WO2012117819A1 - Substrate with transparent conductive film, and organic electroluminescence element - Google Patents

Substrate with transparent conductive film, and organic electroluminescence element Download PDF

Info

Publication number
WO2012117819A1
WO2012117819A1 PCT/JP2012/052771 JP2012052771W WO2012117819A1 WO 2012117819 A1 WO2012117819 A1 WO 2012117819A1 JP 2012052771 W JP2012052771 W JP 2012052771W WO 2012117819 A1 WO2012117819 A1 WO 2012117819A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
resin
conductive film
substrate
silane compound
Prior art date
Application number
PCT/JP2012/052771
Other languages
French (fr)
Japanese (ja)
Inventor
太佑 松井
知之 井上
辻本 光
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012117819A1 publication Critical patent/WO2012117819A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates

Definitions

  • the present invention relates to a substrate with a transparent conductive film and an organic electroluminescence element (organic EL element) using the same.
  • Patent Document 1 reports that a resin containing silver nanowires is applied and dried on a substrate to form a transparent conductive coating film.
  • the conventional coating-type substrate with a transparent conductive film has a problem that the strength of the transparent conductive film containing metal nanowires is low.
  • organic EL element organic electroluminescence element
  • an organic layer is applied and laminated on the surface of a transparent electrode composed of the transparent conductive film.
  • the organic layer is water-based, if the strength of the transparent conductive film is weak, the transparent electrode and the organic layer may be mixed or the resin of the transparent electrode may be damaged.
  • the production of the organic EL element has many processes that place a load on the transparent conductive film, such as cleaning of the transparent conductive film and patterning of the transparent electrode. It is conceivable to provide an overcoat to increase the strength of the transparent conductive film.
  • the conductivity of the overcoat layer is generally low, the surface resistance value of the substrate with the transparent conductive film provided with the overcoat layer is remarkably high. The problem of deteriorating arises.
  • the electrical conductivity of the overcoat layer may be low, which may cause a failure in electrical connection with the organic layer. There is.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a substrate with a transparent conductive film having high strength and an organic EL element having electrical reliability.
  • the substrate with a transparent conductive film according to the present invention includes a condensate of a hydrolyzable silane compound and a binder resin on the surface of the transparent substrate, and the content of the condensate of the hydrolyzable silane compound with respect to the binder resin is A transparent conductive layer formed of 5-30% by mass of a resin matrix and metal nanowires is formed by coating.
  • the hydrolyzable silane compound is preferably SiR 4 (R is a hydrolyzable functional group).
  • the organic electroluminescence device includes the above-mentioned substrate with a transparent conductive film.
  • the strength of the transparent conductive film can be improved without reducing the surface resistance value.
  • FIG. 1 is an example of a form of a substrate with a transparent conductive film.
  • This transparent conductive film-coated substrate is coated with a transparent conductive layer 4 formed from a metal matrix 2 and a resin matrix 3 containing a condensate of a hydrolyzable silane compound and a binder resin on the surface of the transparent substrate 1. It is formed by.
  • the shape, structure, size, etc. of the transparent substrate 1 are not particularly limited and can be appropriately selected according to the purpose.
  • Examples of the shape of the transparent substrate 1 include a flat plate shape, a sheet shape, and a film shape, and the structure may be, for example, a single layer structure or a laminated structure, and may be selected as appropriate. be able to.
  • the material of the transparent substrate 1 is not particularly limited, and any of an inorganic material and an organic material can be suitably used.
  • the inorganic material forming the transparent substrate 1 include glass, quartz, and silicon.
  • organic materials include acetate resins such as triacetyl cellulose (TAC); polyester resins such as polyethylene terephthalate (PET); polyethersulfone resins, polysulfone resins, polycarbonate resins, polyamide resins, and polyimides.
  • Resin polyolefin resin, acrylic resin, polynorbornene resin, cellulose resin, polyarylate resin, polystyrene resin, polyvinyl alcohol resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyacrylic resin Etc. These may be used individually by 1 type and may use 2 or more types together.
  • the metal nanowire 2 is a metal in the form of a nano-level fine wire.
  • metal contacts can be provided at the contact portion of the metal nanowire 2, and high conductivity can be achieved with a small blending amount.
  • the average diameter of the metal nanowire 2 is preferably 200 nm or less from the viewpoint of transparency, and preferably 10 nm or more from the viewpoint of conductivity. If the average diameter is 200 nm or less, the influence of light scattering can be reduced, and a smaller average diameter is preferable because light transmittance reduction and haze deterioration can be suppressed. On the other hand, if the average diameter is 10 nm or more, the function as a conductor can be expressed significantly, and a larger average diameter is preferable because conductivity is improved. Accordingly, the thickness is more preferably 20 to 150 nm, and further preferably 40 to 150 nm.
  • the average length of the metal nanowire 2 is preferably 1 ⁇ m or more from the viewpoint of conductivity, and is preferably 100 ⁇ m or less from the viewpoint of the effect on the transparency due to aggregation. More preferably, it is 1 to 50 ⁇ m, and further preferably 3 to 50 ⁇ m.
  • the average diameter and the average length of the metal nanowires 2 can be obtained from the arithmetic average of the measured values of individual metal nanowire images by taking an electron micrograph of a sufficient number of nanowires using SEM or TEM.
  • the number of metal nanowires to be measured is preferably at least 100 or more, and more preferably 300 or more metal nanowires 2 are measured.
  • the means for producing the metal nanowire 2 there are no particular restrictions on the means for producing the metal nanowire 2, and for example, known means such as a liquid phase method or a gas phase method can be used. Moreover, there is no restriction
  • the resin matrix 3 contains a binder resin, and preferably contains a binder resin composed of a polymerizable or crosslinkable organic resin.
  • a binder resin composed of a polymerizable or crosslinkable organic resin.
  • the binder resin is preferably a binder transparent resin.
  • binder resin for example, an addition polymerization resin, a radical polymerization resin, a condensation polymerization resin, a thermosetting resin, an ionizing radiation curable resin, or the like can be used.
  • the addition polymerization type resin, radical polymerization type resin and condensation polymerization type resin include polyethylene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer and a saponified product thereof partially or entirely, ethylene-acrylic acid.
  • acrylonitrile resin such as acrylonitrile-styrene copolymer
  • styrene resin such as polystyrene, styrene-methyl methacrylate copolymer
  • acrylate polymer such as polyethyl acrylate, methacryl such as polymethyl methacrylate, etc.
  • Acid ester polymers, their copolymers and others Was added copolymerization component (meth) acrylate resin, a polyester resin such as polyethylene terephthalate, polyamide resins such as nylon, polycarbonate resins, cellulose resins, polyurethane resins, and silicone resins.
  • the binder resin it is preferable to use a cellulose resin such as methyl cellulose, ethyl cellulose, acetyl cellulose or the like.
  • the cellulose resin has adhesiveness, and can form the transparent conductive layer 4 that adheres strongly to the transparent substrate 1.
  • the cellulose resin since the cellulose resin is aqueous, it has a high affinity with the dispersion of the metal nanowires 2.
  • the cellulose resin has a hydroxyl group and can react with a hydrolyzable silane compound to form a strong composite matrix. The cellulose resin can be applied and dried under mild conditions.
  • thermosetting resin phenol resin, urea resin, diallyl phthalate resin, melamine resin, unsaturated polyester resin, polyurethane resin, epoxy resin, amino alkyd resin, silicon resin, polysiloxane resin, etc.
  • a crosslinking agent, a polymerization initiator, a curing agent, a curing accelerator, and a solvent can be added to the thermosetting resin.
  • the ionizing radiation curable resin preferably has an acrylate functional group, for example, a relatively low molecular weight polyester resin, polyether resin, acrylic resin, epoxy resin, urethane resin, alkyd resin, spiroacetal resin, Polybutadiene resin, polythiol polyene resin, oligomers such as (meth) acrylates of polyfunctional compounds such as polyhydric alcohols, prepolymers, and reactive diluents such as ethyl (meth) acrylate, ethylhexyl (meth) acrylate, styrene, methylstyrene, Monofunctional monomers such as N-vinylpyrrolidone, as well as polyfunctional monomers such as trimethylolpropane tri (meth) acrylate, hexanediol (meth) acrylate, tripropylene glycol di (meth) acrylate, die A relatively large amount of lenglycol di (meth) acryl
  • a photopolymerization initiator examples include acetophenones, benzophenones, ⁇ -amyloxime esters, thioxanthones, and the like.
  • a photosensitizer may be used. Examples of the photosensitizer include n-butylamine, triethylamine, tri-n-butylphosphine, and thioxanthone.
  • the binder resin component forming the resin matrix 3 includes two types selected from the above addition polymerizable resins, radical polymerizable resins, condensation polymerizable resins, thermosetting resins, and ionizing radiation curable resins. You may use the above thing together.
  • Resin matrix 3 contains a condensate of a hydrolyzable silane compound.
  • the hydrolyzable silane compound is a silicon compound that forms a siloxane bond by hydrolysis.
  • hydrolyzable silane compound those represented by the following general formula (I) can be used.
  • X represents a substituted or unsubstituted monovalent hydrocarbon group having 1 to 9 carbon atoms
  • Y represents a hydrolyzable functional group
  • n represents an integer of 0 to 2 (0, 1 or 2).
  • Examples of the substituted or unsubstituted monovalent hydrocarbon group having 1 to 9 carbon atoms constituting X in the general formula (I) include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, Alkyl groups such as heptyl group and octyl group; cycloalkyl groups such as cyclopentyl group and cyclohexyl group; aralkyl groups such as 2-phenylethyl group, 2-phenylpropyl group and 3-phenylpropyl group; phenyl group and tolyl group Aryl group such as vinyl group, alkenyl group such as vinyl group, allyl group; halogen substituted hydrocarbon group such as chloromethyl group, ⁇ -chloropropyl group, 3,3,3-trifluoropropyl group; ⁇ -methacryloxypropyl Substituted carbon such as
  • an alkoxy group, an acetoxy group, an oxime group (—O—N ⁇ C—R (R ′)), an enoxy group (—O—C (R)) ) C (R ′) R ′′), amino group, aminoxy group (—O—N (R) R ′), amide group (—N (R) —C ( ⁇ O) —R ′) (these groups
  • R, R ′, and R ′′ are each independently, for example, a hydrogen atom or a monovalent hydrocarbon group).
  • an alkoxy group is preferable because of availability.
  • hydrolyzable silane compound of the general formula (I) examples include di-, tri-, and tetra-functional alkoxysilanes in which n in the general formula (I) is an integer of 0 to 2, Examples include acetoxysilanes, oxime silanes, enoxysilanes, aminosilanes, aminoxysilanes, and amidosilanes. Among these, alkoxysilanes are preferable because of their availability.
  • R is a hydrolyzable functional group.
  • R in the above formula is an alkoxyl group
  • the hydrolyzable silane compound may be a partial hydrolyzate (oligomer) obtained by condensing the hydrolyzable silane compound in a relatively small number.
  • examples thereof include dimer to decamer of a hydrolyzable silane compound.
  • Such a hydrolyzable silane compound oligomer also has hydrolytic performance and can form a condensate by hydrolysis reaction.
  • the hydrolyzable silane compound may be a sol-gel material.
  • a sol-gel material By using a sol-gel material, a polysiloxane structure can be easily formed.
  • the condensate of the hydrolyzable silane compound may be a partial hydrolysis condensate thereof. That is, not all the hydrolyzable functional groups may be used for the hydrolysis reaction (condensation reaction).
  • a dispersion solution in which the metal nanowires 2 are dispersed in a resin solution is used.
  • the resin solution is a mixture of a binder resin and a hydrolyzable silane compound (or a partially hydrolyzed product thereof) in a solvent or the like.
  • the solvent water or an organic solvent such as alcohol can be used.
  • a mixed solvent of water and an organic solvent may be used.
  • distributed can be prepared by mix
  • the hydrolyzable silane compound (or partial hydrolyzate thereof) As a compounding ratio of the binder resin component and the hydrolyzable silane compound (or partial hydrolyzate thereof), when the binder resin component is 100 parts by mass, the hydrolyzable silane compound (or partial hydrolyzate thereof) Is blended so as to be 5 to 30 parts by mass. That is, in the resin matrix 3, the content of the condensate of the hydrolyzable silane compound with respect to the binder resin is 5 to 30% by mass. When the content of the condensate of the hydrolyzable silane compound with respect to the binder resin is 5% by mass or more, the transparent conductive layer 4 can be given further sufficient strength.
  • the content of the condensate of the hydrolyzable silane compound with respect to the binder resin is 30% by mass or less, it is possible to sufficiently prevent the metal nanowires 2 from aggregating and reducing the conductivity and transmittance. it can.
  • the compounding amount of the metal nanowire 2 in the resin solution is such that when the transparent conductive layer 4 is formed, the metal nanowire 2 is contained in the transparent conductive layer 4 in an amount of 0.1 to 90% by mass. It is preferable to adjust and set the compounding quantity with respect to.
  • the content of the metal nanowire 2 in the transparent conductive layer 4 is 0.1% by mass or more, conductivity can be reliably imparted.
  • the content of the metal nanowire 2 is 90% by mass or less, the metal nanowire 2 can be sufficiently held by the resin matrix 3 forming the transparent conductive layer 4. From these viewpoints, the content of the metal nanowire 2 in the transparent conductive layer 4 is particularly preferably 30 to 80% by mass.
  • a resin solution containing the metal nanowire 2 is applied, dried and cured.
  • light can be irradiated when a photocurable polymer is used, or heating can be performed when a thermosetting polymer is used.
  • the base material with a transparent conductive film which formed the transparent conductive layer 4 like FIG. 1 is producible.
  • the resin matrix 3 a mixed matrix in which an organic matrix made of a binder resin and an inorganic matrix made of a hydrolyzable silane compound are intertwined is formed.
  • the coating-type transparent conductive layer 4 using the metal nanowires 2 since the metal nanowires 2 are synthesized in an aqueous system, a water-soluble resin is used as the binder resin.
  • high-strength thermosetting resins such as acrylic, epoxy, and urethane are often insoluble in water, and generally low-strength thermoplastic resins are used. Therefore, the conventional coating-type transparent conductive layer 4 using the metal nanowire 2 has low strength.
  • the transparent conductive layer 4 as described above by including a condensate of a hydrolyzable silane compound in the resin matrix 3, an inorganic network having an extremely high strength as compared with the organic network together with the organic network. Is formed. Therefore, the strength of the transparent conductive layer 4 is increased, and it is not necessary to provide an overcoat layer or the like, and the strength can be improved without reducing the surface resistance value.
  • the thickness of the transparent conductive layer 4 is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably in the range of about 0.01 to 100 ⁇ m.
  • the transparent conductive layer 4 formed on the surface of the transparent substrate 1 has high electrical conductivity due to the contained metal nanowires 2.
  • the surface resistance value of the transparent conductive layer 4 is preferably 1.0 ⁇ 10 5 ⁇ / ⁇ or less, and more preferably in the range of 1.0 to 10 4 ⁇ / ⁇ . This surface resistance value can be measured, for example, by the four probe method.
  • the transparent conductive layer 4 preferably has a transmittance in the visible light region (400 nm to 800 nm) of 50% or more, more preferably 70% or more. This transmittance can be measured by, for example, a spectrophotometer (“U-4100” manufactured by Hitachi High-Tech Fielding Co., Ltd.) or an ultraviolet-visible spectrometer (“V-560” manufactured by JASCO Corporation). .
  • the metal nanowires 2 may be arranged uniformly dispersed or may be arranged unevenly.
  • FIG. 1 a form in which the metal nanowires 2 are unevenly distributed on the surface side of the transparent conductive layer 4 is illustrated. Further, a part of the metal nanowire 2 may be exposed on the surface of the transparent conductive layer 4 or may protrude from the surface of the transparent conductive layer 4. Conductivity is further improved by arranging the metal nanowires 2 on the surface side.
  • the substrate with a transparent conductive film formed as described above has high transparency in the visible light region, and has a low surface resistance and excellent conductivity. Therefore, it is suitable for wiring materials, electrode materials, conductive films, etc. For example, it can be applied to organic EL elements, optical filters, wiring materials, electrode materials, electromagnetic wave shielding films, optical sensors, recording materials, and the like.
  • an organic EL element organic electroluminescence element
  • a substrate with a transparent conductive film as a substrate with a transparent electrode.
  • an organic layer is often applied and laminated on the surface of a transparent electrode composed of a transparent conductive film.
  • the transparent conductive film is weak when the strength is weak.
  • the electrode and the organic layer may cross each other, or the resin of the transparent electrode may be damaged.
  • a load is applied to the transparent conductive film, such as cleaning of the transparent conductive film and patterning of the transparent electrode.
  • the substrate with a transparent conductive film since the strength is high, it can be prevented from being damaged during the production of the organic EL element, and the electrical reliability of the organic EL element can be improved. Is something that can be done.
  • Example 1 Silver nanowires were used as the metal nanowires 2. This silver nanowire was prepared according to a well-known paper “Materials Chemistry and Physics vol. 114 p333-338“ Preparation of Ag nanorods with high yield by polyol process ””. This silver nanowire had an average diameter of 150 nm and an average length of 5 ⁇ m.
  • solution (A) 3 parts by mass of methylcellulose (M7140, manufactured by Sigma-Aldrich) was dissolved in water to prepare 200 parts by mass of a methylcellulose solution. Moreover, the dispersion liquid which disperse
  • IPA isopropanol
  • methyl silicate Mitsubishi Chemical Co., Ltd., MKC silicate 51, oxide equivalent mass 51%)
  • a mixed solution consisting of / l hydrochloric acid was prepared by stirring for 10 minutes. 3.0 parts by mass of this mixed solution and 300 parts by mass of the above solution (A) were mixed to prepare a coating agent composition (silver nanowire-containing resin solution).
  • the obtained coating agent composition was applied to the surface of a glass substrate (BK7, 100 ⁇ 100 ⁇ 0.7 mm) with a spin coater so as to have a film thickness of 100 nm, and 3 ° C. at room temperature (23 ° C.). After drying for 5 minutes, it was dried by heating at 120 ° C. for 5 minutes. This obtained the base material with a transparent conductive film.
  • the content of the condensate of the hydrolyzable silane compound is the silica (SiO 2 ) that is an oxide that finally reacts and remains in the resin matrix.
  • the mass in terms of oxide is 51%. Therefore, it is calculated that 51% by mass of methyl silicate becomes a silica compound even if this methyl silicate is completely reacted. Therefore, as shown in Table 1, the content of the silica compound with respect to the binder resin is 20% by mass.
  • the condensate of a hydrolysable silane compound it calculates similarly also in another Example and a comparative example.
  • Example 2 1.5 parts by mass of IPA (isopropanol), 2.2 parts by mass of ethyl silicate (manufactured by Colcoat, ethyl silicate 28, oxide equivalent mass 28%), 0.3 parts by mass of 0.1 mol / l hydrochloric acid, A mixed solution consisting of was prepared by stirring for 10 minutes. 4.0 parts by mass of this mixed solution and 300 parts by mass of the solution (A) were mixed to prepare a coating agent composition (silver nanowire-containing resin solution). Other than that was carried out similarly to Example 1, and obtained the base material with a transparent conductive film.
  • Example 1 (Comparative Example 1) Using the solution (A) described in Example 1 as the coating agent composition, this coating agent composition was applied to a glass substrate in the same manner as in Example 1, and dried. This obtained the base material with a transparent conductive film.
  • Example 2 A mixed solution consisting of 1.5 parts by mass of IPA, 0.18 parts by mass of methyl silicate (manufactured by Mitsubishi Chemical Corporation, MKC silicate 51) and 0.3 parts by mass of 0.1 mol / l hydrochloric acid was prepared. . 1.98 parts by mass of the mixed solution and 300 parts by mass of the solution (A) described in Example 1 were mixed to prepare a coating agent composition. This coating agent composition was applied to a glass substrate in the same manner as in Example 1 and dried. This obtained the base material with a transparent conductive film.
  • the surface resistance value was measured using a surface resistance measuring instrument (“HIRESTA IP MCP-HT260” manufactured by Mitsubishi Chemical Corporation).
  • the hardened film was rubbed with steel wool # 0000, and the mechanical strength was determined as follows based on the level of scratches generated.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Non-Insulated Conductors (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

A high-strength substrate with a transparent conductive film and an electrically reliable organic electroluminescence element are provided. The substrate with the transparent conductive film has a transparent conductive layer (4) formed on the surface of a transparent substrate (1) by coating, said layer being formed from: a resin matrix (3) that includes a condensate of a hydrolyzable silane compound and a binder resin and that has 5-30 % by mass content of the condensate of the hydrolyzable silane compound relative to the binder; and metal nanowires (2). It is desirable that the hydrolyzable silane compound is SiR4 (R being a hydrolyzable functional group). The organic electroluminescence element includes the substrate with the transparent conductive film. An inorganic network is formed and the strength of the transparent conductive film increases.

Description

透明導電膜付基材、及び、有機エレクトロルミネッセンス素子Substrate with transparent conductive film and organic electroluminescence element
 本発明は、透明導電膜付基材、及び、それを用いた有機エレクトロルミネッセンス素子(有機EL素子)に関するものである。 The present invention relates to a substrate with a transparent conductive film and an organic electroluminescence element (organic EL element) using the same.
 従来、透明導電膜付基材として、金属ナノワイヤとバインダ樹脂とからなる導電膜を透明基材の表面に形成したものが知られている。例えば、特許文献1には、銀ナノワイヤを含む樹脂を基材の上に塗布・乾燥し、透明導電性塗膜を形成したものが報告されている。 Conventionally, as a substrate with a transparent conductive film, a conductive film made of metal nanowires and a binder resin is formed on the surface of the transparent substrate. For example, Patent Document 1 reports that a resin containing silver nanowires is applied and dried on a substrate to form a transparent conductive coating film.
特表2009-505358号公報Special table 2009-505358
 しかしながら、従来の塗布型の透明導電膜付基材においては、金属ナノワイヤを含有する透明導電膜の強度が低いという問題があった。 However, the conventional coating-type substrate with a transparent conductive film has a problem that the strength of the transparent conductive film containing metal nanowires is low.
 例えば、透明導電膜付基材を有機EL素子(有機エレクトロルミネッセンス素子)に用いる場合、有機EL素子の作製においては、透明導電膜により構成される透明電極の表面に有機層を塗布して積層させることが多い。しかしながら、有機層が水系の場合、透明導電膜の強度が弱いと、透明電極と有機層が交じり合ったり、透明電極の樹脂が傷ついたりする可能性がある。また、有機EL素子の作製には、透明導電膜の洗浄、透明電極のパターニング等、透明導電膜に負荷のかかる工程が多い。透明導電膜の強度を高めるためにオーバーコートを設けることが考えられるが、一般的にオーバーコート層の導電率は低いため、オーバーコート層を設けた透明導電膜付基材の表面抵抗値が著しく低下してしまうという問題が生じる。特に、有機EL素子の場合においては、透明電極である透明導電膜の表面にオーバーコート層を設けると、オーバーコート層の導電率が低いため、有機層との電気的接続に障害が発生するおそれがある。 For example, when a substrate with a transparent conductive film is used for an organic EL element (organic electroluminescence element), in the production of the organic EL element, an organic layer is applied and laminated on the surface of a transparent electrode composed of the transparent conductive film. There are many cases. However, when the organic layer is water-based, if the strength of the transparent conductive film is weak, the transparent electrode and the organic layer may be mixed or the resin of the transparent electrode may be damaged. In addition, the production of the organic EL element has many processes that place a load on the transparent conductive film, such as cleaning of the transparent conductive film and patterning of the transparent electrode. It is conceivable to provide an overcoat to increase the strength of the transparent conductive film. However, since the conductivity of the overcoat layer is generally low, the surface resistance value of the substrate with the transparent conductive film provided with the overcoat layer is remarkably high. The problem of deteriorating arises. In particular, in the case of an organic EL element, if an overcoat layer is provided on the surface of a transparent conductive film that is a transparent electrode, the electrical conductivity of the overcoat layer may be low, which may cause a failure in electrical connection with the organic layer. There is.
 本発明は上記の事情に鑑みてなされたものであり、強度の高い透明導電膜付基材及び電気的信頼性のある有機EL素子を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a substrate with a transparent conductive film having high strength and an organic EL element having electrical reliability.
 本発明に係る透明導電膜付基材は、透明基材の表面に、加水分解性シラン化合物の縮合物及びバインダ樹脂を含み、前記バインダ樹脂に対する前記加水分解性シラン化合物の縮合物の含有量が5~30質量%である樹脂マトリクスと、金属ナノワイヤとから形成される透明導電層が、塗布により形成されているものである。 The substrate with a transparent conductive film according to the present invention includes a condensate of a hydrolyzable silane compound and a binder resin on the surface of the transparent substrate, and the content of the condensate of the hydrolyzable silane compound with respect to the binder resin is A transparent conductive layer formed of 5-30% by mass of a resin matrix and metal nanowires is formed by coating.
 上記の透明導電膜付基材にあっては、前記加水分解性シラン化合物は、SiR4(Rは加水分解性官能基)であることが好ましい。 In the substrate with a transparent conductive film, the hydrolyzable silane compound is preferably SiR 4 (R is a hydrolyzable functional group).
 本発明に係る有機エレクトロルミネッセンス素子は、上記の透明導電膜付基材を含むものである。 The organic electroluminescence device according to the present invention includes the above-mentioned substrate with a transparent conductive film.
 本発明によれば、樹脂マトリクス中に強度の高い無機のネットワークが形成されていることにより、表面抵抗値を低下させることなく透明導電膜の強度を向上させることができる。 According to the present invention, since a high strength inorganic network is formed in the resin matrix, the strength of the transparent conductive film can be improved without reducing the surface resistance value.
透明導電膜付基材の実施の形態の一例である。It is an example of embodiment of a base material with a transparent conductive film.
 図1は、透明導電膜付基材の形態の一例である。この透明導電膜付基材は、透明基材1の表面に、加水分解性シラン化合物の縮合物及びバインダ樹脂を含む樹脂マトリクス3と、金属ナノワイヤ2とから形成される透明導電層4が、塗布により形成されている。 FIG. 1 is an example of a form of a substrate with a transparent conductive film. This transparent conductive film-coated substrate is coated with a transparent conductive layer 4 formed from a metal matrix 2 and a resin matrix 3 containing a condensate of a hydrolyzable silane compound and a binder resin on the surface of the transparent substrate 1. It is formed by.
 透明基板1としては、その形状、構造、大きさ等については、特に制限はなく、目的に応じて適宜選択することができる。透明基材1の形状としては、例えば平板状、シート状、フィルム状などが挙げられ、また構造としては、例えば単層構造であってもよいし、積層構造であってもよく、適宜選択することができる。 The shape, structure, size, etc. of the transparent substrate 1 are not particularly limited and can be appropriately selected according to the purpose. Examples of the shape of the transparent substrate 1 include a flat plate shape, a sheet shape, and a film shape, and the structure may be, for example, a single layer structure or a laminated structure, and may be selected as appropriate. be able to.
 透明基材1の材料については、特に制限はなく、無機材料及び有機材料のいずれであっても好適に用いることができる。透明基材1を形成する無機材料としては、例えば、ガラス、石英、シリコンなどが挙げられる。また有機材料としては、例えば、トリアセチルセルロース(TAC)等のアセテート系樹脂;ポリエチレンテレフタレート(PET)等のポリエステル系樹脂;ポリエーテルスルホン系樹脂、ポリスルホン系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリオレフィン系樹脂、アクリル系樹脂、ポリノルボルネン系樹脂、セルロース系樹脂、ポリアリレート系樹脂、ポリスチレン系樹脂、ポリビニルアルコール系樹脂、ポリ塩化ビニル系樹脂、ポリ塩化ビニリデン系樹脂、ポリアクリル系樹脂などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。 The material of the transparent substrate 1 is not particularly limited, and any of an inorganic material and an organic material can be suitably used. Examples of the inorganic material forming the transparent substrate 1 include glass, quartz, and silicon. Examples of organic materials include acetate resins such as triacetyl cellulose (TAC); polyester resins such as polyethylene terephthalate (PET); polyethersulfone resins, polysulfone resins, polycarbonate resins, polyamide resins, and polyimides. Resin, polyolefin resin, acrylic resin, polynorbornene resin, cellulose resin, polyarylate resin, polystyrene resin, polyvinyl alcohol resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyacrylic resin Etc. These may be used individually by 1 type and may use 2 or more types together.
 金属ナノワイヤ2は、金属がナノレベルの微細なワイヤ状となったものである。金属ナオワイヤ2を用いることにより、金属ナノワイヤ2の接触部分で金属同士の接点を設けることができ、少ない配合量で高導電性を達成することが可能となる。 The metal nanowire 2 is a metal in the form of a nano-level fine wire. By using the metal nao wire 2, metal contacts can be provided at the contact portion of the metal nanowire 2, and high conductivity can be achieved with a small blending amount.
 金属ナノワイヤ2の平均直径は、透明性の観点から200nm以下であることが好ましく、導電性の観点から10nm以上であることが好ましい。平均直径が200nm以下であれば光散乱の影響を軽減でき、平均直径がより小さい方が光透過率低下やヘイズ劣化を抑制することができるため好ましい。一方、平均直径が10nm以上であれば導電体としての機能を有意に発現でき、平均直径がより大きい方が導電性を向上するため好ましい。従って、より好ましくは20~150nmであり、40~150nmであることがさらに好ましい。 The average diameter of the metal nanowire 2 is preferably 200 nm or less from the viewpoint of transparency, and preferably 10 nm or more from the viewpoint of conductivity. If the average diameter is 200 nm or less, the influence of light scattering can be reduced, and a smaller average diameter is preferable because light transmittance reduction and haze deterioration can be suppressed. On the other hand, if the average diameter is 10 nm or more, the function as a conductor can be expressed significantly, and a larger average diameter is preferable because conductivity is improved. Accordingly, the thickness is more preferably 20 to 150 nm, and further preferably 40 to 150 nm.
 金属ナノワイヤ2の平均長さは、導電性の観点から1μm以上であることが好ましく、凝集による透明性への影響から100μm以下であることが好ましい。より好ましくは1~50μmであり、3~50μmであることがさらに好ましい。 The average length of the metal nanowire 2 is preferably 1 μm or more from the viewpoint of conductivity, and is preferably 100 μm or less from the viewpoint of the effect on the transparency due to aggregation. More preferably, it is 1 to 50 μm, and further preferably 3 to 50 μm.
 金属ナノワイヤ2の平均直径及び平均長さは、SEMやTEMを用いて十分な数のナノワイヤについて電子顕微鏡写真を撮影し、個々の金属ナノワイヤ像の計測値の算術平均から求めることができる。金属ナノワイヤ2の長さは、本来直線状に伸ばした状態で求めるべきであるが、現実には屈曲している場合が多いため、電子顕微鏡写真から画像解析装置を用いて金属ナノワイヤの投影径及び投影面積を算出し、円柱体を仮定して算出する(長さ=投影面積/投影径)ものとする。計測対象の金属ナノワイヤ数は、少なくとも100個以上が好ましく、300個以上の金属ナノワイヤ2を計測するのが更に好ましい。 The average diameter and the average length of the metal nanowires 2 can be obtained from the arithmetic average of the measured values of individual metal nanowire images by taking an electron micrograph of a sufficient number of nanowires using SEM or TEM. The length of the metal nanowire 2 should originally be obtained in a state of being linearly stretched, but in reality, since it is often bent, the projected diameter of the metal nanowire and The projected area is calculated and calculated assuming a cylindrical body (length = projected area / projected diameter). The number of metal nanowires to be measured is preferably at least 100 or more, and more preferably 300 or more metal nanowires 2 are measured.
 金属ナノワイヤ2の製造手段には特に制限は無く、例えば、液相法や気相法などの公知の手段を用いることができる。また、具体的な製造方法にも特に制限は無く、公知の製造方法を用いることができる。例えば、Agナノワイヤの製造方法として、Adv.Mater.2002,14,P833~837や、Chem.Mater.2002,14,P4736~4745等を挙げることができる。また、Auナノワイヤの製造方法として、特開2006-233252号公報等を、Cuナノワイヤの製造方法として、特開2002-266007号公報等を、Coナノワイヤの製造方法として、特開2004-149871号公報等を挙げることができる。特に、上記のAdv.Mater.及びChem.Mater.で報告されたAgナノワイヤの製造方法は、水系で簡便にかつ大量にAgナノワイヤを製造することができ、また銀の導電率は金属中で最大であることから、金属ナノワイヤ2の製造方法として好ましく適用することができる。 There are no particular restrictions on the means for producing the metal nanowire 2, and for example, known means such as a liquid phase method or a gas phase method can be used. Moreover, there is no restriction | limiting in particular in a specific manufacturing method, A well-known manufacturing method can be used. For example, as a method for producing Ag nanowires, Adv. Mater. 2002, 14, P833-837, Chem. Mater. 2002, 14, P4736-4745, and the like. Further, as a method for producing Au nanowires, Japanese Patent Application Laid-Open No. 2006-233252 and the like, as a method for producing Cu nanowires, Japanese Patent Application Laid-Open No. 2002-266007, and the like, and as a method for producing Co nanowires, Japanese Patent Application Laid-Open No. 2004-149871 are disclosed. Etc. In particular, the above Adv. Mater. And Chem. Mater. The method for producing Ag nanowires reported in 1) is preferable as a method for producing metal nanowires 2 because Ag nanowires can be produced easily and in large quantities in an aqueous system, and the conductivity of silver is the highest among metals. Can be applied.
 樹脂マトリクス3は、バインダ樹脂を含むものであり、好ましくは、重合性又は架橋性の有機樹脂により構成されるバインダ樹脂を含んでいる。樹脂マトリクス3を構成するための樹脂成分に重合や架橋によりマトリクスを形成する有機樹脂バインダが用いられることにより、透明導電膜の強度が向上する。透明な導電膜を形成するためには、バインダ樹脂はバインダ透明樹脂であることが好ましい。 The resin matrix 3 contains a binder resin, and preferably contains a binder resin composed of a polymerizable or crosslinkable organic resin. By using an organic resin binder that forms a matrix by polymerization or crosslinking as a resin component for constituting the resin matrix 3, the strength of the transparent conductive film is improved. In order to form a transparent conductive film, the binder resin is preferably a binder transparent resin.
 バインダ樹脂としては、例えば、付加重合型樹脂、ラジカル重合型樹脂、縮重合型樹脂、熱硬化型樹脂、電離放射線硬化型樹脂などを用いることができる。 As the binder resin, for example, an addition polymerization resin, a radical polymerization resin, a condensation polymerization resin, a thermosetting resin, an ionizing radiation curable resin, or the like can be used.
 具体的には、付加重合型樹脂、ラジカル重合型樹脂及び縮重合型樹脂としては、ポリエチレン、エチレン-プロピレン共重合体、エチレン-酢酸ビニル共重合体及びその部分又は全部ケン化物、エチレン-アクリル酸エチル共重合体、エチレン-メタクリル酸メチル共重合体、エチレン-酢酸ビニル-メタクリル酸メチル共重合体、ポリプロピレン、プロピレン-α-オレフィン共重合体等のオレフィン系樹脂、ポリ塩化ビニル樹脂等の塩化ビニル系樹脂、アクリロニトリル-スチレン共重合体等のアクリロニトリル系樹脂、ポリスチレン、スチレン-メタクル酸メチル共重合体等のスチレン系樹脂、ポリアクリル酸エチル等のアクリル酸エステル重合体、ポリメタクリル酸メチル等のメタクリル酸エステル重合体、それらの共重合体や他の共重合成分を加えた(メタ)アクリル酸エステル系樹脂、ポリエチレンテレフタレート等のポリエステル樹脂、ナイロン等のポリアミド樹脂、ポリカーボネート樹脂、セルロース樹脂、ポリウレタン系樹脂、シリコン系樹脂等が挙げられる。 Specifically, the addition polymerization type resin, radical polymerization type resin and condensation polymerization type resin include polyethylene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer and a saponified product thereof partially or entirely, ethylene-acrylic acid. Ethylene copolymers, ethylene-methyl methacrylate copolymers, ethylene-vinyl acetate-methyl methacrylate copolymers, olefin resins such as polypropylene and propylene-α-olefin copolymers, and vinyl chlorides such as polyvinyl chloride resins. Resin, acrylonitrile resin such as acrylonitrile-styrene copolymer, styrene resin such as polystyrene, styrene-methyl methacrylate copolymer, acrylate polymer such as polyethyl acrylate, methacryl such as polymethyl methacrylate, etc. Acid ester polymers, their copolymers and others Was added copolymerization component (meth) acrylate resin, a polyester resin such as polyethylene terephthalate, polyamide resins such as nylon, polycarbonate resins, cellulose resins, polyurethane resins, and silicone resins.
 このうちバインダ樹脂として、メチルセルロース、エチルセルロース、アセチルセルロース等のセルロース樹脂を用いることが好ましい。セルロース樹脂は接着性を有しており、透明基材1に対し強力に接着する透明導電層4を形成することができる。また、セルロース樹脂は水系のため金属ナノワイヤ2の分散液と親和性が高い。また、セルロース樹脂は水酸基を有しており加水分解性シラン化合物と反応して強固な複合マトリクスを形成し得る。また、セルロース樹脂は温和な条件で塗布・乾燥することができる。 Among these, as the binder resin, it is preferable to use a cellulose resin such as methyl cellulose, ethyl cellulose, acetyl cellulose or the like. The cellulose resin has adhesiveness, and can form the transparent conductive layer 4 that adheres strongly to the transparent substrate 1. In addition, since the cellulose resin is aqueous, it has a high affinity with the dispersion of the metal nanowires 2. Moreover, the cellulose resin has a hydroxyl group and can react with a hydrolyzable silane compound to form a strong composite matrix. The cellulose resin can be applied and dried under mild conditions.
 熱硬化型樹脂としては、フェノール樹脂、尿素樹脂、ジアリルフタレート樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、アミノアルキッド樹脂、珪素樹脂、ポリシロキサン樹脂等を使用することができ、これらの熱硬化性樹脂に必要に応じて架橋剤、重合開始剤、硬化剤、硬化促進剤、溶剤を加えて使用することもできる。 As the thermosetting resin, phenol resin, urea resin, diallyl phthalate resin, melamine resin, unsaturated polyester resin, polyurethane resin, epoxy resin, amino alkyd resin, silicon resin, polysiloxane resin, etc. can be used. If necessary, a crosslinking agent, a polymerization initiator, a curing agent, a curing accelerator, and a solvent can be added to the thermosetting resin.
 電離放射線硬化型樹脂としては、好ましくは、アクリレート系の官能基を有するもの、例えば、比較的低分子量のポリエステル樹脂、ポリエーテル樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジエン樹脂、ポリチオールポリエン樹脂、多価アルコール等の多官能化合物の(メタ)アクリレート等のオリゴマー、プレポリマー、及び反応性希釈剤としてエチル(メタ)アクリレート、エチルヘキシル(メタ)アクリレート、スチレン、メチルスチレン、N-ビニルピロリドン等の単官能モノマー、並びに多官能モノマー、例えばトリメチロールプロパントリ(メタ)アクリレート、ヘキサンジオール(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等を比較的多量に含有するものを使用することができる。さらに、上記の電離放射線硬化型樹脂を紫外線硬化型樹脂とするには、この中に光重合開始剤を配合することが好ましい。光重合開始剤としてはアセトフェノン類、ベンゾフェノン類、α-アミロキシムエステル、チオキサントン類などを例示することができる。また、光重合開始剤に加えて光増感剤を用いてもよい。光増感剤としては、n-ブチルアミン、トリエチルアミン、トリ-n-ブチルホスフィン、チオキサントンなどを例示することができる。 The ionizing radiation curable resin preferably has an acrylate functional group, for example, a relatively low molecular weight polyester resin, polyether resin, acrylic resin, epoxy resin, urethane resin, alkyd resin, spiroacetal resin, Polybutadiene resin, polythiol polyene resin, oligomers such as (meth) acrylates of polyfunctional compounds such as polyhydric alcohols, prepolymers, and reactive diluents such as ethyl (meth) acrylate, ethylhexyl (meth) acrylate, styrene, methylstyrene, Monofunctional monomers such as N-vinylpyrrolidone, as well as polyfunctional monomers such as trimethylolpropane tri (meth) acrylate, hexanediol (meth) acrylate, tripropylene glycol di (meth) acrylate, die A relatively large amount of lenglycol di (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, etc. Can be used. Furthermore, in order to make the ionizing radiation curable resin into an ultraviolet curable resin, it is preferable to incorporate a photopolymerization initiator therein. Examples of the photopolymerization initiator include acetophenones, benzophenones, α-amyloxime esters, thioxanthones, and the like. In addition to the photopolymerization initiator, a photosensitizer may be used. Examples of the photosensitizer include n-butylamine, triethylamine, tri-n-butylphosphine, and thioxanthone.
 樹脂マトリクス3を形成するバインダ樹脂成分としては、上記した付加重合性の樹脂、ラジカル重合性の樹脂、縮重合性の樹脂、熱硬化型の樹脂、電離放射線硬化型の樹脂、から選ばれる2種類以上のものを併用してもよい。 The binder resin component forming the resin matrix 3 includes two types selected from the above addition polymerizable resins, radical polymerizable resins, condensation polymerizable resins, thermosetting resins, and ionizing radiation curable resins. You may use the above thing together.
 樹脂マトリクス3は加水分解性シラン化合物の縮合物を含有している。加水分解性シラン化合物は、加水分解によりシロキサン結合を形成する珪素化合物である。加水分解性シラン化合物としては、下記の一般式(I)で表されるものを用いることができる。 Resin matrix 3 contains a condensate of a hydrolyzable silane compound. The hydrolyzable silane compound is a silicon compound that forms a siloxane bond by hydrolysis. As the hydrolyzable silane compound, those represented by the following general formula (I) can be used.
  XnSiY4-n        (I)
 ここで、Xは炭素数1~9の置換又は非置換の一価の炭化水素基を示し、Yは加水分解性官能基を示し、nは0~2の整数(0、1又は2)を示す。
X n SiY 4-n (I)
Here, X represents a substituted or unsubstituted monovalent hydrocarbon group having 1 to 9 carbon atoms, Y represents a hydrolyzable functional group, and n represents an integer of 0 to 2 (0, 1 or 2). Show.
 一般式(I)においてXを構成する炭素数1~9の置換又は非置換の一価の炭化水素基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、へプチル基、オクチル基などのアルキル基;シクロペンチル基、シクロヘキシル基などのシクロアルキル基;2-フェニルエチル基、2-フェニルプロピル基、3-フェニルプロピル基などのアラルキル基;フェニル基、トリル基のようなアリール基;ビニル基、アリル基のようなアルケニル基;クロロメチル基、γ-クロロプロピル基、3,3,3-トリフルオロプロピル元のようなハロゲン置換炭化水素基;γ-メタクリロキシプロピル基、γ-グリシドキシプロピル基、3,4-エポキシシクロヘキシルエチル基、γ-メルカプトプロピル基等の置換炭化水素基などを例示することができる。これらの中でも、合成の容易さ、あるいは入手の容易さから炭素数1~4のアルキル基、フェニル基が好ましい。 Examples of the substituted or unsubstituted monovalent hydrocarbon group having 1 to 9 carbon atoms constituting X in the general formula (I) include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, Alkyl groups such as heptyl group and octyl group; cycloalkyl groups such as cyclopentyl group and cyclohexyl group; aralkyl groups such as 2-phenylethyl group, 2-phenylpropyl group and 3-phenylpropyl group; phenyl group and tolyl group Aryl group such as vinyl group, alkenyl group such as vinyl group, allyl group; halogen substituted hydrocarbon group such as chloromethyl group, γ-chloropropyl group, 3,3,3-trifluoropropyl group; γ-methacryloxypropyl Substituted carbon such as γ-glycidoxypropyl group, 3,4-epoxycyclohexylethyl group, γ-mercaptopropyl group, etc. The like may be exemplified containing group. Among these, an alkyl group having 1 to 4 carbon atoms and a phenyl group are preferable because of easy synthesis and availability.
 一般式(I)においてYを構成する加水分解性官能基としては、アルコキシ基、アセトキシ基、オキシム基(-O-N=C-R(R’))、エノキシ基(-O-C(R)=C(R’)R”)、アミノ基、アミノキシ基(-O-N(R)R’)、アミド基(-N(R)-C(=O)-R’)(これらの基において、R、R’、R”は、例えば、それぞれ独立に水素原子又は一価の炭化水素基等である)等が挙げられる。これらの中でも、入手の容易さからアルコキシ基が好ましい。 As the hydrolyzable functional group constituting Y in the general formula (I), an alkoxy group, an acetoxy group, an oxime group (—O—N═C—R (R ′)), an enoxy group (—O—C (R)) ) = C (R ′) R ″), amino group, aminoxy group (—O—N (R) R ′), amide group (—N (R) —C (═O) —R ′) (these groups In the above, R, R ′, and R ″ are each independently, for example, a hydrogen atom or a monovalent hydrocarbon group). Among these, an alkoxy group is preferable because of availability.
 一般式(I)の加水分解性シラン化合物としては、例えば、一般式(I)中のnが0~2の整数である、ジ-、トリ-、テトラ-の各官能性のアルコキシシラン類、アセトキシシラン類、オキシムシラン類、エノキシシラン類、アミノシラン類、アミノキシシラン類、アミドシラン類等が挙げられる。これらの中でも、入手の容易さからアルコキシシラン類が好ましい。 Examples of the hydrolyzable silane compound of the general formula (I) include di-, tri-, and tetra-functional alkoxysilanes in which n in the general formula (I) is an integer of 0 to 2, Examples include acetoxysilanes, oxime silanes, enoxysilanes, aminosilanes, aminoxysilanes, and amidosilanes. Among these, alkoxysilanes are preferable because of their availability.
 一般式(I)において、n=1のオルガノトリアルコキシシランとしては、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリイソプロポキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、イソプロピルトリメトキシシラン、イソプロピルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、3,4-エポキシシクロヘキシルエチルトリメトキシシラン、3,4-エポキシシクロヘキシルエチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン等を例示することができる。 In the general formula (I), n = 1 organotrialkoxysilane includes methyltrimethoxysilane, methyltriethoxysilane, methyltriisopropoxysilane, methyltributoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n -Propyltrimethoxysilane, n-propyltriethoxysilane, isopropyltrimethoxysilane, isopropyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, 3,4-epoxycyclohexylethyltrimethoxysilane, 3,4-epoxycyclohexyl Ethyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane 3-mercaptopropyltrimethoxysilane may be exemplified 3-mercaptopropyl triethoxysilane.
 また、n=2のジオルガノジアルコキシシランとしては、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、メチルフェニルジメトキシシラン等を例示することができる。 Examples of n = 2 diorganodialkoxysilanes include dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, and methylphenyldimethoxysilane. Can do.
 そして、一般式(I)の加水分解性シラン化合物としては、n=0でありY=Rである下記の加水分解性シラン化合物が好ましい。 And as the hydrolyzable silane compound of the general formula (I), the following hydrolyzable silane compounds where n = 0 and Y = R are preferable.
  SiR4
 ここで、Rは加水分解性官能基である。
SiR 4
Here, R is a hydrolyzable functional group.
 このような4官能(n=0)のシラン化合物を用いると、ネットワーク密度が高まり強固な導電膜を形成することがさらに可能になる。 When such a tetrafunctional (n = 0) silane compound is used, it is possible to increase the network density and form a strong conductive film.
 特に、上式のRがアルコキシル基であることが好ましく、このようなn=0のテトラアルコキシシランとしては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトライソプロポキシシラン、テトラブトキシシラン等を例示することができる。 In particular, it is preferable that R in the above formula is an alkoxyl group, and examples of such a tetraalkoxysilane having n = 0 include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetraisopropoxysilane, and tetrabutoxysilane. It can be illustrated.
 なお、本明細書においては、加水分解性シラン化合物は、上記の加水分解性シラン化合物を比較的少ない数で縮合させた部分加水分解物(オリゴマー)であってもよい。例えば、加水分解性シラン化合物の2~10量体などが挙げられる。このような加水分解性シラン化合物オリゴマーも加水分解性能を有しており、加水分解反応により縮合物を形成することができる。 In the present specification, the hydrolyzable silane compound may be a partial hydrolyzate (oligomer) obtained by condensing the hydrolyzable silane compound in a relatively small number. Examples thereof include dimer to decamer of a hydrolyzable silane compound. Such a hydrolyzable silane compound oligomer also has hydrolytic performance and can form a condensate by hydrolysis reaction.
 加水分解性シラン化合物は、ゾル-ゲル系材料であってよい。ゾル-ゲル系材料であることによって、ポリシロキサン構造を容易に形成することができる。 The hydrolyzable silane compound may be a sol-gel material. By using a sol-gel material, a polysiloxane structure can be easily formed.
 また、加水分解性シラン化合物の縮合物は、その部分加水分解縮合物であってよい。すなわち、全ての加水分解性官能基が加水分解反応(縮合反応)に用いられてなくてよい。 Further, the condensate of the hydrolyzable silane compound may be a partial hydrolysis condensate thereof. That is, not all the hydrolyzable functional groups may be used for the hydrolysis reaction (condensation reaction).
 金属ナノワイヤ2と樹脂マトリクス3とから構成される透明導電層4を形成するには、金属ナノワイヤ2が樹脂溶液に分散された分散溶液を用いる。樹脂溶液は、バインダ樹脂と加水分解性シラン化合物(又はその部分加水分解物)とが、溶媒などにおいて混合されたものである。溶媒としては、水や、アルコールなどの有機溶剤を用いることができる。水と有機溶剤の混合溶媒を用いてもよい。特に金属ナノワイヤ2を分散させるためには水系の溶媒を用いることが好ましい。そして、樹脂溶液に金属ナノワイヤ2を配合して混合することにより、金属ナノワイヤ2が分散された分散溶液を調製することができる。 In order to form the transparent conductive layer 4 composed of the metal nanowires 2 and the resin matrix 3, a dispersion solution in which the metal nanowires 2 are dispersed in a resin solution is used. The resin solution is a mixture of a binder resin and a hydrolyzable silane compound (or a partially hydrolyzed product thereof) in a solvent or the like. As the solvent, water or an organic solvent such as alcohol can be used. A mixed solvent of water and an organic solvent may be used. In particular, in order to disperse the metal nanowires 2, it is preferable to use an aqueous solvent. And the dispersion solution in which the metal nanowire 2 was disperse | distributed can be prepared by mix | blending and mixing the metal nanowire 2 with a resin solution.
 バインダ樹脂成分、及び、加水分解性シラン化合物(又はその部分加水分解物)の配合比としては、バインダ樹脂成分を100質量部としたときに、加水分解性シラン化合物(又はその部分加水分解物)を5~30質量部となるように配合する。すなわち、樹脂マトリクス3においては、バインダ樹脂に対する加水分解性シラン化合物の縮合物の含有量が5~30質量%である。バインダ樹脂に対する加水分解性シラン化合物の縮合物の含有量が5質量%以上になることにより、透明導電層4にさらに十分な強度を与えることができる。また、バインダ樹脂に対する加水分解性シラン化合物の縮合物の含有量が30質量%以下になることにより、金属ナノワイヤ2の凝集が起こって導電率や透過率の低下が生じることを十分に防ぐことができる。 As a compounding ratio of the binder resin component and the hydrolyzable silane compound (or partial hydrolyzate thereof), when the binder resin component is 100 parts by mass, the hydrolyzable silane compound (or partial hydrolyzate thereof) Is blended so as to be 5 to 30 parts by mass. That is, in the resin matrix 3, the content of the condensate of the hydrolyzable silane compound with respect to the binder resin is 5 to 30% by mass. When the content of the condensate of the hydrolyzable silane compound with respect to the binder resin is 5% by mass or more, the transparent conductive layer 4 can be given further sufficient strength. In addition, when the content of the condensate of the hydrolyzable silane compound with respect to the binder resin is 30% by mass or less, it is possible to sufficiently prevent the metal nanowires 2 from aggregating and reducing the conductivity and transmittance. it can.
 樹脂溶液への金属ナノワイヤ2の配合量は、透明導電層4を形成した際に、透明導電層4中に金属ナノワイヤ2が0.1~90質量%含有されるように、マトリクス形成用樹脂成分に対する配合量を調整して設定するのが好ましい。透明導電層4中の金属ナノワイヤ2の含有量が0.1質量%以上になることにより導電性を確実に付与することが可能となる。一方、金属ナノワイヤ2の含有量が90質量%以下になることにより、透明導電層4を形成する樹脂マトリクス3で金属ナノワイヤ2を十分に保持することができる。これらの観点から、透明導電層4中の金属ナノワイヤ2の含有量は、特に、30~80質量%含有されるようにするのが好ましい。 The compounding amount of the metal nanowire 2 in the resin solution is such that when the transparent conductive layer 4 is formed, the metal nanowire 2 is contained in the transparent conductive layer 4 in an amount of 0.1 to 90% by mass. It is preferable to adjust and set the compounding quantity with respect to. When the content of the metal nanowire 2 in the transparent conductive layer 4 is 0.1% by mass or more, conductivity can be reliably imparted. On the other hand, when the content of the metal nanowire 2 is 90% by mass or less, the metal nanowire 2 can be sufficiently held by the resin matrix 3 forming the transparent conductive layer 4. From these viewpoints, the content of the metal nanowire 2 in the transparent conductive layer 4 is particularly preferably 30 to 80% by mass.
 透明基材1の表面に透明導電層4を形成するにあたっては、上記の金属ナノワイヤ2を配合した樹脂溶液を塗布して乾燥・硬化させる。硬化する際、光硬化性のポリマーを使用した場合には光を照射したり、熱硬化性のポリマーを使用した場合には加熱したりすることができる。これにより、図1のような透明導電層4を形成した透明導電膜付基材を作製することができる。このとき、樹脂マトリクス3中には、バインダ樹脂による有機マトリクスと、加水分解性シラン化合物による無機マトリクスとが複雑に絡み合った混合マトリクスが形成されている。 In forming the transparent conductive layer 4 on the surface of the transparent substrate 1, a resin solution containing the metal nanowire 2 is applied, dried and cured. At the time of curing, light can be irradiated when a photocurable polymer is used, or heating can be performed when a thermosetting polymer is used. Thereby, the base material with a transparent conductive film which formed the transparent conductive layer 4 like FIG. 1 is producible. At this time, in the resin matrix 3, a mixed matrix in which an organic matrix made of a binder resin and an inorganic matrix made of a hydrolyzable silane compound are intertwined is formed.
 一般に、金属ナノワイヤ2を用いた塗布型の透明導電層4においては、金属ナノワイヤ2が水系で合成されるため、バインダ樹脂として水溶性の樹脂が用いられている。そして、アクリル系、エポキシ系、ウレタン系といった強度の高い熱硬化性の樹脂は水に不溶であることが多く、一般的には、強度の低い熱可塑性樹脂が用いられている。したがって、金属ナノワイヤ2を用いた、従来型の塗布型の透明導電層4は強度が低いものであった。しかしながら、上記のような透明導電層4においては、樹脂マトリクス3中に加水分解性シラン化合物の縮合物を含むことで、有機のネットワークとともに、有機のネットワークに比べて非常に強度の高い無機のネットワークが形成される。そのため、透明導電層4の強度が高くなり、オーバーコート層などを設けなくてもよく、表面抵抗値を低下させることなく強度を向上させることができるものである。 Generally, in the coating-type transparent conductive layer 4 using the metal nanowires 2, since the metal nanowires 2 are synthesized in an aqueous system, a water-soluble resin is used as the binder resin. In addition, high-strength thermosetting resins such as acrylic, epoxy, and urethane are often insoluble in water, and generally low-strength thermoplastic resins are used. Therefore, the conventional coating-type transparent conductive layer 4 using the metal nanowire 2 has low strength. However, in the transparent conductive layer 4 as described above, by including a condensate of a hydrolyzable silane compound in the resin matrix 3, an inorganic network having an extremely high strength as compared with the organic network together with the organic network. Is formed. Therefore, the strength of the transparent conductive layer 4 is increased, and it is not necessary to provide an overcoat layer or the like, and the strength can be improved without reducing the surface resistance value.
 樹脂溶液の塗布方法としては、例えば、スピンコート法、キャスト法、ロールコート法、フローコート法、プリント法、ディップコート法、流延成膜法、バーコート法、グラビア印刷法などが挙げられる。また透明導電層4の厚みは、特に制限はなく、目的に応じて適宜選択することができるが、0.01~100μm程度の範囲が好ましい。 Examples of the resin solution coating method include spin coating, casting, roll coating, flow coating, printing, dip coating, casting film formation, bar coating, and gravure printing. The thickness of the transparent conductive layer 4 is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably in the range of about 0.01 to 100 μm.
 透明基材1の表面に形成される透明導電層4は、含有される金属ナノワイヤ2によって高い電気伝導性を有する。透明導電層4の表面抵抗値は、1.0×105Ω/□以下が好ましく、1.0~104Ω/□の範囲がより好ましい。この表面抵抗値は、例えば四端子法により測定することができる。また透明導電層4は可視光領域(400nm~800nm)での透過率が50%以上であることが好ましく、70%以上であることがより好ましい。この透過率は、例えば、分光光度計((株)日立ハイテクフィールデング製「U-4100」)や、紫外可視分光計(日本分光株式会社製「V-560」)などにより測定することができる。 The transparent conductive layer 4 formed on the surface of the transparent substrate 1 has high electrical conductivity due to the contained metal nanowires 2. The surface resistance value of the transparent conductive layer 4 is preferably 1.0 × 10 5 Ω / □ or less, and more preferably in the range of 1.0 to 10 4 Ω / □. This surface resistance value can be measured, for example, by the four probe method. The transparent conductive layer 4 preferably has a transmittance in the visible light region (400 nm to 800 nm) of 50% or more, more preferably 70% or more. This transmittance can be measured by, for example, a spectrophotometer (“U-4100” manufactured by Hitachi High-Tech Fielding Co., Ltd.) or an ultraviolet-visible spectrometer (“V-560” manufactured by JASCO Corporation). .
 透明導電層4内において金属ナノワイヤ2は、均一に分散されて配置していてもよいし、偏在して配置していてもよい。図1では、金属ナノワイヤ2が透明導電層4の表面側に偏在した形態が図示されている。また、金属ナノワイヤ2の一部が、透明導電層4の表面に露出していたり、透明導電層4の表面から突出していたりしてもよい。金属ナノワイヤ2が表面側に配置されることにより導電性がさらに高められる。 In the transparent conductive layer 4, the metal nanowires 2 may be arranged uniformly dispersed or may be arranged unevenly. In FIG. 1, a form in which the metal nanowires 2 are unevenly distributed on the surface side of the transparent conductive layer 4 is illustrated. Further, a part of the metal nanowire 2 may be exposed on the surface of the transparent conductive layer 4 or may protrude from the surface of the transparent conductive layer 4. Conductivity is further improved by arranging the metal nanowires 2 on the surface side.
 上記のように形成される透明導電膜付基材は、可視光領域において高い透明性を有すると共に、表面抵抗が小さく、導電性に優れているので、配線材料、電極材料、導電性フィルムなどに好適であり、例えば、有機EL素子、光学フィルタ、配線材料、電極材料、電磁波遮蔽膜、光センサ、記録材料、などに適用することができる。 The substrate with a transparent conductive film formed as described above has high transparency in the visible light region, and has a low surface resistance and excellent conductivity. Therefore, it is suitable for wiring materials, electrode materials, conductive films, etc. For example, it can be applied to organic EL elements, optical filters, wiring materials, electrode materials, electromagnetic wave shielding films, optical sensors, recording materials, and the like.
 このうち特に、透明導電膜付基材を透明電極付き基材として用いて有機EL素子(有機エレクトロルミネッセンス素子)を形成することが好ましい。有機EL素子の作製においては、透明導電膜により構成される透明電極の表面に有機層を塗布して積層させることが多いが、有機層が水系の場合、透明導電膜の強度が弱いと、透明電極と有機層が交じり合ったり、透明電極の樹脂が傷ついたりする可能性がある。また、透明導電膜の洗浄、透明電極のパターニング等、透明導電膜に負荷のかかる工程が多い。しかしながら、上記の透明導電膜付基材によれば、強度が高いので、有機EL素子の作製の際に傷ついたりすることを抑制することができ、有機EL素子の電気的信頼性を向上することができるものである。 Among these, it is particularly preferable to form an organic EL element (organic electroluminescence element) using a substrate with a transparent conductive film as a substrate with a transparent electrode. In the production of an organic EL element, an organic layer is often applied and laminated on the surface of a transparent electrode composed of a transparent conductive film. However, when the organic layer is aqueous, the transparent conductive film is weak when the strength is weak. There is a possibility that the electrode and the organic layer may cross each other, or the resin of the transparent electrode may be damaged. In addition, there are many processes in which a load is applied to the transparent conductive film, such as cleaning of the transparent conductive film and patterning of the transparent electrode. However, according to the substrate with a transparent conductive film, since the strength is high, it can be prevented from being damaged during the production of the organic EL element, and the electrical reliability of the organic EL element can be improved. Is something that can be done.
 (実施例1)
 金属ナノワイヤ2として銀ナノワイヤを用いた。この銀ナノワイヤは、公知論文「Materials Chemistry and Physics vol.114 p333-338 “Preparation of Ag nanorods with high yield by polyol process”」に準じて作成したものである。この銀ナノワイヤは、平均直径が150nmであり、平均長さが5μmであった。
Example 1
Silver nanowires were used as the metal nanowires 2. This silver nanowire was prepared according to a well-known paper “Materials Chemistry and Physics vol. 114 p333-338“ Preparation of Ag nanorods with high yield by polyol process ””. This silver nanowire had an average diameter of 150 nm and an average length of 5 μm.
 メチルセルロース(シグマアルドリッチ社製、M7140)3質量部を水に溶解してメチルセルロース溶液200質量部を調製した。また、水を分散媒として、固形分3.0質量%で銀ナノワイヤを分散した分散液を調製した。そして、前記のメチルセルロース溶液に、この銀ナノワイヤの分散液を100質量部加えてよく混合した。これを溶液(A)とした。 3 parts by mass of methylcellulose (M7140, manufactured by Sigma-Aldrich) was dissolved in water to prepare 200 parts by mass of a methylcellulose solution. Moreover, the dispersion liquid which disperse | distributed silver nanowire by solid content 3.0 mass% was prepared using water as a dispersion medium. Then, 100 parts by mass of this silver nanowire dispersion was added to the methylcellulose solution and mixed well. This was designated as solution (A).
 また、1.5質量部のIPA(イソプロパノール)、1.2質量部のメチルシリケート(三菱化学社製、MKCシリケート51、酸化物換算質量51%)、及び、0.3質量部の0.1mol/lの塩酸、からなる混合溶液を10分間攪拌し調製した。この混合溶液3.0質量部と前記の溶液(A)300質量部とを混合して、コーティング剤組成物(銀ナノワイヤ含有樹脂溶液)を調製した。 In addition, 1.5 parts by mass of IPA (isopropanol), 1.2 parts by mass of methyl silicate (Mitsubishi Chemical Co., Ltd., MKC silicate 51, oxide equivalent mass 51%), and 0.3 parts by mass of 0.1 mol A mixed solution consisting of / l hydrochloric acid was prepared by stirring for 10 minutes. 3.0 parts by mass of this mixed solution and 300 parts by mass of the above solution (A) were mixed to prepare a coating agent composition (silver nanowire-containing resin solution).
 次に、得られたコーティング剤組成物をガラス基材(BK7、100×100×0.7mm)の表面に、膜厚が100nmになるようにスピンコーターによって塗布し、常温(23℃)で3分間乾燥した後、120℃で5分間加熱して乾燥した。これにより透明導電膜付基材を得た。 Next, the obtained coating agent composition was applied to the surface of a glass substrate (BK7, 100 × 100 × 0.7 mm) with a spin coater so as to have a film thickness of 100 nm, and 3 ° C. at room temperature (23 ° C.). After drying for 5 minutes, it was dried by heating at 120 ° C. for 5 minutes. This obtained the base material with a transparent conductive film.
 なお、この場合、加水分解性シラン化合物の縮合物の含有量については、添加されたアルコキシシランのうち、最終的に反応して樹脂マトリクス内に残るのは酸化物であるシリカ(SiO2)と考えて算出される。すなわち、実施例1のメチルシリケートでは、酸化物換算質量が51%であるので、このメチルシリケートが完全に反応したとして、メチルシリケートの51質量%がシリカ化合物になるという計算となる。よって、表1のように、バインダー樹脂に対するシリカ化合物含有量は20質量%となる。加水分解性シラン化合物の縮合物の含有量については、他の実施例及び比較例においても、同様に計算される。 In this case, regarding the content of the condensate of the hydrolyzable silane compound, among the added alkoxysilanes, it is the silica (SiO 2 ) that is an oxide that finally reacts and remains in the resin matrix. Calculated by thinking. That is, in the methyl silicate of Example 1, the mass in terms of oxide is 51%. Therefore, it is calculated that 51% by mass of methyl silicate becomes a silica compound even if this methyl silicate is completely reacted. Therefore, as shown in Table 1, the content of the silica compound with respect to the binder resin is 20% by mass. About content of the condensate of a hydrolysable silane compound, it calculates similarly also in another Example and a comparative example.
 (実施例2)
 1.5質量部のIPA(イソプロパノール)、2.2質量部のエチルシリケート(コルコート社製、エチルシリケート28、酸化物換算質量28%)、0.3質量部の0.1mol/lの塩酸、からなる混合溶液を10分間攪拌し調製した。この混合溶液4.0質量部と前記の溶液(A)300質量部とを混合して、コーティング剤組成物(銀ナノワイヤ含有樹脂溶液)を調製した。それ以外は、実施例1と同様にして、透明導電膜付基材を得た。
(Example 2)
1.5 parts by mass of IPA (isopropanol), 2.2 parts by mass of ethyl silicate (manufactured by Colcoat, ethyl silicate 28, oxide equivalent mass 28%), 0.3 parts by mass of 0.1 mol / l hydrochloric acid, A mixed solution consisting of was prepared by stirring for 10 minutes. 4.0 parts by mass of this mixed solution and 300 parts by mass of the solution (A) were mixed to prepare a coating agent composition (silver nanowire-containing resin solution). Other than that was carried out similarly to Example 1, and obtained the base material with a transparent conductive film.
 (比較例1)
 コーティング剤組成物として、実施例1に記載の溶液(A)を用い、実施例1と同様の方法で、このコーティング剤組成物をガラス基材に塗布し、乾燥した。これにより、透明導電膜付基材を得た。
(Comparative Example 1)
Using the solution (A) described in Example 1 as the coating agent composition, this coating agent composition was applied to a glass substrate in the same manner as in Example 1, and dried. This obtained the base material with a transparent conductive film.
 (比較例2)
 1.5質量部のIPA、0.18質量部のメチルシリケート(三菱化学社製、MKCシリケート51)、及び、0.3質量部の0.1mol/lの塩酸、からなる混合溶液を調製した。この混合溶液1.98質量部と、実施例1に記載の溶液(A)300質量部とを混合して、コーティング剤組成物を調製した。このコーティング剤組成物を、実施例1と同様の方法で、ガラス基材に塗布し、乾燥した。これにより、透明導電膜付基材を得た。
(Comparative Example 2)
A mixed solution consisting of 1.5 parts by mass of IPA, 0.18 parts by mass of methyl silicate (manufactured by Mitsubishi Chemical Corporation, MKC silicate 51) and 0.3 parts by mass of 0.1 mol / l hydrochloric acid was prepared. . 1.98 parts by mass of the mixed solution and 300 parts by mass of the solution (A) described in Example 1 were mixed to prepare a coating agent composition. This coating agent composition was applied to a glass substrate in the same manner as in Example 1 and dried. This obtained the base material with a transparent conductive film.
 (比較例3)
 1.5質量部のIPA、2.4質量部のメチルシリケート(三菱化学社製、MKCシリケート51)、及び、0.3質量部の0.1mol/lの塩酸、からなる混合溶液を調製した。この混合溶液4.2質量部と、実施例1に記載の溶液(A)300質量部とを混合して、コーティング剤組成物を調製した。このコーティング剤組成物を、実施例1と同様の方法で、ガラス基材に塗布し、乾燥した。これにより、透明導電膜付基材を得た。
(Comparative Example 3)
A mixed solution consisting of 1.5 parts by mass of IPA, 2.4 parts by mass of methyl silicate (manufactured by Mitsubishi Chemical Co., Ltd., MKC silicate 51) and 0.3 parts by mass of 0.1 mol / l hydrochloric acid was prepared. . 4.2 parts by mass of this mixed solution and 300 parts by mass of the solution (A) described in Example 1 were mixed to prepare a coating agent composition. This coating agent composition was applied to a glass substrate in the same manner as in Example 1 and dried. This obtained the base material with a transparent conductive film.
 (透過率の測定)
 分光光度計((株)日立ハイテクフィールデング製「U-4100」)を用いて測定した。
(Measurement of transmittance)
Measurement was performed using a spectrophotometer (“U-4100” manufactured by Hitachi High-Tech Fielding Co., Ltd.).
 (表面抵抗値の測定)
 表面抵抗値測定器(三菱化学(株)製「ハイレスタIP MCP-HT260」)を用いて測定した。
(Measurement of surface resistance)
The surface resistance value was measured using a surface resistance measuring instrument (“HIRESTA IP MCP-HT260” manufactured by Mitsubishi Chemical Corporation).
 (耐摩耗性の測定)
 スチールウール#0000で硬化被膜を擦り、発生する傷の発生レベルで機械的強度を次のように判定した。
(Measurement of wear resistance)
The hardened film was rubbed with steel wool # 0000, and the mechanical strength was determined as follows based on the level of scratches generated.
  A:傷が発生しない
  B:傷が僅かに発生する
  C:傷が発生する
  D:傷が多数発生する
  E:膜が剥離する。
A: Scratches do not occur B: Slight scratches occur C: Scratches occur D: Many scratches occur E: The film peels off.
 (結果)
 結果を表1に示す。加水分解性シラン化合物を含有していない比較例1では、耐摩耗性が劣っていた。また、加水分解性シラン化合物の含有量が少ない比較例2では、耐摩耗性が若干向上するものの、実施例1ほどの効果は得られなかった。また、加水分解性シラン化合物の含有量が多い比較例3では、耐摩耗性は向上したが、表面抵抗値および透過率が悪化した。これに対し、実施例1、2では、表面抵抗値、透過率、耐摩耗性がすべて良好であった。
(result)
The results are shown in Table 1. In Comparative Example 1 containing no hydrolyzable silane compound, the wear resistance was poor. Further, in Comparative Example 2 in which the content of the hydrolyzable silane compound is small, although the wear resistance is slightly improved, the effect as in Example 1 was not obtained. In Comparative Example 3 in which the content of the hydrolyzable silane compound was large, the wear resistance was improved, but the surface resistance value and the transmittance were deteriorated. On the other hand, in Examples 1 and 2, the surface resistance value, the transmittance, and the wear resistance were all good.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 1  透明基材
 2  金属ナノワイヤ
 3  樹脂マトリクス
 4  透明導電層
DESCRIPTION OF SYMBOLS 1 Transparent base material 2 Metal nanowire 3 Resin matrix 4 Transparent conductive layer

Claims (3)

  1.  透明基材の表面に、加水分解性シラン化合物の縮合物及びバインダ樹脂を含み、前記バインダ樹脂に対する前記加水分解性シラン化合物の縮合物の含有量が5~30質量%である樹脂マトリクスと、金属ナノワイヤとから形成される透明導電層が、塗布により形成されている、透明導電膜付基材。 A resin matrix containing a condensate of a hydrolyzable silane compound and a binder resin on the surface of the transparent substrate, wherein the content of the condensate of the hydrolyzable silane compound with respect to the binder resin is 5 to 30% by mass; and a metal A substrate with a transparent conductive film, wherein a transparent conductive layer formed from nanowires is formed by coating.
  2.  前記加水分解性シラン化合物は、SiR4(Rは加水分解性官能基)である、請求項1に記載の透明導電膜付基材。 The substrate with a transparent conductive film according to claim 1, wherein the hydrolyzable silane compound is SiR 4 (R is a hydrolyzable functional group).
  3.  請求項1又は2に記載の透明導電膜付基材を含む、有機エレクトロルミネッセンス素子。 An organic electroluminescence element comprising the substrate with a transparent conductive film according to claim 1 or 2.
PCT/JP2012/052771 2011-03-03 2012-02-07 Substrate with transparent conductive film, and organic electroluminescence element WO2012117819A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011046676A JP2012185933A (en) 2011-03-03 2011-03-03 Substrate provided with transparent conductive film and organic electroluminescent element
JP2011-046676 2011-03-03

Publications (1)

Publication Number Publication Date
WO2012117819A1 true WO2012117819A1 (en) 2012-09-07

Family

ID=46757758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052771 WO2012117819A1 (en) 2011-03-03 2012-02-07 Substrate with transparent conductive film, and organic electroluminescence element

Country Status (2)

Country Link
JP (1) JP2012185933A (en)
WO (1) WO2012117819A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170003773A1 (en) * 2013-06-20 2017-01-05 Lg Electronics Inc. Conductive film and touch panel including the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6266598B2 (en) * 2013-04-01 2018-01-24 パイオニア株式会社 Optical device
JP6022424B2 (en) * 2013-08-01 2016-11-09 日本写真印刷株式会社 Transparent conductive sheet and touch panel using transparent conductive sheet
JP6413222B2 (en) * 2013-10-23 2018-10-31 大日本印刷株式会社 Conductive material for biosensor and biosensor
KR101960525B1 (en) * 2016-03-22 2019-03-20 울산과학기술원 Method for manufacturing optoelectronic device
JP6702488B2 (en) * 2019-06-19 2020-06-03 大日本印刷株式会社 Conductive material for biosensor and biosensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009505358A (en) * 2005-08-12 2009-02-05 カンブリオス テクノロジーズ コーポレイション Transparent conductors based on nanowires
WO2009057637A1 (en) * 2007-10-31 2009-05-07 Sumitomo Metal Mining Co., Ltd. Flexible transparent conductive film and flexible functional device using same
WO2010082428A1 (en) * 2009-01-19 2010-07-22 コニカミノルタホールディングス株式会社 Transparent electrode, method for producing same, and organic electroluminescent element
JP2010165638A (en) * 2009-01-19 2010-07-29 Toda Kogyo Corp Transparent conductive film encapsulating mesh-like structure formed from metal microparticles, substrate on which transparent conductive film is laminated, and method for producing the same
JP2010287540A (en) * 2009-06-15 2010-12-24 Panasonic Electric Works Co Ltd Method of manufacturing transparent conductive pattern, and base material with transparent conductive pattern

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009505358A (en) * 2005-08-12 2009-02-05 カンブリオス テクノロジーズ コーポレイション Transparent conductors based on nanowires
WO2009057637A1 (en) * 2007-10-31 2009-05-07 Sumitomo Metal Mining Co., Ltd. Flexible transparent conductive film and flexible functional device using same
WO2010082428A1 (en) * 2009-01-19 2010-07-22 コニカミノルタホールディングス株式会社 Transparent electrode, method for producing same, and organic electroluminescent element
JP2010165638A (en) * 2009-01-19 2010-07-29 Toda Kogyo Corp Transparent conductive film encapsulating mesh-like structure formed from metal microparticles, substrate on which transparent conductive film is laminated, and method for producing the same
JP2010287540A (en) * 2009-06-15 2010-12-24 Panasonic Electric Works Co Ltd Method of manufacturing transparent conductive pattern, and base material with transparent conductive pattern

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170003773A1 (en) * 2013-06-20 2017-01-05 Lg Electronics Inc. Conductive film and touch panel including the same

Also Published As

Publication number Publication date
JP2012185933A (en) 2012-09-27

Similar Documents

Publication Publication Date Title
JP5600457B2 (en) Base material with transparent conductive film
WO2012117819A1 (en) Substrate with transparent conductive film, and organic electroluminescence element
KR101302277B1 (en) Transparent inorganic-oxide dispersion, resin composition containing inorganic oxide particles, composition for encapsulating luminescent element, luminescent element, hard coat, optical functional film, optical part, and process for producing resin composition containing inorganic oxide particles
KR102244973B1 (en) Low refractive index film-forming composition
JP5378771B2 (en) Base material with antireflection film and coating liquid for forming antireflection film
JP2011029099A (en) Substrate with transparent conductive film
TWI679165B (en) Transparent electrode complex
JP2011088787A (en) Composition for antireflection film, antireflection film, method for producing antireflection film, and substrate with antireflection film
JP5148846B2 (en) Paint for forming transparent film and substrate with transparent film
Kang et al. A robust transparent encapsulation material: Silica nanoparticle-embedded epoxy hybrid nanocomposite
KR20160057221A (en) Composition for making hard coating layer
JP6434428B2 (en) Film adhesive containing conductive fiber coated particles
JP2005104025A (en) Laminated film with gas barrier properties and image display element using this laminated film
JPWO2015151489A1 (en) Composition for forming transparent conductive layer
WO2013105626A1 (en) Light-emitting element and resin composition for forming light-emitting element
JP2009029108A (en) Laminated film, polarizing plate, and touch panel
JP2015137338A (en) Curable composition containing conductive fiber coated particle
JP2009013033A (en) Method for producing surface-coated silica organosol and method for producing surface-coated silica particle-containing epoxy resin composition
JP7269716B2 (en) Curable composition, cured product, microlens, and optical element
JP6491910B2 (en) Transparent conductive sheet and method for producing the same
JP2011138711A (en) Transparent conductive adhesive and photoelectric conversion element having transparent conductive adhesive layer formed of the same
JP4035148B2 (en) Complex of organic polymer and metal oxide, production method and use thereof
TWI629312B (en) Curing resin composition and uses thereof
JP2016119305A (en) Constituent and conductive material provided therefrom
JP2011242463A (en) Low reflection film and producing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12752674

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12752674

Country of ref document: EP

Kind code of ref document: A1