WO2010082428A1 - Transparent electrode, method for producing same, and organic electroluminescent element - Google Patents

Transparent electrode, method for producing same, and organic electroluminescent element Download PDF

Info

Publication number
WO2010082428A1
WO2010082428A1 PCT/JP2009/071121 JP2009071121W WO2010082428A1 WO 2010082428 A1 WO2010082428 A1 WO 2010082428A1 JP 2009071121 W JP2009071121 W JP 2009071121W WO 2010082428 A1 WO2010082428 A1 WO 2010082428A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent electrode
layer
metal nanowire
metal
conductive
Prior art date
Application number
PCT/JP2009/071121
Other languages
French (fr)
Japanese (ja)
Inventor
竹田 昭彦
昌紀 後藤
中村 和明
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2010546570A priority Critical patent/JP5533669B2/en
Publication of WO2010082428A1 publication Critical patent/WO2010082428A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • H10K30/821Transparent electrodes, e.g. indium tin oxide [ITO] electrodes comprising carbon nanotubes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/816Multilayers, e.g. transparent multilayers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a transparent electrode, a method for producing the same, and an organic electroluminescent element, and more specifically, relates to a transparent electrode formed by coating without complicated processes, a method for producing the same, and an organic electroluminescent element.
  • organic EL organic electroluminescence
  • field emission field emission
  • the transparent electrode is an essential constituent technology.
  • transparent electrodes are an indispensable technical element in touch panels, mobile phones, electronic paper, various solar cells, and various electroluminescence light control elements.
  • various metal thin films such as Au, Ag, Pt, Cu, indium oxide doped with tin or zinc (ITO, IZO), zinc oxide doped with aluminum or gallium (AZO, GZO), fluorine, Metal oxide thin films such as tin oxide doped with antimony (FTO, ATO), conductive nitride thin films such as TiN, ZrN, and HfN, and conductive boride thin films such as LaB 6 are known and combinations thereof.
  • Various electrodes such as Bi 2 O 3 / Au / Bi 2 O 3 and TiO 2 / Ag / TiO 2 are also known.
  • transparent electrodes using CNTs (carbon nanotubes) and conductive polymers have also been proposed (see, for example, Non-Patent Document 1).
  • the metal thin film, nitride thin film, boron thin film and conductive polymer thin film described above cannot have both light transmission properties and conductive properties, special technical fields such as electromagnetic shielding and the like are relatively high. It was used only in the touch panel field where resistance values are allowed.
  • ITO is widely used as a transparent electrode for various optoelectronics because it has a good balance between light transmittance and conductivity and it is easy to form an electrode fine pattern by wet etching using an acid solution.
  • the conductive oxide typified by the above-mentioned ITO or the like forms a transparent conductive film on the substrate surface by a vacuum process such as a sputtering method or a liquid phase method such as a sol-gel method. In order to form a transparent conductive film by a vacuum process such as sputtering, expensive equipment is required.
  • Patent Document 1 a method of forming a transparent conductive film by applying a conductive oxide or a composition containing a conductive polymer has been proposed (for example, Patent Document 1). 2).
  • Other transparent electrodes include a transparent electrode in which a mesh structure is formed by a metal pattern typified by an electromagnetic wave shielding film of a plasma display (for example, Patent Document 3), and a transparent electrode composed of a fine mesh using metal nanowires.
  • An electrode is disclosed (for example, Patent Document 4).
  • a metal mesh using silver both good conductivity and transparency can be achieved due to the inherent high conductivity of silver.
  • these transparent electrodes have a defect that the electrode surface is rough as compared with the above-mentioned electrodes such as ITO.
  • the transparent electrode is required to have excellent surface smoothness, and such an electrode with low surface smoothness causes luminance unevenness or the like. This causes a decrease in the function of the element.
  • Patent Document 4 In order to improve the surface smoothness of the transparent electrode, a method of forming a conductive layer using a metal nanowire on a highly smooth support and transferring it to another support has been proposed (Patent Document 4). It is difficult to adjust the balance between the adhesive used for transfer and the adhesion between the support and the conductive layer and the peelability, and complete transfer is difficult. Furthermore, there are many steps of applying and curing the adhesive layer, laminating and peeling the supports, peeling, and processes, and there is a problem of cost increase. Further, a method for directly forming the conductive layer pattern by a printing method is not described in detail.
  • JP 2008-95015 A Japanese Patent Laid-Open No. 2008-4501 JP 2004-221564 A US Patent Application Publication No. 2007 / 0074316A1
  • An object of the present invention is made in view of the above circumstances, and is to provide a transparent electrode excellent in surface smoothness, conductivity, and transparency, and having high productivity, and a method for producing the same.
  • an object of the present invention is to provide an organic electroluminescence device with less luminance unevenness by using the transparent electrode manufactured in this way.
  • a transparent electrode having a conductive layer composed of a metal nanowire layer and a conductive polymer layer on a transparent support, a cross-linked product of a water-soluble polymer, a cross-linked product of a polymer latex, and a curable resin in the metal nanowire layer
  • a transparent electrode comprising at least one selected from the cured products.
  • the water-soluble polymer cross-linked product or polymer latex cross-linked product is cross-linked with at least one cross-linking agent selected from aldehyde, melamine, epoxy, and isocyanate cross-linking agents.
  • An organic electroluminescence device comprising the transparent electrode according to any one of 1 to 4 above.
  • a transparent electrode having surface smoothness, conductivity, and transparency. Furthermore, by using silver nanowires as metal nanowires, both conductivity and transparency are achieved.
  • a transparent electrode can be provided.
  • the transparent electrode of the present invention as the electrode of the organic electroluminescence element, it was possible to provide an organic electroluminescence element with little uneven emission luminance.
  • a plastic film, a plastic plate, glass or the like can be used as the transparent support.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate
  • polyolefins such as polyethylene (PE), polypropylene (PP), polystyrene, and EVA
  • polyvinyl chloride and polychlorinated chloride.
  • vinyl resins such as vinylidene, polyether ether ketone (PEEK), polysulfone (PSF), polyether sulfone (PES), polycarbonate (PC), polyamide, polyimide, acrylic resin, triacetyl cellulose (TAC), etc. Can do.
  • the support is preferably excellent in surface smoothness.
  • the smoothness of the surface is preferably an arithmetic average roughness Ra of 5 nm or less and a maximum height Rz of 50 nm or less, more preferably Ra of 2 nm or less and Rz of 30 nm or less, and still more preferably Ra of 1 nm or less. Rz is 20 nm or less.
  • the surface of the support may be smoothed by applying an undercoat layer such as a thermosetting resin, an ultraviolet curable resin, an electron beam curable resin, or a radiation curable resin, or may be smoothed by mechanical processing such as polishing. You can also.
  • a surface treatment using corona or plasma, or an easy adhesion layer may be formed.
  • the smoothness of the surface can be determined according to a surface roughness standard (JIS B 0601-2001) from measurement using an atomic force microscope (AFM) or the like.
  • a gas barrier layer for the purpose of blocking oxygen and moisture in the atmosphere.
  • metal oxides such as silicon oxide, silicon nitride, silicon oxynitride, aluminum nitride, and aluminum oxide, and metal nitrides can be used. These materials have an oxygen barrier function in addition to a water vapor barrier function.
  • silicon nitride and silicon oxynitride having favorable barrier properties, solvent resistance, and transparency are preferable.
  • the barrier layer may have a multilayer structure as necessary.
  • a resistance heating vapor deposition method As a method for forming the gas barrier layer, a resistance heating vapor deposition method, an electron beam vapor deposition method, a reactive vapor deposition method, an ion plating method, or a sputtering method can be used depending on the material.
  • each inorganic layer constituting the gas barrier layer is not particularly limited, but typically it is preferably in the range of 5 nm to 500 nm per layer, and more preferably 10 nm to 200 nm per layer.
  • the gas barrier layer is provided on at least one surface of the support, and more preferably on both surfaces.
  • the conductive layer in the present invention is composed of a metal nanowire layer and a conductive polymer layer, and the conductive polymer layer may be in contact with the surface of the metal nanowire layer or may be impregnated inside.
  • the method for forming these conductive layers is not particularly limited as long as it is a liquid phase film forming method in which a dispersion containing metal nanowires and a conductive polymer is applied and dried to form a film.
  • Application methods such as dip coating, spin coating, casting, die coating, blade coating, bar coating, gravure coating, curtain coating, spray coating, and doctor coating can be used.
  • direct pattern formation may be performed by an inkjet printing method, gravure, screen printing method, or the like, and printing may be performed a plurality of times depending on the concentration of the dispersion and the target coating amount.
  • the metal nanowire layer according to the present invention is formed by applying and drying a dispersion containing a metal nanowire and a water-soluble polymer or polymer latex or a curable resin as a binder. Further, the water-soluble polymer or polymer latex that is a binder is crosslinked by a crosslinking agent described later, and the curable resin is cured and fixed by heat, light, electron beam, or radiation. Thereby, the applicability
  • stabilizers such as plasticizers, antioxidants and antisulfurizing agents, surfactants, dissolution accelerators, polymerization inhibitors, and colorants such as dyes and pigments
  • solvents for example, water, organic solvents such as alcohols, glycols, cellosolves, ketones, esters, ethers, amides, hydrocarbons, etc.
  • solvents for example, water, organic solvents such as alcohols, glycols, cellosolves, ketones, esters, ethers, amides, hydrocarbons, etc.
  • the dispersion containing metal nanowires may contain a conductive polymer.
  • water-soluble polymer examples include natural polymers such as starch, gelatin, and agar.
  • Semi-synthetic polymers such as carboxymethyl cellulose (CMC), hydroxyethyl cellulose (HEC), methyl cellulose (MC), and hydroxyethyl methyl cellulose (HEMC).
  • Cellulose derivatives such as hydroxypropylmethylcellulose (HPMC), synthetic polymer polyvinyl alcohol (PVA), polyacrylic acid polymer, polyacrylamide (PAM), polyethylene oxide (PEO), polyvinylpyrrolidone (PVP), etc.
  • HPMC hydroxypropylmethylcellulose
  • PVA synthetic polymer polyvinyl alcohol
  • PAM polyacrylamide
  • PEO polyethylene oxide
  • PVP polyvinylpyrrolidone
  • a part of the functional group may be modified.
  • a cellulose derivative and polyvinyl alcohol are preferable.
  • polymer latex examples include acrylic resins (acrylic silicon-modified resins, fluorine-modified acrylic resins, urethane-modified acrylic resins, epoxy-modified acrylic resins, etc.), polyester resins, polyurethane resins, vinyl acetate resins, and the like. Can be widely selected and used.
  • the curable resin according to the present invention may be an aqueous curable resin that is cured by heat, light, electron beam, or radiation.
  • silicone such as melamine acrylate, urethane acrylate, epoxy resin, polyimide resin, acrylic-modified silicate, etc. Resin or the like can be used.
  • the conductive polymer layer according to the present invention is formed by applying a metal nanowire layer and then crosslinking or curing the binder of the metal nanowire layer, and then applying and drying a dispersion containing the conductive polymer. .
  • the conductive polymer layer may be a single conductive polymer or a mixture of plural types of conductive polymers.
  • a non-conductive polymer and an additive may be included as long as both conductivity and transparency can be achieved.
  • non-conductive polymer a wide variety of natural polymer resins or synthetic polymer resins can be used.
  • a transparent thermoplastic resin for example, polyvinyl chloride, vinyl chloride-vinyl acetate copolymer, polymethyl methacrylate, nitrocellulose, chlorinated polyethylene, chlorinated polypropylene, vinylidene fluoride
  • Polymer latex and curable resin can be used.
  • Additives include plasticizers, stabilizers such as antioxidants and sulfurization inhibitors, surfactants, dissolution accelerators, polymerization inhibitors, and colorants such as dyes and pigments. Furthermore, from the viewpoint of improving workability such as coating properties, solvents (for example, water, organic solvents such as alcohols, glycols, cellosolves, ketones, esters, ethers, amides, hydrocarbons, etc.) are used. May be included.
  • the conductive polymer by coating and laminating a conductive polymer layer on a metal nanowire layer, in addition to conductivity due to contact between the metal nanowires, the conductive polymer enters between the metal nanowires, and the metal nanowire and the metal nanowire gap
  • the conductivity of the part can be made uniform. Furthermore, surface smoothness can be improved by forming the conductive polymer layer into a film.
  • the crosslinking agent according to the present invention is used for crosslinking a water-soluble polymer or polymer latex that is a binder in the metal nanowire layer, and an aldehyde-based, epoxy-based, melamine-based, or isocyanate-based crosslinking agent can be used.
  • the method of applying the crosslinking agent is to apply the coating solution of the crosslinking agent on the transparent substrate in advance and dry it, and then apply the metal nanowire layer to it, or apply and dry the metal nanowire layer, A crosslinking agent may be applied there, or two layers of the metal nanowire dispersion and the crosslinking agent may be applied simultaneously, or a mixture of these may be applied and dried.
  • the crosslinking agent solution may contain an acid, an alkali, or a salt as a pH adjuster, and is preferably an ammonia or ammonium salt because it can be easily removed by heating. Furthermore, it is preferable to heat at 100 to 150 ° C. in order to promote the crosslinking reaction.
  • the metal nanowire remover is patterned by an inkjet method, a screen, a gravure printing method, or the like.
  • the conductive layer can be patterned by printing, photolithography, or the like.
  • the metal nanowire layer or the conductive polymer layer may be directly patterned by an inkjet method, a gravure, a screen printing method, or the like.
  • the metal nanowire refers to a linear structure having a metal element as a main component.
  • the metal nanowire in the present invention means a structure in which a large number of linear structures having a diameter from the atomic scale to the nm size are formed in a mesh shape.
  • the metal nanowire according to the present invention preferably has an average length of 3 ⁇ m or more, more preferably 3 to 500 ⁇ m, particularly 3 to 300 ⁇ m in order to form a long conductive path with one metal nanowire. It is preferable.
  • the relative standard deviation of the length is preferably 40% or less.
  • an average diameter is small from a transparency viewpoint, On the other hand, the larger one is preferable from an electroconductive viewpoint.
  • the average diameter of the metal nanowire is preferably 10 to 300 nm, and more preferably 30 to 200 nm.
  • the relative standard deviation of the diameter is preferably 20% or less.
  • a metal composition of the metal nanowire which concerns on this invention, although it can comprise from the 1 type or several metal of a noble metal element and a base metal element, noble metals (for example, gold, platinum, silver, palladium, rhodium, (Iridium, ruthenium, osmium, etc.) and at least one metal belonging to the group consisting of iron, cobalt, copper, and tin is preferable, and at least silver is more preferable from the viewpoint of conductivity. In order to achieve both conductivity and stability (sulfurization and oxidation resistance of metal nanowires and migration resistance), it is also preferable to include silver and at least one metal belonging to a noble metal other than silver. When the metal nanowire according to the present invention includes two or more kinds of metal elements, for example, the metal composition may be different between the inside and the surface of the metal nanowire, or the entire metal nanowire has the same metal composition. May be.
  • the means for producing the metal nanowire there are no particular limitations on the means for producing the metal nanowire, and for example, known means such as a liquid phase method and a gas phase method can be used. Moreover, there is no restriction
  • the conductive polymer according to the present invention is not particularly limited, and polypyrrole, polyindole, polycarbazole, polythiophene (including substituted and unsubstituted polythiophene, the same applies hereinafter), polyaniline, polyacetylene, polyfuran, poly Chain conductive polymers such as paraphenylene vinylene, polyazulene, polyparaphenylene, polyparaphenylene sulfide, polyisothianaphthene, and polythiazyl, and polyacene conductive polymers can also be used.
  • polyethylene dioxythiophene (PEDOT) and polyaniline are preferable from the viewpoint of conductivity, transparency, and the like.
  • the long-chain sulfonic acid is preferable.
  • Examples of the long chain sulfonic acid include dinonyl naphthalene disulfonic acid, dinonyl naphthalene sulfonic acid, and dodecylbenzene sulfonic acid.
  • Examples of the halogen include Cl 2 , Br 2 , I 2 , ICl 3 , IBr, IF 5 and the like.
  • Examples of the Lewis acid include PF 5 , AsF 5 , SbF 5 , BF 3 , BCl 3 , BBr 3 , SO 3 , GaCl 3 and the like.
  • Examples of the protonic acid include HF, HCl, HNO 3 , H 2 SO 4 , HBF 4 , HClO 4 , FSO 3 H, ClSO 3 H, CF 3 SO 3 H, and the like.
  • the transition metal halide NbF 5, TaF 5, MoF 5, WF 5, RuF 5, BiF 5, TiCl 4, ZrCl 4, MoCl 5, MoCl 3, WCl 5, FeCl 3, TeCl 4, SnCl 4, SeCl 4 , FeBr 3 , SnI 5 and the like.
  • the transition metal compound AgClO 4, AgBF 4, La (NO 3) 3, Sm (NO 3) 3 and the like.
  • Examples of the alkali metal include Li, Na, K, Rb, and Cs.
  • Examples of the alkaline earth metal include Be, Mg, Ca, Sc, and Ba.
  • the dopant for the conductive polymer may be introduced into fullerenes such as hydrogenated fullerene, hydroxylated fullerene, and sulfonated fullerene. It is preferable that 0.001 mass part or more of the said dopant is contained with respect to 100 mass parts of conductive polymers. Furthermore, it is more preferable that 0.5 mass part or more is contained.
  • the transparent conductive composition of the present embodiment is a long-chain sulfonic acid, a polymer of long-chain sulfonic acid (for example, polystyrene sulfonic acid), halogen, Lewis acid, proton acid, transition metal halide, transition metal compound, Both at least one dopant selected from the group consisting of alkali metals, alkaline earth metals, MClO 4 , R 4 N + , and R 4 P + and fullerenes may be included.
  • the conductive polymer according to the present invention is 2nd.
  • a water-soluble organic compound may be contained as a dopant.
  • an oxygen containing compound is mentioned suitably.
  • the oxygen-containing compound is not particularly limited as long as it contains oxygen, and examples thereof include a hydroxyl group-containing compound, a carbonyl group-containing compound, an ether group-containing compound, and a sulfoxide group-containing compound.
  • the hydroxyl group-containing compound include ethylene glycol, diethylene glycol, propylene glycol, trimethylene glycol, 1,4-butanediol, glycerin and the like.
  • ethylene glycol and diethylene glycol are preferable.
  • the carbonyl group-containing compound include isophorone, propylene carbonate, cyclohexanone, and ⁇ -butyrolactone.
  • the ether group-containing compound include diethylene glycol monoethyl ether.
  • the sulfoxide group-containing compound include dimethyl sulfoxide. These may be used alone or in combination of two or more, but it is particularly preferable to use at least one selected from dimethyl sulfoxide, ethylene glycol, and diethylene glycol.
  • the 2nd In the conductive polymer according to the present invention, the 2nd.
  • the content of the dopant is preferably 0.001 part by mass or more, more preferably 0.01 to 50 parts by mass, and particularly preferably 0.01 to 10 parts by mass.
  • the transparent electrode of the present invention is preferably highly smooth because the surface roughness of the conductive layer affects the performance of the EL element and the like.
  • the arithmetic average roughness Ra is Ra ⁇ 5 nm. Is preferable, Ra ⁇ 3 nm is more preferable, and Ra ⁇ 1 nm is further more preferable.
  • the maximum height Ry is preferably Ry ⁇ 50 nm, more preferably Ry ⁇ 40 nm, and further preferably Ry ⁇ 30 nm.
  • the total light transmittance of the conductive layer containing metal nanowires is 60% or more, preferably 70% or more, particularly preferably 80% or more.
  • the total light transmittance can be measured according to a known method using a spectrophotometer or the like.
  • the electrical resistance value of the conductive layer containing metal nanowires is preferably 10 3 ⁇ / ⁇ or less, more preferably 10 2 ⁇ / ⁇ or less, as the surface specific resistance, It is particularly preferably 10 ⁇ / ⁇ or less.
  • the surface specific resistance can be measured, for example, according to JIS K6911, ASTM D257, etc., and can be easily measured using a commercially available surface resistivity meter.
  • the surface specific resistance only needs to satisfy the surface specific resistance in the state of the metal nanowire alone, and the metal nanowire functions as a bus electrode. Therefore, even if the surface specific resistance of the conductive polymer is high, the metal nanowire-containing conductive layer Can be made uniform.
  • the surface specific resistance of the conductive polymer is 10 4 ⁇ / ⁇ or more and 10 9 ⁇ / ⁇ or less, which can make the conductivity of the metal nanowire-containing conductive layer uniform without affecting current leakage between the metal nanowire-containing conductive layers. It is preferable that it is 10 6 ⁇ / ⁇ or more and 10 9 ⁇ / ⁇ or less.
  • An anchor coat or a hard coat can be applied to the transparent electrode of the present invention. If necessary, a conductive layer containing a conductive polymer or a metal oxide may be further provided.
  • the transparent electrode of the present invention can be used for transparent electrodes such as LCDs, electroluminescent elements, plasma displays, electrochromic displays, solar cells, touch panels, electronic paper, and electromagnetic wave shielding materials, etc., but has excellent conductivity and transparency. In addition, since it has high smoothness, it is preferably used for an organic EL device.
  • a pattern electrode is formed by pattern-printing a metal nanowire remover on a portion to be a non-pattern part of the conductive layer, and then performing a water washing treatment to remove the metal nanowire remover and the metal nanowire in the non-pattern part. can do.
  • composition of the metal nanowire remover according to the present invention a bleach-fixing agent used for development processing of a silver halide color photographic light-sensitive material can be preferably used.
  • a bleaching agent used in the bleach-fixing agent a known bleaching agent can be used.
  • an organic complex salt of iron (III) for example, a complex salt of aminopolycarboxylic acids
  • an organic compound such as citric acid, tartaric acid, malic acid, Acid, persulfate, hydrogen peroxide and the like are preferable.
  • organic complex salts of iron (III) are particularly preferred from the viewpoint of rapid processing and prevention of environmental pollution.
  • aminopolycarboxylic acids useful for forming organic complex salts of iron (III), or salts thereof include biodegradable ethylenediamine disuccinic acid (SS form), N- (2-carboxylate ethyl) -L-aspartic acid, ⁇ -alanine diacetic acid, methyliminodiacetic acid, ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, 1,3-diaminopropanetetraacetic acid, propylenediaminetetraacetic acid, nitrilotriacetic acid, cyclohexanediaminetetraacetic acid, iminodiacetic acid
  • compounds represented by general formula (I) or (II) of European Patent 0789275 can be mentioned.
  • These compounds may be sodium, potassium or ammonium salts.
  • the diacetic acid is preferably its iron (III) complex salt.
  • ferric ion complex salts may be used in the form of complex salts, and ferric salts such as ferric sulfate, ferric chloride, ferric nitrate, ferric ammonium sulfate, and ferric phosphate.
  • a chelating agent such as aminopolycarboxylic acid may be used to form a ferric ion complex salt in a solution. Moreover, you may use a chelating agent in excess rather than forming a ferric ion complex salt.
  • iron complexes aminopolycarboxylic acid iron complexes are preferable, and the addition amount is 0.01 to 1.0 mol / liter, preferably 0.05 to 0.50 mol / liter, and more preferably 0.10 to 0. 50 mol / liter, more preferably 0.15 to 0.40 mol / liter.
  • Fixing agents used for the bleach-fixing agent are known fixing agents, that is, thiosulfates such as sodium thiosulfate and ammonium thiosulfate, thiocyanates such as sodium thiocyanate and ammonium thiocyanate, ethylenebisthioglycolic acid, 3, These are water-soluble silver halide solubilizers such as thioether compounds such as 6-dithia-1,8-octanediol and thioureas, and these can be used alone or in combination.
  • a special bleach-fixing agent comprising a combination of a fixing agent described in JP-A-55-155354 and a large amount of a halide such as potassium iodide can also be used.
  • a halide such as potassium iodide
  • the amount of fixing agent per liter is preferably 0.3 to 2 mol, more preferably 0.5 to 1.0 mol.
  • the pH range of the bleach-fixing agent used in the present invention is preferably 3 to 8, and more preferably 4 to 7.
  • hydrochloric acid, sulfuric acid, nitric acid, bicarbonate, ammonia, caustic potash, caustic soda, sodium carbonate, potassium carbonate and the like can be added as necessary.
  • bleach-fixing agent can contain various other antifoaming agents or surfactants, and organic solvents such as polyvinylpyrrolidone and methanol.
  • Bleach fixers use sulfites (eg, sodium sulfite, potassium sulfite, ammonium sulfite, etc.), bisulfites (eg, ammonium bisulfite, sodium bisulfite, potassium bisulfite, etc.), metabisulfite as preservatives.
  • sulfite ion releasing compounds such as salts (for example, potassium metabisulfite, sodium metabisulfite, ammonium metabisulfite, etc.), arylsulfinic acids such as p-toluenesulfinic acid, m-carboxybenzenesulfinic acid, and the like. Is preferred. These compounds are preferably contained in an amount of about 0.02 to 1.0 mol / liter in terms of sulfite ion or sulfinate ion.
  • ascorbic acid in addition to the above, ascorbic acid, a carbonyl bisulfite adduct, or a carbonyl compound may be added. Furthermore, you may add a buffering agent, a chelating agent, an antifoamer, an antifungal agent, etc. as needed.
  • the pattern printing of the composition containing the metal nanowire remover includes letterpress (letter) printing, stencil (screen) printing, lithographic (offset) printing, intaglio (gravure) printing, spray printing, and inkjet.
  • letterpress letter
  • stencil screen
  • lithographic offset
  • intaglio gravure
  • spray printing and inkjet.
  • a printing method such as a printing method can be used, the gravure printing method and the screen printing method are particularly preferable.
  • the organic EL element in the present invention has the transparent electrode of the present invention.
  • the organic EL element in the present invention uses the transparent electrode of the present invention as an anode, and the organic light-emitting layer and the cathode can be made of any material and configuration generally used in organic EL elements.
  • the element configuration of the organic EL element is as follows: anode / organic light emitting layer / cathode, anode / hole transport layer / organic light emitting layer / electron transport layer / cathode, anode / hole injection layer / hole transport layer / organic light emitting layer / electron transport layer / Cathode, anode / hole injection layer / organic light emitting layer / electron transport layer / electron injection layer / cathode, anode / hole injection layer / organic light emitting layer / electron injection layer / cathode, etc. it can.
  • the organic light emitting layer is prepared by a known method using the above materials and the like, and examples thereof include vapor deposition, coating, and transfer.
  • the thickness of the organic light emitting layer is preferably 0.5 to 500 nm, particularly preferably 0.5 to 200 nm.
  • the organic EL element in the present invention can be used for a self-luminous display, a liquid crystal backlight, illumination, and the like. Since the organic EL element of the present invention can emit light uniformly and without unevenness, it is preferably used for lighting purposes.
  • the reaction solution containing the core particles after the ripening was kept at 170 ° C. while stirring, and 1000 ml of an ethylene glycol solution of silver nitrate (silver nitrate concentration: 1.0 ⁇ 10 ⁇ 1 mol / l) and ethylene glycol of polyvinylpyrrolidone. 1000 ml of a solution (vinyl pyrrolidone concentration conversion: 5.0 ⁇ 10 ⁇ 1 mol / l) was added at a constant flow rate for 100 minutes using a double jet method.
  • the reaction solution was sampled every 20 minutes in the particle growth process and confirmed with an electron microscope, the silver nanoparticles formed in the nucleation process grew mainly in the long axis direction of the nanowires over time. No new core particles were observed in the grain growth process.
  • the reaction solution was cooled to room temperature, filtered using a filter, and the silver nanowires separated by filtration were redispersed in ethanol. Filtration of silver nanowires with a filter and redispersion in ethanol were repeated 5 times, and finally an aqueous dispersion of silver nanowires was prepared to produce silver nanowires.
  • a small amount of the obtained dispersion was collected and confirmed with an electron microscope, and it was confirmed that silver nanowires having an average diameter of 85 nm and an average length of 7.4 ⁇ m were formed.
  • Baytron PH510 manufactured by HC Starck
  • PEDOT: PSS polystyrene sulfonic acid
  • UL-1 surfactant
  • Transparent Electrode 104 Similar to the production of the transparent electrode 101, after the silver nanowire layer was formed, it was overcoated with a saturated solution so that the coating amount of the crosslinking agent glyoxal was 10% of the binder mass in the coating film. This was subjected to heat treatment and the formation of a conductive polymer layer in the same manner as the transparent electrode 103 to produce a transparent electrode 104.
  • the crosslinking agent is an epoxy-based crosslinking agent EX512 (manufactured by Nagase ChemteX), and the conductive polymer is changed to PEDOT: PSS Denatron P-502S (manufactured by Nagase ChemteX). Performed the same operation to produce a transparent electrode 108.
  • Transparent Electrode 109 [Preparation of Transparent Electrode 109; Present Invention 7]
  • the binder was changed to hydroxypropylmethylcellulose (HPMC)
  • the crosslinking agent was changed to melamine-based crosslinking agent Becamine M3 and Catalyst ACX (made by DIC)
  • the conductive polymer was changed to P-502S.
  • the transparent electrode 109 was produced.
  • transparent electrode 110 Invention 8
  • the binder was HPMC
  • the cross-linking agent was Becamine M3 and Catalist ACX
  • the conductive polymer was changed to PEDOT: PSS Denatron P-5002CW (manufactured by Nagase ChemteX).
  • a transparent electrode 110 was produced.
  • a thermosetting resin-containing PEDOT Denatron G-2001A manufactured by Nagase ChemteX
  • P-5002CW was applied as a conductive polymer to produce a transparent electrode 113.
  • metal nanowire removal solution BF-1 Ethylenediaminetetraacetic acid ferric ammonium 60g Ethylenediaminetetraacetic acid 2g Sodium metabisulfite 15g 70g ammonium thiosulfate Maleic acid 5g Finished to 1 L with pure water and adjusted to pH 5.5 with sulfuric acid or ammonia water, metal nanowire removal liquid BF-1 was prepared.
  • PET polyethylene terephthalate film
  • Konica Minolta CMC carboxymethylcellulose
  • PEDOT poly-3,4-ethylenediothiophene
  • H.M. C. Made by Starck (trade name: PH510)
  • PSS polystyrene sulfonic acid
  • Stark PVA203 polyvinyl alcohol
  • Kuraray Denatron P-502S (trade name of the above PEDOT and PSS mixture): Nagase ChemteX HPMC (hydroxypropylmethylcellulose): Sigma Aldrich Becamine M3 (melamine cross-linking agent) ): Catalyst ACX (resin catalyst) manufactured by DIC: Denatron P-5002CW (trade name of the above PEDOT and PSS mixture) manufactured by DIC: P-502S (trade name of the above PEDOT and PSS mixture) manufactured by Nagase ChemteX Corporation: EX512 (epoxy-based crosslinking agent Denacol) manufactured by Nagase ChemteX Corp .: P-5002CW manufactured by Nagase ChemteX Corp.
  • a commercially available atomic force microscope (AFM) can be used, and measurement was performed by the following method.
  • an SPI 3800N probe station and SPA400 multifunctional unit manufactured by Seiko Instruments Inc. as the AFM set the sample cut to a size of about 1 cm square on a horizontal sample stage on the piezo scanner, and place the cantilever on the sample surface.
  • scanning is performed in the XY direction, and the unevenness of the sample at that time is captured by the displacement of the piezo in the Z direction.
  • a piezo scanner that can scan XY 20 ⁇ m and Z 2 ⁇ m is used.
  • the cantilever is a silicon cantilever SI-DF20 manufactured by Seiko Instruments Inc., which has a resonance frequency of 120 to 150 kHz and a spring constant of 12 to 20 N / m, and is measured in a DFM mode (Dynamic Force Mode). A measurement area of 80 ⁇ 80 ⁇ m is measured at a scanning frequency of 1 Hz.
  • Table 1 shows the results of measurement and evaluation.
  • the transparent electrode of the present invention has excellent smoothness Ra and Ry.
  • organic element (organic EL element)
  • transparent electrodes 101 to 116 As the first electrode, organic EL elements 201 to 216 were produced in the following procedure, respectively.
  • the red dopant material Btp 2 Ir (acac) is 1% by mass and the green dopant material Ir (ppy) 3 is 2% with respect to polyvinylcarbazole (PVK) as the host material.
  • % And blue dopant material FIr (pic) are mixed so as to be 3% by mass, respectively, and dissolved in 1,2-dichloroethane so that the total solid concentration of PVK and the three dopants is 1% by mass.
  • the coating liquid for layer formation was applied with a spin coater and then dried at 100 ° C. for 10 minutes to form a light emitting layer having a thickness of 60 nm.
  • LiF was deposited as an electron transport layer forming material under a vacuum of 5 ⁇ 10 ⁇ 4 Pa to form an electron transport layer having a thickness of 0.5 nm.
  • Second electrode On the formed electron transport layer, Al was deposited as a second electrode forming material under a vacuum of 5 ⁇ 10 ⁇ 4 Pa to form a second electrode having a thickness of 100 nm.
  • 90% or more emits uniformly ⁇ : 80% or more emits uniformly ⁇ : 70% or more emits uniformly ⁇ : Less than 70% emits XX: no Does not emit light.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Non-Insulated Conductors (AREA)
  • Electroluminescent Light Sources (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

Disclosed is a transparent electrode which exhibits excellent surface smoothness, electrical conductivity and transparency, while having high productivity.  The transparent electrode comprises, on a transparent supporting body, a conductive layer that is composed of a metal nanowire layer and a conductive polymer layer, and is characterized in that the metal nanowire layer contains at least one substance selected from among crosslinked products of water-soluble polymers, crosslinked products of polymer latexes and cured products of curable resins.

Description

透明電極、その製造方法及び有機エレクトロルミネッセンス素子Transparent electrode, method for producing the same, and organic electroluminescence device
 本発明は、透明電極、その製造方法及び有機エレクトロルミネッセンス素子に関し、さらに詳しくは、複雑な工程を経ず、塗布により形成された透明電極、その製造方法及び有機エレクトロルミネッセンス素子に関する。 The present invention relates to a transparent electrode, a method for producing the same, and an organic electroluminescent element, and more specifically, relates to a transparent electrode formed by coating without complicated processes, a method for producing the same, and an organic electroluminescent element.
 近年、薄型TV需要の高まりに伴い、液晶、プラズマ、有機エレクトロルミネッセンス(以下、有機EL)、フィールドエミッションなど、各種方式のディスプレイ技術が開発されている。これら表示方式の異なるいずれのディスプレイにおいても、透明電極は必須の構成技術となっている。また、テレビ以外でもタッチパネルや携帯電話、電子ペーパー、各種太陽電池、各種エレクトロルミネッセンス調光素子においても、透明電極は欠くことのできない技術要素となっている。 In recent years, various types of display technologies such as liquid crystal, plasma, organic electroluminescence (hereinafter referred to as organic EL), field emission, and the like have been developed in response to increasing demand for thin TVs. In any of these displays having different display methods, the transparent electrode is an essential constituent technology. In addition to televisions, transparent electrodes are an indispensable technical element in touch panels, mobile phones, electronic paper, various solar cells, and various electroluminescence light control elements.
 従来、透明電極として、Au、Ag、Pt、Cuなどの各種金属薄膜や、錫や亜鉛をドープした酸化インジウム(ITO、IZO)、アルミニウムやガリウムをドープした酸化亜鉛(AZO、GZO)、フッ素やアンチモンをドープした酸化錫(FTO、ATO)などの金属酸化物薄膜、TiN、ZrN、HfNなどの導電性窒化物薄膜、LaBなどの導電性ホウ素化物薄膜が知られており、またこれらを組み合わせたBi/Au/Bi,TiO/Ag/TiOなどの各種電極も知られている。無機物以外にも、CNT(カーボンナノチューブ)や導電性高分子を使用した透明電極も提案されている(例えば、非特許文献1参照)。 Conventionally, as transparent electrodes, various metal thin films such as Au, Ag, Pt, Cu, indium oxide doped with tin or zinc (ITO, IZO), zinc oxide doped with aluminum or gallium (AZO, GZO), fluorine, Metal oxide thin films such as tin oxide doped with antimony (FTO, ATO), conductive nitride thin films such as TiN, ZrN, and HfN, and conductive boride thin films such as LaB 6 are known and combinations thereof. Various electrodes such as Bi 2 O 3 / Au / Bi 2 O 3 and TiO 2 / Ag / TiO 2 are also known. In addition to inorganic materials, transparent electrodes using CNTs (carbon nanotubes) and conductive polymers have also been proposed (see, for example, Non-Patent Document 1).
 しかしながら、上述した金属薄膜、窒化物薄膜、ホウ素物薄膜及び導電性高分子薄膜は、光透過性と導電性の特性が両立し得ないため、電磁波シールドなどの特殊な技術分野や、比較的高い抵抗値でも許容されるようなタッチパネル分野においてのみ使用されていた。 However, since the metal thin film, nitride thin film, boron thin film and conductive polymer thin film described above cannot have both light transmission properties and conductive properties, special technical fields such as electromagnetic shielding and the like are relatively high. It was used only in the touch panel field where resistance values are allowed.
 一方、金属酸化物薄膜は光透過性と導電性との両立が可能で耐久性にも優れるため、透明電極の主流となりつつある。特にITOは光透過性と導電性とのバランスが良く、酸溶液を用いたウェットエッチングによる電極微細パターン形成が容易であることから、各種オプトエレクトロニクス用の透明電極として多用されている。しかしながら、上記のITOなどに代表される導電性酸化物は、スパッタリング法などの真空プロセスやゾル-ゲル法などの液相法により基体表面に透明導電膜を形成する。スパッタリング法などの真空プロセスで透明導電膜を形成するには、高価な設備が必要である。 On the other hand, metal oxide thin films are becoming mainstream of transparent electrodes because they can achieve both light transmittance and conductivity and are excellent in durability. In particular, ITO is widely used as a transparent electrode for various optoelectronics because it has a good balance between light transmittance and conductivity and it is easy to form an electrode fine pattern by wet etching using an acid solution. However, the conductive oxide typified by the above-mentioned ITO or the like forms a transparent conductive film on the substrate surface by a vacuum process such as a sputtering method or a liquid phase method such as a sol-gel method. In order to form a transparent conductive film by a vacuum process such as sputtering, expensive equipment is required.
 そこで、このような問題を解消するために、導電性酸化物や、導電性高分子を含有する組成物を塗布することで透明導電膜を形成する方法が提案されている(例えば、特許文献1、2)。 In order to solve such problems, a method of forming a transparent conductive film by applying a conductive oxide or a composition containing a conductive polymer has been proposed (for example, Patent Document 1). 2).
 しかし、これらの方法では十分な導電性を得ることが難しく、特に有機EL素子、太陽電池といった用途では、光透過性と導電性を両立させることが困難であった。 However, it is difficult to obtain sufficient electrical conductivity by these methods, and it is difficult to achieve both light transmittance and electrical conductivity, particularly in applications such as organic EL elements and solar cells.
 それ以外の透明電極としては、プラズマディスプレイの電磁波シールド膜に代表される金属パターンによりメッシュ構造を形成した透明電極が挙げられ(例えば、特許文献3)、また金属ナノワイヤを用いた微細メッシュからなる透明電極が開示されている(例えば、特許文献4)。特に銀を用いた金属メッシュでは、銀本来の高い導電率により良好な導電性と透明性を両立することができる。しかし、これらの透明電極は、前述のITOのような電極と比較して、電極表面が粗いという欠点を有している。特に、有機EL素子の場合、電極上に有機化合物の超薄膜を形成するため、透明電極には優れた表面平滑性が要求され、このような表面平滑性の低い電極では、輝度ムラ等の発生による素子の機能低下を招く。 Other transparent electrodes include a transparent electrode in which a mesh structure is formed by a metal pattern typified by an electromagnetic wave shielding film of a plasma display (for example, Patent Document 3), and a transparent electrode composed of a fine mesh using metal nanowires. An electrode is disclosed (for example, Patent Document 4). In particular, in a metal mesh using silver, both good conductivity and transparency can be achieved due to the inherent high conductivity of silver. However, these transparent electrodes have a defect that the electrode surface is rough as compared with the above-mentioned electrodes such as ITO. In particular, in the case of an organic EL element, since an ultra-thin film of an organic compound is formed on the electrode, the transparent electrode is required to have excellent surface smoothness, and such an electrode with low surface smoothness causes luminance unevenness or the like. This causes a decrease in the function of the element.
 透明電極の表面平滑性を向上させるため、平滑性の高い支持体上に、金属ナノワイヤを用いて導電層を形成し、別の支持体に転写する方法が提案されているが(特許文献4)、転写に用いる接着剤や支持体と導電層との接着性、剥離性のバランスの調整が難しく、完全な転写は困難である。さらに、接着剤層の塗布、硬化、支持体同士の貼合、剥離と工程が多く、コスト増の問題がある。また、導電層パターンを印刷法により直接形成する方法については、詳細に記載されていない。 In order to improve the surface smoothness of the transparent electrode, a method of forming a conductive layer using a metal nanowire on a highly smooth support and transferring it to another support has been proposed (Patent Document 4). It is difficult to adjust the balance between the adhesive used for transfer and the adhesion between the support and the conductive layer and the peelability, and complete transfer is difficult. Furthermore, there are many steps of applying and curing the adhesive layer, laminating and peeling the supports, peeling, and processes, and there is a problem of cost increase. Further, a method for directly forming the conductive layer pattern by a printing method is not described in detail.
特開2008-95015号公報JP 2008-95015 A 特開2008-4501号公報Japanese Patent Laid-Open No. 2008-4501 特開2004-221564号公報JP 2004-221564 A 米国特許出願公開第2007/0074316A1号明細書US Patent Application Publication No. 2007 / 0074316A1
 本発明の目的は、前記事情に鑑みてなされたものであり、表面平滑性、導電性、透明性に優れ、かつ生産性の高い透明電極及びその製造方法を提供することにある。 An object of the present invention is made in view of the above circumstances, and is to provide a transparent electrode excellent in surface smoothness, conductivity, and transparency, and having high productivity, and a method for producing the same.
 特に、架橋樹脂または硬化樹脂により固定化された金属ナノワイヤ層上に、導電性高分子層を形成した透明電極及びその製造方法を提供することを目的とする。 Particularly, it is an object to provide a transparent electrode in which a conductive polymer layer is formed on a metal nanowire layer fixed with a cross-linked resin or a cured resin, and a method for producing the same.
 更には、この様にして製造された透明電極を用いることにより輝度ムラが少ない有機エレクトロルミネッセンス素子を提供することを目的とする。 Furthermore, an object of the present invention is to provide an organic electroluminescence device with less luminance unevenness by using the transparent electrode manufactured in this way.
 本発明の上記目的は、以下の構成により達成することができる。 The above object of the present invention can be achieved by the following configuration.
 1.透明支持体上に金属ナノワイヤ層と導電性高分子層からなる導電層を有する透明電極において、該金属ナノワイヤ層中に、水溶性高分子の架橋物、高分子ラテックスの架橋物、及び硬化性樹脂の硬化物から選ばれる少なくとも1種を含有することを特徴とする透明電極。 1. In a transparent electrode having a conductive layer composed of a metal nanowire layer and a conductive polymer layer on a transparent support, a cross-linked product of a water-soluble polymer, a cross-linked product of a polymer latex, and a curable resin in the metal nanowire layer A transparent electrode comprising at least one selected from the cured products.
 2.前記水溶性高分子が、ポリビニルアルコールまたはセルロース誘導体であることを特徴とする前記1記載の透明電極。 2. 2. The transparent electrode as described in 1 above, wherein the water-soluble polymer is polyvinyl alcohol or a cellulose derivative.
 3.前記水溶性高分子の架橋物又は高分子ラテックスの架橋物は、アルデヒド系、メラミン系、エポキシ系、及びイソシアネート系架橋剤のいずれかから選択される少なくとも1種の架橋剤で架橋されたものであることを特徴とする前記1記載の透明電極。 3. The water-soluble polymer cross-linked product or polymer latex cross-linked product is cross-linked with at least one cross-linking agent selected from aldehyde, melamine, epoxy, and isocyanate cross-linking agents. 2. The transparent electrode according to 1 above, wherein the transparent electrode is provided.
 4.前記金属ナノワイヤ層の金属ナノワイヤが銀ナノワイヤであることを特徴とする前記1、2、又は3記載の透明電極。 4. 4. The transparent electrode according to 1, 2, or 3, wherein the metal nanowire of the metal nanowire layer is a silver nanowire.
 5.前記1~4のいずれか1項記載の透明電極の製造方法であって、該透明電極が、透明支持体上に金属ナノワイヤとバインダーから成る金属ナノワイヤ層を形成してから、該金属ナノワイヤ層のバインダーを架橋あるいは硬化させた後、導電性高分子層を形成して製造されたことを特徴とする透明電極の製造方法。 5. 5. The method for producing a transparent electrode according to any one of 1 to 4, wherein the transparent electrode forms a metal nanowire layer comprising metal nanowires and a binder on a transparent support, and then the metal nanowire layer is formed. A method for producing a transparent electrode, which is produced by crosslinking or curing a binder and then forming a conductive polymer layer.
 6.前記バインダーが金属ナノワイヤ層形成用の分散液に含有されていることを特徴とする前記5記載の透明電極の製造方法。 6. 6. The method for producing a transparent electrode as described in 5 above, wherein the binder is contained in a dispersion for forming the metal nanowire layer.
 7.前記1~4のいずれか1項記載の透明電極を含むことを特徴とする有機エレクトロルミネッセンス素子。 7. 5. An organic electroluminescence device comprising the transparent electrode according to any one of 1 to 4 above.
 本発明により、表面平滑性、導電性、透明性を具備した透明電極を、容易かつ安価に提供することができ、さらに、金属ナノワイヤとして銀ナノワイヤを用いることで、導電性、透明性を両立した透明電極を提供することができる。 According to the present invention, it is possible to easily and inexpensively provide a transparent electrode having surface smoothness, conductivity, and transparency. Furthermore, by using silver nanowires as metal nanowires, both conductivity and transparency are achieved. A transparent electrode can be provided.
 また、有機エレクトロルミネッセンス素子の電極として本発明の透明電極を使用することにより、発光輝度ムラが少ない有機エレクトロルミネッセンス素子を提供することができた。 Further, by using the transparent electrode of the present invention as the electrode of the organic electroluminescence element, it was possible to provide an organic electroluminescence element with little uneven emission luminance.
 以下、本発明とその構成要素等について詳細な説明をする。 Hereinafter, the present invention and its components will be described in detail.
 <支持体>
 本発明では、透明支持体として、プラスチックフィルム、プラスチック板、ガラスなどを用いることができる。
<Support>
In the present invention, a plastic film, a plastic plate, glass or the like can be used as the transparent support.
 プラスチックフィルム及びプラスチック板の原料としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレートなどのポリエステル類、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン、EVAなどのポリオレフィン類、ポリ塩化ビニル、ポリ塩化ビニリデンなどのビニル系樹脂、ポリエーテルエーテルケトン(PEEK)、ポリサルホン(PSF)、ポリエーテルサルホン(PES)、ポリカーボネート(PC)、ポリアミド、ポリイミド、アクリル樹脂、トリアセチルセルロース(TAC)などを用いることができる。 Examples of raw materials for plastic films and plastic plates include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate, polyolefins such as polyethylene (PE), polypropylene (PP), polystyrene, and EVA, polyvinyl chloride, and polychlorinated chloride. Use vinyl resins such as vinylidene, polyether ether ketone (PEEK), polysulfone (PSF), polyether sulfone (PES), polycarbonate (PC), polyamide, polyimide, acrylic resin, triacetyl cellulose (TAC), etc. Can do.
 本発明に係る透明電極の製造方法において、支持体は、表面平滑性に優れているものが好ましい。表面の平滑性は算術平均粗さRaが5nm以下かつ最大高さRzが50nm以下であることが好ましく、Raが2nm以下かつRzが30nm以下であることがより好ましく、さらに好ましくはRaが1nm以下かつRzが20nm以下である。支持体の表面は、熱硬化性樹脂、紫外線硬化性樹脂、電子線硬化性樹脂、放射線硬化性樹脂等の下塗り層を付与して平滑化してもよいし、研磨などの機械加工によって平滑にすることもできる。また高分子層の塗布、接着性を向上させるため、コロナ、プラズマによる表面処理や、易接着層を形成してもよい。ここで、表面の平滑性は、原子間力顕微鏡(AFM)等による測定から、表面粗さ規格(JIS B 0601-2001)に従い、求めることができる。 In the method for producing a transparent electrode according to the present invention, the support is preferably excellent in surface smoothness. The smoothness of the surface is preferably an arithmetic average roughness Ra of 5 nm or less and a maximum height Rz of 50 nm or less, more preferably Ra of 2 nm or less and Rz of 30 nm or less, and still more preferably Ra of 1 nm or less. Rz is 20 nm or less. The surface of the support may be smoothed by applying an undercoat layer such as a thermosetting resin, an ultraviolet curable resin, an electron beam curable resin, or a radiation curable resin, or may be smoothed by mechanical processing such as polishing. You can also. In order to improve the coating and adhesion of the polymer layer, a surface treatment using corona or plasma, or an easy adhesion layer may be formed. Here, the smoothness of the surface can be determined according to a surface roughness standard (JIS B 0601-2001) from measurement using an atomic force microscope (AFM) or the like.
 また、大気中の酸素、水分を遮断する目的でガスバリア層を設けるのが好ましい。ガスバリア層の形成材料としては、酸化シリコン、窒化シリコン、酸化窒化シリコン、窒化アルミニウム、酸化アルミニウム等の金属酸化物、金属窒化物が使用できる。これらの材料は、水蒸気バリア機能のほかに酸素バリア機能も有する。特にバリアー性、耐溶剤性、透明性が良好な窒化シリコン、酸化窒化シリコンが好ましい。また、バリア層は必要に応じて多層構成とすることも可能である。ガスバリア層の形成方法は、材料に応じて、抵抗加熱蒸着法、電子ビーム蒸着法、反応性蒸着法、イオンプレーティング法、スパッタリング法を用いることができる。 It is also preferable to provide a gas barrier layer for the purpose of blocking oxygen and moisture in the atmosphere. As a material for forming the gas barrier layer, metal oxides such as silicon oxide, silicon nitride, silicon oxynitride, aluminum nitride, and aluminum oxide, and metal nitrides can be used. These materials have an oxygen barrier function in addition to a water vapor barrier function. In particular, silicon nitride and silicon oxynitride having favorable barrier properties, solvent resistance, and transparency are preferable. In addition, the barrier layer may have a multilayer structure as necessary. As a method for forming the gas barrier layer, a resistance heating vapor deposition method, an electron beam vapor deposition method, a reactive vapor deposition method, an ion plating method, or a sputtering method can be used depending on the material.
 前記ガスバリア層を構成する各無機層の厚みに関しては特に限定されないが、典型的には1層あたり5nm~500nmの範囲内であることが好ましく、さらに好ましくは1層あたり10nm~200nmである。 The thickness of each inorganic layer constituting the gas barrier layer is not particularly limited, but typically it is preferably in the range of 5 nm to 500 nm per layer, and more preferably 10 nm to 200 nm per layer.
 ガスバリア層は支持体の少なくとも一方の面に設けられ、両面に設けられるのがより好ましい。 The gas barrier layer is provided on at least one surface of the support, and more preferably on both surfaces.
 <導電層>
 本発明における導電層は、金属ナノワイヤ層及び導電性高分子層から構成され、導電性高分子層は金属ナノワイヤ層表面と接した状態でも、内部に含浸した状態でもよい。
<Conductive layer>
The conductive layer in the present invention is composed of a metal nanowire layer and a conductive polymer layer, and the conductive polymer layer may be in contact with the surface of the metal nanowire layer or may be impregnated inside.
 これら導電層の形成方法は、それぞれ金属ナノワイヤ、導電性高分子を含む分散液を、塗布、乾燥して膜形成する液相成膜法であれば特に制限はなく、ロールコート法、バーコート法、ディップコーティング法、スピンコーティング法、キャスティング法、ダイコート法、ブレードコート法、バーコート法、グラビアコート法、カーテンコート法、スプレーコート法、ドクターコート法等の塗布法を用いることができる。また、インクジェット印刷法やグラビア、スクリーン印刷法等により、直接パターン形成してもよく、分散液の濃度、目的とする塗設量に応じて、印刷を複数回行ってもよい。 The method for forming these conductive layers is not particularly limited as long as it is a liquid phase film forming method in which a dispersion containing metal nanowires and a conductive polymer is applied and dried to form a film. Application methods such as dip coating, spin coating, casting, die coating, blade coating, bar coating, gravure coating, curtain coating, spray coating, and doctor coating can be used. Alternatively, direct pattern formation may be performed by an inkjet printing method, gravure, screen printing method, or the like, and printing may be performed a plurality of times depending on the concentration of the dispersion and the target coating amount.
 <金属ナノワイヤ層>
 本発明に係る金属ナノワイヤ層は、金属ナノワイヤ及びバインダーとして水溶性高分子または高分子ラテックスまたは硬化性樹脂を含有する分散液を、塗布、乾燥して形成される。さらに、バインダーである水溶性高分子または高分子ラテックスは、後述する架橋剤により架橋され、また、硬化性樹脂は、熱・光・電子線・放射線により硬化され、固定化される。これにより、導電性高分子層の塗布性、及び平滑性が飛躍的に向上する。これは、導電性高分子層塗設により、下層の金属ナノワイヤ層が若干膨潤するが、前述の固定化により、膨潤が抑制され、平滑性が向上したと推定される。
<Metal nanowire layer>
The metal nanowire layer according to the present invention is formed by applying and drying a dispersion containing a metal nanowire and a water-soluble polymer or polymer latex or a curable resin as a binder. Further, the water-soluble polymer or polymer latex that is a binder is crosslinked by a crosslinking agent described later, and the curable resin is cured and fixed by heat, light, electron beam, or radiation. Thereby, the applicability | paintability and smoothness of a conductive polymer layer improve dramatically. This is presumed that the coating of the conductive polymer layer slightly swells the underlying metal nanowire layer, but the aforementioned immobilization suppresses the swelling and improves the smoothness.
 また、添加剤として、可塑剤、酸化防止剤や硫化防止剤などの安定剤、界面活性剤、溶解促進剤、重合禁止剤、染料や顔料などの着色剤などが用いることができる。更に、塗布性などの作業性を高める観点から、溶媒(例えば、水や、アルコール類、グリコール類、セロソルブ類、ケトン類、エステル類、エーテル類、アミド類、炭化水素類等の有機溶媒)を含んでいてもよい。 Further, as additives, stabilizers such as plasticizers, antioxidants and antisulfurizing agents, surfactants, dissolution accelerators, polymerization inhibitors, and colorants such as dyes and pigments can be used. Furthermore, from the viewpoint of improving workability such as coating properties, solvents (for example, water, organic solvents such as alcohols, glycols, cellosolves, ketones, esters, ethers, amides, hydrocarbons, etc.) are used. May be included.
 また、金属ナノワイヤを含む分散液は、導電性高分子を含んでいてもよい。 Further, the dispersion containing metal nanowires may contain a conductive polymer.
 <水溶性高分子>
 本発明に係る水溶性高分子としては、天然高分子のデンプン、ゼラチン、寒天等、半合成高分子のカルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース(HEC)、メチルセルロース(MC)、ヒドロキシエチルメチルセルロース(HEMC)、ヒドロキシプロピルメチルセルロース(HPMC)等のセルロース誘導体、合成高分子のポリビニルアルコール(PVA)、ポリアクリル酸系高分子、ポリアクリルアミド(PAM)、ポリエチレンオキサイド(PEO)、ポリビニルピロリドン(PVP)等から広く選択して使用することができる。また、これらの高分子は、官能基の一部が変性されていてもよい。特に、セルロース誘導体、ポリビニルアルコールが好ましい。
<Water-soluble polymer>
Examples of the water-soluble polymer according to the present invention include natural polymers such as starch, gelatin, and agar. Semi-synthetic polymers such as carboxymethyl cellulose (CMC), hydroxyethyl cellulose (HEC), methyl cellulose (MC), and hydroxyethyl methyl cellulose (HEMC). , Cellulose derivatives such as hydroxypropylmethylcellulose (HPMC), synthetic polymer polyvinyl alcohol (PVA), polyacrylic acid polymer, polyacrylamide (PAM), polyethylene oxide (PEO), polyvinylpyrrolidone (PVP), etc. Can be used. In addition, in these polymers, a part of the functional group may be modified. In particular, a cellulose derivative and polyvinyl alcohol are preferable.
 <高分子ラテックス>
 本発明に係る高分子ラテックスとしては、アクリル系樹脂(アクリルシリコン変性樹脂、フッ素変性アクリル樹脂、ウレタン変性アクリル樹脂、エポキシ変性アクリル樹脂等)、ポリエステル系樹脂、ポリウレタン系樹脂、酢酸ビニル系樹脂等から広く選択して使用することができる。
<Polymer latex>
Examples of the polymer latex according to the present invention include acrylic resins (acrylic silicon-modified resins, fluorine-modified acrylic resins, urethane-modified acrylic resins, epoxy-modified acrylic resins, etc.), polyester resins, polyurethane resins, vinyl acetate resins, and the like. Can be widely selected and used.
 <硬化性樹脂>
 本発明に係る硬化性樹脂は、熱・光・電子線・放射線で硬化する水性硬化性樹脂を用いることができ、例えば、メラミンアクリレート、ウレタンアクリレート、エポキシ樹脂、ポリイミド樹脂、アクリル変性シリケート等のシリコーン樹脂等を用いることができる。
<Curable resin>
The curable resin according to the present invention may be an aqueous curable resin that is cured by heat, light, electron beam, or radiation. For example, silicone such as melamine acrylate, urethane acrylate, epoxy resin, polyimide resin, acrylic-modified silicate, etc. Resin or the like can be used.
 <導電性高分子層>
 本発明に係る導電性高分子層は、金属ナノワイヤ層を塗布し、次いで金属ナノワイヤ層のバインダーを架橋、あるいは硬化後、導電性高分子を含有する分散液を、塗布、乾燥して形成される。
<Conductive polymer layer>
The conductive polymer layer according to the present invention is formed by applying a metal nanowire layer and then crosslinking or curing the binder of the metal nanowire layer, and then applying and drying a dispersion containing the conductive polymer. .
 導電性高分子層は、単一の導電性高分子を用いてもよいし、複数種の導電性高分子を混合して用いてもよい。また、導電性と透明性を両立できる範囲で、非導電性高分子や添加剤を含んでいてもよい。 The conductive polymer layer may be a single conductive polymer or a mixture of plural types of conductive polymers. In addition, a non-conductive polymer and an additive may be included as long as both conductivity and transparency can be achieved.
 非導電性高分子としては、天然高分子樹脂または合成高分子樹脂から広く選択して使用することができる。例えば、透明な熱可塑性樹脂(例えば、ポリ塩化ビニル、塩化ビニル-酢酸ビニル共重合体、ポリメチルメタクリレート、ニトロセルロース、塩素化ポリエチレン、塩素化ポリプロピレン、フッ化ビニリデン)や、前述の水溶性高分子、高分子ラテックス、硬化性樹脂を用いることができる。 As the non-conductive polymer, a wide variety of natural polymer resins or synthetic polymer resins can be used. For example, a transparent thermoplastic resin (for example, polyvinyl chloride, vinyl chloride-vinyl acetate copolymer, polymethyl methacrylate, nitrocellulose, chlorinated polyethylene, chlorinated polypropylene, vinylidene fluoride) or the above-mentioned water-soluble polymer Polymer latex and curable resin can be used.
 また、添加剤として、可塑剤、酸化防止剤や硫化防止剤などの安定剤、界面活性剤、溶解促進剤、重合禁止剤、染料や顔料などの着色剤などが挙げられる。更に、塗布性などの作業性を高める観点から、溶媒(例えば、水や、アルコール類、グリコール類、セロソルブ類、ケトン類、エステル類、エーテル類、アミド類、炭化水素類等の有機溶媒)を含んでいてもよい。 Additives include plasticizers, stabilizers such as antioxidants and sulfurization inhibitors, surfactants, dissolution accelerators, polymerization inhibitors, and colorants such as dyes and pigments. Furthermore, from the viewpoint of improving workability such as coating properties, solvents (for example, water, organic solvents such as alcohols, glycols, cellosolves, ketones, esters, ethers, amides, hydrocarbons, etc.) are used. May be included.
 本発明において、導電性高分子層を金属ナノワイヤ層に塗設、積層することにより、金属ナノワイヤ間の接触による導電性に加え、金属ナノワイヤ間に導電性高分子が入り込み、金属ナノワイヤ及び金属ナノワイヤ間隙部の導電性を均一化することができる。さらに、導電性高分子層が造膜することにより、表面平滑性を向上することができる。 In the present invention, by coating and laminating a conductive polymer layer on a metal nanowire layer, in addition to conductivity due to contact between the metal nanowires, the conductive polymer enters between the metal nanowires, and the metal nanowire and the metal nanowire gap The conductivity of the part can be made uniform. Furthermore, surface smoothness can be improved by forming the conductive polymer layer into a film.
 <架橋剤>
 本発明に係る架橋剤は、金属ナノワイヤ層中のバインダーである水溶性高分子または高分子ラテックスの架橋に用いられ、アルデヒド系、エポキシ系、メラミン系、イソシアネート系架橋剤等を用いることができる。
<Crosslinking agent>
The crosslinking agent according to the present invention is used for crosslinking a water-soluble polymer or polymer latex that is a binder in the metal nanowire layer, and an aldehyde-based, epoxy-based, melamine-based, or isocyanate-based crosslinking agent can be used.
 架橋剤の適用方法は、架橋剤の塗布液を予め透明基材上に塗布、乾燥しておき、そこに金属ナノワイヤ層を塗設してもよいし、金属ナノワイヤ層を塗布、乾燥した後、そこに架橋剤を塗設してもよいし、金属ナノワイヤ分散液と架橋剤を同時2層塗布してもよいし、それらの混合液を塗布、乾燥してもよい。 The method of applying the crosslinking agent is to apply the coating solution of the crosslinking agent on the transparent substrate in advance and dry it, and then apply the metal nanowire layer to it, or apply and dry the metal nanowire layer, A crosslinking agent may be applied there, or two layers of the metal nanowire dispersion and the crosslinking agent may be applied simultaneously, or a mixture of these may be applied and dried.
 また、架橋剤液は、pH調整剤として酸、アルカリ、塩を含有してもよく、加熱により容易に除去できることからアンモニア、アンモニウム塩が好ましい。さらに、架橋反応を促進するため、100~150℃で加熱することが好ましい。 Moreover, the crosslinking agent solution may contain an acid, an alkali, or a salt as a pH adjuster, and is preferably an ammonia or ammonium salt because it can be easily removed by heating. Furthermore, it is preferable to heat at 100 to 150 ° C. in order to promote the crosslinking reaction.
 <パターニング>
 本発明は、透明支持体上に金属ナノワイヤ層を形成した後、あるいは該金属ナノワイヤ層上に導電性高分子層を形成した後、インクジェット法、スクリーン、グラビア印刷法等により金属ナノワイヤ除去剤をパターン印刷、あるいはフォトリソグラフィー法等により導電層のパターニングを行うことができる。また、インクジェット法やグラビア、スクリーン印刷法等により、金属ナノワイヤ層、あるいは導電性高分子層を直接パターニングしてもよい。
<Patterning>
In the present invention, after forming a metal nanowire layer on a transparent support, or after forming a conductive polymer layer on the metal nanowire layer, the metal nanowire remover is patterned by an inkjet method, a screen, a gravure printing method, or the like. The conductive layer can be patterned by printing, photolithography, or the like. Alternatively, the metal nanowire layer or the conductive polymer layer may be directly patterned by an inkjet method, a gravure, a screen printing method, or the like.
 <金属ナノワイヤ>
 一般に、金属ナノワイヤとは、金属元素を主要な構成要素とする線状構造体のことをいう。特に、本発明における金属ナノワイヤとは、原子スケールからnmサイズの直径を有する多数の線状構造体がメッシュ状に形成されたものを意味する。
<Metal nanowires>
In general, the metal nanowire refers to a linear structure having a metal element as a main component. In particular, the metal nanowire in the present invention means a structure in which a large number of linear structures having a diameter from the atomic scale to the nm size are formed in a mesh shape.
 本発明に係る金属ナノワイヤとしては、1つの金属ナノワイヤで長い導電パスを形成するために、平均長さが3μm以上であることが好ましく、さらには3~500μmが好ましく、特に、3~300μmであることが好ましい。併せて、長さの相対標準偏差は40%以下であることが好ましい。また、平均直径は、透明性の観点からは小さいことが好ましく、一方で、導電性の観点からは大きい方が好ましい。本発明においては、金属ナノワイヤの平均直径として10~300nmが好ましく、30~200nmであることがより好ましい。併せて、直径の相対標準偏差は20%以下であることが好ましい。 The metal nanowire according to the present invention preferably has an average length of 3 μm or more, more preferably 3 to 500 μm, particularly 3 to 300 μm in order to form a long conductive path with one metal nanowire. It is preferable. In addition, the relative standard deviation of the length is preferably 40% or less. Moreover, it is preferable that an average diameter is small from a transparency viewpoint, On the other hand, the larger one is preferable from an electroconductive viewpoint. In the present invention, the average diameter of the metal nanowire is preferably 10 to 300 nm, and more preferably 30 to 200 nm. In addition, the relative standard deviation of the diameter is preferably 20% or less.
 本発明に係る金属ナノワイヤの金属組成としては特に制限はなく、貴金属元素や卑金属元素の1種または複数の金属から構成することができるが、貴金属(例えば、金、白金、銀、パラジウム、ロジウム、イリジウム、ルテニウム、オスミウム等)及び鉄、コバルト、銅、錫からなる群に属する少なくとも1種の金属を含むことが好ましく、導電性の観点から少なくとも銀を含むことがより好ましい。また、導電性と安定性(金属ナノワイヤの硫化や酸化耐性、及びマイグレーション耐性)を両立するために、銀と、銀を除く貴金属に属する少なくとも1種の金属を含むことも好ましい。本発明に係る金属ナノワイヤが2種類以上の金属元素を含む場合には、例えば、金属ナノワイヤの表面と内部で金属組成が異なっていてもよいし、金属ナノワイヤ全体が同一の金属組成を有していてもよい。 There is no restriction | limiting in particular as a metal composition of the metal nanowire which concerns on this invention, Although it can comprise from the 1 type or several metal of a noble metal element and a base metal element, noble metals (for example, gold, platinum, silver, palladium, rhodium, (Iridium, ruthenium, osmium, etc.) and at least one metal belonging to the group consisting of iron, cobalt, copper, and tin is preferable, and at least silver is more preferable from the viewpoint of conductivity. In order to achieve both conductivity and stability (sulfurization and oxidation resistance of metal nanowires and migration resistance), it is also preferable to include silver and at least one metal belonging to a noble metal other than silver. When the metal nanowire according to the present invention includes two or more kinds of metal elements, for example, the metal composition may be different between the inside and the surface of the metal nanowire, or the entire metal nanowire has the same metal composition. May be.
 本発明において金属ナノワイヤの製造手段には特に制限はなく、例えば、液相法や気相法等の公知の手段を用いることができる。また、具体的な製造方法にも特に制限はなく、公知の製造方法を用いることができる。 In the present invention, there are no particular limitations on the means for producing the metal nanowire, and for example, known means such as a liquid phase method and a gas phase method can be used. Moreover, there is no restriction | limiting in particular in a specific manufacturing method, A well-known manufacturing method can be used.
 例えば、Agナノワイヤの製造方法としては、Adv.Mater.,2002,14,833~837;Chem.Mater.,2002,14,4736~4745等、Auナノワイヤの製造方法としては特開2006-233252号公報等、Cuナノワイヤの製造方法としては特開2002-266007号公報等、Coナノワイヤの製造方法としては特開2004-149871号公報等を参考にすることができる。特に、上述した、Adv.Mater.及びChem.Mater.で報告されたAgナノワイヤの製造方法は、水系で簡便にAgナノワイヤを製造することができ、また銀の導電率は金属中で最大であることから、本発明に係る金属ナノワイヤの製造方法として好ましく適用することができる。 For example, as a manufacturing method of Ag nanowire, Adv. Mater. , 2002, 14, 833-837; Chem. Mater. 2002, 14, 4736-4745, etc., as a method for producing Co nanowires, such as JP 2006-233252, etc. as a method for producing Au nanowires, and JP 2002-266007, etc., as a method for producing Cu nanowires. Reference can be made to Japanese Unexamined Patent Publication No. 2004-149871. In particular, Adv. Mater. And Chem. Mater. The method for producing Ag nanowires reported in (1) can be easily produced in an aqueous system, and since the conductivity of silver is the highest among metals, it is preferable as the method for producing metal nanowires according to the present invention. Can be applied.
 <導電性高分子>
 本発明に係る導電性高分子としては、特に限定されず、ポリピロール、ポリインドール、ポリカルバゾール、ポリチオフェン(置換、無置換のポリチオフェンを含む、以下同様)系、ポリアニリン系、ポリアセチレン系、ポリフラン系、ポリパラフェニレンビニレン系、ポリアズレン系、ポリパラフェニレン系、ポリパラフェニレンサルファイド系、ポリイソチアナフテン系、ポリチアジル等の鎖状導電性高分子や、ポリアセン系導電性高分子も利用することができる。中でも、導電性、透明性等の観点からポリエチレンジオキシチオフェン(PEDOT)やポリアニリン系が好ましい。
<Conductive polymer>
The conductive polymer according to the present invention is not particularly limited, and polypyrrole, polyindole, polycarbazole, polythiophene (including substituted and unsubstituted polythiophene, the same applies hereinafter), polyaniline, polyacetylene, polyfuran, poly Chain conductive polymers such as paraphenylene vinylene, polyazulene, polyparaphenylene, polyparaphenylene sulfide, polyisothianaphthene, and polythiazyl, and polyacene conductive polymers can also be used. Of these, polyethylene dioxythiophene (PEDOT) and polyaniline are preferable from the viewpoint of conductivity, transparency, and the like.
 また、本発明においては、上記導電性高分子の導電性をより高めるために、ドーピング処理を施すことが好ましい。導電性高分子に対するドーパントとしては、例えば、炭素数が6~30の炭化水素基を有するスルホン酸(以下、長鎖スルホン酸ともいう。)あるいはその重合体(例えば、ポリスチレンスルホン酸)、ハロゲン、ルイス酸、プロトン酸、遷移金属ハロゲン化物、遷移金属化合物、アルカリ金属、アルカリ土類金属、MClO(M=Li、Na)、R(R=CH、C、C等)、またはR(R=CH、C、C等)からなる群から選ばれる少なくとも1種が挙げられる。なかでも、上記長鎖スルホン酸が好ましい。 Moreover, in this invention, in order to raise the electroconductivity of the said conductive polymer more, it is preferable to perform a doping process. Examples of the dopant for the conductive polymer include a sulfonic acid having a hydrocarbon group having 6 to 30 carbon atoms (hereinafter also referred to as a long-chain sulfonic acid) or a polymer thereof (for example, polystyrene sulfonic acid), halogen, Lewis acid, proton acid, transition metal halide, transition metal compound, alkali metal, alkaline earth metal, MClO 4 (M = Li + , Na + ), R 4 N + (R = CH 3 , C 4 H 9 , C 6 H 5 and the like), or R 4 P + (R═CH 3 , C 4 H 9 , C 6 H 5 and the like). Of these, the long-chain sulfonic acid is preferable.
 長鎖スルホン酸としては、ジノニルナフタレンジスルホン酸、ジノニルナフタレンスルホン酸、ドデシルベンゼンスルホン酸等が挙げられる。ハロゲンとしては、Cl、Br、I、ICl、IBr、IF等が挙げられる。ルイス酸としては、PF、AsF、SbF、BF、BCl、BBr、SO、GaCl等が挙げられる。プロトン酸としては、HF、HCl、HNO、HSO、HBF、HClO、FSOH、ClSOH、CFSOH等が挙げられる。遷移金属ハロゲン化物としては、NbF、TaF、MoF、WF、RuF、BiF、TiCl、ZrCl、MoCl、MoCl、WCl、FeCl、TeCl、SnCl、SeCl、FeBr、SnI等が挙げられる。遷移金属化合物としては、AgClO、AgBF、La(NO、Sm(NO等が挙げられる。アルカリ金属としては、Li、Na、K、Rb、Cs等が挙げられる。アルカリ土類金属としては、Be、Mg、Ca、Sc、Ba等が挙げられる。 Examples of the long chain sulfonic acid include dinonyl naphthalene disulfonic acid, dinonyl naphthalene sulfonic acid, and dodecylbenzene sulfonic acid. Examples of the halogen include Cl 2 , Br 2 , I 2 , ICl 3 , IBr, IF 5 and the like. Examples of the Lewis acid include PF 5 , AsF 5 , SbF 5 , BF 3 , BCl 3 , BBr 3 , SO 3 , GaCl 3 and the like. Examples of the protonic acid include HF, HCl, HNO 3 , H 2 SO 4 , HBF 4 , HClO 4 , FSO 3 H, ClSO 3 H, CF 3 SO 3 H, and the like. The transition metal halide, NbF 5, TaF 5, MoF 5, WF 5, RuF 5, BiF 5, TiCl 4, ZrCl 4, MoCl 5, MoCl 3, WCl 5, FeCl 3, TeCl 4, SnCl 4, SeCl 4 , FeBr 3 , SnI 5 and the like. The transition metal compound, AgClO 4, AgBF 4, La (NO 3) 3, Sm (NO 3) 3 and the like. Examples of the alkali metal include Li, Na, K, Rb, and Cs. Examples of the alkaline earth metal include Be, Mg, Ca, Sc, and Ba.
 また、導電性高分子に対するドーパントは、水素化フラーレン、水酸化フラーレン、スルホン酸化フラーレンなどのフラーレン類に導入されていてもよい。上記ドーパントは、導電性高分子100質量部に対して、0.001質量部以上含まれていることが好ましい。さらには、0.5質量部以上含まれていることがより好ましい。尚、本実施形態の透明導電性組成物は、長鎖スルホン酸、長鎖スルホン酸の重合体(例えば、ポリスチレンスルホン酸)、ハロゲン、ルイス酸、プロトン酸、遷移金属ハロゲン化物、遷移金属化合物、アルカリ金属、アルカリ土類金属、MClO、R、およびRからなる群から選ばれる少なくとも1種のドーパントと、フラーレン類との双方を含んでいてもよい。 The dopant for the conductive polymer may be introduced into fullerenes such as hydrogenated fullerene, hydroxylated fullerene, and sulfonated fullerene. It is preferable that 0.001 mass part or more of the said dopant is contained with respect to 100 mass parts of conductive polymers. Furthermore, it is more preferable that 0.5 mass part or more is contained. In addition, the transparent conductive composition of the present embodiment is a long-chain sulfonic acid, a polymer of long-chain sulfonic acid (for example, polystyrene sulfonic acid), halogen, Lewis acid, proton acid, transition metal halide, transition metal compound, Both at least one dopant selected from the group consisting of alkali metals, alkaline earth metals, MClO 4 , R 4 N + , and R 4 P + and fullerenes may be included.
 本発明に係る導電性高分子は、2nd.ドーパントとして水溶性有機化合物を含有してもよい。本発明で用いることができる水溶性有機化合物には特に制限はなく、公知のものの中から適宜選択することができ、例えば、酸素含有化合物が好適に挙げられる。前記酸素含有化合物としては、酸素を含有する限り特に制限はなく、例えば、水酸基含有化合物、カルボニル基含有化合物、エーテル基含有化合物、スルホキシド基含有化合物などが挙げられる。前記水酸基含有化合物としては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、トリメチレングリコール、1,4-ブタンジオール、グリセリンなどが挙げられ、これらの中でも、エチレングリコール、ジエチレングリコールが好ましい。前記カルボニル基含有化合物としては、例えば、イソホロン、プロピレンカーボネート、シクロヘキサノン、γ-ブチロラクトンなどが挙げられる。前記エーテル基含有化合物としては、例えば、ジエチレングリコールモノエチルエーテル、などが挙げられる。前記スルホキシド基含有化合物としては、例えば、ジメチルスルホキシドなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよいが、ジメチルスルホキシド、エチレングリコール、ジエチレングリコールから選ばれる少なくとも1種を用いることが特に好ましい。 The conductive polymer according to the present invention is 2nd. A water-soluble organic compound may be contained as a dopant. There is no restriction | limiting in particular in the water-soluble organic compound which can be used by this invention, It can select suitably from well-known things, For example, an oxygen containing compound is mentioned suitably. The oxygen-containing compound is not particularly limited as long as it contains oxygen, and examples thereof include a hydroxyl group-containing compound, a carbonyl group-containing compound, an ether group-containing compound, and a sulfoxide group-containing compound. Examples of the hydroxyl group-containing compound include ethylene glycol, diethylene glycol, propylene glycol, trimethylene glycol, 1,4-butanediol, glycerin and the like. Among these, ethylene glycol and diethylene glycol are preferable. Examples of the carbonyl group-containing compound include isophorone, propylene carbonate, cyclohexanone, and γ-butyrolactone. Examples of the ether group-containing compound include diethylene glycol monoethyl ether. Examples of the sulfoxide group-containing compound include dimethyl sulfoxide. These may be used alone or in combination of two or more, but it is particularly preferable to use at least one selected from dimethyl sulfoxide, ethylene glycol, and diethylene glycol.
 本発明に係る導電性高分子において、導電性高分子100質量部に対する上記2nd.ドーパントの含有量は0.001質量部以上が好ましく、0.01~50質量がより好ましく、0.01~10質量部が特に好ましい。 In the conductive polymer according to the present invention, the 2nd. The content of the dopant is preferably 0.001 part by mass or more, more preferably 0.01 to 50 parts by mass, and particularly preferably 0.01 to 10 parts by mass.
 <透明電極>
 本発明の透明電極は、導電層の表面粗さが、EL素子等の性能に影響するため高平滑であることが望ましく、具体的には、算術平均粗さRaは、Ra≦5nmであることが好ましく、Ra≦3nmであることがより好ましく、Ra≦1nmであることがさらに好ましい。また、最大高さRyは、Ry≦50nmであることが好ましく、Ry≦40nmであることがより好ましく、Ry≦30nmであることがさらに好ましい。
<Transparent electrode>
The transparent electrode of the present invention is preferably highly smooth because the surface roughness of the conductive layer affects the performance of the EL element and the like. Specifically, the arithmetic average roughness Ra is Ra ≦ 5 nm. Is preferable, Ra ≦ 3 nm is more preferable, and Ra ≦ 1 nm is further more preferable. The maximum height Ry is preferably Ry ≦ 50 nm, more preferably Ry ≦ 40 nm, and further preferably Ry ≦ 30 nm.
 本発明の透明電極における、金属ナノワイヤを含有する導電層の全光透過率は、60%以上、好ましくは70%以上、特に好ましくは80%以上であることが望ましい。全光透過率は、分光光度計等を用いた公知の方法に従って測定することができる。 In the transparent electrode of the present invention, the total light transmittance of the conductive layer containing metal nanowires is 60% or more, preferably 70% or more, particularly preferably 80% or more. The total light transmittance can be measured according to a known method using a spectrophotometer or the like.
 本発明の透明電極における、金属ナノワイヤを含有する導電層の電気抵抗値としては、表面比抵抗として10Ω/□以下であることが好ましく、10Ω/□以下であることがより好ましく、10Ω/□以下であることが特に好ましい。表面比抵抗は、例えば、JIS K6911、ASTM D257、などに準拠して測定することができ、また市販の表面抵抗率計を用いて簡便に測定することができる。表面比抵抗は、金属ナノワイヤ単独の状態で前記表面比抵抗を満たしていれば良く、金属ナノワイヤがバス電極として機能するため、導電性高分子の表面比抵抗が高くても、金属ナノワイヤ含有導電層の導電性を均一化することができる。導電性高分子の表面比抵抗としては、金属ナノワイヤ含有導電層間の電流リークに影響なく、金属ナノワイヤ含有導電層の導電性が均一化可能な、10Ω/□以上10Ω/□以下であることが好ましく、より好ましくは10Ω/□以上10Ω/□以下である。 In the transparent electrode of the present invention, the electrical resistance value of the conductive layer containing metal nanowires is preferably 10 3 Ω / □ or less, more preferably 10 2 Ω / □ or less, as the surface specific resistance, It is particularly preferably 10Ω / □ or less. The surface specific resistance can be measured, for example, according to JIS K6911, ASTM D257, etc., and can be easily measured using a commercially available surface resistivity meter. The surface specific resistance only needs to satisfy the surface specific resistance in the state of the metal nanowire alone, and the metal nanowire functions as a bus electrode. Therefore, even if the surface specific resistance of the conductive polymer is high, the metal nanowire-containing conductive layer Can be made uniform. The surface specific resistance of the conductive polymer is 10 4 Ω / □ or more and 10 9 Ω / □ or less, which can make the conductivity of the metal nanowire-containing conductive layer uniform without affecting current leakage between the metal nanowire-containing conductive layers. It is preferable that it is 10 6 Ω / □ or more and 10 9 Ω / □ or less.
 本発明の透明電極には、アンカーコートやハードコート等を付与することもできる。また必要に応じて更に導電性高分子または金属酸化物を含有する導電層を設置してもよい。 An anchor coat or a hard coat can be applied to the transparent electrode of the present invention. If necessary, a conductive layer containing a conductive polymer or a metal oxide may be further provided.
 本発明の透明電極は、LCD、エレクトロルミネッセンス素子、プラズマディスプレイ、エレクトロクロミックディスプレイ、太陽電池、タッチパネルなどの透明電極、電子ペーパーならびに電磁波遮蔽材などに用いることが出来るが、導電性、透明性に優れ、また平滑性も高いため、有機EL素子に用いるのが好ましい。 The transparent electrode of the present invention can be used for transparent electrodes such as LCDs, electroluminescent elements, plasma displays, electrochromic displays, solar cells, touch panels, electronic paper, and electromagnetic wave shielding materials, etc., but has excellent conductivity and transparency. In addition, since it has high smoothness, it is preferably used for an organic EL device.
 〔金属ナノワイヤ除去剤〕
 本発明において、導電層の非パターン部となる部分に金属ナノワイヤ除去剤をパターン印刷し、次いで水洗処理を行い、金属ナノワイヤ除去剤及び非パターン部の金属ナノワイヤを除去することによって、パターン電極を形成することができる。
[Metal nanowire remover]
In the present invention, a pattern electrode is formed by pattern-printing a metal nanowire remover on a portion to be a non-pattern part of the conductive layer, and then performing a water washing treatment to remove the metal nanowire remover and the metal nanowire in the non-pattern part. can do.
 本発明に係る金属ナノワイヤ除去剤の組成としては、ハロゲン化銀カラー写真感光材料の現像処理に使用する漂白定着剤を好ましく用いることができる。 As the composition of the metal nanowire remover according to the present invention, a bleach-fixing agent used for development processing of a silver halide color photographic light-sensitive material can be preferably used.
 漂白定着剤において用いられる漂白剤としては、公知の漂白剤も用いることができるが、特に鉄(III)の有機錯塩(例えばアミノポリカルボン酸類の錯塩)もしくはクエン酸、酒石酸、リンゴ酸などの有機酸、過硫酸塩、過酸化水素などが好ましい。 As a bleaching agent used in the bleach-fixing agent, a known bleaching agent can be used. In particular, an organic complex salt of iron (III) (for example, a complex salt of aminopolycarboxylic acids) or an organic compound such as citric acid, tartaric acid, malic acid, Acid, persulfate, hydrogen peroxide and the like are preferable.
 これらのうち、鉄(III)の有機錯塩は迅速処理と環境汚染防止の観点から特に好ましい。鉄(III)の有機錯塩を形成するために有用なアミノポリカルボン酸、またはそれらの塩を列挙すると、生分解性のあるエチレンジアミンジ琥珀酸(SS体)、N-(2-カルボキシラートエチル)-L-アスパラギン酸、β-アラニンジ酢酸、メチルイミノジ酢酸をはじめ、エチレンジアミン四酢酸、ジエチレントリアミン五酢酸、1,3-ジアミノプロパン四酢酸、プロピレンジアミン四酢酸、ニトリロ三酢酸、シクロヘキサンジアミン四酢酸、イミノ二酢酸、グリコールエーテルジアミン四酢酸などのほか、欧州特許0789275号の一般式(I)又は(II)で表される化合物を挙げることができる。これらの化合物はナトリウム、カリウム又はアンモニウム塩のいずれでもよい。これらの化合物の中で、エチレンジアミンジ琥珀酸(SS体)、N-(2-カルボキシラートエチル)-L-アスパラギン酸、β-アラニンジ酢酸、エチレンジアミン四酢酸、1,3-ジアミノプロパン四酢酸、メチルイミノ二酢酸はその鉄(III)錯塩が好ましい。これらの第2鉄イオン錯塩は錯塩の形で使用しても良いし、第2鉄塩、例えば硫酸第2鉄、塩化第2鉄、硝酸第2鉄、硫酸第2鉄アンモニウム、燐酸第2鉄などとアミノポリカルボン酸などのキレート剤とを用いて溶液中で第2鉄イオン錯塩を形成させてもよい。また、キレート剤を第2鉄イオン錯塩を形成する以上に過剰に用いてもよい。鉄錯体のなかでもアミノポリカルボン酸鉄錯体が好ましく、その添加量は0.01~1.0モル/リットル、好ましくは0.05~0.50モル/リットル、更に好ましくは0.10~0.50モル/リットル、更に好ましくは0.15~0.40モル/リットルである。 Of these, organic complex salts of iron (III) are particularly preferred from the viewpoint of rapid processing and prevention of environmental pollution. Examples of aminopolycarboxylic acids useful for forming organic complex salts of iron (III), or salts thereof, include biodegradable ethylenediamine disuccinic acid (SS form), N- (2-carboxylate ethyl) -L-aspartic acid, β-alanine diacetic acid, methyliminodiacetic acid, ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, 1,3-diaminopropanetetraacetic acid, propylenediaminetetraacetic acid, nitrilotriacetic acid, cyclohexanediaminetetraacetic acid, iminodiacetic acid In addition to glycol ether diamine tetraacetic acid, compounds represented by general formula (I) or (II) of European Patent 0789275 can be mentioned. These compounds may be sodium, potassium or ammonium salts. Among these compounds, ethylenediamine disuccinic acid (SS form), N- (2-carboxylateethyl) -L-aspartic acid, β-alanine diacetic acid, ethylenediaminetetraacetic acid, 1,3-diaminopropanetetraacetic acid, methylimino The diacetic acid is preferably its iron (III) complex salt. These ferric ion complex salts may be used in the form of complex salts, and ferric salts such as ferric sulfate, ferric chloride, ferric nitrate, ferric ammonium sulfate, and ferric phosphate. And a chelating agent such as aminopolycarboxylic acid may be used to form a ferric ion complex salt in a solution. Moreover, you may use a chelating agent in excess rather than forming a ferric ion complex salt. Among the iron complexes, aminopolycarboxylic acid iron complexes are preferable, and the addition amount is 0.01 to 1.0 mol / liter, preferably 0.05 to 0.50 mol / liter, and more preferably 0.10 to 0. 50 mol / liter, more preferably 0.15 to 0.40 mol / liter.
 漂白定着剤に使用される定着剤は、公知の定着剤、即ちチオ硫酸ナトリウム、チオ硫酸アンモニウムなどのチオ硫酸塩、チオシアン酸ナトリウム、チオシアン酸アンモニウムなどのチオシアン酸塩、エチレンビスチオグリコール酸、3,6-ジチア-1,8-オクタンジオールなどのチオエーテル化合物およびチオ尿素類などの水溶性のハロゲン化銀溶解剤であり、これらを1種あるいは2種以上混合して使用することができる。また、特開昭55-155354号公報に記載された定着剤と多量の沃化カリウムの如きハロゲン化物などの組み合わせからなる特殊な漂白定着剤等も用いることができる。本発明においては、チオ硫酸塩特にチオ硫酸アンモニウム塩の使用が好ましい。1リットルあたりの定着剤の量は、0.3~2モルが好ましく、更に好ましくは0.5~1.0モルの範囲である。 Fixing agents used for the bleach-fixing agent are known fixing agents, that is, thiosulfates such as sodium thiosulfate and ammonium thiosulfate, thiocyanates such as sodium thiocyanate and ammonium thiocyanate, ethylenebisthioglycolic acid, 3, These are water-soluble silver halide solubilizers such as thioether compounds such as 6-dithia-1,8-octanediol and thioureas, and these can be used alone or in combination. A special bleach-fixing agent comprising a combination of a fixing agent described in JP-A-55-155354 and a large amount of a halide such as potassium iodide can also be used. In the present invention, it is preferable to use thiosulfate, particularly ammonium thiosulfate. The amount of fixing agent per liter is preferably 0.3 to 2 mol, more preferably 0.5 to 1.0 mol.
 本発明に使用される漂白定着剤のpH領域は、3~8が好ましく、更には4~7が特に好ましい。pHを調整するためには、必要に応じて塩酸、硫酸、硝酸、重炭酸塩、アンモニア、苛性カリ、苛性ソーダ、炭酸ナトリウム、炭酸カリウム等を添加することができる。 The pH range of the bleach-fixing agent used in the present invention is preferably 3 to 8, and more preferably 4 to 7. In order to adjust the pH, hydrochloric acid, sulfuric acid, nitric acid, bicarbonate, ammonia, caustic potash, caustic soda, sodium carbonate, potassium carbonate and the like can be added as necessary.
 また、漂白定着剤には、その他各種の消泡剤或いは界面活性剤、ポリビニルピロリドン、メタノール等の有機溶媒を含有させることができる。漂白定着剤は、保恒剤として亜硫酸塩(例えば、亜硫酸ナトリウム、亜硫酸カリウム、亜硫酸アンモニウム、など)、重亜硫酸塩(例えば、重亜硫酸アンモニウム、重亜硫酸ナトリウム、重亜硫酸カリウム、など)、メタ重亜硫酸塩(例えば、メタ重亜硫酸カリウム、メタ重亜硫酸ナトリウム、メタ重亜硫酸アンモニウム、など)等の亜硫酸イオン放出化合物や、p-トルエンスルフィン酸、m-カルボキシベンゼンスルフィン酸などのアリールスルフィン酸などを含有するのが好ましい。これらの化合物は亜硫酸イオンやスルフィン酸イオンに換算して約0.02~1.0モル/リットル含有させることが好ましい。 Further, the bleach-fixing agent can contain various other antifoaming agents or surfactants, and organic solvents such as polyvinylpyrrolidone and methanol. Bleach fixers use sulfites (eg, sodium sulfite, potassium sulfite, ammonium sulfite, etc.), bisulfites (eg, ammonium bisulfite, sodium bisulfite, potassium bisulfite, etc.), metabisulfite as preservatives. Contains sulfite ion releasing compounds such as salts (for example, potassium metabisulfite, sodium metabisulfite, ammonium metabisulfite, etc.), arylsulfinic acids such as p-toluenesulfinic acid, m-carboxybenzenesulfinic acid, and the like. Is preferred. These compounds are preferably contained in an amount of about 0.02 to 1.0 mol / liter in terms of sulfite ion or sulfinate ion.
 保恒剤としては、上記のほか、アスコルビン酸やカルボニル重亜硫酸付加物、あるいはカルボニル化合物等を添加しても良い。更には緩衝剤、キレート剤、消泡剤、防カビ剤等を必要に応じて添加しても良い。 As a preservative, in addition to the above, ascorbic acid, a carbonyl bisulfite adduct, or a carbonyl compound may be added. Furthermore, you may add a buffering agent, a chelating agent, an antifoamer, an antifungal agent, etc. as needed.
 〔パターン印刷〕
 金属ナノワイヤ除去剤を含有する組成物をパターン印刷する方法としては、凸版(活版)印刷法、孔版(スクリーン)印刷法、平版(オフセット)印刷法、凹版(グラビア)印刷法、スプレー印刷法、インクジェット印刷法等の印刷法を用いることができるが、特にグラビア印刷法、スクリーン印刷法で行うのが好ましい。
[Pattern printing]
The pattern printing of the composition containing the metal nanowire remover includes letterpress (letter) printing, stencil (screen) printing, lithographic (offset) printing, intaglio (gravure) printing, spray printing, and inkjet. Although a printing method such as a printing method can be used, the gravure printing method and the screen printing method are particularly preferable.
 <有機EL素子>
 本発明における有機EL素子は、本発明の透明電極を有することを特徴とする。本発明における有機EL素子は、本発明の透明電極を陽極として用い、有機発光層、陰極については有機EL素子に一般的に使われている材料、構成等の任意のものを用いることができる。有機EL素子の素子構成としては、陽極/有機発光層/陰極、陽極/ホール輸送層/有機発光層/電子輸送層/陰極、陽極/ホール注入層/ホール輸送層/有機発光層/電子輸送層/陰極、陽極/ホール注入層/有機発光層/電子輸送層/電子注入層/陰極、陽極/ホール注入層/有機発光層/電子注入層/陰極、等の各種の構成のものを挙げることができる。
<Organic EL device>
The organic EL element in the present invention has the transparent electrode of the present invention. The organic EL element in the present invention uses the transparent electrode of the present invention as an anode, and the organic light-emitting layer and the cathode can be made of any material and configuration generally used in organic EL elements. The element configuration of the organic EL element is as follows: anode / organic light emitting layer / cathode, anode / hole transport layer / organic light emitting layer / electron transport layer / cathode, anode / hole injection layer / hole transport layer / organic light emitting layer / electron transport layer / Cathode, anode / hole injection layer / organic light emitting layer / electron transport layer / electron injection layer / cathode, anode / hole injection layer / organic light emitting layer / electron injection layer / cathode, etc. it can.
 また、本発明において有機発光層に使用できる発光材料またはドーピング材料としては、アントラセン、ナフタレン、ピレン、テトラセン、コロネン、ペリレン、フタロペリレン、ナフタロペリレン、ジフェニルブタジエン、テトラフェニルブタジエン、クマリン、オキサジアゾール、ビスベンゾキサゾリン、ビススチリル、シクロペンタジエン、キノリン金属錯体、トリス(8-ヒドロキシキノリナート)アルミニウム錯体、トリス(4-メチル-8-キノリナート)アルミニウム錯体、トリス(5-フェニル-8-キノリナート)アルミニウム錯体、アミノキノリン金属錯体、ベンゾキノリン金属錯体、トリ-(p-ターフェニル-4-イル)アミン、1-アリール-2,5-ジ(2-チエニル)ピロール誘導体、ピラン、キナクリドン、ルブレン、ジスチルベンゼン誘導体、ジスチルアリーレ誘導体、及び各種蛍光色素及び希土類金属錯体、燐光発光材料等があるが、これらに限定されるものではない。またこれらの化合物のうちから選択される発光材料を90~99.5質量部、ドーピング材料を0.5~10質量部含むようにすることも好ましい。有機発光層は上記の材料等を用いて公知の方法によって作製されるものであり、蒸着、塗布、転写などの方法が挙げられる。この有機発光層の厚みは0.5~500nmが好ましく、特に、0.5~200nmが好ましい。 In addition, as the light emitting material or doping material that can be used in the organic light emitting layer in the present invention, anthracene, naphthalene, pyrene, tetracene, coronene, perylene, phthaloperylene, naphthaloperylene, diphenylbutadiene, tetraphenylbutadiene, coumarin, oxadiazole, bisbenzo Xazoline, bisstyryl, cyclopentadiene, quinoline metal complex, tris (8-hydroxyquinolinato) aluminum complex, tris (4-methyl-8-quinolinato) aluminum complex, tris (5-phenyl-8-quinolinato) aluminum complex, Aminoquinoline metal complex, benzoquinoline metal complex, tri- (p-terphenyl-4-yl) amine, 1-aryl-2,5-di (2-thienyl) pyrrole derivative, pyran, quinaclide , Rubrene, distyrylbenzene derivatives, Jisuchiruarire derivatives, and various fluorescent dyes and rare earth metal complex, there are phosphorescent materials, but is not limited thereto. It is also preferable to include 90 to 99.5 parts by mass of a light emitting material selected from these compounds and 0.5 to 10 parts by mass of a doping material. The organic light emitting layer is prepared by a known method using the above materials and the like, and examples thereof include vapor deposition, coating, and transfer. The thickness of the organic light emitting layer is preferably 0.5 to 500 nm, particularly preferably 0.5 to 200 nm.
 本発明における有機EL素子は、自発光型ディスプレイ、液晶用バックライト、照明等に用いることが出来る。本発明の有機EL素子は、均一にムラなく発光させることが出来るため、照明用途で用いることが好ましい。 The organic EL element in the present invention can be used for a self-luminous display, a liquid crystal backlight, illumination, and the like. Since the organic EL element of the present invention can emit light uniformly and without unevenness, it is preferably used for lighting purposes.
 以下、実施例により本発明を具体的に説明するが、本発明はこれにより限定されるものではない。なお、実施例において「%」の表示を用いるが、特に断りがない限り「質量%」を表す。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto. In addition, although the display of "%" is used in an Example, unless otherwise indicated, "mass%" is represented.
 《透明電極の作製》
 [銀ナノワイヤの作製]
 Adv.Mater.2002,14,833~837、に記載の方法を参考に、下記の方法で銀ナノワイヤを作製した。
<< Preparation of transparent electrode >>
[Production of silver nanowires]
Adv. Mater. With reference to the methods described in 2002, 14, 833 to 837, silver nanowires were produced by the following method.
 (核形成工程)
 反応容器内で170℃に保持したエチレングリコール液1000mlを攪拌しながら、硝酸銀のエチレングリコール溶液(硝酸銀濃度:1.5×10-4モル/l)100mlを一定の流量で10秒間で添加した。その後、170℃で10分間熟成を施し、銀の核粒子を形成した。熟成終了後の反応液は、銀ナノ粒子の表面プラズモン吸収に由来した黄色を呈しており、銀イオンが還元されて、銀ナノ粒子が形成されたことが確認された。
(Nucleation process)
While stirring 1000 ml of an ethylene glycol solution maintained at 170 ° C. in a reaction vessel, 100 ml of an ethylene glycol solution of silver nitrate (silver nitrate concentration: 1.5 × 10 −4 mol / l) was added at a constant flow rate for 10 seconds. Thereafter, aging was carried out at 170 ° C. for 10 minutes to form silver core particles. The reaction solution after completion of ripening exhibited a yellow color derived from surface plasmon absorption of silver nanoparticles, and it was confirmed that silver ions were reduced and silver nanoparticles were formed.
 (粒子成長工程)
 上記の熟成を終了した核粒子を含む反応液を攪拌しながら170℃に保持し、硝酸銀のエチレングリコール溶液(硝酸銀濃度:1.0×10-1モル/l)1000mlと、ポリビニルピロリドンのエチレングリコール溶液(ビニルピロリドン濃度換算:5.0×10-1モル/l)1000mlを、ダブルジェット法を用いて一定の流量で100分間で添加した。粒子成長工程において20分毎に反応液を採取して電子顕微鏡で確認したところ、核形成工程で形成された銀ナノ粒子が時間経過に伴って、主にナノワイヤの長軸方向に成長しており、粒子成長工程における新たな核粒子の生成は認められなかった。
(Particle growth process)
The reaction solution containing the core particles after the ripening was kept at 170 ° C. while stirring, and 1000 ml of an ethylene glycol solution of silver nitrate (silver nitrate concentration: 1.0 × 10 −1 mol / l) and ethylene glycol of polyvinylpyrrolidone. 1000 ml of a solution (vinyl pyrrolidone concentration conversion: 5.0 × 10 −1 mol / l) was added at a constant flow rate for 100 minutes using a double jet method. When the reaction solution was sampled every 20 minutes in the particle growth process and confirmed with an electron microscope, the silver nanoparticles formed in the nucleation process grew mainly in the long axis direction of the nanowires over time. No new core particles were observed in the grain growth process.
 (水洗工程)
 粒子成長工程終了後、反応液を室温まで冷却した後、フィルターを用いて濾過し、濾別された銀ナノワイヤをエタノール中に再分散した。フィルターによる銀ナノワイヤの濾過とエタノール中への再分散を5回繰り返し、最終的に銀ナノワイヤの水分散液を調製して、銀ナノワイヤを作製した。
(Washing process)
After completion of the particle growth step, the reaction solution was cooled to room temperature, filtered using a filter, and the silver nanowires separated by filtration were redispersed in ethanol. Filtration of silver nanowires with a filter and redispersion in ethanol were repeated 5 times, and finally an aqueous dispersion of silver nanowires was prepared to produce silver nanowires.
 得られた分散液を微量採取し、電子顕微鏡で確認したところ、平均直径85nm、平均長さ7.4μmの銀ナノワイヤが形成されたことが確認できた。 A small amount of the obtained dispersion was collected and confirmed with an electron microscope, and it was confirmed that silver nanowires having an average diameter of 85 nm and an average length of 7.4 μm were formed.
 〔透明電極101の作製;比較例1〕
 支持体としてコロナ放電処理を施した厚さ100μmのポリエチレンテレフタレートフィルム(以下PET)を用い、作製した銀ナノワイヤ分散液にバインダーとしてカルボキシメチルセルロース(以下CMC)を銀質量あたり25%加え、銀ナノワイヤ付量が0.05g/mとなるように、スピンコーターを用いて塗布し、乾燥した。次いで、導電性高分子として、PEDOT:PSS(ポリスチレンスルホン酸)=1:2.5の分散液であるBaytron PH510(H.C.Starck社製)に、下記界面活性剤(UL-1)を添加し、乾燥膜厚が300nmとなるようにスピンコーターにて塗布し、乾燥した。これを、50mm×50mm角に裁断し、透明電極101を作製した。
[Preparation of Transparent Electrode 101; Comparative Example 1]
Using a 100 μm thick polyethylene terephthalate film (hereinafter referred to as PET) subjected to corona discharge treatment as a support, carboxymethylcellulose (hereinafter referred to as CMC) as a binder is added to the prepared silver nanowire dispersion liquid at 25% per silver mass, and the amount of silver nanowires is added. Was applied using a spin coater so as to be 0.05 g / m 2 and dried. Next, as a conductive polymer, Baytron PH510 (manufactured by HC Starck), which is a dispersion of PEDOT: PSS (polystyrene sulfonic acid) = 1: 2.5, is charged with the following surfactant (UL-1). It was added, applied with a spin coater so that the dry film thickness was 300 nm, and dried. This was cut into a 50 mm × 50 mm square to produce a transparent electrode 101.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 〔透明電極102の作製;比較例2〕
 透明電極101の作製において、銀ナノワイヤ分散液のバインダーにポリビニルアルコールPVA203(クラレ社製)を用いた以外は同様の操作を行い、透明電極102を作製した。
[Preparation of Transparent Electrode 102; Comparative Example 2]
In the production of the transparent electrode 101, the same operation was performed except that polyvinyl alcohol PVA203 (manufactured by Kuraray Co., Ltd.) was used as the binder of the silver nanowire dispersion liquid to produce the transparent electrode 102.
 〔透明電極103の作製;本発明1〕
 透明電極101の作製において、銀ナノワイヤ分散液に、アルデヒド系架橋剤グリオキザールをバインダー質量あたり10%添加し、さらに、硫酸及びアンモニアを添加しpHを7.3に調整した。これを用いてスピンコートを行い、銀ナノワイヤ層を形成した。これを120℃で30分加熱した後、透明電極101の作製と同様の操作を行い、導電性高分子層を形成し、透明電極103を作製した。
[Preparation of transparent electrode 103; Invention 1]
In the production of the transparent electrode 101, 10% of the aldehyde-based crosslinking agent glyoxal per binder mass was added to the silver nanowire dispersion, and sulfuric acid and ammonia were added to adjust the pH to 7.3. Using this, spin coating was performed to form a silver nanowire layer. After heating this at 120 ° C. for 30 minutes, the same operation as the production of the transparent electrode 101 was performed to form a conductive polymer layer, and the transparent electrode 103 was produced.
 〔透明電極104の作製;本発明2〕
 透明電極101の作製と同様に、銀ナノワイヤ層を形成した後、架橋剤グリオキザールの塗設量が塗膜中のバインダー質量の10%となるように、飽和溶液を用いてオーバーコートした。これを透明電極103と同様に、加熱処理、導電性高分子層の形成を行い、透明電極104を作製した。
[Preparation of Transparent Electrode 104; Present Invention 2]
Similar to the production of the transparent electrode 101, after the silver nanowire layer was formed, it was overcoated with a saturated solution so that the coating amount of the crosslinking agent glyoxal was 10% of the binder mass in the coating film. This was subjected to heat treatment and the formation of a conductive polymer layer in the same manner as the transparent electrode 103 to produce a transparent electrode 104.
 〔透明電極105の作製;本発明3〕
 透明電極104の作製において、架橋剤を透明支持体上にアンダーコートした後、銀ナノワイヤ分散液を塗布した。これを加熱処理した後、導電性高分子層を形成し、透明電極105を作製した。
[Preparation of transparent electrode 105; Invention 3]
In the production of the transparent electrode 104, a silver nanowire dispersion was applied after undercoating a crosslinking agent on the transparent support. After heat-treating this, a conductive polymer layer was formed, and a transparent electrode 105 was produced.
 〔透明電極106の作製;本発明4〕
 透明電極103の作製において、バインダーをPVA203に変更した以外は同様の操作を行い、透明電極106を作製した。
[Preparation of transparent electrode 106; Invention 4]
In the production of the transparent electrode 103, the same operation was performed except that the binder was changed to PVA203, and the transparent electrode 106 was produced.
 〔透明電極107の作製;本発明5〕
 透明電極105の作製において、バインダーをPVA203に変更した以外は同様の操作を行い、透明電極107を作製した。
[Preparation of transparent electrode 107; Invention 5]
In the production of the transparent electrode 105, the same operation was performed except that the binder was changed to PVA203, and the transparent electrode 107 was produced.
 〔透明電極108の作製;本発明6〕
 透明電極103の作製において、バインダーをPVA203、架橋剤をエポキシ系架橋剤EX512(ナガセケムテックス社製)、導電性高分子をPEDOT:PSS Denatron P-502S(ナガセケムテックス社製)に変更した以外は同様の操作を行い、透明電極108を作製した。
[Preparation of Transparent Electrode 108; Present Invention 6]
In the production of the transparent electrode 103, except that the binder is changed to PVA203, the crosslinking agent is an epoxy-based crosslinking agent EX512 (manufactured by Nagase ChemteX), and the conductive polymer is changed to PEDOT: PSS Denatron P-502S (manufactured by Nagase ChemteX). Performed the same operation to produce a transparent electrode 108.
 〔透明電極109の作製;本発明7〕
 透明電極103の作製において、バインダーをヒドロキシプロピルメチルセルロース(HPMC)、架橋剤をメラミン系架橋剤ベッカミンM3及びCatalyst ACX(DIC社製)、導電性高分子をP-502Sに変更した以外は同様の操作を行い、透明電極109を作製した。
[Preparation of Transparent Electrode 109; Present Invention 7]
In the production of the transparent electrode 103, the same operation was performed except that the binder was changed to hydroxypropylmethylcellulose (HPMC), the crosslinking agent was changed to melamine-based crosslinking agent Becamine M3 and Catalyst ACX (made by DIC), and the conductive polymer was changed to P-502S. The transparent electrode 109 was produced.
 〔透明電極110の作製;本発明8〕
 透明電極105の作製において、バインダーをHPMC、架橋剤をベッカミンM3及びCatalyst ACX、導電性高分子をPEDOT:PSS Denatron P-5002CW(ナガセケムテックス社製)に変更した以外は同様の操作を行い、透明電極110を作製した。
[Preparation of transparent electrode 110; Invention 8]
In the production of the transparent electrode 105, the same operation was performed except that the binder was HPMC, the cross-linking agent was Becamine M3 and Catalist ACX, and the conductive polymer was changed to PEDOT: PSS Denatron P-5002CW (manufactured by Nagase ChemteX). A transparent electrode 110 was produced.
 〔透明電極111の作製;本発明9〕
 透明電極110の作製において、架橋剤をEX512に変更した以外は同様の操作を行い、透明電極111を作製した。
[Preparation of Transparent Electrode 111; Present Invention 9]
In the production of the transparent electrode 110, the same operation was performed except that the cross-linking agent was changed to EX512, and the transparent electrode 111 was produced.
 〔透明電極112の作製;本発明10〕
 透明電極110の作製において、架橋剤をグリオキザールに変更した以外は同様の操作を行い、透明電極112を作製した。
[Preparation of Transparent Electrode 112; Present Invention 10]
In the production of the transparent electrode 110, the same operation was performed except that the cross-linking agent was changed to glyoxal, and the transparent electrode 112 was produced.
 〔透明電極113の作製;本発明11〕
 透明電極101の作製において、バインダーとしてCMC添加量を5%とし、さらに、バインダーとして熱硬化性樹脂含有PEDOT Denatron G-2001A(ナガセケムテックス社製)を固形分として20%添加した銀ナノワイヤ分散液を用いて、銀ナノワイヤ層を形成した。これを加熱して硬化処理した後、導電性高分子としてP-5002CWを塗布し、透明電極113を作製した。
[Preparation of transparent electrode 113; Invention 11]
In the production of the transparent electrode 101, a silver nanowire dispersion liquid in which the amount of CMC added as a binder is 5% and a thermosetting resin-containing PEDOT Denatron G-2001A (manufactured by Nagase ChemteX) is added as a binder is 20%. Was used to form a silver nanowire layer. This was heated and cured, and then P-5002CW was applied as a conductive polymer to produce a transparent electrode 113.
 〔透明電極114の作製;本発明12〕
 透明電極113の作製において、G-2001AをUV硬化性樹脂含有PEDOT HC-W004(信越ポリマー社製)に変更し、UV照射して硬化処理した以外は同様の操作を行い、透明電極114を作製した。
[Preparation of Transparent Electrode 114; Present Invention 12]
In the production of the transparent electrode 113, G-2001A was changed to PEDOT HC-W004 (manufactured by Shin-Etsu Polymer Co., Ltd.) containing UV curable resin, and the transparent electrode 114 was produced in the same manner except that the curing treatment was performed by UV irradiation. did.
 〔透明電極115の作製;本発明13〕
 透明電極101の作製において、架橋剤EX512を銀ナノワイヤ分散液のバインダー質量あたり10%を透明支持体上にアンダーコートした後、銀ナノワイヤ分散液を塗布した。塗布は透明電極101の作製と同様にスピンコートした。これを120℃30分加熱処理した後、下記金属ナノワイヤ除去液BF-1をCMC添加し粘度を500mPa・sに調整して、10mmのストライプ状パターンを有する版を使用しグラビア印刷塗布する。印刷後1分放置し、流水で水洗した後、120℃10分乾燥した。以後、は透明電極101の作製と同様に導電性高分子層を作製した。これを、50mm×50mm角に裁断し、透明電極106を作製した。
[Preparation of transparent electrode 115; Invention 13]
In the production of the transparent electrode 101, 10% of the crosslinker EX512 per binder mass of the silver nanowire dispersion was undercoated on the transparent support, and then the silver nanowire dispersion was applied. Application was spin-coated in the same manner as the production of the transparent electrode 101. After heat treatment at 120 ° C. for 30 minutes, CMC is added to the following metal nanowire removal liquid BF-1, the viscosity is adjusted to 500 mPa · s, and gravure printing is applied using a plate having a 10 mm stripe pattern. After printing, it was left for 1 minute, washed with running water, and then dried at 120 ° C. for 10 minutes. Thereafter, a conductive polymer layer was produced in the same manner as the production of the transparent electrode 101. This was cut into a 50 mm × 50 mm square to produce a transparent electrode 106.
 〈金属ナノワイヤ除去液BF-1の作製〉
 エチレンジアミン4酢酸第2鉄アンモニウム 60g
 エチレンジアミン4酢酸 2g
 メタ重亜硫酸ナトリウム 15g
 チオ硫酸アンモニウム 70g
 マレイン酸 5g
 純水で1Lに仕上げ、硫酸またはアンモニア水でpHを5.5に調整し、金属ナノワイヤ除去液BF-1を作製した。
<Preparation of metal nanowire removal solution BF-1>
Ethylenediaminetetraacetic acid ferric ammonium 60g
Ethylenediaminetetraacetic acid 2g
Sodium metabisulfite 15g
70g ammonium thiosulfate
Maleic acid 5g
Finished to 1 L with pure water and adjusted to pH 5.5 with sulfuric acid or ammonia water, metal nanowire removal liquid BF-1 was prepared.
 〔透明電極116の作製;本発明14〕
 透明電極115の作製において、架橋剤EX512を銀ナノワイヤ分散液のバインダー質量あたり10%添加した液を透明支持体スピンコートしたことと、銀ナノワイヤ分散液のバインダーをPVA245(クラレ)(PH510固形分量の10%)に変えた以外は透明電極115の作製と同様にして透明電極116を作製した。尚、金属ナノワイヤ除去液BF-1は、CMC添加し粘度を10000mPa・sに調整して、10mmのストライプ状パターンを有する版を使用しスクリーン印刷塗布する。
[Preparation of Transparent Electrode 116; Present Invention 14]
In the production of the transparent electrode 115, a solution in which the crosslinking agent EX512 was added at 10% per binder mass of the silver nanowire dispersion was spin-coated with a transparent support, and the binder of the silver nanowire dispersion was changed to PVA245 (Kuraray) (PH510 solid content A transparent electrode 116 was produced in the same manner as the production of the transparent electrode 115 except for changing to 10%). The metal nanowire removing liquid BF-1 is screen-printed using a plate having a 10 mm stripe pattern after adding CMC and adjusting the viscosity to 10,000 mPa · s.
 使用した素材は以下の通り
 PET(ポリエチレンテレフタレートフィルム):コニカミノルタ社製
 CMC(カルボキシメチルセルロース):シグマアルドリッチ社製
 PEDOT(poly-3,4-ethylenedioxythiophene):H.C.Starck社製(商品名:PH510)
 PSS(ポリスチレンスルホン酸):H.C.Starck社製
 PVA203(ポリビニルアルコール):クラレ社製
 Denatron P-502S(上記PEDOTとPSS混合物の商品名):ナガセケムテックス社製
 HPMC(ヒドロキシプロピルメチルセルロース):シグマアルドリッチ社製
 ベッカミンM3(メラミン系架橋剤):DIC社製
 Catalyst ACX(樹脂用触媒):DIC社製
 Denatron P-5002CW(上記PEDOTとPSS混合物の商品名):ナガセケムテックス社製
 P-502S(上記PEDOTとPSS混合物の商品名):ナガセケムテックス社製
 EX512(エポキシ系架橋剤デナコール):ナガセケムテックス社製
 P-5002CW(上記PEDOTとPSS混合物の商品名):ナガセケムテックス社製
 Denatron G-2001A(上記PEDOTとPSS混合物の商品名):ナガセケムテックス社製
 HC-W004(UV硬化性樹脂含有導電子高分子セプルジーダ):信越ポリマー社製
 [測定]
 下記方法で、透明電極101~114の平滑性Ra、Ryについて評価した。
The materials used were as follows: PET (polyethylene terephthalate film): Konica Minolta CMC (carboxymethylcellulose): Sigma Aldrich PEDOT (poly-3,4-ethylenediothiophene): H.M. C. Made by Starck (trade name: PH510)
PSS (polystyrene sulfonic acid): H.I. C. Stark PVA203 (polyvinyl alcohol): Kuraray Denatron P-502S (trade name of the above PEDOT and PSS mixture): Nagase ChemteX HPMC (hydroxypropylmethylcellulose): Sigma Aldrich Becamine M3 (melamine cross-linking agent) ): Catalyst ACX (resin catalyst) manufactured by DIC: Denatron P-5002CW (trade name of the above PEDOT and PSS mixture) manufactured by DIC: P-502S (trade name of the above PEDOT and PSS mixture) manufactured by Nagase ChemteX Corporation: EX512 (epoxy-based crosslinking agent Denacol) manufactured by Nagase ChemteX Corp .: P-5002CW manufactured by Nagase ChemteX Corp. (trade name of the above-mentioned PEDOT and PSS mixture): Denatron G- manufactured by Nagase ChemteX Corp. 001A (trade name of the PEDOT and PSS mixture): Nagase ChemteX Corporation HC-W004 (UV-curable resin containing electrically electrons polymer Sepurujida): Shin-Etsu Polymer Co., Ltd. [Measurement]
The smoothness Ra and Ry of the transparent electrodes 101 to 114 were evaluated by the following method.
 (表面粗さ)
 本発明において、導電層表面の平滑性を表すRaとRyは、Ra=算術平均粗さと、Ry=最大高さ(表面の山頂部と谷底部との高低差)を意味し、JIS B601(1994)に規定される表面粗さに準ずる値である。本発明においてRaやRyの測定には、市販の原子間力顕微鏡(Atomic Force Microscopy:AFM)を用いることができ、以下の方法で測定した。
(Surface roughness)
In the present invention, Ra and Ry representing the smoothness of the surface of the conductive layer mean Ra = arithmetic mean roughness and Ry = maximum height (the difference in height between the top and bottom of the surface), and JIS B601 (1994). It is a value according to the surface roughness specified in). In the present invention, for measurement of Ra and Ry, a commercially available atomic force microscope (AFM) can be used, and measurement was performed by the following method.
 AFMとして、セイコーインスツルメンツ社製SPI3800Nプローブステーション及びSPA400多機能型ユニットを使用し、約1cm角の大きさに切り取った試料を、ピエゾスキャナー上の水平な試料台上にセットし、カンチレバーを試料表面にアプローチし、原子間力が働く領域に達したところで、XY方向にスキャンし、その際の試料の凹凸をZ方向のピエゾの変位で捉える。ピエゾスキャナーは、XY20μm、Z2μmが走査可能なものを使用する。カンチレバーは、セイコーインスツルメンツ社製シリコンカンチレバーSI-DF20で、共振周波数120~150kHz、バネ定数12~20N/mのものを用い、DFMモード(Dynamic Force Mode)で測定する。測定領域80×80μmを、走査周波数1Hzで測定する。 Using an SPI 3800N probe station and SPA400 multifunctional unit manufactured by Seiko Instruments Inc. as the AFM, set the sample cut to a size of about 1 cm square on a horizontal sample stage on the piezo scanner, and place the cantilever on the sample surface. When approaching and reaching the region where the atomic force works, scanning is performed in the XY direction, and the unevenness of the sample at that time is captured by the displacement of the piezo in the Z direction. A piezo scanner that can scan XY 20 μm and Z 2 μm is used. The cantilever is a silicon cantilever SI-DF20 manufactured by Seiko Instruments Inc., which has a resonance frequency of 120 to 150 kHz and a spring constant of 12 to 20 N / m, and is measured in a DFM mode (Dynamic Force Mode). A measurement area of 80 × 80 μm is measured at a scanning frequency of 1 Hz.
 測定及び評価の結果を表1に示す。 Table 1 shows the results of measurement and evaluation.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1において、
 Mix:銀ナノワイヤ分散液に、架橋剤添加
 OC:架橋剤を銀ナノワイヤ層上にオーバーコート
 UC:銀ナノワイヤ層の下に架橋剤をアンダーコートしてから銀ナノワイヤ層を形成
 Heat:硬化を熱で行う
 UV:硬化を紫外光で行う。
In Table 1,
Mix: Addition of cross-linking agent to silver nanowire dispersion OC: Overcoat cross-linking agent on silver nanowire layer UC: Undercoat cross-linking agent under silver nanowire layer and then form silver nanowire layer Heat: Curing with heat Perform UV: Curing is performed with ultraviolet light.
 表1から、本発明の透明電極は、平滑性Ra、Ryが優れていることが判る。 From Table 1, it can be seen that the transparent electrode of the present invention has excellent smoothness Ra and Ry.
 《有機素子(有機EL素子)の作製》
 作製した透明電極101~116を第一電極に用いて、以下の手順でそれぞれ有機EL素子201~216を作製した。
<< Production of organic element (organic EL element) >>
Using the produced transparent electrodes 101 to 116 as the first electrode, organic EL elements 201 to 216 were produced in the following procedure, respectively.
 〈正孔輸送層の形成〉
 第1電極上に、1,2-ジクロロエタン中に1質量%となるように正孔輸送材料の4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル(NPD)を溶解させた正孔輸送層形成用塗布液をスピンコート装置で塗布した後、80℃、60分間乾燥して、厚さ40nmの正孔輸送層を形成した。
<Formation of hole transport layer>
On the first electrode, 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (NPD), which is a hole transport material, is added to 1% by mass in 1,2-dichloroethane. The dissolved coating solution for forming a hole transport layer was applied by a spin coater and then dried at 80 ° C. for 60 minutes to form a hole transport layer having a thickness of 40 nm.
 〈発光層の形成〉
 正孔輸送層が形成された各フィルム上に、ホスト材のポリビニルカルバゾール(PVK)に対して、赤ドーパント材BtpIr(acac)が1質量%、緑ドーパント材Ir(ppy)が2質量%、青ドーパント材FIr(pic)が3質量%にそれぞれなるように混合し、PVKと3種ドーパントの全固形分濃度が1質量%となるように1,2-ジクロロエタン中に溶解させた発光層形成用塗布液をスピンコート装置で塗布した後、100℃、10分間乾燥して、厚さ60nmの発光層を形成した。
<Formation of light emitting layer>
On each film in which the hole transport layer is formed, the red dopant material Btp 2 Ir (acac) is 1% by mass and the green dopant material Ir (ppy) 3 is 2% with respect to polyvinylcarbazole (PVK) as the host material. % And blue dopant material FIr (pic) are mixed so as to be 3% by mass, respectively, and dissolved in 1,2-dichloroethane so that the total solid concentration of PVK and the three dopants is 1% by mass. The coating liquid for layer formation was applied with a spin coater and then dried at 100 ° C. for 10 minutes to form a light emitting layer having a thickness of 60 nm.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 〈電子輸送層の形成〉
 形成した発光層上に、電子輸送層形成用材料としてLiFを5×10-4Paの真空下にて蒸着し、厚さ0.5nmの電子輸送層を形成した。
<Formation of electron transport layer>
On the formed light emitting layer, LiF was deposited as an electron transport layer forming material under a vacuum of 5 × 10 −4 Pa to form an electron transport layer having a thickness of 0.5 nm.
 〈第2電極の形成〉
 形成した電子輸送層の上に、第2電極形成用材料としてAlを5×10-4Paの真空下にて蒸着し、厚さ100nmの第2電極を形成した。
<Formation of second electrode>
On the formed electron transport layer, Al was deposited as a second electrode forming material under a vacuum of 5 × 10 −4 Pa to form a second electrode having a thickness of 100 nm.
 〈封止膜の形成〉
 形成した電子輸送層の上に、ポリエチレンテレフタレートを基材とし、Alを厚さ300nmで蒸着した可撓性封止部材を使用した。第1電極及び第2電極の外部取り出し端子が形成出来る様に端部を除き第2電極の周囲に接着剤を塗り、可撓性封止部材を貼合した後、熱処理で接着剤を硬化させた。
<Formation of sealing film>
On the formed electron transport layer, a polyethylene terephthalate as a substrate, using a flexible sealing member which is deposited to a thickness 300nm of Al 2 O 3. Apply the adhesive around the second electrode except for the end so that the external lead terminals of the first electrode and the second electrode can be formed, paste the flexible sealing member, and then cure the adhesive by heat treatment It was.
 [発光輝度ムラ]
 KEITHLEY製ソースメジャーユニット2400型を用いて、直流電圧を作製した有機EL素子201~216に印加し発光させた。200cd/mで発光させた各有機EL素子について、点灯時の発光面全体の発光ムラを、目視観察により下記基準で評価した。評価結果を表2に示す。
[Light emission brightness unevenness]
Using a source measure unit type 2400 manufactured by KEITHLEY, a direct current voltage was applied to the produced organic EL elements 201 to 216 to emit light. About each organic EL element made to light-emit at 200 cd / m < 2 >, the light emission nonuniformity of the whole light emission surface at the time of lighting was evaluated by the following reference | standard by visual observation. The evaluation results are shown in Table 2.
 ◎:90%以上が均一に発光している
 ○:80%以上が均一に発光している
 △:70%以上が均一に発光している
 ×:70%未満しか発光していない
 ××:全く発光せず。
◎: 90% or more emits uniformly ○: 80% or more emits uniformly △: 70% or more emits uniformly ×: Less than 70% emits XX: no Does not emit light.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表2から明らかなように、本発明の透明電極を有機EL素子の電極として使用した場合、発光輝度ムラが少ないことがわかる。 As can be seen from Table 2, when the transparent electrode of the present invention is used as an electrode of an organic EL element, it can be seen that there is little light emission luminance unevenness.

Claims (7)

  1.  透明支持体上に金属ナノワイヤ層と導電性高分子層からなる導電層を有する透明電極において、該金属ナノワイヤ層中に、水溶性高分子の架橋物、高分子ラテックスの架橋物、及び硬化性樹脂の硬化物から選ばれる少なくとも1種を含有することを特徴とする透明電極。 In a transparent electrode having a conductive layer composed of a metal nanowire layer and a conductive polymer layer on a transparent support, a cross-linked product of a water-soluble polymer, a cross-linked product of a polymer latex, and a curable resin in the metal nanowire layer A transparent electrode comprising at least one selected from the cured products.
  2.  前記水溶性高分子が、ポリビニルアルコールまたはセルロース誘導体であることを特徴とする請求項1記載の透明電極。 The transparent electrode according to claim 1, wherein the water-soluble polymer is polyvinyl alcohol or a cellulose derivative.
  3.  前記水溶性高分子の架橋物又は高分子ラテックスの架橋物は、アルデヒド系、メラミン系、エポキシ系、及びイソシアネート系架橋剤のいずれかから選択される少なくとも1種の架橋剤で架橋されたものであることを特徴とする請求項1記載の透明電極。 The water-soluble polymer cross-linked product or polymer latex cross-linked product is cross-linked with at least one cross-linking agent selected from aldehyde, melamine, epoxy, and isocyanate cross-linking agents. The transparent electrode according to claim 1, wherein the transparent electrode is provided.
  4.  前記金属ナノワイヤ層の金属ナノワイヤが銀ナノワイヤであることを特徴とする請求項1、2、又は3記載の透明電極。 The transparent electrode according to claim 1, 2, or 3, wherein the metal nanowire of the metal nanowire layer is a silver nanowire.
  5.  請求項1~4のいずれか1項記載の透明電極の製造方法であって、該透明電極が透明支持体上に金属ナノワイヤとバインダーから成る金属ナノワイヤ層を形成してから、該金属ナノワイヤ層のバインダーを架橋あるいは硬化させた後、導電性高分子層を形成して製造されたことを特徴とする透明電極の製造方法。 The method for producing a transparent electrode according to any one of claims 1 to 4, wherein the transparent electrode forms a metal nanowire layer comprising metal nanowires and a binder on a transparent support, and then the metal nanowire layer is formed. A method for producing a transparent electrode, which is produced by crosslinking or curing a binder and then forming a conductive polymer layer.
  6.  前記バインダーが金属ナノワイヤ層形成用の分散液に含有されていることを特徴とする請求項5記載の透明電極の製造方法。 The method for producing a transparent electrode according to claim 5, wherein the binder is contained in a dispersion for forming the metal nanowire layer.
  7.  請求項1~4のいずれか1項記載の透明電極を含むことを特徴とする有機エレクトロルミネッセンス素子。 An organic electroluminescence device comprising the transparent electrode according to any one of claims 1 to 4.
PCT/JP2009/071121 2009-01-19 2009-12-18 Transparent electrode, method for producing same, and organic electroluminescent element WO2010082428A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010546570A JP5533669B2 (en) 2009-01-19 2009-12-18 Transparent electrode, method for producing the same, and organic electroluminescence device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-008646 2009-01-19
JP2009008646 2009-01-19

Publications (1)

Publication Number Publication Date
WO2010082428A1 true WO2010082428A1 (en) 2010-07-22

Family

ID=42339684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071121 WO2010082428A1 (en) 2009-01-19 2009-12-18 Transparent electrode, method for producing same, and organic electroluminescent element

Country Status (2)

Country Link
JP (1) JP5533669B2 (en)
WO (1) WO2010082428A1 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011013618A1 (en) * 2009-07-30 2011-02-03 住友化学株式会社 Organic electroluminescence element
JP2011029036A (en) * 2009-07-27 2011-02-10 Panasonic Electric Works Co Ltd Base material with transparent conductive film
WO2011105148A1 (en) * 2010-02-24 2011-09-01 コニカミノルタホールディングス株式会社 Transparent conductive film and organic electroluminescent element
WO2012016146A1 (en) 2010-07-30 2012-02-02 The Board Of Trustees Of The Leland Stanford Junior University Conductive films
WO2012081471A1 (en) * 2010-12-13 2012-06-21 コニカミノルタホールディングス株式会社 Transparent surface electrode, organic electronic element, and method for manufacturing transparent surface electrode
WO2012093530A1 (en) * 2011-01-06 2012-07-12 リンテック株式会社 Transparent conductive laminate body and organic thin film device
WO2012117819A1 (en) * 2011-03-03 2012-09-07 パナソニック株式会社 Substrate with transparent conductive film, and organic electroluminescence element
JP2012216489A (en) * 2010-10-08 2012-11-08 Sumitomo Chemical Co Ltd Light emitting element and photoelectric conversion element, and method for manufacturing the same
JP2012533847A (en) * 2009-07-17 2012-12-27 ケアストリーム ヘルス インク Transparent conductive film containing water-soluble binder
EP2634778A1 (en) * 2010-10-29 2013-09-04 LINTEC Corporation Transparent conductive film, electronic device, and method for manufacturing electronic device
JP2013539162A (en) * 2010-07-30 2013-10-17 インクテック シーオー.,リミテッド. Method for producing transparent conductive film and transparent conductive film produced thereby
DE102012016759A1 (en) * 2012-08-27 2014-02-27 Inoviscoat Gmbh Luminous element having a luminescent layer which has electroluminescent particles
US20140106154A1 (en) * 2012-10-11 2014-04-17 Do Young Kim Transparent conductor, composition for preparing the same, and optical display apparatus including the same
JP2014511551A (en) * 2011-03-04 2014-05-15 カンブリオス テクノロジーズ コーポレイション Method for tuning the work function of transparent conductors based on metal nanostructures
WO2014084455A1 (en) * 2012-11-29 2014-06-05 성균관대학교산학협력단 Metal nanowire-organic compound composite, film comprising same and method for preparing same
KR101440396B1 (en) 2014-02-20 2014-09-18 주식회사 인포비온 Method for fabricating transparent conductive film using conductive nano-sized wires
KR20140139015A (en) * 2012-03-20 2014-12-04 시쉘 테크널러지, 엘엘씨 Mixtures, methods and compositions pertaining to conductive materials
US9301367B2 (en) 2011-12-19 2016-03-29 Inoviscoat Gmbh Luminous elements with an electroluminescent arrangement and method for producing a luminous element
WO2017018427A1 (en) * 2015-07-30 2017-02-02 昭和電工株式会社 Method for producing conductive film, and conductive film
KR101802952B1 (en) * 2014-10-28 2017-11-30 주식회사 엔앤비 Transparent conductor and the Fabrication Method thereof
JP2020161259A (en) * 2019-03-26 2020-10-01 三菱ケミカル株式会社 Producing method of conductive laminate
CN116583138A (en) * 2023-07-10 2023-08-11 四川京龙光电科技有限公司 Stretchable display device with strong heat dissipation and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003342354A (en) * 2002-05-24 2003-12-03 Hokko Chem Ind Co Ltd New borate compound and cure accelerator for epoxy resin
JP2005317395A (en) * 2004-04-28 2005-11-10 Mitsubishi Materials Corp Conductive material containing metal nanowires and its intended use
JP2006012737A (en) * 2004-06-29 2006-01-12 Tdk Corp Object provided with transparent conductive layer and transferring conductive film
US20070074316A1 (en) * 2005-08-12 2007-03-29 Cambrios Technologies Corporation Nanowires-based transparent conductors
JP2008277249A (en) * 2006-12-21 2008-11-13 Fujifilm Corp Electrically conductive film, and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003342354A (en) * 2002-05-24 2003-12-03 Hokko Chem Ind Co Ltd New borate compound and cure accelerator for epoxy resin
JP2005317395A (en) * 2004-04-28 2005-11-10 Mitsubishi Materials Corp Conductive material containing metal nanowires and its intended use
JP2006012737A (en) * 2004-06-29 2006-01-12 Tdk Corp Object provided with transparent conductive layer and transferring conductive film
US20070074316A1 (en) * 2005-08-12 2007-03-29 Cambrios Technologies Corporation Nanowires-based transparent conductors
JP2008277249A (en) * 2006-12-21 2008-11-13 Fujifilm Corp Electrically conductive film, and manufacturing method thereof

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012533847A (en) * 2009-07-17 2012-12-27 ケアストリーム ヘルス インク Transparent conductive film containing water-soluble binder
US8962131B2 (en) 2009-07-17 2015-02-24 Carestream Health Inc. Transparent conductive film comprising water soluble binders
JP2011029036A (en) * 2009-07-27 2011-02-10 Panasonic Electric Works Co Ltd Base material with transparent conductive film
JP2011034711A (en) * 2009-07-30 2011-02-17 Sumitomo Chemical Co Ltd Organic electroluminescence element
CN102484925B (en) * 2009-07-30 2016-07-06 住友化学株式会社 Organic electroluminescent device
US20120119643A1 (en) * 2009-07-30 2012-05-17 Sumitomo Chemical Company, Limited Organic electroluminescence element
CN102484925A (en) * 2009-07-30 2012-05-30 住友化学株式会社 Organic electroluminescence element
WO2011013618A1 (en) * 2009-07-30 2011-02-03 住友化学株式会社 Organic electroluminescence element
US8552637B2 (en) 2009-07-30 2013-10-08 Sumitomo Chemical Company, Limited Organic electroluminescence element having a conductive resin layer and method for manufacturing the same
WO2011105148A1 (en) * 2010-02-24 2011-09-01 コニカミノルタホールディングス株式会社 Transparent conductive film and organic electroluminescent element
EP2598942A4 (en) * 2010-07-30 2014-07-23 Univ Leland Stanford Junior Conductive films
EP2598942A1 (en) * 2010-07-30 2013-06-05 The Board of Trustees of The Leland Stanford Junior University Conductive films
US9112166B2 (en) 2010-07-30 2015-08-18 The Board Of Trustees Of The Leland Stanford Junior Univerity Conductive films
JP2013539162A (en) * 2010-07-30 2013-10-17 インクテック シーオー.,リミテッド. Method for producing transparent conductive film and transparent conductive film produced thereby
WO2012016146A1 (en) 2010-07-30 2012-02-02 The Board Of Trustees Of The Leland Stanford Junior University Conductive films
JP2012216489A (en) * 2010-10-08 2012-11-08 Sumitomo Chemical Co Ltd Light emitting element and photoelectric conversion element, and method for manufacturing the same
EP2634778A1 (en) * 2010-10-29 2013-09-04 LINTEC Corporation Transparent conductive film, electronic device, and method for manufacturing electronic device
US9401490B2 (en) 2010-10-29 2016-07-26 Lintec Corporation Transparent conductive film, electronic device, and method for manufacturing electronic device
EP2634778A4 (en) * 2010-10-29 2014-05-14 Lintec Corp Transparent conductive film, electronic device, and method for manufacturing electronic device
JP5880444B2 (en) * 2010-12-13 2016-03-09 コニカミノルタ株式会社 Transparent surface electrode, organic electronics element, and method of manufacturing transparent surface electrode
WO2012081471A1 (en) * 2010-12-13 2012-06-21 コニカミノルタホールディングス株式会社 Transparent surface electrode, organic electronic element, and method for manufacturing transparent surface electrode
US8987720B2 (en) 2010-12-13 2015-03-24 Konica Minolta, Inc. Transparent surface electrode, organic electronic element, and method for manufacturing transparent surface electrode
JPWO2012093530A1 (en) * 2011-01-06 2014-06-09 リンテック株式会社 Transparent conductive laminate and organic thin film device
WO2012093530A1 (en) * 2011-01-06 2012-07-12 リンテック株式会社 Transparent conductive laminate body and organic thin film device
WO2012117819A1 (en) * 2011-03-03 2012-09-07 パナソニック株式会社 Substrate with transparent conductive film, and organic electroluminescence element
JP2014511551A (en) * 2011-03-04 2014-05-15 カンブリオス テクノロジーズ コーポレイション Method for tuning the work function of transparent conductors based on metal nanostructures
EP2681780B1 (en) * 2011-03-04 2018-11-28 CAM Holding Corporation Method of tuning work function of metal nanostructure-based transparent conductor
US9301367B2 (en) 2011-12-19 2016-03-29 Inoviscoat Gmbh Luminous elements with an electroluminescent arrangement and method for producing a luminous element
KR102026594B1 (en) 2012-03-20 2019-09-30 바스프 에스이 Mixtures, methods and compositions pertaining to conductive materials
KR20140139015A (en) * 2012-03-20 2014-12-04 시쉘 테크널러지, 엘엘씨 Mixtures, methods and compositions pertaining to conductive materials
DE102012016759A1 (en) * 2012-08-27 2014-02-27 Inoviscoat Gmbh Luminous element having a luminescent layer which has electroluminescent particles
US20140106154A1 (en) * 2012-10-11 2014-04-17 Do Young Kim Transparent conductor, composition for preparing the same, and optical display apparatus including the same
US9384865B2 (en) * 2012-10-11 2016-07-05 Cheil Industries, Inc. Transparent conductor, composition for preparing the same, and optical display apparatus including the same
WO2014084455A1 (en) * 2012-11-29 2014-06-05 성균관대학교산학협력단 Metal nanowire-organic compound composite, film comprising same and method for preparing same
WO2015126052A1 (en) * 2014-02-20 2015-08-27 주식회사 인포비온 Method for manufacturing transparent conductive film using conductive nanowire
KR101440396B1 (en) 2014-02-20 2014-09-18 주식회사 인포비온 Method for fabricating transparent conductive film using conductive nano-sized wires
US10535792B2 (en) 2014-10-28 2020-01-14 N&B Co., Ltd. Transparent conductor and preparation method for same
KR101802952B1 (en) * 2014-10-28 2017-11-30 주식회사 엔앤비 Transparent conductor and the Fabrication Method thereof
JPWO2017018427A1 (en) * 2015-07-30 2018-05-24 昭和電工株式会社 Conductive film manufacturing method and conductive film
CN107615408B (en) * 2015-07-30 2019-07-02 昭和电工株式会社 The manufacturing method and conductive film of conductive film
CN107615408A (en) * 2015-07-30 2018-01-19 昭和电工株式会社 The manufacture method and conducting film of conducting film
WO2017018427A1 (en) * 2015-07-30 2017-02-02 昭和電工株式会社 Method for producing conductive film, and conductive film
JP7421867B2 (en) 2019-03-26 2024-01-25 三菱ケミカル株式会社 Method for manufacturing conductive laminate
JP2020161259A (en) * 2019-03-26 2020-10-01 三菱ケミカル株式会社 Producing method of conductive laminate
CN116583138A (en) * 2023-07-10 2023-08-11 四川京龙光电科技有限公司 Stretchable display device with strong heat dissipation and preparation method thereof

Also Published As

Publication number Publication date
JP5533669B2 (en) 2014-06-25
JPWO2010082428A1 (en) 2012-07-05

Similar Documents

Publication Publication Date Title
JP5533669B2 (en) Transparent electrode, method for producing the same, and organic electroluminescence device
JP5396916B2 (en) Method for producing transparent electrode, transparent electrode and organic electroluminescence element
JP5397376B2 (en) Transparent electrode, organic electroluminescence element, and method for producing transparent electrode
JP5397377B2 (en) Transparent electrode, organic electroluminescence element, and method for producing transparent electrode
JP5332252B2 (en) Transparent conductive film, organic electroluminescence element, and method for producing transparent conductive film
JP5190758B2 (en) Film with transparent conductive layer, flexible functional element, flexible dispersive electroluminescent element, method for producing the same, and electronic device using the same
JP4983021B2 (en) Transparent conductive laminate, organic EL element using the same, and method for producing the same
JP5454476B2 (en) Transparent electrode and method for producing transparent electrode
EP2557899B1 (en) Transparent electrode and organic electronic element using same
JP2009059666A (en) Film with transparent conductive layer, flexible functional elements, and manufacturing methods therefor
KR20140076268A (en) Substrate having transparent electrode for flexible display and method of fabricating the same
JP2010073322A (en) Transparent electrode, its manufacturing method, and organic electroluminescent element using it
JP5515789B2 (en) Transparent pattern electrode, method for producing the electrode, organic electronic device using the electrode, and method for producing the same
JP5660121B2 (en) Transparent conductive film and organic electroluminescence element
JP5782855B2 (en) Transparent electrode and organic electroluminescence device
JP2012190659A (en) Transparent conductive film, base material with transparent conductive film and organic electroluminescent element including the same
JP2011086482A (en) Transparent electrode, method of manufacturing transparent electrode and organic electroluminescent element
JP2014229397A (en) Method for manufacturing electroconductive film, electroconductive film, organic electronic element, and touch panel
JP5333142B2 (en) Pattern electrode, organic electroluminescence element, and method of manufacturing pattern electrode
JP5720680B2 (en) Electrodes for organic electronic devices
JP2010118165A (en) Transparent electrode, its manufacturing method, and organic electroluminescent element using same
JP2011065765A (en) Transparent electrode and organic electronic device using the same
JP5600964B2 (en) Transparent conductive film
WO2012117812A1 (en) Transparent conductive film, substrate with transparent conductive film, and organic electroluminescent element using same
JP2010263067A (en) Method of manufacturing pattern electrode, and pattern electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09838393

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010546570

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09838393

Country of ref document: EP

Kind code of ref document: A1