JP2005100721A - Manufacturing method of transparent conductive substrate and substrate and display device - Google Patents

Manufacturing method of transparent conductive substrate and substrate and display device Download PDF

Info

Publication number
JP2005100721A
JP2005100721A JP2003330879A JP2003330879A JP2005100721A JP 2005100721 A JP2005100721 A JP 2005100721A JP 2003330879 A JP2003330879 A JP 2003330879A JP 2003330879 A JP2003330879 A JP 2003330879A JP 2005100721 A JP2005100721 A JP 2005100721A
Authority
JP
Japan
Prior art keywords
fine particles
transparent conductive
transparent
colored
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003330879A
Other languages
Japanese (ja)
Inventor
Masaya Yukinobu
雅也 行延
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2003330879A priority Critical patent/JP2005100721A/en
Publication of JP2005100721A publication Critical patent/JP2005100721A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a transparent conductive substrate having superior characteristics by preventing the coagulation of metal particulates in a coating liquid for transparent conductive layer formation coated on a colored layer, even in the case the coating liquid for colored layer formation contains a hydrophobic dispersant as a dispersant of colored pigment particulates. <P>SOLUTION: After the coating liquid for the colored layer formation including the hydrophobic dispersant is coated on a transparent substrate, and the colored layer is cleaned by water or a solvent containing water, the coating liquid for transparent conductive layer formation and the coating liquid for transparent coat layer formation are coated and dried, and heat-treated. By using the coating liquid for colored layer formation containing the colored pigment particulates having maximum absorption at a wavelength of 560-600 nm, the transparent conductive substrate which has improved in contrast without accompanying the deterioration of illuminance when used for a front screen such as CRT etc. can be obtained. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ブラウン管(CRT)、プラズマディスプレイパネル(PDP)、蛍光表示管(VFD)、液晶ディスプレイ(LCD)等の表示装置の前面板等として利用される透明導電性基材、特に透明基板上に順次形成された着色層と、透明導電層と、透明コート層とで構成された着色透明3層膜を備える透明導電性基材の製造方法、及びこの透明導電性基材、並びにこの透明導電性基材が適用された表示装置に関するものである。   The present invention relates to a transparent conductive substrate used as a front plate of a display device such as a cathode ray tube (CRT), a plasma display panel (PDP), a fluorescent display tube (VFD), and a liquid crystal display (LCD), particularly on a transparent substrate. A method for producing a transparent conductive substrate comprising a colored transparent three-layer film composed of a colored layer, a transparent conductive layer, and a transparent coating layer, the transparent conductive substrate, and the transparent conductive layer The present invention relates to a display device to which a conductive substrate is applied.

現在、コンピュータディスプレイ等として用いられている陰極線管(ブラウン管とも称する:CRT)をはじめ、プラズマディスプレイパネル(PDP)、蛍光表示管(VFD)、液晶ディスプレイ(LCD)等の表示装置では、表示画面が見やすく、視覚疲労を感じさせないこと等が要求されている。   Display devices such as cathode ray tubes (also called CRTs), plasma display panels (PDPs), fluorescent display tubes (VFDs), liquid crystal displays (LCDs) and the like currently used as computer displays have display screens. It is required to be easy to see and not cause visual fatigue.

更に、最近ではCRT等から発生する低周波電磁波の人体に対する悪影響が懸念され、このような電磁波が外部に漏洩しないことが望まれている。かかる漏洩電磁波に対しては、ディスプレイの前面板表面に透明導電層を形成することにより防止することが可能である。例えば、CRTの漏洩電磁波防止(電界シールド)用としては、表面抵抗が少なくとも10Ω/□以下、好ましくは5×10Ω/□以下、更に好ましくは10Ω/□以下である低抵抗の透明導電層を形成することが要求されている。 Furthermore, recently, there are concerns about the adverse effects of low-frequency electromagnetic waves generated from CRT and the like on the human body, and it is desired that such electromagnetic waves do not leak to the outside. Such leakage electromagnetic waves can be prevented by forming a transparent conductive layer on the front plate surface of the display. For example, for preventing leakage electromagnetic waves (electric field shield) of CRT, the surface resistance is at least 10 6 Ω / □ or less, preferably 5 × 10 3 Ω / □ or less, more preferably 10 3 Ω / □ or less. It is required to form a transparent conductive layer.

上記CRT電界シールド用の低抵抗透明導電膜として、これまでに幾つかの提案がなされており、例えば、溶媒中に金属微粒子を分散した透明導電層形成用塗布液をCRTの前面ガラス(前面板)にスピンコート法等により塗布・乾燥した後、200℃程度の温度で焼成して透明導電層を形成する方法がある(特開平9−115438号公報参照)。この方法は、CVD法やスパッタリング法等で透明導電膜を形成する方法に較べ、はるかに簡便で且つ製造コストも低く、10〜10Ω/□という低抵抗膜が得られるため、極めて有利な方法である。 As a low resistance transparent conductive film for the CRT electric field shield, several proposals have been made so far. For example, a coating liquid for forming a transparent conductive layer in which metal fine particles are dispersed in a solvent is used as a CRT front glass (front plate). And a method of forming a transparent conductive layer by applying and drying by spin coating or the like and then baking at a temperature of about 200 ° C. (see Japanese Patent Application Laid-Open No. 9-115438). This method is extremely advantageous because it is much simpler and less expensive to manufacture than a method of forming a transparent conductive film by a CVD method, a sputtering method, or the like, and a low resistance film of 10 2 to 10 3 Ω / □ can be obtained. It is a simple method.

上記透明導電層形成用塗布液に適用される金属微粒子として、空気中で酸化され難い貴金属、例えば、銀、金、白金、パラジウム、ロジウム、ルテニウム等が提案されている(特開平8−77832号公報、特開平9−55175号公報参照)。尚、同公報には、貴金属以外の金属微粒子、例えば、鉄、ニッケル、コバルト等も適用可能であると記されているが、実際には、これ等の金属微粒子は大気雰囲気下で表面に酸化物被膜が必ず形成されるため、透明導電層として良好な導電性を得ることが困難である。   As metal fine particles applied to the coating liquid for forming the transparent conductive layer, noble metals that are not easily oxidized in the air, for example, silver, gold, platinum, palladium, rhodium, ruthenium, and the like have been proposed (Japanese Patent Laid-Open No. 8-77832). Gazette, JP-A-9-55175). In the same publication, it is stated that metal fine particles other than noble metals such as iron, nickel, cobalt, etc. are also applicable, but in actuality, these metal fine particles are oxidized on the surface in an air atmosphere. Since a material film is always formed, it is difficult to obtain good conductivity as a transparent conductive layer.

また、透明導電層形成用塗布液中の貴金属微粒子の耐侯性等を向上させるために、銀微粒子の表面に銀以外の貴金属をコーティングした平均粒径1〜100nmの貴金属コート銀微粒子、例えば金又は白金単体、あるいは金と白金の複合体をコーティングした貴金属コート銀微粒子を用いることも知られている(特開平11−228872号公報、特開平2000−268639号公報参照)。   Further, in order to improve the weather resistance of the noble metal fine particles in the coating liquid for forming the transparent conductive layer, noble metal coated silver fine particles having an average particle diameter of 1 to 100 nm, such as gold or It is also known to use noble metal-coated silver fine particles coated with single platinum or a composite of gold and platinum (see JP-A-11-228872 and JP-A-2000-268639).

ところで、金属は可視光線に対して本来的に透明でないことから、透明導電膜における高透過率と低抵抗を両立させるためには、できるだけ少量の金属微粒子が透明導電膜内において効率よく導電パスを形成していることが望ましい。つまり、溶媒と金属微粒子を主成分とする一般的な透明導電層形成用塗布液を用いて得られる導電膜には、金属微粒子が相互に連接したネットワーク(網目状)構造が形成されていることが必要である(「工業材料」、Vol.44,No.9,1996,p68−71参照)。   By the way, since metal is not inherently transparent to visible light, in order to achieve both high transmittance and low resistance in the transparent conductive film, as little metal particles as possible can efficiently pass through the conductive path in the transparent conductive film. It is desirable to form. In other words, the conductive film obtained using a general coating liquid for forming a transparent conductive layer mainly composed of a solvent and metal fine particles has a network (network-like) structure in which the metal fine particles are connected to each other. (See “Industrial Materials”, Vol. 44, No. 9, 1996, p. 68-71).

このようなネットワーク構造の形成により低抵抗且つ高透過率の透明導電膜が得られるのは、金属微粒子からなる網目状部分が導電パスとして機能する一方、網目状構造の穴の部分が光透過率を向上させる機能を果たすためと考えられている。上記金属微粒子のネットワーク(網目状)構造を形成させる手法としては、例えば、金属微粒子が鎖状に凝集した金属微粒子群を予め分散させた透明導電層形成用塗布液を用いる方法(特開2000−124662号公報参照)等が知られている。   A transparent conductive film having a low resistance and a high transmittance can be obtained by the formation of such a network structure. The mesh portion made of metal fine particles functions as a conductive path, while the hole portion of the mesh structure has a light transmittance. It is thought to fulfill the function of improving As a method for forming a network (network-like) structure of the metal fine particles, for example, a method using a coating liquid for forming a transparent conductive layer in which metal fine particle groups in which metal fine particles are aggregated in a chain shape is dispersed in advance (Japanese Patent Laid-Open No. 2000-1999) No. 124662) is known.

また、CRT等の表示画面を見易くするために、その前面板表面に防眩処理を施して、画面の反射を抑えることも行われている。この防眩処理としては、反射光が入射光に対して破壊的干渉を生ずるように、透明導電層と透明コート層等からなる多層膜の屈折率と膜厚とを制御する干渉法による防眩処理が一般的に行われている。尚、金属においては、光学定数(n−ik、n:屈折率、i=−1、k:消衰係数)のうち、n(屈折率)の値は小さいがk(消衰係数)の値が大きいため、金属微粒子からなる透明導電層を用いた多層膜の場合でも、各層の光学定数と膜厚を適正に設定すれば、光の干渉による上記反射防止効果を得ることができる。 In addition, in order to make a display screen such as a CRT easy to see, an anti-glare treatment is performed on the front plate surface to suppress reflection of the screen. This anti-glare treatment includes anti-glare by an interference method that controls the refractive index and film thickness of a multilayer film composed of a transparent conductive layer and a transparent coating layer so that the reflected light causes destructive interference with incident light. Processing is generally performed. In addition, in a metal, the value of n (refractive index) is small among optical constants (n−ik, n: refractive index, i 2 = −1, k: extinction coefficient), but k (extinction coefficient). Since the value is large, even in the case of a multilayer film using a transparent conductive layer made of metal fine particles, the antireflection effect due to light interference can be obtained if the optical constant and film thickness of each layer are set appropriately.

更に、近年では、CRT等の表示装置において、上述した良好な導電性や低反射率等の諸特性に加えて、表示画面の平面化に伴い、その透過率を100%より低い所定範囲(具体的には40〜95%、一般的に40〜75%)に調整することにより、画像のコントラストを向上させることが要請されている。その手段として、例えば、透明導電層形成用塗布液に有色顔料微粒子等を配合することにより、透明導電層の可視光透過率を制御する方法が実施されている。   Further, in recent years, in display devices such as CRT, in addition to the above-mentioned characteristics such as good conductivity and low reflectance, the transmittance of the display screen is reduced to a predetermined range (specifically, lower than 100%) as the display screen is flattened. In particular, it is required to improve the contrast of the image by adjusting to 40 to 95%, generally 40 to 75%. As a means for this, for example, a method of controlling the visible light transmittance of the transparent conductive layer by blending colored pigment fine particles or the like with the coating liquid for forming the transparent conductive layer has been implemented.

尚、平面CRTのフェースパネル(前面板)の場合、その外表面が平面で且つ内表面は曲率を有し、パネル厚みが画面中央部と周辺部とで異なっているため、フェースパネルに従来の着色ガラス(例えばセミティントガラス、透過率:約53%)を用いると、輝度の面内不均一を生じて画面が見難くなる。そこで、画像のコントラスト向上を図り、輝度の面内均一性を高めるために、高透過率のパネルガラスに低透過率の透明導電膜を組合せる方法が用いられているのである。   In the case of a flat CRT face panel (front plate), the outer surface is flat and the inner surface has a curvature, and the panel thickness is different between the central portion and the peripheral portion of the screen. When colored glass (for example, semi-tinted glass, transmittance: about 53%) is used, luminance in-plane nonuniformity occurs, making it difficult to see the screen. Therefore, in order to improve the contrast of the image and increase the in-plane uniformity of luminance, a method of combining a transparent film having a low transmittance with a panel glass having a high transmittance is used.

ところで、コントラスト向上のため透明導電層形成用塗布液に有色顔料微粒子等を配合して透明導電層の透過率を制御する方法では、有色顔料微粒子の添加量の増加に伴って、膜抵抗値の上昇、塗布液の安定性や塗布性の低下等の問題が生じる。そこで、着色層と導電層を積層させる方法、即ち、有色顔料微粒子を含有する着色層の上に、金属微粒子を主成分とする透明導電層を設ける方法が提案されている。この方法によれば、着色層と導電層が分離しているため、有色顔料微粒子による導電性の劣化が起きず、同時に有色顔料微粒子の添加量を増やすことができるから、コントラスト向上効果も高くなり、好ましい方法である。   By the way, in the method of controlling the transmittance of the transparent conductive layer by adding colored pigment fine particles or the like to the coating liquid for forming the transparent conductive layer for improving the contrast, the film resistance value increases as the amount of the colored pigment fine particles added increases. Problems such as an increase, stability of the coating liquid, and a decrease in coating properties occur. Therefore, a method of laminating a colored layer and a conductive layer, that is, a method of providing a transparent conductive layer mainly composed of metal fine particles on a colored layer containing colored pigment fine particles has been proposed. According to this method, since the colored layer and the conductive layer are separated, the electroconductive deterioration due to the colored pigment fine particles does not occur, and at the same time, the amount of the colored pigment fine particles added can be increased. Is the preferred method.

しかし、この方法に用いる着色層形成用塗布液においては、溶媒に有色顔料微粒子を分散させるための分散剤として疎水性分散剤を用いると、形成した着色層上に透明導電層形成用塗布液を塗布した際に金属微粒子の凝集が引き起こされ、得られる透明導電層の抵抗値、ヘイズ等が劣化してしまう。この金属微粒子の凝集は、着色層形成用塗布液を用いて形成した着色層の疎水性に起因すると考えられる。従って、従来の着色層形成用塗布液では、分散剤として親水性樹脂等の親水性分散剤を用いるしかなかった(特開2002−279829号公報参照)。   However, in the coating liquid for forming a colored layer used in this method, when a hydrophobic dispersant is used as a dispersant for dispersing colored pigment fine particles in a solvent, the coating liquid for forming a transparent conductive layer is formed on the formed colored layer. When applied, the metal fine particles are agglomerated, and the resistance value, haze, and the like of the obtained transparent conductive layer are deteriorated. The aggregation of the metal fine particles is considered to be caused by the hydrophobicity of the colored layer formed using the coating solution for forming the colored layer. Therefore, in the conventional coating liquid for forming a colored layer, a hydrophilic dispersant such as a hydrophilic resin has only been used as a dispersant (see JP 2002-279829 A).

特開平9−115438号公報JP-A-9-115438 特開平8−77832号公報JP-A-8-77832 特開平9−55175号公報JP-A-9-55175 特開平11−228872号公報JP-A-11-228872 特開2000−268639号公報JP 2000-268639 A 特開2000−124662号公報JP 2000-124662 A 特開2002−279829号公報JP 2002-279829 A 「工業材料」、Vol.44,No.9,1996,p68−71“Industrial Materials”, Vol. 44, No. 9, 1996, p.

上述のように、コントラスト向上のため着色層と導電層を積層させる方法においては、着色層形成用塗布液中の有色顔料微粒子の分散剤として、親水性分散剤を用いる必要があった。しかしながら、親水性分散剤を用いた着色層形成用塗布液では、着色層を含む透明導電膜全体の耐水性が悪化する可能性が高く、更には利用できる分散剤が著しく限定されるという不便さがあった。   As described above, in the method of laminating the colored layer and the conductive layer for improving the contrast, it is necessary to use a hydrophilic dispersant as the dispersant for the colored pigment fine particles in the colored layer forming coating solution. However, in the coating liquid for forming a colored layer using a hydrophilic dispersant, there is a high possibility that the water resistance of the entire transparent conductive film including the colored layer is deteriorated, and further, there is an inconvenience that usable dispersants are extremely limited. was there.

本発明は、このような従来の事情に鑑み、着色層形成用塗布液の有色顔料微粒子の分散剤として疎水性分散剤を用いた場合においても、その着色層の上に透明導電層形成用塗布液を続けて塗布したとき金属微粒子の凝集が防止され、着色層を含む透明導電膜全体の耐水性が高く、優れた特性を有する透明導電性基材の製造方法を提供することを目的とする。また、この製造方法により得られ、透明導電層のヘイズ値が低く、導電性・膜強度に優れ、且つ低反射特性を有する透明導電性基材、並びにその透明導電性基材が適用された表示装置を提供することを目的とする。   In view of such conventional circumstances, the present invention provides a coating for forming a transparent conductive layer on a colored layer even when a hydrophobic dispersant is used as a dispersing agent for colored pigment fine particles of a coating liquid for forming a colored layer. An object of the present invention is to provide a method for producing a transparent conductive substrate which prevents aggregation of metal fine particles when the liquid is continuously applied, has high water resistance of the entire transparent conductive film including the colored layer, and has excellent characteristics. . Further, a transparent conductive substrate obtained by this production method, having a low haze value of the transparent conductive layer, excellent conductivity and film strength, and having low reflection characteristics, and a display to which the transparent conductive substrate is applied An object is to provide an apparatus.

本発明者は、疎水性分散剤を含有する着色層形成用塗布液を用いて着色層を形成し、その上に透明導電層を形成する方法について検討を重ねた結果、疎水性分散剤を含有する着色層形成用塗布液で形成した着色層を水又は水を含む溶媒で洗浄すると、その着色層上に引き続き貴金属含有微粒子を主成分とする透明導電層形成用塗布液を塗布した際に、貴金属含有微粒子の凝集を効果的に抑制できることを見出し、本発明を完成するに至ったものである。   The present inventor has studied the method of forming a colored layer using a coating solution for forming a colored layer containing a hydrophobic dispersant and forming a transparent conductive layer thereon, and as a result, the hydrophobic dispersant is contained. When the colored layer formed with the colored layer forming coating liquid is washed with water or a solvent containing water, when the transparent conductive layer forming coating liquid mainly composed of noble metal-containing fine particles is applied onto the colored layer, The inventors have found that aggregation of noble metal-containing fine particles can be effectively suppressed, and have completed the present invention.

即ち、本発明の請求項1に係わる透明導電性基材の製造方法は、透明基板上に順次形成した着色層、透明導電層、透明コート層で構成された着色透明3層膜を備える透明導電性基材の製造方法において、溶媒と、該溶媒に分散された有色顔料微粒子と、疎水性分散剤と、バインダーとを主成分とする着色層形成用塗布液を透明基板上に塗布・乾燥した後、水又は水を含む溶媒で洗浄し、引き続き、溶媒と、該溶媒に分散された貴金属含有微粒子とを主成分とする透明導電層形成用塗布液を塗布・乾燥し、次いで、溶媒とバインダーとを主成分とする透明コート層形成用塗布液を塗布・乾燥した後、加熱処理することを特徴とする。   That is, the manufacturing method of the transparent conductive base material concerning Claim 1 of this invention is a transparent conductive material provided with the colored transparent 3 layer film | membrane comprised by the colored layer, the transparent conductive layer, and the transparent coat layer which were sequentially formed on the transparent substrate. In the method for producing a conductive substrate, a coating solution for forming a colored layer mainly composed of a solvent, colored pigment fine particles dispersed in the solvent, a hydrophobic dispersant, and a binder was applied onto a transparent substrate and dried. Thereafter, it is washed with water or a solvent containing water, and subsequently, a coating solution for forming a transparent conductive layer mainly composed of the solvent and the noble metal-containing fine particles dispersed in the solvent is applied and dried, and then the solvent and the binder A coating liquid for forming a transparent coating layer containing as a main component is applied and dried, followed by heat treatment.

本発明の請求項2に係わる透明導電性基材の製造方法は、上記請求項1に記載の透明導電性基材の製造方法にいて、前記貴金属含有微粒子が、金−銀合金微粒子、白金−銀合金微粒子、金−銀−白金合金微粒子、表面に金単体又は白金単体若しくは金と白金の複合体をコーティングした貴金属コート銀微粒子から選ばれた少なくとも1種であることを特徴とする。   The method for producing a transparent conductive substrate according to claim 2 of the present invention is the method for producing a transparent conductive substrate according to claim 1, wherein the noble metal-containing fine particles are gold-silver alloy fine particles, platinum- It is at least one selected from silver alloy fine particles, gold-silver-platinum alloy fine particles, noble metal-coated silver fine particles whose surface is coated with gold alone, platinum alone or a composite of gold and platinum.

本発明の請求項3に係わる透明導電性基材の製造方法は、上記請求項1又は2に記載の透明導電性基材の製造方法にいて、前記有色顔料微粒子が、カーボン微粒子、チタンブラック微粒子、窒化チタン微粒子、フタロシアニン系顔料微粒子、キナクリドン系顔料微粒子、ジオキサジン系顔料微粒子から選ばれた少なくとも1種であることを特徴とする。   The method for producing a transparent conductive substrate according to claim 3 of the present invention is the method for producing a transparent conductive substrate according to claim 1 or 2, wherein the colored pigment fine particles are carbon fine particles, titanium black fine particles. And at least one selected from titanium nitride fine particles, phthalocyanine pigment fine particles, quinacridone pigment fine particles, and dioxazine pigment fine particles.

本発明の請求項4に係わる透明導電性基材の製造方法は、上記請求項1〜3のいずれかに記載の透明導電性基材の製造方法にいて、前記有色顔料微粒子の少なくとも1種が、可視光波長域の560〜600nmに最大吸収を有する有色顔料微粒子であることを特徴とするものである。   The method for producing a transparent conductive substrate according to claim 4 of the present invention is the method for producing a transparent conductive substrate according to any one of claims 1 to 3, wherein at least one of the colored pigment fine particles is used. The colored pigment fine particles have maximum absorption in the visible light wavelength region of 560 to 600 nm.

本発明の請求項5に係わる透明導電性基材の製造方法は、上記請求項1〜4のいずれかに記載の透明導電性基材の製造方法にいて、前記着色層形成用塗布液中のバインダーが、酸化ケイ素、酸化ジルコニウム、酸化チタンから選ばれた少なくとも1種を主成分とすることを特徴とする。また、本発明の請求項6に係わる透明導電性基材の製造方法は、上記請求項1〜5のいずれかに記載の透明導電性基材の製造方法にいて、前記透明コート層形成用塗布液中のバインダーが、酸化ケイ素を主成分とすることを特徴とするものである。   The manufacturing method of the transparent conductive base material concerning Claim 5 of this invention exists in the manufacturing method of the transparent conductive base material in any one of the said Claims 1-4, In the said coating liquid for colored layer formation, The binder is characterized in that the main component is at least one selected from silicon oxide, zirconium oxide, and titanium oxide. Moreover, the manufacturing method of the transparent conductive base material concerning Claim 6 of this invention exists in the manufacturing method of the transparent conductive base material in any one of the said Claims 1-5, The application for said transparent coat layer formation The binder in the liquid is mainly composed of silicon oxide.

また、本発明は、上記請求項1〜6のいずれかに記載の方法で製造され、着色層、透明導電層、透明コート層で構成された着色透明3層膜を透明基板上に備えていることを特徴とする透明導電性基材を提供するものである。   Moreover, this invention is manufactured by the method in any one of the said Claims 1-6, and is equipped with the colored transparent 3 layer film | membrane comprised by the colored layer, the transparent conductive layer, and the transparent coating layer on a transparent substrate. The transparent conductive base material characterized by the above is provided.

更に、本発明は、装置本体の表示部前面側に配置された前面板を備える表示装置であって、該前面板として、上記請求項7に記載の透明導電性基材が着色透明3層膜側を外面にして組込まれていることを特徴とする表示装置を提供する。   Furthermore, the present invention is a display device comprising a front plate disposed on the front side of the display unit of the device body, wherein the transparent conductive substrate according to claim 7 is a colored transparent three-layer film as the front plate. Provided is a display device characterized in that the display device is incorporated with the side as an outer surface.

本発明によれば、着色層形成用塗布液中の有色顔料微粒子の分散剤として疎水性分散剤を用いているにもかかわらず、その着色層形成用塗布液を用いて形成した着色層の上に透明導電層形成用塗布液を続けて塗布したとき、貴金属含有微粒子の凝集を防止することができ、導電性やヘイズ等の特性に優れるだけでなく、耐水性にも優れた透明導電性基材の製造方法を提供することができる。   According to the present invention, even though a hydrophobic dispersant is used as the dispersant for the colored pigment fine particles in the colored layer forming coating solution, the colored layer forming coating solution is coated with the colored layer forming coating solution. When the coating solution for forming the transparent conductive layer is continuously applied to the transparent conductive group, it is possible to prevent the aggregation of the noble metal-containing fine particles and not only has excellent properties such as conductivity and haze, but also has excellent water resistance. A method for producing a material can be provided.

また、かかる本発明の製造方法により得られた透明導電性基材は、ヘイズ値が低く、高い導電性を有すると共に、低反射特性を有し、膜強度にも優れている。従って、装置本体の表示部前面側に配置された前面板として本発明の透明導電性基材を組込むことにより、表示画面のコントラストを向上でき、表面反射が抑制され且つ高い電界シールド効果を具備した表示装置を提供することができる。   Moreover, the transparent conductive substrate obtained by the production method of the present invention has a low haze value, high conductivity, low reflection characteristics, and excellent film strength. Therefore, by incorporating the transparent conductive substrate of the present invention as a front plate disposed on the front side of the display unit of the apparatus main body, the contrast of the display screen can be improved, surface reflection is suppressed, and a high electric field shielding effect is provided. A display device can be provided.

本発明においては、有色顔料微粒子と疎水性分散剤とバインダーを含有する着色層形成用塗布液を用い、これを透明基板上に塗布・乾燥して着色層を形成した後、貴金属含有微粒子を主成分とする透明導電層形成用塗布液を塗布する前に、その着色層を水又は水を含む溶媒で洗浄する。その後、洗浄した着色層の上に、透明導電層形成用塗布液を塗布・乾燥し、更に透明コート層形成用塗布液を塗布・乾燥して、加熱処理することにより、着色層と透明導電層と透明コート層とからなる着色透明3層膜を備えた透明導電性基材を得ることができる。   In the present invention, a colored layer forming coating solution containing colored pigment fine particles, a hydrophobic dispersant, and a binder is used, and this is applied to a transparent substrate and dried to form a colored layer. Before applying the coating liquid for forming a transparent conductive layer as a component, the colored layer is washed with water or a solvent containing water. Thereafter, the transparent conductive layer-forming coating solution is applied and dried on the washed colored layer, and the transparent coating layer-forming coating solution is applied and dried, followed by heat treatment, whereby the colored layer and the transparent conductive layer are heated. And a transparent conductive substrate provided with a colored transparent three-layer film composed of a transparent coating layer.

上記のごとく着色層を水又は水を含む溶媒で洗浄することによって、この着色層上に透明導電層形成用塗布液を塗布したとき、貴金属含有微粒子の凝集を効果的に抑制することができる。着色層を水又は水を含む溶媒で洗浄することによって、貴金属含有微粒子の凝集が抑制できる理由は明らかではないが、例えば、水又は水を含む溶媒で着色層表面の疎水性分散剤や疎水性分散剤に起因する不純物が洗浄除去されること、着色層表面に水が吸着されて親水化されること等が理由として考えられる。   By washing the colored layer with water or a solvent containing water as described above, aggregation of the noble metal-containing fine particles can be effectively suppressed when the transparent conductive layer forming coating solution is applied onto the colored layer. The reason why aggregation of the noble metal-containing fine particles can be suppressed by washing the colored layer with water or a solvent containing water is not clear, but for example, the hydrophobic dispersant or hydrophobicity on the colored layer surface with water or a solvent containing water. Possible reasons are that impurities caused by the dispersant are removed by washing, water is adsorbed on the surface of the colored layer and is made hydrophilic.

上記着色層形成用塗布液、透明導電層形成用塗布液、及び透明コート層形成用塗布液の塗布は、スプレーコート、スピンコート、ワイヤーバーコート、ドクターブレードコート、ディップコート等の手法を用いて行うことが可能である。特に、スプレーコート、スピンコート、ディップコート等の塗布方法を用いた場合には、水又は水を含む溶媒での着色層の洗浄も同じ方法で行うことができる。例えば、同じスピンコートにより、着色層形成用塗布液、水又は水を含む溶媒、透明導電層形成用塗布液、透明コート層形成用塗布液を、この順に適用することができ、膜形成と洗浄を連続して行うことが可能である。   Application of the coating liquid for forming the colored layer, the coating liquid for forming the transparent conductive layer, and the coating liquid for forming the transparent coating layer is performed using a technique such as spray coating, spin coating, wire bar coating, doctor blade coating, dip coating, or the like. Is possible. In particular, when a coating method such as spray coating, spin coating, dip coating, or the like is used, the colored layer can be washed with water or a solvent containing water by the same method. For example, by the same spin coating, a coating solution for forming a colored layer, water or a solvent containing water, a coating solution for forming a transparent conductive layer, and a coating solution for forming a transparent coating layer can be applied in this order. Can be performed continuously.

また、着色層の洗浄には、水又は水を含む溶媒を用いる。このときの溶媒としては、着色層形成用塗布液、透明導電層形成用塗布液、又は透明コート層形成用塗布液のいずれかの調製に用いた溶媒を用いることが好ましい。ただし、水を含む溶媒を用いる場合、水が5重量%より少ないと、着色層上に透明導電層形成用塗布液を塗布したときの貴金属含有微粒子の凝集を抑制する効果が得られなくなるため、水を5重量%以上含むことが好ましい。   Further, water or a solvent containing water is used for washing the colored layer. As the solvent at this time, it is preferable to use the solvent used for preparing any one of the coating liquid for forming a colored layer, the coating liquid for forming a transparent conductive layer, or the coating liquid for forming a transparent coat layer. However, when using a solvent containing water, if the amount of water is less than 5% by weight, the effect of suppressing aggregation of noble metal-containing fine particles when the transparent conductive layer forming coating solution is applied on the colored layer cannot be obtained. It is preferable to contain 5% by weight or more of water.

尚、着色層形成用塗布液、透明導電層形成用塗布液、及び透明コート層形成用塗布液を順次塗布する基板としては、透明導電性基材の用途に応じて、ガラス基板、プラスチック基板等の透明基板を使用する。各塗布液の塗布後の乾燥は、通常行われている方法を用いることができる。また、加熱処理は、用いたバインダーの種類等によって異なるが、通常は50〜250℃程度の温度で実施する。   In addition, as a board | substrate which apply | coats the coating liquid for colored layer formation, the coating liquid for transparent conductive layer formation, and the coating liquid for transparent coating layer formation sequentially, according to the use of a transparent conductive base material, a glass substrate, a plastic substrate, etc. Use a transparent substrate. The drying after application | coating of each coating liquid can use the method currently performed normally. Moreover, although heat processing changes with kinds etc. of used binder, it is normally implemented at the temperature of about 50-250 degreeC.

上記着色層形成用塗布液に用いる有色顔料微粒子、及び透明導電層形成用塗布液に用いる貴金属含有微粒子は、それぞれ平均粒径が1〜100nmであることが好ましい。平均粒径が1nm未満の場合は微粒子の製造及びその分散処理が困難であり、100nmを超えると、形成される着色層や透明導電層において可視光線の散乱が大きくなるため、膜のヘイズ値が高くなり過ぎ、実用的でないからである。尚、上記の平均粒径とは、透過電子顕微鏡(TEM)で観察される微粒子の平均粒径を示している。   The colored pigment fine particles used in the colored layer forming coating solution and the noble metal-containing fine particles used in the transparent conductive layer forming coating solution preferably have an average particle diameter of 1 to 100 nm. When the average particle size is less than 1 nm, it is difficult to produce the fine particles and to disperse the fine particles. When the average particle size exceeds 100 nm, the scattering of visible light increases in the formed colored layer and transparent conductive layer. It is too expensive and impractical. In addition, said average particle diameter has shown the average particle diameter of the microparticles | fine-particles observed with a transmission electron microscope (TEM).

透明導電層形成用塗布液に適用される貴金属含有微粒子としては、空気中で酸化され難い貴金属、例えば、銀、金、白金、ロジウム、パラジウムなどの微粒子を用いることができる。これらの貴金属微粒子の比抵抗を比較した場合、白金、ロジウム、パラジウムの比抵抗は、それぞれ10.6、5.1、10.8μΩ・cmであり、銀と金の1.62、2.2μΩ・cmに比べて高いため、表面抵抗の低い透明導電層を形成するには銀微粒子や金微粒子を用いる方が有利である。しかし、銀微粒子を適用した場合、硫化、酸化や食塩水、紫外線等による劣化が激しく、耐候性に問題がある。他方、金微粒子を適用した場合、上記耐候性の問題はなくなるが、白金微粒子、ロジウム微粒子、パラジウム微粒子等が適用された場合と同様にコスト上の問題を有している。   As the noble metal-containing fine particles applied to the coating liquid for forming the transparent conductive layer, fine particles such as silver, gold, platinum, rhodium, palladium and the like that are not easily oxidized in air can be used. When the specific resistances of these noble metal fine particles are compared, the specific resistances of platinum, rhodium, and palladium are 10.6, 5.1, 10.8 μΩ · cm, and 1.62 and 2.2 μΩ of silver and gold, respectively. Since it is higher than cm, it is advantageous to use silver fine particles or gold fine particles to form a transparent conductive layer having a low surface resistance. However, when silver fine particles are applied, deterioration due to sulfidation, oxidation, saline solution, ultraviolet rays, etc. is severe, and there is a problem in weather resistance. On the other hand, when gold fine particles are applied, the above-mentioned problem of weather resistance is eliminated, but there is a cost problem as in the case where platinum fine particles, rhodium fine particles, palladium fine particles and the like are applied.

このような観点から、貴金属含有微粒子としては、金−銀合金微粒子、白金−銀合金微粒子、金−銀−白金合金微粒子、表面に金単体又は白金単体若しくは金と白金の複合体をコーティングした貴金属コート銀微粒子のいずれか1種又は2種以上を用いることが望ましい。この貴金属コート銀微粒子の場合、銀微粒子の表面が金又は白金若しくは金と白金の複合体で保護されているため、耐候性、耐薬品性等の改善を図ることができる。尚、貴金属コート銀微粒子が分散された透明導電層形成用塗布液については、前記した特開平11−228872号公報や特開2000−268639号公報等に記載されている。   From this point of view, the noble metal-containing fine particles include gold-silver alloy fine particles, platinum-silver alloy fine particles, gold-silver-platinum alloy fine particles, and precious metal whose surface is coated with gold alone or platinum alone or a composite of gold and platinum. It is desirable to use any one kind or two or more kinds of coated silver fine particles. In the case of the noble metal-coated silver fine particles, the surface of the silver fine particles is protected with gold, platinum, or a composite of gold and platinum, so that the weather resistance, chemical resistance, and the like can be improved. The coating liquid for forming a transparent conductive layer in which noble metal-coated silver fine particles are dispersed is described in JP-A-11-228872 and JP-A-2000-268639.

着色層形成用塗布液に含まれる有色顔料微粒子としては、カーボン微粒子、チタンブラック微粒子、窒化チタン微粒子、フタロシアニン系顔料微粒子、キナクリドン系顔料微粒子、ジオキサジン系顔料微粒子のいずれか、又はこれらの2種以上を組合わせて用いることができる。これらの有色顔料微粒子を含有する着色層を設けることにより、着色透明3層膜の透過率を低下させることができるため、その着色透明3層膜を備えた透明導電性基材を前面板として組みこめば、CRT等の表示装置のコントラスト向上を達成することができる。   The colored pigment fine particles contained in the coating solution for forming the colored layer include carbon fine particles, titanium black fine particles, titanium nitride fine particles, phthalocyanine pigment fine particles, quinacridone pigment fine particles, dioxazine pigment fine particles, or two or more of these. Can be used in combination. By providing a colored layer containing these colored pigment fine particles, the transmittance of the colored transparent three-layer film can be reduced. Therefore, the transparent conductive substrate provided with the colored transparent three-layer film is assembled as a front plate. If this is done, the contrast of a display device such as a CRT can be improved.

更に、有色顔料微粒子として、可視光波長域(380〜780nm)における波長560〜600nmに最大吸収を有する有色顔料微粒子を使用すれば、緑(G:540nm)と赤(R:630nm)の各発光波長の間にある波長域部分の光を選択的に吸収するため、CRT等に適用された場合に、輝度の低下を伴うことなくコントラストを一層向上させることが可能となる。560〜600nmに最大吸収を有する有色顔料微粒子としては、例えば、キナクリドン系有色顔料微粒子がある。   Further, if colored pigment fine particles having maximum absorption at a wavelength of 560 to 600 nm in the visible light wavelength range (380 to 780 nm) are used as the colored pigment fine particles, each emission of green (G: 540 nm) and red (R: 630 nm) Since the light in the wavelength region between the wavelengths is selectively absorbed, when applied to a CRT or the like, the contrast can be further improved without a decrease in luminance. Examples of the colored pigment fine particles having the maximum absorption at 560 to 600 nm include quinacridone-based colored pigment fine particles.

また、着色層形成用塗布液において、溶媒に有色顔料微粒子を分散させるために用いる疎水性分散剤としては、例えば、親水性官能基である水酸基(OH)やカルボキシル基(COOH)等に比べてアルキル基等の疎水性官能基を多く含む高分子分散剤が挙げられる。これらは各種有機溶媒に良く溶解するが、水への溶解度が全くないか極めて低い特徴を有しており、多品種の製品が分散剤メーカー各社から入手可能である。それらの中でも、塩基性官能基含有共重合物(例えば、味の素ファインテック社製、PB711)等が好ましい。疎水性分散剤を用いることによって、従来の親水性分散剤を用いた場合に比べ、形成される着色層ひいては着色透明3層膜全体の耐水性を向上させることができる。また、疎水性分散剤は親水性分散剤に比べて種類が多いため、利用できる分散剤を広範囲に選択できる利点もある。   In addition, as a hydrophobic dispersant used for dispersing colored pigment fine particles in a solvent in a coating solution for forming a colored layer, for example, compared with a hydroxyl group (OH) or a carboxyl group (COOH) that is a hydrophilic functional group. Examples thereof include a polymer dispersant containing a large amount of a hydrophobic functional group such as an alkyl group. These are well soluble in various organic solvents, but have no or very low solubility in water, and a wide variety of products are available from dispersant manufacturers. Among them, a basic functional group-containing copolymer (for example, PB711 manufactured by Ajinomoto Finetech Co., Ltd.) and the like are preferable. By using the hydrophobic dispersant, it is possible to improve the water resistance of the colored layer to be formed, and thus the entire colored transparent three-layer film, as compared with the case of using a conventional hydrophilic dispersant. In addition, since there are many types of hydrophobic dispersants compared to hydrophilic dispersants, there is an advantage that a wide range of usable dispersants can be selected.

着色層形成用塗布液に用いられるバインダーは、酸化ケイ素、酸化ジルコニウム、酸化チタンから選ばれた少なくとも1種を主成分とするものが好適に使用できる。また、透明コート層形成用塗布液に用いられるバインダーは、酸化ケイ素を主成分とするものが好ましい。これら着色層形成用塗布液及び透明コート層形成用塗布液中のバインダーは、最終的な加熱処理(例えば50〜250℃程度)により脱水縮重合反応がほぼ完結して、酸化ケイ素、酸化ジルコニウム、あるいは酸化チタンを主成分とする硬い膜となる。   As the binder used in the coating solution for forming the colored layer, a binder mainly containing at least one selected from silicon oxide, zirconium oxide, and titanium oxide can be preferably used. Moreover, the binder used for the coating liquid for forming the transparent coat layer is preferably one having silicon oxide as a main component. The binder in the coating solution for forming the colored layer and the coating solution for forming the transparent coat layer is almost completely dehydrated and condensed by the final heat treatment (for example, about 50 to 250 ° C.), so that silicon oxide, zirconium oxide, Or it becomes a hard film | membrane which has a titanium oxide as a main component.

具体的には、着色層上に予め透明導電層形成用塗布液を塗布・乾燥して形成した透明導電層の上に、透明コート層形成用塗布液をオーバーコートして塗布すると、透明導電層を構成する貴金属含有微粒子層の間隙に透明コート層形成用塗布液のバインダーが染み込む。そして、最終的に加熱処理することによって、透明コート層及び着色層中のバインダーは共に酸化ケイ素等を主成分とする硬い膜となり、基板及び貴金属含有微粒子と強固に結合することで、導電性、膜強度、耐候性の向上が同時に達成された着色透明3層膜が得られる。   Specifically, when a transparent conductive layer forming coating solution is overcoated and coated on a transparent conductive layer formed by previously applying and drying a transparent conductive layer forming coating solution on the colored layer, the transparent conductive layer is formed. The binder of the coating liquid for forming the transparent coat layer soaks into the gaps between the noble metal-containing fine particle layers constituting the. And finally by heat treatment, both the binder in the transparent coating layer and the colored layer become a hard film mainly composed of silicon oxide and the like, and by being firmly bonded to the substrate and the noble metal-containing fine particles, conductivity, A colored transparent three-layer film having improved film strength and weather resistance can be obtained.

酸化ケイ素を主成分とするバインダーは、次のような方法で得られる。即ち、オルトアルキルシリケートに水や酸触媒を加えて加水分解し、脱水縮重合を進ませた重合物、あるいは、既に4〜5量体まで重合を進ませた市販のアルキルシリケート溶液に、水や酸触媒を加えて更に加水分解と脱水縮重合を進行させた重合物等(これらはシリカゾルとも称する)を用いることができる。ただし、脱水縮重合が進行し過ぎると、溶液粘度が上昇して最終的には固化してしまうので、脱水縮重合の度合いについては、基板上に塗布可能な上限粘度以下に調製する必要がある。   The binder mainly composed of silicon oxide can be obtained by the following method. That is, water or an acid catalyst is added to an orthoalkyl silicate to hydrolyze it, and a dehydrating condensation polymerization is promoted, or a commercially available alkyl silicate solution that has already been polymerized to a 4 to 5 mer is added to water or an acid. A polymer obtained by adding an acid catalyst to further proceed hydrolysis and dehydration condensation polymerization (these are also called silica sols) can be used. However, if the dehydration condensation polymerization proceeds too much, the solution viscosity increases and eventually solidifies, so the degree of dehydration condensation polymerization needs to be adjusted below the upper limit viscosity that can be applied on the substrate. .

好ましくは、透明コート層形成用塗布液に用いるバインダーとしてシリカゾルを用い、着色層形成用塗布液に用いるバインダーとしては、シリカゾル若しくはシリカゾルにチタニアゾル及び/又はジルコニアゾルを添加したものを用いる。また、透明コート層形成用塗布液のバインダーに、弗化マグネシウム微粒子又は弗化マグネシウムゾル等を加えることにより、透明コート層の屈折率を調節して、着色透明3層膜の反射率を変えることも可能である。   Preferably, silica sol is used as the binder used in the coating liquid for forming the transparent coat layer, and the binder used in the coating liquid for forming the colored layer is silica sol or a silica sol to which titania sol and / or zirconia sol is added. Further, by adding magnesium fluoride fine particles or magnesium fluoride sol to the binder of the coating liquid for forming the transparent coating layer, the refractive index of the transparent coating layer is adjusted to change the reflectance of the colored transparent three-layer film. Is also possible.

尚、透明導電性基材においては、有色顔料微粒子がバインダー中に分散された着色層と、貴金属含有微粒子がバインダー中に分散された透明導電層と、透明コート層との着色透明3層膜構造により、反射率を大幅に低下することができる。更に、着色透明3層膜の反射率は、着色層のバインダーに酸化ジルコニウムや酸化チタンを含有させて着色層の屈折率を高めるか、透明コート層のバインダーに弗化マグネシウムを加えて透明コート層の屈折率を低下させることによって、一層低下させることが可能である。   In the transparent conductive substrate, a colored transparent three-layer film structure comprising a colored layer in which colored pigment fine particles are dispersed in a binder, a transparent conductive layer in which noble metal-containing fine particles are dispersed in a binder, and a transparent coating layer. As a result, the reflectance can be greatly reduced. Furthermore, the reflectance of the colored transparent three-layer film is increased by adding zirconium oxide or titanium oxide to the binder of the colored layer to increase the refractive index of the colored layer, or adding magnesium fluoride to the binder of the transparent coating layer. It is possible to further reduce the refractive index by lowering the refractive index.

次に、本発明において用いられる着色層形成用塗布液、透明導電層形成用塗布液、透明コート層形成用塗布液は、それぞれ以下の方法でこれを製造することができる。   Next, the colored layer forming coating solution, the transparent conductive layer forming coating solution, and the transparent coating layer forming coating solution used in the present invention can be produced by the following methods, respectively.

まず、着色層形成用塗布液は、有色顔料微粒子を疎水性分散剤と共に溶媒に混合し、ペイントシェーカー、ビーズミル、サンドミル、超音波分散機などの分散装置を用いて、均一な有色顔料微粒子分散液とする。そして、この有色顔料微粒子分散液に、バインダー及び溶媒等を添加し、成分調整(有色顔料微粒子濃度、バインダー濃度等)を行って、着色層形成用塗布液が調製される。尚、必要に応じて、有色顔料微粒子と疎水性分散剤と溶媒にバインダーを予め混合してから、上記分散処理を行うこともできる。   First, the colored layer forming coating liquid is prepared by mixing colored pigment fine particles in a solvent together with a hydrophobic dispersant, and using a dispersion device such as a paint shaker, a bead mill, a sand mill, or an ultrasonic disperser, to obtain a uniform colored pigment fine particle dispersion. And And a binder, a solvent, etc. are added to this colored pigment fine particle dispersion, and component adjustment (colored pigment fine particle density | concentration, binder density | concentration, etc.) is performed, and the coating liquid for colored layer formation is prepared. If necessary, the dispersion treatment may be performed after previously mixing a binder with the colored pigment fine particles, the hydrophobic dispersant, and the solvent.

透明導電層形成用塗布液の製造方法は、貴金属含有微粒子が貴金属コート銀微粒子である場合を例にとって説明すると、まず、既知の方法[例えば、Carey−Lea法:Am. J. Sci.,37,38,47(1889)参照]により、銀微粒子のコロイド分散液を調製する。具体的には、硝酸銀水溶液に硫酸鉄(II)水溶液とクエン酸ナトリウム水溶液の混合液を加えて反応させ、沈降物を濾過・洗浄した後、純水を加えることにより銀微粒子コロイド分散液が得られる。   The manufacturing method of the coating liquid for forming a transparent conductive layer will be described by taking an example in which the noble metal-containing fine particles are noble metal-coated silver fine particles. First, a known method [for example, Carey-Lea method: Am. J. Sci., 37 , 38, 47 (1889)], a colloidal dispersion of silver fine particles is prepared. Specifically, a mixed solution of an iron (II) sulfate aqueous solution and an aqueous sodium citrate solution is added to a silver nitrate aqueous solution to cause a reaction, the precipitate is filtered and washed, and then pure water is added to obtain a silver fine particle colloidal dispersion. It is done.

この銀微粒子コロイド分散液に、ヒドラジン等の還元剤溶液と、金酸塩溶液及び/又は白金酸塩溶液等を加えることにより、銀微粒子表面に金や白金の単体又は金と白金の複合体等がコーティングされた貴金属コート銀微粒子の分散液が得られる。必要に応じて、上記コーティング工程で、銀微粒子のコロイド分散液か金酸塩溶液及び白金酸塩溶液の片方又は両方に、少量の分散剤を加えてもよい。また、上記銀微粒子コロイド分散液及び貴金属コート銀微粒子分散液の調製方法は、最終的に平均粒径1〜100nmの貴金属コート銀微粒子の分散液が得られれば任意の方法でよく、上記方法に限定されるものではない。   By adding a reducing agent solution such as hydrazine and a gold salt solution and / or a platinum salt solution to the silver fine particle colloidal dispersion, gold or platinum alone or a gold-platinum complex or the like on the surface of the silver fine particles A dispersion of noble metal-coated silver fine particles coated with is obtained. If necessary, a small amount of a dispersant may be added to one or both of the colloidal dispersion of silver fine particles, the gold salt solution and the platinum salt solution in the coating step. The silver fine particle colloid dispersion and the noble metal coated silver fine particle dispersion may be prepared by any method as long as a dispersion of noble metal coated silver fine particles having an average particle diameter of 1 to 100 nm is finally obtained. It is not limited.

その後、透析、電気透析、イオン交換、限外濾過等の方法で、分散液内の電解質濃度を下げることが好ましい。電解質濃度を下げないと、一般にコロイドは電解質で凝集してしまうからであり、この現象はSchulze−Hardy則として知られている。このように電解質濃度を下げた貴金属コート銀微粒子分散液は、減圧エバポレーター、限外濾過等の常用の方法で濃縮処理して、貴金属コート銀微粒子の分散濃縮液とする。   Thereafter, the electrolyte concentration in the dispersion is preferably lowered by a method such as dialysis, electrodialysis, ion exchange, or ultrafiltration. This is because colloids generally aggregate in the electrolyte unless the electrolyte concentration is lowered, and this phenomenon is known as the Schulze-Hardy law. The noble metal-coated silver fine particle dispersion with the electrolyte concentration lowered in this way is concentrated by a conventional method such as a vacuum evaporator, ultrafiltration or the like to obtain a noble metal-coated silver fine particle dispersion.

そして、この貴金属コート銀微粒子の分散濃縮液に有機溶媒等を添加し、成分調整(微粒子濃度、水分濃度等)を行って、最終的に貴金属コート銀微粒子を含む透明導電層形成用塗布液が調製される。尚、上記貴金属コート銀微粒子を含む透明導電層形成用塗布液の調製工程において、バインダーを構成する成分としてシリカゾル液を少量配合してもよい。   Then, an organic solvent or the like is added to the dispersion concentrate of the noble metal-coated silver fine particles, the components are adjusted (fine particle concentration, moisture concentration, etc.), and finally the transparent conductive layer forming coating solution containing the noble metal-coated silver fine particles is obtained. Prepared. In the step of preparing the coating liquid for forming a transparent conductive layer containing the noble metal-coated silver fine particles, a small amount of silica sol liquid may be blended as a component constituting the binder.

また、上記透明導電層形成用塗布液の調製工程において、貴金属コート銀微粒子分散液を濃縮脱水して得られた貴金属コート銀微粒子分散濃縮液に対して凝集処理を行い、貴金属コート銀微粒子が連鎖状に凝集した凝集貴金属コート銀微粒子とすることもできる。この凝集処理は、貴金属コート銀微粒子分散濃縮液を撹拌しながらヒドラジン溶液を少量ずつ添加し、例えば室温で数分から数時間程度保持して凝集させた後、過酸化水素溶液を添加してヒドラジンを分解する。貴金属コート銀微粒子が予め連鎖状に凝集した透明導電層形成用塗布液を使用すれば、貴金属コート銀微粒子の網目状構造(ネットワーク構造)が形成されやすくなるため、高透過率で且つ低抵抗の透明導電層を容易に形成することができる。   In the step of preparing the coating liquid for forming the transparent conductive layer, the noble metal-coated silver fine particle dispersion is obtained by concentrating the noble metal-coated silver fine particle dispersion and condensing the noble metal-coated silver fine particles. Aggregated noble metal-coated silver fine particles can also be obtained. In this agglomeration treatment, a hydrazine solution is added little by little while stirring the noble metal-coated silver fine particle dispersion and concentrated, for example, kept at room temperature for several minutes to several hours to agglomerate, and then a hydrogen peroxide solution is added to add hydrazine. Decompose. If a coating solution for forming a transparent conductive layer in which noble metal-coated silver fine particles are aggregated in advance is used, a network structure (network structure) of noble metal-coated silver fine particles is easily formed. A transparent conductive layer can be easily formed.

透明コート層形成用塗布液については、酸化ケイ素を主成分とするバインダー(シリカゾル液)に、溶媒等を添加して成分調整(微粒子濃度、水分濃度等)をすることにより、調製することができる。   The coating liquid for forming the transparent coating layer can be prepared by adding a solvent or the like to a binder (silica sol liquid) containing silicon oxide as a main component and adjusting the components (fine particle concentration, moisture concentration, etc.). .

ここで、上記着色層形成用塗布液、透明導電層形成用塗布液、透明コート層形成用塗布液に用いる溶媒、及び上記着色層形成用塗布液を塗布・乾燥して得られた着色層を洗浄する際に水と混合して用いる溶剤としては、特に制限はなく、塗布方法や成膜条件により適宜に選定することができる。   Here, a colored layer obtained by applying and drying the colored layer forming coating solution, the transparent conductive layer forming coating solution, the solvent used in the transparent coating layer forming coating solution, and the colored layer forming coating solution. There is no restriction | limiting in particular as a solvent used by mixing with water at the time of washing | cleaning, According to the coating method and film-forming conditions, it can select suitably.

上記溶媒として、例えば、メタノール(MA)、エタノール(EA)、1−プロパノール(NPA)、イソプロパノール(IPA)、ブタノール、ペンタノール、ベンジルアルコール、ジアセトンアルコール(DAA)等のアルコール系溶媒;アセトン、メチルエチルケトン(MEK)、メチルプロピルケトン、メチルイソブチルケトン(MIBK)、シクロヘキサノン、イソホロン等のケトン系溶媒;エチレングリコールモノメチルエーテル(MCS)、エチレングリコールモノエチルエーテル(ECS)、エチレングリコールイソプロピルエーテル(IPC)、プロピレングリコールメチルエーテル(PGM)、プロピレングリコールエチルエーテル(PE)、プロピレングリコールメチルエーテルアセテート(PGM−AC)、プロピレングリコールエチルエーテルアセテート(PE−AC)等のグリコール誘導体、ホルムアミド(FA)、N−メチルホルムアミド、ジメチルホルムアミド(DMF)、ジメチルアセトアミド、ジメチルスルフォキシド(DMSO)、N−メチル−2−ピロリドン(NMP)等が挙げられるが、これらに限定されるものではない。   Examples of the solvent include alcohol solvents such as methanol (MA), ethanol (EA), 1-propanol (NPA), isopropanol (IPA), butanol, pentanol, benzyl alcohol, diacetone alcohol (DAA); acetone, Ketone solvents such as methyl ethyl ketone (MEK), methyl propyl ketone, methyl isobutyl ketone (MIBK), cyclohexanone and isophorone; ethylene glycol monomethyl ether (MCS), ethylene glycol monoethyl ether (ECS), ethylene glycol isopropyl ether (IPC), Propylene glycol methyl ether (PGM), propylene glycol ethyl ether (PE), propylene glycol methyl ether acetate (PGM-AC), propylene Glycol derivatives such as N-glycol ethyl ether acetate (PE-AC), formamide (FA), N-methylformamide, dimethylformamide (DMF), dimethylacetamide, dimethylsulfoxide (DMSO), N-methyl-2-pyrrolidone ( NMP) and the like, but are not limited thereto.

以上説明したように、本発明に係る製造方法によって製造された透明導電性基材、即ち、透明基板上に着色層、透明導電層、透明コート層で構成された着色透明3層膜を備えた透明導電性基材は、ヘイズ値が低く、導電性に優れ、低反射特性を有し、耐水性にも優れている。また、着色層を備えることによりコントラストが向上し、更に着色層中にキナクリドン系有色顔料微粒子のような560〜600nmに最大吸収を有する有色顔料微粒子を含むことにより、更に優れたコントラスト向上効果が得られる。   As described above, the transparent conductive base material manufactured by the manufacturing method according to the present invention, that is, the colored transparent three-layer film composed of the colored layer, the transparent conductive layer, and the transparent coat layer is provided on the transparent substrate. The transparent conductive substrate has a low haze value, excellent conductivity, low reflection characteristics, and excellent water resistance. Further, by providing the colored layer, the contrast is improved, and further by including colored pigment fine particles having a maximum absorption at 560 to 600 nm such as quinacridone colored pigment fine particles in the colored layer, a further excellent contrast improving effect is obtained. It is done.

従って、本発明の透明導電性基材は、例えば、CRT、プラズマディスプレイパネル(PDP)、蛍光表示管(VFD)、フィールドエミッションディスプレイ(FED)、エレクトロルミネッセンスディスプレイ(ELD)、液晶ディスプレイ(LCD)等の表示装置の前面板として極めて好適に用いることができる。尚、これらの表示装置において、その表示部前面側に配置された透明導電性基材からなる前面板は、通常は透明導電性基材の着色透明3層膜側を外面にして組込まれている。   Therefore, the transparent conductive substrate of the present invention is, for example, CRT, plasma display panel (PDP), fluorescent display tube (VFD), field emission display (FED), electroluminescence display (ELD), liquid crystal display (LCD), etc. It can be used very suitably as a front plate of the display device. In these display devices, the front plate made of a transparent conductive substrate disposed on the front side of the display unit is usually incorporated with the colored transparent three-layer film side of the transparent conductive substrate as the outer surface. .

以下、本発明の実施例を具体的に説明するが、本発明はこれら実施例に限定されるものではない。尚、本文中の「%」は、透過率、反射率、ヘイズ値の(%)を除いて「重量%」を示し、また「部」は「重量部」を示している。   Examples of the present invention will be specifically described below, but the present invention is not limited to these examples. In the text, “%” indicates “% by weight” excluding (%) of transmittance, reflectance, and haze value, and “part” indicates “part by weight”.

[実施例1]
比表面積137m/gのカーボンブラック微粒子(MA7、三菱化学(株)製)5gと疎水性分散剤(味の素ファインテック社製、PB711)0.5gを、ジアセトンアルコール(DAA)94.5gと混合した後、ジルコニアビーズと共にペイントシェーカー分散を行い、分散粒径96nmのカーボンブラック微粒子分散液(A液)を得た。
[Example 1]
5 g of carbon black fine particles (MA7, manufactured by Mitsubishi Chemical Corporation) having a specific surface area of 137 m 2 / g and 0.5 g of a hydrophobic dispersant (manufactured by Ajinomoto Finetech, PB711), 94.5 g of diacetone alcohol (DAA) and After mixing, paint shaker dispersion was performed together with zirconia beads to obtain a carbon black fine particle dispersion (liquid A) having a dispersed particle diameter of 96 nm.

青系有色顔料微粒子(フタロシアニンブルー#5203、大日精化(株)製)5gと疎水性分散剤(PB711)0.5gを、ジアセトンアルコール(DAA)94.5gと混合した後、ジルコニアビーズと共にペイントシェーカー分散を行い、分散粒径105nmのフタロシアニンブルー微粒子分散液(B液)を得た。   After mixing 5 g of blue colored pigment fine particles (phthalocyanine blue # 5203, manufactured by Dainichi Seika Co., Ltd.) and 0.5 g of a hydrophobic dispersant (PB711) with 94.5 g of diacetone alcohol (DAA), together with zirconia beads A paint shaker was dispersed to obtain a phthalocyanine blue fine particle dispersion (liquid B) having a dispersion particle diameter of 105 nm.

また、570〜580nmに最大吸収を有する赤系有色顔料微粒子(キナクリドン#44、大日精化(株)製)5gと疎水性分散剤(PB711)0.5gを、ジアセトンアルコール(DAA)94.5gと混合した後、ジルコニアビーズと共にペイントシェーカー分散を行い、分散粒径113nmのキナクリドン微粒子分散液(C液)を得た。   In addition, 5 g of red colored pigment fine particles (quinacridone # 44, manufactured by Dainichi Seika Co., Ltd.) having a maximum absorption at 570 to 580 nm and 0.5 g of a hydrophobic dispersant (PB711) were added to diacetone alcohol (DAA) 94. After mixing with 5 g, paint shaker dispersion was performed together with zirconia beads to obtain a quinacridone fine particle dispersion (liquid C) having a dispersion particle diameter of 113 nm.

このカーボンブラック微粒子分散液(A液)、フタロシアニンブルー微粒子分散液(B液)、キナクリドン微粒子分散液(C液)を透過電子顕微鏡で観察したところ、カーボンブラック微粒子の平均粒径は24nm、フタロシアニンブルー微粒子の平均粒径は10〜60nm、キナクリドン微粒子の粒子径は10〜90nmであった。   When the carbon black fine particle dispersion (liquid A), phthalocyanine blue fine particle dispersion (liquid B), and quinacridone fine particle dispersion (liquid C) were observed with a transmission electron microscope, the average particle diameter of the carbon black fine particles was 24 nm. The average particle size of the fine particles was 10 to 60 nm, and the particle size of the quinacridone fine particles was 10 to 90 nm.

更に、メチルシリケート51(コルコート社製:商品名)19.6部、エタノール(EA)57.8部、1%硝酸水溶液7.9部、及び純水14.7部を用いて、SiO(酸化ケイ素)固形分濃度が10%で、重量平均分子量が1200のシリカゾル液(D液)を得た。 Further, 19.6 parts of methyl silicate 51 (manufactured by Colcoat Co., Ltd .: trade name), 57.8 parts of ethanol (EA), 7.9 parts of 1% nitric acid aqueous solution, and 14.7 parts of pure water were used to obtain SiO 2 ( Silicon oxide) A silica sol solution (solution D) having a solid content concentration of 10% and a weight average molecular weight of 1200 was obtained.

次に、エタノール(EA)、プロピレングリコールモノメチルエーテル(PGM)、ジアセトンアルコール(DAA)に、上記A液、B液、C液、D液を加えた後、両性イオン交換樹脂(SMNUPB、三菱化学(株)製)で脱イオン処理して、3種の有色顔料微粒子と疎水性分散剤を含有する着色層形成用塗布液(カーボンブラック:0.025%、フタロシアニンブルー:0.05%、キナクリドン:0.1%、SiO2:1.3%、水:2.9%、EA:80.6%、PGM:10%、DAA:5%)を得た。   Next, after adding said A liquid, B liquid, C liquid, and D liquid to ethanol (EA), propylene glycol monomethyl ether (PGM), and diacetone alcohol (DAA), amphoteric ion exchange resin (SMNUBP, Mitsubishi Chemical) Co., Ltd.) and a coating solution for forming a colored layer containing carbon pigment fine particles and a hydrophobic dispersant (carbon black: 0.025%, phthalocyanine blue: 0.05%, quinacridone : 0.1%, SiO2: 1.3%, water: 2.9%, EA: 80.6%, PGM: 10%, DAA: 5%).

前述のCarey−Lea法により、銀微粒子のコロイド分散液を調製した。具体的には、9%硝酸銀水溶液330gに、23%硫酸鉄(II)水溶液390gと37.5%クエン酸ナトリウム水溶液480gの混合液を加え、沈降物を濾過・洗浄した後、純水を加えて、銀微粒子のコロイド分散液(Ag:0.15%)を調製した。   A colloidal dispersion of silver fine particles was prepared by the aforementioned Carey-Lea method. Specifically, a mixture of 390 g of 23% iron (II) sulfate aqueous solution and 480 g of 37.5% sodium citrate aqueous solution was added to 330 g of 9% silver nitrate aqueous solution, the precipitate was filtered and washed, and then pure water was added. Thus, a colloidal dispersion of silver fine particles (Ag: 0.15%) was prepared.

この銀微粒子コロイド分散液600gに、ヒドラジン1水和物(N・HO)の1%水溶液80.0gを加えて撹拌しながら、金酸カリウム[KAu(OH)]水溶液(Au:0.075%)4800gと1%高分子分散剤水溶液2.0gの混合液を加え、表面に金単体がコーティングされた貴金属コート銀微粒子のコロイド分散液を得た。 To 600 g of this silver fine particle colloidal dispersion, 80.0 g of a 1% aqueous solution of hydrazine monohydrate (N 2 H 4 .H 2 O) was added and stirred, while stirring with an aqueous potassium metalate [KAu (OH) 4 ] solution ( Au: 0.075%) A mixed solution of 4800 g and 1% polymer dispersant aqueous solution 2.0 g was added to obtain a colloidal dispersion of noble metal-coated silver fine particles having a surface coated with simple gold.

この貴金属コート銀微粒子コロイド分散液をイオン交換樹脂(ダイヤイオンSK1B,SA20AP、三菱化学(株)製)で脱塩した後、限外濾過により貴金属コート銀微粒子分散液の濃縮を行った。得られた液にエタノール(EA)を加えて、貴金属コート銀微粒子の分散濃縮液(Ag−Au:1.6%、水:20.0%、EA:78.4%、)(E液)を得た。   The noble metal-coated silver fine particle colloidal dispersion was desalted with an ion exchange resin (Diaion SK1B, SA20AP, manufactured by Mitsubishi Chemical Corporation), and then the noble metal-coated silver fine particle dispersion was concentrated by ultrafiltration. Ethanol (EA) was added to the resulting liquid to disperse and concentrate the noble metal coated silver fine particles (Ag-Au: 1.6%, water: 20.0%, EA: 78.4%) (E liquid). Got.

次に、この貴金属コート銀微粒子の分散濃縮液(E液)60gを撹拌しながら、ヒドラジン水溶液(N・HO:0.75%)0.8g(1.6%のAg−Au分散液に対して100ppm)を1分間かけて添加した後、室温で15分間保持し、更に過酸化水素水溶液(H:1.5%)0.6gを1分間かけて添加することにより、貴金属コート銀微粒子が連鎖状に凝集した凝集貴金属コート銀微粒子分散濃縮液(F液)を得た。 Next, while stirring 60 g of this noble metal-coated silver fine particle dispersion concentrate (solution E), 0.8 g (1.6% Ag−) of hydrazine aqueous solution (N 2 H 4 .H 2 O: 0.75%) was stirred. (100 ppm with respect to the Au dispersion) was added over 1 minute, then kept at room temperature for 15 minutes, and then 0.6 g of hydrogen peroxide aqueous solution (H 2 O 2 : 1.5%) was added over 1 minute. As a result, an aggregated noble metal-coated silver fine particle dispersion concentrate (liquid F) in which the noble metal-coated silver fine particles were aggregated in a chain form was obtained.

尚、上記貴金属コート銀微粒子の分散濃縮液(E液)にヒドラジン溶液を添加した際の貴金属コート銀微粒子における分散安定性の低下、及びヒドラジン溶液の添加により凝集させた連鎖状貴金属コート銀微粒子の分散濃縮液に過酸化水素溶液を添加した際の凝集貴金属コート銀微粒子分散濃縮液における分散安定性の向上は、各分散液のゼータ電位の測定値から科学的に確認された。   The dispersion stability of the noble metal-coated silver fine particles when the hydrazine solution is added to the dispersion concentrate (liquid E) of the noble metal-coated silver fine particles, and the chain-like noble metal-coated silver fine particles aggregated by the addition of the hydrazine solution. The improvement of the dispersion stability in the aggregated noble metal-coated silver fine particle dispersion concentrate when the hydrogen peroxide solution was added to the dispersion concentrate was scientifically confirmed from the measured value of the zeta potential of each dispersion.

上記で得られた凝集貴金属コート銀微粒子分散濃縮液(F液)に、エタノール(EA)、プロピレングリコールモノメチルエーテル(PGM)、ジアセトンアルコール(DAA)、ホルムアミド(FA)を加え、凝集貴金属コート銀微粒子を含有する透明導電層形成用塗布液(Ag:0.06%、Au:0.24%、水:6.5%、EA:63.1%、PGM:20%、DAA:10%、FA:0.03%)を得た。   Ethanol (EA), propylene glycol monomethyl ether (PGM), diacetone alcohol (DAA), and formamide (FA) are added to the aggregated noble metal-coated silver fine particle dispersion concentrate (F) obtained above, and aggregated noble metal-coated silver is added. Transparent conductive layer forming coating solution containing fine particles (Ag: 0.06%, Au: 0.24%, water: 6.5%, EA: 63.1%, PGM: 20%, DAA: 10%, FA: 0.03%) was obtained.

尚、この透明導電層形成用塗布液を透過電子顕微鏡で観察したところ、凝集貴金属コート銀微粒子は、一次粒径6nm程度の貴金属コート銀微粒子が数珠状に連なり且つ一部分岐した形状(最大凝集長さ100〜300μm)を有していた。   When this transparent conductive layer forming coating solution was observed with a transmission electron microscope, the aggregated noble metal-coated silver fine particles had a shape in which the noble metal-coated silver fine particles having a primary particle size of about 6 nm were connected in a bead shape and partially branched (maximum aggregation length). 100 to 300 μm).

上記シリカゾル液(D液)を、最終的にSiO固形分濃度が0.95%となるように、エタノール(EA)と、プロピレングリコールモノメチルエーテル(PGM)と、ジアセトンアルコール(DAA)の混合物(EA/PGM/DAA=7/2/1)により希釈し、得られた液100gにγ−メルカプトプロピルトリメトキシシラン0.005gを加えて、透明コート層形成用塗布液を得た。 The silica sol solution (D solution) is a mixture of ethanol (EA), propylene glycol monomethyl ether (PGM), and diacetone alcohol (DAA) so that the final SiO 2 solid content concentration is 0.95%. It diluted with (EA / PGM / DAA = 7/2/1), 0.005g of (gamma) -mercaptopropyltrimethoxysilane was added to 100g of obtained liquids, and the coating liquid for transparent coating layer formation was obtained.

次に、上記着色層形成用塗布液を濾過精度(ポアサイズ)5μmフィルターで濾過した後、43℃に加熱されたガラス基板(厚さ3mmのソーダライムガラス)上にスピンコート(110rpm、12秒間−130rpm、80秒間)し、続けて純水をスピンコート(130rpm、5秒)して洗浄した。更に続けて、上記凝集貴金属コート銀微粒子を含有する透明導電層形成用塗布液を濾過精度(ポアサイズ)5μmフィルターで濾過した後、スピンコート(130rpm、80秒間)し、最後に透明コート層形成用塗布液をスピンコート(150rpm、80秒間)した。   Next, after the colored layer forming coating solution is filtered through a filter having a filtration accuracy (pore size) of 5 μm, spin coating (110 rpm, 12 seconds) on a glass substrate (3 mm thick soda lime glass) heated to 43 ° C. 130 rpm, 80 seconds), followed by spin coating with pure water (130 rpm, 5 seconds) and washing. Subsequently, the transparent conductive layer-forming coating solution containing the aggregated noble metal-coated silver fine particles is filtered through a filter with a filtration accuracy (pore size) of 5 μm, spin-coated (130 rpm, 80 seconds), and finally for forming a transparent coat layer. The coating solution was spin coated (150 rpm, 80 seconds).

その後、全体を200℃で30分間加熱処理して硬化させ、有色顔料微粒子を含有する着色層と、凝集貴金属コート銀微粒子を含有する透明導電層と、酸化ケイ素を主成分とするシリケート膜の透明コート層とで構成された着色透明3層膜付きのガラス基板、即ち、実施例1に係る試料1の透明導電性基材を得た。尚、上記ガラス基板は、使用前に酸化セリウム系研磨剤で研磨処理し、純水で洗浄・乾燥した後、35℃に加熱して用いた。   Thereafter, the whole is cured by heating at 200 ° C. for 30 minutes, a colored layer containing colored pigment fine particles, a transparent conductive layer containing aggregated noble metal-coated silver fine particles, and a transparent silicate film mainly composed of silicon oxide. A glass substrate with a colored transparent three-layer film composed of a coating layer, that is, a transparent conductive substrate of Sample 1 according to Example 1 was obtained. The glass substrate was polished with a cerium oxide-based abrasive before use, washed with pure water and dried, and then heated to 35 ° C. for use.

上記実施例1に係る試料1の透明導電性基材について、着色層のバインダーと分散剤及び洗浄方法を下記表1に示すと共に、ガラス基板上に形成された着色透明3層膜の膜特性(表面抵抗、可視光透過率、ヘイズ値、ボトム反射率/ボトム波長、膜強度)を下記表2に示した。また、実施例1に係る試料1の透明導電性基材について、その透過プロファイルを図1に示す。   Regarding the transparent conductive substrate of Sample 1 according to Example 1, the binder, dispersant, and cleaning method of the colored layer are shown in Table 1 below, and the film characteristics of the colored transparent three-layer film formed on the glass substrate ( Table 2 shows the surface resistance, visible light transmittance, haze value, bottom reflectance / bottom wavelength, and film strength. Further, the transmission profile of the transparent conductive substrate of Sample 1 according to Example 1 is shown in FIG.

着色透明3層膜の表面抵抗は、三菱化学(株)製の表面抵抗計ロレスタAP(MCP−T400)を用い測定した。ヘイズ値と可視光透過率は、村上色彩技術研究所製のヘイズメーター(HR−200)を用いて測定した。反射率は、日立製作所(株)製の分光光度計(U−4000)を用いて測定した。また、鎖状貴金属コート銀微粒子の形状、粒子サイズ(長さ)は日本電子(株)製の透過電子顕微鏡で評価した。更に、膜強度は、消しゴムを膜表面上に荷重1kgで押し当てながら100往復させ、膜表面の擦傷を観察・評価して行った。   The surface resistance of the colored transparent three-layer film was measured using a surface resistance meter Loresta AP (MCP-T400) manufactured by Mitsubishi Chemical Corporation. The haze value and visible light transmittance were measured using a haze meter (HR-200) manufactured by Murakami Color Research Laboratory. The reflectance was measured using a spectrophotometer (U-4000) manufactured by Hitachi, Ltd. The shape and particle size (length) of the chain-like noble metal-coated silver fine particles were evaluated with a transmission electron microscope manufactured by JEOL. Further, the film strength was measured by reciprocating 100 times while pressing the eraser on the film surface with a load of 1 kg, and observing and evaluating the scratches on the film surface.

尚、上記ボトム反射率とは、透明導電性基材の反射プロファイルにおいて極小の反射率をいい、ボトム波長とは反射率が極小における波長を意味している。また、下記表1において、透明基板(ガラス基板)を含まない着色透明3層膜だけの可視光透過率は、下記の計算式1により求められる。本明細書においては、特に言及しない限り、透過率としては、透明基板を含まない着色透明3層膜だけの可視光透過率の値を用いている。   In addition, the said bottom reflectance means the minimum reflectance in the reflection profile of a transparent conductive base material, and a bottom wavelength means the wavelength in which a reflectance is the minimum. In Table 1 below, the visible light transmittance of only the colored transparent three-layer film not including the transparent substrate (glass substrate) can be obtained by the following calculation formula 1. In the present specification, unless otherwise specified, as the transmittance, the value of the visible light transmittance of only the colored transparent three-layer film not including the transparent substrate is used.

[計算式1]
透明基板を含まない着色透明3層膜だけの透過率(%)=[(透明基板ごと測定した透過率)/(透明基板の透過率)]×100
[Calculation Formula 1]
Transmittance (%) of only colored transparent three-layer film not including transparent substrate = [(transmittance measured for each transparent substrate) / (transmittance of transparent substrate)] × 100

[実施例2]
エチルシリケート28(コルコート社製:商品名)10部、ジルコニアイソプロポキシド[Zr(OC)]4部、イソプロピルアルコール(IPA)84部を均一に混合した後、34.5%硝酸水溶液2部を徐々に滴下して、SiO−ZrO(酸化ケイ素−酸化ジルコニア)固形分濃度が4.4%のシリカ−ジルコニア複合ゾル液(G液)を得た。
[Example 2]
10 parts of ethyl silicate 28 (manufactured by Colcoat Co., Ltd .: trade name), 4 parts of zirconiisopropoxide [Zr (OC 3 H 7 ) 4 ] and 84 parts of isopropyl alcohol (IPA) were uniformly mixed, and then 34.5% nitric acid. 2 parts of the aqueous solution was gradually added dropwise to obtain a silica-zirconia composite sol solution (G solution) having a SiO 2 —ZrO 2 (silicon oxide-zirconia oxide) solid concentration of 4.4%.

次に、エタノール(EA)、プロピレングリコールモノメチルエーテル(PGM)、ジアセトンアルコール(DAA)に、実施例1のA液、B液、C液、及び上記G液を加えた後、両性イオン交換樹脂(SMNUPB、三菱化学(株)製)で脱イオン処理して、3種の有色顔料微粒子と疎水性分散剤を含有する着色層形成用塗布液(カーボンブラック:0.025%、フタロシアニンブルー:0.05%、キナクリドン:0.1%、SiO−ZrO:1.3%、水:0.6%、EA:83.5%、PGM:10%、DAA:5%)を得た。 Next, after adding the liquid A, liquid B, liquid C and liquid G of Example 1 to ethanol (EA), propylene glycol monomethyl ether (PGM), diacetone alcohol (DAA), the amphoteric ion exchange resin (SMUPB, manufactured by Mitsubishi Chemical Corporation) and subjected to deionization treatment, a coating solution for forming a colored layer (carbon black: 0.025%, phthalocyanine blue: 0) containing three kinds of colored pigment fine particles and a hydrophobic dispersant .05%, quinacridone: 0.1%, SiO 2 -ZrO 2 : 1.3%, water: 0.6%, EA: 83.5% , PGM: 10%, DAA: 5%) was obtained.

また、透明コート層形成用塗布液は、実施例1のシリカゾル液(D液)を、最終的にSiO固形分濃度が0.9%となるように、エタノール(EA)と、プロピレングリコールモノメチルエーテル(PGM)と、ジアセトンアルコール(DAA)の混合物(EA/PGM/DAA=7/2/1)により希釈し、得られた液100gにγ−メルカプトプロピルトリメトキシシラン0.004gを加えて調整した。 Further, the coating solution for forming the transparent coat layer was prepared by using the silica sol solution (D solution) of Example 1 with ethanol (EA) and propylene glycol monomethyl so that the final SiO 2 solid content concentration was 0.9%. The mixture was diluted with a mixture of ether (PGM) and diacetone alcohol (DAA) (EA / PGM / DAA = 7/2/1), and 0.004 g of γ-mercaptopropyltrimethoxysilane was added to 100 g of the obtained liquid. It was adjusted.

この着色層形成用塗布液と透明コート層形成用塗布液を用いた以外は、実施例1と同様に実施して、有色顔料微粒子を含有する着色層と、凝集貴金属コート銀微粒子を含有する透明導電層と、酸化ケイ素を主成分とするシリケート膜の透明コート層とで構成された着色透明3層膜付きのガラス基板、即ち、実施例2に係る試料2の透明導電性基材を得た。   A colored layer containing colored pigment fine particles and a transparent containing aggregated noble metal-coated silver fine particles were carried out in the same manner as in Example 1 except that this colored layer forming coating solution and transparent coating layer forming coating solution were used. A glass substrate with a colored transparent three-layer film composed of a conductive layer and a transparent coating layer of a silicate film containing silicon oxide as a main component, that is, a transparent conductive substrate of Sample 2 according to Example 2 was obtained. .

上記実施例2に係る試料2の透明導電性基材について、着色層のバインダーと分散剤及び洗浄方法を下記表1に示すと共に、ガラス基板上に形成された着色透明3層膜の膜特性(表面抵抗、可視光透過率、ヘイズ値、ボトム反射率/ボトム波長、膜強度)を下記表2に示した。   Regarding the transparent conductive substrate of Sample 2 according to Example 2 above, the binder, dispersant, and cleaning method of the colored layer are shown in Table 1 below, and the film characteristics of the colored transparent three-layer film formed on the glass substrate ( Table 2 shows the surface resistance, visible light transmittance, haze value, bottom reflectance / bottom wavelength, and film strength.

[実施例3]
着色層形成用塗布液をガラス基板上にスピンコートした後、引き続いての着色層の洗浄を純水とエタノール(EA)の混合溶液(純水/EA(重量比)=2/8)をスピンコートして行った以外は、上記実施例1と同様に実施して、有色顔料微粒子を含有する着色層と、凝集貴金属コート銀微粒子を含有する透明導電層と、酸化ケイ素を主成分とするシリケート膜の透明コート層とで構成された着色透明3層膜付きのガラス基板、即ち、実施例3に係る試料3の透明導電性基材を得た。
[Example 3]
After the coating solution for forming the colored layer is spin-coated on the glass substrate, the subsequent cleaning of the colored layer is performed by spinning a mixed solution of pure water and ethanol (EA) (pure water / EA (weight ratio) = 2/8). Except for coating, the same procedure as in Example 1 was carried out, and a colored layer containing colored pigment fine particles, a transparent conductive layer containing aggregated noble metal-coated silver fine particles, and a silicate containing silicon oxide as a main component. A glass substrate with a colored transparent three-layer film composed of a transparent coating layer of the film, that is, a transparent conductive substrate of Sample 3 according to Example 3 was obtained.

上記実施例3に係る試料3の透明導電性基材について、着色層のバインダー及び洗浄方法と共に、ガラス基板上に形成された着色透明3層膜の膜特性(表面抵抗、可視光透過率、ヘイズ値、ボトム反射率/ボトム波長、膜強度)を下記表1に示した。   About the transparent conductive base material of the sample 3 which concerns on the said Example 3, the film characteristic (surface resistance, visible-light transmittance, haze) of the colored transparent three-layer film formed on the glass substrate with the binder and washing | cleaning method of a colored layer Values, bottom reflectance / bottom wavelength, film strength) are shown in Table 1 below.

[比較例1]
着色層形成用塗布液をガラス基板上にスピンコートした後、引き続いての着色層の洗浄を行わなかった以外は、上記実施例1と同様に実施して、有色顔料微粒子を含有する着色層と、凝集貴金属コート銀微粒子を含有する透明導電層と、酸化ケイ素を主成分とするシリケート膜の透明コート層とで構成された着色透明3層膜付きのガラス基板、即ち、比較例1に係る試料4の透明導電性基材を得た。
[Comparative Example 1]
After the coating solution for forming the colored layer was spin-coated on the glass substrate, the same procedure as in Example 1 was performed except that the subsequent cleaning of the colored layer was not performed. A glass substrate with a colored transparent three-layer film composed of a transparent conductive layer containing aggregated noble metal-coated silver fine particles and a transparent coating layer of a silicate film mainly composed of silicon oxide, that is, a sample according to Comparative Example 1 4 transparent conductive substrates were obtained.

この比較例1に係る試料4の透明導電性基材では、着色層のバインダーと分散剤及び洗浄方法を下記表1に示すと共に、ガラス基板上に形成された着色透明3層膜の表面抵抗を下記表2に示した。ただし、着色層上に透明導電層形成用塗布液を塗布・乾燥する際に、塗布液中の貴金属コート銀微粒子が著しく凝集してしまい良好な透明導電層が得られなかったため、着色透明3層膜の光学特性の測定は行わなかった。   In the transparent conductive substrate of Sample 4 according to Comparative Example 1, the binder, dispersant, and cleaning method of the colored layer are shown in Table 1 below, and the surface resistance of the colored transparent three-layer film formed on the glass substrate is shown. The results are shown in Table 2 below. However, when applying and drying the coating liquid for forming the transparent conductive layer on the colored layer, the noble metal-coated silver fine particles in the coating liquid were agglomerated and a good transparent conductive layer was not obtained. The optical properties of the film were not measured.

Figure 2005100721
Figure 2005100721

Figure 2005100721
Figure 2005100721

表1及び表2に示された結果から明らかなように、各実施例に係る試料1〜3の透明導電性基材では、着色層を水又は水を含む溶媒で洗浄してから透明導電層形成用塗布液をコートしているため、着色層が疎水性分散剤を含むにもかかわらず、着色透明3層膜が表面抵抗、可視光透過率、ヘイズ値、反射率、膜強度の全てにおいて優れた特性を示している。一方、比較例1に係る試料4の透明導電性基材は、着色層を洗浄していないため、疎水性分散剤を含む着色層上で透明導電層形成用塗布液の貴金属コート銀微粒子が凝集してしまい、着色透明3層膜の表面抵抗が極めて高く、透明導電膜としての機能を全く示していない。   As is clear from the results shown in Tables 1 and 2, in the transparent conductive base materials of Samples 1 to 3 according to each example, the transparent conductive layer was washed with water or a solvent containing water after washing the colored layer. Since the coating solution for forming is coated, the colored transparent three-layer film has all of the surface resistance, visible light transmittance, haze value, reflectance, and film strength even though the colored layer contains a hydrophobic dispersant. It shows excellent properties. On the other hand, since the transparent conductive substrate of Sample 4 according to Comparative Example 1 does not wash the colored layer, the noble metal-coated silver fine particles of the coating solution for forming the transparent conductive layer aggregate on the colored layer containing the hydrophobic dispersant. Therefore, the surface resistance of the colored transparent three-layer film is extremely high and does not show any function as a transparent conductive film.

また、実施例1に係る試料1の透明導電性基材は、図1に示された透過プロファイルから明らかなように、可視光領域の575nmあたりに鋭い吸収があるため、この透明導電性基材をCRT等の表示装置の前面板に適用した場合、極めて優れたコントラスト向上効果を有することが確認された。   Further, as is clear from the transmission profile shown in FIG. 1, the transparent conductive substrate of Sample 1 according to Example 1 has a sharp absorption around 575 nm in the visible light region. Is applied to the front plate of a display device such as a CRT, it has been confirmed that it has an extremely excellent contrast improving effect.

実施例1に係わる試料1の透明導電性基材の透過プロファイルを示すグラフである。3 is a graph showing a transmission profile of a transparent conductive substrate of Sample 1 according to Example 1. FIG.

Claims (8)

透明基板上に順次形成した着色層、透明導電層、透明コート層で構成された着色透明3層膜を備える透明導電性基材の製造方法において、
溶媒と、該溶媒に分散された有色顔料微粒子と、疎水性分散剤と、バインダーとを主成分とする着色層形成用塗布液を透明基板上に塗布・乾燥した後、水又は水を含む溶媒で洗浄し、引き続き、溶媒と、該溶媒に分散された貴金属含有微粒子とを主成分とする透明導電層形成用塗布液を塗布・乾燥し、次いで、溶媒と、バインダーとを主成分とする透明コート層形成用塗布液を塗布・乾燥した後、加熱処理することを特徴とする透明導電性基材の製造方法。
In the method for producing a transparent conductive substrate comprising a colored transparent three-layer film composed of a colored layer, a transparent conductive layer, and a transparent coat layer sequentially formed on a transparent substrate,
A coating solution for forming a colored layer mainly composed of a solvent, colored pigment fine particles dispersed in the solvent, a hydrophobic dispersant, and a binder is coated on a transparent substrate and dried, and then water or a solvent containing water. Next, a transparent conductive layer-forming coating liquid mainly composed of a solvent and noble metal-containing fine particles dispersed in the solvent is applied and dried, and then transparent mainly composed of a solvent and a binder. A method for producing a transparent conductive substrate, comprising: applying and drying a coating layer forming coating solution, followed by heat treatment.
前記貴金属含有微粒子が、金−銀合金微粒子、白金−銀合金微粒子、金−銀−白金合金微粒子、表面に金単体又は白金単体若しくは金と白金の複合体をコーティングした貴金属コート銀微粒子から選ばれた少なくとも1種であることを特徴とする、請求項1に記載の透明導電性基材の製造方法。 The noble metal-containing fine particles are selected from gold-silver alloy fine particles, platinum-silver alloy fine particles, gold-silver-platinum alloy fine particles, and noble metal-coated silver fine particles whose surface is coated with gold alone or platinum alone or a composite of gold and platinum. The method for producing a transparent conductive substrate according to claim 1, wherein the transparent conductive substrate is at least one kind. 前記有色顔料微粒子が、カーボン微粒子、チタンブラック微粒子、窒化チタン微粒子、フタロシアニン系顔料微粒子、キナクリドン系顔料微粒子、ジオキサジン系顔料微粒子から選ばれた少なくとも1種であることを特徴とする、請求項1又は2に記載の透明導電性基材の製造方法。 The colored pigment fine particles are at least one selected from carbon fine particles, titanium black fine particles, titanium nitride fine particles, phthalocyanine pigment fine particles, quinacridone pigment fine particles, and dioxazine pigment fine particles. 2. A method for producing a transparent conductive substrate according to 2. 前記有色顔料微粒子の少なくとも1種が、可視光波長域の560〜600nmに最大吸収を有する有色顔料微粒子であることを特徴とする、請求項1〜3のいずれかに記載の透明導電性基材の製造方法。 The transparent conductive substrate according to claim 1, wherein at least one of the colored pigment fine particles is a colored pigment fine particle having a maximum absorption in a visible light wavelength range of 560 to 600 nm. Manufacturing method. 前記着色層形成用塗布液中のバインダーが、酸化ケイ素、酸化ジルコニウム、酸化チタンから選ばれた少なくとも1種を主成分とすることを特徴とする、請求項1〜4のいずれかに記載の透明導電性基材の製造方法。 The transparent in any one of Claims 1-4 in which the binder in the said coating liquid for colored layer formation has as a main component at least 1 sort (s) chosen from silicon oxide, zirconium oxide, and titanium oxide. A method for producing a conductive substrate. 前記透明コート層形成用塗布液中のバインダーが、酸化ケイ素を主成分とすることを特徴とする、請求項1〜5のいずれかに記載の透明導電性基材の製造方法。 The method for producing a transparent conductive substrate according to any one of claims 1 to 5, wherein the binder in the coating liquid for forming a transparent coat layer contains silicon oxide as a main component. 請求項1〜6のいずれかに記載の方法で製造され、着色層、透明導電層、透明コート層で構成された着色透明3層膜を透明基板上に備えていることを特徴とする透明導電性基材。 A transparent conductive film comprising a colored transparent three-layer film produced by the method according to claim 1 and composed of a colored layer, a transparent conductive layer, and a transparent coating layer on a transparent substrate. Base material. 装置本体の表示部前面側に配置された前面板を備える表示装置であって、該前面板として、請求項7に記載の透明導電性基材が着色透明3層膜側を外面にして組込まれていることを特徴とする表示装置。 A display device comprising a front plate disposed on the front side of the display unit of the device main body, wherein the transparent conductive substrate according to claim 7 is incorporated with the colored transparent three-layer film side as an outer surface as the front plate. A display device.
JP2003330879A 2003-09-24 2003-09-24 Manufacturing method of transparent conductive substrate and substrate and display device Pending JP2005100721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003330879A JP2005100721A (en) 2003-09-24 2003-09-24 Manufacturing method of transparent conductive substrate and substrate and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003330879A JP2005100721A (en) 2003-09-24 2003-09-24 Manufacturing method of transparent conductive substrate and substrate and display device

Publications (1)

Publication Number Publication Date
JP2005100721A true JP2005100721A (en) 2005-04-14

Family

ID=34459674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003330879A Pending JP2005100721A (en) 2003-09-24 2003-09-24 Manufacturing method of transparent conductive substrate and substrate and display device

Country Status (1)

Country Link
JP (1) JP2005100721A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007126012A1 (en) * 2006-04-28 2007-11-08 Toyo Ink Mfg. Co., Ltd. Method for producing conductive coating film
JP2014132469A (en) * 2006-05-10 2014-07-17 Trendon Touch Technology Corp Treatment method of preventing transparent electrode in transparent substrate from being viewed
JP2017539047A (en) * 2014-10-17 2017-12-28 シー3ナノ・インコーポレイテッドC3Nano Inc. Transparent film with bright hue controlled using nanoscale colorants

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007126012A1 (en) * 2006-04-28 2007-11-08 Toyo Ink Mfg. Co., Ltd. Method for producing conductive coating film
JP2007317632A (en) * 2006-04-28 2007-12-06 Toyo Ink Mfg Co Ltd Manufacturing method of conductive film
US8313800B2 (en) 2006-04-28 2012-11-20 Toyo Ink Mfg. Co., Ltd. Method for producing conductive coating film
JP2014132469A (en) * 2006-05-10 2014-07-17 Trendon Touch Technology Corp Treatment method of preventing transparent electrode in transparent substrate from being viewed
JP2017539047A (en) * 2014-10-17 2017-12-28 シー3ナノ・インコーポレイテッドC3Nano Inc. Transparent film with bright hue controlled using nanoscale colorants

Similar Documents

Publication Publication Date Title
JP4788852B2 (en) Transparent conductive substrate, manufacturing method thereof, transparent coating layer forming coating solution used in the manufacturing method, and display device to which transparent conductive substrate is applied
KR100689699B1 (en) Transparent conductive layered structure, display in which this transparent conductive layered structure is applied, and coating liquid for forming transparent conductive layer
US20050199860A1 (en) Process for producing noble-metal type fine-particle dispersion, coating liquid for forming transparent conductive layer, transparent conductive layered structure and display device
KR100630595B1 (en) Transparent conductive layered structure and method of producing the same, and coating liquid for forming transparent conductive layer used in production of transparent conductive layered structure and method of producing the same
JP4035934B2 (en) Transparent conductive substrate, method for producing the same, coating solution for forming transparent conductive layer used for production of transparent conductive substrate, and method for producing the same
JP2004006263A (en) Transparent conductive film, coating liquid for forming this transparent conductive film and transparent conductive laminated structural body and display device
US6569359B2 (en) Transparent conductive layer forming coating liquid containing formamide
JP4411672B2 (en) Coating liquid for forming transparent conductive layer and method for producing the same
JP2006032197A (en) Transparent bilayer film and its manufacturing method
JP2005100721A (en) Manufacturing method of transparent conductive substrate and substrate and display device
JP2005154453A (en) Coating liquid for forming transparent conductive layer and transparent conductive base material
JP4325201B2 (en) Transparent conductive layer forming coating liquid and transparent conductive film
JP4225156B2 (en) Transparent conductive film forming coating liquid, transparent conductive film and display device
JP4258281B2 (en) Coating liquid for forming transparent conductive layer and method for producing the same
JP3750461B2 (en) Transparent conductive layer forming coating liquid, transparent conductive layer and transparent conductive substrate
JP2004335410A (en) Forming method of transparent electric conductive layer
JP2003132734A (en) Coating solution for forming transparent electroconductive layer
JP4420200B2 (en) Method for producing coating liquid for forming transparent conductive layer
JP2005135722A (en) Coating liquid for forming transparent conductive layer and transparent conductive substrate
JP2005209350A (en) Transparent conductive film and manufacturing method of the same
JP2002343149A (en) Forming method of transparent electric conductive layer
JP2004051746A (en) Coating fluid for forming transparent electrical conductive layer
JP3870669B2 (en) Transparent conductive substrate, method for producing the same, coating liquid for forming transparent coat layer used for production of transparent conductive substrate, and display device to which transparent conductive substrate is applied
JP2004175829A (en) Colored dispersion for transparent coating layer and transparent two-layered film
JP4232575B2 (en) Transparent conductive layer forming coating liquid, transparent conductive film and transparent conductive substrate