WO2012117812A1 - Transparent conductive film, substrate with transparent conductive film, and organic electroluminescent element using same - Google Patents

Transparent conductive film, substrate with transparent conductive film, and organic electroluminescent element using same Download PDF

Info

Publication number
WO2012117812A1
WO2012117812A1 PCT/JP2012/052692 JP2012052692W WO2012117812A1 WO 2012117812 A1 WO2012117812 A1 WO 2012117812A1 JP 2012052692 W JP2012052692 W JP 2012052692W WO 2012117812 A1 WO2012117812 A1 WO 2012117812A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive film
transparent conductive
substrate
metal wires
transparent
Prior art date
Application number
PCT/JP2012/052692
Other languages
French (fr)
Japanese (ja)
Inventor
太祐 松井
辻本 光
横川 弘
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012117812A1 publication Critical patent/WO2012117812A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/814Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines

Definitions

  • the present invention relates to a transparent conductive film used for various optical devices, a substrate with a transparent conductive film, and an organic electroluminescence element using the same.
  • organic EL element is an organic light emitting layer sandwiched between a pair of electrodes formed on a transparent substrate. It passes through the electrode and is taken out from the substrate side.
  • organic EL element a material having conductivity and translucency is used as an electrode material on the substrate side, and indium tin oxide (hereinafter referred to as ITO) is widely used.
  • ITO indium tin oxide
  • electrodes using ITO as a material are vulnerable to bending and physical stress and are fragile.
  • high vapor deposition temperature and / or high annealing temperature are needed, and there exists a possibility that it may become high cost in manufacture of the device using an organic EL element.
  • the base material 101 with a transparent conductive film includes a base material 102 having translucency and a transparent conductive film 103 formed on the base material 102.
  • the transparent conductive film 103 includes a plurality of fine metal wires 103a and a transparent resin layer 103b as a binder. The plurality of fine metal wires 103a are bonded onto the base material 102 by the transparent resin layer 103b.
  • the substrate 101 with the transparent conductive film the plurality of fine metal wires 103a protrude from one surface opposite to the surface facing the substrate 102 of the transparent resin layer 103b.
  • the smoothness is poor. Therefore, when the substrate 101 with a transparent conductive film is used in an organic EL element, for example, when a functional layer such as a hole injection layer, a hole transport layer, or an organic light emitting layer is formed on the transparent conductive film 103, These functional layers may not be formed to a uniform thickness.
  • the above-mentioned organic EL element is expected to be used as a surface light emitter, and it is desired that the thickness of the functional layer is uniform in order to achieve uniform surface light emission, and the transparent where the functional layer is formed. It is necessary to smooth one surface of the conductive film 103. In order to smooth one surface of the transparent conductive film 103, it is conceivable to reduce the amount of the fine metal wires 103a. However, when the amount of the fine metal wires 103a is reduced, the conductivity of the transparent conductive film 103 is lowered.
  • the present invention has been made in order to solve the above problems, and without reducing the conductivity, a transparent conductive film capable of smoothing one surface on which a functional layer is formed, a substrate with a transparent conductive film, Another object of the present invention is to provide an organic electroluminescence device including the same.
  • the transparent conductive film of the present invention is a transparent conductive film provided on a substrate and provided with a transparent resin layer containing fine metal wires, on one surface opposite to the surface facing the substrate of the transparent resin layer.
  • the existence ratio P1 of the fine metal wires and the existence ratio P2 of the fine metal wires in a cross section that is parallel to the base material of the transparent resin layer and closer to the base material than the one surface have a relationship of P1 ⁇ P2. It is comprised as follows.
  • the cross section is a cross section that bisects the transparent resin layer in parallel with the base material, and the existence ratios P1 and P2 of the fine metal wires have a relationship of P1 ⁇ 0.7P2. Is preferred.
  • the existence ratios P1 and P2 of the fine metal wires have a relationship of 0.1P2 ⁇ P1.
  • the fine metal wire is preferably a metal nanowire.
  • the metal nanowire preferably contains silver.
  • this transparent conductive film is formed on a substrate and configured as a substrate with a transparent conductive film.
  • This substrate with a transparent conductive film is preferably used for an organic electroluminescence element.
  • the ratio of the thin metal wires on the surface opposite to the surface facing the substrate of the transparent resin layer is small, and the number of protruding metal wires is small.
  • electroconductivity can be improved.
  • the transparent conductive film of the present embodiment is formed on a light-transmitting substrate and is configured as a substrate with a transparent conductive film, and is used for, for example, an organic electroluminescence (hereinafter referred to as organic EL) element.
  • FIG. 1 shows a cross-sectional configuration of an organic EL element.
  • the organic EL element 1 includes a substrate 2, a transparent conductive film 3, an organic light emitting layer 4 as a functional layer, and a conductor layer 5, and the transparent conductive film 3, the organic light emitting layer 4, And the conductor layer 5 are sequentially laminated.
  • a hole injection layer that promotes injection of holes from the transparent conductive film 3 is provided between the organic light emitting layer 4 and the transparent conductive film 3, and promotes injection of electrons from the conductor layer 5.
  • An electron injection layer is preferably provided between the conductor layer 5.
  • a hole transport layer that efficiently transports holes or an electron transport layer that efficiently transports electrons may be provided.
  • the organic EL element 1 configured as described above, when a voltage is applied between the transparent conductive film 3 and the conductor layer 5 with the transparent conductive film 3 side as a positive potential, holes are emitted from the transparent conductive film 3 to organic light emission. Electrons are injected into the layer 4 and electrons are injected from the conductor layer 5 into the organic light emitting layer 4. Then, the holes and electrons injected into the organic light emitting layer 4 are recombined in the organic light emitting layer 4 so that the organic light emitting layer 4 emits light. The light emitted from the organic light emitting layer 4 passes through the substrate 6 with the transparent conductive film (the transparent conductive film 3 and the substrate 2), and is taken out of the organic EL element 1. The light irradiated on the conductor layer 5 is reflected on the surface of the conductor layer 5, passes through the substrate 6 with a transparent conductive film, and is taken out of the organic EL element 1.
  • the material of the base material 2 will not be specifically limited if it has translucency.
  • a base material 2 for example, a rigid transparent glass plate such as soda glass or non-alkali glass, or a flexible transparent plastic plate such as polycarbonate or ethylene terephthalate is used.
  • a rigid transparent glass plate such as soda glass or non-alkali glass
  • a flexible transparent plastic plate such as polycarbonate or ethylene terephthalate
  • the strength of the device using the substrate 2 is excellent, and the formation of the transparent conductive film 3 on the substrate 2 can be facilitated.
  • a flexible transparent plastic plate is used as the substrate 2, the device using the substrate 2 can be reduced in weight, and the device can have flexibility.
  • Examples of the material of the organic light emitting layer 4 include anthracene, naphthalene, pyrene, tetracene, coronene, perylene, phthaloperylene, naphthaloperylene, diphenylbutadiene, tetraphenylbutadiene, coumarin, oxadiazole, bisbenzoxazoline, bisstyryl, and cyclopentadiene.
  • a compound or a polymer is used.
  • a light-emitting material such as an iridium complex, an osmium complex, a platinum complex, or a europium complex, or a phosphorescent light-emitting material such as a compound or polymer having these in a molecule can be used. These materials can be appropriately selected and used as necessary.
  • a material of the conductor layer 5 for example, aluminum or the like is used.
  • a laminated structure may be formed by combining aluminum and another material. Examples of such combinations include a laminate of an alkali metal and aluminum, a laminate of an alkali metal and silver, a laminate of an alkali metal halide and aluminum, a laminate of an alkali metal oxide and aluminum, and an alkali.
  • a laminate of an earth metal or rare earth metal and aluminum, or an alloy of these metal species with another metal can be used.
  • the substrate 6 with a transparent conductive film includes a substrate 2 and a transparent conductive film 3 formed on the substrate 2.
  • the transparent conductive film 3 includes a plurality of fine metal wires 3a having conductivity and a transparent resin layer 3b as a binder.
  • the organic light emitting layer 4 is laminated on the surface 3c on the opposite side of the surface of the transparent resin layer 3b facing the substrate 2, and the organic light emitting layer 4 is laminated. Therefore, in the following description, this surface is referred to as a working surface 3c.
  • the plurality of fine metal wires 3a are bonded onto the base material 2 by the transparent resin layer 3b in a state in which a part protrudes from the action surface 3c. For this reason, on the base material 2, a three-dimensional conductive network of a plurality of fine metal wires 3a is formed. Thereby, the transparent conductive film 3 has electroconductivity.
  • the three-dimensional conductive network of the plurality of fine metal wires 3a indicates a state in which the plurality of fine metal wires 3a are in contact with or close to each other in three dimensions.
  • the fine metal wire 3a protruding from the working surface 3c of the transparent resin layer 3b comes into contact with the organic light emitting layer 4, and a voltage is applied to the organic EL element 1. Then, holes are injected into the organic light emitting layer 4 from the plurality of fine metal wires 3a.
  • the existence ratio P1 of the plurality of fine metal wires 3a on the working surface 3c of the transparent resin layer 3b is parallel to the base material 2 of the transparent resin layer 3b and is present on the base material 2 side with respect to the working surface 3c.
  • the existence ratio P2 of the thin metal wires 3a in the cross section 3d is adjusted to satisfy P1 ⁇ P2.
  • the abundance ratio P1 of the metal fine wires 3a is not zero, and a predetermined amount of the metal fine wires 3a is present on the working surface 3c of the transparent resin layer 3b.
  • a plurality of fine metal wires 3a are continuously present from the working surface 3c of the transparent resin layer 3b to the surface facing the substrate 2.
  • These thin metal wires 3a form a three-dimensional conductive network as described above, whereby the transparent conductive film 3 can obtain high conductivity.
  • the abundance ratios P1 and P2 of the fine metal wires 3a are P1 ⁇ 0.7P2. It is preferable to satisfy the relationship. Thereby, the smoothness of the action surface 3c of the transparent conductive film 3 can be improved. Further, it is preferable that the existence ratios P1 and P2 of the fine metal wires 3a satisfy the relationship of 0.1P2 ⁇ P1. Thereby, it is possible to prevent the conductivity of the working surface 3c of the transparent conductive film 3 from being lowered and the surface resistance value on the working surface 3c from becoming unstable.
  • the following methods can be mentioned. That is, in the step of forming the transparent conductive film 3 on the substrate 2, a plurality of coating agent compositions having different concentrations of the fine metal wires 3a are prepared. And these coating agent compositions are apply
  • the coating agent composition that is finally applied onto the substrate 2 is a coating agent composition having the lowest concentration of the fine metal wires 3a among the plurality of coating agent compositions.
  • the existence ratio P2 of the metal fine wire 3a becomes large gradually toward the surface which opposes the base material 2 from the action surface 3c of the transparent resin layer 3b in the transparent resin layer 3b.
  • the fine metal wire 3a is made of a fibrous metal, metal, or metal fine particle having a line width of several nm to several tens of ⁇ m.
  • the length of the fine metal wire 3a is sufficiently longer than the diameter of the cross section perpendicular to the length direction of the fine metal wire 3a.
  • the amount of the plurality of fine metal wires 3a contained in the transparent conductive film 3 is preferably 0.1 mg / m 2 or more and 1000 mg / m 2 or less, more preferably 1 mg / m 2 or more and 100 mg / m 2 or less. preferable.
  • the length of each of the plurality of fine metal wires 3a is preferably 300 nm or less in consideration of the translucency of the transparent conductive film 3, and the average diameter of the plurality of fine metal wires 3a is 0.3 nm or more and 200 nm or less. Preferably there is. For the same reason, the average aspect ratio of the plurality of fine metal wires 3a is preferably 10 or more and 10,000 or less. Furthermore, considering the conductivity of the transparent conductive film 3, the thickness of the transparent resin layer 3b is preferably not less than the average diameter of the plurality of fine metal wires 3a and not more than 500 nm.
  • the material of the metal thin wire 3a for example, a metal mesh, a metal nanowire, an aggregate of metal fine particles, or the like is used, but it is preferable to use a metal nanowire excellent in transparency and conductivity of the transparent conductive film 3.
  • the metal used for the thin metal wire 3a include gold, silver, copper, aluminum, zinc, cobalt, nickel, and tungsten.
  • gold, silver, or copper having high conductivity is preferably used, and silver having the highest conductivity is more preferably used.
  • the length of the metal nanowires is preferably 3 ⁇ m or more, more preferably 3 ⁇ m or more and 500 ⁇ m or less in consideration of the conductivity of the transparent conductive film 8. More preferably, it is 300 ⁇ m or less.
  • the average diameter of the metal nanowires is preferably 10 nm or more and 300 nm or less, and more preferably 30 nm or more and 200 nm or less in consideration of the translucency and conductivity of the transparent conductive film 8.
  • the manufacturing method of metal nanowire is not specifically limited, For example, well-known methods, such as a liquid phase method or a gaseous-phase method, are used.
  • Examples of the material for the transparent resin layer 3b include polyethylene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer and a saponified product thereof partially or entirely, ethylene-ethyl acrylate copolymer, ethylene-methyl methacrylate copolymer.
  • Polymers ethylene-vinyl acetate-methyl methacrylate copolymers, olefin resins such as polypropylene and propylene- ⁇ -olefin copolymers, vinyl chloride resins such as polyvinyl chloride resins, and acrylonitrile such as acrylonitrile-styrene copolymers Resin, polystyrene, styrene resin such as styrene-methyl methacrylate copolymer, acrylate polymer such as polyethyl acrylate, methacrylate polymer such as polymethyl methacrylate, copolymers thereof and others (Meth) acrylic with added copolymer component Ester resin, a polyester resin such as polyethylene terephthalate, polyamide resins such as nylon, polycarbonate resin, ethyl cellulose, cellulose resins such as acetyl cellulose, polyurethane resins, and silicone resins.
  • Ester resin a polyester resin such as polyethylene
  • thermosetting resins such as phenol resin, urea resin, diallyl phthalate resin, melamine resin, unsaturated polyester resin, polyurethane resin, epoxy resin, aminoalkyd resin, silicon resin, or polysiloxane resin can be used.
  • thermosetting resins such as phenol resin, urea resin, diallyl phthalate resin, melamine resin, unsaturated polyester resin, polyurethane resin, epoxy resin, aminoalkyd resin, silicon resin, or polysiloxane resin can be used.
  • curing agent, a hardening accelerator, or a solvent to these thermosetting resins as needed.
  • the ionizing radiation curable resin preferably has an acrylate functional group, for example, a relatively low molecular weight polyester resin, polyether resin, acrylic resin, epoxy resin, urethane resin, alkyd resin, spiroacetal. Resins, polybutadiene resins, polythiol polyene resins, oligomers such as (meth) acrylates of polyfunctional compounds such as polyhydric alcohols, prepolymers, and reactive diluents such as ethyl (meth) acrylate, ethylhexyl (meth) acrylate, styrene, methyl Monofunctional monomers such as styrene and N-vinylpyrrolidone, as well as polyfunctional monomers such as trimethylolpropane tri (meth) acrylate, hexanediol (meth) acrylate, tripropylene glycol di (meth) acrylate A relatively large amount of diethylene glycol di (me
  • the ionizing radiation curable resin an ultraviolet curable resin
  • a photopolymerization initiator acetophenones, benzophenones, ⁇ -amyloxime esters, thioxanthones or the like are used.
  • a photosensitizer may be used.
  • the photosensitizer n-butylamine, triethylamine, tri-n-butylphosphine, thioxanthone, or the like is used.
  • the coating method of the transparent conductive film 3 is not particularly limited, and a known coating method such as spin coating, screen printing, dip coating, die coating, casting, spray coating, or gravure coating is used. Further, in order to smooth the working surface 3c of the transparent resin layer 3b and stabilize the surface resistance value on the working surface 3c, a pressurizing step using, for example, a roller press may be performed.
  • the existence ratio of the thin metal wires 3a on the working surface 3c of the transparent resin layer 3b is small, and the protruding fine metal wires 3a are small.
  • the surface 3c can be smoothed.
  • the conductivity can be improved.
  • Silver nanowires were produced as thin metal wires according to a known paper “Materials Chemistry and Physics vol. 114 p333-338“ Preparation of Ag nanorods with high yield by polyol process ””. In this case, the average diameter of the silver nanowire was 50 nm, and the average length of the silver nanowire was 5 ⁇ m.
  • Example 1 3 parts by mass of methyl cellulose “M7140” manufactured by Sigma-Aldrich was dissolved in 200 parts by mass of water to prepare a methylcellulose solution. Next, a dispersion liquid in which the above-mentioned silver nanowire was dispersed as a metal thin wire and water was used as a dispersion medium at a solid content of 3.0% by mass was prepared. Next, 100 parts by mass of this dispersion was added to the methylcellulose solution and mixed well. Thereby, the 1st coating agent composition was produced. Moreover, the dispersion liquid which disperse
  • the first coating composition was applied on a glass substrate BK7 having dimensions of 100 mm in length, 100 mm in width, and 0.7 mm in height by a spin coater so as to have a thickness of 100 nm. And after drying the glass base material with which the 1st coating agent composition was apply
  • Example 2 A third coating agent composition was prepared in the same manner as in Example 1 above by adding a dispersion liquid in which silver nanowires were dispersed in water with a solid content of 1.8% by mass to a methylcellulose solution. Then, instead of the second coating agent composition, a third transparent conductive film is formed on the first transparent conductive film using the third coating agent composition, and the same as in Example 1 above. Thus, a sample of Example 2 was produced.
  • Comparative Example 1 A sample of Comparative Example 1 was produced in the same manner as in Example 1 except that only the first coating agent composition was applied onto a substrate with a spin coater so that the thickness was 150 nm.
  • Comparative Example 2 A dispersion obtained by dispersing silver nanowires with water as a dispersion medium at a solid content of 2.1% by mass was added to the methylcellulose solution to prepare a fourth coating agent composition in the same manner as in Example 1 above. Then, instead of the second coating agent composition, a fourth transparent conductive film is formed on the first transparent conductive film using the fourth coating agent composition, and the same as in Example 1 above. Thus, a sample of Comparative Example 2 was produced.
  • Comparative Example 3 A fifth coating agent composition was prepared in the same manner as in Example 1 above by adding a dispersion liquid in which silver nanowires were dispersed in water with a solid content of 0.3% by mass to a methylcellulose solution. Then, instead of the second coating agent composition, a fifth transparent conductive film is formed on the first transparent conductive film using the fifth coating agent composition, and the same as in Example 1 above. Thus, a sample of Comparative Example 3 was produced.
  • the surface resistance value, the surface roughness Ra, and the leakage current were measured for the samples of Examples 1 and 2 and Comparative Examples 1 to 3. Hereinafter, these measurements will be described in order.
  • the surface resistance value of the transparent conductive film of each sample was measured using Loresta EP MCP-T360 manufactured by Mitsubishi Chemical Corporation.
  • N, N-diphenyl-N, N-bis3-methyl-phenyl-1,1-diphenyl-4,4 diamine manufactured by Doujin Chemical Laboratory Co., Ltd. is 50 nm thick on the transparent conductive film of each sample produced. Vacuum deposition was performed. This formed the positive hole transport layer on the transparent conductive film of each sample. Next, an aluminum quinolinol complex (tris (8-hydroquinoline) aluminum) manufactured by Doujin Chemical Laboratory Co., Ltd. was vacuum-deposited on the hole transport layer so as to have a thickness of 50 nm. This formed the organic light emitting layer on the positive hole transport layer.
  • the presence ratios P1 and P2 of the silver nanowires are 0.1P2 ⁇ P1 ⁇ 0.7P2. It is shown that it is preferable to satisfy this relationship.
  • the transparent conductive film 3 can be used as a transparent electrode such as a liquid crystal display, a plasma display, or a solar organic battery.
  • carbon nanotubes may be used as the material of the fine metal wires 3a
  • conductive polymers may be used as the material of the transparent resin layer 3b.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Non-Insulated Conductors (AREA)
  • Laminated Bodies (AREA)

Abstract

A substrate (6) with a transparent conductive film comprises a substrate (2) and the transparent conductive film (3) formed on top of the substrate (2). The transparent conductive film (3) includes a plurality of conductive fine metal wires (3a) and a transparent resin layer (3b). Some of the plurality of fine metal wires (3a) protrude from an action surface (3c) of the transparent resin layer (3b). The proportion (P1) of the plurality of fine metal wires (3a) present in the action surface (3c) and the proportion (P2) of the fine metal wires (3a) present in a cross-sectional surface (3d) parallel to the transparent resin layer (3b) substrate (2) and further on the substrate (2) side than the action surface (3c) fulfill P1<P2. As a result, the number of protruding fine metal wires (3a) decreases and the action surface (3c) can be smoothed. In addition, the proportion of fine metal wires (3a) present further on the substrate (2) side than the action surface (3c) increases and the conductivity can be increased.

Description

透明導電膜、透明導電膜付き基材、及びそれを用いた有機エレクトロルミネッセンス素子Transparent conductive film, substrate with transparent conductive film, and organic electroluminescence device using the same
 本発明は、種々の光学デバイスに用いられる透明導電膜、透明導電膜付き基材、及びそれを用いた有機エレクトロルミネッセンス素子に関する。 The present invention relates to a transparent conductive film used for various optical devices, a substrate with a transparent conductive film, and an organic electroluminescence element using the same.
 一般的な有機エレクトロルミネッセンス(以下、有機ELという)素子は、一対の電極で挟持された有機発光層が透明な基材上に形成されたものであり、有機発光層からの光は、一方の電極を透過して基材側から取り出される。この種の有機EL素子において、基材側の電極の材料として、導電性及び透光性を有するものが用いられ、インジウムスズ酸化物(以下、ITOという)が広く用いられる。しかし、ITOを材料として用いた電極は曲げや物理的な応力に対して脆弱で壊れやすい。また、ITOを用いた電極の導電性を向上させるためには、高い蒸着温度及び/又は高いアニール温度が必要となり、有機EL素子を用いたデバイスの製造において、コスト高となる虞がある。 A general organic electroluminescence (hereinafter referred to as “organic EL”) element is an organic light emitting layer sandwiched between a pair of electrodes formed on a transparent substrate. It passes through the electrode and is taken out from the substrate side. In this type of organic EL element, a material having conductivity and translucency is used as an electrode material on the substrate side, and indium tin oxide (hereinafter referred to as ITO) is widely used. However, electrodes using ITO as a material are vulnerable to bending and physical stress and are fragile. Moreover, in order to improve the electroconductivity of the electrode using ITO, high vapor deposition temperature and / or high annealing temperature are needed, and there exists a possibility that it may become high cost in manufacture of the device using an organic EL element.
 そこで、ITOに代えて、複数の金属細線を含む透明導電膜を電極として用いた技術が知られている(例えば、日本国公表特許2009-505358号公報参照)。この種の透明導電膜付き基材の構成例について、図3を参照して説明する。透明導電膜付き基材101は、透光性を有する基材102と、この基材102上に形成される透明導電膜103と、を備える。透明導電膜103は、細線状の複数の金属細線103aと、バインダとしての透明樹脂層103bと、を含む。複数の金属細線103aは、透明樹脂層103bによって、基材102上に接着されている。 Therefore, a technique using a transparent conductive film including a plurality of fine metal wires as an electrode instead of ITO is known (see, for example, Japanese Patent Publication No. 2009-505358). A configuration example of this type of substrate with a transparent conductive film will be described with reference to FIG. The base material 101 with a transparent conductive film includes a base material 102 having translucency and a transparent conductive film 103 formed on the base material 102. The transparent conductive film 103 includes a plurality of fine metal wires 103a and a transparent resin layer 103b as a binder. The plurality of fine metal wires 103a are bonded onto the base material 102 by the transparent resin layer 103b.
 上記の透明導電膜付き基材101においては、複数の金属細線103aが、透明樹脂層103bの基材102と対向する面と反対側の一面から突出しているので、この一面が凹凸状となり、表面平滑性が悪い。そのため、この透明導電膜付き基材101が有機EL素子に用いられた場合、例えば正孔注入層、正孔輸送層、又は有機発光層等といった機能層を透明導電膜103上に形成するとき、これら機能層を均一な厚さに成膜できないことがある。 In the substrate 101 with the transparent conductive film, the plurality of fine metal wires 103a protrude from one surface opposite to the surface facing the substrate 102 of the transparent resin layer 103b. The smoothness is poor. Therefore, when the substrate 101 with a transparent conductive film is used in an organic EL element, for example, when a functional layer such as a hole injection layer, a hole transport layer, or an organic light emitting layer is formed on the transparent conductive film 103, These functional layers may not be formed to a uniform thickness.
 上述した有機EL素子は、面発光体としての利用が期待されており、均一な面発光をなすためには機能層の厚さが均一であることが望まれると共に、機能層が形成される透明導電膜103の一面を平滑化する必要がある。透明導電膜103の一面を平滑化するには、金属細線103aの量を減らすことが考えられるが、金属細線103aの量が減ると、透明導電膜103の導電性が低下する。 The above-mentioned organic EL element is expected to be used as a surface light emitter, and it is desired that the thickness of the functional layer is uniform in order to achieve uniform surface light emission, and the transparent where the functional layer is formed. It is necessary to smooth one surface of the conductive film 103. In order to smooth one surface of the transparent conductive film 103, it is conceivable to reduce the amount of the fine metal wires 103a. However, when the amount of the fine metal wires 103a is reduced, the conductivity of the transparent conductive film 103 is lowered.
 本発明は、上記課題を解決するためになされたものであり、導電性を低下させることなく、機能層が形成される一面を平滑化することができる透明導電膜、透明導電膜付き基材、及びそれを備えた有機エレクトロルミネッセンス素子を提供することを目的とする。 The present invention has been made in order to solve the above problems, and without reducing the conductivity, a transparent conductive film capable of smoothing one surface on which a functional layer is formed, a substrate with a transparent conductive film, Another object of the present invention is to provide an organic electroluminescence device including the same.
 本発明の透明導電膜は、基材上に設けられ、金属細線を含む透明樹脂層を備えた透明導電膜であって、前記透明樹脂層の前記基材と対向する面と反対側の一面における前記金属細線の存在割合P1と、前記透明樹脂層の前記基材と平行で、前記一面より前記基材側に存在する断面における前記金属細線の存在割合P2とが、P1<P2の関係となるように構成されていることを特徴とする。 The transparent conductive film of the present invention is a transparent conductive film provided on a substrate and provided with a transparent resin layer containing fine metal wires, on one surface opposite to the surface facing the substrate of the transparent resin layer. The existence ratio P1 of the fine metal wires and the existence ratio P2 of the fine metal wires in a cross section that is parallel to the base material of the transparent resin layer and closer to the base material than the one surface have a relationship of P1 <P2. It is comprised as follows.
 この透明導電膜において、前記断面は、前記基材と平行に前記透明樹脂層を二等分する断面であり、前記金属細線の存在割合P1,P2が、P1<0.7P2の関係となることが好ましい。 In the transparent conductive film, the cross section is a cross section that bisects the transparent resin layer in parallel with the base material, and the existence ratios P1 and P2 of the fine metal wires have a relationship of P1 <0.7P2. Is preferred.
 この透明導電膜において、前記金属細線の存在割合P1,P2が、0.1P2<P1の関係となることが好ましい。 In the transparent conductive film, it is preferable that the existence ratios P1 and P2 of the fine metal wires have a relationship of 0.1P2 <P1.
 この透明導電膜において、前記金属細線は、金属ナノワイヤであることが好ましい。 In this transparent conductive film, the fine metal wire is preferably a metal nanowire.
 この透明導電膜において、前記金属ナノワイヤは、銀を含むことが好ましい。 In this transparent conductive film, the metal nanowire preferably contains silver.
 この透明導電膜が基材上に形成されて、透明導電膜付き基材として構成されることが好ましい。 It is preferable that this transparent conductive film is formed on a substrate and configured as a substrate with a transparent conductive film.
 この透明導電膜付き基材は、有機エレクトロルミネッセンス素子に用いられることが好ましい。 This substrate with a transparent conductive film is preferably used for an organic electroluminescence element.
 本発明に係る透明導電膜によれば、透明樹脂層の基材と対向する面と反対側の一面における金属細線の存在割合が少なく、突出する金属細線が少なくなっているので、この面を平滑化することができる。また、この面よりも基材側における金属細線の存在割合が多いので、導電性を向上させることができる。 According to the transparent conductive film of the present invention, the ratio of the thin metal wires on the surface opposite to the surface facing the substrate of the transparent resin layer is small, and the number of protruding metal wires is small. Can be Moreover, since there are many metal fine wire presence ratios in the base material side rather than this surface, electroconductivity can be improved.
本発明の一実施形態に係る透明導電膜付き基材を備えた有機エレクトロルミネッセンス素子の断面図。Sectional drawing of the organic electroluminescent element provided with the base material with a transparent conductive film which concerns on one Embodiment of this invention. 同透明導電膜付き基材の断面図。Sectional drawing of the base material with the said transparent conductive film. 従来の透明導電膜付き基材の断面図。Sectional drawing of the base material with the conventional transparent conductive film.
 以下、本発明の一実施形態に係る透明導電膜について、図面を参照して説明する。本実施形態の透明導電膜は、透光性を有する基材上に形成され、透明導電膜付き基材として構成され、例えば有機エレクトロルミネッセンス(以下、有機ELという)素子に用いられる。図1は、有機EL素子の断面構成を示す。有機EL素子1は、基材2と、透明導電膜3と、機能層としての有機発光層4と、導体層5と、を備え、基材2上に透明導電膜3、有機発光層4、及び導体層5が順次積層された構成となっている。基材2と透明導電膜3とが、透明導電膜付き基材6を構成する。透明導電膜3は、有機EL素子1の陽極として機能し、有機発光層4に正孔(ホール)を注入する。一方、導体層5は、有機EL素子1の陰極として機能し、有機発光層4に電子を注入する。 Hereinafter, a transparent conductive film according to an embodiment of the present invention will be described with reference to the drawings. The transparent conductive film of the present embodiment is formed on a light-transmitting substrate and is configured as a substrate with a transparent conductive film, and is used for, for example, an organic electroluminescence (hereinafter referred to as organic EL) element. FIG. 1 shows a cross-sectional configuration of an organic EL element. The organic EL element 1 includes a substrate 2, a transparent conductive film 3, an organic light emitting layer 4 as a functional layer, and a conductor layer 5, and the transparent conductive film 3, the organic light emitting layer 4, And the conductor layer 5 are sequentially laminated. The base material 2 and the transparent conductive film 3 constitute a base material 6 with a transparent conductive film. The transparent conductive film 3 functions as an anode of the organic EL element 1 and injects holes into the organic light emitting layer 4. On the other hand, the conductor layer 5 functions as a cathode of the organic EL element 1 and injects electrons into the organic light emitting layer 4.
 有機発光層4は、透明導電膜3からの正孔の注入を促進する正孔注入層が、透明導電膜3との間に設けられることが好ましく、導体層5からの電子の注入を促進する電子注入層が導体層5との間に設けられることが好ましい。さらに、正孔を効率的に輸送する正孔輸送層や、電子を効率的に輸送する電子輸送層が設けられてもよい。 In the organic light emitting layer 4, it is preferable that a hole injection layer that promotes injection of holes from the transparent conductive film 3 is provided between the organic light emitting layer 4 and the transparent conductive film 3, and promotes injection of electrons from the conductor layer 5. An electron injection layer is preferably provided between the conductor layer 5. Furthermore, a hole transport layer that efficiently transports holes or an electron transport layer that efficiently transports electrons may be provided.
 このように構成された有機EL素子1において、透明導電膜3と導体層5との間に透明導電膜3側を+電位として電圧が印加されると、正孔が透明導電膜3から有機発光層4に注入され、電子が導体層5から有機発光層4に注入される。そして、有機発光層4に注入された正孔と電子とが、有機発光層4内で再結合することにより、有機発光層4が発光する。有機発光層4から発せられた光は、透明導電膜付き基材6(透明導電膜3及び基材2)を透過して、有機EL素子1の外へ取り出される。なお、導体層5に照射された光は、導体層5の表面で反射され、透明導電膜付き基材6を透過して、有機EL素子1の外へ取り出される。 In the organic EL element 1 configured as described above, when a voltage is applied between the transparent conductive film 3 and the conductor layer 5 with the transparent conductive film 3 side as a positive potential, holes are emitted from the transparent conductive film 3 to organic light emission. Electrons are injected into the layer 4 and electrons are injected from the conductor layer 5 into the organic light emitting layer 4. Then, the holes and electrons injected into the organic light emitting layer 4 are recombined in the organic light emitting layer 4 so that the organic light emitting layer 4 emits light. The light emitted from the organic light emitting layer 4 passes through the substrate 6 with the transparent conductive film (the transparent conductive film 3 and the substrate 2), and is taken out of the organic EL element 1. The light irradiated on the conductor layer 5 is reflected on the surface of the conductor layer 5, passes through the substrate 6 with a transparent conductive film, and is taken out of the organic EL element 1.
 なお、基材2の材料は、透光性を有していれば、特に限定されない。このような基材2としては、例えばソーダガラス若しくは無アルカリガラス等のリジッドな透明ガラス板、又はポリカーボネイト若しくはエチレンテレフタレート等のフレキシブルな透明プラスチック板等が用いられる。基材2としてリジッドな透明ガラス板が用いられた場合、この基材2を用いたデバイスの強度が優れると共に、基材2上への透明導電膜3の形成を容易にすることができる。基材2としてフレキシブルな透明プラスチック板が用いられた場合、基材2を用いたデバイスを軽量化できると共に、柔軟性を有するデバイスとすることができる。 In addition, the material of the base material 2 will not be specifically limited if it has translucency. As such a base material 2, for example, a rigid transparent glass plate such as soda glass or non-alkali glass, or a flexible transparent plastic plate such as polycarbonate or ethylene terephthalate is used. When a rigid transparent glass plate is used as the substrate 2, the strength of the device using the substrate 2 is excellent, and the formation of the transparent conductive film 3 on the substrate 2 can be facilitated. When a flexible transparent plastic plate is used as the substrate 2, the device using the substrate 2 can be reduced in weight, and the device can have flexibility.
 また、有機発光層4の材料としては、例えばアントラセン、ナフタレン、ピレン、テトラセン、コロネン、ペリレン、フタロペリレン、ナフタロペリレン、ジフェニルブタジエン、テトラフェニルブタジエン、クマリン、オキサジアゾール、ビスベンゾキサゾリン、ビススチリル、シクロペンタジエン、クマリン、オキサジアゾール、ビスベンゾキサゾリン、ビススチリル、シクロペンタジエン、キノリン金属錯体、トリス(8-ヒドロキシキノリナート)アルミニウム錯体、トリス(4-メチル-8-キノリナート)アルミニウム錯体、トリス(5-フェニル-8-キノリナート)アルミニウム錯体、アミノキノリン金属錯体、ベンゾキノリン金属錯体、トリ-(p-ターフェニル-4-イル)アミン、ピラン、キナクリドン、ルブレン、若しくはこれらの誘導体、1-アリール-2,5-ジ(2-チエニル)ピロール誘導体、ジスチリルベンゼン誘導体、スチリルアリーレン誘導体、スチリルアミン誘導体、又はこれらの発光性化合物からなる基を分子の一部分に有する化合物若しくは高分子等が用いられる。また、例えばイリジウム錯体、オスミウム錯体、白金錯体若しくはユーロピウム錯体等の発光材料、又はこれらを分子内に有する化合物若しくは高分子等の燐光発光材料も用いることができる。これらの材料は、必要に応じて、適宜選択して用いることができる。 Examples of the material of the organic light emitting layer 4 include anthracene, naphthalene, pyrene, tetracene, coronene, perylene, phthaloperylene, naphthaloperylene, diphenylbutadiene, tetraphenylbutadiene, coumarin, oxadiazole, bisbenzoxazoline, bisstyryl, and cyclopentadiene. , Coumarin, oxadiazole, bisbenzoxazoline, bisstyryl, cyclopentadiene, quinoline metal complex, tris (8-hydroxyquinolinato) aluminum complex, tris (4-methyl-8-quinolinato) aluminum complex, tris (5- Phenyl-8-quinolinato) aluminum complex, aminoquinoline metal complex, benzoquinoline metal complex, tri- (p-terphenyl-4-yl) amine, pyran, quinacridone, rubrene Alternatively, these derivatives, 1-aryl-2,5-di (2-thienyl) pyrrole derivatives, distyrylbenzene derivatives, styrylarylene derivatives, styrylamine derivatives, or groups composed of these luminescent compounds are included in a part of the molecule. A compound or a polymer is used. In addition, for example, a light-emitting material such as an iridium complex, an osmium complex, a platinum complex, or a europium complex, or a phosphorescent light-emitting material such as a compound or polymer having these in a molecule can be used. These materials can be appropriately selected and used as necessary.
 また、導体層5の材料としては、例えばアルミニウム等が用いられる。また、アルミニウムと他の材料とを組み合わせて積層構造としてもよい。このような組み合わせとしては、アルカリ金属とアルミニウムとの積層体、アルカリ金属と銀との積層体、アルカリ金属のハロゲン化物とアルミニウムとの積層体、アルカリ金属の酸化物とアルミニウムとの積層体、アルカリ土類金属若しくは希土類金属とアルミニウムとの積層体、又はこれらの金属種と他の金属との合金などが挙げられる。具体的には、ナトリウム、ナトリウムとカリウムとの合金、リチウム、若しくはマグネシウム等とアルミニウムとの積層体、マグネシウムと銀との混合物、マグネシウムとインジウムとの混合物、アルミニウムとリチウムとの合金、フッ化リチウムとアルミニウムの混合物との積層体、又はアルミニウムと酸化アルミニウム(Al)の混合物との積層体等が挙げられる。 Moreover, as a material of the conductor layer 5, for example, aluminum or the like is used. Alternatively, a laminated structure may be formed by combining aluminum and another material. Examples of such combinations include a laminate of an alkali metal and aluminum, a laminate of an alkali metal and silver, a laminate of an alkali metal halide and aluminum, a laminate of an alkali metal oxide and aluminum, and an alkali. A laminate of an earth metal or rare earth metal and aluminum, or an alloy of these metal species with another metal can be used. Specifically, sodium, an alloy of sodium and potassium, a laminate of lithium or magnesium or the like and aluminum, a mixture of magnesium and silver, a mixture of magnesium and indium, an alloy of aluminum and lithium, lithium fluoride And a laminated body of a mixture of aluminum and aluminum, or a laminated body of a mixture of aluminum and aluminum oxide (Al 2 O 3 ).
 次に、透明導電膜付き基材6の詳細について、図2を参照して説明する。透明導電膜付き基材6は、基材2と、この基材2上に形成されている透明導電膜3と、を備える。透明導電膜3は、導電性を有する複数の金属細線3aと、バインダとしての透明樹脂層3bと、を含む。透明導電膜付き基材6が、有機EL素子1に用いられる場合、透明樹脂層3bの基材2と対向する面と反対側の一面3cは、有機発光層4が積層され、有機発光層4に正孔を注入する等の作用をする面であるので、以下の説明においては、この面を作用面3cという。複数の金属細線3aは、この作用面3cから一部が突出した状態で、透明樹脂層3bによって基材2上に接着されている。このため、基材2上では、複数の金属細線3aの三次元的な導電ネットワークが形成されている。これにより、透明導電膜3は導電性を有するようになっている。ここで、複数の金属細線3aの三次元的な導電ネットワークとは、複数の金属細線3aが三次元的に互いに接触又は近接し合った状態を示す。 Next, details of the substrate 6 with a transparent conductive film will be described with reference to FIG. The substrate 6 with a transparent conductive film includes a substrate 2 and a transparent conductive film 3 formed on the substrate 2. The transparent conductive film 3 includes a plurality of fine metal wires 3a having conductivity and a transparent resin layer 3b as a binder. When the substrate 6 with a transparent conductive film is used for the organic EL element 1, the organic light emitting layer 4 is laminated on the surface 3c on the opposite side of the surface of the transparent resin layer 3b facing the substrate 2, and the organic light emitting layer 4 is laminated. Therefore, in the following description, this surface is referred to as a working surface 3c. The plurality of fine metal wires 3a are bonded onto the base material 2 by the transparent resin layer 3b in a state in which a part protrudes from the action surface 3c. For this reason, on the base material 2, a three-dimensional conductive network of a plurality of fine metal wires 3a is formed. Thereby, the transparent conductive film 3 has electroconductivity. Here, the three-dimensional conductive network of the plurality of fine metal wires 3a indicates a state in which the plurality of fine metal wires 3a are in contact with or close to each other in three dimensions.
 透明導電膜付き基材6が有機EL素子1に用いられた場合、透明樹脂層3bの作用面3cから突出した金属細線3aが有機発光層4と接触し、有機EL素子1に電圧が印加されると、複数の金属細線3aから有機発光層4へ正孔が注入される。 When the substrate 6 with a transparent conductive film is used for the organic EL element 1, the fine metal wire 3a protruding from the working surface 3c of the transparent resin layer 3b comes into contact with the organic light emitting layer 4, and a voltage is applied to the organic EL element 1. Then, holes are injected into the organic light emitting layer 4 from the plurality of fine metal wires 3a.
 本実施形態においては、透明樹脂層3bの作用面3cにおける複数の金属細線3aの存在割合P1と、透明樹脂層3bの基材2と平行で、作用面3cよりも基材2側に存在する断面3dにおける金属細線3aの存在割合P2とが、P1<P2となるように調整されている。 In the present embodiment, the existence ratio P1 of the plurality of fine metal wires 3a on the working surface 3c of the transparent resin layer 3b is parallel to the base material 2 of the transparent resin layer 3b and is present on the base material 2 side with respect to the working surface 3c. The existence ratio P2 of the thin metal wires 3a in the cross section 3d is adjusted to satisfy P1 <P2.
 ここで、上記の金属細線3aの存在割合P1はゼロではなく、所定の量の金属細線3aが透明樹脂層3bの作用面3cにおいて存在している。また、透明樹脂層3b内において、複数の金属細線3aが透明樹脂層3bの作用面3cから基材2と対向する面にかけて連続的に存在している。これら金属細線3aが上述したような三次元的な導電ネットワークを形成することにより、透明導電膜3は高い導電性を得ることができる。 Here, the abundance ratio P1 of the metal fine wires 3a is not zero, and a predetermined amount of the metal fine wires 3a is present on the working surface 3c of the transparent resin layer 3b. In the transparent resin layer 3b, a plurality of fine metal wires 3a are continuously present from the working surface 3c of the transparent resin layer 3b to the surface facing the substrate 2. These thin metal wires 3a form a three-dimensional conductive network as described above, whereby the transparent conductive film 3 can obtain high conductivity.
 本実施形態において、透明樹脂層3bの断面3dが、基材2と平行に透明樹脂層3bを二等分する断面であるとき、金属細線3aの存在割合P1,P2が、P1<0.7P2の関係を満たすことが好ましい。これにより、透明導電膜3の作用面3cの平滑性を向上させることができる。また、金属細線3aの存在割合P1,P2が、0.1P2<P1の関係を満たすことが好ましい。これにより、透明導電膜3の作用面3cの導電性が低下して、作用面3cにおける表面抵抗値が不安定となることを防止することができる。 In this embodiment, when the cross section 3d of the transparent resin layer 3b is a cross section that bisects the transparent resin layer 3b in parallel with the substrate 2, the abundance ratios P1 and P2 of the fine metal wires 3a are P1 <0.7P2. It is preferable to satisfy the relationship. Thereby, the smoothness of the action surface 3c of the transparent conductive film 3 can be improved. Further, it is preferable that the existence ratios P1 and P2 of the fine metal wires 3a satisfy the relationship of 0.1P2 <P1. Thereby, it is possible to prevent the conductivity of the working surface 3c of the transparent conductive film 3 from being lowered and the surface resistance value on the working surface 3c from becoming unstable.
 このように金属細線3aの存在割合P1,P2を調整する方法としては、例えば以下のような方法が挙げられる。すなわち、基材2上に透明導電膜3を形成する工程において、金属細線3aの濃度が異なる複数のコーティング剤組成物を用意する。そして、金属細線3aの濃度が高いコーティング剤組成物から順に基材2上にそれら複数のコーティング剤組成物を塗布する。この場合、基材2上に最後に塗布されるコーティング剤組成物は、それら複数のコーティング剤組成物のうち金属細線3aの濃度が最も低いコーティング剤組成物である。そして、金属細線3aの存在割合P2は、透明樹脂層3b内において、透明樹脂層3bの作用面3cから基材2と対向する面に向かって、漸次大きくなる。 As a method of adjusting the existence ratios P1 and P2 of the fine metal wires 3a in this way, for example, the following methods can be mentioned. That is, in the step of forming the transparent conductive film 3 on the substrate 2, a plurality of coating agent compositions having different concentrations of the fine metal wires 3a are prepared. And these coating agent compositions are apply | coated on the base material 2 in an order from the coating agent composition with a high density | concentration of the metal fine wire 3a. In this case, the coating agent composition that is finally applied onto the substrate 2 is a coating agent composition having the lowest concentration of the fine metal wires 3a among the plurality of coating agent compositions. And the existence ratio P2 of the metal fine wire 3a becomes large gradually toward the surface which opposes the base material 2 from the action surface 3c of the transparent resin layer 3b in the transparent resin layer 3b.
 金属細線3aは、数nm以上数十μm以下の線幅を有する繊維状金属、金属、又は金属微粒子から成る。金属細線3aの長さは、金属細線3aの長さ方向に垂直な断面の直径よりも十分に長い。透明導電膜3内に含まれる複数の金属細線3aの量は、0.1mg/m以上1000mg/m以下であることが好ましく、1mg/m以上100mg/m以下であることがより好ましい。複数の金属細線3aのそれぞれの長さは、透明導電膜3の透光性を考慮して、300nm以下であることが好ましく、複数の金属細線3aの平均直径は、0.3nm以上200nm以下であることが好ましい。また、同様の理由により、複数の金属細線3aの平均アスペクト比は、10以上10000以下であることが好ましい。さらに、透明導電膜3の導電性を考慮して、透明樹脂層3bの厚さは、複数の金属細線3aの平均直径以上500nm以下であることが好ましい。 The fine metal wire 3a is made of a fibrous metal, metal, or metal fine particle having a line width of several nm to several tens of μm. The length of the fine metal wire 3a is sufficiently longer than the diameter of the cross section perpendicular to the length direction of the fine metal wire 3a. The amount of the plurality of fine metal wires 3a contained in the transparent conductive film 3 is preferably 0.1 mg / m 2 or more and 1000 mg / m 2 or less, more preferably 1 mg / m 2 or more and 100 mg / m 2 or less. preferable. The length of each of the plurality of fine metal wires 3a is preferably 300 nm or less in consideration of the translucency of the transparent conductive film 3, and the average diameter of the plurality of fine metal wires 3a is 0.3 nm or more and 200 nm or less. Preferably there is. For the same reason, the average aspect ratio of the plurality of fine metal wires 3a is preferably 10 or more and 10,000 or less. Furthermore, considering the conductivity of the transparent conductive film 3, the thickness of the transparent resin layer 3b is preferably not less than the average diameter of the plurality of fine metal wires 3a and not more than 500 nm.
 金属細線3aの材料としては、例えば金属メッシュ、金属ナノワイヤ、又は金属微粒子の集合体等が用いられるが、透明導電膜3の透明性及び導電性に優れる金属ナノワイヤを用いることが好ましい。このような金属細線3aに用いられる金属として、例えば金、銀、銅、アルミニウム、亜鉛、コバルト、ニッケル、又はタングステン等が挙げられる。このような金属の中でも、導電率が高い金、銀、又は銅を用いることが好ましく、導電率が最も高い銀を用いることがより好ましい。 As the material of the metal thin wire 3a, for example, a metal mesh, a metal nanowire, an aggregate of metal fine particles, or the like is used, but it is preferable to use a metal nanowire excellent in transparency and conductivity of the transparent conductive film 3. Examples of the metal used for the thin metal wire 3a include gold, silver, copper, aluminum, zinc, cobalt, nickel, and tungsten. Among such metals, gold, silver, or copper having high conductivity is preferably used, and silver having the highest conductivity is more preferably used.
 金属細線3aとして金属ナノワイヤを用いた場合、金属ナノワイヤの長さは、透明導電膜8の導電性を考慮して、3μm以上であることが好ましく、3μm以上500μm以下であることがより好ましく、3μm以上300μm以下であることがさらに好ましい。また、金属ナノワイヤの平均直径は、透明導電膜8の透光性及び導電性を考慮して、10nm以上300nm以下であることが好ましく、30nm以上200nm以下であることがより好ましい。金属ナノワイヤの製造方法は、特に限定されることなく、例えば液相法又は気相法等の公知の方法が用いられる。 When metal nanowires are used as the thin metal wires 3a, the length of the metal nanowires is preferably 3 μm or more, more preferably 3 μm or more and 500 μm or less in consideration of the conductivity of the transparent conductive film 8. More preferably, it is 300 μm or less. The average diameter of the metal nanowires is preferably 10 nm or more and 300 nm or less, and more preferably 30 nm or more and 200 nm or less in consideration of the translucency and conductivity of the transparent conductive film 8. The manufacturing method of metal nanowire is not specifically limited, For example, well-known methods, such as a liquid phase method or a gaseous-phase method, are used.
 透明樹脂層3bの材料としては、例えばポリエチレン、エチレン-プロピレン共重合体、エチレン-酢酸ビニル共重合体及びその部分又は全部ケン化物、エチレン-アクリル酸エチル共重合体、エチレン-メタクリル酸メチル共重合体、エチレン-酢酸ビニル-メタクリル酸メチル共重合体、ポリプロピレン、プロピレン-α-オレフィン共重合体等のオレフィン系樹脂、ポリ塩化ビニル樹脂等の塩化ビニル系樹脂、アクリロニトリル-スチレン共重合体等のアクリロニトリル系樹脂、ポリスチレン、スチレン-メタクル酸メチル共重合体等のスチレン系樹脂、ポリアクリル酸エチル等のアクリル酸エステル重合体、ポリメタクリル酸メチル等のメタクリル酸エステル重合体、それらの共重合体や他の共重合成分を加えた(メタ)アクリル酸エステル系樹脂、ポリエチレンテレフタレート等のポリエステル樹脂、ナイロン等のポリアミド樹脂、ポリカーボネート樹脂、エチルセルロース、アセチルセルロース等のセルロース樹脂、ポリウレタン系樹脂、シリコン系樹脂等が挙げられる。 Examples of the material for the transparent resin layer 3b include polyethylene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer and a saponified product thereof partially or entirely, ethylene-ethyl acrylate copolymer, ethylene-methyl methacrylate copolymer. Polymers, ethylene-vinyl acetate-methyl methacrylate copolymers, olefin resins such as polypropylene and propylene-α-olefin copolymers, vinyl chloride resins such as polyvinyl chloride resins, and acrylonitrile such as acrylonitrile-styrene copolymers Resin, polystyrene, styrene resin such as styrene-methyl methacrylate copolymer, acrylate polymer such as polyethyl acrylate, methacrylate polymer such as polymethyl methacrylate, copolymers thereof and others (Meth) acrylic with added copolymer component Ester resin, a polyester resin such as polyethylene terephthalate, polyamide resins such as nylon, polycarbonate resin, ethyl cellulose, cellulose resins such as acetyl cellulose, polyurethane resins, and silicone resins.
 また、例えばフェノール樹脂、尿素樹脂、ジアリルフタレート樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、アミノアルキッド樹脂、珪素樹脂、又はポリシロキサン樹脂等の熱硬化性樹脂が挙げられる。さらに、これらの熱硬化性樹脂に必要に応じて架橋剤、重合開始剤、硬化剤、硬化促進剤、又は溶剤を加えてもよい。 Also, for example, thermosetting resins such as phenol resin, urea resin, diallyl phthalate resin, melamine resin, unsaturated polyester resin, polyurethane resin, epoxy resin, aminoalkyd resin, silicon resin, or polysiloxane resin can be used. Furthermore, you may add a crosslinking agent, a polymerization initiator, a hardening | curing agent, a hardening accelerator, or a solvent to these thermosetting resins as needed.
 また、電離放射線硬化型樹脂としては、好ましくは、アクリレート系の官能基を有するもの、例えば、比較的低分子量のポリエステル樹脂、ポリエーテル樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジエン樹脂、ポリチオールポリエン樹脂、多価アルコール等の多官能化合物の(メタ)アクリレート等のオリゴマー、プレポリマー、及び反応性希釈剤としてエチル(メタ)アクリレート、エチルヘキシル(メタ)アクリレート、スチレン、メチルスチレン、N-ビニルピロリドン等の単官能モノマー、並びに多官能モノマー、例えばトリメチロールプロパントリ(メタ)アクリレート、ヘキサンジオール(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等を比較的多量に含有するものを使用することができる。さらに、上記の電離放射線硬化型樹脂を紫外線硬化型樹脂とするには、電離放射線硬化型樹脂の中に光重合開始剤を配合することが好ましい。光重合開始剤としてはアセトフェノン類、ベンゾフェノン類、α-アミロキシムエステル、又はチオキサントン類等が用いられる。また、光重合開始剤に加えて光増感剤を用いてもよい。光増感剤としては、n-ブチルアミン、トリエチルアミン、トリ-n-ブチルホスフィン、又はチオキサントン等が用いられる。 The ionizing radiation curable resin preferably has an acrylate functional group, for example, a relatively low molecular weight polyester resin, polyether resin, acrylic resin, epoxy resin, urethane resin, alkyd resin, spiroacetal. Resins, polybutadiene resins, polythiol polyene resins, oligomers such as (meth) acrylates of polyfunctional compounds such as polyhydric alcohols, prepolymers, and reactive diluents such as ethyl (meth) acrylate, ethylhexyl (meth) acrylate, styrene, methyl Monofunctional monomers such as styrene and N-vinylpyrrolidone, as well as polyfunctional monomers such as trimethylolpropane tri (meth) acrylate, hexanediol (meth) acrylate, tripropylene glycol di (meth) acrylate A relatively large amount of diethylene glycol di (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, etc. What is contained can be used. Furthermore, in order to make the ionizing radiation curable resin an ultraviolet curable resin, it is preferable to mix a photopolymerization initiator in the ionizing radiation curable resin. As the photopolymerization initiator, acetophenones, benzophenones, α-amyloxime esters, thioxanthones or the like are used. In addition to the photopolymerization initiator, a photosensitizer may be used. As the photosensitizer, n-butylamine, triethylamine, tri-n-butylphosphine, thioxanthone, or the like is used.
 透明導電膜3の塗工法としては、特に限定されることなく、例えばスピンコート、スクリーン印刷、ディップコート、ダイコート、キャスト、スプレーコート、又はグラビアコート等の公知の塗工法が用いられる。また、透明樹脂層3bの作用面3cを平滑化させると共にこの作用面3cにおける表面抵抗値を安定させるために、例えばローラープレス等による加圧工程を行ってもよい。 The coating method of the transparent conductive film 3 is not particularly limited, and a known coating method such as spin coating, screen printing, dip coating, die coating, casting, spray coating, or gravure coating is used. Further, in order to smooth the working surface 3c of the transparent resin layer 3b and stabilize the surface resistance value on the working surface 3c, a pressurizing step using, for example, a roller press may be performed.
 このように本実施形態の透明導電膜付き基材6によれば、透明樹脂層3bの作用面3cにおける金属細線3aの存在割合が少なく、突出する金属細線3aが少なくなっているので、この作用面3cを平滑化することができる。また、この作用面3cよりも基材2側における金属細線3aの存在割合が多いので、導電性を向上させることができる。 As described above, according to the substrate 6 with a transparent conductive film of the present embodiment, the existence ratio of the thin metal wires 3a on the working surface 3c of the transparent resin layer 3b is small, and the protruding fine metal wires 3a are small. The surface 3c can be smoothed. In addition, since the presence ratio of the fine metal wires 3a on the side of the base material 2 is larger than that of the working surface 3c, the conductivity can be improved.
 次に、実施例1及び実施例2並びに比較例1乃至3について説明する。 Next, Examples 1 and 2 and Comparative Examples 1 to 3 will be described.
 以下に示すように、まず金属細線として銀ナノワイヤを作製した後、実施例1及び実施例2並びに比較例1乃至3のサンプルを作製した。 As shown below, after first producing silver nanowires as metal thin wires, samples of Example 1 and Example 2 and Comparative Examples 1 to 3 were produced.
 (金属細線)
 金属細線として、公知論文「Materials Chemistry and Physics vol.114 p333-338 “Preparation of Ag nanorods with high yield by polyol process”」に準じて銀ナノワイヤを作製した。この場合、銀ナノワイヤの平均直径を50nmとし、銀ナノワイヤの平均長さを5μmとした。
(Metal fine wire)
Silver nanowires were produced as thin metal wires according to a known paper “Materials Chemistry and Physics vol. 114 p333-338“ Preparation of Ag nanorods with high yield by polyol process ””. In this case, the average diameter of the silver nanowire was 50 nm, and the average length of the silver nanowire was 5 μm.
 (実施例1)
 シグマアルドリッチ社製メチルセルロース「M7140」3質量部を水200質量部に溶解して、メチルセルロース溶液を作製した。次に、金属細線として上記の銀ナノワイヤを、水を分散媒として固形分3.0質量%で分散した分散液を作製した。次に、メチルセルロース溶液にこの分散液100質量部を加えてよく混合した。それにより、第1のコーティング剤組成物を作製した。また、銀ナノワイヤを、水を分散媒として固形分0.6質量%で分散した分散液をメチルセルロース溶液に加えて、上記と同様にして、第2のコーティング剤組成物を作製した。
Example 1
3 parts by mass of methyl cellulose “M7140” manufactured by Sigma-Aldrich was dissolved in 200 parts by mass of water to prepare a methylcellulose solution. Next, a dispersion liquid in which the above-mentioned silver nanowire was dispersed as a metal thin wire and water was used as a dispersion medium at a solid content of 3.0% by mass was prepared. Next, 100 parts by mass of this dispersion was added to the methylcellulose solution and mixed well. Thereby, the 1st coating agent composition was produced. Moreover, the dispersion liquid which disperse | distributed silver nanowire by solid content 0.6 mass% using water as a dispersion medium was added to the methylcellulose solution, and the 2nd coating agent composition was produced like the above.
 続いて、寸法が縦100mm、横100mm、及び高さ0.7mmであるガラス基材BK7上に第1のコーティング剤組成物を厚さが100nmとなるようにスピンコーターにより塗布した。そして、第1のコーティング剤組成物が塗布されたガラス基材を23℃の常温で3分間乾燥させた後、120℃で5分間加熱して乾燥させた。それにより、ガラス基材上に第1の透明導電膜を形成した。次に、第1の透明導電膜上に第2のコーティング剤組成物を厚さが50nmとなるようにスピンコーターにより塗布して、上記と同様にして、第1の透明導電膜上に第2の透明導電膜を形成した。このようにして、実施例1のサンプルを作製した。 Subsequently, the first coating composition was applied on a glass substrate BK7 having dimensions of 100 mm in length, 100 mm in width, and 0.7 mm in height by a spin coater so as to have a thickness of 100 nm. And after drying the glass base material with which the 1st coating agent composition was apply | coated for 3 minutes at normal temperature of 23 degreeC, it heated at 120 degreeC for 5 minutes, and was dried. Thereby, the 1st transparent conductive film was formed on the glass substrate. Next, the second coating agent composition is applied onto the first transparent conductive film by a spin coater so as to have a thickness of 50 nm, and the second coating composition is applied onto the first transparent conductive film in the same manner as described above. A transparent conductive film was formed. Thus, the sample of Example 1 was produced.
 (実施例2)
 銀ナノワイヤを、水を分散媒として固形分1.8質量%で分散した分散液をメチルセルロース溶液に加えて、上記実施例1と同様にして、第3のコーティング剤組成物を作製した。そして、第2のコーティング剤組成物の代わりに、第3のコーティング剤組成物を用いて、第1の透明導電膜上に第3の透明導電膜を形成して、上記実施例1と同様にして、実施例2のサンプルを作製した。
(Example 2)
A third coating agent composition was prepared in the same manner as in Example 1 above by adding a dispersion liquid in which silver nanowires were dispersed in water with a solid content of 1.8% by mass to a methylcellulose solution. Then, instead of the second coating agent composition, a third transparent conductive film is formed on the first transparent conductive film using the third coating agent composition, and the same as in Example 1 above. Thus, a sample of Example 2 was produced.
 (比較例1)
 第1のコーティング剤組成物のみを厚さが150nmとなるように基材上にスピンコーターにより塗布した点を除いて、上記実施例1と同様にして、比較例1のサンプルを作製した。
(Comparative Example 1)
A sample of Comparative Example 1 was produced in the same manner as in Example 1 except that only the first coating agent composition was applied onto a substrate with a spin coater so that the thickness was 150 nm.
 (比較例2)
 銀ナノワイヤを、水を分散媒として固形分2.1質量%で分散した分散液をメチルセルロース溶液に加えて、上記実施例1と同様にして、第4のコーティング剤組成物を作製した。そして、第2のコーティング剤組成物の代わりに、第4のコーティング剤組成物を用いて、第1の透明導電膜上に第4の透明導電膜を形成して、上記実施例1と同様にして、比較例2のサンプルを作製した。
(Comparative Example 2)
A dispersion obtained by dispersing silver nanowires with water as a dispersion medium at a solid content of 2.1% by mass was added to the methylcellulose solution to prepare a fourth coating agent composition in the same manner as in Example 1 above. Then, instead of the second coating agent composition, a fourth transparent conductive film is formed on the first transparent conductive film using the fourth coating agent composition, and the same as in Example 1 above. Thus, a sample of Comparative Example 2 was produced.
 (比較例3)
 銀ナノワイヤを、水を分散媒として固形分0.3質量%で分散した分散液をメチルセルロース溶液に加えて、上記実施例1と同様にして、第5のコーティング剤組成物を作製した。そして、第2のコーティング剤組成物の代わりに、第5のコーティング剤組成物を用いて、第1の透明導電膜上に第5の透明導電膜を形成して、上記実施例1と同様にして、比較例3のサンプルを作製した。
(Comparative Example 3)
A fifth coating agent composition was prepared in the same manner as in Example 1 above by adding a dispersion liquid in which silver nanowires were dispersed in water with a solid content of 0.3% by mass to a methylcellulose solution. Then, instead of the second coating agent composition, a fifth transparent conductive film is formed on the first transparent conductive film using the fifth coating agent composition, and the same as in Example 1 above. Thus, a sample of Comparative Example 3 was produced.
 上記実施例1及び実施例2並びに比較例1乃至3のサンプルについて、表面抵抗値、表面粗さRa、及びリーク電流の測定を行った。以下、これらの測定について順に説明する。 The surface resistance value, the surface roughness Ra, and the leakage current were measured for the samples of Examples 1 and 2 and Comparative Examples 1 to 3. Hereinafter, these measurements will be described in order.
 (表面抵抗値の測定)
 三菱化学株式会社製ロレスタEP MCP-T360を用いて各サンプルの透明導電膜の表面抵抗値を測定した。
(Measurement of surface resistance)
The surface resistance value of the transparent conductive film of each sample was measured using Loresta EP MCP-T360 manufactured by Mitsubishi Chemical Corporation.
 (表面粗さRaの測定)
 株式会社島津製作所製ナノサーチ顕微鏡SFT-3500を用いて、測定視野を縦30μm及び横30μmとして、各サンプルの透明導電膜の表面粗さRaを測定した。
(Measurement of surface roughness Ra)
Using a nanosearch microscope SFT-3500 manufactured by Shimadzu Corporation, the surface roughness Ra of the transparent conductive film of each sample was measured with a measurement visual field of 30 μm in length and 30 μm in width.
 (リーク電流の測定)
 作製した各サンプルの透明導電膜上に株式会社同人化学研究所製N,N-ジフェニル-N,N-ビス3-メチル-フェニル-1,1-ジフェニル-4,4ジアミンを厚さが50nmとなるように真空蒸着した。これにより、各サンプルの透明導電膜上に正孔輸送層を形成した。次に、この正孔輸送層上に株式会社同人化学研究所製アルミキノリノール錯体(トリス(8-ヒドロキノリン)アルミニウム)を厚さが50nmとなるように真空蒸着した。これにより、正孔輸送層上に有機発光層を形成した。次に、この有機発光層上にアルミニウムを厚さが150nmとなるように真空蒸着することにより、有機発光層上にアルミニウムから成る導体層を形成した。このようにして、各サンプルを備えた有機EL素子を作製した。続いて、各有機EL素子に、5Vの逆電圧を印加して、各サンプルのリーク電流を測定した。
(Measurement of leakage current)
N, N-diphenyl-N, N-bis3-methyl-phenyl-1,1-diphenyl-4,4 diamine manufactured by Doujin Chemical Laboratory Co., Ltd. is 50 nm thick on the transparent conductive film of each sample produced. Vacuum deposition was performed. This formed the positive hole transport layer on the transparent conductive film of each sample. Next, an aluminum quinolinol complex (tris (8-hydroquinoline) aluminum) manufactured by Doujin Chemical Laboratory Co., Ltd. was vacuum-deposited on the hole transport layer so as to have a thickness of 50 nm. This formed the organic light emitting layer on the positive hole transport layer. Next, aluminum was vacuum-deposited on the organic light emitting layer so as to have a thickness of 150 nm, thereby forming a conductor layer made of aluminum on the organic light emitting layer. Thus, the organic EL element provided with each sample was produced. Subsequently, a reverse voltage of 5 V was applied to each organic EL element, and the leakage current of each sample was measured.
 上記の測定の結果を表1に示す。なお、表1中でリーク電流の測定結果として示された「○」はリーク電流値が10-7Aよりも小さかったことを示し、「×」はリーク電流値が10-5Aよりも大きかったことを示している。また、P1/P2は、ガラス基材と平行に透明導電膜を二等分する断面における銀ナノワイヤの存在割合P2に対する、透明導電膜のガラス基材と対向する面と反対側の一面における銀ナノワイヤの存在割合P1の比率を示している。 The results of the above measurements are shown in Table 1. In Table 1, “◯” shown as the measurement result of the leakage current indicates that the leakage current value is smaller than 10 −7 A, and “×” indicates that the leakage current value is larger than 10 −5 A. It shows that. Further, P1 / P2 is a silver nanowire on one surface opposite to the surface facing the glass substrate of the transparent conductive film with respect to the silver nanowire existing ratio P2 in the cross section that bisects the transparent conductive film in parallel with the glass substrate. The ratio of the existence ratio P1 is shown.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、透明導電膜内に均一に銀ナノワイヤが含まれる比較例1及び透明導電膜内にほぼ均一に銀ナノワイヤが含まれる比較例2においては、表面粗さRaが大きく、リーク電流値が10-5Aよりも大きかった。透明導電膜の一面における銀ナノワイヤの量が、透明導電膜の断面における銀ナノワイヤの量に比べて極端に少ない比較例3においては、表面抵抗値が不安定となり、有機EL素子は電気的に絶縁してしまった。これに対して、実施例1及び実施例2は、表面抵抗値が維持されたまま、表面粗さRaが減少し、リーク電流値が10-7Aよりも小さかった。この結果は、透明導電膜の断面が、ガラス基材と平行に透明導電膜を二等分する断面に相当する場合、銀ナノワイヤの存在割合P1,P2が、0.1P2<P1<0.7P2の関係を満たすことが好ましいということを示している。 As shown in Table 1, in Comparative Example 1 in which the silver nanowires are uniformly contained in the transparent conductive film and in Comparative Example 2 in which the silver nanowires are substantially uniformly contained in the transparent conductive film, the surface roughness Ra is large and leakage occurs. The current value was larger than 10 −5 A. In Comparative Example 3 in which the amount of silver nanowires on one surface of the transparent conductive film is extremely small compared to the amount of silver nanowires in the cross section of the transparent conductive film, the surface resistance value becomes unstable, and the organic EL element is electrically insulated. have done. On the other hand, in Example 1 and Example 2, the surface roughness Ra decreased while the surface resistance value was maintained, and the leakage current value was smaller than 10 −7 A. As a result, when the cross section of the transparent conductive film corresponds to a cross section that bisects the transparent conductive film in parallel with the glass substrate, the presence ratios P1 and P2 of the silver nanowires are 0.1P2 <P1 <0.7P2. It is shown that it is preferable to satisfy this relationship.
 本発明は上記実施形態の構成に限られず、発明の趣旨を変更しない範囲で種々の変更が
可能である。例えば、透明導電膜3は、液晶ディスプレイ、プラズマディスプレイ、又は太陽有機電池等の透明電極として用いることができる。また、金属細線3aの材料として、カーボンナノチューブを用いてもよく、透明樹脂層3bの材料として、導電性を有する高分子を用いてもよい。
The present invention is not limited to the configuration of the embodiment described above, and various modifications can be made without departing from the spirit of the invention. For example, the transparent conductive film 3 can be used as a transparent electrode such as a liquid crystal display, a plasma display, or a solar organic battery. In addition, carbon nanotubes may be used as the material of the fine metal wires 3a, and conductive polymers may be used as the material of the transparent resin layer 3b.
 なお、本出願は、日本国特許出願2011-046257号に基づいており、その特許出願の内容は、参照によって本出願に組み込まれる。 This application is based on Japanese Patent Application No. 2011-046257, and the contents of the patent application are incorporated into this application by reference.
 1 有機エレクトロルミネッセンス素子
 2 基材
 3 透明導電膜
 3a 金属細線(金属ナノワイヤ)
 3b 透明樹脂層
 3c 作用面(透明樹脂層の基材と対向する面と反対側の一面)
 3d 基材と平行に透明樹脂層を二等分する断面
 6 透明導電膜付き基材
DESCRIPTION OF SYMBOLS 1 Organic electroluminescent element 2 Base material 3 Transparent electrically conductive film 3a Metal fine wire (metal nanowire)
3b Transparent resin layer 3c Working surface (one surface opposite to the surface facing the substrate of the transparent resin layer)
3d A cross section that bisects the transparent resin layer in parallel with the base material.

Claims (7)

  1.  基材上に設けられ、金属細線を含む透明樹脂層を備えた透明導電膜であって、
     前記透明樹脂層の前記基材と対向する面と反対側の一面における前記金属細線の存在割合P1と、前記透明樹脂層の前記基材と平行で、前記一面より前記基材側に存在する断面における前記金属細線の存在割合P2とが、P1<P2の関係となるように構成されていることを特徴とする透明導電膜。
    A transparent conductive film provided on a substrate and provided with a transparent resin layer containing a thin metal wire,
    The ratio P1 of the thin metal wires on one surface opposite to the surface facing the substrate of the transparent resin layer, and the cross section existing parallel to the substrate of the transparent resin layer and closer to the substrate than the one surface. The transparent conductive film is characterized in that the abundance ratio P2 of the fine metal wires in P is in a relationship of P1 <P2.
  2.  前記断面は、前記基材と平行に前記透明樹脂層を二等分する断面であり、
     前記金属細線の存在割合P1,P2が、P1<0.7P2の関係となることを特徴とする請求項1に記載の透明導電膜。
    The cross section is a cross section that bisects the transparent resin layer in parallel with the base material,
    2. The transparent conductive film according to claim 1, wherein the existence ratios P <b> 1 and P <b> 2 of the thin metal wires have a relationship of P <b> 1 <0.7 P <b> 2.
  3.  前記金属細線の存在割合P1,P2が、0.1P2<P1の関係となることを特徴とする請求項2に記載の透明導電膜。 3. The transparent conductive film according to claim 2, wherein the existence ratios P1 and P2 of the fine metal wires are in a relationship of 0.1P2 <P1.
  4.  前記金属細線は、金属ナノワイヤであることを特徴とする請求項1乃至請求項3のいずれか一項に記載の透明導電膜。 The transparent conductive film according to any one of claims 1 to 3, wherein the metal thin wire is a metal nanowire.
  5.  前記金属ナノワイヤは、銀を含むことを特徴とする請求項4に記載の透明導電膜。 The transparent conductive film according to claim 4, wherein the metal nanowire contains silver.
  6.  基材上に請求項1乃至請求項5のいずれか一項に記載の透明導電膜が形成されたことを特徴とする透明導電膜付き基材。 A substrate with a transparent conductive film, wherein the transparent conductive film according to any one of claims 1 to 5 is formed on the substrate.
  7.  請求項6に記載の透明導電膜付き基材を用いたことを特徴とする有機エレクトロルミネッセンス素子。 An organic electroluminescence device using the substrate with a transparent conductive film according to claim 6.
PCT/JP2012/052692 2011-03-03 2012-02-07 Transparent conductive film, substrate with transparent conductive film, and organic electroluminescent element using same WO2012117812A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011046257A JP2012185919A (en) 2011-03-03 2011-03-03 Transparent conductive film, substrate with transparent conductive film, and organic electroluminescent element using the same
JP2011-046257 2011-03-03

Publications (1)

Publication Number Publication Date
WO2012117812A1 true WO2012117812A1 (en) 2012-09-07

Family

ID=46757751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052692 WO2012117812A1 (en) 2011-03-03 2012-02-07 Transparent conductive film, substrate with transparent conductive film, and organic electroluminescent element using same

Country Status (2)

Country Link
JP (1) JP2012185919A (en)
WO (1) WO2012117812A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021232596A1 (en) * 2020-05-21 2021-11-25 电子科技大学中山学院 Thermal repair flexible transparent conductive film and preparation method therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6074851B2 (en) * 2013-03-29 2017-02-08 パナソニックIpマネジメント株式会社 Conductive optical member

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01249436A (en) * 1988-03-31 1989-10-04 Toray Ind Inc Transparent conductive film and its manufacture
JP2006171336A (en) * 2004-12-15 2006-06-29 Takiron Co Ltd Transparent electrode member for image display, and the image display device
JP2007229989A (en) * 2006-02-28 2007-09-13 Takiron Co Ltd Conductive molded body and its manufacturing method
JP2009252493A (en) * 2008-04-04 2009-10-29 Konica Minolta Holdings Inc Transparent conductive film, method of manufacturing the same, and organic electroluminescent device
JP2010513175A (en) * 2006-06-30 2010-04-30 カーディナル・シージー・カンパニー Carbon nanotube glazing technology
WO2011013618A1 (en) * 2009-07-30 2011-02-03 住友化学株式会社 Organic electroluminescence element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01249436A (en) * 1988-03-31 1989-10-04 Toray Ind Inc Transparent conductive film and its manufacture
JP2006171336A (en) * 2004-12-15 2006-06-29 Takiron Co Ltd Transparent electrode member for image display, and the image display device
JP2007229989A (en) * 2006-02-28 2007-09-13 Takiron Co Ltd Conductive molded body and its manufacturing method
JP2010513175A (en) * 2006-06-30 2010-04-30 カーディナル・シージー・カンパニー Carbon nanotube glazing technology
JP2009252493A (en) * 2008-04-04 2009-10-29 Konica Minolta Holdings Inc Transparent conductive film, method of manufacturing the same, and organic electroluminescent device
WO2011013618A1 (en) * 2009-07-30 2011-02-03 住友化学株式会社 Organic electroluminescence element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021232596A1 (en) * 2020-05-21 2021-11-25 电子科技大学中山学院 Thermal repair flexible transparent conductive film and preparation method therefor

Also Published As

Publication number Publication date
JP2012185919A (en) 2012-09-27

Similar Documents

Publication Publication Date Title
JP5679565B2 (en) Transparent conductive film, substrate with transparent conductive film, and organic electroluminescence device using the same
JP5533669B2 (en) Transparent electrode, method for producing the same, and organic electroluminescence device
Choi et al. Junction‐free electrospun Ag fiber electrodes for flexible organic light‐emitting diodes
US8304984B2 (en) Organic electroluminescent element
JP5824678B2 (en) Organic electroluminescence device
EP2557899A1 (en) Transparent electrode and organic electronic element using same
US9490454B2 (en) Method for producing a high efficiency organic light emitting device having a transparent composite electrode comprising a film of conductive nanowires, carbon nanoparticles, light scattering nanoparticles, and a polymer support
JP2011048937A (en) Organic el light-emitting element
KR20140076268A (en) Substrate having transparent electrode for flexible display and method of fabricating the same
WO2014041795A1 (en) Organoelectroluminescent element, illumination apparatus, and method for manufacturing organoelectroluminescent element
JP2009259792A (en) Organic el display device
WO2012127916A1 (en) Transparent conductive film, substrate having transparent conductive film, and organic electroluminescent element using same
JP2012190659A (en) Transparent conductive film, base material with transparent conductive film and organic electroluminescent element including the same
JP2010073322A (en) Transparent electrode, its manufacturing method, and organic electroluminescent element using it
JP4872805B2 (en) Organic electroluminescence device
WO2012117812A1 (en) Transparent conductive film, substrate with transparent conductive film, and organic electroluminescent element using same
TWI321966B (en) Organic electro-luminescence device and method of manufacturing the same
JP2021007074A (en) Electronic device and manufacturing method thereof
JP2012009225A (en) Organic electroluminescent element and method of manufacturing the same
JP2013089501A (en) Organic electroluminescent element
JP2014111335A (en) Base material with electroconductive layer, electric element and organic electroluminescence element
JP2010118165A (en) Transparent electrode, its manufacturing method, and organic electroluminescent element using same
WO2014083767A1 (en) Base material with transparent conductive layer, and organic electroluminescent element
WO2012176692A1 (en) Organic electroluminescent element and method for producing same
JP2011065765A (en) Transparent electrode and organic electronic device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12752696

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12752696

Country of ref document: EP

Kind code of ref document: A1