of the atmosphere and temperature.
[0031]
Impurities such as chloride ions, nitrate ions, and sulfate ions remaining in the indium tin oxide fine particles may become a reduction inhibiting factor for the deoxygenation treatment of the indium tin oxide fine particles, so that 0.6 wt% Hereinafter, it is preferably 0.3% by weight or less. As described above, tungsten oxide is mixed by mixing indium tin oxide fine particles and tungsten oxide fine particles or rhenium oxide fine particles having a residual impurity amount of 0.6% by weight or less consisting of chloride ions, nitrate ions, and sulfate ions. Or the effect of adding rhenium oxide fine particles is further exhibited.
[0032]
Next, the solar shading film-forming coating solution is obtained by dispersing the indium tin oxide fine particles in a solvent and a binder, but the solvent is not particularly limited, and the coating conditions, coating environment, and inorganic binder are not limited. It is appropriately selected according to the resin binder. For example, alcohols such as water, ethanol, propanol, butanol, isopropyl alcohol, isobutyl alcohol, diacetone alcohol, methyl ether, ethyl ether, propyl ether, etc. Various organic solvents such as ethers, esters, acetone, methyl ethyl ketone, diethyl ketone, cyclohexanone, isobutyl ketone, etc. can be used, and if necessary, pH can be adjusted by adding acid or alkali. May be. Furthermore, in order to further improve the dispersion stability of the fine particles in the coating solution, it is of course possible to add various surfactants and coupling agents.
[0033]
The kind of the inorganic binder or the resin binder is not particularly limited, but as the inorganic binder, a metal alkoxide of silicon, zirconium, titanium, or aluminum, a partially hydrolyzed polycondensation product thereof, or an organosilazane is used. As the binder, thermoplastic resins such as acrylic resins, thermosetting resins such as epoxy resins, and the like can be used.
[0034]
The method for dispersing the indium tin oxide fine particles is not particularly limited as long as it is a method of uniformly dispersing in the coating solution, and examples thereof include a bead mill, a ball mill, a sand mill, a paint shaker, and an ultrasonic homogenizer.
[0035]
Even if one or more of inorganic fine particles such as titanium oxide, zinc oxide, cerium oxide, organic benzophenone, benzotriazole, etc. are added in order to provide the ultraviolet shielding function of the solar radiation shielding film. Good.
[0036]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.
[0037]
In addition, the visible light transmittance and the solar radiation transmittance of the obtained film were measured using a spectrophotometer U-4000 manufactured by Hitachi, Ltd. The haze value was measured using HR-200 manufactured by Murakami Color Research Laboratory Co., Ltd. In film evaluation, the film was formed with three types of bar coaters with different wire diameters, and the visible light transmittance, solar transmittance, and haze value of the three types of films with different film thicknesses obtained by these were measured. The solar radiation transmittance and haze value when the visible light transmittance was 86% were determined as interpolated values from the three-point plot.
[0038]
[Example 1]
Weight ratio of the mixing ratio of indium tin oxide fine particles (Sumitomo Metal Mining Co., Ltd.) having a tin content of 10% by weight, a residual impurity content of 0.7% by weight and an average particle size of 0.03 μm and tungsten trioxide fine particles 99: 1 and mixed for 30 minutes.
[0039]
This is put into a 500 ml separable flask, fed with nitrogen-containing nitrogen carrier gas with stirring, heated, treated at 300 ° C. for 9 minutes, and indium tin oxide added with tungsten trioxide. Fine particles were obtained.
[0040]
The fine particles 20% by weight, methyl isobutyl ketone 63.3% by weight, dispersant 16.7% by weight, and 0.3 mm zirconia beads corresponding to a filling rate of 63% were dispersed with a paint shaker for 24 hours.
[0041]
Next, a coating solution comprising 67.5% by weight of the above dispersion, 27.5% by weight of an acrylic resin solution dissolved in methyl isobutyl ketone as a binder, and 5% by weight of a curing agent was used as a bar No. 40, no. 24, no. 6 were applied to soda lime glass substrates each having a size of 100 mm × 100 mm × 3 mm, followed by baking at 180 ° C. for 30 minutes to obtain a solar shading film a. The solar transmittance (%) and haze value (%) of the solar shielding film a are shown in Table 1 below.
[0042]
As confirmed from Table 1, the solar radiation transmittance and haze value of the solar radiation shielding film a according to Example 1 were 67.0% and 0.62%, respectively.
[0043]
[Example 2]
A solar radiation shielding film b according to Example 2 was obtained in the same manner as in Example 1 except that the mixing ratio of the indium tin oxide fine particles and the tungsten trioxide fine particles was set to 98: 2 by weight. The solar transmittance (%) and haze value (%) of the solar shielding film b are also shown in Table 1 below.
[0044]
As confirmed from Table 1, the solar radiation transmittance and the haze value of the solar radiation shielding film b according to Example 2 were 68.0% and 0.80%, respectively.
[0045]
[Example 3]
A solar radiation shielding film c according to Example 3 was obtained in the same manner as in Example 1 except that the mixing ratio of the indium tin oxide fine particles and the tungsten trioxide fine particles was 96: 4 by weight. The solar transmittance (%) and haze value (%) of the solar shielding film c are also shown in Table 1 below.
[0046]
As can be seen from Table 1, the solar radiation transmittance and haze value of the solar radiation shielding film c according to Example 3 were 67.1% and 0.60%, respectively.
[0047]
[Example 4]
A solar radiation shielding film d according to Example 4 was obtained in the same manner as in Example 1 except that the mixing ratio of the indium tin oxide fine particles and the tungsten trioxide fine particles was 88:12 by weight. The solar transmittance (%) and haze value (%) of the solar shielding film d are also shown in Table 1 below.
[0048]
As confirmed from Table 1, the solar radiation transmittance and the haze value of the solar radiation shielding film d according to Example 4 were 67.0% and 0.35%, respectively.
[0049]
[Example 5]
A solar shading film e according to Example 5 was obtained in the same manner as in Example 1 except that the mixing ratio of the indium tin oxide fine particles and the tungsten trioxide fine particles was 82:18 by weight. The solar transmittance (%) and haze value (%) of the solar shielding film e are also shown in Table 1 below.
[0050]
As confirmed from Table 1, the solar radiation transmittance and the haze value of the solar radiation shielding film e according to Example 5 were 68.9% and 0.75%, respectively.
[0051]
[Comparative Example 1]
When the indium tin oxide fine particles were heat-treated at 300 ° C. for 9 minutes under the condition where tungsten trioxide was not added, the solar transmittance was 70% or more, so the treatment time was 60 minutes. A solar shading film f according to Comparative Example 1 was obtained in the same manner as Example 1. The solar transmittance (%) and haze value (%) of the solar shielding film f are also shown in Table 1 below.
[0052]
As can be seen from Table 1, the solar radiation transmittance and the haze value of the solar radiation shielding film f according to Comparative Example 1 were 66.0% and 0.40%, respectively.
[0053]
[Comparative Example 2]
A solar radiation shielding film g according to Comparative Example 2 was obtained in the same manner as in Example 1 except that the treatment time was 180 minutes under the condition where tungsten trioxide was not added. The solar transmittance (%) and haze value (%) of the solar shielding film g are also shown in Table 1 below.
[0054]
As confirmed from Table 1, the solar radiation transmittance and haze value of the solar radiation shielding film g according to Comparative Example 2 were 66.5% and 0.46%, respectively.
[0055]
As a result, in order to obtain a solar shading film having the same characteristics as the solar shading film according to each embodiment, it is necessary to set the treatment time to 60 minutes and 180 minutes longer than 9 minutes of each embodiment. Was confirmed.
[0056]
[Example 6]
A solar shading film h according to Example 6 was obtained in the same manner as in Example 1 except that the treatment temperature was 350 ° C. The solar transmittance (%) and haze value (%) of the solar shielding film h are also shown in Table 1 below.
[0057]
As can be seen from Table 1, the solar radiation transmittance and haze value of the solar radiation shielding film h according to Example 6 were 68.1% and 0.35%, respectively.
[0058]
[Example 7]
N instead of methanol-containing nitrogen carrier gas 2 5% H with carrier 2 A solar shading film i according to Example 7 was obtained in the same manner as in Example 1 except that gas was used and treated at 300 ° C. for 60 minutes. The solar transmittance (%) and haze value (%) of the solar shielding film i are also shown in Table 1 below.
[0059]
As can be seen from Table 1, the solar radiation transmittance and haze value of the solar radiation shielding film i according to Example 7 were 66.0% and 0.63%, respectively.
[0060]
[Comparative Example 3]
When the indium tin oxide fine particles were heat-treated at 300 ° C. for 60 minutes under the condition where tungsten trioxide was not added, the solar transmittance was 70% or more, so the treatment time was 480 minutes. In the same manner as in Example 7, a solar radiation shielding film j according to Comparative Example 3 was obtained. The solar transmittance (%) and haze value (%) of the solar shielding film j are also shown in Table 1 below.
[0061]
As confirmed from Table 1, the solar radiation transmittance and the haze value of the solar radiation shielding film j according to Comparative Example 3 were 67.1% and 0.46%, respectively.
[0062]
As a result, in order to obtain a solar radiation shielding film having the same characteristics as the solar radiation shielding film i according to Example 7, it was confirmed that the treatment time had to be 480 minutes longer than 60 minutes of Example 7. .
[0063]
[Example 8]
Weight ratio of mixing ratio of indium tin oxide fine particles (Sumitomo Metal Mining Co., Ltd.) having a tin content of 10% by weight, a residual impurity content of 0.1% by weight and an average particle size of 0.03 μm and tungsten trioxide fine particles The solar radiation shielding film k according to Example 8 was obtained in the same manner as in Example 1 except that methanol-containing nitrogen carrier gas was fed and heated and treated at 300 ° C. for 3 minutes. . The solar transmittance (%) and haze value (%) of the solar shielding film k are also shown in Table 1 below.
[0064]
As confirmed from Table 1, the solar radiation transmittance and the haze value of the solar radiation shielding film k according to Example 8 were 66.7% and 0.58%, respectively.
[0065]
[Example 9]
N 2 5% H with carrier 2 A solar shading film 1 according to Example 9 was obtained in the same manner as in Example 8 except that gas was used and treated at 260 ° C. for 40 minutes. The solar transmittance (%) and haze value (%) of the solar shielding film 1 are also shown in Table 1 below.
[0066]
As can be seen from Table 1, the solar radiation transmittance and haze value of the solar radiation shielding film 1 according to Example 9 were 69.9% and 0.90%, respectively.
[0067]
[Example 10]
N 2 A solar shading film m according to Example 10 was obtained in the same manner as in Example 8 except that gas was used and treated at 300 ° C. for 10 minutes. The solar transmittance (%) and haze value (%) of the solar shielding film m are also shown in Table 1 below.
[0068]
As confirmed from Table 1, the solar radiation transmittance and the haze value of the solar radiation shielding film m according to Example 10 were 69.8% and 0.64%, respectively.
[0069]
[Comparative Example 4]
N 2 Under conditions using a gas, indium tin oxide fine particles (manufactured by Sumitomo Metal Mining Co., Ltd.) having a tin content of 10% by weight, a residual impurity content of 0.7% by weight and an average particle size of 0.03 μm were produced at 300 ° C. for 9 minutes. When the heat treatment was performed, the solar radiation transmittance was 70% or more. Therefore, the treatment time was set to 60 minutes, and the solar radiation shielding film n according to Comparative Example 4 was obtained in the same manner as in Example 1 except for the above. The solar transmittance (%) and haze value (%) of the solar shielding film n are also shown in Table 1 below.
[0070]
As confirmed from Table 1, the solar radiation transmittance and the haze value of the solar radiation shielding film n according to Comparative Example 4 were 69.6% and 0.60%, respectively.
[0071]
As a result, it has the same characteristics as the solar shading film m according to Example 10 to which indium tin oxide fine particles having a tin content of 10% by weight, a residual impurity amount of 0.1% by weight, and an average particle size of 0.03 μm are applied. In order to obtain a solar radiation shielding film, it was confirmed that the treatment time had to be 60 minutes longer than 10 minutes of Example 10.
[0072]
[Table 1]
Figure 0003915880
[Example 11]
Weight ratio of the mixing ratio of indium tin oxide fine particles (Sumitomo Metal Mining Co., Ltd.) having a tin content of 10% by weight, a residual impurity content of 0.7% by weight and an average particle size of 0.03 μm to rhenium trioxide fine particles Was 99.5: 0.5 and mixed for 30 minutes.
[0073]
This is put into a 500 ml separable flask, fed with nitrogen-containing nitrogen carrier gas with stirring, heated, treated at 300 ° C. for 7 minutes, and indium tin oxide added with rhenium trioxide. Fine particles were obtained.
[0074]
The fine particles 20% by weight, methyl isobutyl ketone 63.3% by weight, dispersant 16.7% by weight, and 0.3 mm zirconia beads corresponding to a filling rate of 63% were dispersed with a paint shaker for 24 hours.
[0075]
Next, a coating solution comprising 67.5% by weight of the above dispersion, 27.5% by weight of an acrylic resin solution dissolved in methyl isobutyl ketone as a binder, and 5% by weight of a curing agent was used as a bar No. 40, no. 24, no. 6 were applied to soda lime glass substrates each having a size of 100 mm × 100 mm × 3 mm, followed by baking at 180 ° C. for 30 minutes to obtain a solar shading film o. The solar radiation transmittance (%) and haze value (%) of this solar radiation shielding film o are shown in Table 2 below.
[0076]
As confirmed from Table 2, the solar radiation transmittance and the haze value of the solar radiation shielding film o according to Example 11 were 67.7% and 0.30%, respectively.
[0077]
[Example 12]
A solar radiation shielding film p according to Example 12 was obtained in the same manner as in Example 11 except that the mixing ratio of the indium tin oxide fine particles and the rhenium trioxide fine particles was 99.9: 0.1 in terms of weight ratio. The solar radiation transmittance (%) and haze value (%) of this solar radiation shielding film p are also shown in Table 2 below.
[0078]
As confirmed from Table 2, the solar radiation transmittance and the haze value of the solar radiation shielding film p according to Example 12 were 67.5% and 0.30%, respectively.
[0079]
[Example 13]
A solar shading film q according to Example 13 was obtained in the same manner as in Example 11 except that the mixing ratio of the indium tin oxide fine particles and the rhenium trioxide fine particles was 99.2: 0.8 by weight. The solar transmittance (%) and haze value (%) of the solar shielding film q are also shown in Table 2 below.
[0080]
As confirmed from Table 2, the solar radiation transmittance and the haze value of the solar radiation shielding film q according to Example 13 were 68.5% and 0.29%, respectively.
[0081]
[Comparative Example 5]
When the indium tin oxide fine particles were heat-treated at 300 ° C. for 7 minutes under the condition where rhenium trioxide was not added, the solar radiation transmittance was 70% or more, so the treatment time was 60 minutes. A solar shading film r according to Comparative Example 5 was obtained in the same manner as Example 11. The solar radiation transmittance (%) and haze value (%) of this solar radiation shielding film r are also shown in Table 2 below.
[0082]
As confirmed from Table 2, the solar radiation transmittance and the haze value of the solar radiation shielding film r according to Comparative Example 5 were 66.0% and 0.40%, respectively.
[0083]
[Comparative Example 6]
A solar radiation shielding film s according to Comparative Example 6 was obtained in the same manner as in Example 11 except that the treatment time was 180 minutes under the condition where rhenium trioxide was not added. The solar transmittance (%) and haze value (%) of the solar shielding film s are also shown in Table 2 below.
[0084]
As can be seen from Table 2, the solar radiation transmittance and haze value of the solar radiation shielding film s according to Comparative Example 6 were 66.5% and 0.46%, respectively.
[0085]
As a result, in order to obtain the solar radiation shielding film having the same characteristics as the solar radiation shielding film according to Examples 11 to 13, the treatment time needs to be 60 minutes and 180 minutes longer than 7 minutes of each Example. It was confirmed that there was.
[0086]
[Example 14]
A solar shading film t according to Example 14 was obtained in the same manner as Example 11 except that the treatment temperature was 350 ° C. The solar radiation transmittance (%) and haze value (%) of this solar radiation shielding film t are also shown in Table 2 below.
[0087]
As confirmed from Table 2, the solar radiation transmittance and haze value of the solar radiation shielding film t according to Example 14 were 68.6% and 0.39%, respectively.
[0088]
[Example 15]
N instead of methanol-containing nitrogen carrier gas 2 5% H as a carrier 2 A solar shading film u according to Example 15 was obtained in the same manner as in Example 11 except that gas was used and treated at 300 ° C. for 60 minutes. The solar transmittance (%) and haze value (%) of the solar shielding film u are also shown in Table 2 below.
[0089]
As confirmed from Table 2, the solar radiation transmittance and haze value of the solar radiation shielding film u according to Example 15 were 66.8% and 0.29%, respectively.
[0090]
[Comparative Example 7]
When the indium tin oxide fine particles were heat-treated at 300 ° C. for 60 minutes under the condition where rhenium trioxide was not added, the solar radiation transmittance was 70% or more, so that the treatment time was 480 minutes. A solar shading film v according to Comparative Example 7 was obtained in the same manner as Example 15. The solar radiation transmittance (%) and haze value (%) of this solar radiation shielding film v are also shown in Table 2 below.
[0091]
As confirmed from Table 2, the solar radiation transmittance and the haze value of the solar radiation shielding film v according to Comparative Example 7 were 67.1% and 0.46%, respectively.
[0092]
As a result, in order to obtain the solar radiation shielding film having the same characteristics as the solar radiation shielding film u according to Example 15, it was confirmed that the treatment time needs to be 480 minutes longer than 60 minutes of Example 15. .
[0093]
[Example 16]
Mixing ratio of indium tin oxide fine particles (Sumitomo Metal Mining Co., Ltd.) having a tin content of 10% by weight, a residual impurity content of 0.1% by weight and an average particle size of 0.03 μm to rhenium trioxide fine particles in a weight ratio The solar radiation-shielding film according to Example 16 was the same as Example 11 except that the nitrogen-containing nitrogen-containing carrier gas was fed and heated and treated at 270 ° C. for 40 minutes. w was obtained. The solar transmittance (%) and haze value (%) of the solar shielding film w are also shown in Table 2 below.
[0094]
As confirmed from Table 2, the solar radiation transmittance and the haze value of the solar radiation shielding film w according to Example 16 were 69.5% and 0.42%, respectively.
[0095]
[Example 17]
N 2 A solar shading film x according to Example 17 was obtained in the same manner as in Example 16 except that treatment was performed at 300 ° C. for 10 minutes using a gas. The solar radiation transmittance (%) and haze value (%) of this solar radiation shielding film x are also shown in Table 2 below.
[0096]
As confirmed from Table 2, the solar radiation transmittance and the haze value of the solar radiation shielding film x according to Example 17 were 69.9% and 0.35%, respectively.
[0097]
[Comparative Example 8]
N 2 Under conditions using a gas, indium tin oxide fine particles (manufactured by Sumitomo Metal Mining Co., Ltd.) having a tin content of 10% by weight, a residual impurity content of 0.7% by weight and an average particle size of 0.03 μm at 300 ° C. for 10 minutes. When the heat treatment was performed, the solar radiation transmittance was 70% or more, so that the treatment time was 60 minutes, and the solar radiation shielding film y according to Comparative Example 8 was obtained in the same manner as in Example 11 except that. The solar transmittance (%) and haze value (%) of the solar shielding film y are also shown in Table 2 below.
[0098]
As confirmed from Table 2, the solar radiation transmittance and the haze value of the solar radiation shielding film y according to Comparative Example 8 were 69.6% and 0.33%, respectively.
[0099]
As a result, it has the same characteristics as the solar shading film x according to Example 17 to which indium tin oxide fine particles having a tin content of 10% by weight, a residual impurity content of 0.1% by weight, and an average particle size of 0.03 μm are applied. In order to obtain a solar radiation shielding film, it was confirmed that the treatment time had to be 60 minutes longer than 10 minutes of Example 17.
[0100]
[Table 2]
Figure 0003915880
[0101]
【The invention's effect】
According to the method for producing solar radiation shielding film-forming fine particles according to the inventions of claims 1 to 4,
Due to the catalytic action of the tungsten oxide fine particles or rhenium oxide fine particles added to the tin-containing indium oxide fine particles during the heat treatment, the solar light transmittance is less than 70% and the haze value is 1 when the visible light transmittance is 80% or more. It has the effect that the fine particles for forming a solar shading film capable of forming a solar shading film of less than% can be produced in a shorter time than conventional.

Claims (4)

日射遮蔽膜形成用微粒子の製造方法において、
平均粒径が100nm以下のインジウム錫酸化物微粒子とタングステン酸化物微粒子またはレニウム酸化物微粒子とを混合し、アルコ−ルを含む不活性ガス雰囲気下、または、還元性ガスと不活性ガスとの混合ガス雰囲気下で加熱処理することを特徴とする日射遮蔽膜形成用微粒子の製造方法。
In the method for producing the solar shading film-forming fine particles,
Indium tin oxide fine particles having an average particle diameter of 100 nm or less and tungsten oxide fine particles or rhenium oxide fine particles are mixed and mixed in an inert gas atmosphere containing alcohol or a reducing gas and an inert gas. A method of producing fine particles for forming a solar shading film, wherein the heat treatment is performed in a gas atmosphere.
日射遮蔽膜形成用微粒子の製造方法において、
平均粒径が100nm以下でかつ粒子中に含まれる塩素イオン、硝酸イオン、硫酸イオンからなる残留不純物量が0.6重量%以下であるインジウム錫酸化物微粒子とタングステン酸化物微粒子またはレニウム酸化物微粒子とを混合し、不活性ガス若しくはアルコ−ルを含む不活性ガス雰囲気下、または、還元性ガスと不活性ガスとの混合ガス雰囲気下で加熱処理することを特徴とする日射遮蔽膜形成用微粒子の製造方法。
In the method for producing the solar shading film-forming fine particles,
Indium tin oxide fine particles and tungsten oxide fine particles or rhenium oxide fine particles having an average particle diameter of 100 nm or less and a residual impurity amount of chlorine ions, nitrate ions, and sulfate ions contained in the particles of 0.6% by weight or less And a heat treatment in an inert gas atmosphere containing an inert gas or alcohol, or in a mixed gas atmosphere of a reducing gas and an inert gas, for forming a solar shading film-forming fine particle Manufacturing method.
上記インジウム錫酸化物微粒子とタングステン酸化物微粒子との混合割合が、重量比で99.9:0.1〜80:20であることを特徴とする請求項1または2記載の日射遮蔽膜形成用微粒子の製造方法。  3. The solar shading film forming method according to claim 1, wherein a mixing ratio of the indium tin oxide fine particles and the tungsten oxide fine particles is 99.9: 0.1 to 80:20 in weight ratio. A method for producing fine particles. 上記インジウム錫酸化物微粒子とレニウム酸化物微粒子との混合割合が、重量比で99.9:0.1〜99:1であることを特徴とする請求項1または2記載の日射遮蔽膜形成用微粒子の製造方法。  3. The solar radiation shielding film forming method according to claim 1, wherein a mixing ratio of the indium tin oxide fine particles and the rhenium oxide fine particles is 99.9: 0.1 to 99: 1 in a weight ratio. A method for producing fine particles.
JP2001060204A 2001-03-05 2001-03-05 Method for producing fine particles for solar radiation shielding film formation Expired - Fee Related JP3915880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001060204A JP3915880B2 (en) 2001-03-05 2001-03-05 Method for producing fine particles for solar radiation shielding film formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001060204A JP3915880B2 (en) 2001-03-05 2001-03-05 Method for producing fine particles for solar radiation shielding film formation

Publications (2)

Publication Number Publication Date
JP2002265236A JP2002265236A (en) 2002-09-18
JP3915880B2 true JP3915880B2 (en) 2007-05-16

Family

ID=18919656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001060204A Expired - Fee Related JP3915880B2 (en) 2001-03-05 2001-03-05 Method for producing fine particles for solar radiation shielding film formation

Country Status (1)

Country Link
JP (1) JP3915880B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4626284B2 (en) * 2003-12-05 2011-02-02 住友金属鉱山株式会社 Method for producing tungsten oxide fine particles for forming solar shield, and tungsten oxide fine particles for forming solar shield
JP3985193B2 (en) 2004-03-16 2007-10-03 住友金属鉱山株式会社 Solar radiation shielding laminated structure
JP4182357B2 (en) * 2005-01-17 2008-11-19 住友金属鉱山株式会社 Heat ray shielding resin sheet material, heat ray shielding resin sheet material laminate, and building structure using them
KR20070115995A (en) * 2005-03-22 2007-12-06 이데미쓰 고산 가부시키가이샤 Color conversion substrate, method for manufacturing same and light-emitting device
JP4678225B2 (en) * 2005-03-31 2011-04-27 住友金属鉱山株式会社 Infrared shielding material fine particle dispersion and infrared shielding material
JP5067256B2 (en) * 2008-04-28 2012-11-07 住友金属鉱山株式会社 Infrared shielding material fine particle dispersion, infrared shielding film and infrared shielding optical member
CN104736740B (en) * 2012-12-28 2016-10-19 财团法人工业技术研究院 Tin oxide film and manufacture method thereof
JP6201841B2 (en) * 2014-03-19 2017-09-27 三菱マテリアル株式会社 Manufacturing method of heat ray shielding material

Also Published As

Publication number Publication date
JP2002265236A (en) 2002-09-18

Similar Documents

Publication Publication Date Title
JP4626284B2 (en) Method for producing tungsten oxide fine particles for forming solar shield, and tungsten oxide fine particles for forming solar shield
JP4096277B2 (en) Solar shading material, coating liquid for solar shading film, and solar shading film
KR102371492B1 (en) Near-infrared shielding material fine particles, method for preparing the same, and near-infrared shielding material fine particle dispersion
JP5849766B2 (en) Composite tungsten oxide fine particles for forming solar radiation shield, composite tungsten oxide fine particle dispersion for forming solar radiation shield, and method for producing solar radiation shield
JP5070796B2 (en) Solar radiation shielding film forming coating solution, solar radiation shielding film, and substrate having solar radiation shielding function
JP2005226008A (en) Dispersion for forming solar radiation-shielding body, and solar radiation-shielding body and method for producing the same
JP2007269523A (en) Heat ray shielding glass and its manufacturing method
JP3262098B2 (en) Heat ray shielding material, heat ray shielding equipment using the same, coating liquid and heat ray shielding film
JP2015199668A (en) Composite tungsten oxide fine particle for forming solar radiation shielding body and manufacturing method therefor, composite tungsten oxide fine particle dispersion for forming solar radiation shielding body and solar radiation shielding body
JP3915880B2 (en) Method for producing fine particles for solar radiation shielding film formation
JP2003176132A (en) Antimony-tin oxide particle for shielding insolation, coating solution for forming insolation shielding film and insolation shielding film
JP3744188B2 (en) Heat ray shielding film forming coating solution and heat ray shielding film
JP2008230954A (en) Manufacturing method for antimony-containing tin oxide fine particles for forming solar radiation shielding body, dispersion for forming solar radiation shielding body, solar radiation shielding body, and solar radiation shielding base material
KR100986628B1 (en) Indium derived metal particle and its preparation method and coating solution containing indium derived metal particle, substrate for coating, display device
US20040197549A1 (en) Conductive film, manufactruing method thereof, substrate having the same
JP4120887B2 (en) In4Sn3O12 composite oxide fine particles for solar radiation shielding, method for producing the same, coating liquid for solar radiation shielding film formation, solar radiation shielding film, and solar radiation shielding substrate
JP2003215328A (en) Fine particles for sun protection, coating liquid for forming sun protection film containing the same and sun protection film
JP2006299087A (en) Coating liquid for forming sunlight-shielding film and sunlight-shielding film and substrate having sunlight-shielding function
JP2002138271A (en) Manufacturing method of fine particle for heat ray shielding and manufacturing method of coating liquid for forming heat ray shielding film using the fine particle manufactured by the former method
JP2006213576A (en) Boride microparticle for insolation shield, dispersion for forming insolation shield body using the boride microparticle and insolation shield body, and method of manufacturing boride microparticle for insolation shield and method of manufacturing dispersion for forming insolation shield body
JP4200424B2 (en) Manufacturing method of solar shading material, coating liquid for forming solar shading film, solar shading film, and transparent base material for solar shading
JP6413969B2 (en) Dispersion for forming solar shading body and solar shading body using the dispersion
JP4375531B2 (en) Method for producing boride fine particles
JP2007210826A (en) Method of manufacturing boride particle, the boride particle, dispersion for forming insolation shield using the same and the insolation shield
JP2002146228A (en) Method for treating fine indium-tin oxide particle for forming sunshine-screening film and sunshine-screening film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3915880

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140216

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees