JP2005019056A - Composite transparent conductive base material and display using the same - Google Patents

Composite transparent conductive base material and display using the same Download PDF

Info

Publication number
JP2005019056A
JP2005019056A JP2003179184A JP2003179184A JP2005019056A JP 2005019056 A JP2005019056 A JP 2005019056A JP 2003179184 A JP2003179184 A JP 2003179184A JP 2003179184 A JP2003179184 A JP 2003179184A JP 2005019056 A JP2005019056 A JP 2005019056A
Authority
JP
Japan
Prior art keywords
transparent conductive
polymer
conductive
film
composite transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003179184A
Other languages
Japanese (ja)
Inventor
Kenji Hatada
研司 畑田
Yoshihiko Sakaguchi
善彦 坂口
Masahiro Suda
雅弘 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2003179184A priority Critical patent/JP2005019056A/en
Publication of JP2005019056A publication Critical patent/JP2005019056A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transparent conductive base material which meets a demand that a transparent conductive film having more transparency, low resistance and flexibility is needed for a transparent electrode film for an inorganic EL display, a touch panel, a smart window, an electronic paper or the like and a shielding film for a liquid crystal display, and to provide a display using the transparent conductive base material. <P>SOLUTION: A metallic transparent conductive thin film (B) and a conductive organic matter (C) are laminated on a base material (A) consisting of a polymer film or a polymer sheet. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は無機ELディスプレイ、タッチパネル、スマートウィンドウ、あるいは電子ペーパなどに用いられる透明電極、あるいは液晶ディスプレイのシールドなどに用いられる透明導電性基材に関するものである。
【0002】
【従来の技術】
無機ELディスプレイ、タッチパネル、液晶の透明化、不透明化のスイチング機能を利用したスマートウィンドウ、電子ペーパ、あるいは液晶ディスプレイなどに用いられる電極は導電性であると同時に透明性を要求される。このため、通常電極として用いられる金属は不透明なため使用できず、基材に酸化インジュ−ム(以下ITOと呼称する。) などの導電性の酸化物金属をスパッタリングなどの方法で蒸着した透明導電膜を使用することが提案されている(例えば、非特許文献1参照)。また、可撓性付与のために酸化物金属に変え導電性高分子を基材にコーテイングした透明導電膜を用いることが提案されている(例えば特許文献1、特許文献2参照)。
【0003】
なお、ガラスに透明電極としてITOを積層し、次いで発光層へ正孔を容易にするために導電性高分子層(ポリアニリンやPEDOT:PSSが代表的)を積層した高分子EL素子が提案されている(例えば、非特許文献2参照)。
【0004】
【非特許文献1】
「透明導日本学術振興会 透明酸化物光・電子材料第166委員会編,電膜の技術」,オーム社,(平成14年1月20日 第1版第4刷発)),p.25−26
【0005】
【特許文献1】
特開2001−089555号公報(請求項1)
【0006】
【特許文献2】
特開2001−093624号公報(請求項1)
【0007】
【非特許文献2】
(藤嶋大介他),「ポリフルオレン系材料による高分子EL素子の発光特性の検討」,信学技報 OME2002−94,2003年,p.5−9
【0008】
【発明が解決しようとする課題】
しかし、ITOなどの導電性金属酸化物の蒸着膜は(1)屈折率が大きいために、光の表面反射が大きく光線透過率が低下する、(2)黄味を帯びているため、映像の色調がかわる、(3)可撓性がないため、基材を屈曲した際に蒸着膜に亀裂が入り、抵抗値が高くなる、(4)透明導電膜が電気化学反応により変質し、黒化するなどの問題が有る。これらの問題点を改善するために、導電性高分子を用いることが提案されているが、(5)導電性高分子は導電性酸化物に比べ、抵抗値が高いために、ディスプレイの輝度が低いという重大な問題を有している。
【0009】
さらに、基材がガラスの場合、可撓性がない、割れる、厚みが厚く、重いなどの問題点がある。
【0010】
【課題を解決するための手段】
本発明は前述の(1)〜(5)の問題点を改善した透明導電性基材、及び該透明導電性基材を用いたディスプレイパネルを提供するため、以下の構成からなる。すなわち本発明は、
(1)少なくとも高分子フィルム、または高分子シートからなる基材(A)、金属系透明導電性薄膜(B)、および導電性有機物(C)が積層されてなる複合透明導電性基材。
【0011】
(2)前記複合透明導電性基材が、高分子フィルム、または高分子シートからなる基材(A)/金属系透明導電性薄膜(B)/導電性有機物(C)、高分子フィルム、または高分子シートからなる基材(A)/導電性有機物(C)/金属系透明導電性薄膜(B)、および高分子フィルム、または高分子シートからなる基材(A)/導電性有機物(C)/金属系透明導電性薄膜(B)/導電性有機物(C)から選ばれたいずれか一の構成に積層されてなることを特徴とする(1)記載の複合透明導電性基材。
【0012】
(3)高分子フィルム、または高分子シートからなる基材(A)が全光線透過率80%以上であることを特徴とする(1)または(2)記載の複合透明導電性基材。
【0013】
(4)金属系透明導電性薄膜(B)が金属酸化物の蒸着膜からなることを特徴とする(1)〜(3)のいずれかに記載の複合透明導電性
(5)金属酸化物が酸化インジューム、酸化錫、および酸化亜鉛から選ばれたいずれか一種、または二種以上の化合物であることを特徴とする(4)記載の複合透明導電性基材。
【0014】
(6)導電性有機物(C)が導電性高分子であることを特徴とする(1)〜(5)のいずれかに記載の複合透明導電性基材。
【0015】
(7)導電性高分子がポリピロール、ポリチオフェン、ポリフラン、ポリセレノフェン、ポリアニリン、ポリパラフェニレン、ポリフルオレン、これらの誘導体、およびこれらの単量体の共重合物から選ばれた導電性高分子のいずれか一種または二種以上の混合物であることを特徴とする(6)記載の複合透明導電性基材。
【0016】
(8)導電性高分子が、側鎖を導入することにより溶媒に可溶性または分散性を有するポリチオフェン、ポリアルキルフルオレン、ポリフルオレン、ポリパラフェニレン、ポリパラフェニレンビニレンの誘導体、およびこれらの単量体の共重合物から選ばれた少なくとも一種の透明導電性高分子であることを特徴とする(6)または(7)記載の複合透明性導電性基材。
【0017】
(9)導電性高分子がポリエチレンジオキシチオフェンを含有してなる導電性高分子であることを特徴とする請求項(6)〜(8)いずれか記載の複合透明導電性基材。
【0018】
(10)導電性高分子がポリエチレンジオキシチオフェンとポリスチレンスルホン酸からなる導電性高分子であることを特徴とする請求項6〜9いずれか記載の複合透明導電性基材。
【0019】
(11)導電性高分子中に、さらに粒子あるいは/および樹脂が混合されてなることを特徴とする請求項(1)〜(10)のいずれかに記載の複合透明導電性基材。
【0020】
(12)(1)〜(11)のいずれかに記載の複合透明導電性基材を電極として用いられたことを特徴とするディスプレイ。
【0021】
(13)ディスプレイが無機エレクトロルミネッセンス物質を用いた無機ELディスプレイであることを特徴とする(12)記載のディスプレイ。
【0022】
(14)ディスプレイが液晶、またはマイクロカプセルインクを用いた液晶表示ディスプレイ、あるいは電子ペーパであることを特徴とする(12)記載のディスプレイ。
【0023】
(15)ディスプレイがタッチパネルであることを特徴とする(12)記載のディスプレイ。
により構成される。
【0024】
【発明の実施の形態】
本発明とは、少なくとも、高分子フィルム、または高分子シートからなる基材(A)、金属系透明導電性薄膜(B)、および導電性有機物(C)が積層されてなる複合透明導電性基材である。
【0025】
高分子フィルム、または高分子シートからなる基材(A)、金属系透明導電性薄膜(B)、および導電性有機物(C)の積層構成は、図1のごとく高分子フィルム、または高分子シートからなる基材(A)/金属系透明導電性薄膜(B)/導電性有機物(C)の構成、または図2のごとく高分子フィルム、または高分子シートからなる基材(A)/導電性有機物(C)/金属系透明導電性薄膜(B)の構成、あるいは図3のごとく高分子フィルム、または高分子シートからなる基材(A)/導電性有機物(C)/金属系透明導電性薄膜(B)/導電性有機物(C)の構成のいずれでもよく、使用される用途に応じて適宜選択される。高分子フィルム、または高分子シートからなる基材(A)/金属系透明導電性薄膜(B)/導電性有機物(C)場合、光線透過率の向上、一般に好まれるより青系の色味への色相への改善、可撓性の向上、また金属系透明導電性薄膜(B)が化学的な変化をしにくいなどの優れた特長がある。さらに、通常導電性物質の上に有機物を積層すると、導電性物質の電気抵抗が数桁以上高くなるのに対し、本構成の場合は金属系透明導電性薄膜(B)自体がもつ表面抵抗値から大きく変化しない、優れた特長を有する。導電性有機物(C)/金属系透明導電性薄膜(B)の場合は金属系透明導電薄膜単体に比べ表面抵抗値が低下する、優れた特長を有する。高分子フィルム、または高分子シートからなる基材(A)/導電性有機物(C)/金属系透明導電性薄膜(B)/導電性有機物(C)の構成では前述の両方の特徴を備えている。
【0026】
金属系透明導電性薄膜(B)上に導電性有機物(C)を積層した場合、導電性有機物(C)を酸化、または還元することによって絶縁体にすることが出来、部分的に絶縁化することによってパターン状の導電体を作ることが出来る。これは金属系導電性薄膜を通常のホトレジストシステムを用いたウエットエッチングによるパターン加工するのに比べ、加工工程が簡略で、加工が容易である利点がある。
【0027】
なお、高分子フィルム、または高分子シートからなる基材(A)と金属系透明導電性薄膜(B)、あるいは導電性有機物(C)の間には互いの接着性を上げるために接着層を設けても良いが、金属系透明導電性薄膜(B)と導電性有機物(C)は直接積層したほうがより好ましい。
【0028】
基材(A)となる高分子フィルム、または高分子シート(以下高分子フィルム/シートと称す。) は特に限定される物ではないが、ポリカーボネイト、アクリル樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレートなどのポリエステルなどの透明性が高い樹脂からなる透明なフィルム/シートが好ましい。中でも耐熱性が有り、透明性に優れたポリエチレンテレフタレートフィルム/シートがより好ましい。特に全光線透過率が80%以上の高分子フィルム/シートが好ましい。
【0029】
なお、金属系透明導電性薄膜(B)、あるいは導電性高分子との密着性を上げるために前もって、高分子フィルム/シートに、フィルム/シートにする工程,あるいはフィルム/シートにした後で接着樹脂をコーテイング、あるいは放電処理などの表面処理をすることが好ましい。さらに高分子フィルム、または高分子シートは熱によって収縮することがあるので、前もって熱処理を施し、これらの収縮を取り除いておくことは好ましい処理である。
【0030】
なお、高分子フィルムとは厚みが500μm以下のものを指し、高分子シートとは厚みが500μmを超える物を指。通常高分子フィルムの厚みは1μmから500μm、高分子シートの厚みは500μmを超え2mm以下の高分子成型体を指す。
【0031】
本発明の複合透明導電性基材に用いられる金属系透明導電性薄膜(B)は金、銀、銅などの極薄の金属薄膜、あるいは酸化インジューム(酸化錫および/または酸化亜鉛を含有してもよい。) 、酸化錫、酸化亜鉛などの導電性金属酸化物が好ましい。金属薄膜に比べ表面抵抗値がより低く、かつ透明性がより高い導電性金属酸化物がより好ましい。特に酸化インジューム、酸化錫、酸化亜鉛、あるいはこれらの二種以上の化合物は表面抵抗値が低く、透明性が高く、かつ湿度による化学的変化が少なく、好ましい。
【0032】
なお、金属系透明導電性薄膜層は金属系透明導電性薄膜を多層に積層してもよい。
【0033】
これらの金属系透明導電性薄膜(B)は電子ビーム蒸着、スパッタリングなどのPVDと称される真空蒸着法によって基材、あるいは導電性有機物(C)上に形成できる。金属系透明導電性薄膜(B)の物性、製造方法については特に限定される物ではなく、目的用途に適した特性の金属系透明導電性物質を選定し、適切な薄膜製造方法によって形成することが好ましい。また、金属系透明導電性薄膜は熱処理によって表面抵抗値、光線透過率、光線反射率などの特性を変えることが出来るので、必要に応じて熱処理等を施しても良い。なお、金属系透明導電薄膜の一般的な物性、製造方法は「透明導電膜の技術」第3章、第5章、および第5章(日本学術振興会 透明酸化物光・電子材料第166委員会編、(株)オーム社発行)などに詳細に記述されている。
【0034】
金属系透明導電性薄膜(B)の厚みは、用途に応じて要求される表面抵抗値、光線透過率によって、適宜決定すべきであるが、好ましくは5nmから1.0μm、より好ましい厚みは表面抵抗値、光線透過率、及び可撓性の点から10nmから0.5μmである。10nm未満では表面抵抗が高くなり、0.5μmを超えると、金属系透明導電性薄膜(B)の光吸収により光線透過率が著しく低下するのに対し表面抵抗値はあまり低下しないためである。
【0035】
本発明の複合透明導電性基材に用いられる導電性有機物(C)は限定されないが50%以上の光線透過率を有し、かつ1.0×10−8S/cmの導電率を有する物が選ばれる。長期の使用において品質が安定であることから導電性高分子が好ましい。
【0036】
導電性高分子については「導電性高分子のはなし」第5章(吉野勝美著、日刊工業新聞社発行)「導電性高分子」(緒方直哉編、講談社サイエンテイッフイク発行),あるいは「Science and Application of Conducting Polymers」(W.R.Salaneck 他編、Adam Hilger発行)などに詳細に記述されている。
【0037】
本発明の複合透明導電性基材に用いられる導電性高分子は限定されるものではないが、透明性、導電性、可とう性からポリピロール、ポリチオフェン、ポリフラン、ポリセレノフェン、ポリアニリン、ポリパラフェニレン、ポリフルオレン、これらの誘導体、およびこれらの単量体の共重合物から選ばれた導電性高分子のいずれか一種または二種以上の混合物であることが好ましい。中でも側鎖を導入することにより水あるいはその他の溶媒に可溶性、または分散性を有するポリチオフェン、ポリアルキルフルオレン、ポリフルオレン、ポリパラフェニレン、ポリパラフェニレンビニレンの誘導体、およびこれらの単量体の共重合物から選ばれた少なくとも一種の導電性高分子は透明性、導電性に優れ、かつ高分子フィルム/シート、あるいは金属系導電性薄膜上にコーテイングすることができ、適切な厚みの導電性高分子膜を均一に形成できることからより好ましい。特にポリジオキシチオフェンを含有してなる導電性高分子、中でもポリエチレンジオキシチオフェン(PEDT)とポリスチレンスルホン酸(PSS)からなる導電性高分子は、水あるいはその他の溶媒に溶解、あるいは分散できることから容易に高分子フィルムにコーテイングでき、さらに透明性と導電性が特に高い膜を形成できることから最も好ましい。ポリエチレンジオキシチオフェンとポリスチレンスルホン酸からなる導電性高分子の水あるいはその他の溶媒に溶解、または分散した樹脂液の作成方法は特開平7−90060号公報、特許第3210211号公報、あるいは国際公開第02/067273号パンフレットに提案されている。
【0038】
導電性有機物(C)中にポリスチレン粒子、アクリル樹脂粒子などの粒子を添加することによって滑性が高まることからディスプレイ画面サイズにフィルム/シートを断裁する際に、断裁したフィルム/シートの積み上げが容易になるなどの特長が発現する。また、樹脂を添加することによって、導電性有機物(C)層の強度が強くなり、擦れや引っかき耐久性、あるいは高温高湿度下における品質の安定性が向上する。
【0039】
導電性有機物(C)を積層する方法は電解重合方、蒸着法、コーテイング法(塗工法)などが有り、用途、導電性有機物によって適宜選択でき、特に限定されるものではない。しかし、高分子フィルム、または高分子シートからなる基材(A)、または金属系透明導電性薄膜(B)上に水あるいはその他の溶媒に溶ける導電性有機物をコーテイング法によるのが高分子フィルム/シートのように幅が広く、長さが長い基材に一様に、規定の厚みで積層できることからより好ましい。コーテイングの方法は特に限定されるものではなく、用途に応じて適切な方法が選択できる。コーテイングの種種の方法は、「コーテイング方式」第1章から第18章(原崎勇次著、槇書店発行)などの文献に詳細に記述されている。また、基材上に導電性有機物(C)を積層する場合は特開平6−295016に提案されている「ポリエステルシートまたはウエッブに永久帯電防止プライマー層」を被覆する工程と同じ方法で、高分子フィルム、または高分子シートからなる基材(A)を製造する工程で積層する方法を選択することもできる。
【0040】
導電性有機物(C)の厚みは、用途に応じて要求される表面抵抗値、光線透過率によって、適宜決定すべきであるが、通常5nmから3μm程度が好ましい、より好ましい厚みは表面抵抗値と光線透過率の点で10nmから1μmである。10nm未満では表面抵抗値が高くなり、1μmを超えると、導電性有機物(C)の光吸収により光線透過率が低下するためである。
【0041】
無機エレクトロルミネッセンス物質を用いた無機ELディスプレイ用の電極として、金属系透明導電性薄膜(B)上に導電性有機物(C)を積層した本発明の複合透明導電性基材を用いた無機ELディスプレイは、通常輝度の低いデイープブルーの光を良く透過し、輝度の向上が見られる。また、無機ELディスプレイの重大な品質問題である発光時に起きる金属系透明導電性薄膜(B)の電気化学反応によると思われる黒い点の発生が抑制される。さらに可撓性のある無機ELディスプレイを作ることが出来る。
【0042】
透明導電性フィルムの間に液晶やマイクロカプセルインクを挟み、該透明導電性フィルムに電圧を印加することによって、液晶の光透過性を変えたり、あるいはマイクロカプセル中のインクを反転させることによって光線透過率変えたり、表示をしたりするスマートウインドウや電子ペーパに透明電極として金属系透明導電性薄膜(B)上に導電性有機物(C)を積層した本発明の複合透明導電性基材を用いると、黄味のない紙に似た色調で、かつ低電圧で駆動できるスマートウィンドウや電子ペーパを作ることが出来る。
【0043】
タッチパネルの透明導電性電極に本発明の複合透明電極を用いると、光線透過率が高く、描画耐久性の有る、かつ額縁の傍まで線型性の有る従来のタッチパネルでは満たせなかった性能のタッチパネルが出来る。
【0044】
また、本発明の複合透明導電性基材は色素増感型太陽電池用電極としても優れている。
【0045】
【実施例】
〔評価方法〕
1.表面抵抗値:JIS R1637に準じ4探針法にて測定した。
【0046】
2.全光線透過率:JIS−K7105に準じて測定した。
【0047】
3.EL素子の信頼性評価:60℃、90%RHの恒温高湿槽にEL素子を(240hr)入れ、該素子に400Hz、100Vの電圧をかけ、240時間放置し、該素子表面に黒い点が発生しているかどうか、目視、および10倍の拡大鏡で観察する。
〔実施例1、および比較例1,2〕
厚み75μmポリエチレンテレフタレートフィルム(東レ(株)製 商品名”ルミラー”)から成る高分子フィルムを熱風オーブンで連続的に熱処理し、150℃における熱収縮が0.08%になるように熱処理した。該高分子フィルム基材(A)上に巻き取り式DCパルシング法マグネトロンスパッター装置を用い表面抵抗値が80Ω/□になるようにITO薄膜を形成した。なお、スパッターの条件は、ITOターゲット(酸化インジューム(90wt%)と酸化錫(10wt%)の焼結ターゲット、焼結密度99%以上)を用い、真空度4×10−3Paまでスパッター装置内を排気後酸素3.5mol%のAr/O混合ガスを導入し、真空度4×10−2Paにした後高分子フィルム基材速度1m/minでスパッターした。
【0048】
次いで該ITOスパッターフィルムのITO面にポリエチレンジオキシチオフェン(PEDOT)とポリスルホン酸(PSS)からなる導電性高分子水溶液(固形分濃度0.9%)(Agfa−Gevaert N.V製)をコーテイング装置(マイクログラビアコーター)を用いて乾燥後膜厚が80nmになるようにコーテイングし、本発明の複合透明導電性基材(実施例1)を作成した。また、導電性高分子をコーテイングしていないITOフィルムを比較例1の透明導電性基材サンプル(高分子フィルム基材(A)/金属系透明導電性薄膜(B))とした。
【0049】
さらに、ITO薄膜を形成するために使用したと同じ厚み75μmポリエチレンテレフタレートフィルム(東レ(株)製 商品名”ルミラー”)にコロナ放電処理を行った後ポリエチレンジオキシチオフェン(PEDOT)とポリスルホン酸(PSS)からなる導電性高分子を乾燥後の厚み600nmになるようにコーテイングした比較例2用の透明導電性基材サンプル(高分子フィルム基材(A)/導電性有機物(C))を作成した。
【0050】
各々のサンプルにEL蛍光体インク(7151J)20μm、その上に誘電体インク(7148)20μ、その上にカーボン導体インク(7144)25μm、その上に防湿層インク(UV講硬化エンキャップ5018)20μmを積層して、発光部が35mm×40mmのEL素子を作成した。なお、いずれのインクもDupont社製LUXPRINTELインクを使用し、スクリーン印刷用ELインク工程ガイドに従って、積層した。
【0051】
各々のEL素子の信頼評価を行い、表1の結果となった。
【0052】
本発明の複合透明導電性基材は比較例1のITOフィルムの上に比較例2に用いた抵抗率の高い高い導電性高分子を積層しているにもかかわらず、表面抵抗値は比較例1のITOフィルムとほとんど変わらず、さらに光線透過率はより高くなっている。なお、ITOフィルムは黄味を帯びた色になることが欠点とされているが、本発明の複合導電性基材は空色を帯びている。本発明の複合透明導電性基材を用いたEL素子は比較例1,および2の導電性基材を用いたEL素子に比べ空色の濃い明るい色に発光し、また黒い点はまったく発生しなかった。なお、発光輝度は目視にて判定した。比較例1の導電性基材を用いたEL素子では小さな黒い点(黒点)が発生していた。発光色は緑色がかっており、明るいが本発明の複合導電性基材を用いたEL素子に比べると輝度が低かった。比較例2の導電性基材を用いたEL素子は輝度が低かった。
【0053】
【表1】

Figure 2005019056
【0054】
〔実施例2、および比較例3、4〕
フィルムの製膜の工程で表面の接着性改良のために極薄の樹脂が積層された厚み188μmのポリエチレンテレフタレートフィルム(商品名:”ルミラー”QT59 東レ(株)製)に実施例1と同じポリエチレンジオキシチオフェン(PEDOT)とポリスルホン酸(PSS)からなる導電性高分子水溶液(固形分濃度0.9%)(Agfa−Gevaert N.V製)を乾燥後の膜厚が0.05μmになるようにコーチングした。該コーテイングフィルム上に実施例1と同じ方法で表面抵抗値400Ω/□のITO薄膜を形成し、本発明の複合透明導電性基材を作成した。また、同時に導電性高分子をコーテイングしていないポリエチレンテレフタレートにもITO薄膜を形成し、比較例3の透明導電性基材(高分子フィルム基材(A)/金属系透明導電性薄膜(B))を作成した。さらに、ITO薄膜を形成する前の導電性高分子をコーテイングしたのみの透明導電性基材を比較例4の透明導電性基材(高分子フィルム(A)/導電性有機物(C))とした。各々の透明性導電性基材の特性を表2に示す。
【0055】
本発明の複合透明導電性基材は比較例3と同時にスパッターし、同じITO膜厚にしたにもかかわらず、比較例3に比べ表面抵抗値が低く、光線透過率は高かい、優れた特性の透明導電性基材である。また、比較例3,4の導電性基材に比べて低抵抗で、かつ高透明であることからタッチパネル用の透明導電フィルムとして適している。
【0056】
【表2】
Figure 2005019056
【0057】
【発明の効果】
高分子フィルム、または高分子シートからなる基材(A)、金属系透明導電性薄膜(B)、および導電性有機物(C)が積層されてなる複合透明導電性基材はより白い色調で、可撓性があり、電気化学的反応をうけず、かつ表面抵抗値が低く、高透明である。電極として該複合透明性基材を用いるとディスプレイの輝度が向上する。
【図面の簡単な説明】
【図1】本発明の複合透明導電性基材断面の一例を示す概略図である。
【図2】本発明の複合透明導電性基材断面の一例を示す概略図である。
【図3】本発明の複合透明導電性基材断面の一例を示す概略図である。
【符号の説明】
1・・・高分子フィルム、または高分子シートからなる基材(A)
2・・・金属系透明導電性薄膜(B)
3・・・導電性有機物(C)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a transparent conductive substrate used for a transparent electrode used for an inorganic EL display, a touch panel, a smart window, electronic paper, or the like, or a shield for a liquid crystal display.
[0002]
[Prior art]
Electrodes used for inorganic EL displays, touch panels, smart windows utilizing liquid crystal transparency and opacifying switching functions, electronic paper, or liquid crystal displays are required to be conductive and transparent at the same time. For this reason, the metal normally used as an electrode cannot be used because it is opaque, and a transparent conductive material obtained by depositing a conductive oxide metal such as oxide indium (hereinafter referred to as ITO) on the substrate by a method such as sputtering. It has been proposed to use a film (for example, see Non-Patent Document 1). In order to impart flexibility, it has been proposed to use a transparent conductive film coated with a conductive polymer on a base material instead of an oxide metal (see, for example, Patent Document 1 and Patent Document 2).
[0003]
In addition, a polymer EL element has been proposed in which ITO is laminated on glass as a transparent electrode, and then a conductive polymer layer (typically polyaniline or PEDOT: PSS) is laminated in order to facilitate holes in the light emitting layer. (For example, refer nonpatent literature 2).
[0004]
[Non-Patent Document 1]
“Transparent Conducting Society of Japan, Transparent Oxide Optical / Electronic Materials, 166th Committee, Electrofilm Technology”, Ohm, (1st Edition, 4th edition, published on January 20, 2002)), p. 25-26
[0005]
[Patent Document 1]
JP 2001-089555 A (Claim 1)
[0006]
[Patent Document 2]
JP 2001-093624 A (Claim 1)
[0007]
[Non-Patent Document 2]
(Daisuke Fujishima et al.), “Examination of light emission characteristics of polymer EL devices using polyfluorene-based materials”, IEICE Technical Report OME2002-94, 2003, p. 5-9
[0008]
[Problems to be solved by the invention]
However, a deposited film of a conductive metal oxide such as ITO (1) has a large refractive index, so the surface reflection of light is large and the light transmittance is lowered. (2) Since it is yellowish, (3) Since there is no flexibility, when the substrate is bent, the deposited film is cracked and the resistance value increases. (4) The transparent conductive film is altered by the electrochemical reaction and blackened. There are problems such as. In order to improve these problems, it has been proposed to use a conductive polymer. (5) Since a conductive polymer has a higher resistance value than a conductive oxide, the brightness of the display is low. It has a serious problem of being low.
[0009]
Further, when the base material is glass, there are problems such as lack of flexibility, cracking, thick thickness, and heavy.
[0010]
[Means for Solving the Problems]
In order to provide a transparent conductive substrate in which the problems (1) to (5) described above are improved and a display panel using the transparent conductive substrate, the present invention has the following configuration. That is, the present invention
(1) A composite transparent conductive substrate in which a substrate (A) composed of at least a polymer film or a polymer sheet, a metal-based transparent conductive thin film (B), and a conductive organic material (C) are laminated.
[0011]
(2) The composite transparent conductive substrate is made of a polymer film or a polymer sheet (A) / metal-based transparent conductive thin film (B) / conductive organic substance (C), polymer film, or Substrate (A) made of polymer sheet / conductive organic substance (C) / metal-based transparent conductive thin film (B), and polymer film or substrate (A) made of polymer sheet / conductive organic substance (C ) / Metal-based transparent conductive thin film (B) / conductive organic material (C). The composite transparent conductive substrate according to (1), wherein the composite transparent conductive substrate is laminated.
[0012]
(3) The composite transparent conductive substrate according to (1) or (2), wherein the substrate (A) comprising a polymer film or a polymer sheet has a total light transmittance of 80% or more.
[0013]
(4) The composite transparent conductive (5) metal oxide according to any one of (1) to (3), wherein the metal-based transparent conductive thin film (B) comprises a vapor-deposited film of metal oxide. The composite transparent conductive substrate according to (4), which is any one kind selected from indium oxide, tin oxide, and zinc oxide, or two or more kinds of compounds.
[0014]
(6) The composite transparent conductive substrate according to any one of (1) to (5), wherein the conductive organic material (C) is a conductive polymer.
[0015]
(7) The conductive polymer is selected from polypyrrole, polythiophene, polyfuran, polyselenophene, polyaniline, polyparaphenylene, polyfluorene, derivatives thereof, and copolymers of these monomers. The composite transparent conductive substrate according to (6), which is any one kind or a mixture of two or more kinds.
[0016]
(8) Polythiophene, polyalkylfluorene, polyfluorene, polyparaphenylene, polyparaphenylene vinylene derivatives, and monomers thereof, in which the conductive polymer is soluble or dispersible in a solvent by introducing a side chain The composite transparent conductive substrate according to (6) or (7), which is at least one transparent conductive polymer selected from the copolymer of (6).
[0017]
(9) The composite transparent conductive substrate according to any one of (6) to (8), wherein the conductive polymer is a conductive polymer containing polyethylenedioxythiophene.
[0018]
(10) The composite transparent conductive substrate according to any one of claims 6 to 9, wherein the conductive polymer is a conductive polymer composed of polyethylene dioxythiophene and polystyrenesulfonic acid.
[0019]
(11) The composite transparent conductive substrate according to any one of (1) to (10), wherein particles or / and a resin are further mixed in the conductive polymer.
[0020]
(12) A display comprising the composite transparent conductive substrate according to any one of (1) to (11) as an electrode.
[0021]
(13) The display according to (12), wherein the display is an inorganic EL display using an inorganic electroluminescent substance.
[0022]
(14) The display according to (12), wherein the display is a liquid crystal display using liquid crystal, microcapsule ink, or electronic paper.
[0023]
(15) The display according to (12), wherein the display is a touch panel.
Consists of.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
The present invention refers to a composite transparent conductive group in which at least a base material (A) made of a polymer film or a polymer sheet, a metal-based transparent conductive thin film (B), and a conductive organic material (C) are laminated. It is a material.
[0025]
The laminated structure of the base material (A) comprising the polymer film or polymer sheet, the metal-based transparent conductive thin film (B), and the conductive organic substance (C) is a polymer film or polymer sheet as shown in FIG. The structure of the base material (A) / metal-based transparent conductive thin film (B) / conductive organic substance (C), or the base material (A) / conductivity made of a polymer film or polymer sheet as shown in FIG. Structure of organic substance (C) / metal-based transparent conductive thin film (B), or base material (A) / conductive organic substance (C) / metal-based transparent conductive film made of polymer film or polymer sheet as shown in FIG. Any of the constitution of thin film (B) / conductive organic substance (C) may be used, and it is appropriately selected according to the intended use. In the case of a base material (A) / metal-based transparent conductive thin film (B) / conductive organic material (C) made of a polymer film or a polymer sheet, the light transmittance is improved, and the blue color is more preferred than generally preferred. There are excellent features such as improvement in hue, improvement in flexibility, and metal-based transparent conductive thin film (B) hardly undergoing chemical changes. Furthermore, when an organic substance is laminated on a conductive material, the electrical resistance of the conductive material is increased by several orders of magnitude, whereas in this configuration, the surface resistance value of the metal-based transparent conductive thin film (B) itself It has excellent features that do not change greatly. The conductive organic substance (C) / metal-based transparent conductive thin film (B) has an excellent feature that the surface resistance value is lower than that of the metal-based transparent conductive thin film alone. The structure of the base material (A) / conductive organic substance (C) / metal-based transparent conductive thin film (B) / conductive organic substance (C) made of a polymer film or a polymer sheet has both the above-mentioned features. Yes.
[0026]
When the conductive organic substance (C) is laminated on the metal-based transparent conductive thin film (B), the conductive organic substance (C) can be made into an insulator by oxidation or reduction, and is partially insulated. Thus, a patterned conductor can be made. This is advantageous in that the processing step is simple and the processing is easy as compared to pattern processing by wet etching using a normal photoresist system for a metal-based conductive thin film.
[0027]
An adhesive layer is provided between the base material (A) made of the polymer film or polymer sheet and the metal-based transparent conductive thin film (B) or the conductive organic substance (C) in order to increase mutual adhesion. Although it may be provided, it is more preferable to directly laminate the metal-based transparent conductive thin film (B) and the conductive organic substance (C).
[0028]
The polymer film or polymer sheet (hereinafter referred to as polymer film / sheet) serving as the substrate (A) is not particularly limited, but polyester such as polycarbonate, acrylic resin, polyethylene terephthalate, and polyethylene naphthalate. A transparent film / sheet made of a highly transparent resin such as the above is preferred. Among them, a polyethylene terephthalate film / sheet having heat resistance and excellent transparency is more preferable. In particular, a polymer film / sheet having a total light transmittance of 80% or more is preferable.
[0029]
It should be noted that in order to improve the adhesion to the metal-based transparent conductive thin film (B) or the conductive polymer, the film / sheet is bonded to the polymer film / sheet in advance, or the film / sheet is bonded to the film / sheet. It is preferable to coat the resin or perform a surface treatment such as a discharge treatment. Furthermore, since a polymer film or a polymer sheet may be shrunk by heat, it is preferable to perform heat treatment in advance and remove these shrinkage.
[0030]
The polymer film refers to a film having a thickness of 500 μm or less, and the polymer sheet refers to a film having a thickness exceeding 500 μm. Usually, the polymer film has a thickness of 1 to 500 μm, and the polymer sheet has a thickness of more than 500 μm and 2 mm or less.
[0031]
The metal-based transparent conductive thin film (B) used for the composite transparent conductive substrate of the present invention contains an extremely thin metal thin film such as gold, silver, copper, etc., or oxide oxide (tin oxide and / or zinc oxide). And conductive metal oxides such as tin oxide and zinc oxide are preferred. A conductive metal oxide having a lower surface resistance value and higher transparency than a metal thin film is more preferable. In particular, indium oxide, tin oxide, zinc oxide, or two or more of these compounds are preferable because they have low surface resistance, high transparency, and little chemical change due to humidity.
[0032]
The metal-based transparent conductive thin film layer may be formed by laminating metal-based transparent conductive thin films in multiple layers.
[0033]
These metal-based transparent conductive thin films (B) can be formed on the substrate or the conductive organic matter (C) by a vacuum deposition method called PVD such as electron beam deposition or sputtering. The physical properties and manufacturing method of the metal-based transparent conductive thin film (B) are not particularly limited, and a metal-based transparent conductive material having characteristics suitable for the intended use is selected and formed by an appropriate thin film manufacturing method. Is preferred. Moreover, since the metal-based transparent conductive thin film can change characteristics such as surface resistance, light transmittance, and light reflectance by heat treatment, heat treatment or the like may be performed as necessary. The general physical properties and manufacturing methods of metal-based transparent conductive thin films are described in Chapter 3, Chapter 5 and Chapter 5 of the “Transparent Conductive Technology” (Japan Society for the Promotion of Science, Transparent Oxide Optical / Electronic Materials Committee Member 166). (Ed., Published by Ohm Co., Ltd.).
[0034]
The thickness of the metal-based transparent conductive thin film (B) should be appropriately determined depending on the surface resistance value and light transmittance required according to the application, but preferably 5 nm to 1.0 μm, more preferably the surface From the point of resistance value, light transmittance, and flexibility, it is 10 nm to 0.5 μm. If the thickness is less than 10 nm, the surface resistance becomes high. If the thickness exceeds 0.5 μm, the light transmittance of the metal-based transparent conductive thin film (B) is remarkably lowered while the surface resistance value is not so lowered.
[0035]
The conductive organic material (C) used in the composite transparent conductive substrate of the present invention is not limited, but has a light transmittance of 50% or more and a conductivity of 1.0 × 10 −8 S / cm. Is selected. Conductive polymers are preferred because of their stable quality over long-term use.
[0036]
For more information on conductive polymers, see Chapter 5 of “Conducting Polymers” in Chapter 5 (written by Katsumi Yoshino, published by Nikkan Kogyo Shimbun), “Conductive Polymers” (edited by Naoya Ogata, published by Kodansha Scientific). and Application of Conducting Polymers "(WR Salaneck et al., published by Adam Hillger).
[0037]
Although the conductive polymer used for the composite transparent conductive substrate of the present invention is not limited, polypyrrole, polythiophene, polyfuran, polyselenophene, polyaniline, polyparaphenylene are known in terms of transparency, conductivity, and flexibility. , Polyfluorene, derivatives thereof, and a conductive polymer selected from a copolymer of these monomers are preferably one kind or a mixture of two or more kinds. Among them, polythiophene, polyalkylfluorene, polyfluorene, polyparaphenylene, polyparaphenylene vinylene derivatives and copolymers of these monomers that are soluble or dispersible in water or other solvents by introducing side chains. At least one type of conductive polymer selected from the above is excellent in transparency and conductivity, and can be coated on a polymer film / sheet or a metal-based conductive thin film, and has a suitable thickness. It is more preferable because the film can be formed uniformly. In particular, a conductive polymer containing polydioxythiophene, especially a conductive polymer made of polyethylenedioxythiophene (PEDT) and polystyrenesulfonic acid (PSS) can be easily dissolved or dispersed in water or other solvents. It is most preferable because it can be coated on a polymer film and a film having particularly high transparency and conductivity can be formed. A method for preparing a resin liquid in which a conductive polymer composed of polyethylene dioxythiophene and polystyrene sulfonic acid is dissolved or dispersed in water or other solvent is disclosed in JP-A-7-90060, Japanese Patent No. 3210211, or International Publication No. This is proposed in the 02/067273 pamphlet.
[0038]
The addition of particles such as polystyrene particles and acrylic resin particles to the conductive organic material (C) increases the slipperiness, so it is easy to stack the cut films / sheets when cutting the films / sheets to the display screen size. Features such as become. Further, by adding a resin, the strength of the conductive organic material (C) layer is increased, and the durability against rubbing and scratching, or the stability of quality under high temperature and high humidity is improved.
[0039]
The method of laminating the conductive organic material (C) includes an electrolytic polymerization method, a vapor deposition method, a coating method (coating method) and the like, and can be appropriately selected depending on the application and the conductive organic material, and is not particularly limited. However, a polymer film / a conductive film that is soluble in water or other solvent on the base material (A) made of a polymer film or a polymer sheet or a metal-based transparent conductive thin film (B) is coated by a coating method. It is more preferable because it can be uniformly laminated with a specified thickness on a substrate having a wide width and a long length such as a sheet. The coating method is not particularly limited, and an appropriate method can be selected according to the application. Various methods of coating are described in detail in documents such as “Coating Method”, Chapter 1 to Chapter 18 (written by Yuji Harasaki, published by Tsuji Shoten). In the case of laminating the conductive organic material (C) on the base material, the polymer is formed by the same method as the step of coating a “polyester sheet or web with a permanent antistatic primer layer” proposed in JP-A-6-295016. A method of laminating in the step of producing a base material (A) made of a film or a polymer sheet can also be selected.
[0040]
The thickness of the conductive organic material (C) should be appropriately determined depending on the surface resistance value and light transmittance required according to the application, but is usually preferably about 5 nm to 3 μm, and more preferably the thickness is the surface resistance value. It is 10 nm to 1 μm in terms of light transmittance. If the thickness is less than 10 nm, the surface resistance value is high, and if it exceeds 1 μm, the light transmittance is reduced due to light absorption of the conductive organic substance (C).
[0041]
Inorganic EL display using the composite transparent conductive substrate of the present invention in which a conductive organic substance (C) is laminated on a metal-based transparent conductive thin film (B) as an electrode for an inorganic EL display using an inorganic electroluminescent material Normally transmits deep blue light with low brightness, and the brightness is improved. Moreover, the generation | occurrence | production of the black spot considered to be due to the electrochemical reaction of the metal type transparent conductive thin film (B) which arises at the time of light emission which is a serious quality problem of an inorganic EL display is suppressed. Furthermore, a flexible inorganic EL display can be manufactured.
[0042]
Liquid crystal or microcapsule ink is sandwiched between transparent conductive films, and voltage is applied to the transparent conductive film to change the light transmittance of the liquid crystal or to reverse the ink in the microcapsules to transmit light. When using the composite transparent conductive substrate of the present invention in which a conductive organic substance (C) is laminated on a metal-based transparent conductive thin film (B) as a transparent electrode in a smart window or electronic paper for changing rate or displaying. It is possible to make smart windows and electronic paper that can be driven at a low voltage with a color tone similar to that of paper without yellow.
[0043]
When the composite transparent electrode of the present invention is used for the transparent conductive electrode of the touch panel, a touch panel with high light transmittance, drawing durability, and linearity up to the side of the frame that cannot be satisfied by a conventional touch panel can be obtained. .
[0044]
The composite transparent conductive substrate of the present invention is also excellent as a dye-sensitized solar cell electrode.
[0045]
【Example】
〔Evaluation methods〕
1. Surface resistance value: measured by a four-probe method according to JIS R1637.
[0046]
2. Total light transmittance: Measured according to JIS-K7105.
[0047]
3. Reliability evaluation of EL element: Place the EL element (240 hr) in a constant temperature and high humidity bath at 60 ° C. and 90% RH, apply a voltage of 400 Hz and 100 V to the element, and leave it for 240 hours. Observe for occurrence, visually and with a 10x magnifier.
[Example 1 and Comparative Examples 1 and 2]
A polymer film composed of a polyethylene terephthalate film having a thickness of 75 μm (trade name “Lumirror” manufactured by Toray Industries, Inc.) was continuously heat-treated in a hot air oven so that the heat shrinkage at 150 ° C. was 0.08%. An ITO thin film was formed on the polymer film substrate (A) using a wound-up DC pulsing magnetron sputtering apparatus so that the surface resistance was 80Ω / □. The sputtering conditions were an ITO target (sintering target of oxidized oxide (90 wt%) and tin oxide (10 wt%), sintered density of 99% or more), and a sputtering apparatus up to a vacuum degree of 4 × 10 −3 Pa. After evacuating the inside, an Ar / O 2 mixed gas containing 3.5 mol% oxygen was introduced to make the degree of vacuum 4 × 10 −2 Pa and then sputtered at a polymer film substrate speed of 1 m / min.
[0048]
Next, a conductive polymer aqueous solution (solid content concentration 0.9%) made of polyethylenedioxythiophene (PEDOT) and polysulfonic acid (PSS) (manufactured by Agfa-Gevaert NV) is coated on the ITO surface of the ITO sputtered film. Using a (micro gravure coater), coating was performed such that the film thickness after drying was 80 nm, and a composite transparent conductive substrate (Example 1) of the present invention was prepared. An ITO film not coated with a conductive polymer was used as a transparent conductive substrate sample of Comparative Example 1 (polymer film substrate (A) / metal-based transparent conductive thin film (B)).
[0049]
Furthermore, the same thickness 75 μm polyethylene terephthalate film used for forming the ITO thin film (trade name “Lumirror” manufactured by Toray Industries, Inc.) was subjected to corona discharge treatment, and then polyethylene dioxythiophene (PEDOT) and polysulfonic acid (PSS). A transparent conductive substrate sample (polymer film substrate (A) / conductive organic substance (C)) for Comparative Example 2 was prepared by coating a conductive polymer consisting of) to a thickness of 600 nm after drying. .
[0050]
Each sample has an EL phosphor ink (7151J) of 20 μm, a dielectric ink (7148) of 20 μm thereon, a carbon conductor ink (7144) of 25 μm, and a moisture barrier ink (UV course curing encap 5018) of 20 μm thereon. Were stacked to produce an EL element having a light emitting portion of 35 mm × 40 mm. Each ink used LUXPRINTEL ink manufactured by Dupont, and was laminated according to the EL ink process guide for screen printing.
[0051]
The reliability of each EL element was evaluated and the results shown in Table 1 were obtained.
[0052]
Although the composite transparent conductive substrate of the present invention is formed by laminating the high-resistivity conductive polymer used in Comparative Example 2 on the ITO film of Comparative Example 1, the surface resistance value is a comparative example. It is almost the same as the ITO film of 1, and the light transmittance is higher. In addition, although it is considered that the ITO film has a yellowish color, the composite conductive substrate of the present invention is light blue. The EL element using the composite transparent conductive substrate of the present invention emits light in a deep blue lighter than the EL element using the conductive substrate of Comparative Examples 1 and 2, and no black spots are generated. It was. The emission luminance was determined visually. In the EL element using the conductive substrate of Comparative Example 1, small black spots (black spots) were generated. The emission color is greenish and bright, but the luminance is lower than that of the EL element using the composite conductive substrate of the present invention. The EL element using the conductive substrate of Comparative Example 2 had low luminance.
[0053]
[Table 1]
Figure 2005019056
[0054]
[Example 2 and Comparative Examples 3 and 4]
The same polyethylene as in Example 1 on a polyethylene terephthalate film (trade name: “Lumirror” QT59 manufactured by Toray Industries, Inc.) with a thickness of 188 μm, in which an ultrathin resin was laminated to improve surface adhesion in the film formation process. Conductive polymer aqueous solution (solid content concentration 0.9%) (Agfa-Gevaert NV) made of dioxythiophene (PEDOT) and polysulfonic acid (PSS) so that the film thickness after drying is 0.05 μm Coached. An ITO thin film having a surface resistance value of 400Ω / □ was formed on the coating film in the same manner as in Example 1 to prepare a composite transparent conductive substrate of the present invention. At the same time, an ITO thin film was formed on polyethylene terephthalate that was not coated with a conductive polymer, and the transparent conductive substrate of Comparative Example 3 (polymer film substrate (A) / metal-based transparent conductive thin film (B)) )created. Furthermore, the transparent conductive base material which only coated the conductive polymer before forming the ITO thin film was used as the transparent conductive base material of Comparative Example 4 (polymer film (A) / conductive organic substance (C)). . The properties of each transparent conductive substrate are shown in Table 2.
[0055]
The composite transparent conductive substrate of the present invention was sputtered simultaneously with Comparative Example 3, and despite having the same ITO film thickness, the surface resistance value was lower than that of Comparative Example 3, and the light transmittance was high. The transparent conductive substrate. Moreover, since it is low resistance and highly transparent compared with the electroconductive base material of the comparative examples 3 and 4, it is suitable as a transparent conductive film for touch panels.
[0056]
[Table 2]
Figure 2005019056
[0057]
【The invention's effect】
The composite transparent conductive substrate formed by laminating the base material (A) made of a polymer film or polymer sheet, the metal-based transparent conductive thin film (B), and the conductive organic material (C) has a white color tone, It is flexible, does not undergo electrochemical reaction, has a low surface resistance, and is highly transparent. When the composite transparent substrate is used as an electrode, the luminance of the display is improved.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an example of a cross section of a composite transparent conductive substrate of the present invention.
FIG. 2 is a schematic view showing an example of a cross section of the composite transparent conductive substrate of the present invention.
FIG. 3 is a schematic view showing an example of a cross section of the composite transparent conductive substrate of the present invention.
[Explanation of symbols]
1 ... Base material made of polymer film or polymer sheet (A)
2 ... Metal-based transparent conductive thin film (B)
3 ... Conductive organic matter (C)

Claims (15)

少なくとも高分子フィルム、または高分子シートからなる基材(A)、金属系透明導電性薄膜(B)、および導電性有機物(C)が積層されてなる複合透明導電性基材。A composite transparent conductive substrate formed by laminating a substrate (A) comprising at least a polymer film or a polymer sheet, a metal-based transparent conductive thin film (B), and a conductive organic substance (C). 前記複合透明導電性基材が、高分子フィルム、または高分子シートからなる基材(A)/金属系透明導電性薄膜(B)/導電性有機物(C)高分子フィルム、または高分子シートからなる基材(A)/導電性有機物(C)/金属系透明導電性薄膜(B)、および高分子フィルム、または高分子シートからなる基材(A)/導電性有機物(C)/金属系透明導電性薄膜(B)/導電性有機物(C)から選ばれたいずれか一の構成に積層されてなることを特徴とする請求項1記載の複合透明導電性基材。The composite transparent conductive substrate is composed of a polymer film or polymer sheet (A) / metal-based transparent conductive thin film (B) / conductive organic substance (C) polymer film or polymer sheet. Substrate (A) / Conductive organic matter (C) / Metal-based transparent conductive thin film (B) and polymer film or polymer sheet or base material (A) / Conductive organic matter (C) / Metal system The composite transparent conductive substrate according to claim 1, wherein the composite transparent conductive substrate is laminated in any one structure selected from transparent conductive thin film (B) / conductive organic substance (C). 高分子フィルム、または高分子シートからなる基材(A)が全光線透過率80%以上であることを特徴とする請求項1または2記載の複合透明導電性基材。The composite transparent conductive substrate according to claim 1 or 2, wherein the substrate (A) comprising a polymer film or a polymer sheet has a total light transmittance of 80% or more. 金属系透明導電性薄膜(B)が金属酸化物の蒸着膜からなることを特徴とする請求項1〜3のいずれかに記載の複合透明導電性The composite transparent conductive film according to any one of claims 1 to 3, wherein the metal-based transparent conductive thin film (B) comprises a vapor-deposited film of a metal oxide. 金属酸化物が酸化インジューム、酸化錫、および酸化亜鉛から選ばれたいずれか一種、または二種以上の化合物であることを特徴とする請求項4記載の複合透明導電性基材。The composite transparent conductive substrate according to claim 4, wherein the metal oxide is any one selected from indium oxide, tin oxide, and zinc oxide, or two or more compounds. 導電性有機物(C)が導電性高分子であることを特徴とする請求項1〜5のいずれかに記載の複合透明導電性基材。The composite transparent conductive substrate according to any one of claims 1 to 5, wherein the conductive organic substance (C) is a conductive polymer. 導電性高分子がポリピロール、ポリチオフェン、ポリフラン、ポリセレノフェン、ポリアニリン、ポリパラフェニレン、ポリフルオレン、これらの誘導体、およびこれらの単量体の共重合物から選ばれた導電性高分子のいずれか一種または二種以上の混合物であることを特徴とする請求項6記載の複合透明導電性基材。The conductive polymer is any one of conductive polymers selected from polypyrrole, polythiophene, polyfuran, polyselenophene, polyaniline, polyparaphenylene, polyfluorene, derivatives thereof, and copolymers of these monomers. Or it is a mixture of 2 or more types, The composite transparent conductive base material of Claim 6 characterized by the above-mentioned. 導電性高分子が、側鎖を導入することにより溶媒に可溶性または分散性を有するポリチオフェン、ポリアルキルフルオレン、ポリフルオレン、ポリパラフェニレン、ポリパラフェニレンビニレンの誘導体、およびこれらの単量体の共重合物から選ばれた少なくとも一種の透明導電性高分子であることを特徴とする請求項6または7記載の複合透明性導電性基材。Polythiophene, polyalkylfluorene, polyfluorene, polyparaphenylene, polyparaphenylene vinylene derivatives having conductive polymers that are soluble or dispersible in solvents by introducing side chains, and copolymerization of these monomers The composite transparent conductive substrate according to claim 6 or 7, which is at least one transparent conductive polymer selected from the group of substances. 導電性高分子がポリエチレンジオキシチオフェンを含有してなる導電性高分子であることを特徴とする請求項6〜8いずれか記載の複合透明導電性基材。The composite transparent conductive substrate according to any one of claims 6 to 8, wherein the conductive polymer is a conductive polymer containing polyethylenedioxythiophene. 導電性高分子がポリエチレンジオキシチオフェンとポリスチレンスルホン酸からなる導電性高分子であることを特徴とする請求項6〜9いずれか記載の複合透明導電性基材。The composite transparent conductive substrate according to any one of claims 6 to 9, wherein the conductive polymer is a conductive polymer composed of polyethylenedioxythiophene and polystyrenesulfonic acid. 導電性高分子中に、さらに粒子および/または樹脂が混合されてなることを特徴とする請求項1〜10のいずれかに記載の複合透明導電性基材。The composite transparent conductive substrate according to any one of claims 1 to 10, wherein particles and / or a resin are further mixed in the conductive polymer. 請求項1〜11のいずれかに記載の複合透明導電性基材を電極として用いられることを特徴とするディスプレイ。A composite transparent conductive substrate according to any one of claims 1 to 11 is used as an electrode. ディスプレイが無機エレクトロルミネッセンス物質を用いた無機ELディスプレイであることを特徴とする請求項12記載のディスプレイ。The display according to claim 12, wherein the display is an inorganic EL display using an inorganic electroluminescent material. ディスプレイが液晶もしくはマイクロカプセルインクを用いた液晶表示ディスプレイ、または電子ペーパであることを特徴とする請求項12記載のディスプレイ。13. The display according to claim 12, wherein the display is a liquid crystal display using liquid crystal or microcapsule ink, or electronic paper. ディスプレイがタッチパネルであることを特徴とする請求項12記載のディスプレイ。The display according to claim 12, wherein the display is a touch panel.
JP2003179184A 2003-06-24 2003-06-24 Composite transparent conductive base material and display using the same Pending JP2005019056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003179184A JP2005019056A (en) 2003-06-24 2003-06-24 Composite transparent conductive base material and display using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003179184A JP2005019056A (en) 2003-06-24 2003-06-24 Composite transparent conductive base material and display using the same

Publications (1)

Publication Number Publication Date
JP2005019056A true JP2005019056A (en) 2005-01-20

Family

ID=34180577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003179184A Pending JP2005019056A (en) 2003-06-24 2003-06-24 Composite transparent conductive base material and display using the same

Country Status (1)

Country Link
JP (1) JP2005019056A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006289780A (en) * 2005-04-11 2006-10-26 Teijin Dupont Films Japan Ltd Conductive film
WO2007018116A1 (en) 2005-08-09 2007-02-15 Idemitsu Kosan Co., Ltd. Conductive laminate
JP2008031205A (en) * 2006-07-26 2008-02-14 Teijin Dupont Films Japan Ltd Conductive film and touch panel using the film
JP2008147035A (en) * 2006-12-11 2008-06-26 Shin Etsu Polymer Co Ltd Electroconductive layered product and method of manufacturing the same
WO2009037832A1 (en) * 2007-09-19 2009-03-26 National University Corporation Tohoku University Flexible transparent electroconductive film
JP2009087843A (en) * 2007-10-02 2009-04-23 Konica Minolta Holdings Inc Transparent conductive film
WO2009054273A1 (en) * 2007-10-26 2009-04-30 Konica Minolta Holdings, Inc. Transparent conducive film and method for producing the same
JP2009140790A (en) * 2007-12-07 2009-06-25 Seiko Epson Corp Conductor and method of manufacturing the same
JP2009536110A (en) * 2006-05-09 2009-10-08 レオンハード クルツ シュティフトゥング ウント コー. カーゲー Multilayer manufacturing process
JP2009271662A (en) * 2008-05-02 2009-11-19 Fujitsu Component Ltd Touch panel substrate and touch panel having the same
JP2009288505A (en) * 2008-05-29 2009-12-10 Hitachi Displays Ltd Liquid crystal display
WO2010050318A1 (en) * 2008-10-31 2010-05-06 コニカミノルタホールディングス株式会社 Transparent electrically-conductive substrate, method for producing transparent electrically-conductive substrate, and electrochemical display element
JP2010225375A (en) * 2009-03-23 2010-10-07 Tohoku Univ Transparent conductive film, touch panel, and flexible display
WO2011019629A3 (en) * 2009-08-13 2011-06-30 3M Innovative Properties Company Conducting film or electrode with improved optical and electrical performance for display and lighting devices and solar cells
JP2011525000A (en) * 2008-06-18 2011-09-08 スリーエム イノベイティブ プロパティズ カンパニー Conductive film or electrode having improved optical and electrical performance
JP2011526552A (en) * 2008-06-30 2011-10-13 コーロン インダストリーズ インク Plastic substrate and element including the same
JP2012068760A (en) * 2010-09-21 2012-04-05 Toppan Printing Co Ltd Display device with touch panel
KR101167418B1 (en) * 2010-09-20 2012-07-19 삼성전기주식회사 Touch Screen
JP2013514589A (en) * 2009-12-16 2013-04-25 スリーエム イノベイティブ プロパティズ カンパニー Touch sense device with multilayer electrodes having improved optical and electrical performance
JP2013539162A (en) * 2010-07-30 2013-10-17 インクテック シーオー.,リミテッド. Method for producing transparent conductive film and transparent conductive film produced thereby
JP2013218518A (en) * 2012-04-09 2013-10-24 Panasonic Corp Touch panel
US8576196B2 (en) 2010-09-20 2013-11-05 Samsung Electro-Mechanics Co., Ltd Touch screen and method of manufacturing the same
KR101356234B1 (en) 2012-08-10 2014-01-28 제이 터치 코퍼레이션 Compound induction electrode structure applied to a touch panel
WO2014067233A1 (en) * 2012-10-30 2014-05-08 中国科学院长春光学精密机械与物理研究所 Preparation method for high-conductivity organic transparent conductive film
WO2014148407A1 (en) * 2013-03-21 2014-09-25 コニカミノルタ株式会社 Transparent conductor
JP2016535918A (en) * 2013-10-04 2016-11-17 クヮンジュ・インスティテュート・オブ・サイエンス・アンド・テクノロジー Electrode having excellent light transmittance, method for producing electrode having excellent light transmittance, and electronic device including electrode having excellent light transmittance
CN109582184A (en) * 2017-09-29 2019-04-05 麦克赛尔控股株式会社 Coating composition, conductive film, touch panel and manufacturing method
WO2020017792A1 (en) * 2018-07-20 2020-01-23 주식회사 네패스 Smart window film and method for manufacturing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61206116A (en) * 1985-03-08 1986-09-12 サンアロ−株式会社 Conductive sheet
JPH10334729A (en) * 1997-05-29 1998-12-18 Toyobo Co Ltd Conductive film
JP2001113635A (en) * 1999-10-22 2001-04-24 Oji Paper Co Ltd Transparent conductive film
JP2002079616A (en) * 2000-06-23 2002-03-19 Toshiba Corp Transparent film-applied base material, coating solution for forming transparent film and display device
JP2003092407A (en) * 2001-09-18 2003-03-28 Sharp Corp Transistor and display device using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61206116A (en) * 1985-03-08 1986-09-12 サンアロ−株式会社 Conductive sheet
JPH10334729A (en) * 1997-05-29 1998-12-18 Toyobo Co Ltd Conductive film
JP2001113635A (en) * 1999-10-22 2001-04-24 Oji Paper Co Ltd Transparent conductive film
JP2002079616A (en) * 2000-06-23 2002-03-19 Toshiba Corp Transparent film-applied base material, coating solution for forming transparent film and display device
JP2003092407A (en) * 2001-09-18 2003-03-28 Sharp Corp Transistor and display device using the same

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006289780A (en) * 2005-04-11 2006-10-26 Teijin Dupont Films Japan Ltd Conductive film
JP4700391B2 (en) * 2005-04-11 2011-06-15 帝人デュポンフィルム株式会社 Conductive film
WO2007018116A1 (en) 2005-08-09 2007-02-15 Idemitsu Kosan Co., Ltd. Conductive laminate
JP2009536110A (en) * 2006-05-09 2009-10-08 レオンハード クルツ シュティフトゥング ウント コー. カーゲー Multilayer manufacturing process
JP2008031205A (en) * 2006-07-26 2008-02-14 Teijin Dupont Films Japan Ltd Conductive film and touch panel using the film
JP2008147035A (en) * 2006-12-11 2008-06-26 Shin Etsu Polymer Co Ltd Electroconductive layered product and method of manufacturing the same
WO2009037832A1 (en) * 2007-09-19 2009-03-26 National University Corporation Tohoku University Flexible transparent electroconductive film
JP2009087843A (en) * 2007-10-02 2009-04-23 Konica Minolta Holdings Inc Transparent conductive film
WO2009054273A1 (en) * 2007-10-26 2009-04-30 Konica Minolta Holdings, Inc. Transparent conducive film and method for producing the same
JP5353705B2 (en) * 2007-10-26 2013-11-27 コニカミノルタ株式会社 Transparent conductive film and method for producing the same
US8456005B2 (en) 2007-10-26 2013-06-04 Konica Minolta Holdings, Inc. Transparent conductive film and method for producing the same
JP2009140790A (en) * 2007-12-07 2009-06-25 Seiko Epson Corp Conductor and method of manufacturing the same
JP2009271662A (en) * 2008-05-02 2009-11-19 Fujitsu Component Ltd Touch panel substrate and touch panel having the same
JP2009288505A (en) * 2008-05-29 2009-12-10 Hitachi Displays Ltd Liquid crystal display
US8854589B2 (en) 2008-06-18 2014-10-07 3M Innovative Properties Company Conducting film or electrode comprising a dielectric intervening layer having electrically conductive pathways disposed between first and second transparent or semi-transparent conductive layers
JP2011525000A (en) * 2008-06-18 2011-09-08 スリーエム イノベイティブ プロパティズ カンパニー Conductive film or electrode having improved optical and electrical performance
JP2011526552A (en) * 2008-06-30 2011-10-13 コーロン インダストリーズ インク Plastic substrate and element including the same
WO2010050318A1 (en) * 2008-10-31 2010-05-06 コニカミノルタホールディングス株式会社 Transparent electrically-conductive substrate, method for producing transparent electrically-conductive substrate, and electrochemical display element
JP2010225375A (en) * 2009-03-23 2010-10-07 Tohoku Univ Transparent conductive film, touch panel, and flexible display
WO2011019629A3 (en) * 2009-08-13 2011-06-30 3M Innovative Properties Company Conducting film or electrode with improved optical and electrical performance for display and lighting devices and solar cells
US9581870B2 (en) 2009-08-13 2017-02-28 3M Innovative Properties Company Conducting film or electrode with improved optical and electrical performance for display and lighting devices and solar cells
CN102576168B (en) * 2009-08-13 2015-12-09 3M创新有限公司 For display, lighting device and solar cell, there is the optical property of improvement and the conducting film of electrical property or electrode
CN102576168A (en) * 2009-08-13 2012-07-11 3M创新有限公司 Conducting film or electrode with improved optical and electrical performance for display and lighting devices and solar cells
TWI503803B (en) * 2009-08-13 2015-10-11 3M Innovative Properties Co Conducting film or electrode with improved optical and electrical performance for display and lighting devices and solar cells
EP2465006A4 (en) * 2009-08-13 2015-04-22 3M Innovative Properties Co Conducting film or electrode with improved optical and electrical performance for display and lighting devices and solar cells
EP2465006A2 (en) * 2009-08-13 2012-06-20 3M Innovative Properties Company Conducting film or electrode with improved optical and electrical performance for display and lighting devices and solar cells
US10114257B2 (en) 2009-08-13 2018-10-30 3M Innovative Properties Company Conducting film or electrode with improved optical and electrical performance for display and lighting devices and solar cells
JP2013514589A (en) * 2009-12-16 2013-04-25 スリーエム イノベイティブ プロパティズ カンパニー Touch sense device with multilayer electrodes having improved optical and electrical performance
JP2015008141A (en) * 2010-07-30 2015-01-15 インクテック シーオー.,リミテッド.Inktec Co.,Ltd. Method for manufacturing transparent conductive film and transparent conductive film manufactured by the same
JP2013539162A (en) * 2010-07-30 2013-10-17 インクテック シーオー.,リミテッド. Method for producing transparent conductive film and transparent conductive film produced thereby
US8576196B2 (en) 2010-09-20 2013-11-05 Samsung Electro-Mechanics Co., Ltd Touch screen and method of manufacturing the same
KR101167418B1 (en) * 2010-09-20 2012-07-19 삼성전기주식회사 Touch Screen
US8446388B2 (en) 2010-09-20 2013-05-21 Samsung Electro-Mechanics Co., Ltd Resistive touch screen
JP2012068760A (en) * 2010-09-21 2012-04-05 Toppan Printing Co Ltd Display device with touch panel
JP2013218518A (en) * 2012-04-09 2013-10-24 Panasonic Corp Touch panel
KR101356234B1 (en) 2012-08-10 2014-01-28 제이 터치 코퍼레이션 Compound induction electrode structure applied to a touch panel
CN103794728A (en) * 2012-10-30 2014-05-14 中国科学院长春光学精密机械与物理研究所 Preparation method of high-conductivity organic transparent conductive film
WO2014067233A1 (en) * 2012-10-30 2014-05-08 中国科学院长春光学精密机械与物理研究所 Preparation method for high-conductivity organic transparent conductive film
WO2014148407A1 (en) * 2013-03-21 2014-09-25 コニカミノルタ株式会社 Transparent conductor
JPWO2014148407A1 (en) * 2013-03-21 2017-02-16 コニカミノルタ株式会社 Transparent conductor
JP2016535918A (en) * 2013-10-04 2016-11-17 クヮンジュ・インスティテュート・オブ・サイエンス・アンド・テクノロジー Electrode having excellent light transmittance, method for producing electrode having excellent light transmittance, and electronic device including electrode having excellent light transmittance
KR101827352B1 (en) * 2013-10-04 2018-02-08 원스 주식회사 Electrode having excellent light transmittance, method for manufacturing same, and electronic element including same
CN109582184A (en) * 2017-09-29 2019-04-05 麦克赛尔控股株式会社 Coating composition, conductive film, touch panel and manufacturing method
CN109582184B (en) * 2017-09-29 2022-03-04 麦克赛尔株式会社 Coating composition, conductive film, touch panel, and method for producing touch panel
WO2020017792A1 (en) * 2018-07-20 2020-01-23 주식회사 네패스 Smart window film and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP2005019056A (en) Composite transparent conductive base material and display using the same
US7410825B2 (en) Metal and electronically conductive polymer transfer
JP4940949B2 (en) Composite transparent conductive substrate for touch panel and touch panel
US6355125B1 (en) Method for making an electric or electronic module comprising a glass laminate
US8269416B2 (en) Film with transparent conductive layer, flexible functional element and flexible dispersion-type electroluminescent element, and method for producing the same and electronic device by the use thereof
US6255774B1 (en) Multilayer cathode for organic light-emitting device
EP2216170B1 (en) Conductive film
US7781047B2 (en) Polymeric conductor donor and transfer method
EP1038663B1 (en) Method of making an electronic module comprising a glass laminate
EP1013413B1 (en) Electroconductive glass laminate
KR19980048999A (en) Transparent conductive laminate and EL light emitting device using same
EP2347640A1 (en) Polymeric conductive donor and transfer method
WO2010082428A1 (en) Transparent electrode, method for producing same, and organic electroluminescent element
KR20140076268A (en) Substrate having transparent electrode for flexible display and method of fabricating the same
JP4974071B2 (en) Transparent conductive film for touch panel
US20100323186A1 (en) Transparent conductive film and method for producing transparent conductive film
JPWO2014034920A1 (en) Transparent electrode, method for producing the same, and organic electronic device
US20120321846A1 (en) Transparent electroconductive film and organic electroluminescent device
WO2011065213A1 (en) Dispersion, transparent electrode, and organic electro- luminescent element
WO2011077804A1 (en) Transparent electrode and organic electronic device
JP2002343150A (en) Transparent electric conductive film and its manufacturing method
JPH0911390A (en) Transparent conductive laminate
JPH08281857A (en) Transparent conductive laminate
JPH09156022A (en) Transparent conductive laminate
JP2001014952A (en) Transparent conductive film and electroluminescence panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091008

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100810