WO2002094954A1 - Process for producing high-concentration colloidal metal solution - Google Patents

Process for producing high-concentration colloidal metal solution Download PDF

Info

Publication number
WO2002094954A1
WO2002094954A1 PCT/JP2001/004215 JP0104215W WO02094954A1 WO 2002094954 A1 WO2002094954 A1 WO 2002094954A1 JP 0104215 W JP0104215 W JP 0104215W WO 02094954 A1 WO02094954 A1 WO 02094954A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
metal
concentration
metal colloid
pigment dispersant
Prior art date
Application number
PCT/JP2001/004215
Other languages
French (fr)
Japanese (ja)
Inventor
Taizou Nanke
Hideo Ishibashi
Toshikatsu Kobayashi
Makiko Mori
Manabu Fujita
Original Assignee
Nippon Paint Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paint Co., Ltd. filed Critical Nippon Paint Co., Ltd.
Priority to CN01813035.6A priority Critical patent/CN1443227A/en
Priority to JP2002592417A priority patent/JPWO2002094954A1/en
Priority to PCT/JP2001/004215 priority patent/WO2002094954A1/en
Priority to TW091110471A priority patent/TW583288B/en
Publication of WO2002094954A1 publication Critical patent/WO2002094954A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • C09D17/004Pigment pastes, e.g. for mixing in paints containing an inorganic pigment
    • C09D17/006Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0004Preparation of sols
    • B01J13/0043Preparation of sols containing elemental metal

Definitions

  • the present invention relates to a method for producing a high-concentration metal colloid solution, a high-concentration metal colloid solution obtained by the production method, and a film obtained using the high-concentration metal colloid solution.
  • a so-called metal colloid solution in which several 10 nm metal particles are uniformly dispersed in a solution has been utilized in various fields by utilizing its features.
  • Japanese Patent Application Laid-Open No. H11-080647 discloses that a precious metal colloid particle containing a precious metal colloid particle and a polymer pigment dispersant and a method for producing the same can be used as a colorant in a paint or the like. Have been.
  • Japanese Patent Application Laid-Open No. 2000-239853 discloses that the above-mentioned noble metal colloid particles are used for producing a thin film having metallic luster.
  • it is desirable that the metal content is high.
  • conductive films are used in various electronic devices, electronic components, electronic circuits, and the like as electrode materials for capacitors and chip resistors, and as conductor circuits on ceramic substrates.
  • Such a conductive film is usually produced by applying a conductive paste containing metal particles. Even in this case, it is desirable that the metal content be high in order to obtain high conductivity.
  • An object of the present invention is to provide a production method capable of obtaining a metal colloid high-concentration solution having a high metal concentration even when a large amount of a polymer-containing dispersant is used to ensure dispersion stability. I do.
  • the present invention is a method for producing a high-concentration metal colloid solution, comprising removing a part of the polymer pigment dispersant from the solution containing the metal colloid particles and the polymer pigment dispersant.
  • the removal of a part of the polymer pigment dispersant is preferably performed by centrifugation, and the centrifugation is more preferably performed at 100 G or more.
  • the removal of a part of the polymer pigment dispersant is preferably performed by ultrafiltration, and the ultrafiltration has a molecular weight cut-off of 300 to 800,000. It is more preferable to use a certain filtration membrane.
  • the solution containing the metal colloid particles and the polymer pigment dispersant is preferably obtained by reducing a metal compound in the presence of the polymer pigment dispersant.
  • the metal concentration in the solid content of the solution containing the metal colloid particles and the polymer pigment dispersant is
  • the metal concentration in the solid content of the metal colloid high concentration solution is preferably 90 parts by mass or more.
  • the difference between the metal concentration in the solid content of the metal colloid high concentration solution and the solution containing the metal colloid particles and the polymer pigment dispersant is preferably 10% by mass or more.
  • the present invention also provides a metal colloid high concentration solution obtained by the above production method.
  • the present invention further provides a film obtained by using the above-mentioned metal colloid high concentration solution.
  • the method for producing a metal colloid high-concentration solution of the present invention is to increase the metal concentration in solids by removing a part of the polymer pigment dispersant from the solution containing the metal colloid particles and the polymer pigment dispersant. It is.
  • the solution containing the metal colloid particles and the polymer pigment dispersant is a polymer pigment dispersant. It is obtained by reducing a metal compound in the presence.
  • the metal compound generates a metal ion when dissolved in a solvent, and the metal ion is reduced to supply metal colloid particles.
  • the metal to be the metal colloid particles is not particularly limited, but is preferably a noble metal or copper from the viewpoint of obtaining an excellent conductive film or metal-like film.
  • the noble metal is not particularly limited, and examples thereof include gold, silver, ruthenium, rhodium, palladium, osmium, iridium, and platinum. Of these, gold, silver, platinum and palladium are preferred.
  • the metal compound is not particularly limited as long as it contains the above-mentioned metal.
  • Examples thereof include tetrachloro base (III) acid tetrahydrate (chloroauric acid), silver nitrate, silver acetate, and silver perchlorate (IV ), Hexaclo mouth platinum (IV) acid hexahydrate (chloroplatinic acid), potassium chloride chloroaurate, copper (II) chloride dihydrate, copper sulfate (II) monohydrate, copper sulfate ( II), palladium chloride (II) dihydrate, rhodium trichloride (III) trihydrate and the like.
  • the above metal compound is preferably used so that the molar concentration of the metal in the solvent is not less than 0.01mo1Z1. If it is less than 0.0 lmo 1/1, the obtained metal colloid solution has too low a molar concentration of metal, which is not efficient. It is preferably at least 0.05 mo 1/1 and more preferably at least 0.1 lmo 1/1.
  • the solvent is not particularly limited as long as it can dissolve the metal compound, and examples thereof include water and an organic solvent.
  • the organic solvent and the like are not particularly limited, and include, for example, alcohols having 1 to 4 carbon atoms such as ethanol and ethylene glycol; ketones such as acetone and esters such as ethyl acetate. One or more of the above solvents can be used.
  • the organic solvent is preferably a water-soluble solvent, and examples thereof include acetone, methanol, ethanol, and ethylene glycol.
  • a mixed solution of water, alcohol, and water and alcohol is preferable from the viewpoint of being suitable for a method of removing a part of the polymer pigment dispersant such as ultrafiltration performed in a subsequent step.
  • the above-mentioned polymer pigment dispersant has a high affinity for a high molecular weight polymer with respect to the pigment surface. It is an amphiphilic copolymer having a functional group introduced and having a structure containing a solvation moiety, and is usually used as a pigment dispersant during the production of a pigment paste.
  • the polymer pigment dispersant coexists with the metal colloid particles, and functions to stabilize the metal colloid particles from being dispersed in the solvent.
  • the number average molecular weight of the polymeric pigment dispersant is preferably from 1,000 to 1,000,000. If it is less than 1000, dispersion stability 1 to raw material may not be sufficient, and if it exceeds 1,000,000, the viscosity may be too high and handling may be difficult. More preferably, it is 2,000 to 500,000, and further preferably, it is 4,000 to 500,000.
  • the polymer pigment dispersant is not particularly limited as long as it has the above-mentioned properties, and examples thereof include those exemplified in JP-A-11-80647.
  • polymeric pigment dispersant various ones can be used, and commercially available ones can also be used.
  • commercially available products include Solsperse 20 000, Sonoresperse 24000, Sonoresperse 26000, Solsperse 27 000, Solsperse 28000, Solsperse 41090 (all manufactured by Abyssia), and Disha.
  • Solsperse 20 000, Sonoresperse 24000, Sonoresperse 26000, Solsperse 27 000, Solsperse 28000, Solsperse 41090 all manufactured by Abyssia
  • Disha Disha.
  • the amount of the polymer pigment dispersant used was 15 mass based on the total amount of the metal in the metal compound and the polymer pigment dispersant. / 0 or more is preferable. 15 mass. If it is less than / 0 , the dispersion stability at the time of reduction may be reduced, and the significance of increasing the metal concentration is reduced.
  • the upper limit is not particularly limited, but may be, for example, 10 times or less the mass of the metal in the metal compound.
  • the metal compound can be reduced to a metal using a reducing compound in the presence of the polymer pigment dispersant described above.
  • the reducing compound is preferably an amine.
  • By using the above amine it is not necessary to use a highly hazardous or harmful reducing agent, and without heating or using a special light irradiation device, about 5 to 100 ° C., preferably
  • the metal compound can be reduced at a reaction temperature of about 20 to 80 ° C.
  • the above-mentioned amine is not particularly limited, and for example, those exemplified in JP-A-11-18747 can be used.
  • Examples of the above amines include, for example, methylaminoethanol, dimethylaminoethanol, triethanolamine, ethanolamine, diethanolamine, methyljetanolamine, propanolamine, 2- (3-aminopropinoleamino) ethanol
  • alkanolamines such as butanolamine, hexanolamine and dimethylaminopropanol. Of these, alkanolamine is preferred, and dimethylethanolamine is more preferred.
  • alkali metal borohydrides such as sodium borohydride, which have been conventionally used as reducing agents; hydrazine compounds; citric acid; tartaric acid; ascorbic acid; formic acid; formaldehyde; Salts, sulfoxylate derivatives and the like can be used. From the viewpoint of easy availability, citric acid; tartaric acid; and ascorbic acid are preferred. These can be used alone or in combination with the above-mentioned amines. Is preferred. In addition, cunic acid or a sulfoxylate derivative can be used in combination with iron (II) ion to improve the reducibility.
  • iron (II) ion iron
  • the amount of the reducing compound to be added is preferably not less than the amount necessary for reducing the metal in the metal compound. If the amount is less than this, the reduction may be insufficient.
  • the upper limit is not particularly limited, but is preferably 30 times or less, more preferably 10 times or less the amount required for reducing the metal in the metal compound.
  • the method for adding the reducing compound is not particularly limited.
  • the method can be performed after adding the polymer pigment dispersant.
  • the polymer pigment dispersant is dissolved in a solvent.
  • any of the above reducing compounds or metal compounds By adding the remaining one of the reducing compound or the metal compound to the solution obtained by dissolving the compound, the reduction can proceed.
  • a mode in which the polymer pigment dispersant and the reducing compound are mixed in advance and the mixture is added to the solution of the metal compound may be employed.
  • the average particle size becomes about 5 ⁇ ⁇ !
  • a solution containing metal colloid particles of up to 100 nm is obtained.
  • the solution after the reduction contains the metal colloid particles and the polymer pigment dispersant, and becomes a colloid solution.
  • the above-mentioned colloid solution means a solution in which metal fine particles are dispersed in a solvent and can be visually recognized as a solution.
  • the solution after the reduction contains, in addition to the metal colloid particles and the polymer pigment dispersant, miscellaneous ions such as chloride ions derived from the raw material of the metal colloid solution, salts generated by reduction, and optionally amine. Since these miscellaneous ions and chloride may adversely affect the stability of the obtained metal colloid solution, it is desirable to remove them.
  • electrodialysis, centrifugation, and ultrafiltration are used.However, as described later, when the centrifugation and ultrafiltration are used, the metal concentration is increased at the same time. preferable.
  • the metal concentration is increased by removing a part of the polymer pigment dispersant.
  • the metal colloid solution from which a part of the high molecular pigment dispersant is removed has a solid content of the metal colloid particles and the high molecular pigment dispersant of 0.05 to 50% by mass. It is preferable that there is. If it is less than 0.05%, the molar concentration of the metal is too low, which is inefficient. If it exceeds 50%, it may be difficult to remove a part of the polymer pigment dispersant. Further, the metal concentration in the solid content is preferably 85% by mass or less.
  • Methods for removing a part of the polymer pigment dispersant include centrifugation and ultrafiltration.
  • the metal colloid particles precipitate, but the unnecessary miscellaneous ions, chloride, and the high molecular pigment dispersant are dissolved in the supernatant. Therefore, these components can be removed by removing the supernatant.
  • the metal colloid particles remaining in this manner can be washed by adding a solvent, and the centrifugal separation can be repeated to enhance the removal effect.
  • the centrifugation is preferably performed at 1000 G or more. If it is less than 1000 G, it may be difficult to remove a part of the polymer pigment dispersant.
  • the conditions for centrifugation differ depending on the particle size of the metal colloid. For example, in order to sediment particles of the order of several nm in particle size, it is necessary to carry out so-called ultracentrifugation conditions. Standard conditions include 3000 G for 5-60 minutes, preferably 15-45 minutes.
  • the metal colloid particles can be fractionated based on the particle size by appropriately changing the conditions of the gravitational acceleration, the time, the Z, and the number of operations.
  • a high-concentration solution of metal colloid particles having a particle size suitable for various uses can be obtained, and the particle size of the metal colloid particles can be made uniform to some extent.
  • the high concentration metal colloid solution obtained by the centrifugation is concentrated and usually takes the form of a paste. It is preferable that the concentration is generally 80% or more on a mass basis. The upper limit is not specified, but considering the ease of handling, it is 90% or less.
  • Ultrafiltration may be used as a method for removing a part of the above-mentioned polymer pigment dispersant.
  • the ultrafiltration (Ultrafiltrattion: UF) has a smaller sieve than a filtration membrane used for microfiltration (Microfiltration: MF).
  • Ultrafiltration is generally used for the purpose of separating high molecular weight substances and colloidal substances. In the present invention, it is used to increase the metal concentration in the solid content of the metal colloid solution.
  • the diameter of the substance to be separated is usually 1 nn! ⁇ 5 / zm.
  • the polymer pigment dispersant as well as the unnecessary miscellaneous ions, salts and amines can be removed, and the metal concentration in the solid content of the metal colloid solution can be increased. If it is less than l nm, unnecessary components cannot be eliminated without passing through the filtration membrane When the value exceeds, many of the metal colloid particles pass through the filtration membrane, and a desired metal colloid high concentration solution may not be obtained.
  • the filtration membrane for the ultrafiltration is not particularly limited, but usually, for example, a resin membrane such as polyacrylonitrile, butyl chloride Z acrylo-tolyl copolymer, polysulfone, polyimide, or polyamide is used. Of these, polyatarilonitrile and polysulfone are preferred, and polyacrylonitrile is more preferred.
  • a resin membrane such as polyacrylonitrile, butyl chloride Z acrylo-tolyl copolymer, polysulfone, polyimide, or polyamide is used. Of these, polyatarilonitrile and polysulfone are preferred, and polyacrylonitrile is more preferred.
  • a filtration membrane capable of backwashing from the viewpoint of efficiently performing the filtration membrane usually performed after the end of the ultrafiltration.
  • the filtration membrane for the ultrafiltration those having a molecular weight cut-off of from 300 to 800,000 are preferable. If it is less than 300, the unnecessary polymer pigment dispersant or the like is difficult to be sufficiently removed, and if it is more than 800, the metal colloid particles easily pass through the filtration membrane. In some cases, a metal colloid solution cannot be obtained. More preferably, it is from 1,000 to 600,000.
  • the molecular weight cut-off generally refers to the molecular weight of the polymer that passes through the pores of the ultrafiltration membrane and is excluded when passing the polymer solution through the ultrafiltration membrane. Used to evaluate. The larger the above-mentioned molecular weight cut-off, the larger the pore size of the filtration membrane.
  • the form of the filtration module for the ultrafiltration is not particularly limited, and examples thereof include a hollow paper module (also called a capillary module), a spiral module, a tubular module, and a plate module depending on the form of the filtration membrane. All are suitably used in the present invention.
  • the hollow paper type module having a compact form for the filtration area is preferable from the viewpoint of efficiency because the time required for filtration can be shortened as the membrane area is large. If the amount of the metal colloid solution to be treated is large, it is preferable to use a large number of filtration membranes to be used.
  • the ultrafiltration method is not particularly limited.
  • a conventionally known method is used.
  • the solution containing the metal colloid particles and the polymer pigment dispersant obtained by the above-described reaction is subjected to ultrafiltration. This is done by passing through a membrane, whereby the filtrate containing the above-mentioned miscellaneous, salt and amine-polymer pigment dispersants is eliminated.
  • the ultrafiltration is Usually, the process is repeated until the above-mentioned miscellaneous ions in the filtrate are removed to a desired concentration or less. At that time, it is preferable to add the same amount of the solvent as the amount of the removed filtrate in order to keep the concentration of the metal colloid solution to be treated constant. By using a solvent different from the one used during the reduction as the solvent added at this time, it is possible to replace the solvent of the metal colloid solution.
  • the ultrafiltration can be performed by a usual operation, for example, a so-called batch method.
  • the metal colloid solution to be treated is added as much as the ultrafiltration has progressed.
  • the ultrafiltration can be further performed after the miscellaneous ions have been removed to a desired concentration or less to increase the solid content concentration.
  • the specific value of the metal colloid high concentration solution obtained by centrifugation and ultrafiltration differs depending on the value of the metal concentration in the solid content in the solution containing the metal colloid particles and the polymer pigment dispersant before the treatment. However, the metal concentration in the solid content is higher than before the treatment.
  • the metal concentration in the solid content of the solution containing the metal colloid particles and the polymer pigment dispersant before the treatment is 85% by mass or less, and the metal concentration in the solid content of the treated high-concentration metal colloid solution is obtained. Is 90 mass. /. That is all.
  • the difference between the metal concentrations before and after the treatment is 10% by mass or more.
  • the solid content of the metal colloid high-concentration solution obtained by the centrifugation is higher than that obtained by the ultrafiltration, but finally, the solid content becomes 1 to 5 by adding a solvent. It is preferably adjusted to 0% by mass. Also in this case, it is possible to replace the solvent of the metal colloid solution by using a different type of solvent as the solvent to be added during the reduction.
  • the metal colloid high-concentration solution obtained in this way has a high metal concentration in the solid content, it can sufficiently exhibit properties of the metal such as high conductivity, metallic luster, coloring, and thermal conductivity. .
  • the above-mentioned metal colloid solution is suitable for forming a metallic film by applying it on a substrate since the above-mentioned polymer pigment dispersant is removed to a low concentration.
  • the method of applying the composition to the substrate is not particularly limited. For example, a conventionally known method can be used.
  • Examples of the metallic film include those having conductivity and those having metallic luster. Can be
  • the metal colloid solution may be used as a coloring material in resin moldings such as optical materials, coating compositions, and the like, and may be used in antibacterial materials, catalysts, cosmetics, electromagnetic wave shields, and the like.
  • the ultrafiltration module AH P100 (made by Asahi Kasei Corporation; molecular weight cut-off: 50,000; number of membranes used: 400); a magnet pump;
  • the stainless steel cup was connected with a silicon tube to form an ultrafiltration device.
  • the ethanol solution of gold colloid was placed in a stainless steel cup, and 21 ethanol was added.
  • the pump was operated to perform ultrafiltration.
  • the filtrate from the module became 21 after about 40 minutes, 21 ethanol was added to the stainless steel cup. Thereafter, the filtrate was confirmed to have a conductivity of 30 S / cm or less, and concentrated until the amount of the mother liquor became 50 Om1.
  • the first ultrafiltration module was changed from AHP1010 to ACP1010 (Asahi Kasei Corporation; molecular weight cut off: 13000, 400 membranes used), and the same procedure was applied instead of ethanol added in the first ultrafiltration. Except that the amount of ion-exchanged water was used, the same treatment as in Example 1 was performed to obtain an aqueous solution of gold colloid having a solid content of 30%. The average particle size of the colloidal gold particles in this solution was 21 nm. Further, the content of gold in the solid content was measured using TG_DTA (manufactured by Seiko Instrument), and was found to be 90% by mass with respect to 70% by mass of the preparation.
  • TG_DTA manufactured by Seiko Instrument
  • E FKA4550 manufactured by EFKA Chemical Co., Ltd.
  • 12.1 g of ethanol 12.1 g
  • 13.0 g of dimethylaminoethanol were placed in a 50 Om1 colben.
  • the Kolben was placed in a water path and stirred at 50 ° C for about 10 minutes until EFKA4550 was dissolved. While stirring was continued, when 12.2 g of chloroauric acid dissolved in 12.1 g of ethanol was added, the solution turned black instantaneously and the temperature of the solution decreased to 58%. ° C. When the solution temperature was lowered to 50 ° C by leaving it as it was, stirring was continued for 2 hours while maintaining this temperature, and an ethanol solution of colloidal gold having a dark purple color was obtained.
  • an ultrafiltration apparatus including a 50 Om 1 stainless steel cup, an ultrafiltration module AHP0013 (Asahi Kasei Corporation; molecular weight cutoff 50,000, number of membranes used: 100), a tube pump, and an aspirator was assembled.
  • the ethanol solution of the previously obtained colloidal gold was put into this stainless steel cup, and ultrafiltration was performed.
  • 300 ml of ethanol was added to the stainless steel cup.
  • the mother liquor was concentrated to 5 Om 1 to obtain an ethanol solution of gold colloid having a solid content of 25%.
  • the average particle size of the colloidal gold particles in this solution was 24 nm.
  • TG-DTA manufactured by Seiko Instruments
  • the content of gold in the solid content consisting of the colloidal gold particles and the polymeric pigment dispersant was measured. % By mass.
  • an ultrafiltration apparatus comprising a 50 Om 1 stainless steel cup, an ultrafiltration module AHP0013 (Asahi Kasei Corporation; molecular weight cutoff 50,000, number of membranes used: 100), a tube pump, and an aspirator was assembled.
  • the aqueous solution of the previously obtained colloidal gold was put into the stainless steel cup, and ultrafiltration was performed.
  • 30 Om 1 of ion-exchanged water was added to the stainless steel cup.
  • the mother liquor was concentrated to 5 Oml, and a gold colloid with a solid content of 25% was obtained.
  • An ethanol solution was obtained.
  • the average particle diameter of the colloidal gold particles in this solution was 25 nm.
  • the content of gold in the solid content composed of colloidal gold particles and a polymeric pigment dispersant was measured using TG-DTA (manufactured by Seiko Corporation), 70 mass of the charged material was measured. % Was 90% by mass.
  • the reaction solution was allowed to stand for 18 hours in a constant temperature chamber at 60 ° C., placed in a stainless steel cup, and after adding 21 ion-exchanged water, the pump was operated to perform ultrafiltration.
  • the filtrate from the module became 21 after about 40 minutes, 21 ion-exchanged water was added to the stainless steel cup. After that, it was confirmed that the conductivity of the filtrate was less than 300 ⁇ SZ cm, and the concentration was performed until the amount of the mother liquor became 500 ml.
  • the first ultrafiltration module was changed from AHP1010 to ACP1010 (Asahi Kasei Corporation; molecular weight cut off: 13,000, membrane number: 400), and added in the first ultrafiltration
  • the procedure was the same as in Example 5, except that the same amount of ethanol was used instead of the ion-exchanged water to obtain an aqueous solution of silver colloid having a solid content of 30%.
  • the particle size was 27 nm, and the content of silver in the solid was measured using TG_DTA (manufactured by Seiko Instrument). Met.
  • 1.6 g, 1 mo 1/1 nitric acid (82.4 g), and ion-exchanged water (82.4 g) are added in this order to 50 Om1 kolben.
  • the Kolben was placed in a water bath and stirred at 50 ° C. until Dispervik 192 was dissolved.
  • 14.0 g of silver nitrate obtained by dissolving 247.25 g of ion-exchanged water was added thereto with stirring, followed by stirring at 70 ° C. for 10 minutes.
  • 36.7 g of dimethylaminoethanol was added. At this time, the liquid instantly turned black and the liquid temperature rose to 74 ° C.
  • the mother liquor was concentrated to 5 Oml to obtain an aqueous solution of silver colloid having a solid content of 25%.
  • the average particle size of the silver colloid particles in this solution was 30 nm.
  • the content of silver in the solid content was measured using TG-DTA (manufactured by Seiko Instrument), and was found to be 90% by mass with respect to 85% by mass of the preparation.
  • the obtained metal colloid high-concentration solution could be suitably used for forming a film having high conductivity.
  • Example 2 In the same manner as in Example 1, except that 6.2 g of Dispervik 191 (manufactured by Big Chemical Co., Ltd.) was weighed to 21.5 g, a gold colloid ethanol having a solid content of 30% was produced in the same manner. A nore solution was obtained. Using TG-DTA (manufactured by Seiko Instruments), the content of gold in the solid content consisting of colloidal gold particles and a polymeric pigment dispersant was measured. Met.
  • TG-DTA manufactured by Seiko Instruments
  • the first ultrafiltration module was changed from AHP 1010 to ACP 1010 (Asahi Kasei Corporation; molecular weight cut off 13,000, membrane number 400 used), and instead of ethanol added in the first ultrafiltration. Except that the same amount of ion-exchanged water was used, the treatment was performed in the same manner as in Example 1 to obtain an aqueous solution of gold colloid having a solid content of 30%. The average particle size of the colloidal gold particles in this solution was 21 nm. In addition, the content of gold in the solid content was measured using TG-DTA (manufactured by Seiko Instruments), and was found to be 55% by mass with respect to 40% by mass of the charged material. possibility
  • a metal colloid high concentration solution having a high metal concentration can be obtained even when a large amount of a polymer pigment dispersant is used to ensure dispersion stability.
  • the resulting metal colloid high-concentration solution is suitably used for a metallic coating having conductivity or metallic luster.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

A process by which a colloidal metal solution having a high metal concentration can be obtained even when a large amount of a polymeric pigment dispersant is used in order to secure dispersion stability. The process is characterized by partly removing a polymeric pigment dispersant from a solution containing colloidal metal particles and the polymeric pigment dispersant.

Description

明細書 金属コロイド高濃度溶液の製造方法 技術分野  Description Method for producing high concentration solution of metal colloid
本発明は、 金属コロイド高濃度溶液の製造方法、 並びに、 その製造方法により 得られる金属コロイド高濃度溶液及び上記金属コロイド高濃度溶液により得られ る皮膜に関する。 背景技術  The present invention relates to a method for producing a high-concentration metal colloid solution, a high-concentration metal colloid solution obtained by the production method, and a film obtained using the high-concentration metal colloid solution. Background art
数 1 0 n mの金属粒子が溶液中に均一に分散した状態の、 いわゆる金属コロイ ド溶液は、 その特徴を活かして種々の分野で利用されてきている。 特開平 1 1— 0 8 0 6 4 7号公報には、 貴金属のコロイド粒子及び高分子顔料分散剤を含む貴 金属コロイド粒子及びその製造方法とともに、 これを着色剤として塗料等に利用 できることが開示されている。 また、 特開 2 0 0 0— 2 3 9 8 5 3号公報には、 先の貴金属コロイド粒子を金属光沢を有する薄膜の製造に用いることが開示され ている。 ここで、 優れた外観を呈する金属調の膜を得る点から、 金属の含有率は 高いことが望ましい。  A so-called metal colloid solution in which several 10 nm metal particles are uniformly dispersed in a solution has been utilized in various fields by utilizing its features. Japanese Patent Application Laid-Open No. H11-080647 discloses that a precious metal colloid particle containing a precious metal colloid particle and a polymer pigment dispersant and a method for producing the same can be used as a colorant in a paint or the like. Have been. Japanese Patent Application Laid-Open No. 2000-239853 discloses that the above-mentioned noble metal colloid particles are used for producing a thin film having metallic luster. Here, from the viewpoint of obtaining a metal-like film having an excellent appearance, it is desirable that the metal content is high.
一方、 導電性皮膜は、 コンデンサやチップ抵抗器の電極材料やセラミック基板 上の導体回路等として、 各種の電子機器、 電子部品、 電子回路等に用いられる。 このような導電性皮膜は、 通常、 金属粒子を含有する導電性ペーストを塗布して 製造される。 この場合でも、 高い導電性を得る点から、 金属の含有率は高いこと が望ましい。  On the other hand, conductive films are used in various electronic devices, electronic components, electronic circuits, and the like as electrode materials for capacitors and chip resistors, and as conductor circuits on ceramic substrates. Such a conductive film is usually produced by applying a conductive paste containing metal particles. Even in this case, it is desirable that the metal content be high in order to obtain high conductivity.
しカゝし、 上記高分子顔料分散剤を含む貴金属コロイド粒子の製造において、 金 属濃度を高めようとして、 高分子顔料分散剤の使用量を減らすと、 還元時の分散 安定性が確保できないおそれがある。 発明の要約 本発明は、 分散安定性を碓保するために多量の高分子含量分散剤を用いた場合 にも、 金属濃度が高い金属コロイド高濃度溶液が得ることができる製造方法を提 供することを目的とする。 However, in the production of the precious metal colloid particles containing the polymer pigment dispersant, if the amount of the polymer pigment dispersant used is reduced in order to increase the metal concentration, dispersion stability during reduction may not be ensured. There is. Summary of the Invention An object of the present invention is to provide a production method capable of obtaining a metal colloid high-concentration solution having a high metal concentration even when a large amount of a polymer-containing dispersant is used to ensure dispersion stability. I do.
本発明は、 金属コロイド粒子及び高分子顔料分散剤を含む溶液から前記高分子 顔料分散剤の一部を除去することを特徴とする金属コロイド高濃度溶液の製造方 法である。 上記高分子顔料分散剤の一部の除去は、 遠心分離によるものであるこ とが好ましく、 上記遠心分離は、 1 0 0 0 G以上で行うことがより好ましい。 ま た、 上記高分子顔料分散剤の一部の除去は、 限外濾過によるものであることが好 ましく、 上記限外濾過は、 分画分子量が 3 0 0 0〜 8 0 0 0 0である濾過膜を用 いるものであることがより好ましい。  The present invention is a method for producing a high-concentration metal colloid solution, comprising removing a part of the polymer pigment dispersant from the solution containing the metal colloid particles and the polymer pigment dispersant. The removal of a part of the polymer pigment dispersant is preferably performed by centrifugation, and the centrifugation is more preferably performed at 100 G or more. The removal of a part of the polymer pigment dispersant is preferably performed by ultrafiltration, and the ultrafiltration has a molecular weight cut-off of 300 to 800,000. It is more preferable to use a certain filtration membrane.
上記金属コロイド粒子及び高分子顔料分散剤を含む溶液は、 高分子顔料分散剤 存在下で金属化合物を還元することにより得られるものであることが好ましい。 上記金属コロイド粒子及び高分子顔料分散剤を含む溶液の固形分中の金属濃度が The solution containing the metal colloid particles and the polymer pigment dispersant is preferably obtained by reducing a metal compound in the presence of the polymer pigment dispersant. The metal concentration in the solid content of the solution containing the metal colloid particles and the polymer pigment dispersant is
8 5質量%以下であり、 金属コロイド高濃度溶液の固形分中の金属濃度が 9 0質 量部以上であることが好ましい。 It is preferably 85% by mass or less, and the metal concentration in the solid content of the metal colloid high concentration solution is preferably 90 parts by mass or more.
上記金属コロイド高濃度溶液と上記金属コロイド粒子及び高分子顔料分散剤を 含む溶液との固形分中の金属濃度の差が 1 0質量%以上であることが好ましい。 The difference between the metal concentration in the solid content of the metal colloid high concentration solution and the solution containing the metal colloid particles and the polymer pigment dispersant is preferably 10% by mass or more.
. 本発明は、 また、 上記製造方法により得られることを特徴とする金属コロイド 高濃度溶液である。 The present invention also provides a metal colloid high concentration solution obtained by the above production method.
本発明は、 更に、 上記金属コロイド高濃度溶液を用いて得られることを特徴と する皮膜である。 発明の詳細な開示  The present invention further provides a film obtained by using the above-mentioned metal colloid high concentration solution. Detailed Disclosure of the Invention
以下、 本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
本発明の金属コロイド高濃度溶液の製造方法は、 金属コロイド粒子及び高分子 顔料分散剤を含む溶液から上記高分子顔料分散剤の一部を除去することにより、 固形分中の金属濃度を高めるものである。  The method for producing a metal colloid high-concentration solution of the present invention is to increase the metal concentration in solids by removing a part of the polymer pigment dispersant from the solution containing the metal colloid particles and the polymer pigment dispersant. It is.
上記金属コロイド粒子及び高分子顔料分散剤を含む溶液は、 高分子顔料分散剤 存在下で金属化合物を還元することにより得られる。 The solution containing the metal colloid particles and the polymer pigment dispersant is a polymer pigment dispersant. It is obtained by reducing a metal compound in the presence.
上記金属化合物は、 溶媒に溶解することにより金属イオンを生じ、 上記金属ィ オンが還元されて金属コロイド粒子を供給するものである。 上記金属コロイド粒 子となる金属としては特に限定されないが、 優れた導電性皮膜や金属調皮膜を得 る点から、 貴金属又は銅が好ましい。 上記貴金属としては特に限定されず、 例え ば、 金、 銀、 ルテニウム、 ロジウム、 パラジウム、 オスミウム、 イリジウム、 白 金等を挙げることができる。 なかでも、 金、 銀、 白金、 パラジウムが好ましい。 上記金属化合物としては上述の金属を含むものであれば特に限定されず、 例え ば、 テトラクロ口金 (I I I) 酸四水和物 (塩化金酸) 、 硝酸銀、 酢酸銀、 過塩 素酸銀 (I V) 、 へキサクロ口白金 (I V) 酸六水和物 (塩化白金酸) 、 塩化白 金酸カリウム、 塩化銅 (I I) 二水和物、 齚酸銅 (I I) 一水和物、 硫酸銅 (I I) 、 塩化パラジウム (I I) 二水和物、 三塩化ロジウム (I I I) 三水和物等 を挙げることができる。 これらは、 1種又は 2種以上を使用することができる。 上記金属化合物は、 溶媒中の金属モル濃度が 0. 0 lmo 1Z1以上となるよ うに用いられることが好ましい。 0. 0 lmo 1/1未満であると、 得られる金 属コロイド溶液の金属モル濃度が低すぎて、 効率的でない。 好ましくは 0. 05 mo 1 / 1以上、 より好ましくは 0. lmo 1 / 1以上である。  The metal compound generates a metal ion when dissolved in a solvent, and the metal ion is reduced to supply metal colloid particles. The metal to be the metal colloid particles is not particularly limited, but is preferably a noble metal or copper from the viewpoint of obtaining an excellent conductive film or metal-like film. The noble metal is not particularly limited, and examples thereof include gold, silver, ruthenium, rhodium, palladium, osmium, iridium, and platinum. Of these, gold, silver, platinum and palladium are preferred. The metal compound is not particularly limited as long as it contains the above-mentioned metal. Examples thereof include tetrachloro base (III) acid tetrahydrate (chloroauric acid), silver nitrate, silver acetate, and silver perchlorate (IV ), Hexaclo mouth platinum (IV) acid hexahydrate (chloroplatinic acid), potassium chloride chloroaurate, copper (II) chloride dihydrate, copper sulfate (II) monohydrate, copper sulfate ( II), palladium chloride (II) dihydrate, rhodium trichloride (III) trihydrate and the like. One or more of these can be used. The above metal compound is preferably used so that the molar concentration of the metal in the solvent is not less than 0.01mo1Z1. If it is less than 0.0 lmo 1/1, the obtained metal colloid solution has too low a molar concentration of metal, which is not efficient. It is preferably at least 0.05 mo 1/1 and more preferably at least 0.1 lmo 1/1.
上記溶媒としては上記金属化合物を溶解することができるものであれば特に限 定されず、 例えば、 水、 有機溶媒等を挙げることができる。 上記有機溶媒等とし ては特に限定されず、 例えば、 エタノール、 エチレングリコール等の炭素数 1〜 4のアルコール;ァセトン等のケトン類;酢酸ェチル等のエステル類等が挙げら れる。 上記溶媒としては 1種又は 2種以上を用いることができる。 上記溶媒が水 と有機溶媒との混合物である場合には、 上記有機溶媒としては、 水可溶性のもの が好ましく、 例えば、 ァセトン、 メタノール、 エタノール、 エチレングリコール 等が挙げられる。 本発明においては、 後工程で行う限外濾過等の高分子顔料分散 剤の一部を除去する方法に適する点から、 水、 アルコール並びに水及ぴアルコー ルの混合溶液が好ましい。  The solvent is not particularly limited as long as it can dissolve the metal compound, and examples thereof include water and an organic solvent. The organic solvent and the like are not particularly limited, and include, for example, alcohols having 1 to 4 carbon atoms such as ethanol and ethylene glycol; ketones such as acetone and esters such as ethyl acetate. One or more of the above solvents can be used. When the solvent is a mixture of water and an organic solvent, the organic solvent is preferably a water-soluble solvent, and examples thereof include acetone, methanol, ethanol, and ethylene glycol. In the present invention, a mixed solution of water, alcohol, and water and alcohol is preferable from the viewpoint of being suitable for a method of removing a part of the polymer pigment dispersant such as ultrafiltration performed in a subsequent step.
上記高分子顔料分散剤は、 高分子量の重合体に顔料表面に対する親和性の高い 官能基が導入されているとともに、 溶媒和部分を含む構造を有する両親媒性の共 重合体であり、 通常は顔料ペーストの製造時に顔料分散剤として使用されている ものである。 The above-mentioned polymer pigment dispersant has a high affinity for a high molecular weight polymer with respect to the pigment surface. It is an amphiphilic copolymer having a functional group introduced and having a structure containing a solvation moiety, and is usually used as a pigment dispersant during the production of a pigment paste.
上記高分子顔料分散剤は、 上記金属コロイド粒子と共存しており、 上記金属コ ロイド粒子が溶媒中で分散するのを安定化する働きをしていると考えられる。 上記高分子顔料分散剤の数平均分子量は、 1000〜 100万であることが好 ましい。 1000未満であると、 分散安定 1~生が充分ではないことがあり、 100 万を超えると、 粘度が高すぎて取り扱いが困難となる場合がある。 より好ましく は、 2000〜50万であり、 更に好ましくは、 4000〜50万である。  It is considered that the polymer pigment dispersant coexists with the metal colloid particles, and functions to stabilize the metal colloid particles from being dispersed in the solvent. The number average molecular weight of the polymeric pigment dispersant is preferably from 1,000 to 1,000,000. If it is less than 1000, dispersion stability 1 to raw material may not be sufficient, and if it exceeds 1,000,000, the viscosity may be too high and handling may be difficult. More preferably, it is 2,000 to 500,000, and further preferably, it is 4,000 to 500,000.
上記高分子顔料分散剤としては上述の性質を有するものであれば特に限定され ず、 例えば、 特開平 1 1— 80647号公報に例示したものを挙げることができ る。  The polymer pigment dispersant is not particularly limited as long as it has the above-mentioned properties, and examples thereof include those exemplified in JP-A-11-80647.
上記高分子顔料分散剤としては、 種々のものが利用できるが、 市販されている ものを使用することもできる。 上記市販品としては、 例えば、 ソルスパース 20 000、 ソノレスパース 24000、 ソノレスパース 26000、 ソルスパース 27 000、 ソルスパース 28000、 ソルスパース 41090 (以上、 アビシァ社 製) 、 ディスハ。一ビック 160、 デイスパービック 161、 デイスパービック 1 As the polymeric pigment dispersant, various ones can be used, and commercially available ones can also be used. Examples of the commercially available products include Solsperse 20 000, Sonoresperse 24000, Sonoresperse 26000, Solsperse 27 000, Solsperse 28000, Solsperse 41090 (all manufactured by Abyssia), and Disha. One Big 160, Day Spavic 161, Day Spavic 1
62、 ディスハ °一ビック 163、 ディスパービック 166、 デイスパービック 162, Disha ° One Big 163, Dis Per Big 166, Day Spa Big 1
70、 ディスハ。一ビック 180、 デイスパービック 181、 デイスパービック 1 82、 デイスノヽ0—ビック一 183、 デイスパービック 184、 デイスパービック70, Disha. One Big 180, Day Spa Big 181, Day Spa Big 1 82, Day Spa ヽ0 — Big One 183, Day Spa Big 184, Day Spa Big
1 90、 デイスパービック 1 91、 デイスパービック 1 92、 デイスパービック1 90, Day Spavik 1 91, Day Spavik 1 92, Day Spavik
— 2000、 デイスパービック一 2001 (以上、 ビックケミ一社製) 、 ポリマ 一 100、 ポリマー 120、 ポリマー 1 50、 ポリマー 400、 ポリマー 401、 ポリマー 402、 ポリマー 403、 ポリマー 450、 ポリマー 451、 ポリマー 452、 ポリマ一 453、 EFKA— 46、 EFKA— 47、 EFKA— 48、 EFKA— 49、 EFKA— 1 501、 EFKA— 1502、 EFKA— 454 0、 EFKA— 4550 (以上、 EFKAケミカノレ社製) 、 フローレン DOPA— 2000, DISPERVIC-I 2001 (above, manufactured by BIC-Chemie), Polymer 100, Polymer 120, Polymer 150, Polymer 400, Polymer 401, Polymer 402, Polymer 403, Polymer 450, Polymer 451, Polymer 452, Polymer One 453, EFKA—46, EFKA—47, EFKA—48, EFKA—49, EFKA—5011, EFKA—1502, EFKA—4540, EFKA—4550 (all manufactured by EFKA Chemikanore), Floren DOPA
— 1 58、 フローレン DOPA— 22、 フローレン D O P A— 17、 フローレン G— 7 0 0、 フローレン T G— 7 2 0 W、 フローレン一 7 3 0 W、 フローレン一 7 4 0 W、 フローレン _ 7 4 5 W、 (以上、 共栄社化学社製) 、 ァジスパー P A 1 1 1、 ァジスパー P B 7 1 1、 ァジスパー P B 8 1 1、 ァジスパー P B 8 2 1、 ァジスパー PW 9 1 1 (以上、 味の素社製) 、 ジョンクリル 6 7 8、 ジョンタリ ル 6 7 9、 ジョンクリル 6 2 (以上、 ジョンソンポリマー社製) 等を挙げること ができる。 これらは単独で使用してもよく、 2種以上を併用してもよい。 — 1 58, Floren DOPA—22, Floren DOPA—17, Floren G—700, Floren TG—720 W, Floren—730 W, Floren—740 W, Floren—745 W, (Kyoeisha Chemical Co., Ltd.) Azispar PB 711, Azispar PB 811, Azispar PB 821, Azispar PW 911 (or more, manufactured by Ajinomoto Co.), John Krill 678, John Taryl 679, John Krill 6 2 (or more, Johnson Polymer Co., Ltd.). These may be used alone or in combination of two or more.
上記高分子顔料分散剤の使用量は、 上記金属化合物中の金属と高分子顔料分散 剤との合計量に対して 1 5質量。 /0以上であることが好ましい。 1 5質量。 /0未満で あると、 還元時の分散安定性が低下するおそれがあるとともに、 金属濃度を高め る意味合いが薄れる。 上限は特に規定されないが、 例えば、 上記金属化合物中の · 金属の質量に対して 1 0倍の量以下とすることができる。 The amount of the polymer pigment dispersant used was 15 mass based on the total amount of the metal in the metal compound and the polymer pigment dispersant. / 0 or more is preferable. 15 mass. If it is less than / 0 , the dispersion stability at the time of reduction may be reduced, and the significance of increasing the metal concentration is reduced. The upper limit is not particularly limited, but may be, for example, 10 times or less the mass of the metal in the metal compound.
上記金属化合物は、 上述の高分子顔料分散剤存在下で、 還元性化合物を用いて 金属へ還元することができる。 上記還元性化合物としては、 ァミンが好ましく、 上記金属化合物及び高分子顔料分散剤の溶液にァミンを添加して攪拌、 混合する ことによって、 金属イオンが常温付近で金属に還元される。 上記アミンを使用す ることにより、 危険性や有害性の高い還元剤を使用する必要がなく、 加熱や特別 な光照射装置を使用することなしに、 5〜1 0 0 °C程度、 好ましくは 2 0〜 8 0 °C程度の反応温度で、 金属化合物を還元することができる。  The metal compound can be reduced to a metal using a reducing compound in the presence of the polymer pigment dispersant described above. The reducing compound is preferably an amine. By adding the amine to a solution of the metal compound and the polymer pigment dispersant, stirring and mixing, the metal ion is reduced to a metal at around room temperature. By using the above amine, it is not necessary to use a highly hazardous or harmful reducing agent, and without heating or using a special light irradiation device, about 5 to 100 ° C., preferably The metal compound can be reduced at a reaction temperature of about 20 to 80 ° C.
上記ァミンとしては特に限定されず、 例えば、 特開平 1 1一 8 0 6 4 7号公報 に例示されているものを使用することができ、 プロピルァミン、 プチノレァミン、 へキシルァミン、 ジェチルァミン、 ジプロピルァミン、 ジメチルェチルァミン、 ジェチレメチノレアミン、 トリエチノレアミン、 エチレンジァミン、 N, N, N' , Ν' ーテトラメチノレエチレンジァミン、 1 , 3—ジァミノプロパン、 Ν, Ν, Ν ! , Ν' —テトラメチル一 1 , 3—ジァミノプロパン、 トリエチレンテトラミン、 テトラエチレンペンタミン等の脂肪族ァミン; ピぺリジン、 Ν—メチルビベリジ ン、 ピぺラジン、 N, N' —ジメチノレピペラジン、 ピロリジン、 Ν—メチ/レピロ リジン、 モルホリン等の脂環式ァミン;ァニリン、 Ν—メチルァニリン、 Ν, Ν —ジメチルァエリン、 トルイジン、 ァ-シジン、 フエネチジン等の芳香族ァミン ;ペンジノレアミン、 N—メチノレペンジノレアミン、 N , N—ジメチノレべンジノレアミ ン、 フエネチノレアミン、 キシリ レンジァミン、 N, N , Ν' , N' —テトラメチ ルキシリレンジァミン等のァラルキルアミン等を挙げることができる。 また、 上 記ァミンとして、 例えば、 メチルアミノエタノール、 ジメチルァミノエタノール、 トリエタノールァミン、 エタノールァミン、 ジエタノールァミン、 メチルジェタ ノールァミン、 プロパノールァミン、 2— ( 3—ァミノプロピノレアミノ) ェタノ ール、 ブタノールァミン、 へキサノールァミン、 ジメチルァミノプロパノ一ル等 のアルカノールァミンも挙げることができる。 これらのうち、 アル力ノールァミ ンが好ましく、 ジメチルエタノ—ルァミンがより好ましい。 The above-mentioned amine is not particularly limited, and for example, those exemplified in JP-A-11-18747 can be used.Propylamine, ptinoleamine, hexylamine, getylamine, dipropylamine, dimethylethyl , Dimethylamineamine, triethynoleamine, ethylenediamine, N, N, N ', Ν'-tetramethinoleethylenediamine, 1,3-diaminopropane, Ν, Ν, Ν !, Ν' — Aliphatic amines such as tetramethyl-1,3-diaminopropane, triethylenetetramine and tetraethylenepentamine; piperidine, ぺ -methylbiberidine, piperazine, N, N'-dimethinolepiperazine, pyrrolidine, Ν-methyl / Alicyclic amines such as lepirrolidine and morpholine; aniline, Ν-methylaniline, Ν, Ν-dimethylamine Aromatic amines such as phosphorus, toluidine, acidin, and phenetidine Aralkylamines such as penzinoleamine, N-methinole pentinoleamine, N, N-dimethinolebenzinoleamine, phenetinoleamine, xylylenediamine, N, N, Ν ', N'-tetramethylxylylenediamine; be able to. Examples of the above amines include, for example, methylaminoethanol, dimethylaminoethanol, triethanolamine, ethanolamine, diethanolamine, methyljetanolamine, propanolamine, 2- (3-aminopropinoleamino) ethanol And alkanolamines such as butanolamine, hexanolamine and dimethylaminopropanol. Of these, alkanolamine is preferred, and dimethylethanolamine is more preferred.
上記ァミンの他に、 従来より還元剤として使用されている水素化ホウ素ナトリ ゥム等のアルカリ金属水素化ホウ素塩; ヒ ドラジン化合物;クェン酸;酒石酸; ァスコルビン酸;ギ酸;ホルムアルデヒ ド;亜ニチオン酸塩、 スルホキシル酸塩 誘導体等を使用することができる。 入手容易なことから、 クェン酸;酒石酸;ァ スコルビン酸が好ましい。 これらは、 単独又は上記ァミンと組み合わせて使用す ることが可能であるが、 ァミンとクェン酸、 酒石酸、 ァスコルビン酸を組み合わ せる場合、 クェン酸、 酒石酸、 ァスコルビン酸はそれぞれ塩の形のものを用いる ことが好ましい。 また、 クェン酸やスルホキシル酸塩誘導体は、 鉄 (I I ) ィォ ンと併用することによって、 還元性の向上を図ることができる。  In addition to the above amines, alkali metal borohydrides such as sodium borohydride, which have been conventionally used as reducing agents; hydrazine compounds; citric acid; tartaric acid; ascorbic acid; formic acid; formaldehyde; Salts, sulfoxylate derivatives and the like can be used. From the viewpoint of easy availability, citric acid; tartaric acid; and ascorbic acid are preferred. These can be used alone or in combination with the above-mentioned amines. Is preferred. In addition, cunic acid or a sulfoxylate derivative can be used in combination with iron (II) ion to improve the reducibility.
上記還元性化合物の添加量は、 上記金属化合物中の金属を還元するのに必要な 量以上であることが好ましい。 この量未満であると、 還元が不充分となるおそれ がある。 また、 上限は特に規定されないが、 上記金属化合物中の金属を還元する のに必要な量の 3 0倍以下であることが好ましく、 1 0倍以下であることがより 好ましい。  The amount of the reducing compound to be added is preferably not less than the amount necessary for reducing the metal in the metal compound. If the amount is less than this, the reduction may be insufficient. The upper limit is not particularly limited, but is preferably 30 times or less, more preferably 10 times or less the amount required for reducing the metal in the metal compound.
また、 これらの還元性化合物の添加により化学的に還元する方法以外に、 高圧 水銀灯を用いて光照射する方法も使用することも可能である。  In addition to the method of chemically reducing by adding these reducing compounds, it is also possible to use a method of irradiating light with a high-pressure mercury lamp.
上記還元性化合物を添加する方法としては特に限定されず、 例えば、 上記高分 子顔料分散剤の添加後に行うことができ、 この場合は、 例えば、 まず溶媒に上記 高分子顔料分散剤を溶解させ、 更に、 上記還元性化合物又は金属化合物の何れか を溶解させて得られる溶液に、 還元性化合物又は金属化合物の残った方を加える ことで、 還元を進行させることができる。 上記還元性化合物を添加する方法とし ては、 また、 先に高分子顔料分散剤と上記還元性化合物とを混合しておき、 この 混合物を金属化合物の溶液に加える形態をとつてもよい。 The method for adding the reducing compound is not particularly limited. For example, the method can be performed after adding the polymer pigment dispersant. In this case, for example, first, the polymer pigment dispersant is dissolved in a solvent. Further, any of the above reducing compounds or metal compounds By adding the remaining one of the reducing compound or the metal compound to the solution obtained by dissolving the compound, the reduction can proceed. As a method for adding the reducing compound, a mode in which the polymer pigment dispersant and the reducing compound are mixed in advance and the mixture is added to the solution of the metal compound may be employed.
上記還元により、 平均粒子径が約 5 η π!〜 1 0 0 n mである金属コロイド粒子 を含む溶液が得られる。  By the above reduction, the average particle size becomes about 5 η π! A solution containing metal colloid particles of up to 100 nm is obtained.
上記還元後の溶液は、 上記金属コロイド粒子及び上述の高分子顔料分散剤を含 むものであり、 コロイド溶液となる。 上記コロイド溶液とは、 金属の微粒子が溶 媒中に分散しており、 溶液として視認できるような状態にあるものを意味してい る。  The solution after the reduction contains the metal colloid particles and the polymer pigment dispersant, and becomes a colloid solution. The above-mentioned colloid solution means a solution in which metal fine particles are dispersed in a solvent and can be visually recognized as a solution.
上記還元後の溶液は、 上記金属コロイド粒子及び上記高分子顔料分散剤のほか に、 金属コロイド溶液の原料に由来する塩化物イオン等の雑イオン、 還元で生じ た塩や、 場合によりアミンを含むものであり、 これらの雑イオン、 塩ゃァミンは、 得られる金属コロイド溶液の安定性に悪影響を及ぼすおそれがあるので、 除去し ておくことが望ましい。 これらの成分の除去には、 電気透析、 遠心分離、 限外濾 過の方法が用いられるが、 後述するように、 遠心分離及び限外濾過の方法を用い た場合、 同時に金属濃度が高められるので好ましい。  The solution after the reduction contains, in addition to the metal colloid particles and the polymer pigment dispersant, miscellaneous ions such as chloride ions derived from the raw material of the metal colloid solution, salts generated by reduction, and optionally amine. Since these miscellaneous ions and chloride may adversely affect the stability of the obtained metal colloid solution, it is desirable to remove them. To remove these components, electrodialysis, centrifugation, and ultrafiltration are used.However, as described later, when the centrifugation and ultrafiltration are used, the metal concentration is increased at the same time. preferable.
本発明の金属コロイド高濃度溶液の製造方法では、 次に上記高分子顔料分散剤 の一部を除去することにより、 金属濃度を高める。 ここで上記高分子顔料分散剤 の一部を除去する対象となる金属コロイド溶液は、 その金属コロイド粒子及ぴ高 分子顔料分散剤からなる固形分が質量基準で 0 . 0 5〜5 0 %であることが好ま しい。 0 . 0 5 %未満であると、 金属モル濃度が低すぎて非効率的であり、 5 0 %を超えると高分子顔料分散剤の一部を除去するのが困難な場合がある。 また、 上記固形分中の金属濃度が 8 5質量%以下であることが好ましい。  In the method for producing a metal colloid high-concentration solution of the present invention, the metal concentration is increased by removing a part of the polymer pigment dispersant. Here, the metal colloid solution from which a part of the high molecular pigment dispersant is removed has a solid content of the metal colloid particles and the high molecular pigment dispersant of 0.05 to 50% by mass. It is preferable that there is. If it is less than 0.05%, the molar concentration of the metal is too low, which is inefficient. If it exceeds 50%, it may be difficult to remove a part of the polymer pigment dispersant. Further, the metal concentration in the solid content is preferably 85% by mass or less.
上記高分子顔料分散剤の一部を除去する方法としては、 遠心分離と限外濾過とが 挙げられる。 Methods for removing a part of the polymer pigment dispersant include centrifugation and ultrafiltration.
上記遠心分離を行うことによって、 金属コロイド粒子は沈殿するが、 上記不要 な雑ィオン、 塩ゃァミン及び上記高分子顔料分散剤は上澄み液中に溶解している ため、 上澄み液を除くことにより、 これらの成分を除去することができる。 この ようにして残った金属コロイド粒子は、 溶剤を加えて洗浄し、 さらに遠心分離を 繰り返して行うことにより、 除去効果を高めることができる。 By performing the centrifugation, the metal colloid particles precipitate, but the unnecessary miscellaneous ions, chloride, and the high molecular pigment dispersant are dissolved in the supernatant. Therefore, these components can be removed by removing the supernatant. The metal colloid particles remaining in this manner can be washed by adding a solvent, and the centrifugal separation can be repeated to enhance the removal effect.
上記遠心分離は 1000 G以上で行うものであることが好ましい。 1000 G 未満では、 上記高分子顔料分散剤の一部を除去することが困難になるおそれがあ る。 遠心分離の条件は金属コロイドの粒径で異なり、 例えば、 粒径が数 nmのォ ーダ一の粒子を沈降させるには、 いわゆる超遠心分離条件で行う必要がある。 標 準的な条件としては、 3000 Gで 5 ~ 60分、 好ましくは 1 5〜45分を挙げ ることができる。  The centrifugation is preferably performed at 1000 G or more. If it is less than 1000 G, it may be difficult to remove a part of the polymer pigment dispersant. The conditions for centrifugation differ depending on the particle size of the metal colloid. For example, in order to sediment particles of the order of several nm in particle size, it is necessary to carry out so-called ultracentrifugation conditions. Standard conditions include 3000 G for 5-60 minutes, preferably 15-45 minutes.
上記遠心分離は、 上述の重力加速度、 時間及び Z又は操作回数の条件を適宜変 えることにより、 上記金属コロイド粒子を粒径に基づき分画することができる。 上記分画により、 種々の用途に適する粒径を有する金属コロイド粒子高濃度溶液 とすることができ、 また、 上記金属コロイド粒子の粒径をある程度揃えることが できる。  In the centrifugation, the metal colloid particles can be fractionated based on the particle size by appropriately changing the conditions of the gravitational acceleration, the time, the Z, and the number of operations. By the above-described fractionation, a high-concentration solution of metal colloid particles having a particle size suitable for various uses can be obtained, and the particle size of the metal colloid particles can be made uniform to some extent.
上記遠心分離によって得られる金属コロイド高濃度溶液は濃縮されており、 通 常、 ペースト状の形態となる。 その濃度は質量基準で一般的に固形分 80%以上 であることが好ましい。 上限は特に規定されないが、 取り扱いの容易さを考慮す ると、 90%以下である。  The high concentration metal colloid solution obtained by the centrifugation is concentrated and usually takes the form of a paste. It is preferable that the concentration is generally 80% or more on a mass basis. The upper limit is not specified, but considering the ease of handling, it is 90% or less.
上述の高分子顔料分散剤の一部を除去する方法として、 限外濾過を用いてもよ い。 上記限外濾過 (U l t r a f i l t r a t i o n : UF) は、 精密濾過 (M i c r o f i l t r a t i o n : MF) に用いられる濾過膜よりも更にふるいの 目が小さいものである。 限外濾過は、 通常、 高分子量物質やコロイド物質の分離 を目的として用いられるものであるが、 本発明においては、 金属コロイド溶液の 固形分中の金属濃度を高めるために用いる。  Ultrafiltration may be used as a method for removing a part of the above-mentioned polymer pigment dispersant. The ultrafiltration (Ultrafiltrattion: UF) has a smaller sieve than a filtration membrane used for microfiltration (Microfiltration: MF). Ultrafiltration is generally used for the purpose of separating high molecular weight substances and colloidal substances. In the present invention, it is used to increase the metal concentration in the solid content of the metal colloid solution.
上記限外濾過は、 通常、 分離対象となる物質の径が 1 nn!〜 5 /zmである。 上 記径を対象とすることにより、 上記不要な雑イオン、 塩やァミンとともに、 上記 高分子顔料分散剤を除去し、 金属コロイド溶液の固形分中の金属濃度を高めるこ とができる。 l nm未満であると、 不要な成分が濾過膜を通過せず排除できない ことがあり、 を超えると、 上記金属コロイド粒子の多くが濾過膜を通過し、 求める金属コロイド高濃度溶液が得られない場合がある。 In the ultrafiltration, the diameter of the substance to be separated is usually 1 nn! ~ 5 / zm. By targeting the above diameter, the polymer pigment dispersant as well as the unnecessary miscellaneous ions, salts and amines can be removed, and the metal concentration in the solid content of the metal colloid solution can be increased. If it is less than l nm, unnecessary components cannot be eliminated without passing through the filtration membrane When the value exceeds, many of the metal colloid particles pass through the filtration membrane, and a desired metal colloid high concentration solution may not be obtained.
上記限外濾過の濾過膜としては特に限定されないが、 通常、 例えば、 ポリアク リロ二トリル、 塩化ビュル Zァクリロ-トリル共重合体、 ポリサルフォン、 ポリ イミド、 ポリアミ ド等の樹脂製のものが用いられる。 これらのうち、 ポリアタリ ロニトリル、 ポリサルフォンが好ましく、 ポリアクリロニトリルがより好ましい。 上記限外濾過の濾過膜は、 また、 上記限外濾過終了後に通常行われる濾過膜の洗 浄を効率よく行う点から、 逆洗浄が可能な濾過膜を用いることが好ましい。  The filtration membrane for the ultrafiltration is not particularly limited, but usually, for example, a resin membrane such as polyacrylonitrile, butyl chloride Z acrylo-tolyl copolymer, polysulfone, polyimide, or polyamide is used. Of these, polyatarilonitrile and polysulfone are preferred, and polyacrylonitrile is more preferred. As the filtration membrane for the ultrafiltration, it is preferable to use a filtration membrane capable of backwashing from the viewpoint of efficiently performing the filtration membrane usually performed after the end of the ultrafiltration.
上記限外濾過の濾過膜としては、 分画分子量が 3 0 0 0〜 8 0 0 0 0のものが 好ましい。 3 0 0 0未満であると、 不要な高分子顔料分散剤等が充分に除去され にくく、 8 0 0 0 0を超えると、 上記金属コロイド粒子が濾過膜を通過しやすく なるため、 目的とする金属コロイド溶液が得られない場合がある。 より好ましく は、 1 0 0 0 0〜 6 0 0 0 0である。 上記分画分子量は、 一般的に、 高分子溶液 を限外濾過膜に通す場合に限外濾過膜の孔内を通過して外に排除される高分子の 分子量を指し、 濾過膜の孔径を評価するために用いられる。 上記分画分子量が大 きな値を示す程、 濾過膜の孔径は大きい。  As the filtration membrane for the ultrafiltration, those having a molecular weight cut-off of from 300 to 800,000 are preferable. If it is less than 300, the unnecessary polymer pigment dispersant or the like is difficult to be sufficiently removed, and if it is more than 800, the metal colloid particles easily pass through the filtration membrane. In some cases, a metal colloid solution cannot be obtained. More preferably, it is from 1,000 to 600,000. The molecular weight cut-off generally refers to the molecular weight of the polymer that passes through the pores of the ultrafiltration membrane and is excluded when passing the polymer solution through the ultrafiltration membrane. Used to evaluate. The larger the above-mentioned molecular weight cut-off, the larger the pore size of the filtration membrane.
上記限外濾過の濾過モジュールの形態としては特に限定されず、 例えば、 濾過 膜の形態によって中空紙型モジュール (キヤピラリーモジュールとも呼ばれる) 、 スパイラルモジュール、 チューブラーモジユーノレ、 プレート型モジュール等が挙 げられ、 何れも本発明に好適に用いられる。 これらのうち、 膜面積が大きいほど 濾過に要する時間を短縮することができるので、 濾過面積の割にコンパクトな形 態を有する中空紙型モジュールが、 効率の点から好ましい。 また、 処理を行う金 属コロイド溶液の量が多い場合には、 使用する限界濾過膜本数が多いものを使う ことが好ましい。  The form of the filtration module for the ultrafiltration is not particularly limited, and examples thereof include a hollow paper module (also called a capillary module), a spiral module, a tubular module, and a plate module depending on the form of the filtration membrane. All are suitably used in the present invention. Among them, the hollow paper type module having a compact form for the filtration area is preferable from the viewpoint of efficiency because the time required for filtration can be shortened as the membrane area is large. If the amount of the metal colloid solution to be treated is large, it is preferable to use a large number of filtration membranes to be used.
上記限外濾過の方法としては特に限定されず、 例えば、 従来公知の方法等が用 いられ、 通常、 上述の反応により得られた金属コロイド粒子及び高分子顔料分散 剤を含む溶液を限外濾過膜に通すことにより行われ、 これにより、 上述の雑ィォ ン、 塩、 アミンゃ高分子顔料分散剤を含む濾液が排除される。 上記限外濾過は、 通常、 濾液の上記雑イオンが所望の濃度以下に除去されるまで繰り返し行う。 そ の際、 処理する金属コロイド溶液の濃度を一定にするために排除された濾液の量 と同じ量の溶剤を加えることが好ましい。 このときに加える溶剤として、 還元時 に用いていたものと異なる種類のものを用いることで、 金属コロイド溶液の溶剤 を置換することが可能である。 The ultrafiltration method is not particularly limited. For example, a conventionally known method is used. Usually, the solution containing the metal colloid particles and the polymer pigment dispersant obtained by the above-described reaction is subjected to ultrafiltration. This is done by passing through a membrane, whereby the filtrate containing the above-mentioned miscellaneous, salt and amine-polymer pigment dispersants is eliminated. The ultrafiltration is Usually, the process is repeated until the above-mentioned miscellaneous ions in the filtrate are removed to a desired concentration or less. At that time, it is preferable to add the same amount of the solvent as the amount of the removed filtrate in order to keep the concentration of the metal colloid solution to be treated constant. By using a solvent different from the one used during the reduction as the solvent added at this time, it is possible to replace the solvent of the metal colloid solution.
上記限外濾過は、 通常の操作、 例えば、 いわゆるバッチ方式で行うことができ る。 このバッチ方式は、 限外濾過が進んだ分、 処理対象である金属コロイド溶液 を加えていく方法である。 なお、 上記限外濾過は、 上記雑イオンが所望の濃度以 下に除去された後で、 固形分濃度を高めるために更に行うことが可能である。 このように遠心分離及び限外濾過によって得られる金属コロイド高濃度溶液は、 処理前の金属コロイド粒子及び高分子顔料分散剤を含む溶液における固形分中の 金属濃度の値により具体的な値は異なるが、 処理前に比べて、 固形分中の金属濃 度が増加している。 好ましくは、 処理前の金属コロイド粒子及び高分子顔料分散 剤を含む溶液の固形分中の金属濃度が 8 5質量%以下であり、 処理した得られる 金属コロイド高濃度溶液の固形分中の金属濃度が 9 0質量。/。以上である。 また、 好ましくは、 処理前後での金属濃度の差が 1 0質量%以上である。  The ultrafiltration can be performed by a usual operation, for example, a so-called batch method. In this batch method, the metal colloid solution to be treated is added as much as the ultrafiltration has progressed. The ultrafiltration can be further performed after the miscellaneous ions have been removed to a desired concentration or less to increase the solid content concentration. The specific value of the metal colloid high concentration solution obtained by centrifugation and ultrafiltration differs depending on the value of the metal concentration in the solid content in the solution containing the metal colloid particles and the polymer pigment dispersant before the treatment. However, the metal concentration in the solid content is higher than before the treatment. Preferably, the metal concentration in the solid content of the solution containing the metal colloid particles and the polymer pigment dispersant before the treatment is 85% by mass or less, and the metal concentration in the solid content of the treated high-concentration metal colloid solution is obtained. Is 90 mass. /. That is all. Preferably, the difference between the metal concentrations before and after the treatment is 10% by mass or more.
また、 上記遠心分離によって得られた金属コロイド高濃度溶液の固形分濃度は、 上記限外濾過によって得られたものに比べて高いが、 溶剤を加えて最終的には、 固形分が 1〜5 0質量%に調整されることが好ましい。 ここでも、 加える溶剤と して、 還元時に用いていたものと異なる種類のものを用いることで、 金属コロイ ド溶液の溶剤を置換することが可能である。  The solid content of the metal colloid high-concentration solution obtained by the centrifugation is higher than that obtained by the ultrafiltration, but finally, the solid content becomes 1 to 5 by adding a solvent. It is preferably adjusted to 0% by mass. Also in this case, it is possible to replace the solvent of the metal colloid solution by using a different type of solvent as the solvent to be added during the reduction.
このようにして得られる金属コロイド高濃度溶液は、 固形分中の金属濃度が高 いため、 高い導電性、 金属光沢、 着色性、 熱伝導性等の金属の有する性質を充分 に発揮させることができる。 上記金属コロイド溶液は、 また、 上述の高分子顔料 分散剤が低濃度にまで除去されているので、 基材上に塗布して、 金属性皮膜を形 成するのに好適である。 上記基材への塗布の方法としては特に限定されず、 例え ば、 従来公知の方法によることができる。  Since the metal colloid high-concentration solution obtained in this way has a high metal concentration in the solid content, it can sufficiently exhibit properties of the metal such as high conductivity, metallic luster, coloring, and thermal conductivity. . The above-mentioned metal colloid solution is suitable for forming a metallic film by applying it on a substrate since the above-mentioned polymer pigment dispersant is removed to a low concentration. The method of applying the composition to the substrate is not particularly limited. For example, a conventionally known method can be used.
上記金属性皮膜としては、 導電性を有するものや金属光沢を有するものを挙げ ることができる。 Examples of the metallic film include those having conductivity and those having metallic luster. Can be
上記金属コロイド溶液は、 また、 着色材として光学材料等の樹脂成形物や塗料 組成物等に用いてもよく、 抗菌材、 触媒、 化粧品、 電磁波シールド等に用いても よい。 発明を実施するための最良の形態  The metal colloid solution may be used as a coloring material in resin moldings such as optical materials, coating compositions, and the like, and may be used in antibacterial materials, catalysts, cosmetics, electromagnetic wave shields, and the like. BEST MODE FOR CARRYING OUT THE INVENTION
以下に実施例を挙げて本発明を更に詳しく説明するが、 本発明はこれら実施例 のみに限定されるものではない。 「°/0」 は質量%である。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to only these Examples. “° / 0 ” is% by mass.
実施例 1  Example 1
2 1コルベンにディスパービック 1 9 1 (ビックケミ一社製) 6 . 2 g、 及び、 エタノール 2 8 0 . 2 gを入れた。 このコルベンをウォーターバスに入れ、 ディ スパービック 1 9 1が溶解するまで 5 0 °Cで攪拌した。 ここに、 エタノール 2 8 0 . 2 gに溶解させた塩化金酸 3 0 . 0 gを攪袢しながら加えて 5 0 °Cで 1 0分 間攪拌した。 次に、 ジメチルァミノエタノール 3 2 . 4 gを加えたところ、 液が 一瞬で黒変し、 液温が 6 3 °Cまで上昇した。 そのまま放置して液温が 5 0でまで 下がったところで、 この温度を保ちながら 2時間攪拌を続け、 黒っぽい紫色を呈 する金コロイドのエタノール溶液が得られた。  In 21 Kolben, 6.2 g of Dispervic 191 (manufactured by BIC CHEMICAL) and 280.2 g of ethanol were added. The Kolben was placed in a water bath and stirred at 50 ° C. until Dispersic 191 was dissolved. To this, 30.0 g of chloroauric acid dissolved in 280.2 g of ethanol was added with stirring, and the mixture was stirred at 50 ° C for 10 minutes. Next, when 32.4 g of dimethylaminoethanol was added, the solution instantaneously turned black and the solution temperature rose to 63 ° C. When the solution was allowed to stand and the temperature of the solution dropped to 50, stirring was continued for 2 hours while maintaining the temperature to obtain an ethanol solution of colloidal gold exhibiting a dark purple color.
次に、 限外濾過モジュール AH P 1 0 1 0 (旭化成社製;分画分子量 5 0 0 0 0、 使用膜本数 4 0 0本) 、 マグネットポンプ、 及び、 下部にチューブ接続口の ある 3 1のステンレスカップをシリコンチューブでつなぎ、 限外濾過装置とした。 先の金コロイ ドのエタノール溶液をステンレスカップに入れ、 さらに 2 1のエタ ノールを加えてから、 ポンプを稼動させて限外濾過を行った。 約 4 0分後にモジ ユールからの濾液が 2 1になった時点で、 ステンレスカップに 2 1のエタノール を加えた。 その後、 濾液の伝導度が 3 0 S / c m以下になったことを確認し、 母液の量が 5 0 O m 1になるまで濃縮を行った。  Next, the ultrafiltration module AH P100 (made by Asahi Kasei Corporation; molecular weight cut-off: 50,000; number of membranes used: 400); a magnet pump; The stainless steel cup was connected with a silicon tube to form an ultrafiltration device. The ethanol solution of gold colloid was placed in a stainless steel cup, and 21 ethanol was added. Then, the pump was operated to perform ultrafiltration. When the filtrate from the module became 21 after about 40 minutes, 21 ethanol was added to the stainless steel cup. Thereafter, the filtrate was confirmed to have a conductivity of 30 S / cm or less, and concentrated until the amount of the mother liquor became 50 Om1.
続いて、 5 0 O m 1ステンレスカップ、 限外濾過モジュール AH P 0 0 1 3 ( 旭化成社製;分画分子量 5 0 0 0 0、 使用膜本数 1 0 0本) 、 チューブポンプ、 及び、 ァスピレーターからなる限外濾過装置を組んだ。 このステンレスカップに 先に得られた母液を入れ、 固形分濃度を高めるための濃縮を行った。 母液が約 1 0 Om 1になった時点でポンプを停止して、 濃縮を終了することにより、 固形分 30%の金コロイドのエタノール溶液を得た。 電子顕微鏡観察から得られた、 こ の溶液中の金コロイド粒子の平均粒子径は、 22 nmであった。 また、 TG— D TA (セイコーインストウルメント製) を用いて、 金コロイド粒子と高分子顔料 分散剤とからなる固形分中の金の含有率を計測したところ、 仕込みの 70質量% に対して、 90質量%であった。 Subsequently, a 50 Om1 stainless steel cup, an ultrafiltration module AH P001 (manufactured by Asahi Kasei Corporation; molecular weight cut-off: 500, number of membranes used: 100), a tube pump, and an aspirator An ultrafiltration device consisting of This stainless steel cup The mother liquor obtained above was added and concentrated to increase the solid concentration. When the mother liquor reached about 10 Om 1, the pump was stopped, and the concentration was terminated to obtain an ethanol solution of colloidal gold with a solid content of 30%. The average particle size of the colloidal gold particles in this solution obtained by observation with an electron microscope was 22 nm. Using TG-DTA (manufactured by Seiko Instrument), the content of gold in the solid content consisting of the colloidal gold particles and the polymer pigment dispersant was measured. , 90% by mass.
この金コロイドのエタノー/レ溶液 3 gを 10 c m角のガラス板の中央に落とし、 スピンコーターで 1 s tステップ 400 r pmを 5秒、、 2 n dステップ 600 r pmを 30秒の条件で回転塗布すると、 黒っぽい金色の膜が得られた。 続いて、 この板をオーブンに入れ、 150°Cで 10分間乾燥して溶媒を除去した後、 25 0°Cで 50分間焼成することにより、 膜厚 0. 7 /zmの金属光沢を有する金属性 皮膜が得られた。 この金属性皮膜の表面抵抗率をロレスタ FP (三菱化学社製) を用いて測定したところ、 0. 08 Ω /口であった。  Drop 3 g of this colloidal gold ethanol / ray solution onto the center of a 10 cm square glass plate, and spin-coat with a spin coater at 400 rpm for the first step for 5 seconds and 600 rpm for the second step for 30 seconds. Then, a dark golden film was obtained. Subsequently, the plate was placed in an oven, dried at 150 ° C. for 10 minutes to remove the solvent, and then baked at 250 ° C. for 50 minutes to obtain a metal having a metallic luster of 0.7 / zm in film thickness. A functional film was obtained. The surface resistivity of this metallic film was measured using Loresta FP (manufactured by Mitsubishi Chemical Corporation) and found to be 0.08 Ω / port.
実施例 2  Example 2
1回目の限外濾過モジュールを AHP 1010から ACP 1010 (旭化成社 製;分画分子量 13000、 使用膜本数 400本) に代えたこと、 及び、 1回目 の限外濾過で加えたエタノールの代わりに同量のィオン交換水を用いたこと以外 は、 実施例 1と同様に処理を行い、 固形分 30%の金コロイドの水溶液を得た。 この溶液中の金コロイド粒子の平均粒子径は、 21 nmであった。 また、 TG_ DTA (セイコーインストウルメント製) を用いて、 固形分中の金の含有率を計 測したところ、 仕込みの 70質量%に対して 90質量%であった。  The first ultrafiltration module was changed from AHP1010 to ACP1010 (Asahi Kasei Corporation; molecular weight cut off: 13000, 400 membranes used), and the same procedure was applied instead of ethanol added in the first ultrafiltration. Except that the amount of ion-exchanged water was used, the same treatment as in Example 1 was performed to obtain an aqueous solution of gold colloid having a solid content of 30%. The average particle size of the colloidal gold particles in this solution was 21 nm. Further, the content of gold in the solid content was measured using TG_DTA (manufactured by Seiko Instrument), and was found to be 90% by mass with respect to 70% by mass of the preparation.
実施例 3  Example 3
50 Om 1コルベンに E FKA4550 (EFKAケミカル社製) 4. 9 g、 エタノール 1 1 2. 1 g、 及び、 ジメチルァミノエタノール 1 3. 0 gを入れた。 このコルベンをウォーターパスに入れ、 EFKA4550が溶解するまで 50°C で約 10分間攪拌した。 撹拌を継続しながら、 ここにエタノール 1 1 2. 1 gに 溶解させた塩化金酸 1 2. O gを加えたところ、 液が一瞬で黒変し、 液温が 58 °Cまで上昇した。 そのまま放置して液温が 50°Cまで下がったところで、 この温 度を保ちながら 2時間攪拌を続け、 黒っぽい紫色を呈する金コロイドのエタノー ノレ溶液が得られた。 4.9 g of E FKA4550 (manufactured by EFKA Chemical Co., Ltd.), 12.1 g of ethanol, and 13.0 g of dimethylaminoethanol were placed in a 50 Om1 colben. The Kolben was placed in a water path and stirred at 50 ° C for about 10 minutes until EFKA4550 was dissolved. While stirring was continued, when 12.2 g of chloroauric acid dissolved in 12.1 g of ethanol was added, the solution turned black instantaneously and the temperature of the solution decreased to 58%. ° C. When the solution temperature was lowered to 50 ° C by leaving it as it was, stirring was continued for 2 hours while maintaining this temperature, and an ethanol solution of colloidal gold having a dark purple color was obtained.
続いて、 50 Om 1ステンレスカップ、 限外濾過モジュール AHP 001 3 ( 旭化成社製;分画分子量 50000、 使用膜本数 100本) 、 チューブポンプ、 及び、 ァスピレーターからなる限外濾過装置を組んだ。 このステンレスカップに 先に得られた金コロイドのエタノール溶液を入れて限外濾過を行った。 約 30分 後にモジュールからの濾液が 300m lになった時点で、 ステンレスカップに 3 00m lのエタノールを加えた。 濾液の伝導度が 30 μ SZ cm以下になったこ とを確認してから、 母液を 5 Om 1になるまで濃縮し、 固形分 25%の金コロイ ドのエタノール溶液を得た。 この溶液中の金コロイド粒子の平均粒子径は、 24 nmであった。 また、 TG— DTA (セイコーインス トウルメント製) を用いて、 金コロイド粒子と高分子顔料分散剤とからなる固形分中の金の含有率を計測した ところ、 仕込みの 70質量%に対して、 90質量%であった。  Subsequently, an ultrafiltration apparatus including a 50 Om 1 stainless steel cup, an ultrafiltration module AHP0013 (Asahi Kasei Corporation; molecular weight cutoff 50,000, number of membranes used: 100), a tube pump, and an aspirator was assembled. The ethanol solution of the previously obtained colloidal gold was put into this stainless steel cup, and ultrafiltration was performed. After about 30 minutes, when the filtrate from the module reached 300 ml, 300 ml of ethanol was added to the stainless steel cup. After confirming that the conductivity of the filtrate was 30 μSZ cm or less, the mother liquor was concentrated to 5 Om 1 to obtain an ethanol solution of gold colloid having a solid content of 25%. The average particle size of the colloidal gold particles in this solution was 24 nm. Using TG-DTA (manufactured by Seiko Instruments), the content of gold in the solid content consisting of the colloidal gold particles and the polymeric pigment dispersant was measured. % By mass.
実施例 4  Example 4
500m lコルベンにディスパービック 184 (ビックケミ一社製) を 4. 6 g、 イオン交換水を 1 1 2. 1 g、 及び、 ジメチルァミノエタノール 1 3. 0 g を入れて室温で約 10分間攪拌した。 撹拌を継続しながら、 ここにイオン交換水 を 1 1 2. 1 gに溶解させた塩化金酸 12. 0 gを加えたところ、 液が一瞬で黒 変し、 液温が 20°Cから 28°Cまで上昇した。 そのまま 2時間攪拌を続け、 黒つ ぼい紫色を呈するの金コロイド水溶液が得られた。  In a 500 ml Kolben, add 4.6 g of Dispervic 184 (manufactured by BIC CHEMI), 11.2 g of ion-exchanged water, and 13.0 g of dimethylaminoethanol and stir at room temperature for about 10 minutes. did. While stirring, 12.0 g of chloroauric acid in which ion-exchanged water was dissolved in 12.1 g was added, and the solution turned black instantaneously, and the temperature of the solution changed from 20 ° C to 28 ° C. ° C. The stirring was continued for 2 hours to obtain an aqueous gold colloid solution having a dark bluish purple color.
続いて、 50 Om 1ステンレスカップ、 限外ろ過モジュール AHP 001 3 ( 旭化成社製;分画分子量 50000、 使用膜本数 100本) 、 チューブポンプ、 及び、 ァスピレーターからなる限外濾過装置を組んだ。 このステンレスカップに 先に得られた金コロイドの水溶液を入れて限外濾過を行った。 約 30分後にモジ ユールからの濾液が 300m lになった時点で、 ステンレスカップに 30 Om 1 のイオン交換水を加えた。 濾液の伝導度が 300 μ S/cm以下になったことを 確認してから、 母液を 5 Om lになるまで濃縮し、 固形分 25%の金コロイドの ェタノール溶液を得た。 この溶液中の金コロイド粒子の平均粒子径は、 2 5 n m であった。 また、 TG— DTA (セィコ一^ Tンストウルメント製) を用いて、 金 コロイド粒子と高分子顔料分散剤とからなる固形分中の金の含有率を計測したと ころ、 仕込みの 7 0質量%に対して、 9 0質量%であった。 Subsequently, an ultrafiltration apparatus comprising a 50 Om 1 stainless steel cup, an ultrafiltration module AHP0013 (Asahi Kasei Corporation; molecular weight cutoff 50,000, number of membranes used: 100), a tube pump, and an aspirator was assembled. The aqueous solution of the previously obtained colloidal gold was put into the stainless steel cup, and ultrafiltration was performed. About 30 minutes later, when the filtrate from the module reached 300 ml, 30 Om 1 of ion-exchanged water was added to the stainless steel cup. After confirming that the conductivity of the filtrate was 300 μS / cm or less, the mother liquor was concentrated to 5 Oml, and a gold colloid with a solid content of 25% was obtained. An ethanol solution was obtained. The average particle diameter of the colloidal gold particles in this solution was 25 nm. In addition, when the content of gold in the solid content composed of colloidal gold particles and a polymeric pigment dispersant was measured using TG-DTA (manufactured by Seiko Corporation), 70 mass of the charged material was measured. % Was 90% by mass.
実施例 5  Example 5
2 1 コルベンにディスパービック 1 9 0 (ビックケミ一社製) 1 4. 0 g、 1 mo 1 / 1硝酸 2 9 4. 3 g、 及び、 イオン交換水 2 9 4. 3 gを入れた。 この コルベンをウォーターバスに入れ、 デイスパービック 1 9 0が溶解するまで 5 0 °Cで攪拌した。 ここに、 イオン交換水を 8 8 3. 0 gに溶解させた硝酸銀 5 0. 0 gを攪拌しながら加えて、 7 0 °Cで 1 0分間攪拌した。 次に、 ジメチルァミノ エタノール 1 3 1. 0 gを加えたところ、 液が一瞬で黒変し、 液温が 7 6 °Cまで 上昇した。 そのまま放置して液温が 7 0°Cまで下がったところで、 この温度を保 ちながら 2時間攪拌を続け、 黒っぽい黄色を呈する銀コロイドの水溶液が得られ た。 この反応液を 1 1のポリ瓶に移し換え、 6 0 °Cの恒温室で 1 8時間静置した。 次に、 限外ろ過モジュール AHP 1 0 1 0 (旭化成社製;分画分子量 5 0 0 00、 使用膜本数 4 0 0本) 、 マグネットポンプ、 下部にチューブ接続口のある 3 1の ステンレスカップをシリコンチューブでつないで、 限外ろ過装置とした。 先の 6 0°Cの恒温室で 1 8時間静置した反応液をステンレスカップに入れて、 さらに 2 1のイオン交換水を加えてから、 ポンプを稼動させて限外濾過を行った。 約 40 分後にモジュールからの濾液が 2 1になった時点で、 ステンレスカップに 2 1の イオン交換水を加えた。 その後、 濾液の伝導度がが 3 0 0 μ SZ cm以下になつ たことを確認し、 母液の量が 5 0 0m lになるまで濃縮を行った。  21 1 Kolben was charged with 14.0 g of Dispervic 190 (manufactured by BIC CHEMICAL), 294.3 g of 1 mo 1/1 nitric acid, and 294.3 g of ion-exchanged water. The Kolben was placed in a water bath and stirred at 50 ° C. until the Dispervic 190 was dissolved. To this, 50.0 g of silver nitrate obtained by dissolving 83.0 g of ion-exchanged water was added with stirring, and the mixture was stirred at 70 ° C. for 10 minutes. Next, when 131.0 g of dimethylaminoethanol was added, the liquid instantly turned black and the liquid temperature rose to 76 ° C. When the solution temperature was lowered to 70 ° C. by leaving it as it was, stirring was continued for 2 hours while maintaining this temperature, and an aqueous solution of silver colloid having a dark yellow color was obtained. This reaction solution was transferred to a poly bottle of 11 and allowed to stand in a constant temperature room at 60 ° C. for 18 hours. Next, an ultrafiltration module AHP100 (made by Asahi Kasei Corporation; molecular weight cut-off: 500,000 membranes: 400), a magnet pump, and a 31 stainless steel cup with a tube connection port at the bottom An ultrafiltration device was connected by a silicon tube. The reaction solution was allowed to stand for 18 hours in a constant temperature chamber at 60 ° C., placed in a stainless steel cup, and after adding 21 ion-exchanged water, the pump was operated to perform ultrafiltration. When the filtrate from the module became 21 after about 40 minutes, 21 ion-exchanged water was added to the stainless steel cup. After that, it was confirmed that the conductivity of the filtrate was less than 300 μSZ cm, and the concentration was performed until the amount of the mother liquor became 500 ml.
続いて母液を入れた 5 0 Om lステンレスカップ、 限外ろ過モジュール AHP 0 0 1 3 (旭化成社製;分画分子量 5 0 0 00、 使用膜本数 1 00本) 、 チュー ブポンプ、 及ぴ、 ァスピレーターをからなる限外濾過装置を組んだ。 このステン レスカップに先に得られた母液を入れ、 固形分濃度を高めるための濃縮を行った。 母液が約 1 0 0m lになった時点でポンプを停止して、 濃縮を終了することによ り、 固形分 3 0%の銀コロイドの水溶液が得られた。 この溶液中の金コロイド粒 子の平均粒子径は、 27 nmであった。 また、 TG— DTA (セイコーインスト ウルメント製) を用いて、 固形分中の銀の含有率を計測したところ、 仕込みの 8 5質量%に対して、 90質量%であった。 Subsequently, 50 Oml stainless steel cup containing mother liquor, ultrafiltration module AHP001 (Asahi Kasei Co., Ltd .; molecular weight cut-off 50,000, number of membranes used: 100), tube pump, and aspirator Was assembled in an ultrafiltration apparatus. The mother liquor obtained above was placed in this stainless steel cup, and concentrated to increase the solid content. When the mother liquor reached about 100 ml, the pump was stopped, and the concentration was terminated, whereby an aqueous solution of silver colloid having a solid content of 30% was obtained. Gold colloid particles in this solution The average particle size of the particles was 27 nm. Further, the content of silver in the solid content was measured using TG-DTA (manufactured by Seiko Instrument), and was found to be 90% by mass with respect to 85% by mass of the preparation.
実施例 6  Example 6
1回目の限外濾過モジュ^ "ルを AHP 1010から AC P 1010 (旭化成社 製;分画分子量 1 3000、 使用膜本数 400本) に代えたこと、 及ぴ、 1回目 の限外濾過で加えたィォン交換水の代わりに同量のエタノールを用いたこと以外 は、 実施例 5と同様に処理を行い、 固形分 30%の銀コロイドの水溶液を得た。 この溶液中の銀コロイド粒子の平均粒子径は、 27 nmであった。 また、 TG_ DTA (セイコーインストウルメント製) を用いて、 固形分中の銀の含有率を計 測したところ、 仕込みの 85質量%に対して 90質量%であった。  The first ultrafiltration module was changed from AHP1010 to ACP1010 (Asahi Kasei Corporation; molecular weight cut off: 13,000, membrane number: 400), and added in the first ultrafiltration The procedure was the same as in Example 5, except that the same amount of ethanol was used instead of the ion-exchanged water to obtain an aqueous solution of silver colloid having a solid content of 30%. The particle size was 27 nm, and the content of silver in the solid was measured using TG_DTA (manufactured by Seiko Instrument). Met.
この銀コロイドの水溶液 3 gを 10 cm角のガラス板の中央に落とし、 スピン コーターで 1 s tステップ 400 r pmを 5秒、、 2 n dステップ 600 r を 30秒の条件で回転塗布すると、 青みがかった銀色の膜が得られた。 続いて、 こ の板をオーブンに入れ、 1 50°Cで 10分間乾燥して溶媒を除去した後、 250 °Cで 50分間焼成することにより、 膜厚 0. 5 μιηの金属光沢を有する金属性皮 膜が得られた。 この金属性皮膜の表面抵抗率をロレスタ FP (三菱化学社製) を 用いて測定したところ、 0. 05 Ωノロであった。  When 3 g of this aqueous solution of silver colloid was dropped in the center of a 10 cm square glass plate and spin-coated with a spin coater under the conditions of 1st step 400 rpm for 5 seconds and 2nd step 600 r for 30 seconds, it became bluish. A silver film was obtained. Subsequently, the plate was placed in an oven, dried at 150 ° C for 10 minutes to remove the solvent, and then baked at 250 ° C for 50 minutes to obtain a metal with a metal luster of 0.5 μιη. A dermal membrane was obtained. The surface resistivity of this metallic film was measured using a Loresta FP (manufactured by Mitsubishi Chemical Corporation) and found to be 0.05 Ω.
実施例 7  Example 7
50 Om 1コルベンにディスパービック 1 92 (ビックケミ一社製) 1. 6 g、 1 mo 1/1硝酸 82. 4 g、 及ぴ、 イオン交換水 82. 4 gを順番に入れる。 このコルベンをウォーターバスに入れ、 デイスパービック 1 92が溶解するまで 50°Cで攪拌した。 ここにイオン交換水を 247. 25 gに溶解させた硝酸銀 1 4. 0 gを攪拌しながら加えて、 70°Cで 10分間攪拌した。 次に、 ジメチルァ ミノエタノール 36. 7 gを加えたところ、 この時、 液が一瞬で黒変し、 液温が 74°Cまで上昇した。 そのまま放置して液温が 70°Cまで下がったところで、 こ の温度を保ちながら 2時間攪拌を続け、 黒つぼい黄色を呈する銀コロイドの水溶 液が得られた。 この反応液を入れた容器を 60 °Cの恒温室で 18時間静置した後、 限外ろ過モ ジュール AH P 0013 (旭化成社製;分画分子量 50000、 使用膜本数 10 0本) 、 チューブポンプ、 及び、 ァスピレーターとともに限外ろ過装置を組んで、 限外濾過を行った。 約 30分後にモジュールからの濾液が 300mlになった時 点で、 コルベンに 300m lのイオン交換水を加えた。 濾液の伝導度が 300 μ S/cm以下になったことを確認してから、 母液を 5 Om lになるまで濃縮し、 固形分 25 %の銀コ口ィドの水溶液を得た。 この溶液中の銀コ口ィド粒子の平均 粒子径は 30 nmであった。 また、 TG— DTA (セイコーインストウルメント 製) を用いて、 固形分中の銀の含有率を計測したところ、 仕込みの 85質量%に 対して、 90質量%であった。 1.6 g, 1 mo 1/1 nitric acid (82.4 g), and ion-exchanged water (82.4 g) are added in this order to 50 Om1 kolben. The Kolben was placed in a water bath and stirred at 50 ° C. until Dispervik 192 was dissolved. 14.0 g of silver nitrate obtained by dissolving 247.25 g of ion-exchanged water was added thereto with stirring, followed by stirring at 70 ° C. for 10 minutes. Next, 36.7 g of dimethylaminoethanol was added. At this time, the liquid instantly turned black and the liquid temperature rose to 74 ° C. When the solution temperature was lowered to 70 ° C by leaving it as it was, stirring was continued for 2 hours while maintaining the temperature, and an aqueous solution of silver colloid having a blackish yellow color was obtained. The container containing the reaction solution was allowed to stand in a constant temperature chamber at 60 ° C. for 18 hours, and then the ultrafiltration module AHP 0013 (Asahi Kasei Co., Ltd .; molecular weight cut-off 50,000, membrane number used: 100), tube pump Ultrafiltration was performed by setting up an ultrafiltration device together with the aspirator and the aspirator. About 30 minutes later, when the filtrate from the module reached 300 ml, 300 ml of ion-exchanged water was added to the Kolben. After confirming that the conductivity of the filtrate became 300 μS / cm or less, the mother liquor was concentrated to 5 Oml to obtain an aqueous solution of silver colloid having a solid content of 25%. The average particle size of the silver colloid particles in this solution was 30 nm. Further, the content of silver in the solid content was measured using TG-DTA (manufactured by Seiko Instrument), and was found to be 90% by mass with respect to 85% by mass of the preparation.
実施例 8  Example 8
硝酸で酸性にした 0. lmo 1 / 1の硝酸銀水溶液 100 m 1をビーカーに取 り、 デイスパービック 190 (ビックケミ一社製) を 5 g加えて溶解させた。 こ こにトリエタノールァミン 5m 1を加え、 濃厚で鮮やかな黄色を呈する銀コロイ ドの水溶液を得た。 この溶液を遠心分離器により、 3000Gで 30分間の条件 で遠心分離を行って銀コロイド粒子を沈降させた。 上澄みを取り出した後、 水を 適量加え、 先ほどと同じ条件での遠心分離を 3度繰り返すことにより洗浄を行い、 固形分 85 %の銀コ口ィドペース トを得た。  100 ml of an aqueous 0.1 ml silver nitrate solution acidified with nitric acid was placed in a beaker, and 5 g of Dispervic 190 (manufactured by BYK-Chemie) was added and dissolved. To this was added 5 ml of triethanolamine to obtain an aqueous solution of silver colloid which was rich and bright yellow. This solution was centrifuged at 3000 G for 30 minutes using a centrifuge to precipitate silver colloid particles. After removing the supernatant, an appropriate amount of water was added, and washing was performed by repeating the centrifugation under the same conditions three times as before to obtain a silver paste with a solid content of 85%.
このペーストをイソプロパノールで希釈し、 固形分 20%に希釈した溶液につ いて、 TG— DTA (セイコーインス トウルメント製) を用いて、 固形分中の銀 の含有率を計測したところ、 仕込みの 46質量%に対して、 98質量%であった。 限外濾過又は遠心分離を用いた実施例 1〜 8では、 仕込量と比較して高濃度の 金属コロイド粒子を含有する金属コロイド溶液が得られた。 また、 実施例 1及び This paste was diluted with isopropanol, and the solution diluted to 20% solid content was measured for the silver content in the solid content using TG-DTA (manufactured by Seiko Instruments). % Was 98% by mass. In Examples 1 to 8 using ultrafiltration or centrifugation, a metal colloid solution containing a higher concentration of metal colloid particles as compared with the charged amount was obtained. Also, in Example 1 and
6では、 得られた金属コロイド高濃度溶液は、 高い導電性を有する皮膜の形成に 好適に使用することができた。 In 6, the obtained metal colloid high-concentration solution could be suitably used for forming a film having high conductivity.
実施例 9  Example 9
実施例 1において、 デイスパービック 1 9 1 (ビックケミ一社製) 6. 2 gを 21, 5 gに增量したこと以外は同様にして、 固形分 30%の金コロイ ドのエタ ノーノレ溶液を得た。 TG— DTA (セイコーインス トウルメント製) を用いて、 金コロイド粒子と高分子顔料分散剤とからなる固形分中の金の含有率を計測した ところ、 仕込みの 40質量%に対して、 70質量%であった。 In the same manner as in Example 1, except that 6.2 g of Dispervik 191 (manufactured by Big Chemical Co., Ltd.) was weighed to 21.5 g, a gold colloid ethanol having a solid content of 30% was produced in the same manner. A nore solution was obtained. Using TG-DTA (manufactured by Seiko Instruments), the content of gold in the solid content consisting of colloidal gold particles and a polymeric pigment dispersant was measured. Met.
実施例 10  Example 10
1回目の限外濾過モジュールを AHP 1010から ACP 1010 (旭化成社 製;分画分子量 1 3000、 使用膜本数 400本) に代えたこと、 及び、 1回目 の限外濾過で加えたェタノールの代わりに同量のィォン交換水を用いたこと以外 は、 実施例 1と同様に処理を行い、 固形分 30%の金コロイドの水溶液を得た。 この溶液中の金コロイド粒子の平均粒子径は、 21 nmであった。 また、 TG— DTA (セイコ^"インス トウルメント製) を用いて、 固形分中の金の含有率を計 測したところ、 仕込みの 40質量%に対して 55質量%であった。 産業上の利用可能性  The first ultrafiltration module was changed from AHP 1010 to ACP 1010 (Asahi Kasei Corporation; molecular weight cut off 13,000, membrane number 400 used), and instead of ethanol added in the first ultrafiltration. Except that the same amount of ion-exchanged water was used, the treatment was performed in the same manner as in Example 1 to obtain an aqueous solution of gold colloid having a solid content of 30%. The average particle size of the colloidal gold particles in this solution was 21 nm. In addition, the content of gold in the solid content was measured using TG-DTA (manufactured by Seiko Instruments), and was found to be 55% by mass with respect to 40% by mass of the charged material. possibility
本発明の製造方法によれば、 分散安定性を確保するために多量の高分子顔料分 散剤を用いた場合にも、 金属濃度が高い金属コロイド高濃度溶液が得ることがで きる。 得られる金属コロイド高濃度溶液は、 導電性や金属光沢を有する金属性皮 膜に好適に用いられる。  According to the production method of the present invention, a metal colloid high concentration solution having a high metal concentration can be obtained even when a large amount of a polymer pigment dispersant is used to ensure dispersion stability. The resulting metal colloid high-concentration solution is suitably used for a metallic coating having conductivity or metallic luster.

Claims

請求の範囲 The scope of the claims
1 . 金属コロイド粒子及び高分子顔料分散剤を含む溶液から前記高分子顔料分散 剤の一部を除去することを特徴とする金属コロイド高濃度溶液の製造方法。 1. A method for producing a high-concentration metal colloid solution, comprising removing a part of the polymer pigment dispersant from the solution containing the metal colloid particles and the polymer pigment dispersant.
2 . 高分子顔料分散剤の一部の除去は、 遠心分離によるものである請求の範囲第 1項記載の金属コロイド高濃度溶液の製造方法。 2. The method for producing a metal colloid high concentration solution according to claim 1, wherein the removal of a part of the polymer pigment dispersant is performed by centrifugation.
3 . 遠心分離は、 1 0 0 0 G以上で行うものである請求の範囲第 2項記載の金属 gロイド高濃度溶液の製造方法。 3. The method according to claim 2, wherein the centrifugation is performed at 100 G or more.
4 . 高分子顔料分散剤の一部の除去は、 限外濾過によるものである請求の範囲第 1項記載の金属コロイド高濃度溶液の製造方法。 4. The method for producing a high-concentration metal colloid solution according to claim 1, wherein the removal of a part of the polymer pigment dispersant is performed by ultrafiltration.
5 . 限外濾過は、 分画分子量が 3 0 0 0〜8 0 0 0 0である濾過膜を用いるもの である請求の範囲第 4項記載の金属コロイド高濃度溶液の製造方法。 5. The method for producing a high-concentration metal colloid solution according to claim 4, wherein the ultrafiltration uses a filtration membrane having a molecular weight cut-off of from 300 to 800.
6 . 金属コロイド粒子及び高分子顔料分散剤を含む溶液は、 高分子顔料分散剤存 在下で金属化合物を還元することにより得られるものである請求の範囲第 1、 2、 3、 4又は 5項記載の金属コロイド高濃度溶液の製造方法。 6. The solution containing the metal colloid particles and the polymer pigment dispersant, wherein the solution is obtained by reducing a metal compound in the presence of the polymer pigment dispersant. The method for producing a metal colloid high concentration solution according to the above.
7 . 金属コロイド粒子及び高分子顔料分散剤を含む溶液の固形分中の金属濃度が 8 5質量%以下であり、 金属コロイド高濃度溶液の固形分中の金属濃度が 9 0質 量部以上である請求の範囲第 1、 2、 3、 4、 5又は 6項記載の金属コロイド高 濃度溶液の製造方法。 7. The metal concentration in the solid content of the solution containing the metal colloid particles and the polymer pigment dispersant is 85% by mass or less, and the metal concentration in the solid content of the metal colloid high concentration solution is 90 mass parts or more. 7. The method for producing a high-concentration metal colloid solution according to claim 1, 2, 3, 4, 5, or 6.
8 . 金属コロイド高濃度溶液と金属コロイド粒子及び高分子顔料分散剤を含む溶 液との固形分中の金属濃度の差が 1 0質量%以上である請求の範囲第 1、 2、 3、 4、 5、 6又は 7項記載の金属コロイド高濃度溶液の製造方法。 8. The method according to claim 1, wherein the difference in metal concentration in the solid content between the metal colloid high concentration solution and the solution containing the metal colloid particles and the polymer pigment dispersant is 10% by mass or more. 8. The method for producing a metal colloid high concentration solution according to 4, 5, 6, or 7.
9 . 請求の範囲第 1、 2、 3、 4、 5、 6、 7又は 8項記載の金属コロイド高濃 度溶液の製造方法により得られることを特徴とする金属コロイド高濃度溶液。 9. A high-concentration metal colloid solution obtained by the method for producing a high-concentration metal colloid solution according to claim 1, 2, 3, 4, 5, 6, 7, or 8.
1 0 . 請求の範囲第 9項記載の金属コロイド高濃度溶液を用いて得られることを 特徴とする皮膜。 10. A film obtained by using the metal colloid high-concentration solution according to claim 9.
PCT/JP2001/004215 2001-05-21 2001-05-21 Process for producing high-concentration colloidal metal solution WO2002094954A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN01813035.6A CN1443227A (en) 2001-05-21 2001-05-21 Process for producing high-concentration colloidal metal solution
JP2002592417A JPWO2002094954A1 (en) 2001-05-21 2001-05-21 Method for producing metal colloid high concentration solution
PCT/JP2001/004215 WO2002094954A1 (en) 2001-05-21 2001-05-21 Process for producing high-concentration colloidal metal solution
TW091110471A TW583288B (en) 2001-05-21 2002-05-20 Method of producing a highly concentrated metal colloid solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2001/004215 WO2002094954A1 (en) 2001-05-21 2001-05-21 Process for producing high-concentration colloidal metal solution

Publications (1)

Publication Number Publication Date
WO2002094954A1 true WO2002094954A1 (en) 2002-11-28

Family

ID=11737332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/004215 WO2002094954A1 (en) 2001-05-21 2001-05-21 Process for producing high-concentration colloidal metal solution

Country Status (4)

Country Link
JP (1) JPWO2002094954A1 (en)
CN (1) CN1443227A (en)
TW (1) TW583288B (en)
WO (1) WO2002094954A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005092519A1 (en) * 2004-03-29 2005-10-06 Nippon Paint Co., Ltd. Method of forming bright coating film, and bright coated article
WO2010021386A1 (en) * 2008-08-22 2010-02-25 日産化学工業株式会社 Metal microparticle-dispersing agent comprising branched polymeric compound having ammonium group

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017071949A1 (en) * 2015-10-30 2017-05-04 Clariant International Ltd Metal dispersion with increased stability

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1176800A (en) * 1997-07-17 1999-03-23 Nippon Paint Co Ltd Solid sol of noble metal or copper, its production, coating material composition and resin formed product
JPH1180647A (en) * 1997-07-17 1999-03-26 Nippon Paint Co Ltd Colloidal solution of noble metal or copper and production thereof with paint composition and resin molded material
EP0911859A1 (en) * 1997-10-23 1999-04-28 Sumitomo Metal Mining Company Limited Transparent electro-conductive structure, process for its production, transparent electro-conductive layer forming coating fluid used for its production, and process for preparing the coating fluid
JPH11209878A (en) * 1998-01-22 1999-08-03 Dipsol Chem Co Ltd Metallic colloid stabilizer, metallic colloid liquid composition containing the same, its preparation and utilization
JPH11236521A (en) * 1998-02-23 1999-08-31 Nippon Paint Co Ltd Bright coating composition, method for forming bright coating film, and coated article
JPH11319538A (en) * 1998-05-20 1999-11-24 Nippon Paint Co Ltd Production for colloid of noble metal or copper
JP2000239853A (en) * 1999-02-25 2000-09-05 Nippon Paint Co Ltd Method for formation of metal thin film and production of reflector plate for reflection type liquid crystal display
JP2000334292A (en) * 1999-05-26 2000-12-05 Mitsuboshi Belting Ltd Production of fine particle

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0297882B1 (en) * 1987-07-01 1993-08-25 Beecham Group Plc Hybrid plasminogen activators
TW278096B (en) * 1992-09-24 1996-06-11 Dsm Nv
JPH1068008A (en) * 1996-08-27 1998-03-10 I Betsukusu:Kk Production of highly active metallic fine particle
JP4411672B2 (en) * 1997-10-23 2010-02-10 住友金属鉱山株式会社 Coating liquid for forming transparent conductive layer and method for producing the same
JP3861508B2 (en) * 1999-04-28 2006-12-20 東洋インキ製造株式会社 Aqueous pigment dispersion and ink jet recording liquid
JP4505084B2 (en) * 1999-09-13 2010-07-14 アイノベックス株式会社 Method for producing metal colloid and metal colloid produced by the method
JP2001325831A (en) * 2000-05-12 2001-11-22 Bando Chem Ind Ltd Metal colloid solution, conductive ink, conductive coating and conductive coating forming base film

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1176800A (en) * 1997-07-17 1999-03-23 Nippon Paint Co Ltd Solid sol of noble metal or copper, its production, coating material composition and resin formed product
JPH1180647A (en) * 1997-07-17 1999-03-26 Nippon Paint Co Ltd Colloidal solution of noble metal or copper and production thereof with paint composition and resin molded material
EP0911859A1 (en) * 1997-10-23 1999-04-28 Sumitomo Metal Mining Company Limited Transparent electro-conductive structure, process for its production, transparent electro-conductive layer forming coating fluid used for its production, and process for preparing the coating fluid
JPH11209878A (en) * 1998-01-22 1999-08-03 Dipsol Chem Co Ltd Metallic colloid stabilizer, metallic colloid liquid composition containing the same, its preparation and utilization
JPH11236521A (en) * 1998-02-23 1999-08-31 Nippon Paint Co Ltd Bright coating composition, method for forming bright coating film, and coated article
JPH11319538A (en) * 1998-05-20 1999-11-24 Nippon Paint Co Ltd Production for colloid of noble metal or copper
JP2000239853A (en) * 1999-02-25 2000-09-05 Nippon Paint Co Ltd Method for formation of metal thin film and production of reflector plate for reflection type liquid crystal display
JP2000334292A (en) * 1999-05-26 2000-12-05 Mitsuboshi Belting Ltd Production of fine particle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005092519A1 (en) * 2004-03-29 2005-10-06 Nippon Paint Co., Ltd. Method of forming bright coating film, and bright coated article
US7166330B2 (en) 2004-03-29 2007-01-23 Nippon Paint Co., Ltd. Method for forming a glittering coating film
GB2429665A (en) * 2004-03-29 2007-03-07 Nippon Paint Co Ltd Method of forming bright coating film and bright coated article
GB2429665B (en) * 2004-03-29 2009-07-08 Nippon Paint Co Ltd Method of forming bright coating film and bright coated article
WO2010021386A1 (en) * 2008-08-22 2010-02-25 日産化学工業株式会社 Metal microparticle-dispersing agent comprising branched polymeric compound having ammonium group
US8722562B2 (en) 2008-08-22 2014-05-13 Nissan Chemical Industries, Ltd. Metal fine particle dispersant containing branched polymer compound having ammonium group
US10597491B2 (en) 2008-08-22 2020-03-24 Nissan Chemical Corporation Metal fine particle dispersant containing branched polymer compound having ammonium group

Also Published As

Publication number Publication date
JPWO2002094954A1 (en) 2004-09-09
TW583288B (en) 2004-04-11
CN1443227A (en) 2003-09-17

Similar Documents

Publication Publication Date Title
KR101533860B1 (en) Copper fine particle, method for producing the same, and copper fine particle dispersion
JP5176824B2 (en) Silver-coated copper fine particles, dispersion thereof, and production method thereof
TWI597004B (en) Conductive material and process
KR100935168B1 (en) Nonaqueous conductive nanoink composition
US9839961B2 (en) Metallic nanoparticle dispersion
JP2015522713A (en) Metallic nanoparticle dispersion system
TW201610189A (en) Silver powder, method for producing the same, and electrically conductive paste
JP5424545B2 (en) Copper fine particles, production method thereof, and copper fine particle dispersion
JP2002245854A (en) Colloidal solution of metal, and manufacturing method of the same
KR20160045907A (en) Catalyst for electroless plating, metallic coating film produced using same, and method for producing said metallic coating film
JP6016664B2 (en) Copper fine particle dispersion, sintered conductor manufacturing method, and conductive connecting member manufacturing method
JP2011208274A (en) Method for producing metal nanoparticle, ink composition using the same and method for producing the same
JP2009158273A (en) Conductive metal paste and its manufacturing method, forming method of conductive pattern as well as additive for conductive metal paste and its manufacturing method
KR102628262B1 (en) Niobic acid compound dispersion and method for producing the same
JP2007200775A (en) Metal fine particle-dispersed body and conductive material using metal fine particle-dispersed body
WO2002094954A1 (en) Process for producing high-concentration colloidal metal solution
JP2006252976A (en) Metal nano-particle paste and its manufacturing method
JP2003103158A (en) High concentrated metallic colloid particle solution and its manufacturing method and method for forming metallic film
CN108025358B (en) Powder for conductive material, ink for conductive material, conductive paste, and method for producing powder for conductive material
JP4482343B2 (en) Composite metal colloidal particles and solution, and method for producing the same
KR101803956B1 (en) Method for preparing copper nanoparticle which is capable of being calcined under atmospheric pressure
WO2010027124A1 (en) Metal nanoparticles of various sizes and shapes having functional groups and method for preparing the same
KR20030022659A (en) Methods for Preparing High-Concentrated Metal Colloidal-Solution
JP4236182B2 (en) Process for producing organic solvent-dispersed oxalic acid / citric acid stable niobium oxide sol
JP2020047378A (en) Conductive fine particle dispersion

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1020017011139

Country of ref document: KR

AK Designated states

Kind code of ref document: A1

Designated state(s): BR CN ID IN JP KR MX US VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 018130356

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1020017011139

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2002592417

Country of ref document: JP

122 Ep: pct application non-entry in european phase
WWW Wipo information: withdrawn in national office

Ref document number: 1020017011139

Country of ref document: KR