JP6011809B2 - Method for producing gold powder with high bulk density - Google Patents

Method for producing gold powder with high bulk density Download PDF

Info

Publication number
JP6011809B2
JP6011809B2 JP2013248098A JP2013248098A JP6011809B2 JP 6011809 B2 JP6011809 B2 JP 6011809B2 JP 2013248098 A JP2013248098 A JP 2013248098A JP 2013248098 A JP2013248098 A JP 2013248098A JP 6011809 B2 JP6011809 B2 JP 6011809B2
Authority
JP
Japan
Prior art keywords
gold
organic solvent
gold powder
ions
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013248098A
Other languages
Japanese (ja)
Other versions
JP2015105413A (en
Inventor
靖志 一色
靖志 一色
真鍋 善昭
善昭 真鍋
一典 谷嵜
一典 谷嵜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2013248098A priority Critical patent/JP6011809B2/en
Publication of JP2015105413A publication Critical patent/JP2015105413A/en
Application granted granted Critical
Publication of JP6011809B2 publication Critical patent/JP6011809B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

本発明は、金粉の製造方法に関するものであり、詳しくは銅アノードスライムや金を含有したスクラップ原料等から、テトラクロロ金酸イオンとして金が浸出された浸出液にジエチレングリコールジブチルエーテル(以下、DBCと表記する場合がある)を接触させてテトラクロロ金酸イオンを有機溶媒に抽出し、この金を含む有機溶媒を塩酸で洗浄した後、有機溶媒を還元剤と接触させて有機溶媒中の金を還元する、金粉の製造方法に関する。   The present invention relates to a method for producing gold powder, and more specifically, diethylene glycol dibutyl ether (hereinafter referred to as DBC) in a leachate obtained by leaching gold as tetrachloroaurate ions from a scrap material containing copper anode slime or gold. The tetrachloroaurate ion is extracted into an organic solvent, and the organic solvent containing this gold is washed with hydrochloric acid, and then the organic solvent is brought into contact with a reducing agent to reduce the gold in the organic solvent. The present invention relates to a method for producing gold powder.

金の回収方法として、例えば、銅の製錬工程において、微量の金を含有した銅精鉱や、金鉱石を自溶炉(Flash Smelting Furnace)に装入して、金、銀、白金族を銅マットに分配させ、その銅マットおよび金含有スクラップ原料を、転炉、精製炉にて溶解、精製する、いわゆる乾式製錬を行って、銅純度99.2%の銅アノードを製造した後、その銅アノードを電解精製する過程において不溶解残分として分離された銅電解スライム中に、金、銀、白金族を濃縮させて回収する方法が広く実施されている。   As a method for recovering gold, for example, in a copper smelting process, a copper concentrate containing a small amount of gold or a gold ore is charged into a flash melting furnace, and gold, silver, or platinum group is added. After the copper mat is distributed to the copper mat, the copper mat and the gold-containing scrap raw material are melted and refined in a converter and a refining furnace, so-called dry smelting is performed to produce a copper anode having a copper purity of 99.2%. A method of concentrating and recovering gold, silver, and platinum groups in a copper electrolytic slime separated as an insoluble residue in the process of electrolytic purification of the copper anode is widely practiced.

その銅電解スライムを原料とした金の製造方法としては、硫酸抽出等の湿式法により銅電解スライム中の銅を除去した後、焙焼用キルン、還元用電気炉、酸化用転炉、精製炉等を用いた乾式法により、セレン、アンチモン、鉛、錫、ビスマス、テルルなどを分離し、金と銀と白金族を主成分とする合金を得て、この合金を、電解を主体とした湿式法で処理することによって金を製造する方法が、一般的であった。   As a method for producing gold using the copper electrolytic slime as a raw material, after removing copper in the copper electrolytic slime by a wet method such as sulfuric acid extraction, the kiln for roasting, the electric furnace for reduction, the converter for oxidation, the refining furnace Selenium, antimony, lead, tin, bismuth, tellurium, etc. are separated by a dry method using a material such as gold, silver, and a platinum group, and the alloy is made mainly by electrolysis. The method of producing gold by processing by the method has been common.

しかし、上記回収方法および製造方法では、銅の乾式製錬工程をスタートとして、全体工程の最後に金が製品化されるため、金の製造プロセスという見方をすれば、製品として回収されるまでに多大なエネルギーを要して経済的、効率的で無い他、高価な金が製品として回収されるまでに長期間を要するため、原料を製品化して販売するまでの金利負担が大きいという問題があった。   However, in the above recovery method and manufacturing method, since the copper dry smelting process is started and gold is commercialized at the end of the entire process, from the viewpoint of the gold manufacturing process, it is necessary to recover the product as a product. There is a problem that it is not economical and efficient because it requires a lot of energy, and it takes a long time for expensive gold to be recovered as a product, so there is a problem that the interest rate burden until the raw material is commercialized and sold is large. It was.

そこで、近年では、金の製造方法として、銅電解スライムのスラリーを塩素ガスで浸出し、金、白金族元素、セレン、テルルをイオンの形態で塩素浸出液中に溶解した後、得られた塩素浸出液にDBC等の有機溶媒を接触させてテトラクロロ金酸イオンを有機溶媒に抽出し、この金を含む有機溶媒を塩酸で洗浄した後、還元剤として蓚酸を含む水溶液と接触させて、有機溶媒中の金を還元して金粉を製造する方法が工業化されている(例えば、特許文献1、2参照)。   Therefore, in recent years, as a method for producing gold, a slurry of copper electrolytic slime is leached with chlorine gas, and gold, platinum group elements, selenium, and tellurium are dissolved in the form of ions in the chlorine leachate, and the resulting chlorine leachate is obtained. Then, an organic solvent such as DBC is contacted to extract tetrachloroauric acid ions into the organic solvent, the organic solvent containing gold is washed with hydrochloric acid, and then contacted with an aqueous solution containing oxalic acid as a reducing agent. A method for producing gold powder by reducing gold is industrialized (see, for example, Patent Documents 1 and 2).

この方法では、テトラクロロ金酸イオンを、DBCを用いた溶媒抽出によって有機溶媒に抽出した後の抽出残液から、塩化トリオクチルアンモニウムと燐酸トリブチルの混合物を用いた第2の溶媒抽出によって、白金族元素のクロロ錯イオンを有機溶媒に抽出した後、その抽出残液に二酸化硫黄ガスを吹込んで還元することにより、セレン、テルルを回収している。   In this method, tetrachloroaurate ions are extracted from an extraction residue after extraction into an organic solvent by solvent extraction using DBC, and then subjected to a second solvent extraction using a mixture of trioctylammonium chloride and tributyl phosphate. Selenium and tellurium are recovered by extracting a chloro complex ion of a group element into an organic solvent and then reducing the extraction residue by blowing in sulfur dioxide gas.

上記方法によって、電解スライムからの金の製造時間を大幅に短縮させることができ、さらに、塩素浸出時の浸出液中の塩化物濃度を適正に維持することにより、銅電解スライム中の銅、セレンの品位が変動しても、銅電解スライムからのアンチモンの溶出率を増大させず、第2の溶媒抽出で白金族元素を回収することにより、金の溶媒抽出を完全に行わなくてもセレンメタルへの金の混入が防止される等、従来の、銅電解スライムからの有価物の湿式回収方法の課題も解決することができ、工業的に極めて有用な金の製造方法となっている。
なお、上記方法で製造された金粉は、ルツボ等の小型溶解炉でバッチ溶解され、インゴットの形状に鋳造されて製品となる。
By the above method, the production time of gold from the electrolytic slime can be greatly shortened, and furthermore, by maintaining the chloride concentration in the leachate at the time of chlorine leaching appropriately, the copper and selenium in the copper electrolytic slime can be reduced. Even if the quality is changed, the elution rate of antimony from the copper electrolytic slime is not increased, and the platinum group element is recovered by the second solvent extraction, so that even if the solvent extraction of gold is not completely performed, the selenium metal is obtained. It is possible to solve the problems of conventional wet recovery methods of valuable materials from copper electrolytic slime, such as preventing the mixing of gold, and it is an industrially extremely useful method for producing gold.
The gold powder produced by the above method is batch-melted in a small melting furnace such as a crucible and cast into an ingot shape to obtain a product.

しかし、テトラクロロ金酸イオンとして金が浸出された浸出液にDBCを接触させてテトラクロロ金酸イオンを有機溶媒に抽出し、この金を含む有機溶媒を塩酸で洗浄した後、蓚酸を含む水溶液と接触させて、有機溶媒中の金を還元して金粉を製造する方法においては、以下の課題が残されていた。
第一に、得られた金粉の嵩密度が低いために起こるもので、金粉の輸送回数が増えるといったハンドリング効率の問題や、金粉をバッチ式の溶解炉に投入して溶解する場合に、一回当たりの溶解重量が少なくなるために、単位金粉重量当たりのエネルギー使用量が増加すると共に溶解工程の設備能力が制限されるといった設備効率の問題である。
However, DBC is brought into contact with the leachate from which gold has been leached as tetrachloroaurate ions, tetrachloroaurate ions are extracted into an organic solvent, the organic solvent containing gold is washed with hydrochloric acid, and an aqueous solution containing oxalic acid In the method of producing gold powder by reducing the gold in the organic solvent by contacting, the following problems remain.
First, it occurs because of the low bulk density of the resulting gold powder. This is a problem in handling efficiency, such as an increase in the number of times the gold powder is transported, and once when the gold powder is put into a batch-type melting furnace for melting. This is a problem of equipment efficiency in that the amount of energy used per unit gold powder weight is increased and the equipment capacity of the dissolving process is limited because the permeated weight is reduced.

第二に、有機溶媒中の金を還元して金粉を製造するに当たって、嵩密度の低い金粉が製造される条件では、その結晶核の生成速度が遅いため、還元反応槽の内壁や攪拌機に、金が箔状に析出しやすくなるという問題が発生している。この還元反応槽の内壁や攪拌機への金の付着は、作業効率や設備効率の低下や、製品化期間の増加にもつながっている。   Second, in producing gold powder by reducing gold in an organic solvent, the production rate of the crystal nuclei is slow under conditions where gold powder with low bulk density is produced. There is a problem that gold is likely to precipitate in a foil shape. The adhesion of gold to the inner wall of the reduction reaction tank and the stirrer has led to a decrease in work efficiency and equipment efficiency, and an increase in the product period.

第三に、従来の有機溶媒中の金を還元して金粉を製造する方法では、金粉への不純物の混入を防止する還元反応条件における最適な酸化還元電位やpHの範囲は定められているが、嵩密度や還元反応槽の内壁や攪拌機への金の付着制御をも踏まえた還元反応条件は見出されておらず嵩密度の大きな金粉を得ることは難しかった。   Thirdly, in the conventional method for producing gold powder by reducing gold in an organic solvent, the optimum oxidation-reduction potential and pH range in the reduction reaction conditions for preventing contamination of the gold powder are determined. The reduction reaction conditions based on the bulk density and the adhesion control of the gold to the inner wall of the reduction reaction tank and the stirrer were not found, and it was difficult to obtain gold powder with a large bulk density.

特開2001−207223号公報JP 2001-207223 A 特開平09−316561号公報JP 09-316561 A

そこで、本発明は、テトラクロロ金酸イオンとして金が浸出された浸出液にジエチレングリコールジブチルエーテルを接触させてテトラクロロ金酸イオンを有機溶媒に抽出し、この金を含む有機溶媒を塩酸で洗浄した後、蓚酸を含む水溶液と接触させて、有機溶媒中の金を還元して金粉を製造する方法において、以下を目的としている。
すなわち、金粉のハンドリング効率及び金粉の溶解工程における設備効率を向上させると共に、還元反応槽の内壁や攪拌機への金の付着を防止して還元工程における作業効率及び設備効率を向上させて、効率的かつ経済的な製造を実現するために、嵩密度の高い金粉の製造方法を提供する。
Therefore, the present invention is made by contacting diethylene glycol dibutyl ether with a leachate from which gold has been leached as tetrachloroaurate ions, extracting tetrachloroaurate ions into an organic solvent, and washing the organic solvent containing gold with hydrochloric acid. In the method for producing gold powder by reducing the gold in the organic solvent by contacting with an aqueous solution containing succinic acid, the following is aimed.
In other words, it improves the handling efficiency of the gold powder and the equipment efficiency in the melting process of the gold powder, and also prevents the gold from adhering to the inner wall of the reduction reaction tank and the stirrer, thereby improving the working efficiency and equipment efficiency in the reduction process. And in order to implement | achieve economical manufacture, the manufacturing method of gold powder with a high bulk density is provided.

本発明者らは、特に金粉の嵩密度に着目し、還元剤を含む水溶液の塩化物イオン濃度について検討した結果、水溶液の塩化物イオン濃度を60g/L以上、90g/L以下に調整することにより、嵩密度4.0g/mL以上の金粉が製造できることを見出し、本発明を完成するに至った。
なお、本発明により得られる金粉は、ルツボ等の小型溶解炉でバッチ溶解され、インゴットの形状に鋳造されて最終製品となるため、従来は、金粉の粒子径、粒径分布、形等の形状的特性は重要視されておらず、したがって、嵩密度を制御する還元反応条件は見出されていなかった。
As a result of investigating the chloride ion concentration of the aqueous solution containing the reducing agent, particularly focusing on the bulk density of the gold powder, the present inventors adjust the chloride ion concentration of the aqueous solution to 60 g / L or more and 90 g / L or less. Thus, it was found that gold powder having a bulk density of 4.0 g / mL or more can be produced, and the present invention has been completed.
In addition, since the gold powder obtained by the present invention is batch-melted in a small melting furnace such as a crucible and cast into the shape of an ingot to form the final product, conventionally, the shape of the gold powder particle size, particle size distribution, shape, etc. The physical properties are not regarded as important, and therefore no reduction reaction conditions for controlling the bulk density have been found.

すなわち、本発明は、金をテトラクロロ金酸イオンとして浸出した浸出液に、有機溶媒のジエチレングリコールジブチルエーテルを接触させて、前記テトラクロロ金酸イオンを前記有機溶媒に抽出し、抽出された前記テトラクロロ金酸イオンを含む有機溶媒を塩酸で洗浄した後、前記洗浄後有機溶媒と蓚酸を含む水溶液とを混合して両者を接触させ、テトラクロロ金酸イオンを還元して金粉を製造する方法において、前記テトラクロロ金酸イオンを含む有機溶媒と、前記蓚酸を含む水溶液とを混合して接触させる際に、前記水溶液中の塩化物イオン濃度を60g/L以上、90g/L以下に調整して、前記有機溶媒中のテトラクロロ金酸イオンを前記水溶液中に逆抽出した後、前記水溶液中で還元処理して金粉を生成することを特徴とする嵩密度の高い金粉の製造方法である。   That is, the present invention is made by contacting diethylene glycol dibutyl ether as an organic solvent with a leachate obtained by leaching gold as tetrachloroaurate ions, extracting the tetrachloroaurate ions into the organic solvent, and extracting the extracted tetrachloroaurate ions. In the method of producing gold powder by washing the organic solvent containing gold acid ions with hydrochloric acid, mixing the organic solvent after washing with an aqueous solution containing oxalic acid, bringing them into contact, and reducing tetrachloroauric acid ions. When the organic solvent containing the tetrachloroauric acid ion and the aqueous solution containing oxalic acid are mixed and contacted, the chloride ion concentration in the aqueous solution is adjusted to 60 g / L or more and 90 g / L or less, A tetrachloroaurate ion in the organic solvent is back-extracted into the aqueous solution and then reduced in the aqueous solution to produce gold powder. A method for producing a high degree gold powder.

本発明は、テトラクロロ金酸イオンとして金を浸出した浸出液に、DBCを接触させてテトラクロロ金酸イオンを有機溶媒に抽出し、この金を含む有機溶媒を塩酸で洗浄した後、蓚酸を含む水溶液と接触させて、有機溶媒中の金を還元して金粉を製造する方法において、金を含む有機溶媒を、蓚酸を含む水溶液と接触させる際に、水溶液の塩化物イオン濃度を60g/L以上、90g/L以下に調整して、有機溶媒中の金を還元することを特徴とする金粉の製造方法である。   In the present invention, DBC is brought into contact with a leachate obtained by leaching gold as tetrachloroaurate ions to extract tetrachloroaurate ions into an organic solvent, and the organic solvent containing gold is washed with hydrochloric acid and then contains oxalic acid. In the method for producing gold powder by reducing gold in an organic solvent by contacting with an aqueous solution, the chloride ion concentration of the aqueous solution is 60 g / L or more when the organic solvent containing gold is brought into contact with the aqueous solution containing oxalic acid. The gold powder production method is characterized in that the gold in the organic solvent is reduced to 90 g / L or less.

本発明によれば、嵩密度の高い(4.0g/mL以上)金粉を得ることができ、金粉のハンドリング効率や金粉の溶解工程における設備効率の向上に寄与すると共に、還元反応槽の内壁や攪拌機への金の付着を防止して還元工程における作業効率や設備効率を向上させ、効率的かつ経済的な製造を実現するため、工業的に極めて有用である。   According to the present invention, gold powder having a high bulk density (4.0 g / mL or more) can be obtained, which contributes to the improvement of the handling efficiency of gold powder and the equipment efficiency in the dissolution process of the gold powder, It is extremely useful industrially because it prevents gold from adhering to the stirrer, improves the working efficiency and equipment efficiency in the reduction process, and realizes efficient and economical production.

本発明に係る嵩密度の高い金粉の製造方法の工程フロー図である。It is a process flow figure of a manufacturing method of gold powder with high bulk density concerning the present invention. 水相の塩化物イオン濃度と得られた金粉の嵩密度との関係を示す図である。It is a figure which shows the relationship between the chloride ion density | concentration of an aqueous phase, and the bulk density of the obtained gold powder.

以下に、本発明の、テトラクロロ金酸イオンとして金を浸出した浸出液に、DBCを接触させてテトラクロロ金酸イオンを有機溶媒に抽出し、このテトラクロロ金酸イオンを含む有機溶媒を塩酸で洗浄した後、有機溶媒中のテトラクロロ金酸イオンを還元して嵩密度の高い金粉を製造する方法について、詳細に説明する。   Below, DBC is brought into contact with the leachate obtained by leaching gold as tetrachloroaurate ions of the present invention to extract tetrachloroaurate ions into an organic solvent, and the organic solvent containing tetrachloroaurate ions is added with hydrochloric acid. A method for producing a gold powder having a high bulk density by reducing tetrachloroaurate ions in an organic solvent after washing will be described in detail.

本発明では、図1のフロー図に示すような工程順によりテトラクロロ金酸イオンとして金を浸出した浸出液から嵩密度の高い金粉を生成するものである。
図1のフロー図における各工程を簡単に説明する。
In the present invention, gold powder having a high bulk density is generated from a leachate obtained by leaching gold as tetrachloroaurate ions in the order of steps as shown in the flowchart of FIG.
Each step in the flowchart of FIG. 1 will be briefly described.

[金酸イオン抽出工程]
金をテトラクロロ金酸イオンの形に浸出した浸出液と有機溶媒のジエチレングリコールジブチルエーテルを接触させて、前記テトラクロロ金酸イオンを前記有機溶媒に抽出する工程である。
[洗浄工程]
抽出されたテトラクロロ金酸イオンを含む有機溶媒中に共抽出された不純物を塩酸で洗浄して洗浄後有機溶媒を形成する工程である。
[調整工程]
有機相の洗浄後有機溶媒と、水相の水を混合して混合液を形成した後、その水相の塩化物イオン濃度が60g/L以上、90g/L以下に調整されるように塩化物を溶解した塩化物水溶液と洗浄後有機溶媒との調整混合液を形成する工程である。
[還元工程]
前工程で作製した調整混合液の塩化物水溶液に蓚酸を添加した後、その蓚酸を含む塩化物水溶液と洗浄後有機溶媒とを接触、混合し、洗浄後有機溶媒中のテトラクロロ金酸イオンを蓚酸を含む塩化物水溶液に逆抽出後、水溶液中で還元して金粉を生成する工程である。
以上の工程を順に経て、嵩密度の高い金粉を生成する。
[Metallic acid ion extraction process]
This is a step of contacting the leaching solution obtained by leaching gold in the form of tetrachloroaurate ions with an organic solvent diethylene glycol dibutyl ether to extract the tetrachloroaurate ions into the organic solvent.
[Washing process]
In this step, the impurities co-extracted in the organic solvent containing the extracted tetrachloroaurate ions are washed with hydrochloric acid to form the organic solvent after washing.
[Adjustment process]
After washing the organic phase, an organic solvent and water in the aqueous phase are mixed to form a mixed solution, and then the chloride ion concentration in the aqueous phase is adjusted to 60 g / L or more and 90 g / L or less. Is a step of forming an adjusted mixed solution of an aqueous solution of chloride dissolved in and an organic solvent after washing.
[Reduction process]
After adding oxalic acid to the aqueous chloride solution of the adjusted mixture prepared in the previous step, contact and mix the aqueous chloride solution containing the oxalic acid and the washed organic solvent. After washing, the tetrachloroaurate ion in the organic solvent is removed. This is a step for producing gold powder by back extraction into an aqueous chloride solution containing oxalic acid and then reducing in aqueous solution.
Through the above steps in sequence, a gold powder with a high bulk density is generated.

その特徴とする所は、テトラクロロ金酸イオンを含む有機溶媒(有機相)を、蓚酸を含む水溶液(水相)と接触させ、還元反応を行う際に、その水溶液(水相)の塩化物イオン濃度を60g/L以上、90g/L以下に調整して、有機溶媒(有機相)中のテトラクロロ金酸イオンを還元して金粉を生成することにある。
各工程の構成要素について順に説明する。
The feature is that when an organic solvent (organic phase) containing tetrachloroauric acid ions is brought into contact with an aqueous solution (aqueous phase) containing oxalic acid and the reduction reaction is carried out, the chloride of the aqueous solution (aqueous phase) The ion concentration is adjusted to 60 g / L or more and 90 g / L or less, and tetrachloroaurate ions in the organic solvent (organic phase) are reduced to produce gold powder.
The components of each process will be described in order.

1.還元剤、pH調整剤
本発明のような有機溶媒中のテトラクロロ金酸イオンを還元して金粉を製造する方法では、例えば特許文献2にも記載されているように、還元剤としては蓚酸が最適である。
1. Reducing agent, pH adjuster In the method for producing gold powder by reducing tetrachloroauric acid ions in an organic solvent as in the present invention, for example, as described in Patent Document 2, oxalic acid is used as the reducing agent. Is optimal.

蓚酸水溶液の標準電極電位は、−291mV(Ag/AgCl電極基準)であり、例えば亜硫酸水溶液の標準電極電位の−731mV(Ag/AgCl電極基準)と比較して高く、弱い還元剤として作用する。そのため、蓚酸水溶液には、金以外の金属イオンの還元反応を抑制する作用がある。なお、以降、酸化還元電位は、全てAg/AgCl電極基準で表記する。   The standard electrode potential of the oxalic acid aqueous solution is −291 mV (Ag / AgCl electrode reference), which is higher than the standard electrode potential of −731 mV (Ag / AgCl electrode reference) of the aqueous sulfite solution, for example, and acts as a weak reducing agent. Therefore, the oxalic acid aqueous solution has an action of suppressing the reduction reaction of metal ions other than gold. Hereinafter, all the oxidation-reduction potentials are expressed based on the Ag / AgCl electrode standard.

また、この時に混合液のpHを調整する場合には、pH調整剤として尿素を用いると良い。尿素は水溶液中で加熱を行うことにより加水分解を起こして、アルカリであるアンモニアを生成する作用を有している。そのため、均一かつ緩やかにpHを上昇させることができ、局部的なpHの上昇による金以外の金属イオンの水酸化物の沈殿発生を防ぎ、金粉への不純物の混入を防止するために好適である。
また、尿素には、テトラクロロ金酸イオンの還元を促進する作用もある。
Moreover, when adjusting the pH of a liquid mixture at this time, it is good to use urea as a pH adjuster. Urea has the action of causing hydrolysis by heating in an aqueous solution to produce ammonia which is alkali. Therefore, it is possible to raise the pH uniformly and slowly, which is suitable for preventing the precipitation of hydroxides of metal ions other than gold due to the local increase in pH and preventing the entry of impurities into the gold powder. .
Urea also has the effect of promoting the reduction of tetrachloroaurate ions.

2.塩化物イオン濃度
還元剤の蓚酸を含む(場合によっては尿素も含む)水溶液(水相)の塩化物イオン濃度は、50〜75g/Lの間では、この塩化物イオン濃度と得られる金粉の嵩密度は図2に示すように線形関係を有しているが、4.0g/mL以上の嵩密度を得るには、塩化物イオン濃度を60g/L以上、90g/L以下に調整するのが望ましい。
なお、図2は水相の塩化物イオン濃度と得られた金粉の嵩密度との関係を示す図で、横軸は水相の塩化物イオン濃度、縦軸は金粉の嵩密度である。
2. Chloride ion concentration The chloride ion concentration of the aqueous solution (aqueous phase) containing the reducing agent oxalic acid (or urea in some cases) is between 50 and 75 g / L. The density has a linear relationship as shown in FIG. 2, but in order to obtain a bulk density of 4.0 g / mL or more, the chloride ion concentration is adjusted to 60 g / L or more and 90 g / L or less. desirable.
FIG. 2 is a diagram showing the relationship between the chloride ion concentration of the aqueous phase and the bulk density of the obtained gold powder, the horizontal axis is the chloride ion concentration of the aqueous phase, and the vertical axis is the bulk density of the gold powder.

この塩化物イオン濃度が、60g/L未満では、テトラクロロ金酸イオンの還元反応において、結晶核の生成速度が遅くなり、結晶粒子が大きなもののみとなって小さな粒子が存在しなくなるため、得られる嵩密度の大きさが4.0g/mLより小さくなってしまう。また、結晶核が少なくなるため、還元金が、還元反応槽の内壁や攪拌機に箔状に析出しやすくなる。   If the chloride ion concentration is less than 60 g / L, the rate of crystal nucleus formation is reduced in the reduction reaction of tetrachloroaurate ions, and only the large crystal particles become small and no small particles exist. The resulting bulk density will be less than 4.0 g / mL. In addition, since the number of crystal nuclei is reduced, the reduced gold is likely to be deposited in the form of a foil on the inner wall of the reduction reaction tank and the agitator.

一方、塩化物イオン濃度が90g/Lを越えると、結晶核の数は十分多くなるが、結晶粒子径が小さくなると共に、結晶粒子径のバラツキも小さくなるため、嵩密度の向上は頭打ちとなってしまう。また、塩化物イオン濃度調整用に添加する塩化ナトリウム等の添加量が増加するため、薬剤コストのアップにつながる。
塩化物イオン濃度を調整する塩化物には、例えば、塩化ナトリウムを用いても良いし、還元した金粉回収後のろ液を、繰り返し使用し、純水で濃度を調整しても良い。
On the other hand, when the chloride ion concentration exceeds 90 g / L, the number of crystal nuclei is sufficiently increased, but the crystal particle diameter is reduced and the variation in the crystal particle diameter is also reduced. End up. In addition, the amount of sodium chloride added for adjusting the chloride ion concentration increases, leading to an increase in drug cost.
As the chloride for adjusting the chloride ion concentration, for example, sodium chloride may be used, or the filtrate after recovering the reduced gold powder may be used repeatedly and the concentration may be adjusted with pure water.

3.温度
還元処理時の水溶液温度は、85℃以上、95℃以下に保持することが望ましい。
この還元処理時の水溶液温度が85℃未満の場合、金の還元反応速度が遅くなる。一方で、水溶液温度が95℃を越えた場合、有機溶媒の揮発が促進されてしまうため、有機溶媒ロスが増加すると共に、作業環境、防火管理等の観点から、好ましくはない。
3. Temperature The aqueous solution temperature during the reduction treatment is desirably maintained at 85 ° C. or higher and 95 ° C. or lower.
When the aqueous solution temperature during this reduction treatment is less than 85 ° C., the gold reduction reaction rate becomes slow. On the other hand, when the aqueous solution temperature exceeds 95 ° C., the volatilization of the organic solvent is promoted, so that the organic solvent loss increases, and it is not preferable from the viewpoints of work environment, fire prevention management, and the like.

4.pH
還元処理後の水溶液のpHは、−0.2以上、1.0以下とすることが望ましい。
この還元処理後の水溶液のpHが、−0.2未満だと、金の還元反応速度が遅くなる。対して、還元処理後の水溶液のpHが、1.0を超えると、錫等の不純物が水酸化物の沈殿を生成し、金粉に混入する可能性が高くなる。
4). pH
The pH of the aqueous solution after the reduction treatment is preferably −0.2 or more and 1.0 or less.
When the pH of the aqueous solution after the reduction treatment is less than −0.2, the reduction reaction rate of gold becomes slow. On the other hand, when the pH of the aqueous solution after the reduction treatment exceeds 1.0, there is a high possibility that impurities such as tin generate hydroxide precipitates and are mixed into the gold powder.

次に、本発明の実施例及び比較例について説明するが、これらの実施例によって本発明の範囲がなんら限定されるものではない。   Next, examples and comparative examples of the present invention will be described. However, the scope of the present invention is not limited by these examples.

テトラクロロ金酸イオンを含んだ浸出液からテトラクロロ金酸イオンをDBCに抽出し、有機溶媒中の金濃度を36.7g/Lとした。このテトラクロロ金酸イオンの形で金を含む有機溶媒を1.5モル/Lの塩酸で洗浄した後、その有機溶媒1000Lを、3.0mの内面にグラスライニングが施された還元反応槽(以下、グラスライニング槽と称する。)に入れ、1000Lの純水を添加し、有機相(有機溶媒)と水相(純水)の混合液を作製した。 Tetrachloroaurate ions were extracted into DBC from the leachate containing tetrachloroaurate ions, and the gold concentration in the organic solvent was adjusted to 36.7 g / L. The organic solvent containing gold in the form of tetrachloroaurate ion was washed with 1.5 mol / L hydrochloric acid, and then 1000 L of the organic solvent was added to the 3.0 m 3 inner surface of the reduction reactor. (Hereinafter referred to as a glass lining tank), 1000 L of pure water was added, and a mixed liquid of an organic phase (organic solvent) and an aqueous phase (pure water) was prepared.

次に、作製した混合液を攪拌機により撹拌しながら、108kgの塩化ナトリウムを投入して、塩化物イオン濃度が60g/Lになるように調整した塩化ナトリウム水溶液(水相)を形成した。   Next, 108 kg of sodium chloride was added while stirring the prepared mixed solution with a stirrer to form an aqueous sodium chloride solution (aqueous phase) adjusted to have a chloride ion concentration of 60 g / L.

その後、水相の塩化物イオン濃度を調整した混合液に対して撹拌機による撹拌を継続し、有機相(有機溶媒)と水相(塩化ナトリウム水溶液)を十分に接触させながら、その攪拌中の混合液に、30.5kgの尿素と、36.1kgの蓚酸を添加した。添加後、グラスライニング槽の内壁に設置されたジャケットに蒸気を通して混合液を90℃に加温した。   Then, stirring with a stirrer is continued with respect to the mixed solution in which the chloride ion concentration of the aqueous phase is adjusted, and while the organic phase (organic solvent) and the aqueous phase (aqueous sodium chloride solution) are in sufficient contact, 30.5 kg of urea and 36.1 kg of oxalic acid were added to the mixture. After the addition, steam was passed through a jacket installed on the inner wall of the glass lining tank, and the mixture was heated to 90 ° C.

加温後、その温度を維持して撹拌を継続することで還元反応を行い、還元反応中の混合液の酸化還元電位とpHを、酸化還元電位(ORP)計とpH計で計測し、酸化還元電位が低下して、5分間に10mV以上の低下が無くなった時点で還元反応が終了したとして、還元後スラリーを得た。反応終了時の酸化還元電位は748mV、pHは0.2であった。   After heating, the reduction reaction is performed by maintaining the temperature and continuing stirring, and the oxidation-reduction potential and pH of the mixed solution during the reduction reaction are measured with an oxidation-reduction potential (ORP) meter and a pH meter, and then oxidized. A reduction slurry was obtained assuming that the reduction reaction was completed when the reduction potential dropped and the drop of 10 mV or more disappeared in 5 minutes. The redox potential at the end of the reaction was 748 mV, and the pH was 0.2.

その還元後スラリーをろ過後、塩酸によって3回洗浄、乾燥して、23.2kgの金粉を回収した。その回収した金粉の嵩密度は4.25g/mLであった。なお、嵩密度は、タップしない状態で、メスシリンダーと秤量器により測定した。   After the reduction, the slurry was filtered, washed with hydrochloric acid three times and dried to recover 23.2 kg of gold powder. The bulk density of the collected gold powder was 4.25 g / mL. The bulk density was measured with a graduated cylinder and a weigher without tapping.

反応終了後のグラスライニング槽の内面には金の付着は無く、撹拌機にも金の付着は見られなかった。
回収した金粉の分析を行ったが、純分は99.999%であった。金の純分は、ICP発光分光分析法およびガス分析によって不純物含有量を求めた後、差引法によって算出した。
After the reaction was completed, no gold adhered to the inner surface of the glass lining tank, and no gold adhered to the agitator.
The collected gold powder was analyzed, and the pure content was 99.999%. The gold content was calculated by subtraction after obtaining the impurity content by ICP emission spectroscopy and gas analysis.

実施例1と同様に、テトラクロロ金酸イオンを含んだ浸出液からテトラクロロ金酸イオンをDBCに抽出し、有機溶媒中の金濃度を34.7g/Lとした。このテトラクロロ金酸イオンの形で金を含む有機溶媒を1.5モル/Lの塩酸で洗浄した後、その有機溶媒1000Lを、3.0mのグラスライニング槽に入れ、1000Lの純水を添加し、有機相(有機溶媒)と水相(純水)の混合液を作製した。 In the same manner as in Example 1, tetrachloroaurate ions were extracted from the leachate containing tetrachloroaurate ions into DBC, and the gold concentration in the organic solvent was adjusted to 34.7 g / L. After washing the organic solvent containing gold in the form of tetrachloroaurate ion with 1.5 mol / L hydrochloric acid, 1000 L of the organic solvent was put into a 3.0 m 3 glass lining tank, and 1000 L of pure water was added. It added and produced the liquid mixture of the organic phase (organic solvent) and the water phase (pure water).

次に、作製した混合液を攪拌機により撹拌しながら、115kgの塩化ナトリウムを投入して、塩化物イオン濃度が75g/Lになるように調整した塩化ナトリウム水溶液(水相)を形成した。   Next, 115 kg of sodium chloride was added while stirring the prepared mixed solution with a stirrer to form an aqueous sodium chloride solution (aqueous phase) adjusted to have a chloride ion concentration of 75 g / L.

その後、その水相の塩化物イオン濃度を調整した混合液に対して撹拌機による撹拌を継続して有機相(有機溶媒)と水相(塩化ナトリウム水溶液)を十分に接触させながら、その攪拌中の混合液に、28.9kgの尿素と、34.1kgの蓚酸を添加した。添加後、グラスライニング槽の内壁に設置されたジャケットに蒸気を通して混合液を90℃に加温した。   After that, while stirring the mixture with the chloride ion concentration of the aqueous phase with a stirrer and bringing the organic phase (organic solvent) and the aqueous phase (aqueous sodium chloride solution) into sufficient contact, 28.9 kg of urea and 34.1 kg of oxalic acid were added. After the addition, steam was passed through a jacket installed on the inner wall of the glass lining tank, and the mixture was heated to 90 ° C.

加温後、その温度を維持して撹拌を継続することで還元反応を行い、還元反応中の混合液の酸化還元電位とpHを、酸化還元電位(ORP)計とpH計で計測し、酸化還元電位が低下して、5分間に10mV以上の低下が無くなった時点で還元反応が終了したと見なし、還元後スラリーを得た。
反応終了時の酸化還元電位は761mV、pHは−0.2であった。
After heating, the reduction reaction is performed by maintaining the temperature and continuing stirring, and the oxidation-reduction potential and pH of the mixed solution during the reduction reaction are measured with an oxidation-reduction potential (ORP) meter and a pH meter, and then oxidized. When the reduction potential decreased and no decrease of 10 mV or more disappeared in 5 minutes, it was considered that the reduction reaction was completed, and a slurry after reduction was obtained.
The oxidation-reduction potential at the end of the reaction was 761 mV, and the pH was -0.2.

その還元後スラリーをろ過後、塩酸によって3回洗浄、乾燥して、21.2kgの金粉を回収した。その回収した金粉の嵩密度は5.10g/mLであった。なお、嵩密度は、タップしない状態で、メスシリンダーと秤量器により測定した。   After the reduction, the slurry was filtered, washed 3 times with hydrochloric acid and dried to recover 21.2 kg of gold powder. The bulk density of the collected gold powder was 5.10 g / mL. The bulk density was measured with a graduated cylinder and a weigher without tapping.

反応終了後、グラスライニング槽の内面には金の付着は無く、撹拌機にも金の付着は見られなかった。
回収した金粉の分析を行ったが、純分は99.999%であった。金の純分は、ICP発光分光分析法およびガス分析によって不純物含有量を求めた後、差引法によって算出した。
After completion of the reaction, no gold adhered to the inner surface of the glass lining tank, and no gold adhered to the agitator.
The collected gold powder was analyzed, and the pure content was 99.999%. The gold content was calculated by subtraction after obtaining the impurity content by ICP emission spectroscopy and gas analysis.

実施例1と同様に、テトラクロロ金酸イオンを含んだ浸出液からテトラクロロ金酸イオンをDBCに抽出し、有機溶媒中の金濃度を35.9g/Lとした。この金を含む有機溶媒を1.5モル/Lの塩酸で洗浄した後、その有機溶媒1000Lを、3.0mのグラスライニング槽に入れ、1000Lの純水を添加し、有機相(有機溶媒)と水相(純水)の混合液を作製した。 In the same manner as in Example 1, tetrachloroaurate ions were extracted into DBC from the leachate containing tetrachloroaurate ions, and the gold concentration in the organic solvent was adjusted to 35.9 g / L. After washing the organic solvent containing gold with 1.5 mol / L hydrochloric acid, 1000 L of the organic solvent was put into a 3.0 m 3 glass lining tank, 1000 L of pure water was added, and the organic phase (organic solvent ) And an aqueous phase (pure water).

次に、作製した混合液を攪拌機により撹拌しながら、145kgの塩化ナトリウムを投入して、塩化物イオン濃度が87g/Lになるように調整した塩化ナトリウム水溶液(水相)を形成した。   Next, 145 kg of sodium chloride was added while stirring the prepared mixed solution with a stirrer to form an aqueous sodium chloride solution (aqueous phase) adjusted to have a chloride ion concentration of 87 g / L.

その後、その混合液に対して撹拌機による撹拌を継続して有機溶媒と水溶液を十分に接触させながら、その攪拌中の混合液に、30.1kgの尿素と、35.7kgの蓚酸を添加した。添加後、グラスライニング槽の内壁に設置されたジャケットに蒸気を通して混合液を90℃に加温した。   Thereafter, 30.1 kg of urea and 35.7 kg of oxalic acid were added to the liquid mixture under stirring while the organic liquid and the aqueous solution were sufficiently brought into contact with the liquid mixture by continuing stirring with an agitator. . After the addition, steam was passed through a jacket installed on the inner wall of the glass lining tank, and the mixture was heated to 90 ° C.

加温後、その温度を維持して撹拌を継続することで還元反応を行い、還元反応中の混合液の酸化還元電位とpHを、酸化還元電位(ORP)計とpH計で計測し、酸化還元電位が低下して、5分間に10mV以上の低下が無くなった時点で還元反応が終了したと見なし、還元後スラリーを得た。
反応終了時の酸化還元電位は757mV、pHは−0.1であった。
After heating, the reduction reaction is performed by maintaining the temperature and continuing stirring, and the oxidation-reduction potential and pH of the mixed solution during the reduction reaction are measured with an oxidation-reduction potential (ORP) meter and a pH meter, and then oxidized. When the reduction potential decreased and no decrease of 10 mV or more disappeared in 5 minutes, it was considered that the reduction reaction was completed, and a slurry after reduction was obtained.
The redox potential at the end of the reaction was 757 mV, and the pH was -0.1.

その還元後スラリーをろ過後、塩酸によって3回洗浄、乾燥して、24.1kgの金粉を回収した。その回収した金粉の嵩密度は5.22g/mLであった。なお、嵩密度は、タップしない状態で、メスシリンダーと秤量器により測定した。   After the reduction, the slurry was filtered, washed with hydrochloric acid three times and dried to recover 24.1 kg of gold powder. The bulk density of the collected gold powder was 5.22 g / mL. The bulk density was measured with a graduated cylinder and a weigher without tapping.

反応終了後、グラスライニング槽の内面には金の付着は無く、撹拌機にも金の付着は見られなかった。
回収した金粉の分析を行ったが、純分は99.999%であった。
金の純分は、ICP発光分光分析法およびガス分析によって不純物含有量を求めた後、差引法によって算出した。
After completion of the reaction, no gold adhered to the inner surface of the glass lining tank, and no gold adhered to the agitator.
The collected gold powder was analyzed, and the pure content was 99.999%.
The gold content was calculated by subtraction after obtaining the impurity content by ICP emission spectroscopy and gas analysis.

(比較例1)
実施例1と同様に、テトラクロロ金酸イオンを含んだ浸出液からテトラクロロ金酸イオンをDBCに抽出し、有機溶媒中の金濃度を35.4g/Lとした。この金を含む有機溶媒を1.5モル/Lの塩酸で洗浄した後、その有機溶媒1000Lを、3.0mのグラスライニング槽に入れ、1000Lの純水を添加し、有機相(有機溶媒)と水相(純水)の混合液を作製した。
(Comparative Example 1)
In the same manner as in Example 1, tetrachloroaurate ions were extracted from the leachate containing tetrachloroaurate ions into DBC, and the gold concentration in the organic solvent was adjusted to 35.4 g / L. After washing the organic solvent containing gold with 1.5 mol / L hydrochloric acid, 1000 L of the organic solvent was put into a 3.0 m 3 glass lining tank, 1000 L of pure water was added, and the organic phase (organic solvent ) And an aqueous phase (pure water).

次に、作製した混合液を攪拌機により撹拌しながら、75kgの塩化ナトリウムを投入して、塩化物イオン濃度が45g/Lになるように調整した塩化ナトリウム水溶液(水相)を形成した。   Next, 75 kg of sodium chloride was added while stirring the prepared mixed solution with a stirrer to form an aqueous sodium chloride solution (aqueous phase) adjusted to a chloride ion concentration of 45 g / L.

その後、その混合液に撹拌機による撹拌を継続して有機溶媒と水溶液を十分に接触させながら、その攪拌中の混合液に、29.5kgの尿素と、34.8kgの蓚酸を添加した。添加後、グラスライニング槽の内壁に設置されたジャケットに蒸気を通して混合液を90℃に加温した。
加温後、その温度を維持して撹拌を継続することで還元反応を行い、還元反応中の混合液の酸化還元電位とpHを、酸化還元電位(ORP)計とpH計で計測し、酸化還元電位が低下して、5分間に10mV以上の低下が無くなった時点で還元反応が終了したと見なし、還元後スラリーを得た。
反応終了時の酸化還元電位は750mV、pHは−0.2となった。
Then, 29.5 kg of urea and 34.8 kg of succinic acid were added to the liquid mixture under stirring while the organic liquid and the aqueous solution were sufficiently brought into contact with the liquid mixture by continuing stirring with an agitator. After the addition, steam was passed through a jacket installed on the inner wall of the glass lining tank, and the mixture was heated to 90 ° C.
After heating, the reduction reaction is performed by maintaining the temperature and continuing stirring, and the oxidation-reduction potential and pH of the mixed solution during the reduction reaction are measured with an oxidation-reduction potential (ORP) meter and a pH meter, and then oxidized. When the reduction potential decreased and no decrease of 10 mV or more disappeared in 5 minutes, it was considered that the reduction reaction was completed, and a slurry after reduction was obtained.
The redox potential at the end of the reaction was 750 mV, and the pH was -0.2.

還元後スラリーをろ過後、塩酸によって3回洗浄、乾燥して、27.2kgの金粉を回収した。
その回収した金粉の嵩密度は、3.20g/mLであった。なお、嵩密度は、タップしない状態で、メスシリンダーと秤量器により測定した。
After the reduction, the slurry was filtered, washed with hydrochloric acid three times and dried to recover 27.2 kg of gold powder.
The bulk density of the collected gold powder was 3.20 g / mL. The bulk density was measured with a graduated cylinder and a weigher without tapping.

反応終了後、グラスライニング槽の内面には金が箔状に付着し、撹拌機にも金が箔状に付着していた。
取り出した金粉には、0.5〜3mm程度の長径を持つ鱗片状の金が、多量に存在していた。
さらに回収した金粉の分析を行ったが、純分は99.999%であった。金の純分は、ICP発光分光分析法およびガス分析によって不純物含有量を求めた後、差引法によって算出した。
After completion of the reaction, gold adhered to the inner surface of the glass lining tank, and gold also adhered to the stirrer in a foil shape.
In the extracted gold powder, a large amount of flaky gold having a major axis of about 0.5 to 3 mm was present.
Further, the collected gold powder was analyzed, and the pure content was 99.999%. The gold content was calculated by subtraction after obtaining the impurity content by ICP emission spectroscopy and gas analysis.

本発明は、銅製錬工程において排出される銅電解スライムから金粉を製造する方法に限定されるものでは無く、携帯電話等の電子機器から回収された廃電子基板等から、金等の貴金属を回収する工程(例えば特開2011−132552号公報参照)、電子部品用途のペースト材としての金粉の製造工程(例えば、特開平01−208408号公報、特開平02−118004号公報参照)にも応用が可能である。   The present invention is not limited to a method of producing gold powder from copper electrolytic slime discharged in a copper smelting process, but recovers noble metals such as gold from waste electronic boards recovered from electronic devices such as mobile phones. Applied to a process for producing gold powder as a paste material for use in electronic components (for example, see JP-A-01-208408 and JP-A-02-111004). Is possible.

Claims (1)

金をテトラクロロ金酸イオンとして浸出した浸出液に、有機溶媒のジエチレングリコールジブチルエーテルを接触させて、前記テトラクロロ金酸イオンを前記有機溶媒に抽出し、抽出された前記テトラクロロ金酸イオンを含む有機溶媒を塩酸で洗浄した後、前記洗浄後有機溶媒と蓚酸を含む水溶液とを混合して両者を接触させ、テトラクロロ金酸イオンを還元して金粉を製造する方法において、
前記テトラクロロ金酸イオンを含む有機溶媒と、前記蓚酸を含む水溶液とを混合して接触させる際に、前記水溶液中の塩化物イオン濃度を60g/L以上、90g/L以下に調整して、前記有機溶媒中のテトラクロロ金酸イオンを前記水溶液中に逆抽出した後、前記水溶液中で還元処理して金粉を生成することを特徴とする嵩密度の高い金粉の製造方法。
An organic solvent containing the extracted tetrachloroauric acid ions is obtained by contacting diethylene glycol dibutyl ether as an organic solvent with a leachate obtained by leaching gold as tetrachloroauric acid ions, and extracting the tetrachloroauric acid ions into the organic solvent. In the method for producing a gold powder by washing the solvent with hydrochloric acid, mixing the organic solvent after washing with an aqueous solution containing oxalic acid, bringing them into contact with each other, and reducing tetrachloroaurate ions,
When the organic solvent containing the tetrachloroauric acid ion and the aqueous solution containing oxalic acid are mixed and contacted, the chloride ion concentration in the aqueous solution is adjusted to 60 g / L or more and 90 g / L or less, A method for producing a gold powder having a high bulk density, wherein tetrachloroaurate ions in the organic solvent are back-extracted into the aqueous solution and then reduced in the aqueous solution to produce gold powder.
JP2013248098A 2013-11-29 2013-11-29 Method for producing gold powder with high bulk density Active JP6011809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013248098A JP6011809B2 (en) 2013-11-29 2013-11-29 Method for producing gold powder with high bulk density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013248098A JP6011809B2 (en) 2013-11-29 2013-11-29 Method for producing gold powder with high bulk density

Publications (2)

Publication Number Publication Date
JP2015105413A JP2015105413A (en) 2015-06-08
JP6011809B2 true JP6011809B2 (en) 2016-10-19

Family

ID=53435732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013248098A Active JP6011809B2 (en) 2013-11-29 2013-11-29 Method for producing gold powder with high bulk density

Country Status (1)

Country Link
JP (1) JP6011809B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108326320A (en) * 2018-03-06 2018-07-27 上海应用技术大学 A method of preparing gold copper nano-particle

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105441690A (en) * 2015-11-18 2016-03-30 金川集团股份有限公司 Method for extracting gold from material liquid with high gold content
CN105441689A (en) * 2015-11-18 2016-03-30 金川集团股份有限公司 Method for preparing high-purity gold
JP6919309B2 (en) * 2016-04-26 2021-08-18 住友金属鉱山株式会社 How to make gold from copper electrolytic slime
JP7006332B2 (en) * 2018-02-05 2022-01-24 住友金属鉱山株式会社 How to make gold powder
CN114210989B (en) * 2021-10-27 2023-11-21 航天科工(长沙)新材料研究院有限公司 Micron-sized gold powder and preparation method thereof
CN114160803A (en) * 2021-11-17 2022-03-11 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) High-efficiency preparation method of high-dispersity spherical gold powder

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3079035B2 (en) * 1996-05-27 2000-08-21 日鉱金属株式会社 How to collect gold
JP3309801B2 (en) * 1998-05-19 2002-07-29 三菱マテリアル株式会社 How to collect gold
JP3087758B1 (en) * 2000-01-25 2000-09-11 住友金属鉱山株式会社 Method for recovering valuable metals from copper electrolytic slime
JP4325201B2 (en) * 2003-01-28 2009-09-02 住友金属鉱山株式会社 Transparent conductive layer forming coating liquid and transparent conductive film
JP5202858B2 (en) * 2007-03-23 2013-06-05 古河電気工業株式会社 Method for producing copper fine particles
JP5568255B2 (en) * 2009-06-17 2014-08-06 住友金属鉱山株式会社 Silver powder and method for producing the same
JP5351747B2 (en) * 2009-12-22 2013-11-27 田中貴金属工業株式会社 Gold reduction recovery method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108326320A (en) * 2018-03-06 2018-07-27 上海应用技术大学 A method of preparing gold copper nano-particle
CN108326320B (en) * 2018-03-06 2021-05-11 上海应用技术大学 Method for preparing gold-copper alloy nanoparticles

Also Published As

Publication number Publication date
JP2015105413A (en) 2015-06-08

Similar Documents

Publication Publication Date Title
JP6011809B2 (en) Method for producing gold powder with high bulk density
JP3616314B2 (en) Method for treating copper electrolytic deposits
CN101508426B (en) Method for separating tellurium from tellurium slag
JP3474526B2 (en) How to recover silver
CN102459660A (en) Extraction of gold from cathode associated gold concentrates
CN103757421B (en) The extracting method of rare precious metal in platinum palladium mud
CN103993180A (en) Method for recovering valuable metals from scrap copper anode slime
TWI428451B (en) Valuable metal recovery method from lead-free waste solder
CN106222421A (en) Gold mud treatment method
CN105967153A (en) Technology for recovering tellurium from high-tellurium slag
JP2010138490A (en) Method of recovering zinc
JP6233478B2 (en) Purification method of bismuth
JP5200588B2 (en) Method for producing high purity silver
JP5447357B2 (en) Chlorine leaching method for copper electrolytic slime
WO2018138917A1 (en) Bismuth purification method
CN104099480B (en) A kind of slag bismuth oxide prepares the method for bismuth electrolytic solution
CN113337724B (en) Method for synchronously separating and extracting rare-dispersion element tellurium and metal copper from cuprous telluride slag
TW201638343A (en) Method for leaching valuable metals in copper removal slime
JP2012246197A (en) Method for purifying selenium by wet process
JP5423592B2 (en) Method for producing low chlorine nickel sulfate / cobalt solution
CN102274978A (en) Method for quickly wet-process refining non-standard coarse gold powder
JP5426129B2 (en) Ruthenium recovery method
JP2007231397A (en) Method for refining silver chloride
JP7006332B2 (en) How to make gold powder
JP6750454B2 (en) Method for removing impurities from bismuth electrolyte

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160906

R150 Certificate of patent or registration of utility model

Ref document number: 6011809

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150