JP2003132734A - Coating solution for forming transparent electroconductive layer - Google Patents

Coating solution for forming transparent electroconductive layer

Info

Publication number
JP2003132734A
JP2003132734A JP2001325915A JP2001325915A JP2003132734A JP 2003132734 A JP2003132734 A JP 2003132734A JP 2001325915 A JP2001325915 A JP 2001325915A JP 2001325915 A JP2001325915 A JP 2001325915A JP 2003132734 A JP2003132734 A JP 2003132734A
Authority
JP
Japan
Prior art keywords
transparent conductive
conductive layer
fine particles
coating liquid
noble metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001325915A
Other languages
Japanese (ja)
Inventor
Junji Tofuku
淳司 東福
Kenichi Fujita
賢一 藤田
Masaya Yukinobu
雅也 行延
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2001325915A priority Critical patent/JP2003132734A/en
Publication of JP2003132734A publication Critical patent/JP2003132734A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a coating solution for forming a transparent electroconductive layer wherein the coating solution for forming the transparent electroconductive layer has a lower cost than that of a previous one and formation of the transparent electroconductive layer having a lower resistance and a lower reflectivity than that of the previous one is possible. SOLUTION: This is the coating solution for forming the transparent electroconductive layer on a transparent substrate wherein a solvent and noble metal fine particles having the average particle diameter 1 to 100 nm dispersed in this solvent, and the solvent contains 25 to 70 wt.% of low boiling point solvent(s) (for example, acetone) having the vapor pressure of 26.66 to 53.33 kPa at 25 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、透明基板上に透明
導電層を形成するための透明導電層形成用塗液に係り、
特に、上記透明導電層を形成した透明導電性基材がブラ
ウン管(CRT)、プラズマディスプレイパネル(PD
P)、蛍光表示管(VFD)、液晶ディスプレイ(LC
D)等表示装置の前面板に適用された場合、安価で、か
つ良好な反射防止効果と電界シールド効果を有する均一
な透明導電層を形成できる透明導電層形成用塗液に関す
るものである。
TECHNICAL FIELD The present invention relates to a coating liquid for forming a transparent conductive layer for forming a transparent conductive layer on a transparent substrate,
In particular, the transparent conductive substrate on which the transparent conductive layer is formed is a cathode ray tube (CRT), a plasma display panel (PD
P), fluorescent display tube (VFD), liquid crystal display (LC
When applied to a front plate of a display device such as D), the present invention relates to a coating liquid for forming a transparent conductive layer which is inexpensive and can form a uniform transparent conductive layer having a good antireflection effect and electric field shielding effect.

【0002】[0002]

【従来の技術】現在、コンピュータディスプレイ等とし
て用いられている陰極線管(上記ブラウン管とも称す
る:CRT)には、表示画面が見やすく、視覚疲労を感
じさせないことの外に、CRT表面の帯電によるほこり
の付着や電撃ショックがないこと等が要求されている。
更に、これ等に加えて最近ではCRTから発生する低周
波電磁波の人体に対する悪影響が懸念され、このような
電磁波が外部に漏洩しないことが望まれている。
2. Description of the Related Art A cathode ray tube (also referred to as a cathode ray tube, also referred to as a CRT) currently used as a computer display or the like has a display screen that is easy to see and does not cause visual fatigue. It is required that there be no adhesion or electric shock.
Furthermore, in addition to these, recently, there is a concern that a low frequency electromagnetic wave generated from a CRT may adversely affect a human body, and it is desired that such an electromagnetic wave does not leak to the outside.

【0003】このような漏洩電磁波に対しては、ディス
プレイの前面板表面に透明導電層を形成することにより
防止することが可能である。そして、上記CRTの漏洩
電磁波防止(電界シールド)用として、少なくとも10
6Ω/□以下、好ましくは5×103 Ω/□以下、さら
に好ましくは103 Ω/□以下である低抵抗の透明導電
層を形成する事が要求されている。
Such a leaked electromagnetic wave can be prevented by forming a transparent conductive layer on the front plate surface of the display. And, for the purpose of preventing leakage electromagnetic waves (electric field shield) of the CRT, at least 10
It is required to form a transparent conductive layer having a low resistance of 6 Ω / □ or less, preferably 5 × 10 3 Ω / □ or less, more preferably 10 3 Ω / □ or less.

【0004】そして、上記CRTの電界シールドに対処
するため、これまでにいくつかの提案がなされており、
例えば、 (1)インジウム錫酸化物(ITO)等の導電性酸化物
微粒子や金属微粒子を溶媒中に分散した透明導電層形成
用塗液を、CRTの前面ガラス(前面板)にスピンコー
ト法等で塗布・乾燥後、200℃程度の温度で焼成して
上記透明導電層を形成する方法。 (2)塩化錫の高温化学的気相成長法(CVD)によ
り、前面ガラス(前面板)に透明導電酸化錫膜(ネサ
膜)を形成する方法。 (3)インジウム錫酸化物、酸窒化チタン等のスパッタ
リング法により前面ガラス(前面板)に透明導電膜を形
成する方法。 等の方法が提案されている。
In order to deal with the electric field shield of the CRT, some proposals have been made so far,
For example, (1) a coating liquid for forming a transparent conductive layer, in which conductive oxide fine particles such as indium tin oxide (ITO) or metal fine particles are dispersed in a solvent, is applied to a CRT front glass (front plate) by a spin coating method or the like. After coating and drying in step 1, the composition is baked at a temperature of about 200 ° C. to form the transparent conductive layer. (2) A method of forming a transparent conductive tin oxide film (nesa film) on a front glass (front plate) by high temperature chemical vapor deposition (CVD) of tin chloride. (3) A method of forming a transparent conductive film on a front glass (front plate) by a sputtering method using indium tin oxide, titanium oxynitride, or the like. Etc. methods have been proposed.

【0005】ここで、透明導電層形成用塗液を用いる
(1)の方法は、(2)(3)に示されたCVD法やス
パッタ法等で透明導電膜を形成する方法に較べてはるか
に簡便でありかつ製造コストも低いため、極めて有利な
方法である。
Here, the method (1) using the transparent conductive layer forming coating liquid is far more than the method (2) and (3) for forming the transparent conductive film by the CVD method or the sputtering method. It is a very advantageous method because it is simple and the manufacturing cost is low.

【0006】但し、(1)に示された方法において、透
明導電層形成用塗液としてインジウム錫酸化物(IT
O)等の導電性酸化物微粒子が適用された場合、得られ
る透明導電層の表面抵抗が104〜106Ω/□と高く、
漏洩電界を遮蔽するには充分でなかった。
However, in the method shown in (1), indium tin oxide (IT
O) or other conductive oxide fine particles are applied, the resulting transparent conductive layer has a high surface resistance of 10 4 to 10 6 Ω / □,
It was not enough to shield the leakage electric field.

【0007】一方、金属微粒子が適用された透明導電層
形成用塗液では、ITOを用いた塗液に比べ、若干、膜
の透過率が低くなるものの、102〜103Ω/□という
低抵抗膜が得られるため、今後、有望な方法であると思
われる。
On the other hand, in the case of the transparent conductive layer forming coating liquid to which the fine metal particles are applied, the film transmittance is slightly lower than that of the coating liquid using ITO, but it is as low as 10 2 to 10 3 Ω / □. Since a resistive film can be obtained, it seems to be a promising method in the future.

【0008】そして、上記透明導電層形成用塗液に適用
される金属微粒子としては、特開平8−77832号公
報や特開平9−55175号公報等に示されるように空
気中で酸化され難い、銀、金、白金、パラジウム、ロジ
ウム、ルテニウム等の貴金属に限られている。これは、
貴金属以外の金属微粒子、例えば、鉄、ニッケル、コバ
ルト等が適用された場合、大気雰囲気下でこれ等金属微
粒子の表面に酸化物被膜が必ず形成されてしまい透明導
電層として良好な導電性が得られなくなるからである。
The fine metal particles applied to the transparent conductive layer forming coating solution are not easily oxidized in air as disclosed in JP-A-8-77832 and JP-A-9-55175. Limited to precious metals such as silver, gold, platinum, palladium, rhodium and ruthenium. this is,
When metal fine particles other than noble metals, such as iron, nickel, and cobalt, are applied, an oxide film is always formed on the surface of these metal fine particles in the air atmosphere, and good conductivity is obtained as a transparent conductive layer. Because you will not be able to.

【0009】また、一方では表示画面を見やすくするた
めに、例えば、CRTにおいては前面板表面に防眩処理
を施して画面の反射を抑えることも行われている。
On the other hand, in order to make the display screen easier to see, for example, in a CRT, the surface of the front plate is subjected to an antiglare treatment to suppress the reflection of the screen.

【0010】この防眩処理は、微細な凹凸を設けて表面
の拡散反射を増加させる方法によってもなされるが、こ
の方法を用いた場合、解像度が低下して画質が落ちるた
めあまり好ましいとはいえない。
This antiglare treatment is also carried out by a method of providing fine unevenness to increase the diffuse reflection on the surface. However, when this method is used, the resolution is lowered and the image quality is deteriorated, which is not so preferable. Absent.

【0011】従って、むしろ反射光が入射光に対して破
壊的干渉を生ずるように、透明被膜の屈折率と膜厚とを
制御する干渉法によって防眩処理を行うことが好まし
い。
Therefore, it is preferable to perform the antiglare treatment by an interferometric method for controlling the refractive index and the film thickness of the transparent film so that the reflected light causes destructive interference with the incident light.

【0012】このような干渉法により低反射効果を得る
ため、一般的には高屈折率膜と低屈折率膜の光学膜厚を
それぞれ1/4λと1/4λ、あるいは1/2λと1/
4λに設定した二層構造膜が採用されており、前述のイ
ンジウム錫酸化物(ITO)微粒子からなる膜もこの種
の高屈折率膜として用いられている。
In order to obtain a low reflection effect by such an interference method, the optical film thicknesses of the high refractive index film and the low refractive index film are generally 1 / 4λ and 1 / 4λ, or 1 / 2λ and 1 /, respectively.
A two-layer structure film set to 4λ is adopted, and the film made of the above-mentioned indium tin oxide (ITO) fine particles is also used as this kind of high refractive index film.

【0013】尚、金属においては、光学定数(n−i
k,n:屈折率,i2=−1、k:消衰係数)のうち、
nの値は小さいがkの値が大きいため、金属微粒子から
なる透明導電層を用いた場合でも、ITO(高屈折率
膜)と同様に、二層構造膜で光の干渉による反射防止効
果が得られる。
In the case of metal, the optical constant (ni)
k, n: refractive index, i 2 = -1, k: extinction coefficient),
Since the value of n is small but the value of k is large, even when a transparent conductive layer made of fine metal particles is used, the antireflection effect due to the interference of light is obtained by the two-layer structure film, like ITO (high refractive index film). can get.

【0014】また、透明基板にこの種の透明導電層が形
成された透明導電性基材には、上述した良好な導電性、
低反射率等の諸特性に加えて、近年、CRTにおける画
面の平面化に伴いその透過率を100%より低い所定範
囲(40〜75%)に調整して画像のコントラストを向
上させる(透過率が低下するとコントラストは向上す
る)特性も要請されており、この場合、上記透明導電層
形成用塗液に着色顔料微粒子等を配合することも行われ
ている。
Further, the transparent conductive substrate having a transparent conductive layer of this type formed on a transparent substrate has the above-mentioned good conductivity,
In addition to various characteristics such as low reflectance, in recent years, with the flattening of the screen of a CRT, the transmittance thereof is adjusted to a predetermined range (40 to 75%) lower than 100% to improve image contrast (transmittance. Is also required), the contrast is improved. In this case, fine particles of color pigment or the like are also mixed in the coating liquid for forming the transparent conductive layer.

【0015】ここで、画面が平面化されたCRT(平面
CRT)において低透過率の透明導電層を用いる理由
は、パネル外表面が平面で内面は曲率を有する上記平面
CRTにおいてフェースパネル(前面パネル)の厚みが
画面中央部と周辺部で異なっており、平面CRTのパネ
ルガラスに従来の着色ガラス(例えば、セミティントガ
ラス、透過率:約53%)を用いた場合に輝度の面内不
均一を生ずるため、高透過率のパネルガラスと上記低透
過率層とを組合わせることにより、輝度の面内均一性と
コントラストの向上を両立させる必要があるためであ
る。
The reason why the transparent conductive layer having a low transmittance is used in a CRT having a flat screen (flat CRT) is that the flat panel CRT having a flat outer surface and a curved inner surface has a face panel (front panel). ) Thickness is different between the central part and the peripheral part of the screen, and when the conventional colored glass (for example, semi-tinted glass, transmittance: about 53%) is used as the panel glass of the flat CRT, the in-plane brightness is not uniform. This is because it is necessary to combine the in-plane uniformity of brightness and the improvement of contrast by combining the panel glass with high transmittance and the low transmittance layer.

【0016】[0016]

【発明が解決しようとする課題】ところで、上述した金
属微粒子から成る透明導電層を形成するにはある程度以
上の膜厚が必要となるため、貴金属微粒子を含有する従
来の透明導電層形成用塗液においては0.4〜0.6重
量%の配合割合を有する貴金属微粒子を用いており、貴
金属微粒子を多量に含む分、透明導電層形成用塗液が高
価格となる問題を有していた。この場合、透明導電層形
成用塗液内における上記貴金属微粒子の配合割合を低く
設定できる厚膜化方法として、例えば、基板温度を上昇
させて透明導電層形成用塗液の乾燥速度を高める方法や
スピンコートの回転速度を低下させる方法等が考えられ
るが、この様な方法を採った場合、得られる透明導電層
の均一性を悪化させてしまうため実用的でなかった。
By the way, since a film thickness of a certain amount or more is required to form the above-mentioned transparent conductive layer composed of fine metal particles, a conventional coating liquid for forming a transparent conductive layer containing noble metal fine particles is required. In this case, noble metal fine particles having a blending ratio of 0.4 to 0.6% by weight are used, and there is a problem that the coating liquid for forming a transparent conductive layer becomes expensive because of containing a large amount of noble metal fine particles. In this case, as a thickening method that can set the compounding ratio of the noble metal fine particles in the transparent conductive layer forming coating liquid to a low value, for example, a method of increasing the substrate temperature to increase the drying speed of the transparent conductive layer forming coating liquid or A method of lowering the rotation speed of spin coating can be considered, but when such a method is adopted, it is not practical because the uniformity of the transparent conductive layer obtained is deteriorated.

【0017】本発明はこの様な問題点に着目してなされ
たもので、その課題とするところは、従来の透明導電層
形成用塗液に比べより安価で、かつ、低抵抗、低反射率
を有する均一な透明導電層の形成を可能とする透明導電
層形成用塗液を提供することにある。
The present invention has been made by paying attention to such problems, and its problem is that it is cheaper than the conventional transparent conductive layer forming coating liquid, and has low resistance and low reflectance. Another object of the present invention is to provide a coating liquid for forming a transparent conductive layer, which enables formation of a uniform transparent conductive layer having

【0018】[0018]

【課題を解決するための手段】すなわち、請求項1に係
る発明は、溶媒、および、この溶媒に分散された平均粒
径1〜100nmの貴金属微粒子を主成分とし、透明基
板上に透明導電層を形成する透明導電層形成用塗液を前
提とし、上記溶媒が、25℃での蒸気圧が26.66〜
53.33kPaである低沸点溶媒を25〜70重量%
含むことを特徴とするものである。
That is, the invention according to claim 1 is based on a solvent and a noble metal fine particle having an average particle diameter of 1 to 100 nm dispersed in the solvent as a main component, and a transparent conductive layer on a transparent substrate. On the premise of a transparent conductive layer forming coating liquid for forming a film, the solvent has a vapor pressure at 25 ° C. of 26.66 to
25-70% by weight of a low boiling point solvent of 53.33 kPa
It is characterized by including.

【0019】また、請求項2に係る発明は、請求項1記
載の発明に係る透明導電層形成用塗液を前提とし、上記
貴金属微粒子の含有量が0.1〜0.34重量%である
ことを特徴としている。
The invention according to claim 2 is premised on the transparent conductive layer forming coating solution according to claim 1, wherein the content of the noble metal fine particles is 0.1 to 0.34% by weight. It is characterized by that.

【0020】また、請求項3に係る発明は、請求項1ま
たは2記載の発明に係る透明導電層形成用塗液を前提と
し、上記低沸点溶媒がアセトンであることを特徴とし、
請求項4に係る発明は、請求項1〜3のいずれかに記載
の透明導電層形成用塗液を前提とし、上記貴金属微粒子
が、金、銀、白金、パラジウム、ロジウム、ルテニウム
から選択された貴金属の微粒子、これら貴金属の合金微
粒子、あるいは、銀を除く上記貴金属により表面がコー
トされた貴金属コート銀微粒子のいずれかであることを
特徴とするものである。
The invention according to claim 3 is based on the coating liquid for forming a transparent conductive layer according to the invention according to claim 1 or 2, characterized in that the low boiling point solvent is acetone,
The invention according to claim 4 is based on the coating liquid for forming a transparent conductive layer according to any one of claims 1 to 3, and the noble metal fine particles are selected from gold, silver, platinum, palladium, rhodium and ruthenium. It is characterized in that it is any of fine particles of noble metal, fine particles of alloy of these noble metals, or noble metal-coated silver fine particles whose surface is coated with the above-mentioned noble metal except silver.

【0021】次に、請求項5に係る発明は、請求項1〜
4のいずれかに記載の透明導電層形成用塗液を前提と
し、有色顔料微粒子が含まれていることを特徴とし、請
求項6に係る発明は、請求項5に記載の透明導電層形成
用塗液を前提とし、上記有色顔料微粒子が、カーボン、
チタンブラック、窒化チタン、複合酸化物顔料、コバル
トバイオレット、モリブデンオレンジ、群青、紺青、キ
ナクリドン系顔料、アントラキノン系顔料、ペリレン系
顔料、イソインドリノン系顔料、アゾ系顔料およびフタ
ロシアニン系顔料から選択された1種以上の微粒子であ
ることを特徴とし、請求項7に係る発明は、請求項1〜
6のいずれかに記載の透明導電層形成用塗液を前提と
し、無機バインダーが含まれていることを特徴とするも
のである。
Next, the invention according to claim 5 relates to claims 1 to 1.
The transparent conductive layer forming coating liquid according to any one of claims 4 to 4 is premised on that colored pigment fine particles are contained. The invention according to claim 6 is the transparent conductive layer forming coating according to claim 5. Assuming a coating liquid, the colored pigment fine particles are carbon,
Selected from titanium black, titanium nitride, complex oxide pigments, cobalt violet, molybdenum orange, ultramarine blue, navy blue, quinacridone pigments, anthraquinone pigments, perylene pigments, isoindolinone pigments, azo pigments and phthalocyanine pigments. The invention according to claim 7 is characterized by being one or more kinds of fine particles.
Based on the transparent conductive layer forming coating liquid described in any one of 6 above, an inorganic binder is contained.

【0022】[0022]

【発明の実施の形態】以下、本発明の実施の形態につい
て詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below.

【0023】まず、本発明は、貴金属微粒子を含む透明
導電層形成用塗液内に25℃での蒸気圧が26.66〜
53.33kPaである低沸点溶媒を25〜70重量%
配合した場合、上記塗液内の貴金属微粒子の含有量を従
来より低下させても、低抵抗で均一な透明導電層を形成
できることを発見し完成されたもので、これにより安価
な透明導電層形成用塗液を得ることが可能となる。
First, according to the present invention, the vapor pressure at 25 ° C. in the coating liquid for forming a transparent conductive layer containing noble metal fine particles is 26.66 to.
25-70% by weight of a low boiling point solvent of 53.33 kPa
When compounded, it was discovered that a uniform transparent conductive layer with low resistance can be formed even if the content of the noble metal fine particles in the coating liquid is lower than in the past, and thus it is possible to form an inexpensive transparent conductive layer. It becomes possible to obtain a coating liquid for use.

【0024】ところで、CRTにおける上記透明導電層
形成用塗液を用いた透明導電層の成膜方法としては、ス
ピンコート法が広く一般的に採用されているため、上記
低沸点溶媒を所定量含有する透明導電層形成用塗液を用
いた場合、スピンコートの成膜過程の初期段階で塗液の
濃縮(低沸点溶媒の揮発)が速やかに進行することから
厚膜化が効率的に行われるためと考えられる。スピンコ
ートにおいて厚膜化を行うその他の方法として、上述し
たように基板温度を上昇させ透明導電層形成用塗液の乾
燥速度を高める方法やスピン回転速度を低下させる方法
が考えられるが、いずれも得られる透明導電層の均一性
を悪化させる傾向が強く実用的とは言えない。
By the way, as a method for forming a transparent conductive layer using the above-mentioned transparent conductive layer forming coating solution in a CRT, a spin coating method is widely adopted. When the coating liquid for forming the transparent conductive layer is used, the concentration of the coating liquid (volatilization of the low boiling point solvent) rapidly progresses in the initial stage of the film formation process of spin coating, so that the film thickness can be efficiently increased. It is thought to be because. Other methods for increasing the film thickness in spin coating include a method of increasing the substrate temperature to increase the drying rate of the transparent conductive layer forming coating solution and a method of decreasing the spin rotation rate, as described above. It is not practical because it tends to deteriorate the uniformity of the obtained transparent conductive layer.

【0025】ここで、上記低沸点溶媒は25℃での蒸気
圧が26.66〜53.33kPaであることを要し
(請求項1)、さらに好ましくは26.66〜40.0
0kPaであることが望ましい。低沸点溶媒の蒸気圧が
26.66kPa未満だと上記成膜過程の初期段階での
塗液の濃縮度合いが不十分で透明導電層形成用塗液内の
貴金属微粒子含有量を低下させる効果が低く、反対に5
3.33kPaを超える場合には透明導電層形成用塗液
内の貴金属微粒子含有量を大幅に低下できるが、低沸点
溶媒の揮発速度が大きすぎるため得られる透明導電層の
均一性を悪化させたり、透明導電層形成用塗液の保管や
輸送に支障をきたす問題があり、実用的とはいえない。
The low boiling point solvent needs to have a vapor pressure at 25 ° C. of 26.66 to 53.33 kPa (Claim 1), and more preferably 26.66 to 40.0.
It is preferably 0 kPa. If the vapor pressure of the low boiling point solvent is less than 26.66 kPa, the degree of concentration of the coating liquid in the initial stage of the film formation process is insufficient and the effect of lowering the content of noble metal particles in the transparent conductive layer-forming coating liquid is low. , On the other hand, 5
When it exceeds 3.33 kPa, the content of the noble metal fine particles in the coating liquid for forming the transparent conductive layer can be significantly reduced, but the volatilization rate of the low boiling point solvent is too high, which deteriorates the uniformity of the obtained transparent conductive layer. However, there is a problem that it hinders the storage and transportation of the transparent conductive layer-forming coating liquid, which is not practical.

【0026】また、上記低沸点溶媒の配合量は25〜7
0重量%の範囲に設定される(請求項1)。25重量%
未満および70重量%を超える場合は、上記蒸気圧の設
定と同様の理由で、透明導電層形成用塗液内の貴金属微
粒子含有量を低下させる効果が低かったり、得られる透
明導電層の均一性の悪化や、透明導電層形成用塗液の保
管や輸送の問題が生じるため好ましくない。
Further, the compounding amount of the low boiling point solvent is 25 to 7
It is set in the range of 0% by weight (claim 1). 25% by weight
If the amount is less than 70% by weight or less than 70% by weight, the effect of reducing the content of the noble metal fine particles in the coating liquid for forming the transparent conductive layer is low or the uniformity of the obtained transparent conductive layer is the same for the same reason as the above vapor pressure setting. And the problem of storage and transportation of the coating liquid for forming the transparent conductive layer is not preferable.

【0027】ところで、貴金属微粒子を含む透明導電層
形成用塗液は、通常、貴金属微粒子の水系コロイド分散
液を経由して得られるため、その溶媒は必然的に水分を
含有し、その水分濃度は1〜50重量%、好ましくは5
〜25重量%がよい。50重量%を超えると、透明基板
上に透明導電層形成用塗液を塗布した後、乾燥中に、水
の高い表面張力によりはじきを生じ易くなる場合がある
からである。また、上記水分濃度を1重量%未満にする
には、例えば、貴金属微粒子の濃度を30重量%程度の
高濃度まで高めた水系コロイド分散液を製造する必要が
あるが、分散液中の貴金属微粒子濃度をそこまで高める
と分散液が不安定となり貴金属微粒子の凝集が生じるた
め実用的ではない。
By the way, since the coating liquid for forming the transparent conductive layer containing the noble metal particles is usually obtained via the aqueous colloidal dispersion of the noble metal particles, the solvent inevitably contains water and the water concentration is 1 to 50% by weight, preferably 5
-25% by weight is preferred. When it exceeds 50% by weight, after the coating liquid for forming the transparent conductive layer is applied on the transparent substrate, repellency may easily occur due to high surface tension of water during drying. Further, in order to reduce the water concentration to less than 1% by weight, it is necessary to produce an aqueous colloidal dispersion in which the concentration of the noble metal fine particles is increased to a high concentration of about 30% by weight. If the concentration is increased to that level, the dispersion becomes unstable and the noble metal fine particles agglomerate, which is not practical.

【0028】ここで、上述した低沸点溶媒としては、有
害性の観点、及び上述の透明導電層形成用塗液に水が含
有される点から、水溶性を有するアセトン(25℃の蒸
気圧:30.53kPa)が好ましい(請求項3)。
Here, as the above-mentioned low boiling point solvent, water-soluble acetone (vapor pressure at 25 ° C .: 25 ° C .: from the viewpoint of harmfulness and from the viewpoint that water is contained in the above-mentioned transparent conductive layer forming coating liquid). 30.53 kPa) is preferable (claim 3).

【0029】また、透明導電層形成用塗液中の貴金属微
粒子はその平均粒径が1〜100nmであることを要す
る(請求項1)。上記微粒子において、1nm未満の場
合、この微粒子の製造は困難であり、かつ、透明導電層
形成用塗液中で凝集し易く実用的でないからである。ま
た、100nmを超えると、形成された透明導電層の可
視光線透過率が低くなり過ぎてしまい、仮に、膜厚を薄
く設定して可視光線透過率を高くした場合でも、表面抵
抗が高くなり過ぎてしまい実用的でないからである。
The noble metal fine particles in the coating liquid for forming the transparent conductive layer must have an average particle size of 1 to 100 nm (claim 1). This is because, when the particle diameter is less than 1 nm, it is difficult to manufacture the particle and the particles easily aggregate in the transparent conductive layer forming coating solution, which is not practical. Further, when it exceeds 100 nm, the visible light transmittance of the formed transparent conductive layer becomes too low, and even if the visible light transmittance is increased by setting the film thickness thin, the surface resistance becomes too high. This is because it is not practical.

【0030】尚、ここで言う平均粒径とは、透過電子顕
微鏡(TEM)で観察される微粒子の平均粒径を示して
いる。
The average particle size referred to here is the average particle size of the fine particles observed with a transmission electron microscope (TEM).

【0031】また、上記貴金属微粒子としては、金、
銀、白金、パラジウム、ロジウム、ルテニウムから選択
された貴金属の微粒子、これら貴金属の合金微粒子、あ
るいは、銀を除く上記貴金属により表面がコートされた
貴金属コート銀微粒子のいずれかを適用することができ
る(請求項4)。
The precious metal fine particles are gold,
It is possible to apply either noble metal fine particles selected from silver, platinum, palladium, rhodium, or ruthenium, alloy fine particles of these noble metals, or noble metal-coated silver fine particles whose surface is coated with the above noble metal except silver ( Claim 4).

【0032】そして、銀、金、白金、ロジウム、ルテニ
ウム、パラジウムなどの比抵抗を比較した場合、白金、
ロジウム、ルテニウム、パラジウムの比抵抗は、それぞ
れ10.6、4.51、7.6、10.8μΩ・cm
で、銀、金の1.62、2.2μΩ・cmに比べて高い
ため、表面抵抗の低い透明導電層を形成するには銀微粒
子や金微粒子を適用した方が有利と考えられる。
When the specific resistances of silver, gold, platinum, rhodium, ruthenium, palladium, etc. are compared, platinum,
The specific resistances of rhodium, ruthenium and palladium are 10.6, 4.51, 7.6 and 10.8 μΩ · cm, respectively.
Since it is higher than 1.62 and 2.2 μΩ · cm for silver and gold, it is considered advantageous to apply silver fine particles or gold fine particles to form a transparent conductive layer having low surface resistance.

【0033】ただし、銀微粒子が適用された場合、硫化
や食塩水による劣化が激しいという耐候性の面から用途
が制限され、他方、金微粒子、白金微粒子、ロジウム、
ルテニウム微粒子、パラジウム微粒子等が適用された場
合には上記耐候性の問題はなくなるが、コスト面を考慮
すると必ずしも最適とは言えない。
However, when silver fine particles are applied, the application is limited from the viewpoint of weather resistance that is severely deteriorated by sulfurization and salt solution, while gold fine particles, platinum fine particles, rhodium,
When ruthenium fine particles, palladium fine particles, etc. are applied, the above-mentioned problem of weather resistance disappears, but it is not necessarily optimum in view of cost.

【0034】そこで、上述したように銀微粒子の表面に
銀以外の貴金属をコーティングした微粒子を用いること
もできる。尚、本発明者は、表面に金若しくは白金単体
または金と白金の複合体がコーティングされた平均粒径
1〜100nmの貴金属コート銀微粒子を適用した透明
導電層形成用塗液とその製造方法を既に提案している
(特開平11−228872号公報および特開平200
0−268639号公報参照)。
Therefore, as described above, it is also possible to use fine particles in which the surface of silver fine particles is coated with a noble metal other than silver. The present inventor has proposed a transparent conductive layer forming coating liquid to which a noble metal-coated silver fine particle having an average particle diameter of 1 to 100 nm, whose surface is coated with gold or platinum alone or a complex of gold and platinum, and a method for producing the same. It has already been proposed (JP-A-11-228872 and JP-A-200).
0-268639).

【0035】次に、上記貴金属コート銀微粒子におい
て、金若しくは白金単体または金、白金複合体のコーテ
ィング量は、銀100重量部に対し5重量部以上190
0重量部の範囲に設定することが好ましく、さらに好ま
しくは100重量部以上900重量部の範囲に設定する
とよい。金若しくは白金単体または金、白金複合体のコ
ーティング量が5重量部未満だと、紫外線等の影響によ
る膜劣化が起こり易くコーティングの保護効果が見られ
ず、反対に1900重量部を越えると貴金属コート銀微
粒子の生産性が悪化すると共にコスト的にも難があるか
らである。
Next, in the above-mentioned noble metal-coated silver fine particles, the coating amount of gold or platinum alone or gold / platinum composite is 5 parts by weight or more per 100 parts by weight of silver.
It is preferably set in the range of 0 parts by weight, and more preferably in the range of 100 parts by weight or more and 900 parts by weight. If the coating amount of gold or platinum alone or gold or platinum complex is less than 5 parts by weight, film deterioration due to the influence of ultraviolet rays etc. easily occurs and the protective effect of the coating is not seen, on the contrary, if it exceeds 1900 parts by weight, a precious metal coating is applied. This is because the productivity of the silver fine particles is deteriorated and the cost is difficult.

【0036】次に、上記透明導電層形成用塗液内に有色
顔料微粒子を添加してもよい(請求項5)。有色顔料微
粒子の添加により、透明導電層が形成された透明導電性
基材の透過率を100%より低い所定範囲(40〜75
%)に調整し、良好な導電性、低反射率等の諸特性に加
え、その画像のコントラストを向上させて表示画面を更
に見易くさせることが可能となる。
Next, colored pigment fine particles may be added to the transparent conductive layer forming coating liquid (claim 5). By adding the colored pigment fine particles, the transmittance of the transparent conductive substrate on which the transparent conductive layer is formed is lower than 100% in a predetermined range (40 to 75).
%) In addition to various characteristics such as good conductivity and low reflectance, the contrast of the image can be improved to make the display screen easier to see.

【0037】そして、上記有色顔料微粒子には、カーボ
ン、チタンブラック、窒化チタン、複合酸化物顔料、コ
バルトバイオレット、モリブデンオレンジ、群青、紺
青、キナクリドン系顔料、アントラキノン系顔料、ペリ
レン系顔料、イソインドリノン系顔料、アゾ系顔料およ
びフタロシアニン系顔料から選択された1種以上の微粒
子を用いることができる(請求項6)。
The colored pigment fine particles include carbon, titanium black, titanium nitride, complex oxide pigments, cobalt violet, molybdenum orange, ultramarine blue, navy blue, quinacridone pigments, anthraquinone pigments, perylene pigments, isoindolinone. One or more kinds of fine particles selected from the group consisting of pigments, azo pigments and phthalocyanine pigments can be used (Claim 6).

【0038】更に、上記有色顔料微粒子は、その表面が
酸化ケイ素でコーティング処理された微粒子であること
が好ましい。酸化ケイ素コーティング処理された有色顔
料微粒子を用いると、未処理の有色顔料微粒子を用いた
場合と比較して、導電性および膜強度に優れた透明導電
層が得られる。
Further, it is preferable that the color pigment fine particles are fine particles whose surface is coated with silicon oxide. When the colored pigment fine particles treated with silicon oxide are used, a transparent conductive layer having excellent conductivity and film strength can be obtained as compared with the case where untreated colored pigment fine particles are used.

【0039】次に、貴金属微粒子として貴金属コート銀
微粒子が適用され、かつ、溶媒に25℃での蒸気圧が2
6.66〜53.33kPaである低沸点溶媒を含有す
る透明導電層形成用塗液は以下のような方法で製造する
ことができる。まず、既知の方法[例えば、Carey−Lea
法、Am.J.Sci.、37、47(1889)、Am.J.Sci.、38(188
9)]により銀微粒子のコロイド分散液を調製する。す
なわち、硝酸銀水溶液に、硫酸鉄(II)水溶液とクエン
酸ナトリウム水溶液の混合液を加えて反応させ、沈降物
を濾過・洗浄した後、純水を加えることにより簡単に銀
微粒子のコロイド分散液(Ag:0.1〜10重量%)
が調製される。この銀微粒子のコロイド分散液の調製方
法は平均粒径1〜100nmの銀微粒子が分散されたも
のであれば任意でありかつこれに限定されるものではな
い。
Next, noble metal-coated silver fine particles are applied as the noble metal fine particles, and the solvent has a vapor pressure of 2 at 25 ° C.
The coating liquid for forming a transparent conductive layer containing a low boiling point solvent of 6.66 to 53.33 kPa can be produced by the following method. First, known methods [eg Carey-Lea
Law, Am.J.Sci., 37, 47 (1889), Am.J.Sci., 38 (188
9)] to prepare a colloidal dispersion of fine silver particles. That is, a mixed solution of an iron (II) sulfate aqueous solution and an aqueous sodium citrate solution is added to an aqueous silver nitrate solution to cause a reaction, the precipitate is filtered and washed, and then pure water is added to easily add a colloidal dispersion of silver fine particles ( Ag: 0.1 to 10% by weight)
Is prepared. The method for preparing the colloidal dispersion liquid of silver fine particles is arbitrary and is not limited as long as silver fine particles having an average particle diameter of 1 to 100 nm are dispersed.

【0040】次に、得られた銀微粒子のコロイド分散液
にヒドラジン(N24)等の還元剤を加え、更にそこに
アルカリ金属の金酸塩溶液若しくは白金酸塩溶液を加え
るか、アルカリ金属の白金酸塩溶液並びに金酸塩溶液、
またはアルカリ金属の白金酸塩並びに金酸塩の混合溶液
を加えることで上記銀微粒子の表面に金若しくは白金単
体または金と白金の複合体をコーティングし、貴金属コ
ート銀微粒子のコロイド状分散液を得ることができる。
尚、この貴金属コート銀微粒子調製工程で、必要によ
り、銀微粒子のコロイド分散液、アルカリ金属の金酸塩
溶液、アルカリ金属の白金酸塩溶液、アルカリ金属の金
酸塩並びに白金酸塩の混合溶液の少なくともいずれか一
つ、または、それぞれに少量の分散剤を加えてもよい。
Next, a reducing agent such as hydrazine (N 2 H 4 ) is added to the obtained colloidal dispersion of silver fine particles, and a solution of alkali metal such as a gold salt or a platinum salt is added thereto, or Metal platinate solution and aurate solution,
Alternatively, the surface of the silver fine particles is coated with gold or platinum alone or a complex of gold and platinum by adding a mixed solution of an alkali metal platinum salt and a gold salt to obtain a colloidal dispersion of noble metal-coated silver fine particles. be able to.
In the step of preparing noble metal-coated silver fine particles, if necessary, a colloidal dispersion of silver fine particles, an alkali metal aurate salt solution, an alkali metal platinate solution, an alkali metal aurate salt, and a mixed platinumate solution. A small amount of a dispersant may be added to at least one of the above or each of them.

【0041】以上のようにして得られた貴金属コート銀
微粒子のコロイド状分散液は、この後、透析、電気透
析、イオン交換、限外濾過等の脱塩処理方法により分散
液内の電解質濃度を下げることが好ましい。これは、電
解質濃度を下げないとコロイドは電解質で一般に凝集し
てしまうからであり、この現象は、Schulze−Hardy則と
しても知られている。
The colloidal dispersion of noble metal-coated silver fine particles obtained as described above is then subjected to a desalting treatment method such as dialysis, electrodialysis, ion exchange or ultrafiltration to adjust the electrolyte concentration in the dispersion. It is preferable to lower it. This is because colloids generally agglomerate in the electrolyte unless the electrolyte concentration is lowered, and this phenomenon is also known as the Schulze-Hardy law.

【0042】次に、脱塩処理された貴金属コート銀微粒
子のコロイド状分散液を濃縮処理して貴金属コート銀微
粒子の分散濃縮液を得、この貴金属コート銀微粒子の分
散濃縮液に、25℃での蒸気圧が26.66〜53.3
3kPaである低沸点溶媒とその他の溶媒、あるいは更
に有色顔料微粒子または/及び無機バインダーが含まれ
た(請求項5、7)これ等溶剤を添加して成分調整(微
粒子濃度、水分濃度、有機溶剤濃度等)を行い、本発明
に係る透明導電層形成用塗液が得られる。
Then, the desalted colloidal dispersion of the noble metal-coated silver fine particles is concentrated to obtain a dispersion concentrate of the noble metal-coated silver fine particles, which is added to the dispersion concentrate of the noble metal-coated silver fine particles at 25 ° C. Vapor pressure of 26.66-53.3
A solvent having a low boiling point of 3 kPa and another solvent, or colored pigment fine particles or / and an inorganic binder are further contained (claims 5 and 7). These solvents are added to adjust the components (fine particle concentration, water concentration, organic solvent). Concentration, etc.) to obtain the coating liquid for forming the transparent conductive layer according to the present invention.

【0043】尚、上記貴金属コート銀微粒子のコロイド
状分散液の濃縮処理は、減圧エバポレーター、限外濾過
等の常用の方法で行うことができ、この濃縮度合いによ
って、透明導電層形成用塗液中の水分濃度を、上述した
1〜50重量%の範囲に制御することができる。
The colloidal dispersion of the noble metal-coated silver fine particles can be concentrated by a conventional method such as a vacuum evaporator and ultrafiltration. Depending on the degree of concentration, the transparent conductive layer forming coating solution The water concentration of can be controlled within the above-mentioned range of 1 to 50% by weight.

【0044】また、透明導電層形成用塗液に用いる溶媒
としては上述したように25℃での蒸気圧が26.66
〜53.33kPaである低沸点溶媒が挙げられるが、
その他の溶媒として特に制限はなく塗布方法や製膜条件
により適宜に選定される。例えば、メタノール(M
A)、エタノール(EA)、1−プロパノール(NP
A)、イソプロパノール(IPA)、ブタノール、ペン
タノール、ベンジルアルコール、ジアセトンアルコール
等のアルコール系溶媒、メチルエチルケトン(ME
K)、メチルプロピルケトン、メチルイソブチルケトン
(MIBK)、シクロヘキサノン、イソホロン等のケト
ン系溶媒、エチレングリコールモノメチルエーテル(M
CS)、エチレングリコールモノエチルエーテル(EC
S)、エチレングリコールイソプロピルエーテル(IP
C)、プロピレングリコールメチルエーテル(PG
M)、プロピレングリコールエチルエーテル(PE)、
プロピレングリコールメチルエーテルアセテート(PG
M−AC)、プロピレングリコールエチルエーテルアセ
テート(PE−AC)等のグリコール誘導体、フォルム
アミド(FA)、N−メチルフォルムアミド、ジメチル
ホルムアミド(DMF)、ジメチルアセトアミド、ジメ
チルスルフォキシド(DMSO)、N−メチル−2−ピロ
リドン(NMP)等が挙げられるが、これらに限定され
るものではない。
The solvent used for the coating liquid for forming the transparent conductive layer has a vapor pressure of 26.66 at 25 ° C. as described above.
Examples include low boiling point solvents of ˜53.33 kPa,
The other solvent is not particularly limited and may be appropriately selected depending on the coating method and film forming conditions. For example, methanol (M
A), ethanol (EA), 1-propanol (NP
A), isopropanol (IPA), butanol, pentanol, benzyl alcohol, alcohol solvents such as diacetone alcohol, methyl ethyl ketone (ME
K), methyl propyl ketone, methyl isobutyl ketone (MIBK), ketone solvents such as cyclohexanone and isophorone, ethylene glycol monomethyl ether (M
CS), ethylene glycol monoethyl ether (EC
S), ethylene glycol isopropyl ether (IP
C), propylene glycol methyl ether (PG
M), propylene glycol ethyl ether (PE),
Propylene glycol methyl ether acetate (PG
M-AC), glycol derivatives such as propylene glycol ethyl ether acetate (PE-AC), formamide (FA), N-methylformamide, dimethylformamide (DMF), dimethylacetamide, dimethylsulfoxide (DMSO), N Examples include, but are not limited to, methyl-2-pyrrolidone (NMP) and the like.

【0045】尚、上記貴金属コート銀微粒子のコロイド
分散液に代えて、金、銀、白金、パラジウム、ロジウ
ム、ルテニウムから選択された少なくとも1種類以上の
貴金属微粒子、これら貴金属の合金微粒子のコロイド分
散液を適用した場合も、同様の方法にて本発明に係る透
明導電層形成用塗液を得ることが可能である。
Instead of the above-mentioned colloidal dispersion of noble metal-coated silver fine particles, at least one kind of noble metal fine particles selected from gold, silver, platinum, palladium, rhodium and ruthenium, and a colloidal dispersion of these noble metal alloy fine particles. Also in the case of applying, it is possible to obtain the coating liquid for forming a transparent conductive layer according to the present invention by the same method.

【0046】次に、この様にして得られた本発明に係る
透明導電層形成用塗液を用いて、例えば、透明基板、お
よび、この透明基板上に順次形成された透明導電層と透
明コート層から成る透明2層膜とでその主要部が構成さ
れる透明導電性基材を得ることができる。
Next, using the thus obtained coating liquid for forming a transparent conductive layer according to the present invention, for example, a transparent substrate, and a transparent conductive layer and a transparent coat sequentially formed on this transparent substrate. It is possible to obtain a transparent conductive base material whose main part is composed of a transparent two-layer film composed of layers.

【0047】そして、透明基板上に上記透明2層膜を形
成するには以下の方法でこれを行うことができる。すな
わち、本発明に係る透明導電層形成用塗液を、ガラス基
板、プラスチック基板等の透明基板上にスピンコート、
スプレーコート、ワイヤーバーコート、ドクターブレー
ドコート等の手法にて塗布し、必要に応じて乾燥した
後、例えばシリカゾル等を主成分とする透明コート層形
成用塗布液を上述した手法によりオーバーコートする。
次に、例えば50〜350℃程度の温度で加熱処理を施
し透明コート層形成用塗布液の硬化を行って上記透明2
層膜を形成する。
Then, in order to form the transparent two-layer film on the transparent substrate, this can be performed by the following method. That is, the transparent conductive layer forming coating liquid according to the present invention, a glass substrate, a spin coating on a transparent substrate such as a plastic substrate,
After being applied by a method such as spray coating, wire bar coating, doctor blade coating, etc. and dried if necessary, for example, a coating solution for forming a transparent coating layer containing silica sol as a main component is overcoated by the method described above.
Next, for example, a heat treatment is performed at a temperature of about 50 to 350 ° C. to cure the transparent coating layer forming coating liquid to obtain the transparent 2
A layer film is formed.

【0048】ここで、25℃での蒸気圧が26.66〜
53.33kPaである低沸点溶媒を25〜70重量%
配合された本発明に係る透明導電層形成用塗液を用いた
場合、上記低沸点溶媒が配合されていない従来の透明導
電層形成用塗液を適用した場合と比較して、上記貴金属
微粒子の含有量を0.1〜0.34重量%まで低下させ
ても均一性に優れた透明導電層を形成することができ
る。
Here, the vapor pressure at 25 ° C. is 26.66-
25-70% by weight of a low boiling point solvent of 53.33 kPa
When using the transparent conductive layer forming coating liquid according to the present invention that has been blended, compared with the case of applying the conventional transparent conductive layer forming coating liquid in which the low boiling point solvent is not blended, the noble metal fine particles Even if the content is reduced to 0.1 to 0.34% by weight, a transparent conductive layer having excellent uniformity can be formed.

【0049】また、貴金属微粒子を含有する上記透明導
電層形成用塗液において貴金属微粒子はITO等の酸化
物微粒子に比べて凝集しやすく、透明導電層形成用塗液
の塗布・乾燥の成膜過程において微粒子同士の凝集が起
こるため、透明導電層形成用塗液を用いて得られる上記
透明導電層は、貴金属微粒子の導電層に微小な空孔が導
入された構造、すなわち網目状(ネットワーク)構造を
有している。
Further, in the above-mentioned coating liquid for forming a transparent conductive layer containing noble metal fine particles, the noble metal fine particles are more likely to aggregate than oxide fine particles such as ITO, and the film forming process of coating / drying the transparent conductive layer forming coating liquid. In the above-mentioned transparent conductive layer obtained by using the coating liquid for forming a transparent conductive layer, fine pores are introduced into the conductive layer of the noble metal fine particles, that is, a network structure. have.

【0050】従って、シリカゾル等を主成分とする透明
コート層形成用塗布液を上述した手法によりオーバーコ
ートした際、予め形成された上記透明導電層(貴金属微
粒子の導電層)における網目状構造の穴の部分に、オー
バーコートしたシリカゾル液(このシリカゾル液は上記
加熱処理により酸化ケイ素を主成分とするバインダーマ
トリックスとなる)がしみ込むことで、透過率の向上、
導電性の向上が同時に達成される。
Therefore, when the coating liquid for forming a transparent coat layer containing silica sol as a main component is overcoated by the above-mentioned method, the holes having a mesh structure in the transparent conductive layer (conductive layer of noble metal fine particles) previously formed. The overcoating silica sol liquid (this silica sol liquid becomes a binder matrix containing silicon oxide as a main component by the above heat treatment) soaks into the area of
An increase in conductivity is achieved at the same time.

【0051】また、網目状構造の上記穴の部分を介し
て、透明基板と酸化珪素等のバインダーマトリックスと
の接触面積が増大するため透明基板とバインダーマトリ
ックスの結合が強くなり、強度の向上も図られる。
Further, since the contact area between the transparent substrate and the binder matrix such as silicon oxide is increased through the hole portion of the mesh structure, the bond between the transparent substrate and the binder matrix is strengthened and the strength is also improved. To be

【0052】更に、貴金属微粒子が酸化ケイ素を主成分
とする上記バインダーマトリックス中に分散された透明
導電層の光学定数(n−ik)において、屈折率nはさ
ほど大きくないが消衰係数kが大きいため、上記透明導
電層と透明コート層の透明2層膜構造により、透明2層
膜の反射率を大幅に低下できる。
Further, in the optical constant (n-ik) of the transparent conductive layer in which the noble metal fine particles are dispersed in the binder matrix containing silicon oxide as a main component, the refractive index n is not so large but the extinction coefficient k is large. Therefore, the transparent double-layer film structure of the transparent conductive layer and the transparent coat layer can significantly reduce the reflectance of the transparent double-layer film.

【0053】ここで、上記シリカゾルとしては、オルト
アルキルシリケートに水や酸触媒を加えて加水分解し、
脱水縮重合を進ませた重合物、あるいは既に4〜5量体
まで重合を進ませた市販のアルキルシリケート溶液を、
さらに加水分解と脱水縮重合を進行させた重合物等を利
用することができる。尚、脱水縮重合が進行すると、溶
液粘度が上昇して最終的には固化してしまうので、脱水
縮重合の度合いについては、ガラス基板やプラスチック
基板などの透明基板上に塗布可能な上限粘度以下のとこ
ろに調整する。但し、脱水縮重合の度合いは上記上限粘
度以下のレベルであれば特に指定されないが、膜強度、
耐候性等を考慮すると重量平均分子量で500から30
00程度が好ましい。そして、アルキルシリケート加水
分解重合物は、透明2層膜の加熱焼成時に脱水縮重合反
応がほぼ完結して、硬いシリケート膜(酸化ケイ素を主
成分とする膜)になる。尚、上記シリカゾルに、弗化マ
グネシウム微粒子、アルミナゾル、チタニアゾル、ジル
コニアゾル等を加え、透明コート層の屈折率を調節して
透明2層膜の反射率を変えることも可能である。
Here, the silica sol is hydrolyzed by adding water or an acid catalyst to orthoalkyl silicate,
Polymers that have undergone dehydration polycondensation, or commercially available alkyl silicate solutions that have already undergone polymerization to 4- to 5-mer,
Further, a polymer or the like that has undergone hydrolysis and dehydration polycondensation can be used. Incidentally, as the dehydration polycondensation progresses, the solution viscosity rises and eventually solidifies. Therefore, the degree of the dehydration polycondensation is not more than the upper limit viscosity that can be applied on a transparent substrate such as a glass substrate or a plastic substrate. Adjust to. However, the degree of dehydration polycondensation is not particularly specified as long as it is at the level of the above upper limit viscosity or less, but the film strength,
Considering weather resistance etc., the weight average molecular weight is 500 to 30.
About 00 is preferable. Then, the hydrolyzed alkyl silicate polymer undergoes a dehydration polycondensation reaction when the transparent two-layer film is heated and baked, and becomes a hard silicate film (a film containing silicon oxide as a main component). It is also possible to add magnesium fluoride fine particles, alumina sol, titania sol, zirconia sol, etc. to the silica sol to adjust the refractive index of the transparent coating layer to change the reflectance of the transparent two-layer film.

【0054】また、25℃での蒸気圧が26.66〜5
3.33kPaである低沸点溶媒を25〜70重量%含
む溶媒とこの溶媒に分散された平均粒径1〜100nm
の貴金属微粒子に加え、上述したように有色顔料微粒子
(分散液)または/及び無機バインダー成分としてのシ
リカゾル液を配合させて本発明に係る透明導電層形成用
塗液を構成してもよい(請求項5、7)。この場合にお
いても、透明導電層形成用塗液を塗布し、必要に応じて
乾燥させた後に透明コート層形成用塗布液を上述した手
法によりオーバーコートすることで、同様の透明2層膜
が得られる。尚、貴金属コート銀微粒子のコロイド状分
散液の製造において脱塩処理を施したのと同様の理由か
ら、透明導電層形成用塗液内に配合する上記有色顔料微
粒子分散液、シリカゾル液についてもその脱塩を十分に
行っておくことが望ましい。
The vapor pressure at 25 ° C. is 26.66-5.
A solvent containing 25 to 70% by weight of a low boiling point solvent of 3.33 kPa and an average particle size of 1 to 100 nm dispersed in this solvent
In addition to the above noble metal fine particles, colored pigment fine particles (dispersion liquid) or / and a silica sol liquid as an inorganic binder component may be mixed as described above to form the transparent conductive layer forming coating liquid according to the present invention. Items 5 and 7). Also in this case, a similar transparent two-layer film can be obtained by applying the transparent conductive layer forming coating liquid, drying it if necessary, and then overcoating the transparent coating layer forming coating liquid by the method described above. To be For the same reason as desalting treatment in the production of the colloidal dispersion of the noble metal-coated silver fine particles, the colored pigment fine particle dispersion liquid and the silica sol liquid to be blended in the transparent conductive layer forming coating liquid are also the same. It is desirable to carry out sufficient desalting.

【0055】以上、詳述したように本発明に係る透明導
電層形成用塗液を適用して形成された透明導電層を具備
する透明導電性基材は、従来より安価に製造でき、か
つ、低抵抗、低反射率の諸特性を有し、均一性の優れた
透明導電層を形成できるため、例えば、上述したブラウ
ン管(CRT)、プラズマディスプレイパネル(PD
P)、蛍光表示管(VFD)、フィールドエミッション
ディスプレイ(FED)、エレクトロルミネッセンスデ
ィスプレイ(ELD)、液晶ディスプレイ(LCD)等
表示装置における前面板等に用いることができる。
As described above in detail, a transparent conductive substrate having a transparent conductive layer formed by applying the coating liquid for forming a transparent conductive layer according to the present invention can be manufactured at a lower cost than before, and Since the transparent conductive layer having various characteristics of low resistance and low reflectance and excellent uniformity can be formed, for example, the above-described cathode ray tube (CRT) and plasma display panel (PD
P), a fluorescent display tube (VFD), a field emission display (FED), an electroluminescence display (ELD), a liquid crystal display (LCD), and the like as a front plate of a display device.

【0056】[0056]

【実施例】以下、本発明の実施例を具体的に説明するが
本発明はこれら実施例に限定されるものではない。ま
た、本文中の『%』は、透過率、反射率、ヘーズ値の
(%)を除いて『重量%』を示し、また『部』は『重量
部』を示している。
EXAMPLES Examples of the present invention will be specifically described below, but the present invention is not limited to these examples. Further, “%” in the text means “% by weight” excluding the transmittance, reflectance and haze value (%), and “part” means “part by weight”.

【0057】[実施例1]前述のCarey−Lea法により銀
微粒子のコロイド分散液を調製した。
Example 1 A colloidal dispersion of silver fine particles was prepared by the above-mentioned Carey-Lea method.

【0058】具体的には、9%硝酸銀水溶液33gに、
23%硫酸鉄(II)水溶液39gと37.5%クエン酸
ナトリウム水溶液48gの混合液を加えた後、沈降物を
ろ過・洗浄した後、純水を加えて、銀微粒子のコロイド
分散液(Ag:0.15%)を調製した。
Specifically, in 33 g of a 9% silver nitrate aqueous solution,
After adding a mixed solution of 39 g of a 23% iron (II) sulfate aqueous solution and 48 g of a 37.5% sodium citrate aqueous solution, the precipitate was filtered and washed, and then pure water was added to the colloidal dispersion of silver particles (Ag). : 0.15%) was prepared.

【0059】この銀微粒子のコロイド分散液60gに、
ヒドラジン1水和物(N24・H2O)の1%水溶液
8.0gを加えて攪拌しながら、金酸カリウム[KAu
(OH)4]水溶液(Au:0.075%)480gと
1%高分子分散剤水溶液0.2gの混合液を加え、金単
体がコーティングされた貴金属コート銀微粒子のコロイ
ド分散液を得た。
To 60 g of this colloidal dispersion of fine silver particles,
8.0 g of a 1% aqueous solution of hydrazine monohydrate (N 2 H 4 · H 2 O) was added, and the mixture was stirred while potassium aurate [KAu] was added.
A mixed solution of 480 g of an (OH) 4 ] aqueous solution (Au: 0.075%) and 0.2 g of a 1% aqueous polymer dispersant solution was added to obtain a colloidal dispersion of noble metal-coated silver fine particles coated with simple gold.

【0060】この貴金属コート銀微粒子のコロイド分散
液をイオン交換樹脂(三菱化学社製商品名ダイヤイオン
SK1B,SA20AP)で脱塩した後、限外ろ過を行
い、貴金属コート銀微粒子の濃縮液(A液)を得た。
The colloidal dispersion liquid of the noble metal-coated silver fine particles is desalted with an ion exchange resin (trade name: Diaion SK1B, SA20AP manufactured by Mitsubishi Chemical Co., Ltd.), and then ultrafiltration is performed to obtain a concentrated liquid (A of the noble metal-coated silver fine particles). Liquid) was obtained.

【0061】A液に、低沸点溶媒としてのアセトン、他
の溶媒としてエタノール(EA)、プロピレングリコー
ルモノメチルエーテル(PGM)、ジアセトンアルコー
ル(DAA)、ホルムアミド(FA)を加え、貴金属コ
ート銀微粒子およびアセトンが含まれた実施例1に係る
透明導電層形成用塗液(Ag:0.04%、Au:0.
16%、水:5.3%、アセトン:65%、EA:4.
45%、PGM:20%、DAA:5%、FA:0.0
3%)を得た。
Acetone as a low boiling point solvent, and ethanol (EA), propylene glycol monomethyl ether (PGM), diacetone alcohol (DAA), and formamide (FA) as other solvents were added to the liquid A to add precious metal-coated silver fine particles and A transparent conductive layer forming coating liquid (Ag: 0.04%, Au: 0.
16%, water: 5.3%, acetone: 65%, EA: 4.
45%, PGM: 20%, DAA: 5%, FA: 0.0
3%) was obtained.

【0062】この透明導電層形成用塗液を透過電子顕微
鏡で観察した結果、貴金属コート銀微粒子の平均粒径
は、7.2nmであった。
As a result of observing this transparent conductive layer forming coating liquid with a transmission electron microscope, the average particle diameter of the noble metal-coated silver fine particles was 7.2 nm.

【0063】次に、貴金属コート銀微粒子が含まれた実
施例1に係る透明導電層形成用塗液を、35℃に加熱さ
れたガラス基板(厚さ3mmのソーダライムガラス)上
に、スピンコート(90rpmで10秒間、その後12
0rpmで80秒間)した後、続けて、シリカゾル液
(B液)をスピンコート(150rpm,60秒間)
し、さらに、180℃、20分間硬化させて、貴金属コ
ート銀微粒子を含有する透明導電層と、酸化ケイ素を主
成分とするシリケート膜から成る透明コート層とで構成
された透明2層膜付きのガラス基板、すなわち、実施例
1に係る透明導電性基材を得た。
Next, the transparent conductive layer-forming coating liquid according to Example 1 containing noble metal-coated silver fine particles was spin-coated on a glass substrate (soda lime glass having a thickness of 3 mm) heated to 35 ° C. (90 rpm for 10 seconds, then 12
(0 rpm for 80 seconds), and then spin-coat the silica sol solution (solution B) (150 rpm, 60 seconds).
And further cured at 180 ° C. for 20 minutes to form a transparent two-layer film including a transparent conductive layer containing noble metal-coated silver fine particles and a transparent coat layer composed of a silicate film containing silicon oxide as a main component. A glass substrate, that is, a transparent conductive base material according to Example 1 was obtained.

【0064】尚、上記ガラス基板は、使用前に酸化セリ
ウム系研磨剤で研磨処理し、純水による洗浄・乾燥後、
35℃に加熱して用いた。
The glass substrate is polished with a cerium oxide-based abrasive before use, washed with pure water and dried,
It was used after being heated to 35 ° C.

【0065】ここで、上記シリカゾル液(B液)は、メ
チルシリケート51(コルコート社製商品名)を19.
6部、エタノール57.8部、1%硝酸水溶液7.9
部、純水14.7部を用いて、SiO2 (酸化ケイ素)
固形分濃度が10%で、重量平均分子量が1350のも
の(C液)を調製し、最終的に、SiO2 固形分濃度が
0.8%となるようにイソプロピルアルコール(IP
A)とn−ブタノール(NBA)の混合物(IPA/N
BA=3/1)により希釈して得ている。
Here, the silica sol solution (solution B) was prepared by using methyl silicate 51 (trade name, manufactured by Colcoat Co.).
6 parts, ethanol 57.8 parts, 1% nitric acid aqueous solution 7.9
Part, and 14.7 parts of pure water, SiO 2 (silicon oxide)
A solution having a solid content concentration of 10% and a weight average molecular weight of 1350 (C liquid) was prepared, and isopropyl alcohol (IP) was added so that the SiO 2 solid content concentration was finally 0.8%.
A) and n-butanol (NBA) mixture (IPA / N
It is obtained by diluting with BA = 3/1).

【0066】そして、ガラス基板上に形成された透明2
層膜の膜特性(表面抵抗、可視光線透過率、ヘーズ値、
ボトム反射率/ボトム波長)および膜均一性を以下の表
1に示す。尚、上記ボトム反射率とは透明導電性基材の
反射プロファイルにおいて極小の反射率をいい、ボトム
波長とは反射率が極小における波長を意味している。上
記膜均一性については、膜の反射光および透過光を目視
で検査し判定した。
The transparent 2 formed on the glass substrate
Film characteristics of layer film (surface resistance, visible light transmittance, haze value,
The bottom reflectance / bottom wavelength) and film uniformity are shown in Table 1 below. The bottom reflectance means the minimum reflectance in the reflection profile of the transparent conductive base material, and the bottom wavelength means the wavelength when the reflectance is minimum. The film uniformity was judged by visually inspecting the reflected light and transmitted light of the film.

【0067】尚、表1において透明基板(ガラス基板)
を含まない透明2層膜だけの(可視光線)透過率は、以
下の様にして求められている。すなわち、 透明基板を含まない透明2層膜だけの透過率(%)=
[(透明基板ごと測定した透過率)/(透明基板の透過
率)]×100 ここで、本明細書においては、特に言及しない限り、透
過率としては、透明基板を含まない透明2層膜だけの可
視光線透過率の値を用いている。
In Table 1, a transparent substrate (glass substrate)
The (visible light) transmittance of only the transparent two-layer film containing no is determined as follows. That is, the transmittance (%) of the transparent two-layer film not including the transparent substrate =
[(Transmittance measured for each transparent substrate) / (Transmittance of transparent substrate)] × 100 In this specification, unless otherwise specified, as the transmittance, only a transparent two-layer film containing no transparent substrate is used. The visible light transmittance value of is used.

【0068】また、透明2層膜の表面抵抗は、三菱化学
(株)製の表面抵抗計ロレスタAP(MCP−T400)
を用い測定した。ヘーズ値と可視光線透過率は、村上色
彩技術研究所製のヘーズメーター(HR−200)を用
いて測定した。反射率は、日立製作所(株)製の分光光度
計(U−4000)を用いて測定した。また、貴金属コ
ート銀微粒子の粒径は日本電子製の透過電子顕微鏡で評
価している。
The surface resistance of the transparent two-layer film is Mitsubishi Chemical
Surface resistance meter Loresta AP (MCP-T400)
Was used for measurement. The haze value and visible light transmittance were measured using a haze meter (HR-200) manufactured by Murakami Color Research Laboratory. The reflectance was measured using a spectrophotometer (U-4000) manufactured by Hitachi, Ltd. The particle size of the noble metal-coated silver fine particles is evaluated by a transmission electron microscope manufactured by JEOL.

【0069】[実施例2]実施例1のA液に、低沸点溶
媒としてのアセトン、他の溶媒としてエタノール(E
A)、プロピレングリコールモノメチルエーテル(PG
M)、ジアセトンアルコール(DAA)、ホルムアミド
(FA)を加え、貴金属コート銀微粒子およびアセトン
が含まれた実施例2に係る透明導電層形成用塗液(A
g:0.05%、Au:0.2%、水:6.8%、アセ
トン:45%、EA:22.9%、PGM:20%、D
AA:5%、FA:0.05%)を得た。
Example 2 Liquid A of Example 1 was prepared by adding acetone as a low boiling point solvent and ethanol (E as another solvent).
A), propylene glycol monomethyl ether (PG
M), diacetone alcohol (DAA) and formamide (FA) are added, and the noble metal-coated silver fine particles and acetone are contained in the transparent conductive layer forming coating liquid (A).
g: 0.05%, Au: 0.2%, water: 6.8%, acetone: 45%, EA: 22.9%, PGM: 20%, D
AA: 5%, FA: 0.05%) was obtained.

【0070】そして、この透明導電層形成用塗液を用い
た以外は、実施例1と同様に行い、貴金属コート銀微粒
子を含有する透明導電層と、酸化ケイ素を主成分とする
シリケート膜から成る透明コート層とで構成された透明
2層膜付きのガラス基板、すなわち、実施例2に係る透
明導電性基材を得た。
Then, the same procedure as in Example 1 was carried out except that this transparent conductive layer forming coating solution was used, and the transparent conductive layer containing noble metal-coated silver fine particles and the silicate film containing silicon oxide as the main component were used. A glass substrate having a transparent two-layer film formed of a transparent coating layer, that is, a transparent conductive substrate according to Example 2 was obtained.

【0071】ガラス基板上に形成された透明2層膜の上
記膜特性および膜均一性を以下の表1に示す。
Table 1 below shows the film characteristics and film uniformity of the transparent two-layer film formed on the glass substrate.

【0072】[実施例3]実施例1のA液に、低沸点溶
媒としてのアセトン、他の溶媒としてエタノール(E
A)、プロピレングリコールモノメチルエーテル(PG
M)、ジアセトンアルコール(DAA)、ホルムアミド
(FA)を加え、貴金属コート銀微粒子およびアセトン
が含まれた実施例3に係る透明導電層形成用塗液(A
g:0.05%、Au:0.2%、水:6.8%、アセ
トン:35%、EA:32.9%、PGM:20%、D
AA:5%、FA:0.05%)を得た。
Example 3 Liquid A of Example 1 was prepared by adding acetone as a low boiling point solvent and ethanol (E as another solvent).
A), propylene glycol monomethyl ether (PG
M), diacetone alcohol (DAA), formamide (FA), and the transparent conductive layer forming coating liquid (A) containing noble metal-coated silver fine particles and acetone.
g: 0.05%, Au: 0.2%, water: 6.8%, acetone: 35%, EA: 32.9%, PGM: 20%, D
AA: 5%, FA: 0.05%) was obtained.

【0073】そして、この透明導電層形成用塗液を用い
た以外は、実施例1と同様に行い、貴金属コート銀微粒
子を含有する透明導電層と、酸化ケイ素を主成分とする
シリケート膜から成る透明コート層とで構成された透明
2層膜付きのガラス基板、すなわち、実施例3に係る透
明導電性基材を得た。
Then, the procedure is carried out in the same manner as in Example 1 except that this transparent conductive layer forming coating solution is used, and it is composed of a transparent conductive layer containing noble metal-coated silver fine particles and a silicate film containing silicon oxide as a main component. A glass substrate with a transparent two-layer film composed of a transparent coating layer, that is, a transparent conductive substrate according to Example 3 was obtained.

【0074】ガラス基板上に形成された透明2層膜の上
記膜特性および膜均一性を以下の表1に示す。
The above film characteristics and film uniformity of the transparent two-layer film formed on the glass substrate are shown in Table 1 below.

【0075】[実施例4]フタロシアニンブルー微粒子
(シアニンブルー#5203、大日精化工業株式会社
製)2g、分散剤0.1gと実施例1のシリカゾル液
(C液)4gをエタノール93.9gと混合し、ジルコ
ニアビーズと共にペイントシェーカー分散を行った後、
イオン交換樹脂で脱塩し、分散粒径95nmの酸化ケイ
素コートフタロシアニンブルー微粒子分散液(D液)を
得た。
[Example 4] 2 g of phthalocyanine blue fine particles (cyanine blue # 5203, manufactured by Dainichiseika Kogyo Co., Ltd.), 0.1 g of a dispersant, and 4 g of the silica sol liquid (C liquid) of Example 1 were mixed with 93.9 g of ethanol. After mixing and performing paint shaker dispersion with zirconia beads,
It was desalted with an ion exchange resin to obtain a silicon oxide-coated phthalocyanine blue fine particle dispersion liquid (D liquid) having a dispersion particle diameter of 95 nm.

【0076】次に、実施例1のA液に、上記D液、低沸
点溶媒としてのアセトン、他の溶媒としてエタノール
(EA)、プロピレングリコールモノメチルエーテル
(PGM)、ジアセトンアルコール(DAA)、ホルム
アミド(FA)を加え、貴金属コート銀微粒子およびア
セトンが含まれた実施例4に係る透明導電層形成用塗液
(Ag:0.06%、Au:0.24%、フタロシアニ
ンブルー:0.05%、水:8.0%、アセトン: 4
5%、EA:21.6%、PGM:20%、DAA:5
%、FA:0.05%)を得た。
Next, in the liquid A of Example 1, the above liquid D, acetone as a low boiling point solvent, ethanol (EA) as another solvent, propylene glycol monomethyl ether (PGM), diacetone alcohol (DAA), formamide. (FA) was added, and the coating liquid for forming the transparent conductive layer according to Example 4 containing noble metal-coated silver fine particles and acetone (Ag: 0.06%, Au: 0.24%, phthalocyanine blue: 0.05%). , Water: 8.0%, acetone: 4
5%, EA: 21.6%, PGM: 20%, DAA: 5
%, FA: 0.05%) was obtained.

【0077】そして、この透明導電層形成用塗液を用い
た以外は、実施例1と同様に行い、貴金属コート銀微粒
子およびフタロシアニンブルー微粒子を含有する透明導
電層と、酸化ケイ素を主成分とするシリケート膜から成
る透明コート層とで構成された透明2層膜付きのガラス
基板、すなわち、実施例4に係る透明導電性基材を得
た。
Then, the procedure is carried out in the same manner as in Example 1 except that this transparent conductive layer forming coating liquid is used, and the transparent conductive layer containing the noble metal-coated silver fine particles and the phthalocyanine blue fine particles, and silicon oxide as the main component. A glass substrate provided with a transparent two-layer film composed of a transparent coating layer made of a silicate film, that is, a transparent conductive substrate according to Example 4 was obtained.

【0078】ガラス基板上に形成された透明2層膜の上
記膜特性および膜均一性を以下の表1に示す。
The above-mentioned film characteristics and film uniformity of the transparent two-layer film formed on the glass substrate are shown in Table 1 below.

【0079】[実施例5]窒化チタン(TiN)微粒子
(ネツレン株式会社製)5gとシリカゾル液(C液)5
gを純粋20gおよびエタノール70gと混合し、ジル
コニアビーズと共にペイントシェーカー分散を行った
後、上記イオン交換樹脂で脱塩し、分散粒径85nmの
酸化ケイ素コート窒化チタン微粒子分散液(E液)を得
た。
[Example 5] 5 g of titanium nitride (TiN) fine particles (manufactured by Netren Co., Ltd.) and silica sol liquid (C liquid) 5
20 g of ethanol and 70 g of ethanol were mixed, and the mixture was subjected to paint shaker dispersion with zirconia beads, followed by desalting with the above ion exchange resin to obtain a silicon oxide-coated titanium nitride fine particle dispersion liquid (E liquid) having a dispersion particle diameter of 85 nm. It was

【0080】次に、実施例1のA液に、上記E液、低沸
点溶媒としてのアセトン、他の溶媒としてエタノール
(EA)、プロピレングリコールモノメチルエーテル
(PGM)、ジアセトンアルコール(DAA)、ホルム
アミド(FA)を加え、貴金属コート銀微粒子、窒化チ
タン微粒子およびアセトンが含まれた実施例5に係る透
明導電層形成用塗液(Ag:0.06%、Au:0.2
4%、TiN:0.075%、水:8.3%、アセト
ン: 45%、EA:21.2%、PGM:20%、D
AA:5%、FA:0.05%)を得た。
Next, in the solution A of Example 1, the solution E, acetone as a low boiling point solvent, ethanol (EA) as another solvent, propylene glycol monomethyl ether (PGM), diacetone alcohol (DAA), formamide were added. (FA) was added, and the transparent conductive layer forming coating liquid (Ag: 0.06%, Au: 0.2) according to Example 5 containing noble metal-coated silver fine particles, titanium nitride fine particles, and acetone was added.
4%, TiN: 0.075%, water: 8.3%, acetone: 45%, EA: 21.2%, PGM: 20%, D
AA: 5%, FA: 0.05%) was obtained.

【0081】上記透明導電層形成用塗液を透過電子顕微
鏡で観察した結果、窒化チタン微粒子の平均粒径は、2
0nmであった。
As a result of observing the coating liquid for forming the transparent conductive layer with a transmission electron microscope, the average particle diameter of titanium nitride fine particles was 2
It was 0 nm.

【0082】そして、この透明導電層形成用塗液を用い
た以外は、実施例1と同様に行い、貴金属コート銀微粒
子および窒化チタン微粒子を含有する透明導電層と、酸
化ケイ素を主成分とするシリケート膜から成る透明コー
ト層とで構成された透明2層膜付きのガラス基板、すな
わち、実施例5に係る透明導電性基材を得た。
Then, the procedure is carried out in the same manner as in Example 1 except that this transparent conductive layer forming coating solution is used, and the transparent conductive layer containing the noble metal-coated silver fine particles and the titanium nitride fine particles, and silicon oxide as the main component. A glass substrate with a transparent two-layer film composed of a transparent coating layer made of a silicate film, that is, a transparent conductive substrate according to Example 5 was obtained.

【0083】ガラス基板上に形成された透明2層膜の上
記膜特性および膜均一性を以下の表1に示す。
The film characteristics and film uniformity of the transparent two-layer film formed on the glass substrate are shown in Table 1 below.

【0084】[比較例1]実施例1のA液に、低沸点溶
媒としてのアセトンを添加せず、エタノール(EA)、
プロピレングリコールモノメチルエーテル(PGM)、
ジアセトンアルコール(DAA)、フォルムアミド(F
A)を加え、貴金属コート銀微粒子を含みアセトンを含
まない比較例1に係る透明導電層形成用塗液(Ag:
0.07%、Au:0.28%、水:9.4%、EA:
65.1%、PGM:20%、DAA:5%、FA:
0.1%)を得た。
Comparative Example 1 Ethanol (EA) was added to the liquid A of Example 1 without adding acetone as a low boiling point solvent.
Propylene glycol monomethyl ether (PGM),
Diacetone alcohol (DAA), formamide (F
A) is added, and the transparent conductive layer forming coating liquid (Ag:
0.07%, Au: 0.28%, water: 9.4%, EA:
65.1%, PGM: 20%, DAA: 5%, FA:
0.1%) was obtained.

【0085】そして、この透明導電層形成用塗液を用い
た以外は、実施例1と同様に行い、貴金属コート銀微粒
子を含有する透明導電層と、酸化ケイ素を主成分とする
シリケート膜から成る透明コート層とで構成された透明
2層膜付きのガラス基板、すなわち、比較例1に係る透
明導電性基材を得た。
Then, the procedure is carried out in the same manner as in Example 1 except that this transparent conductive layer forming coating solution is used, and it is composed of a transparent conductive layer containing noble metal-coated silver fine particles and a silicate film containing silicon oxide as a main component. A glass substrate with a transparent two-layer film composed of a transparent coating layer, that is, a transparent conductive substrate according to Comparative Example 1 was obtained.

【0086】ガラス基板上に形成された透明2層膜の上
記膜特性および膜均一性を以下の表1に示す。
The film characteristics and film uniformity of the transparent two-layer film formed on the glass substrate are shown in Table 1 below.

【0087】[比較例2]実施例1のA液に、低沸点溶
媒としてのアセトンを添加せず、エタノール(EA)、
プロピレングリコールモノメチルエーテル(PGM)、
ジアセトンアルコール(DAA)、フォルムアミド(F
A)を加え、貴金属コート銀微粒子を含みアセトンを含
まない比較例2に係る透明導電層形成用塗液(Ag:
0.05%、Au:0.2%、水:6.8%、EA:6
7.9%、PGM:20%、DAA:5%、FA:0.
05%)を得た。
[Comparative Example 2] Ethanol (EA) was added to the liquid A of Example 1 without adding acetone as a low boiling point solvent.
Propylene glycol monomethyl ether (PGM),
Diacetone alcohol (DAA), formamide (F
A) is added to the transparent conductive layer-forming coating liquid (Ag:
0.05%, Au: 0.2%, water: 6.8%, EA: 6
7.9%, PGM: 20%, DAA: 5%, FA: 0.
05%).

【0088】そして、この透明導電層形成用塗液を用い
た以外は、実施例1と同様に行い、貴金属コート銀微粒
子を含有する透明導電層と、酸化ケイ素を主成分とする
シリケート膜から成る透明コート層とで構成された透明
2層膜付きのガラス基板、すなわち、比較例2に係る透
明導電性基材を得た。
Then, the procedure is carried out in the same manner as in Example 1 except that this transparent conductive layer forming coating solution is used, and it is composed of a transparent conductive layer containing noble metal-coated silver fine particles and a silicate film containing silicon oxide as a main component. A glass substrate provided with a transparent two-layer film composed of a transparent coating layer, that is, a transparent conductive substrate according to Comparative Example 2 was obtained.

【0089】ガラス基板上に形成された透明2層膜の上
記膜特性および膜均一性を以下の表1に示す。
The above-mentioned film characteristics and film uniformity of the transparent two-layer film formed on the glass substrate are shown in Table 1 below.

【0090】[比較例3]実施例1のA液に、実施例5
のE液、メタノール(25℃での蒸気圧:16.93k
Pa)、エタノール(EA)、プロピレングリコールモ
ノメチルエーテル(PGM)、ジアセトンアルコール
(DAA)、フォルムアミド(FA)を加え、貴金属コ
ート銀微粒子およびメタノールを含む比較例3に係る透
明導電層形成用塗液(Ag:0.06%、Au:0.2
4%、TiN:0.075%、水:8.3%、メタノー
ル:45%、EA:21.2%、PGM:20%、DA
A:5%、FA:0.05%)を得た。
Comparative Example 3 Liquid A of Example 1 was replaced with Example 5
E liquid, methanol (vapor pressure at 25 ° C: 16.93k
Pa), ethanol (EA), propylene glycol monomethyl ether (PGM), diacetone alcohol (DAA), formamide (FA), and a transparent conductive layer forming coating according to Comparative Example 3 containing noble metal-coated silver fine particles and methanol. Liquid (Ag: 0.06%, Au: 0.2
4%, TiN: 0.075%, water: 8.3%, methanol: 45%, EA: 21.2%, PGM: 20%, DA
A: 5%, FA: 0.05%) was obtained.

【0091】そして、この透明導電層形成用塗液を用い
た以外は、実施例1と同様に行い、貴金属コート銀微粒
子を含有する透明導電層と、酸化ケイ素を主成分とする
シリケート膜から成る透明コート層とで構成された透明
2層膜付きのガラス基板、すなわち、比較例3に係る透
明導電性基材を得た。
Then, the procedure is carried out in the same manner as in Example 1 except that this transparent conductive layer forming coating liquid is used, and it is composed of a transparent conductive layer containing noble metal-coated silver fine particles and a silicate film containing silicon oxide as a main component. A glass substrate having a transparent two-layer film formed of a transparent coating layer, that is, a transparent conductive base material according to Comparative Example 3 was obtained.

【0092】ガラス基板上に形成された透明2層膜の上
記膜特性および膜均一性を以下の表1に示す。
The film characteristics and film uniformity of the transparent two-layer film formed on the glass substrate are shown in Table 1 below.

【0093】[比較例4]実施例1のA液に、実施例5
のE液、および低沸点溶媒としてのアセトン、エタノー
ル(EA)、プロピレングリコールモノメチルエーテル
(PGM)、ジアセトンアルコール(DAA)、ホルム
アミド(FA)を加え、貴金属コート銀微粒子、窒化チ
タン微粒子およびアセトンが含まれた比較例4に係る透
明導電層形成用塗液(Ag:0.06%、Au:0.2
4%、TiN:0.075%、水:8.3%、アセト
ン:20%、EA:46.2%、PGM:20%、DA
A:5%、FA:0.05%)を得た。
Comparative Example 4 Liquid A of Example 1 was replaced with Example 5
Solution E, and acetone as a low boiling point solvent, ethanol (EA), propylene glycol monomethyl ether (PGM), diacetone alcohol (DAA), formamide (FA) are added, and noble metal-coated silver fine particles, titanium nitride fine particles, and acetone are added. The coating liquid for forming the transparent conductive layer according to Comparative Example 4 (Ag: 0.06%, Au: 0.2).
4%, TiN: 0.075%, water: 8.3%, acetone: 20%, EA: 46.2%, PGM: 20%, DA
A: 5%, FA: 0.05%) was obtained.

【0094】そして、この透明導電層形成用塗液を用い
た以外は、実施例1と同様に行い、貴金属コート銀微粒
子を含有する透明導電層と、酸化ケイ素を主成分とする
シリケート膜から成る透明コート層とで構成された透明
2層膜付きのガラス基板、すなわち、比較例4に係る透
明導電性基材を得た。
Then, the procedure is carried out in the same manner as in Example 1 except that this transparent conductive layer forming coating solution is used, and the transparent conductive layer containing the noble metal-coated silver fine particles and the silicate film containing silicon oxide as the main component are used. A glass substrate provided with a transparent two-layer film composed of a transparent coating layer, that is, a transparent conductive substrate according to Comparative Example 4 was obtained.

【0095】ガラス基板上に形成された透明2層膜の上
記膜特性および膜均一性を以下の表1に示す。
The above-mentioned film characteristics and film uniformity of the transparent two-layer film formed on the glass substrate are shown in Table 1 below.

【0096】[0096]

【表1】 『評 価』表1に示された結果から以下のことが確認さ
れる。
[Table 1] "Evaluation" The results shown in Table 1 confirm the following.

【0097】まず、貴金属の含有量が0.25〜0.3
%である比較例2〜4に係る透明2層膜の表面抵抗が6
300〜>106(Ω/□)であるのに対し、貴金属の
含有量が0.2〜0.3%である各実施例に係る透明2
層膜の表面抵抗は440(Ω/□)〜1034(Ω/
□)であり、導電性が優れていることが確認される。
First, the content of noble metal is 0.25 to 0.3.
%, The surface resistance of the transparent two-layer film according to Comparative Examples 2 to 4 is 6
300 to> 10 6 (Ω / □), while the content of the noble metal is 0.2 to 0.3%.
The surface resistance of the layer film is 440 (Ω / □) to 1034 (Ω /
It is confirmed that the conductivity is excellent.

【0098】尚、比較例3は低沸点溶媒として25℃で
の蒸気圧が26.66kPa未満であるメタノールが適
用され、また、比較例4は低沸点溶媒としてのアセトン
の配合量が25重量%未満である20重量%であるた
め、透明導電層形成用塗液内の貴金属微粒子含有量を低
下させる効果が低いことから透明2層膜の各表面抵抗が
>106(Ω/□)と各実施例に係る透明2層膜の表面
抵抗より高い値となっている。
In Comparative Example 3, methanol having a vapor pressure of less than 26.66 kPa at 25 ° C. was used as the low boiling point solvent, and in Comparative Example 4, the amount of acetone as the low boiling point solvent was 25% by weight. since 20% by weight less than, the surface resistance of the transparent 2-layered film since it is less effective to reduce the noble metal fine particle content of the transparent conductive layer forming coating liquid in the> 10 6 (Ω / □) and the The value is higher than the surface resistance of the transparent two-layer film according to the example.

【0099】また、貴金属の含有量が0.35%である
比較例1に係る透明2層膜の表面抵抗は398(Ω/
□)であり導電性は優れているものの、透明導電層形成
用塗液中における貴金属の含有量が0.35%と高いた
め、安価に透明導電層を形成することが困難で製造コス
トに難があることが確認される。
Further, the surface resistance of the transparent two-layer film according to Comparative Example 1 in which the content of the noble metal is 0.35% is 398 (Ω /
□), the conductivity is excellent, but since the content of the noble metal in the transparent conductive layer forming coating liquid is as high as 0.35%, it is difficult to form the transparent conductive layer at low cost and the manufacturing cost is difficult. It is confirmed that there is.

【0100】[0100]

【発明の効果】請求項1〜7記載の発明に係る透明導電
層形成用塗液によれば、25℃での蒸気圧が26.66
〜53.33kPaである低沸点溶媒を25〜70重量
%含んでいることから、透明導電層形成用塗液内におけ
る貴金属微粒子の含有量を従来より低減した場合でも、
低抵抗、低反射率の諸特性を有する膜均一性に優れた透
明導電層を形成することができるため、安価な透明導電
層形成用塗液を得ることが可能となる効果を有する。
According to the coating liquid for forming a transparent conductive layer according to the present invention, the vapor pressure at 25 ° C. is 26.66.
Since it contains 25 to 70% by weight of a low boiling point solvent of 53 to 33.33 kPa, even when the content of noble metal fine particles in the coating liquid for forming a transparent conductive layer is reduced from the conventional value,
Since it is possible to form a transparent conductive layer having various properties such as low resistance and low reflectance and excellent film uniformity, it is possible to obtain an inexpensive coating liquid for forming a transparent conductive layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 行延 雅也 千葉県市川市中国分3丁目18番5号 住友 金属鉱山株式会社中央研究所内 Fターム(参考) 4J038 HA026 HA061 HA156 HA211 HA216 HA246 HA316 HA441 HA446 HA506 HA566 JA03 JA17 JA25 JA30 JA33 JB12 JB16 JB17 JC11 JC38 KA06 KA08 KA20 MA07 MA14 NA20 PA18 PB09 PB11 PC03 PC08 5G301 DA02 DA03 DA05 DA11 DA12 DA32 DA42 DD01 DD02    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Masaya Gyunobu             Sumitomo, 3-18-5 Chugoku, Ichikawa, Chiba             Central Research Laboratory, Metal Mining Co., Ltd. F term (reference) 4J038 HA026 HA061 HA156 HA211                       HA216 HA246 HA316 HA441                       HA446 HA506 HA566 JA03                       JA17 JA25 JA30 JA33 JB12                       JB16 JB17 JC11 JC38 KA06                       KA08 KA20 MA07 MA14 NA20                       PA18 PB09 PB11 PC03 PC08                 5G301 DA02 DA03 DA05 DA11 DA12                       DA32 DA42 DD01 DD02

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】溶媒、および、この溶媒に分散された平均
粒径1〜100nmの貴金属微粒子を主成分とし、透明
基板上に透明導電層を形成する透明導電層形成用塗液に
おいて、 上記溶媒が、25℃での蒸気圧が26.66〜53.3
3kPaである低沸点溶媒を25〜70重量%含むこと
を特徴とする透明導電層形成用塗液。
1. A transparent conductive layer-forming coating liquid, which comprises a solvent and a noble metal fine particle having an average particle size of 1 to 100 nm dispersed in the solvent as a main component and forms a transparent conductive layer on a transparent substrate, wherein However, the vapor pressure at 25 ° C is 26.66 to 53.3.
A coating liquid for forming a transparent conductive layer, which comprises a low boiling point solvent of 3 kPa in an amount of 25 to 70% by weight.
【請求項2】上記貴金属微粒子の含有量が0.1〜0.
34重量%であることを特徴とする請求項1記載の透明
導電層形成用塗液。
2. The content of the noble metal fine particles is 0.1 to 0.
The coating liquid for forming a transparent conductive layer according to claim 1, wherein the coating liquid is 34% by weight.
【請求項3】上記低沸点溶媒がアセトンであることを特
徴とする請求項1または2記載の透明導電層形成用塗
液。
3. The coating liquid for forming a transparent conductive layer according to claim 1, wherein the low boiling point solvent is acetone.
【請求項4】上記貴金属微粒子が、金、銀、白金、パラ
ジウム、ロジウム、ルテニウムから選択された貴金属の
微粒子、これら貴金属の合金微粒子、あるいは、銀を除
く上記貴金属により表面がコートされた貴金属コート銀
微粒子のいずれかであることを特徴とする請求項1〜3
のいずれかに記載の透明導電層形成用塗液。
4. The noble metal fine particles are fine particles of a noble metal selected from gold, silver, platinum, palladium, rhodium and ruthenium, alloy fine particles of these noble metals, or a noble metal coat whose surface is coated with the noble metal other than silver. It is any one of silver fine particles, It is characterized by the above-mentioned.
The coating liquid for forming a transparent conductive layer according to any one of 1.
【請求項5】有色顔料微粒子が含まれていることを特徴
とする請求項1〜4のいずれかに記載の透明導電層形成
用塗液。
5. The coating liquid for forming a transparent conductive layer according to claim 1, wherein the colored pigment fine particles are contained.
【請求項6】上記有色顔料微粒子が、カーボン、チタン
ブラック、窒化チタン、複合酸化物顔料、コバルトバイ
オレット、モリブデンオレンジ、群青、紺青、キナクリ
ドン系顔料、アントラキノン系顔料、ペリレン系顔料、
イソインドリノン系顔料、アゾ系顔料およびフタロシア
ニン系顔料から選択された1種以上の微粒子であること
を特徴とする請求項5記載の透明導電層形成用塗液。
6. The colored pigment fine particles are carbon, titanium black, titanium nitride, complex oxide pigments, cobalt violet, molybdenum orange, ultramarine blue, navy blue, quinacridone pigments, anthraquinone pigments, perylene pigments,
The coating liquid for forming a transparent conductive layer according to claim 5, which is one or more kinds of fine particles selected from an isoindolinone pigment, an azo pigment and a phthalocyanine pigment.
【請求項7】無機バインダーが含まれていることを特徴
とする請求項1〜6のいずれかに記載の透明導電層形成
用塗液。
7. The transparent conductive layer forming coating liquid according to claim 1, further comprising an inorganic binder.
JP2001325915A 2001-10-24 2001-10-24 Coating solution for forming transparent electroconductive layer Pending JP2003132734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001325915A JP2003132734A (en) 2001-10-24 2001-10-24 Coating solution for forming transparent electroconductive layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001325915A JP2003132734A (en) 2001-10-24 2001-10-24 Coating solution for forming transparent electroconductive layer

Publications (1)

Publication Number Publication Date
JP2003132734A true JP2003132734A (en) 2003-05-09

Family

ID=19142385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001325915A Pending JP2003132734A (en) 2001-10-24 2001-10-24 Coating solution for forming transparent electroconductive layer

Country Status (1)

Country Link
JP (1) JP2003132734A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008135190A (en) * 2005-11-15 2008-06-12 Mitsubishi Materials Corp Composition for electrode formation of solar cell, forming method of electrode, and solar cell using electrode obtained by forming method
US8758891B2 (en) 2007-04-19 2014-06-24 Mitsubishi Materials Corporation Conductive reflective film and production method thereof
US8816193B2 (en) 2006-06-30 2014-08-26 Mitsubishi Materials Corporation Composition for manufacturing electrode of solar cell, method of manufacturing same electrode, and solar cell using electrode obtained by same method
US8822814B2 (en) 2006-10-11 2014-09-02 Mitsubishi Materials Corporation Composition for electrode formation and method for forming electrode by using the composition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008135190A (en) * 2005-11-15 2008-06-12 Mitsubishi Materials Corp Composition for electrode formation of solar cell, forming method of electrode, and solar cell using electrode obtained by forming method
US8816193B2 (en) 2006-06-30 2014-08-26 Mitsubishi Materials Corporation Composition for manufacturing electrode of solar cell, method of manufacturing same electrode, and solar cell using electrode obtained by same method
US9312404B2 (en) 2006-06-30 2016-04-12 Mitsubishi Materials Corporation Composition for manufacturing electrode of solar cell, method of manufacturing same electrode, and solar cell using electrode obtained by same method
US9620668B2 (en) 2006-06-30 2017-04-11 Mitsubishi Materials Corporation Composition for manufacturing electrode of solar cell, method of manufacturing same electrode, and solar cell using electrode obtained by same method
US8822814B2 (en) 2006-10-11 2014-09-02 Mitsubishi Materials Corporation Composition for electrode formation and method for forming electrode by using the composition
US8758891B2 (en) 2007-04-19 2014-06-24 Mitsubishi Materials Corporation Conductive reflective film and production method thereof
US10020409B2 (en) 2007-04-19 2018-07-10 Mitsubishi Materials Corporation Method for producing a conductive reflective film

Similar Documents

Publication Publication Date Title
JP4788852B2 (en) Transparent conductive substrate, manufacturing method thereof, transparent coating layer forming coating solution used in the manufacturing method, and display device to which transparent conductive substrate is applied
KR100689699B1 (en) Transparent conductive layered structure, display in which this transparent conductive layered structure is applied, and coating liquid for forming transparent conductive layer
JP4232480B2 (en) Method for producing noble metal-coated silver fine particle dispersion, coating liquid for forming transparent conductive layer, transparent conductive substrate and display device
KR100630595B1 (en) Transparent conductive layered structure and method of producing the same, and coating liquid for forming transparent conductive layer used in production of transparent conductive layered structure and method of producing the same
JP4035934B2 (en) Transparent conductive substrate, method for producing the same, coating solution for forming transparent conductive layer used for production of transparent conductive substrate, and method for producing the same
US6569359B2 (en) Transparent conductive layer forming coating liquid containing formamide
JP4411672B2 (en) Coating liquid for forming transparent conductive layer and method for producing the same
EP1079413B1 (en) Transparent conductive layered structure and method of producing the same, coating liquid useful therefor, and display that uses transparent conductive layered structure
JP2003132734A (en) Coating solution for forming transparent electroconductive layer
JP2006032197A (en) Transparent bilayer film and its manufacturing method
JP2005154453A (en) Coating liquid for forming transparent conductive layer and transparent conductive base material
JP3975310B2 (en) Transparent conductive substrate, method for producing the same, and display device to which the substrate is applied
JP3750461B2 (en) Transparent conductive layer forming coating liquid, transparent conductive layer and transparent conductive substrate
JP4325201B2 (en) Transparent conductive layer forming coating liquid and transparent conductive film
JP2004335410A (en) Forming method of transparent electric conductive layer
JP4225156B2 (en) Transparent conductive film forming coating liquid, transparent conductive film and display device
JP4258281B2 (en) Coating liquid for forming transparent conductive layer and method for producing the same
JP2004051746A (en) Coating fluid for forming transparent electrical conductive layer
JP2002003746A (en) Coating for forming transparent electroconductive film, transparent electroconductive film and display device
JP2002343149A (en) Forming method of transparent electric conductive layer
JP2005209350A (en) Transparent conductive film and manufacturing method of the same
JP2005100721A (en) Manufacturing method of transparent conductive substrate and substrate and display device
JP3870669B2 (en) Transparent conductive substrate, method for producing the same, coating liquid for forming transparent coat layer used for production of transparent conductive substrate, and display device to which transparent conductive substrate is applied
JP4420200B2 (en) Method for producing coating liquid for forming transparent conductive layer
JP2002127320A (en) Transparent conductive base material and its manufacturing method, and display using the same