JP2008031205A - Conductive film and touch panel using the film - Google Patents

Conductive film and touch panel using the film Download PDF

Info

Publication number
JP2008031205A
JP2008031205A JP2006203283A JP2006203283A JP2008031205A JP 2008031205 A JP2008031205 A JP 2008031205A JP 2006203283 A JP2006203283 A JP 2006203283A JP 2006203283 A JP2006203283 A JP 2006203283A JP 2008031205 A JP2008031205 A JP 2008031205A
Authority
JP
Japan
Prior art keywords
conductive
film
transparent conductive
coating film
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006203283A
Other languages
Japanese (ja)
Other versions
JP5367939B2 (en
Inventor
Nobuo Minobe
信夫 見延
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Film Solutions Ltd
Original Assignee
Teijin DuPont Films Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin DuPont Films Japan Ltd filed Critical Teijin DuPont Films Japan Ltd
Priority to JP2006203283A priority Critical patent/JP5367939B2/en
Publication of JP2008031205A publication Critical patent/JP2008031205A/en
Application granted granted Critical
Publication of JP5367939B2 publication Critical patent/JP5367939B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive film which is prepared by using a conductive polymer, but, nevertheless, exhibits an excellent conductivity in the same level as that of a conductive film prepared by laminating ITO and, particularly, has low contact resistance and excellent transparency. <P>SOLUTION: The conductive film includes a substrate film and a transparent conductive layer formed thereon. The transparent conductive layer includes at least one transparent conductive coating. The conductive coating includes a conductive polymer containing a cationic polythiophene (A) having a repeating unit represented by general formula (I) as a main component and a polyanion (B) and includes conductive particulates (C). The content of the conductive particulates (C) in the conductive coating is 5-50 pts.mass based on 100 pts.mass of the conductive polymer. The conductive coating is the outermost layer of the transparent conductive layer relative to the substrate film and has a thickness of 20-100 nm. The conductive film has a total light transmittance of 70% or more and a surface resistivity of 10-1×10<SP>4</SP>Ω/sq. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、透明性および導電性に優れた導電性フィルム、および当該フィルムを用いたタッチパネルに関する。さらに詳しくは、接触抵抗が低く、表面抵抗率と接触抵抗値との比(接触抵抗値/表面抵抗率)が改善された導電性フィルムであり、透明タッチパネル、液晶ディスプレイ(LCD)、有機エレクトロルミネッセンス素子、無機エレクトロルミネッセンスランプ等の透明電極として好適に用いることのできる透明な導電性フィルムに関する。   The present invention relates to a conductive film excellent in transparency and conductivity, and a touch panel using the film. More specifically, it is a conductive film having a low contact resistance and an improved ratio of surface resistivity to contact resistance value (contact resistance value / surface resistivity), transparent touch panel, liquid crystal display (LCD), organic electroluminescence. The present invention relates to a transparent conductive film that can be suitably used as a transparent electrode such as an element or an inorganic electroluminescence lamp.

従来、液晶ディスプレイ、透明タッチパネル等の透明電極や電磁波シールド材としては、透明導電性フィルムが好適に用いられている。かかる透明導電性フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、トリアセチルセルロース(TAC)等の透明基材フィルム表面の少なくとも片面に、酸化インジウム(In)、酸化錫(SnO)、InとSnOの混合焼結体(ITO)等を、真空蒸着法、スパッタリング法、イオンプレーティング法等のドライプロセスによって設けたものがよく知られている。 Conventionally, a transparent conductive film is suitably used as a transparent electrode such as a liquid crystal display or a transparent touch panel or an electromagnetic shielding material. As such a transparent conductive film, for example, at least one surface of a transparent substrate film surface such as polyethylene terephthalate (PET) or triacetyl cellulose (TAC), indium oxide (In 2 O 3 ), tin oxide (SnO 2 ), It is well known that a mixed sintered body (ITO) of In 2 O 3 and SnO 2 or the like is provided by a dry process such as a vacuum deposition method, a sputtering method, or an ion plating method.

しかしながら、通常、透明導電性フィルムは、ウェブ状で連続加工や打ち抜き加工がなされたり、また、曲げられた状態で表面加工や保管がなされる。このため、上記ドライプロセスにより得られた透明導電性フィルムにおいては、このような加工工程を経た場合や保管期間中に、クラックが発生してしまい、表面抵抗が増大する場合があった。   However, normally, the transparent conductive film is web-like, continuously processed or punched, or is subjected to surface processing or storage in a bent state. For this reason, in the transparent conductive film obtained by the dry process, cracks may occur during such processing steps or during storage, and the surface resistance may increase.

一方で、透明基材フィルムの上に導電性高分子を含む液体を塗布すること(ウエットプロセス)により形成される透明導電塗膜層を有する導電性フィルムが知られている。ウエットプロセスによって得られる透明導電性塗膜は、膜自体に柔軟性があり、クラック等の問題は生じがたい。また、ウエットプロセスは、ドライプロセスとは異なり、製造コストが比較的安く、また、コーティングスピードも一般的に速いことから、生産性に優れるという利点もある。   On the other hand, a conductive film having a transparent conductive coating layer formed by applying a liquid containing a conductive polymer on a transparent substrate film (wet process) is known. The transparent conductive coating film obtained by the wet process has flexibility in the film itself, and problems such as cracks hardly occur. In addition, unlike the dry process, the wet process has a relatively low production cost and generally has a high productivity because it has a high coating speed.

このようなウエットプロセスに用いられる導電性高分子としては、一般的に、ポリチオフェン、ポリアニリン、ポリピロール等が知られている。しかしながら、ポリチオフェン、ポリアニリン、ポリピロール等を用いて得られる導電性フィルムは、開発の初期段階では高い導電性が得られず、その結果、帯電防止用途等、用途が限定されてしまっていた。また、導電塗膜層自体の色相が問題となる場合もあった。   In general, polythiophene, polyaniline, polypyrrole, and the like are known as the conductive polymer used in such a wet process. However, a conductive film obtained using polythiophene, polyaniline, polypyrrole, or the like cannot obtain high conductivity at an early stage of development, and as a result, uses such as antistatic use have been limited. In addition, the hue of the conductive coating layer itself may be a problem.

そこで、ウエットプロセスにより得られる塗膜の導電性を向上させ、あるいは、導電性塗膜の色相を改善する目的で、最近では、導電性高分子の製法の改良等が行われている。例えば、3,4−ジアルコキシチオフェンをポリアニオン存在下で酸化重合することによって得られる、ポリ(3,4−ジアルコキシチオフェン)とポリアニオンとからなる導電性高分子組成物(特許文献1参照)によれば、近年のさらなる製法の改良(特許文献2および特許文献3参照)等によって、高い光線透過率を保ったまま、非常に低い表面抵抗を有する導電性フィルムが得られるようになった。   Therefore, recently, for the purpose of improving the conductivity of the coating film obtained by the wet process, or improving the hue of the conductive coating film, the production method of the conductive polymer has been improved. For example, a conductive polymer composition comprising poly (3,4-dialkoxythiophene) and a polyanion obtained by oxidative polymerization of 3,4-dialkoxythiophene in the presence of a polyanion (see Patent Document 1). According to the recent improvement of the manufacturing method (see Patent Document 2 and Patent Document 3) and the like, a conductive film having a very low surface resistance can be obtained while maintaining a high light transmittance.

特開平01−313521号公報Japanese Patent Laid-Open No. 01-313521 特開2002−193972号公報JP 2002-193972 A 特開2003−286336号公報JP 2003-286336 A

しかしながら、かかる導電性高分子を導電性塗膜に含む透明導電性フィルムは、形成される塗膜の表層近辺に、導電性に寄与しないポリアニオン成分が多く存在するため、接触抵抗が高くなっていた。このため、例えばタッチパネル用の基材として使用した場合には、接触抵抗が高いことに起因して、誤操作が生じる場合等があった。また、有機エレクトロルミネッセンス素子、無機エレクトロルミネッセンスランプ等の透明電極として使用した場合においても、所定の導電性が得られない等の問題が生じる場合があった。   However, a transparent conductive film containing such a conductive polymer in a conductive coating film has a high contact resistance because there are many polyanion components that do not contribute to conductivity in the vicinity of the surface layer of the coating film to be formed. . For this reason, for example, when used as a base material for a touch panel, there are cases where an erroneous operation occurs due to high contact resistance. Moreover, even when used as a transparent electrode such as an organic electroluminescence element or an inorganic electroluminescence lamp, there may be a problem that a predetermined conductivity cannot be obtained.

本発明は、上記背景技術に鑑みてなされたものであり、その目的とするところは、導電性高分子を用いつつも、ITOを積層した導電性フィルムと同等の優れた導電性を発現し、とりわけ接触抵抗が低く、且つ、透明性にも優れた導電性フィルムを提供することにある。   The present invention has been made in view of the background art described above, and the object of the present invention is to develop excellent conductivity equivalent to a conductive film in which ITO is laminated while using a conductive polymer, In particular, an object is to provide a conductive film having low contact resistance and excellent transparency.

本発明者らは、上記課題を解決するため種々鋭意検討を行った。その結果、導電性塗膜として、カチオン性のポリチオフェンおよびポリアニオンを含む導電性高分子と、導電性微粒子とを構成成分として含む塗膜を形成し、当該塗膜を透明導電層のうちの基材フィルムに対する最外層とし、且つ、特定の厚みとすることにより、優れた透明性を有するとともに、導電性、とりわけ接触抵抗が低い導電性フィルムが得られることを見出し、本発明に到達した。   The inventors of the present invention have made various studies to solve the above problems. As a result, a conductive film containing cationic polythiophene and polyanion as a conductive coating film and conductive fine particles as constituent components is formed as the conductive coating film, and the coating film is used as a base material in the transparent conductive layer. The inventors have found that a conductive film having excellent transparency and low electrical conductivity, in particular, low contact resistance can be obtained by using the outermost layer for the film and having a specific thickness, and the present invention has been achieved.

即ち本発明は、基材フィルムの少なくとも片面に透明導電層が設けられた導電性フィルムであって、前記透明導電層は、少なくとも1層の透明導電性塗膜を含み、前記透明導電性塗膜は、下記一般式(I)で表される繰り返し単位を主成分として含む(A)カチオン性のポリチオフェンおよび(B)ポリアニオンを含む導電性高分子と、(C)導電性微粒子とを構成成分として含み、前記透明導電性塗膜は、前記透明導電層のうちの前記基材フィルムに対する最外層であり、且つ、層厚が20nm以上100nm以下であり、前記導電性フィルムは、全光線透過率が70%以上であり、且つ、表面抵抗率が10Ω/□以上1×10Ω/□以下であることを特徴とする導電性フィルムである。 That is, the present invention is a conductive film provided with a transparent conductive layer on at least one side of a base film, wherein the transparent conductive layer includes at least one transparent conductive coating, and the transparent conductive coating Are composed of (A) a cationic polythiophene and (B) a conductive polymer containing a polyanion, and (C) conductive fine particles, which contain a repeating unit represented by the following general formula (I) as a main component. The transparent conductive coating film is an outermost layer with respect to the base film in the transparent conductive layer, and the layer thickness is 20 nm or more and 100 nm or less, and the conductive film has a total light transmittance. It is a conductive film characterized by being 70% or more and having a surface resistivity of 10Ω / □ or more and 1 × 10 4 Ω / □ or less.

Figure 2008031205
(式中、RおよびRは、それぞれ独立に、水素または炭素数1以上4以下のアルキル基、あるいは、一緒になって、任意に置換されていてもよい炭素数1以上12以下のアルキレン基を示す。)
Figure 2008031205
(Wherein R 1 and R 2 are each independently hydrogen or an alkyl group having 1 to 4 carbon atoms, or an alkylene having 1 to 12 carbon atoms that may be optionally substituted together) Group.)

本発明の導電性フィルムは、特定の導電性高分子および導電性微粒子を含有する透明導電性塗膜が、特定の配置、特定の厚みで形成されることにより、導電性高分子を用いつつも、ITOを積層した導電性フィルムと同等の優れた導電性を発現し、とりわけ接触抵抗が低く、且つ、透明性にも優れる。したがって、液晶ディスプレイ(LCD)タッチパネル、有機エレクトロルミネッセンス素子、無機エレクトロルミネッセンスランプ等の透明電極として好適に使用することができる。   The conductive film of the present invention has a transparent conductive coating film containing a specific conductive polymer and conductive fine particles formed with a specific arrangement and a specific thickness, while using the conductive polymer. It exhibits excellent conductivity equivalent to that of a conductive film laminated with ITO, has particularly low contact resistance and excellent transparency. Therefore, it can be suitably used as a transparent electrode such as a liquid crystal display (LCD) touch panel, an organic electroluminescence element, and an inorganic electroluminescence lamp.

<導電性フィルム>
本発明の導電性フィルムは、基材フィルムの少なくも片面に透明導電層が設けられ、この透明導電層は少なくとも1層の透明導電性塗膜を含み、この透明導電性塗膜は、特定の(A)カチオン性のポリチオフェンおよび(B)ポリアニオンを含む導電性高分子と(C)導電性微粒子とを、特定の割合にて必須構成成分として含有し、特定の配置、特定の厚みで形成され、特定のフィルム物性を有する導電性フィルムである。
<Conductive film>
The conductive film of the present invention is provided with a transparent conductive layer on at least one side of the base film, and this transparent conductive layer includes at least one transparent conductive coating, (A) A conductive polymer containing cationic polythiophene and (B) polyanion and (C) conductive fine particles are contained as essential constituents in a specific ratio, and are formed with a specific arrangement and a specific thickness. A conductive film having specific film properties.

また、本発明の導電性フィルムは、基材フィルムと、透明導電性塗膜を含む透明導電層とを含む形態であれば、その他の層については特に限定されるものではない。したがって、その他の層を含む場合であっても、含まない場合であってもよい。その他の層を含む場合としては、例えば、基材フィルムと透明導電層との間に他の層を有する場合、あるいは、基材フィルムの上に保護膜を有する場合等が挙げられる。また、透明導電層は、基材フィルムの少なくとも片面に設けられていればよく、残りの片面には、必要に応じてアンカーコート層、ハードコート層等の塗膜、あるいはその他の層を設けることもできる。
以下に、本発明の導電性フィルムの構成成分、および物性等について説明する。
Moreover, if the conductive film of this invention is a form containing a base film and the transparent conductive layer containing a transparent conductive coating film, it will not specifically limit about another layer. Therefore, it may be a case where other layers are included or not included. Examples of the case where other layers are included include a case where another layer is provided between the base film and the transparent conductive layer, or a case where a protective film is provided on the base film. The transparent conductive layer only needs to be provided on at least one surface of the base film, and the remaining one surface is provided with a coating film such as an anchor coat layer or a hard coat layer, or other layers as necessary. You can also.
Below, the component of a conductive film of this invention, a physical property, etc. are demonstrated.

<透明導電層>
本発明の導電性フィルムは、基材の少なくとも片面に透明導電層が設けられたものである。また、本発明における透明導電層は、少なくとも1層の後述する透明導電性塗膜を必須構成層として含む。
<Transparent conductive layer>
The conductive film of the present invention is one in which a transparent conductive layer is provided on at least one side of a substrate. Moreover, the transparent conductive layer in this invention contains the transparent conductive coating film of the below-mentioned at least 1 layer as an essential structural layer.

尚、本発明の導電性フィルムにおける透明導電層は、後述する透明導電性塗膜が含まれていればよく、後述する透明導電性塗膜の1層のみで形成されていても、あるいは、後述する導電性塗膜を含む複数の層で形成されていてもよい。また、本発明の透明導電層が複数の層で形成される場合にあっては、後述する透明導電性塗膜同士が複数積層されるものであっても、あるいは、透明導電性塗膜以外の塗膜および/またはITO等のドライプロセスにより得られる導電膜と、後述する透明導電性塗膜とが積層されるものであってもよい。本発明においては、得られる導電性フィルムの経済性および柔軟性の観点から、後述する透明導電性塗膜単独あるいは、透明導電性塗膜とそれ以外の導電性を有する塗膜とが積層された構成の透明導電層とすることが好ましい。   In addition, the transparent conductive layer in the conductive film of the present invention is only required to include a transparent conductive film described later, and may be formed of only one layer of a transparent conductive film described later, or described later. It may be formed of a plurality of layers including a conductive coating film. Further, when the transparent conductive layer of the present invention is formed of a plurality of layers, even if a plurality of transparent conductive coatings described later are laminated, or other than the transparent conductive coating The electrically conductive film obtained by dry processes, such as a coating film and / or ITO, and the transparent conductive coating film mentioned later may be laminated | stacked. In the present invention, from the viewpoint of economy and flexibility of the obtained conductive film, a transparent conductive coating film alone or a transparent conductive coating film and a coating film having other conductivity are laminated, which will be described later. A transparent conductive layer having a configuration is preferable.

ここで、本発明の導電性フィルムにおける透明導電層全体の厚みは、100nm以上300nm以下とすることが好ましく、120nm以上200nm以下とすることがさらに好ましい。透明導電層の厚みが100nm未満であると、導電層の厚みが薄すぎて十分な導電性が得られない場合があり、一方で、塗膜の厚みが厚すぎると、透明性が不足したり、あるいは、ブロッキングを起こしたりする場合がある。   Here, the thickness of the entire transparent conductive layer in the conductive film of the present invention is preferably 100 nm or more and 300 nm or less, and more preferably 120 nm or more and 200 nm or less. If the thickness of the transparent conductive layer is less than 100 nm, the conductive layer may be too thin and sufficient conductivity may not be obtained. On the other hand, if the coating film is too thick, the transparency may be insufficient. Or, blocking may occur.

<透明導電性塗膜>
上述したとおり、本発明の導電性フィルムにおける透明導電層は、少なくとも1層の透明導電性塗膜を含み、この透明導電性塗膜は、特定構造を有する(A)カチオン性のポリチオフェンおよび(B)ポリアニオンを含む導電性高分子と、(C)導電性微粒子とを必須構成成分として含有し、特定の配置、特定の厚みで形成されるものである。以下、透明導電性塗膜につき説明する。
<Transparent conductive coating film>
As described above, the transparent conductive layer in the conductive film of the present invention includes at least one transparent conductive coating, and this transparent conductive coating includes (A) a cationic polythiophene having a specific structure and (B It contains a conductive polymer containing a polyanion and (C) conductive fine particles as essential components, and is formed with a specific arrangement and a specific thickness. Hereinafter, the transparent conductive coating film will be described.

[導電性高分子]
本発明の透明導電性塗膜の必須構成成分となる導電性高分子は、(A)カチオン性のポリチオフェンおよび(B)ポリアニオンを必須成分として含むものである。本発明に用いられる導電性高分子の製造方法は、特に限定されるものではないが、例えば、(B)ポリアニオンの水溶液中にて、(A)カチオン性のポリチオフェンのモノマーとなる物質を酸化重合することにより得ることができる。
[Conductive polymer]
The conductive polymer that is an essential component of the transparent conductive coating film of the present invention contains (A) a cationic polythiophene and (B) a polyanion as essential components. The method for producing the conductive polymer used in the present invention is not particularly limited. For example, in (B) an aqueous solution of polyanion, (A) a substance that becomes a cationic polythiophene monomer is subjected to oxidative polymerization. Can be obtained.

〔(A)カチオン性のポリチオフェン〕
透明導電性塗膜の必須構成成分となる導電性高分子を構成する(A)カチオン性のポリチオフェンは、下記一般式(I)で表される3,4−ジ置換チオフェンを繰り返し単位の主成分として含む。

Figure 2008031205
ここで、上記式(I)中、RおよびRは、それぞれ独立に、水素または炭素数1以上4以下のアルキル基、あるいは、一緒になって、任意に置換されていてもよい炭素数1以上12以下のアルキレン基を示す。 [(A) Cationic polythiophene]
The (A) cationic polythiophene constituting the conductive polymer that is an essential constituent of the transparent conductive coating film is a main component of a repeating unit of 3,4-disubstituted thiophene represented by the following general formula (I) Include as.
Figure 2008031205
Here, in the above formula (I), R 1 and R 2 are each independently hydrogen or an alkyl group having 1 to 4 carbon atoms, or a carbon number that may be optionally substituted together. 1 or more and 12 or less alkylene group is shown.

およびRが、それぞれ独立に、水素または炭素数1以上4以下のアルキル基である場合には、RおよびRは、メチル基、エチル基であることが好ましく、エチル基が特に好ましい。 When R 1 and R 2 are each independently hydrogen or an alkyl group having 1 to 4 carbon atoms, R 1 and R 2 are preferably a methyl group or an ethyl group, preferable.

およびRが一緒になって、任意に置換されてもよい炭素数1以上12以下のアルキレン基を形成する場合には、形成されるアルキレン基の代表例として、例えば、1,2−シクロヘキシレン、2,3−ブチレン等の1,2−アルキレン基を挙げることができる。このような1,2−アルキレン基は、例えば、エテン、プロペン、ヘキセン、オクテン、デセン、ドデセン、およびスチレン等のα−オレフィン類を臭素化して得られる1,2−ジブロモアルカン類から誘導することができる。 When R 1 and R 2 together form an optionally substituted alkylene group having 1 to 12 carbon atoms, typical examples of the formed alkylene group include 1,2- Mention may be made of 1,2-alkylene groups such as cyclohexylene and 2,3-butylene. Such 1,2-alkylene groups are derived from 1,2-dibromoalkanes obtained by brominating α-olefins such as ethene, propene, hexene, octene, decene, dodecene, and styrene, for example. Can do.

およびRが一緒になって形成される、任意に置換されてもよい炭素数1以上12以下のアルキレン基における置換基としては、メチレン基、1,2−エチレン基、および1,3−プロピレン基が好ましく、これらの中では、1,2−エチレン基が特に好ましい。 Examples of the substituent in the optionally substituted alkylene group having 1 to 12 carbon atoms formed by R 1 and R 2 together include a methylene group, a 1,2-ethylene group, and 1,3 -Propylene groups are preferred, and among these, 1,2-ethylene groups are particularly preferred.

また、導電性高分子を構成する(A)カチオン性ポリチオフェンは、上記一般式(I)で表される3,4−ジ置換チオフェンのみを繰り返し単位としていても、あるいは、上記一般式(I)で表される3,4−ジ置換チオフェンを繰り返し単位の主成分とし、これと重合可能な他のモノマーを従成分として含むものであってもよい。   Further, the cationic polythiophene (A) constituting the conductive polymer may have only a 3,4-disubstituted thiophene represented by the above general formula (I) as a repeating unit, or the above general formula (I) The main component of the repeating unit may be 3,4-disubstituted thiophene represented by the following, and another monomer polymerizable with this may be included as a subsidiary component.

本発明の透明導電性塗膜において用いられる上記のポリチオフェンは、カチオン性を示すものである。このようなカチオン性を示すポリチオフェンは、例えば、特開平01−313521号公報に記載の方法により、モノマーである3,4−ジ置換チオフェンを酸化重合することにより得ることができる。   The polythiophene used in the transparent conductive coating film of the present invention exhibits a cationic property. Such cationic polythiophene can be obtained, for example, by oxidative polymerization of a monomer, 3,4-disubstituted thiophene, by the method described in JP-A-01-313521.

〔(B)ポリアニオン〕
透明導電性塗膜の必須構成成分となる導電性高分子を構成する(B)ポリアニオンとしては、特に限定されるものではないが、例えば、ポリアクリル酸、ポリメタクリル酸、ポリマレイン酸等の高分子状カルボン酸類;ポリスチレンスルホン酸、ポリビニルスルホン酸等の高分子状スルホン酸類等が挙げられる。
[(B) polyanion]
The polyanion (B) that constitutes the conductive polymer that is an essential constituent of the transparent conductive coating film is not particularly limited, and examples thereof include polymers such as polyacrylic acid, polymethacrylic acid, and polymaleic acid. Carboxylic acids such as: polymeric sulfonic acids such as polystyrene sulfonic acid and polyvinyl sulfonic acid;

また、高分子状カルボン酸およびスルホン酸類等のポリアニオンは、ビニルカルボン酸類、ビニルスルホン酸類等のアニオン性のモノマーのみから重合される単独重合体であっても、あるいは、複数種のアニオン性モノマーからなる共重合体であっても、さらには、アニオン性モノマーと当該モノマーと共重合可能な他のモノマー類との共重合体であってもよい。アニオン性モノマーと共重合可能な他のモノマーとしては、例えば、アクリレート類、スチレン等を挙げることができる。   The polyanions such as polymeric carboxylic acids and sulfonic acids may be homopolymers polymerized only from anionic monomers such as vinyl carboxylic acids and vinyl sulfonic acids, or from a plurality of types of anionic monomers. Further, it may be a copolymer of an anionic monomer and other monomers copolymerizable with the monomer. Examples of other monomers copolymerizable with the anionic monomer include acrylates and styrene.

本発明に用いられる導電性高分子を構成する(B)ポリアニオンが共重合体である場合には、少なくとも1種のアニオン性モノマーが共重合体成分として含まれていればよく、複数種のアニオン性モノマー、あるいは、複数種の他の共重合モノマーを任意に用いることができる。   When the polyanion (B) constituting the conductive polymer used in the present invention is a copolymer, it is sufficient that at least one kind of anionic monomer is contained as a copolymer component. Monomer or a plurality of other copolymerization monomers can be arbitrarily used.

本発明に用いられる導電性高分子を構成する(B)ポリアニオンとしては、これらの中でも、ポリスチレンスルホン酸、および少なくとも一部が金属塩となっているポリスチレンスルホン酸が特に好ましい。
尚、(B)ポリアニオンの数平均分子量は、1,000以上2,000,000以下の範囲が好ましく、2,000以上500,000以下の範囲がより好ましい。
Among these, as the polyanion (B) constituting the conductive polymer used in the present invention, polystyrene sulfonic acid and polystyrene sulfonic acid at least a part of which is a metal salt are particularly preferable.
In addition, the number average molecular weight of (B) polyanion has the preferable range of 1,000-2,000,000, and the range of 2,000-500,000 is more preferable.

[(C)導電性微粒子]
透明導電性塗膜の必須構成成分となる(C)導電性微粒子は、透明な導電性塗膜を形成するために、(C)導電性微粒子が存在していても可視光の散乱を抑制する必要がある。このため、(C)導電性微粒子は、可視光の最短波長の半分以下(200nm以下)の平均一次粒径を有するものが好ましい。さらに好ましくは、100nm以下であり、特に好ましくは、短径が50nm以下の微粒子である。
[(C) Conductive fine particles]
(C) Conductive fine particles, which are essential constituents of the transparent conductive coating, suppress the scattering of visible light even when (C) conductive fine particles are present in order to form a transparent conductive coating. There is a need. For this reason, it is preferable that the conductive fine particles (C) have an average primary particle diameter of half or less (200 nm or less) of the shortest wavelength of visible light. More preferably, it is 100 nm or less, and particularly preferably fine particles having a minor axis of 50 nm or less.

また、本発明の透明導電性塗膜を構成するための、(A)カチオン性ポリチオフェンおよび(B)ポリアニオンを含む導電性高分子を含むコーティング組成物は、酸性塗剤となることから、本発明に用いる(C)導電性微粒子は、耐酸性のある微粒子であることが好ましい。(C)導電性微粒子が耐酸性であれば、導電性高分子とともにコーティング組成物(塗剤)として容易に混合塗布することができ、透明導電性塗膜の作成工程を単純化することができる。このような、本発明に好ましく用いられる耐酸性の(C)導電性微粒子としては、金の微粒子、あるいは、金により表面がコーティングされた微粒子が挙げられる。さらには、金の微粒子、あるいは、金により表面がコーティングされた微粒子の中でも、塗膜を形成した際に、鎖様に連なって塗膜中に存在する微粒子を用いることが特に好ましい。(C)導電性微粒子が鎖様に連なって存在することにより、塗膜の導電性をより向上させることができる。   Moreover, since the coating composition containing the conductive polymer containing (A) cationic polythiophene and (B) polyanion for constituting the transparent conductive coating film of the present invention becomes an acidic coating, The conductive fine particles (C) used in the above are preferably fine particles having acid resistance. (C) If the conductive fine particles are acid-resistant, they can be easily mixed and applied as a coating composition (coating agent) together with the conductive polymer, and the process of creating a transparent conductive coating film can be simplified. . Examples of such acid-resistant (C) conductive fine particles preferably used in the present invention include gold fine particles or fine particles whose surfaces are coated with gold. Furthermore, among the fine particles of gold or the fine particles whose surface is coated with gold, it is particularly preferable to use fine particles present in the coating in a chain form when the coating is formed. (C) When the conductive fine particles are present in a chain, the conductivity of the coating film can be further improved.

本発明の導電性フィルムにおいて用いられる(C)導電性微粒子としては、市販の微粒子をそのまま用いることも可能である。このような市販の(C)導電性微粒子としては、例えば、住友金属鉱山(株)社製、商品名:CKRシリーズ、同社製、商品名:CKRFシリーズ等を挙げることができる。   As the conductive fine particles (C) used in the conductive film of the present invention, commercially available fine particles can be used as they are. Examples of such commercially available (C) conductive fine particles include Sumitomo Metal Mining Co., Ltd., trade name: CKR series, company name, trade name: CKRF series, and the like.

透明導電性塗膜中の導電性高分子と(C)導電性微粒子との割合は、導電性高分子100質量部に対して(C)導電性微粒子が5質量部以上50質量部以下の範囲であり、10質量部以上40質量部以下の範囲であることがさらに好ましい。(C)導電性微粒子の含有量が5質量部より少ない場合には、得られる導電性フィルムの接触抵抗が高くなり、一方で、含有量が50質量部より多い場合には、透明性が著しく低下して目的の物性が得られない。尚、ここでいう「導電性高分子100質量部に対して」とは、「導電性高分子の固形分100質量部に対して」という意味である。   The ratio of the conductive polymer and the conductive fine particles (C) in the transparent conductive coating film is in the range of 5 to 50 parts by weight of the conductive fine particles (C) with respect to 100 parts by weight of the conductive polymer. And more preferably in the range of 10 to 40 parts by mass. (C) When the content of the conductive fine particles is less than 5 parts by mass, the contact resistance of the obtained conductive film becomes high, while when the content is more than 50 parts by mass, the transparency is remarkably high. The desired physical properties cannot be obtained due to the decrease. Here, “with respect to 100 parts by mass of the conductive polymer” means “with respect to 100 parts by mass of the solid content of the conductive polymer”.

[透明導電性塗膜に含まれるその他の成分]
本発明の透導電性フィルムにおける透明導電性塗膜は、上記の(A)カチオン性のポリチオフェンおよび(B)ポリアニオンを含む導電性高分子と(C)導電性微粒子以外に、導電性能を向上させる等の塗膜の性能を向上させることを目的として、任意に他の成分を含んでいてもよい。以下に、任意成分について説明する。
[Other components contained in transparent conductive film]
The transparent conductive coating film in the conductive film of the present invention improves the conductive performance in addition to the conductive polymer containing (A) cationic polythiophene and (B) polyanion and (C) conductive fine particles. For the purpose of improving the performance of the coating film, etc., other components may optionally be included. Below, an arbitrary component is demonstrated.

〔アルキレングリコール、ポリアルキレングリコール、水溶性化合物〕
本発明の透明導電性塗膜は、導電性能を向上させる観点から、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール等のポリアルキレングリコールを、任意成分として含有していてもよい。また、分子内にアミド結合を有する、室温で液体の水溶性化合物が含まれていてもよい。
[Alkylene glycol, polyalkylene glycol, water-soluble compound]
The transparent conductive coating film of the present invention may contain a polyalkylene glycol such as diethylene glycol, triethylene glycol, or tetraethylene glycol as an optional component from the viewpoint of improving the conductive performance. Further, a water-soluble compound having an amide bond in the molecule and liquid at room temperature may be contained.

これらの化合物は、上記の導電性高分子100質量部に対して、10質量部以上1,000質量部以下の範囲で透明導電性塗膜中に含有されることが好ましく、30質量部以上600質量部以下の範囲がさらに好ましい。含有量が10質量部未満の場合には、導電性能の向上効果を十分に得ることができず、一方で、含有量が1000質量部を超える場合には、塗膜のヘイズ値が増大して透明性が低下したり、塗膜自体の強度が低下して簡単に剥離が生じたり、フィルムをロール状に巻き取る際に塗膜が接触した裏面に簡単に転写してしまう等の不具合が生じやすくなる。尚、ここでいう「導電性高分子100質量部に対して」とは、上記と同様に、「導電性高分子の固形分100質量部に対して」という意味である。   These compounds are preferably contained in the transparent conductive coating film in the range of 10 to 1,000 parts by mass with respect to 100 parts by mass of the conductive polymer, and 30 to 600 parts by mass. A range of less than or equal to part by mass is more preferred. When the content is less than 10 parts by mass, the effect of improving the conductive performance cannot be sufficiently obtained. On the other hand, when the content exceeds 1000 parts by mass, the haze value of the coating film increases. Problems such as reduced transparency, reduced strength of the coating itself, and easy peeling, or easy transfer to the back of the coating when the film is rolled up It becomes easy. As used herein, “with respect to 100 parts by mass of the conductive polymer” means “with respect to 100 parts by mass of the solid content of the conductive polymer” as described above.

〔アルコキシシラン化合物〕
また、本発明の透明導電性塗膜は、得られる塗膜の強度を向上させる目的で、アルコキシシラン化合物を任意成分として含有していてもよい。ここで、アルコキシシラン化合物は、加水分解され、その後、縮合反応により形成された反応生成物の形態で塗膜中に存在する。
[Alkoxysilane compound]
Moreover, the transparent conductive coating film of this invention may contain the alkoxysilane compound as an arbitrary component in order to improve the intensity | strength of the coating film obtained. Here, the alkoxysilane compound is hydrolyzed and then present in the coating film in the form of a reaction product formed by a condensation reaction.

本発明の透明導電性塗膜に含有されるアルコキシシラン化合物としては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン、テトライソブトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、トリメチルエトキシシラン、フェニルトリエトキシシラン等を挙げることができ、その他に、γ−グリシドキシプロピルトリメトキシシラン、ビニルトリエトキシシラン等のアルコキシ基以外の反応性官能基を有するトリアルコキシシランを用いることもできる。これらの中では、エポキシ基を有するトリアルコキシシランが特に好ましく、このようなアルコキシシラン化合物としては、例えば、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等を挙げることができる。   Examples of the alkoxysilane compound contained in the transparent conductive coating film of the present invention include tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, tetraisobutoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, and trimethylethoxy. Silane, phenyltriethoxysilane, and the like can be used. In addition, trialkoxysilane having a reactive functional group other than an alkoxy group such as γ-glycidoxypropyltrimethoxysilane and vinyltriethoxysilane can also be used. . Among these, trialkoxysilane having an epoxy group is particularly preferable. Examples of such alkoxysilane compounds include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2- ( 3,4-epoxycyclohexyl) ethyltrimethoxysilane and the like.

このようなアルコキシシラン化合物の含有量は、上記の導電性高分子100質量部に対して、20質量部以上500質量部以下の範囲とすることが好ましい。含有量が20質量部より少ない場合には塗膜強度の改善効果が小さくなり、一方で、500質量部を超える場合には表面抵抗率が増大する傾向にある。   The content of the alkoxysilane compound is preferably in the range of 20 parts by mass or more and 500 parts by mass or less with respect to 100 parts by mass of the conductive polymer. When the content is less than 20 parts by mass, the effect of improving the coating film strength is reduced. On the other hand, when the content exceeds 500 parts by mass, the surface resistivity tends to increase.

また、このようなアルコキシシラン化合物の加水分解および縮合を効率よく進行させる目的で、アルコキシシラン化合物には触媒を併用することが好ましい。用いられる触媒としては、酸性触媒または塩基性触媒のいずれであってもよい。酸性触媒としては、無機酸および有機酸のいずれも好適に用いることができ、好ましい無機酸としては、塩酸、硝酸、硫酸、リン酸等、好ましい有機酸としては、酢酸、クエン酸、プロピオン酸、しゅう酸、p−トルエンスルホン酸等を挙げることができる。一方、塩基性触媒としては、アンモニア、トリエチルアミン、トリプロピルアミン等の有機アミン化合物、ナトリウムメトキシド、カリウムメトキシド、カリウムエトキシド、水酸化ナトリウム、水酸化カリウム等のアルカリ金属化合物等を好適に用いることができる。   Moreover, it is preferable to use a catalyst together with the alkoxysilane compound for the purpose of efficiently proceeding the hydrolysis and condensation of the alkoxysilane compound. The catalyst used may be either an acidic catalyst or a basic catalyst. As the acidic catalyst, any of inorganic acids and organic acids can be suitably used. Preferred inorganic acids include hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid and the like. Preferred organic acids include acetic acid, citric acid, propionic acid, Examples include oxalic acid and p-toluenesulfonic acid. On the other hand, as the basic catalyst, organic amine compounds such as ammonia, triethylamine, and tripropylamine, and alkali metal compounds such as sodium methoxide, potassium methoxide, potassium ethoxide, sodium hydroxide, and potassium hydroxide are preferably used. be able to.

[透明導電性塗膜形成用コーティング組成物(塗剤)]
本発明の導電性フィルムにおける透明導電性塗膜は、透明導電性塗膜を形成するためのコーティング組成物(塗剤)を、透明導電性塗膜を形成したい層の上に塗布することにより形成される。ここで、透明導電性塗膜を形成するためのコーティング組成物としては、必須成分である上記の(A)カチオン性のポリチオフェンおよび(B)ポリアニオンを含む導電性高分子、(C)導電性微粒子、および、必要に応じて、上記の塗膜性能を向上させるための任意成分、あるいは、コーティング組成物(塗剤)としての性能を向上させるための任意成分を、水に分散させた水分散液を用いる。
[Coating composition for forming transparent conductive coating film (coating agent)]
The transparent conductive coating film in the conductive film of the present invention is formed by applying a coating composition (coating agent) for forming a transparent conductive coating film on a layer where the transparent conductive coating film is to be formed. Is done. Here, as a coating composition for forming a transparent conductive coating film, the conductive polymer containing (A) the cationic polythiophene and (B) the polyanion which are essential components, and (C) the conductive fine particles. An aqueous dispersion in which an optional component for improving the above-mentioned coating film performance or an optional component for improving the performance as a coating composition (coating agent) is dispersed in water as necessary. Is used.

透明導電性塗膜形成用コーティング組成物(塗剤)の製造方法としては、塗膜構成成分が水に分散されるならば特に限定されるものではない。例えば、コーティング組成物(塗剤)を構成するための成分を攪拌下で混合する方法を挙げることができる。特に、超音波処理をしつつ分散させれば、成分をより均等に分散させることが可能となる。   The method for producing the transparent conductive coating film-forming coating composition (coating agent) is not particularly limited as long as the coating film components are dispersed in water. For example, the method of mixing the component for comprising a coating composition (coating agent) under stirring can be mentioned. In particular, if the components are dispersed while being subjected to ultrasonic treatment, the components can be more evenly dispersed.

〔任意成分〕
以下に、透明導電性塗膜形成用コーティング組成物(塗剤)の性能を向上させるための任意成分について説明する。
[Optional ingredients]
Below, the arbitrary components for improving the performance of the coating composition (coating agent) for transparent conductive coating film formation are demonstrated.

(有機高分子バインダー)
透明導電性塗膜形成用コーティング組成物(塗剤)の任意成分としては、得られる塗膜の強度、および、塗膜からの導電性高分子の脱落を防止する観点から、有機高分子材料をバインダーとして添加することが好ましい。有機高分子バインダーとしては、例えば、ポリエステル、ポリアクリル、ポリウレタン、ポリ酢酸ビニル、ポリビニルブチラール等を挙げることができる。
(Organic polymer binder)
As an optional component of the coating composition (coating agent) for forming a transparent conductive coating film, an organic polymer material is used from the viewpoint of preventing the dropping of the conductive polymer from the coating film strength and the coating film. It is preferable to add as a binder. Examples of the organic polymer binder include polyester, polyacryl, polyurethane, polyvinyl acetate, polyvinyl butyral, and the like.

(溶媒)
また、必要に応じて、上記の有機高分子バインダーを溶解させることを目的として、もしくは、基材フィルムへの濡れ性を改善することを目的として、あるいは、透明導電性塗膜形成用コーティング組成物(塗剤)の固形分濃度を調整すること等を目的として、分散媒である水と相溶性のある適当な溶媒を添加することができる。このような溶媒としては、例えば、メタノール、エタノール、プロパノール、イソプロパノール等のアルコール類;ホルムアミド、N,N−ジメチルホルムアミド、アセトアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、N−メチルプロピオンアミド等のアミド類を好ましく用いられる溶媒として挙げることができる。
(solvent)
Further, if necessary, for the purpose of dissolving the above organic polymer binder, or for the purpose of improving the wettability to the base film, or a coating composition for forming a transparent conductive coating film For the purpose of adjusting the solid content concentration of the (coating agent), an appropriate solvent compatible with water as the dispersion medium can be added. Examples of such solvents include alcohols such as methanol, ethanol, propanol, and isopropanol; formamide, N, N-dimethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, N-methylpropionamide, and the like. These amides can be mentioned as preferred solvents.

(界面活性剤)
さらに、透明導電性塗膜形成用コーティング組成物(塗剤)の任意成分としては、基材フィルムに対する濡れ性を向上させることを目的として、少量の界面活性剤を添加してもよい。好ましい界面活性剤としては、例えば、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンアルキルエーテル、ソルビタン脂肪酸エステル等の非イオン性界面活性剤、フルオロアルキルカルボン酸塩、パーフルオロアルキルベンゼンスルホン酸塩、パーフルオロアルキル4級アンモニウム塩、パーフルオロアルキルポリオキシエチレンエタノール等のフッ素系界面活性剤が挙げられる。
(Surfactant)
Furthermore, as an optional component of the coating composition (coating agent) for forming a transparent conductive coating film, a small amount of a surfactant may be added for the purpose of improving the wettability with respect to the base film. Preferred surfactants include, for example, nonionic surfactants such as polyoxyethylene alkyl phenyl ether, polyoxyethylene alkyl ether, sorbitan fatty acid ester, fluoroalkyl carboxylate, perfluoroalkylbenzene sulfonate, and perfluoroalkyl. Fluorosurfactants such as quaternary ammonium salts and perfluoroalkyl polyoxyethylene ethanol can be mentioned.

[透明導電性塗膜の製造方法]
本発明の導電性フィルムにおける透明導電性塗膜は、透明導電性塗膜を形成するためのコーティング組成物(塗剤)を、透明導電性塗膜を形成したい層の上に塗布することにより形成される。透明導電性塗膜形成用コーティング組成物(塗剤)の塗布方法は、特に限定されるものではなく、公知の方法を採用できる。例えば、リップダイレクト法、コンマコーター法、スリットリバース法、ダイコーター法、グラビアロールコーター法、ブレードコーター法、スプレーコーター法、エアーナイフコート法、ディップコート法、バーコーター法等を、好ましい方法として挙げることができる。
[Method for producing transparent conductive coating film]
The transparent conductive coating film in the conductive film of the present invention is formed by applying a coating composition (coating agent) for forming a transparent conductive coating film on a layer where the transparent conductive coating film is to be formed. Is done. The application method of the coating composition (coating agent) for forming a transparent conductive coating film is not particularly limited, and a known method can be adopted. For example, lip direct method, comma coater method, slit reverse method, die coater method, gravure roll coater method, blade coater method, spray coater method, air knife coat method, dip coat method, bar coater method and the like are mentioned as preferred methods. be able to.

透明導電性塗膜を得るための加熱乾燥条件は、特に限定されるものではないが、80℃以上160℃以下の温度範囲で10秒以上300秒以下の間乾燥することが好ましく、100℃以上150℃以下の温度範囲で20秒以上120秒以下の間が乾燥させることが特に好ましい。   The heating and drying conditions for obtaining the transparent conductive coating film are not particularly limited, but it is preferable to dry for 10 seconds to 300 seconds in a temperature range of 80 ° C. or higher and 160 ° C. or lower, and 100 ° C. or higher. It is particularly preferable that the drying is performed at a temperature range of 150 ° C. or lower for 20 seconds to 120 seconds.

[透明導電性塗膜の厚み、配置]
また、本発明の導電性フィルムにおける透明導電性塗膜は、透明導電層のうちの基材フィルムに対する最外層であり、且つ、膜厚が20nm以上100nm以下、好ましくは30nm以上70nm以下の範囲である。透明導電性塗膜が透明導電層のうちの基材フィルムに対する再外層にない場合には、接触抵抗値を改善する効果の発現が乏しく、また、透明導電性塗膜の膜厚が100nmを越える場合には、塗膜の透明性が低下することから得られる導電性フィルムの透明性が劣り、一方で、膜厚が20nmより小さい場合には、接触抵抗値の改善効果が薄れると共に、(C)導電性微粒子が透明導電性塗膜に固定されず脱落し、その結果、工程を汚染するという問題が生じる。
[Thickness and arrangement of transparent conductive coating film]
Moreover, the transparent conductive coating film in the conductive film of the present invention is the outermost layer with respect to the base film in the transparent conductive layer, and has a thickness of 20 nm to 100 nm, preferably 30 nm to 70 nm. is there. When the transparent conductive film is not in the outer layer for the base film in the transparent conductive layer, the effect of improving the contact resistance value is poor, and the film thickness of the transparent conductive film exceeds 100 nm. In this case, the transparency of the conductive film obtained from the decrease in the transparency of the coating film is inferior. On the other hand, when the film thickness is smaller than 20 nm, the effect of improving the contact resistance value decreases, and (C ) The conductive fine particles fall off without being fixed to the transparent conductive coating film, resulting in a problem of contaminating the process.

尚、本発明において、透明導電性塗膜の厚みを制御する方法としては、特に限定されるものではない。例えば、透明導電性塗膜形成用コーティング組成物(塗剤)の固形分濃度および塗布量を、実施する塗布方法によって適宜制御することができる。   In the present invention, the method for controlling the thickness of the transparent conductive coating film is not particularly limited. For example, the solid content concentration and the coating amount of the transparent conductive coating film-forming coating composition (coating agent) can be appropriately controlled by the coating method to be carried out.

<基材フィルム>
本発明の導電性フィルムに用いられる基材フィルムは、特に制限されるものではないが、ポリエステル、ポリスチレン、ポリイミド、ポリアミド、ポリスルホン、ポリカーボネート、ポリ塩化ビニル、ポリエチレン、ポリプロピレン、ならびにこれらのブレンドおよび共重合体、ならびにフェノール樹脂、エポキシ樹脂、ABS樹脂等からなる群から選ばれる材料にて製造されたフィルムを用いることが好ましい。
<Base film>
The base film used in the conductive film of the present invention is not particularly limited, but polyester, polystyrene, polyimide, polyamide, polysulfone, polycarbonate, polyvinyl chloride, polyethylene, polypropylene, and blends and co-polymers thereof. It is preferable to use a film made of a material selected from the group consisting of coalesced phenol resins, epoxy resins, ABS resins and the like.

なかでも、二軸配向したポリエステルフィルムは、寸法安定性、機械的性質、耐熱性、電気的性質等に優れている点から好ましく用いることができ、とりわけ、高ヤング率である等の機械的特性に優れ、耐熱寸法安定性がよい等の熱的特性等に優れていることから、ポリエチレンテレフタレートまたはポリエチレン−2,6−ナフタレートが特に好ましい。   Among them, the biaxially oriented polyester film can be preferably used from the viewpoint of excellent dimensional stability, mechanical properties, heat resistance, electrical properties, etc., and in particular, mechanical properties such as high Young's modulus. Polyethylene terephthalate or polyethylene-2,6-naphthalate is particularly preferable because of excellent thermal properties such as excellent heat resistance and dimensional stability.

尚、基材フィルムの厚みは、特に制限されるものではないが、500μm以下であることが好ましい。500μmより厚い場合には、基材フィルムの剛性が強すぎて、得られた導電性フィルムをディスプレイ等に貼付ける際等の取扱い性が低下しやすい。   The thickness of the base film is not particularly limited, but is preferably 500 μm or less. If it is thicker than 500 μm, the rigidity of the base film is too strong, and the handleability when the obtained conductive film is attached to a display or the like tends to be lowered.

<導電性フィルムの物性>
[全光線透過率、表面抵抗率]
本発明の導電性フィルムは、その全光線透過率が70%以上、好ましくは80%以上であると同時に、透明導電層の最外層となる透明導電性塗膜側の表面抵抗率が10Ω/□以上1×104Ω/□以下、好ましくは10Ω/□以上5×10Ω/□以下、さらに好ましくは10Ω/□以上1×10Ω/□以下である。全光線透過率が70%未満の場合には、透明性が不充分となり、例えばタッチパネルを作成しても暗くて表示画面が見えにくくなる。また、表面抵抗率が1×104Ω/□を超える場合には、例えばタッチパネル用の基材として使用すると、誤操作を生じさせる場合があり、有機エレクトロルミネッセンス素子、無機エレクトロルミネッセンスランプ等の透明電極として使用した場合においては、所定の導電性が得られない等の問題が生じる場合がある。一方で、表面抵抗率が10Ω/□未満の場合には、導電性高分子および(C)導電性微粒子の使用量が著しく増加するため、結果として導電性フィルムの製造コストが上がり、経済性に劣る。
<Physical properties of conductive film>
[Total light transmittance, surface resistivity]
The conductive film of the present invention has a total light transmittance of 70% or more, preferably 80% or more, and at the same time, has a surface resistivity of 10Ω / □ on the side of the transparent conductive coating film that is the outermost layer of the transparent conductive layer. 1 × 10 4 Ω / □ or less, preferably 10Ω / □ or more and 5 × 10 3 Ω / □ or less, more preferably 10Ω / □ or more and 1 × 10 3 Ω / □ or less. When the total light transmittance is less than 70%, the transparency is insufficient. For example, even if a touch panel is created, the display screen is too dark to be seen. In addition, when the surface resistivity exceeds 1 × 10 4 Ω / □, for example, when used as a base material for a touch panel, an erroneous operation may occur, and a transparent electrode such as an organic electroluminescence element or an inorganic electroluminescence lamp When used as, there may be a problem that predetermined conductivity cannot be obtained. On the other hand, when the surface resistivity is less than 10Ω / □, the use amount of the conductive polymer and (C) conductive fine particles is remarkably increased. As a result, the production cost of the conductive film is increased, resulting in economical efficiency. Inferior.

[接触抵抗値]
また、本発明の導電性フィルムは、従来の導電性フィルムと比較して、接触抵抗値が低い範囲のものとなる。このため、本発明の導電性フィルムによれば、フィルムの有する導電性を表層付近まで十分に発揮させることができ、その結果、各種用途に好適に利用することができる。
[Contact resistance value]
Moreover, the electroconductive film of this invention becomes a thing of a range with a low contact resistance value compared with the conventional electroconductive film. For this reason, according to the electroconductive film of this invention, the electroconductivity which a film has can fully be exhibited to surface layer vicinity, As a result, it can utilize suitably for various uses.

<タッチパネル>
本発明のタッチパネルは、導電層を有する一対のパネル板を、スペーサーを介して、導電層同志が対向するよう配置してなるものであり、ここで、少なくとも一方のパネル板に上記の導電性フィルムを用いるものである。尚、両パネル板の導電層には、対抗配置に先立ち、あらかじめ電極を形成しておく。
<Touch panel>
The touch panel of the present invention is formed by arranging a pair of panel plates having a conductive layer so that the conductive layers are opposed to each other with a spacer interposed therebetween. Here, the conductive film is placed on at least one panel plate. Is used. Prior to the opposing arrangement, electrodes are formed in advance on the conductive layers of both panel plates.

以下、実施例および比較例をあげて本発明をさらに具体的に説明するが、本発明はこれらに限定されるものではない。
<測定・評価方法>
実施例および比較例においては、以下の項目について、以下の方法によって各測定・評価を実施した。
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited thereto.
<Measurement and evaluation method>
In Examples and Comparative Examples, each measurement / evaluation was performed by the following method for the following items.

(1)透明導電性塗膜の厚み
ライカ社製、商品名:ミクロトーム EM UC6を用いて、導電性フィルムから、フィルム表面に対して垂直に超薄膜切片を切り出した。得られた超薄膜切片を、透過型電子顕微鏡(FEI社製、商品名:TECNAI G2)により、加速電圧120kVで観察・撮影し、透明導電性塗膜の膜厚を測定した。
(1) Thickness of Transparent Conductive Coating Film Using Leica Co., Ltd., trade name: Microtome EM UC6, an ultrathin film slice was cut out from a conductive film perpendicular to the film surface. The obtained ultrathin film section was observed and photographed at an acceleration voltage of 120 kV with a transmission electron microscope (manufactured by FEI, trade name: TECNAI G2), and the film thickness of the transparent conductive coating film was measured.

(2)導電性微粒子の粒径
透過型電子顕微鏡(FEI社製、商品名:TECNAI G2)により、加速電圧120kVで観察・撮影し、粒径を測定した。
(2) Particle size of conductive fine particles The particle size was measured with a transmission electron microscope (manufactured by FEI, trade name: TECNAI G2) at an acceleration voltage of 120 kV.

(3)全光線透過率
JIS K7150にしたがい、スガ試験機製のヘイズメーター(商品名:HCM−2B)にて、全光線透過率を測定した。
(3) Total light transmittance The total light transmittance was measured with a haze meter (trade name: HCM-2B) manufactured by Suga Test Instruments in accordance with JIS K7150.

(4)表面抵抗率
三菱化学社製、商品名:Lorester MCP−T600を用いて、JIS K7194に準拠して測定を実施した。測定にあたっては、1サンプルにつき任意の箇所を5回測定し、それらの平均値を表面低効率とした。
(4) Surface resistivity The measurement was implemented based on JIS K7194 using Mitsubishi Chemical Corporation make and brand name: Lorester MCP-T600. In the measurement, an arbitrary portion was measured five times per sample, and the average value thereof was defined as the surface low efficiency.

(5)接触抵抗値
〔スペーサーの作成〕
750umのポリエチレンテレフタレートのシートを、長辺130mm、短辺70mmに切り出し、切り出し片の長辺の端より30mm、短辺の端より40mmの点を中心とした一辺30mmの正方形部分を二箇所カットして取り除いた。さらに、4辺に幅5mmの紙両面テープ(ニチバン社製、商品名:ナイスタック NW−5)を貼りつけることにより、スペーサーを作成した。
(5) Contact resistance value [creation of spacer]
Cut a sheet of 750 um polyethylene terephthalate into a long side of 130 mm and a short side of 70 mm, and cut two square parts with a side of 30 mm centered on a point of 30 mm from the long side end of the cut piece and 40 mm from the short side end. Removed. Furthermore, a spacer was created by sticking a double-sided paper tape (made by Nichiban Co., Ltd., trade name: Nystack NW-5) with a width of 5 mm on four sides.

〔測定用サンプルの作成〕
導電性フイルムを、長辺130mm、短辺70mmに切り出し、短辺側の片側のみ端より3mmを残して導電テープ(新東化学社製、商品名:STRtape 幅8mm)を貼りつけることにより、測定用サンプルを作成した。同様のサンプルをもう1枚作成し、合計で2枚の測定用サンプルを作成した。
[Preparation of measurement sample]
Measurement is made by cutting a conductive film into a long side of 130 mm and a short side of 70 mm, and attaching a conductive tape (manufactured by Shinto Chemical Co., Ltd., trade name: STRtape width: 8 mm) leaving only 3 mm from one end of the short side. A sample was created. Another similar sample was prepared, and a total of two measurement samples were prepared.

〔接触抵抗測定用セルの作成〕
上記で作成した測定用サンプルを、導電テープを貼った側を右側として、その上に両面テープの離型紙を剥がしたスペーサーを重ね、さらにもう一枚の測定用サンプルを、導電テープを貼った側を左側として重ねることにより、接触抵抗測定用セルを作成した。
[Preparation of cell for measuring contact resistance]
With the measurement sample created above, the side where the conductive tape is applied is the right side, the spacer from which the release paper of the double-sided tape is peeled is overlaid, and another measurement sample is attached to the side where the conductive tape is applied Were stacked on the left side to produce a contact resistance measurement cell.

〔接触抵抗値の測定〕
太平理化工業社製、商品名:rubbing testerを使用し、スペーサーの一辺30mmの窓の中心部に、先端部分が直径8mmの丸棒にて荷重1.38kgをかけることにより導電性フイルム同士を接触させ、両端の導電テープ電極間に定電圧電源により5Vを印加し、この時の電圧を測定してセルの抵抗値を算出し、これを接触抵抗値とした。
[Measurement of contact resistance]
Made by Taihei Rika Kogyo Co., Ltd., trade name: rubbing tester, contact the conductive films by applying a load of 1.38kg with a round bar 8mm in diameter at the center of the 30mm side window of the spacer Then, 5 V was applied between the conductive tape electrodes at both ends by a constant voltage power source, the voltage at this time was measured to calculate the resistance value of the cell, and this was used as the contact resistance value.

(6)タッチパネルへの適性テスト
導電性フィルムのタッチパネルへの適性の目安として、モデル的なタッチパネルを作製し、ペン入力によるリニアリティー試験を行った。具体的には、導電性フィルムを100mm×100mmに切り出し、透明導電層が形成された面の両端に、幅5mmの電極となるよう銀ペーストを塗布することにより、タッチパネル用モデルとなるパネル板を作成した。得られたパネル板の電極間に、定電圧電源により5Vを印加し、サンプル中心部50mm×50mmの範囲を縦横1mm間隔で、(x,y)〜(x50,y50)の2500点について、電圧Vi,j(i,j=1〜50)を測定した。各電圧測定点での理論電圧Ui,j=V1,1+(V50,50−V1,1)/50×(j−1)からのズレをΔi,j=(Vi,j−Ui,j)/Ui,jで定義し、このΔi,jの絶対値の最大値をリニアリティと定義した。尚、テストにあたっては、導電性フィルムで構成されたパネル板側から、ポリアセタール樹脂からなるペン先半径0.8mmのタッチペンにて、荷重250gfをかけて行った。また、得られたリニアリティにつき、以下のように評価した。
○:リニアリティーが3%未満
×:リニアリティーが3%以上
(6) Suitability test for touch panel As a measure of suitability of the conductive film to the touch panel, a model touch panel was prepared, and a linearity test by pen input was performed. Specifically, a panel board serving as a model for a touch panel is obtained by cutting a conductive film into 100 mm × 100 mm and applying silver paste to both ends of a surface on which a transparent conductive layer is formed to form an electrode having a width of 5 mm. Created. A voltage of 5 V is applied between the electrodes of the obtained panel plate by a constant voltage power source, and the range of (x 1 , y 1 ) to (x 50 , y 50 ) is 2500 in the range of 50 mm × 50 mm of the sample center at 1 mm vertical and horizontal intervals. The voltage V i, j (i, j = 1 to 50) was measured for the point. The deviation from the theoretical voltage U i, j = V 1,1 + (V 50,50 −V 1,1 ) / 50 × (j−1) at each voltage measurement point is Δ i, j = ( Vi, j −U i, j ) / U i, j , and the maximum absolute value of Δ i, j is defined as linearity. In the test, a load of 250 gf was applied from the panel plate side made of a conductive film with a touch pen made of polyacetal resin and having a pen tip radius of 0.8 mm. The obtained linearity was evaluated as follows.
○: Linearity is less than 3% ×: Linearity is 3% or more

<実施例1>
ポリ(3,4−エチレンジオキシチオフェン)とポリスチレンスルホン酸とを主成分とし、シランカップリング剤、ジエチレングリコールを含む導電性塗料(日本アグファ・ゲバルト社製、商品名:Orgacon S−300、導電性高分子含有量:0.8質量%〜1.0質量%)を、基材フィルムとなるPETフィルム(帝人デュポンフィルム社製、商品名:O3PF8W−100)上に、マイヤーバーを用いて塗布し、引き続き、140℃で1分間の乾燥処理を行うことにより、膜厚が150nmの透明導電性塗膜層を形成した。
<Example 1>
Conductive paint containing poly (3,4-ethylenedioxythiophene) and polystyrene sulfonic acid as main components and containing a silane coupling agent and diethylene glycol (Nippon Agfa Gevaert Co., Ltd., trade name: Orgacon S-300, conductive) Polymer content: 0.8% by mass to 1.0% by mass) was applied onto a PET film (Teijin DuPont Films, trade name: O3PF8W-100) as a base film using a Mayer bar. Subsequently, a transparent conductive coating layer having a thickness of 150 nm was formed by performing a drying treatment at 140 ° C. for 1 minute.

次に、導電性塗料(日本アグファ・ゲバルト社製、商品名:Orgacon S−300、導電性高分子含有量:0.8質量%〜1.0質量%)100質量部に、金でコーティングした銀微粒子(住友金属鉱山社製、商品名:CKRFシリーズ、固形分量:1.4質量%、短径:10nm)12.8質量部を、超音波処理を実施しながら10分間かけて添加し、更に10分間の超音波処理を実施することにより、透明導電性塗膜形成用コーティング組成物(塗剤)を得た。得られた透明導電性塗膜形成用コーティング組成物(塗剤)を、上記で得られた透明導電性塗膜層の上にマイヤーバーを用いて塗布し、引き続き、140℃で1分間の乾燥処理を行うことにより、透明導電層全体としての膜厚が200nmとなるよう透明導電性塗膜を形成(透明導電性塗膜の膜厚は50nm)し、導電性フィルムを得た。尚、透明導電層のうちの最外層となる透明導電性塗膜における導電性微粒子(金でコーティングした銀微粒子)の含有量は、導電性高分子100質量部に対して20質量部であった。また、得られた導電性フィルムにつき、上記各種の測定・評価を実施した。結果を表1に示す。   Next, gold was coated on 100 parts by mass of a conductive paint (manufactured by Agfa Gebalto, Japan, trade name: Orgacon S-300, conductive polymer content: 0.8% by mass to 1.0% by mass). 12.8 parts by mass of silver fine particles (manufactured by Sumitomo Metal Mining Co., Ltd., trade name: CKRF series, solid content: 1.4% by mass, minor axis: 10 nm) are added over 10 minutes while performing ultrasonic treatment, Furthermore, the coating composition for transparent conductive coating film formation (coating agent) was obtained by implementing ultrasonic treatment for 10 minutes. The obtained coating composition (coating agent) for forming a transparent conductive coating film was applied on the transparent conductive coating layer obtained above using a Mayer bar, and subsequently dried at 140 ° C. for 1 minute. By performing the treatment, a transparent conductive coating film was formed so that the thickness of the transparent conductive layer as a whole was 200 nm (the thickness of the transparent conductive coating film was 50 nm) to obtain a conductive film. The content of the conductive fine particles (silver fine particles coated with gold) in the transparent conductive coating film that is the outermost layer of the transparent conductive layer was 20 parts by mass with respect to 100 parts by mass of the conductive polymer. . Moreover, about the obtained electroconductive film, various said measurement and evaluation were implemented. The results are shown in Table 1.

<比較例1>
金でコーティングした銀微粒子を用いることなく、導電性塗料(日本アグファ・ゲバルト社製、商品名:Orgacon S−300)を、基材フィルムとなるPETフィルム(帝人デュポンフィルム社製、商品名:O3PF8W−100)上に、マイヤーバーを用いて塗布し、引き続き、140℃で1分間の乾燥処理を行うことにより、膜厚が200nmの透明導電性塗膜層を形成し、導電性フィルムを得た。得られた導電性フィルムにつき、上記各種の測定・評価を実施した。結果を表1に示す。
<Comparative Example 1>
Without using silver fine particles coated with gold, a conductive paint (Nippon Agfa Gevaert Co., Ltd., trade name: Orgacon S-300) is used as a base film PET film (Teijin DuPont Films Co., Ltd., trade name: O3PF8W) −100) was applied using a Meyer bar, and subsequently subjected to a drying treatment at 140 ° C. for 1 minute to form a transparent conductive coating layer having a thickness of 200 nm, thereby obtaining a conductive film. . The above various measurements and evaluations were carried out on the obtained conductive film. The results are shown in Table 1.

<比較例2>
ポリ(3,4−エチレンジオキシチオフェン)とポリスチレンスルホン酸とを主成分とし、シランカップリング剤、ジエチレングリコールを含む導電性塗料(日本アグファ・ゲバルト社製、商品名:Orgacon S−300、導電性高分子含有量:0.8質量%〜1.0質量%)を、基材フィルムとなるPETフィルム(帝人デュポンフィルム社製、商品名:O3PF8W−100)上に、マイヤーバーを用いて塗布し、引き続き、140℃で1分間の乾燥処理を行うことにより、膜厚が50nmの透明導電性塗膜層を形成した。
<Comparative example 2>
Conductive paint containing poly (3,4-ethylenedioxythiophene) and polystyrene sulfonic acid as main components and containing a silane coupling agent and diethylene glycol (Nippon Agfa Gevaert Co., Ltd., trade name: Orgacon S-300, conductive) Polymer content: 0.8% by mass to 1.0% by mass) was applied onto a PET film (Teijin DuPont Films, trade name: O3PF8W-100) as a base film using a Mayer bar. Subsequently, a transparent conductive coating layer having a thickness of 50 nm was formed by performing a drying treatment at 140 ° C. for 1 minute.

次に、導電性塗料(日本アグファ・ゲバルト社製、商品名:Orgacon S−300、導電性高分子含有量:0.8質量%〜1.0質量%)100質量部に、金でコーティングした銀微粒子(住友金属鉱山社製、商品名:CKRFシリーズ、固形分量:1.4質量%、短径:10nm)12.8質量部を、超音波処理を実施しながら10分間かけて添加し、更に10分間の超音波処理を実施することにより、透明導電性塗膜形成用コーティング組成物(塗剤)を得た。得られた透明導電性塗膜形成用コーティング組成物(塗剤)を、上記で得られた透明導電性塗膜層の上にマイヤーバーを用いて塗布し、引き続き、140℃で1分間の乾燥処理を行うことにより、透明導電層全体としての膜厚が200nmとなるよう透明導電性塗膜を形成(透明導電性塗膜の膜厚は150nm)し、導電性フィルムを得た。尚、透明導電層のうちの最外層となる透明導電性塗膜における導電性微粒子(金でコーティングした銀微粒子)の含有量は、導電性高分子100質量部に対して20質量部であった。また、得られた導電性フィルムにつき、上記各種の測定・評価を実施した。結果を表1に示す。   Next, gold was coated on 100 parts by mass of a conductive paint (manufactured by Agfa Gebalto, Japan, trade name: Orgacon S-300, conductive polymer content: 0.8% by mass to 1.0% by mass). 12.8 parts by mass of silver fine particles (manufactured by Sumitomo Metal Mining Co., Ltd., trade name: CKRF series, solid content: 1.4% by mass, minor axis: 10 nm) are added over 10 minutes while performing ultrasonic treatment, Furthermore, the coating composition for transparent conductive coating film formation (coating agent) was obtained by implementing ultrasonic treatment for 10 minutes. The obtained coating composition (coating agent) for forming a transparent conductive coating film was applied on the transparent conductive coating layer obtained above using a Mayer bar, and subsequently dried at 140 ° C. for 1 minute. By performing the treatment, a transparent conductive coating film was formed so that the film thickness of the entire transparent conductive layer was 200 nm (the film thickness of the transparent conductive coating film was 150 nm) to obtain a conductive film. The content of the conductive fine particles (silver fine particles coated with gold) in the transparent conductive coating film that is the outermost layer of the transparent conductive layer was 20 parts by mass with respect to 100 parts by mass of the conductive polymer. . Moreover, about the obtained electroconductive film, various said measurement and evaluation were implemented. The results are shown in Table 1.

<比較例3>
ポリ(3,4−エチレンジオキシチオフェン)とポリスチレンスルホン酸とを主成分とし、シランカップリング剤、ジエチレングリコールを含む導電性塗料(日本アグファ・ゲバルト社製、商品名:Orgacon S−300、導電性高分子含有量:0.8質量%〜1.0質量%)を、基材フィルムとなるPETフィルム(帝人デュポンフィルム社製、商品名:O3PF8W−100)上に、マイヤーバーを用いて塗布し、引き続き、140℃で1分間の乾燥処理を行うことにより、膜厚が190nmの透明導電性塗膜層を形成した。
<Comparative Example 3>
Conductive paint containing poly (3,4-ethylenedioxythiophene) and polystyrene sulfonic acid as main components and containing a silane coupling agent and diethylene glycol (Nippon Agfa Gevaert Co., Ltd., trade name: Orgacon S-300, conductive) Polymer content: 0.8% by mass to 1.0% by mass) was applied onto a PET film (Teijin DuPont Films, trade name: O3PF8W-100) as a base film using a Mayer bar. Subsequently, a transparent conductive coating layer having a thickness of 190 nm was formed by performing a drying treatment at 140 ° C. for 1 minute.

次に、導電性塗料(日本アグファ・ゲバルト社製、商品名:Orgacon S−300、導電性高分子含有量:0.8質量%〜1.0質量%)100質量部に、金でコーティングした銀微粒子(住友金属鉱山社製、商品名:CKRFシリーズ、固形分量:1.4質量%、短径:10nm)12.8質量部を、超音波処理を実施しながら10分間かけて添加し、更に10分間の超音波処理を実施することにより、透明導電性塗膜形成用コーティング組成物(塗剤)を得た。得られた透明導電性塗膜形成用コーティング組成物(塗剤)を、上記で得られた透明導電性塗膜層の上にマイヤーバーを用いて塗布し、引き続き、140℃で1分間の乾燥処理を行うことにより、透明導電層全体としての膜厚が200nmとなるよう透明導電性塗膜を形成(透明導電性塗膜の膜厚は10nm)し、導電性フィルムを得た。尚、透明導電層のうちの最外層となる透明導電性塗膜における導電性微粒子(金でコーティングした銀微粒子)の含有量は、導電性高分子100質量部に対して20質量部であった。また、得られた導電性フィルムにつき、上記各種の測定・評価を実施した。結果を表1に示す。   Next, gold was coated on 100 parts by mass of a conductive paint (manufactured by Agfa Gebalto, Japan, trade name: Orgacon S-300, conductive polymer content: 0.8% by mass to 1.0% by mass). 12.8 parts by mass of silver fine particles (manufactured by Sumitomo Metal Mining Co., Ltd., trade name: CKRF series, solid content: 1.4% by mass, minor axis: 10 nm) are added over 10 minutes while performing ultrasonic treatment, Furthermore, the coating composition for transparent conductive coating film formation (coating agent) was obtained by implementing ultrasonic treatment for 10 minutes. The obtained coating composition (coating agent) for forming a transparent conductive coating film was applied on the transparent conductive coating layer obtained above using a Mayer bar, and subsequently dried at 140 ° C. for 1 minute. By performing the treatment, a transparent conductive coating film was formed so that the film thickness of the entire transparent conductive layer was 200 nm (the film thickness of the transparent conductive coating film was 10 nm) to obtain a conductive film. The content of the conductive fine particles (silver fine particles coated with gold) in the transparent conductive coating film that is the outermost layer of the transparent conductive layer was 20 parts by mass with respect to 100 parts by mass of the conductive polymer. . Moreover, about the obtained electroconductive film, various said measurement and evaluation were implemented. The results are shown in Table 1.

<比較例4>
金でコーティングした銀微粒子(住友金属鉱山社製、商品名:CKRFシリーズ、固形分量:1.4質量%、短径:10nm)の添加量を1.9質量部に変えた以外は、実施例1と同様の操作を行うことにより、導電性フィルムを得た。尚、透明導電層のうちの最外層となる透明導電性塗膜における導電性微粒子(金でコーティングした銀微粒子)の含有量は、導電性高分子100質量部に対して3質量部であった。また、得られた導電性フィルムにつき、上記各種の測定・評価を実施した。結果を表1に示す。
<Comparative Example 4>
Example except that the addition amount of silver fine particles coated with gold (Sumitomo Metal Mining Co., Ltd., trade name: CKRF series, solid content: 1.4% by mass, minor axis: 10 nm) was changed to 1.9 parts by mass By conducting the same operation as in No. 1, a conductive film was obtained. The content of the conductive fine particles (silver fine particles coated with gold) in the transparent conductive coating film which is the outermost layer of the transparent conductive layer was 3 parts by mass with respect to 100 parts by mass of the conductive polymer. . Moreover, about the obtained electroconductive film, various said measurement and evaluation were implemented. The results are shown in Table 1.

<比較例5>
金でコーティングした銀微粒子(住友金属鉱山社製、商品名:CKRFシリーズ、固形分量:1.4質量%、短径:10nm))の添加量を38.4質量部に変えた以外は、実施例1と同様の操作を行うことにより、導電性フィルムを得た。尚、透明導電層のうちの最外層となる透明導電性塗膜における導電性微粒子(金でコーティングした銀微粒子)の含有量は、導電性高分子100質量部に対して60質量部であった。また、得られた導電性フィルムにつき、上記各種の測定・評価を実施した。結果を表1に示す。
<Comparative Example 5>
Except that the addition amount of silver fine particles coated with gold (manufactured by Sumitomo Metal Mining Co., Ltd., trade name: CKRF series, solid content: 1.4 mass%, minor axis: 10 nm) was changed to 38.4 parts by mass By conducting the same operation as in Example 1, a conductive film was obtained. The content of the conductive fine particles (silver fine particles coated with gold) in the transparent conductive coating film which is the outermost layer of the transparent conductive layer was 60 parts by mass with respect to 100 parts by mass of the conductive polymer. . Moreover, about the obtained electroconductive film, various said measurement and evaluation were implemented. The results are shown in Table 1.

<参考例>
トービ社製のITOフイルム(商品名:OTEC 250B−100N、表面抵抗率:450Ω/□)につき、各種の測定評価を行った。結果を表1に示す。
<Reference example>
Various measurement evaluations were performed on Toby's ITO film (trade name: OTEC 250B-100N, surface resistivity: 450Ω / □). The results are shown in Table 1.

Figure 2008031205
Figure 2008031205

表1に示されるように、本発明の導電性フィルムは、透明性に優れるとともに、導電性にも優れ、とりわけ接触抵抗値が低いことから、表面抵抗率と接触抵抗値との比(接触抵抗値/表面抵抗率)が改善され、ITO系導電性フィルム(参考例)と同等の性能を有することがわかる。   As shown in Table 1, the conductive film of the present invention is excellent in transparency, excellent in conductivity, and particularly has a low contact resistance value. Therefore, the ratio between the surface resistivity and the contact resistance value (contact resistance) (Value / surface resistivity) is improved, and it can be seen that the film has the same performance as the ITO conductive film (reference example).

本発明の導電性フィルムは、導電性高分子を用いつつも、ITOを積層した導電性フィルムと同等に優れた導電性を発現し、とりわけ接触抵抗が低く、且つ、透明性にも優れることから、例えば液晶ディスプレイ(LCD)透明タッチパネル、有機エレクトロルミネッセンス素子、無機エレクトロルミネッセンスランプ等の透明電極として好適に使用することができる。   The conductive film of the present invention expresses the same excellent conductivity as the conductive film laminated with ITO while using a conductive polymer, and particularly has low contact resistance and excellent transparency. For example, it can be suitably used as a transparent electrode for a liquid crystal display (LCD) transparent touch panel, an organic electroluminescence element, an inorganic electroluminescence lamp, or the like.

実施例において接触抵抗値の測定に用いられたスペーサーの正面図。The front view of the spacer used for the measurement of the contact resistance value in an Example. 実施例において接触抵抗値の測定に用いられた測定用サンプルの正面図。The front view of the sample for a measurement used for the measurement of contact resistance value in an Example.

Claims (6)

基材フィルムの少なくとも片面に透明導電層が設けられた導電性フィルムであって、
前記透明導電層は、少なくとも1層の透明導電性塗膜を含み、
前記透明導電性塗膜は、下記一般式(I)で表される繰り返し単位を主成分として含む(A)カチオン性のポリチオフェンおよび(B)ポリアニオンを含む導電性高分子と、(C)導電性微粒子とを構成成分として含み、
前記透明導電性塗膜における(C)導電性微粒子の含有量は、前記導電性高分子100質量部に対して、5質量部以上50質量部以下であり、
前記透明導電性塗膜は、前記透明導電層のうちの前記基材フィルムに対する最外層であり、且つ、膜厚が20nm以上100nm以下であり、
前記導電性フィルムは、全光線透過率が70%以上であり、且つ、表面抵抗率が10Ω/□以上1×10Ω/□以下であることを特徴とする導電性フィルム。
Figure 2008031205
(式中、RおよびRは、それぞれ独立に、水素または炭素数1以上4以下のアルキル基、あるいは、一緒になって、任意に置換されていてもよい炭素数1以上12以下のアルキレン基を示す。)
A conductive film provided with a transparent conductive layer on at least one side of the base film,
The transparent conductive layer includes at least one transparent conductive coating film,
The transparent conductive coating film comprises (A) a cationic polythiophene containing a repeating unit represented by the following general formula (I) as a main component and (B) a conductive polymer containing a polyanion, and (C) a conductive property. Fine particles as a constituent component,
The content of the conductive fine particles (C) in the transparent conductive coating film is 5 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the conductive polymer.
The transparent conductive coating film is the outermost layer for the base film in the transparent conductive layer, and the film thickness is 20 nm or more and 100 nm or less,
The conductive film has a total light transmittance of 70% or more and a surface resistivity of 10Ω / □ or more and 1 × 10 4 Ω / □ or less.
Figure 2008031205
(Wherein R 1 and R 2 are each independently hydrogen or an alkyl group having 1 to 4 carbon atoms, or an alkylene having 1 to 12 carbon atoms that may be optionally substituted together) Group.)
前記透明導電性塗膜の膜厚は、30nm以上70nm以下である請求項1記載の導電性フィルム。   The conductive film according to claim 1, wherein the film thickness of the transparent conductive coating film is 30 nm or more and 70 nm or less. 前記(C)導電性微粒子は、平均粒子径200nm以下である請求項1または2記載の導電性フィルム。   The conductive film according to claim 1, wherein the conductive fine particles (C) have an average particle diameter of 200 nm or less. 前記(C)導電性微粒子は、金、または金により表面がコーティングされた粒子である請求項1から3いずれか記載の導電性フィルム。   The conductive film according to claim 1, wherein the conductive fine particles (C) are gold or particles whose surfaces are coated with gold. 前記基材フィルムは、ポリエステルフィルムである請求項1から4いずれか記載の導電性フィルム。   The conductive film according to claim 1, wherein the base film is a polyester film. 導電層を有する一対のパネル板を、スペーサーを介して、導電層同志が対向するよう配置してなるタッチパネルにおいて、
少なくとも一方のパネル板に、請求項1から5いずれか記載の導電性フィルムを用いたことを特徴とするタッチパネル。
In a touch panel in which a pair of panel plates having a conductive layer are arranged so that the conductive layers face each other via a spacer,
A touch panel using the conductive film according to claim 1 for at least one of the panel plates.
JP2006203283A 2006-07-26 2006-07-26 Conductive film and touch panel using the film Active JP5367939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006203283A JP5367939B2 (en) 2006-07-26 2006-07-26 Conductive film and touch panel using the film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006203283A JP5367939B2 (en) 2006-07-26 2006-07-26 Conductive film and touch panel using the film

Publications (2)

Publication Number Publication Date
JP2008031205A true JP2008031205A (en) 2008-02-14
JP5367939B2 JP5367939B2 (en) 2013-12-11

Family

ID=39120991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006203283A Active JP5367939B2 (en) 2006-07-26 2006-07-26 Conductive film and touch panel using the film

Country Status (1)

Country Link
JP (1) JP5367939B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009199817A (en) * 2008-02-20 2009-09-03 Teijin Dupont Films Japan Ltd Conductive film, and touch panel using the same
JP2009230885A (en) * 2008-03-19 2009-10-08 Teijin Dupont Films Japan Ltd Conductive film, and touch panel using the same
JP2010061856A (en) * 2008-09-01 2010-03-18 Shin Etsu Polymer Co Ltd Input device
CN103189931A (en) * 2010-10-29 2013-07-03 信越聚合物株式会社 Transparent conductive glass substrate
JP2014153784A (en) * 2013-02-05 2014-08-25 Oji Holdings Corp Conductive sheet and touch panel using the same
JP2015032071A (en) * 2013-07-31 2015-02-16 王子ホールディングス株式会社 Method for manufacturing conductive sheet, conductive sheet and touch panel

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000052522A (en) * 1998-06-05 2000-02-22 Teijin Ltd Antistatic polyester film
JP2000181116A (en) * 1998-12-16 2000-06-30 Dainippon Printing Co Ltd Image accepting sheet
JP2003292655A (en) * 2002-04-04 2003-10-15 Teijin Dupont Films Japan Ltd Antistatic laminated polyester film
JP2005019056A (en) * 2003-06-24 2005-01-20 Toray Ind Inc Composite transparent conductive base material and display using the same
JP2005146259A (en) * 2003-10-20 2005-06-09 Fujitsu Ltd Organic electrically-conductive composition, transparent electrically-conductive film, transparent electrically-conductive material, input device, and method for producing the same
JP2005209350A (en) * 2004-01-20 2005-08-04 Sumitomo Metal Mining Co Ltd Transparent conductive film and manufacturing method of the same
JP2005327910A (en) * 2004-05-14 2005-11-24 Nissan Motor Co Ltd Transparent electrode, transparent electrode body, manufacturing method thereof, and organo functional element
JP2006116806A (en) * 2004-10-21 2006-05-11 Jsr Corp Composite film, its production method, and electrode
JP2006282942A (en) * 2005-04-04 2006-10-19 Teijin Dupont Films Japan Ltd Transparent electroconductive coating composition, transparent electroconductive film obtained by applying the same and method for producing the same
JP2006289780A (en) * 2005-04-11 2006-10-26 Teijin Dupont Films Japan Ltd Conductive film
JP2006291032A (en) * 2005-04-11 2006-10-26 Teijin Dupont Films Japan Ltd Conductive film
JP2006294411A (en) * 2005-04-11 2006-10-26 Teijin Dupont Films Japan Ltd Conductive film
JP2006302561A (en) * 2005-04-18 2006-11-02 Teijin Dupont Films Japan Ltd Conductive film and its manufacturing method
JP2006302562A (en) * 2005-04-18 2006-11-02 Teijin Dupont Films Japan Ltd Conductive film
JP2007080541A (en) * 2005-09-09 2007-03-29 Nissan Motor Co Ltd Organic transparent conductor, its manufacturing method, and current drive type element
JP2008513956A (en) * 2004-09-17 2008-05-01 イーストマン コダック カンパニー Transparent polymer coated conductor

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000052522A (en) * 1998-06-05 2000-02-22 Teijin Ltd Antistatic polyester film
JP2000181116A (en) * 1998-12-16 2000-06-30 Dainippon Printing Co Ltd Image accepting sheet
JP2003292655A (en) * 2002-04-04 2003-10-15 Teijin Dupont Films Japan Ltd Antistatic laminated polyester film
JP2005019056A (en) * 2003-06-24 2005-01-20 Toray Ind Inc Composite transparent conductive base material and display using the same
JP2005146259A (en) * 2003-10-20 2005-06-09 Fujitsu Ltd Organic electrically-conductive composition, transparent electrically-conductive film, transparent electrically-conductive material, input device, and method for producing the same
JP2005209350A (en) * 2004-01-20 2005-08-04 Sumitomo Metal Mining Co Ltd Transparent conductive film and manufacturing method of the same
JP2005327910A (en) * 2004-05-14 2005-11-24 Nissan Motor Co Ltd Transparent electrode, transparent electrode body, manufacturing method thereof, and organo functional element
JP2008513956A (en) * 2004-09-17 2008-05-01 イーストマン コダック カンパニー Transparent polymer coated conductor
JP2006116806A (en) * 2004-10-21 2006-05-11 Jsr Corp Composite film, its production method, and electrode
JP2006282942A (en) * 2005-04-04 2006-10-19 Teijin Dupont Films Japan Ltd Transparent electroconductive coating composition, transparent electroconductive film obtained by applying the same and method for producing the same
JP2006291032A (en) * 2005-04-11 2006-10-26 Teijin Dupont Films Japan Ltd Conductive film
JP2006294411A (en) * 2005-04-11 2006-10-26 Teijin Dupont Films Japan Ltd Conductive film
JP2006289780A (en) * 2005-04-11 2006-10-26 Teijin Dupont Films Japan Ltd Conductive film
JP2006302561A (en) * 2005-04-18 2006-11-02 Teijin Dupont Films Japan Ltd Conductive film and its manufacturing method
JP2006302562A (en) * 2005-04-18 2006-11-02 Teijin Dupont Films Japan Ltd Conductive film
JP2007080541A (en) * 2005-09-09 2007-03-29 Nissan Motor Co Ltd Organic transparent conductor, its manufacturing method, and current drive type element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009199817A (en) * 2008-02-20 2009-09-03 Teijin Dupont Films Japan Ltd Conductive film, and touch panel using the same
JP2009230885A (en) * 2008-03-19 2009-10-08 Teijin Dupont Films Japan Ltd Conductive film, and touch panel using the same
JP2010061856A (en) * 2008-09-01 2010-03-18 Shin Etsu Polymer Co Ltd Input device
CN103189931A (en) * 2010-10-29 2013-07-03 信越聚合物株式会社 Transparent conductive glass substrate
JP2014153784A (en) * 2013-02-05 2014-08-25 Oji Holdings Corp Conductive sheet and touch panel using the same
JP2015032071A (en) * 2013-07-31 2015-02-16 王子ホールディングス株式会社 Method for manufacturing conductive sheet, conductive sheet and touch panel

Also Published As

Publication number Publication date
JP5367939B2 (en) 2013-12-11

Similar Documents

Publication Publication Date Title
US8440306B2 (en) Conductive film
JP5161446B2 (en) Conductive film and touch panel using the film
JP5367939B2 (en) Conductive film and touch panel using the film
JP2010114066A (en) Organic conductive polymer coating liquid, organic conductive polymer film, conductor, and resistive film type touch panel
KR100902034B1 (en) Manufacturing method of anti-static polyester film
JP4481713B2 (en) Conductive film and method for producing the same
JP5009686B2 (en) Conductive film and touch panel using the film
JP4922570B2 (en) Composition for transparent conductive coating, transparent conductive film formed by applying the composition, and method for producing the same
JP4660255B2 (en) Conductive film
TW201716517A (en) Conductive transparent coating for rigid and flexible substrates
JP5554578B2 (en) Conductive film
JP4700391B2 (en) Conductive film
JP5178265B2 (en) Conductive film and touch panel using the same
JP4616688B2 (en) Conductive film
JP2012243460A (en) Conductive film
JP4836482B2 (en) Conductive film
JP5178231B2 (en) Conductive film and touch panel using the same
JP2009104876A (en) Resistive touch panel
JP2006294455A (en) Conductive film
JP2011108425A (en) Transparent electrode structure and touch panel using the same
JP2012171232A (en) Conductive film
KR102080862B1 (en) Transparent conductors
JP2012243459A (en) Conductive film
JP5711673B2 (en) Functional film and method for producing the same
KR20150001277A (en) Transparent conductors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090512

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110708

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130912

R150 Certificate of patent or registration of utility model

Ref document number: 5367939

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250