WO2017018427A1 - Method for producing conductive film, and conductive film - Google Patents

Method for producing conductive film, and conductive film Download PDF

Info

Publication number
WO2017018427A1
WO2017018427A1 PCT/JP2016/071920 JP2016071920W WO2017018427A1 WO 2017018427 A1 WO2017018427 A1 WO 2017018427A1 JP 2016071920 W JP2016071920 W JP 2016071920W WO 2017018427 A1 WO2017018427 A1 WO 2017018427A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
resin
group
conductive film
functional group
Prior art date
Application number
PCT/JP2016/071920
Other languages
French (fr)
Japanese (ja)
Inventor
正彦 鳥羽
内田 博
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to KR1020177031866A priority Critical patent/KR102000956B1/en
Priority to CN201680030108.2A priority patent/CN107615408B/en
Priority to JP2017530888A priority patent/JP6664396B2/en
Publication of WO2017018427A1 publication Critical patent/WO2017018427A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form

Definitions

  • the present invention relates to a method for producing a conductive film and a conductive film.
  • the transparent conductive film may be a liquid crystal display (LCD), a plasma display panel (PDP), an organic electroluminescence display, a transparent electrode of a solar cell (PV) and a touch panel (TP), an antistatic (ESD) film, and an electromagnetic shielding ( It is used in various fields such as EMI) film.
  • LCD liquid crystal display
  • PDP plasma display panel
  • TP touch panel
  • ESD antistatic film
  • EMI electromagnetic shielding
  • ITO indium tin oxide
  • the supply stability of indium is low, the manufacturing cost is high, the flexibility is not high, and the temperature is high during film formation. There was a problem that was necessary. Therefore, a search for a transparent conductive film that replaces ITO has been actively pursued.
  • transparent conductive films containing metal nanowires have excellent conductivity, optical properties, and flexibility, can be formed by wet processes, have low manufacturing costs, and require high temperatures during film formation Therefore, it is suitable as an ITO alternative transparent conductive film.
  • Patent Document 1 discloses a transparent conductive film containing silver nanowires and having high conductivity, optical characteristics, and flexibility.
  • Patent Document 2 discloses a method for producing a transparent conductive film having a transparent conductive layer containing metal nanowires on a transparent substrate.
  • the transparent conductive film containing metal nanowires in particular has a surface area per mass of metal such as silver.
  • the transparent conductive film containing metal nanowires in particular has a surface area per mass of metal such as silver.
  • the transparent conductive film containing metal nanowires since it reacts with various compounds easily, there is a problem that it lacks environmental resistance. For this reason, nanostructures corrode due to the influence of various chemicals and cleaning liquids used in the process, the influence of oxygen and moisture in the air exposed by long-term storage, etc., and the conductivity tends to decrease.
  • a physical cleaning process using a brush or the like is often used in order to prevent adhesion of fine impurities, dust, and dust to the surface of the substrate. The problem is that the surface is also damaged by the process.
  • the transparent conductive film is required to have high adhesion between the conductive layer and the substrate, environmental resistance, and scratch resistance.
  • An object of the present invention is to provide a method for producing a conductive film and a conductive film having high adhesion between the conductive layer and the substrate, environmental resistance, and scratch resistance.
  • an embodiment of the present invention is a method for producing a conductive film, wherein a first resin layer is formed using a first resin composition containing a first functional group on a substrate. Forming a conductive pattern having an opening in plan view on the first resin layer, and forming the first resin layer so as to cover at least part of the conductive pattern. Forming a second resin layer using a second resin composition containing a second functional group co-curable with a functional group; and co-curing the first resin layer and the second resin layer And a step of allowing
  • the conductive pattern is preferably formed after the surface of the first resin layer is no longer viscous.
  • the first functional group only needs to include a site having reactivity in a subsequent process such as a carboxy group, a hydroxy group, an epoxy group, a (meth) acryloyl group, a vinyl group, or an allyl group.
  • the composition preferably contains any of a carboxy-containing polyurethane, a phenol novolac-type epoxy resin, a phenoxy resin, a mixture of a carboxy-containing polyurethane and an epoxy compound having less than an equivalent amount based on a carboxy group, and a diallyl phthalate resin.
  • the second resin composition includes a mixture of a carboxy-containing polyurethane and an epoxy compound, a phenol novolac type epoxy resin, a phenoxy resin, a mixture of a carboxy-containing polyurethane and an epoxy compound having an equivalent amount or more based on a carboxy group, and a diallyl phthalate resin. It is preferred to include any mixture of acrylate monomers.
  • the substrate, the first resin layer, the conductive pattern, and the second resin layer are each transparent.
  • Another embodiment of the present invention is a conductive film having a first resin layer containing a first functional group on a substrate, and an opening in the plan view on the first resin layer.
  • a second resin layer including a second functional group is formed so as to cover at least a part of the conductive pattern, and the first resin is formed in the opening of the conductive pattern. It has a curing reaction portion between the first functional group of the layer and the second functional group of the second resin layer.
  • the total light transmittance of the conductive film is preferably 70% or more.
  • the conductive pattern may include metal nanowires that randomly have cross contact portions.
  • the conductive pattern may include a fine metal line pattern formed regularly or irregularly.
  • the method for producing a conductive film according to the embodiment includes a step of forming a first resin layer using a first resin composition containing a first functional group on a substrate, and a plan view on the first resin layer. A step of forming a conductive pattern having an opening, and a second functional group co-curing with the first functional group of the first resin layer so as to cover at least a part of the conductive pattern. A step of forming a second resin layer using the resin composition, and a step of co-curing the first resin layer and the second resin layer.
  • FIG. 1 shows a process diagram of a method for producing a conductive film according to the present embodiment.
  • a first resin layer (undercoat layer) 12 is formed on a substrate 10 (S1: first resin layer forming step).
  • the first resin layer 12 can be used as long as it has excellent adhesion to the substrate 10.
  • the method for carrying out the above S1 is not limited.
  • screen printing, gravure printing and offset printing thereof, contact printing such as bar coater, die coater, gravure coater, ink jet printing, spray coating And non-contact printing such as a dispenser.
  • Resin films such as a glass substrate, a PET (polyethylene terephthalate) film, a PEN (polyethylene naphthalate) film, etc. can be used.
  • the 1st resin layer 12 is formed on the surface of the board
  • the first resin layer 12 is a conductive material for forming a conductive pattern, which will be described later, by forming the first resin composition on the surface of the substrate 10 in layers and then heating it at room temperature or an appropriate temperature. Is preferably cured or dried to such an extent that it does not sink into the first resin layer 12 (S2: first resin composition drying step).
  • S2 first resin composition drying step.
  • the degree of curing or drying can be determined by the result of a test with a spread meter according to JIS K 5701 being 0 mm, that is, a state where there is no fluidity, but a resin composition that forms a solid resin layer at room temperature is used.
  • a conductive pattern 14 having an opening in plan view is formed on the first resin layer 12.
  • the “conductive pattern” includes a case where the entire surface is formed in a solid shape.
  • a conductive pattern 14 having an opening in a plan view shown in FIG. 2A to be described later is, for example, an ink in which metal nanowires are dispersed in a dispersion medium on the first resin layer 12 (hereinafter referred to as “metal nanowire ink”). May be obtained by pattern printing (S3: printing step) and firing by irradiating or heating the metal nanowire ink (S4: firing step). The surface of the conductive pattern including the fired metal nanowires is exposed above the surface of the first resin layer 12.
  • the “opening” means that there is a gap between the metal nanowires 18 and the fine metal wires 19, and the second resin composition described later is the first resin.
  • the penetration part of the thickness direction which can contact a composition is meant.
  • 2A and 2B are conceptual views in which the conductive pattern 14 is partially enlarged.
  • the metal nanowires 18 are randomly deposited on the substrate to have cross contact portions by printing, and the metal nanowires 18 are electrically connected to each other at the cross contact portions. Conductivity) is exhibited by the inclusion (FIG. 2A). In this case, the opening 20 has an irregular shape due to the metal nanowires 18 deposited randomly. Even when a solid film is printed using metal nanowire ink, a conductive pattern having openings 20 penetrating in the thickness direction can be obtained.
  • the term “metal nanowire” as used herein means one having a shape with a diameter of several tens to several hundreds of nm and a length of several ⁇ m to several tens of ⁇ m.
  • regular-shaped (rectangular) openings 20 are formed by the thin metal wires 19.
  • the fine metal wire 19 can be formed using a metal foil or a metal nanoparticle ink described later.
  • the thin metal wires 19 are arranged in a lattice pattern and have intersecting portions, but may be formed so as to be parallel to a certain direction and have no intersecting portions, for example. Further, the fine metal wires 19 may be irregularly arranged, and the openings 20 may be irregularly shaped.
  • the printing method performed in the above S3 is not limited, and any printing method capable of pattern printing the metal nanowire ink can be adopted.
  • any printing method capable of pattern printing the metal nanowire ink can be adopted.
  • screen printing, gravure printing and offset printing thereof, contact printing such as bar coater, die coater and gravure coater, non-contact printing such as ink jet printing, spray coating, dispenser and the like can be mentioned.
  • the touch-dried state (tack-free) is obtained after the first resin layer 12 is formed on the substrate 10 by, for example, applying the first resin composition.
  • a state having no viscosity (tack-free) is preferable. Thereby, even if the printing apparatus contacts the first resin layer 12, good printing can be performed.
  • a curing accelerator may be mixed.
  • the 1st resin composition contains the epoxy compound mentioned later, it is desirable to mix a hardening accelerator.
  • the first resin layer 12 does not need to be dry to the touch, and the conductive material does not completely sink into the first resin layer 12. It is sufficient that the surface of the conductive material is exposed on the surface of the first resin layer 12.
  • the ink used for printing the conductive pattern 14 is not limited to the metal nanowire ink, and for example, metal nanoparticle ink can be used.
  • metal nanoparticle ink when metal nanoparticle ink is used, the conductive particles must be in close contact with each other in order to exhibit conductivity, and when formed as a solid film, the opening 20 in plan view is There is almost no. Therefore, in order to form a pattern having the opening 20, it is necessary to form a fine line pattern (pattern of the metal fine line 19) having the opening 20 as shown in FIG. 2B, for example.
  • the fine line pattern may be formed regularly or irregularly, and may be formed so as to have an intersection as in a mesh pattern.
  • metal nanoparticles as used herein means those having a spherical shape, preferably a spherical shape, a square shape, a flat [plate] shape or the like having a particle size of the order of nm.
  • the substrate on which the conductive pattern 14 after printing is formed has a total light transmittance of 80% or more, there is a sufficient gap for the first resin layer 12 and the second resin layer 16 described later to contact each other. It is preferable because it is secured.
  • a second resin layer (overcoat layer) 16 is formed so as to cover at least a part of the conductive pattern (S5: second resin layer forming step).
  • This step can be performed by the same method as the above-described S1 (first resin layer forming step).
  • “At least a part” includes all. For example, in the case where a part of the electrode part for electrical connection with the outside is left exposed, the part is not covered. In such a case, a part is covered.
  • the second resin layer 16 includes a second functional group that can be co-cured with the first functional group included in the first resin composition constituting the first resin layer 12. It is comprised with a resin composition.
  • the first resin layer 12 and the second resin layer 16 are co-cured based on the first functional group and the second functional group (S6: co-curing step). (Not shown)). That is, the first functional group contained in the first resin layer 12 and the second functional group contained in the second resin layer 16 are cured and reacted.
  • the conductive pattern 14 has an opening 20 in the thickness direction, and the second resin composition constituting the second resin layer 16 enters the opening 20 and is cured at the interface with the first resin layer 12. react. That is, the opening 20 of the conductive pattern 14 has a curing reaction portion between the first functional group of the first resin layer 12 and the second functional group of the second resin layer 16.
  • the conductive pattern 14 is sandwiched between the first resin layer 12 and the second resin layer 16 and held in the opening 20 of the conductive pattern 14, so that the conductive pattern 14 has good adhesion to the substrate 10.
  • a pattern 14 is obtained.
  • combinations of the first functional group of the first resin layer 12 and the second functional group of the second resin layer 16 include carboxy group / epoxy group, epoxy group / carboxy group, hydroxy group / carboxy group, ( Examples thereof include, but are not limited to, (meth) acryloyl group / vinyl group, vinyl group / (meth) acryloyl group, allyl group / (meth) acryloyl group, and the like.
  • first resin composition constituting the first resin layer 12 and the second resin composition constituting the second resin layer 16 (first resin layer: second resin layer) ) (Carboxy group-containing polyurethane (first functional group is carboxy group): mixture of carboxy group-containing polyurethane and epoxy compound (second functional group is epoxy group)), (phenol novolac type epoxy resin (first 1 functional group is an epoxy group): phenol novolac type epoxy resin (second functional group is an epoxy group)), (phenoxy resin (first functional group is an epoxy group): phenoxy resin (second functional group is an epoxy group) Group)), (carboxy group-containing polyurethane (first functional group is carboxy group): phenoxy resin (second functional group is epoxy group)), (carboxy group-containing polyurethane and Mixture with less than equivalent epoxy compound based on ruxoxy group (first functional group is carboxy group): Mixture of carboxy group-containing polyurethane and more than equivalent epoxy compound based on carboxy group (second functional group is epoxy group)
  • the first resin composition when the first resin composition includes a carboxy group-containing polyurethane and the second resin composition includes a carboxy group-containing polyurethane and an epoxy compound, the first resin layer 12 and the first resin composition
  • the carboxy group (first functional group) of the carboxy group-containing polyurethane contained in the first resin layer 12 and the second resin layer 16 becomes an epoxy group ( 2nd functional group) and co-curing.
  • the first resin composition includes a carboxy group-containing polyurethane and an epoxy compound having an equivalent weight on a carboxy group basis
  • the second resin composition includes a carboxy group-containing polyurethane and an epoxy compound having an equivalent weight or more on a carboxy group basis.
  • co-curing in the same way.
  • co-curing is performed by adding an appropriate curing agent for epoxy resin and heating.
  • both the first functional group and the second functional group are epoxy groups.
  • the first resin composition includes a carboxy group-containing polyurethane
  • the second resin composition includes a phenoxy resin
  • the first resin layer 12 and the second resin layer 16 are heated.
  • the carboxy group (first functional group) and the epoxy group (second functional group) are bonded and co-cured.
  • the first resin composition contains a diallyl phthalate resin (the first functional group is an allyl group)
  • the second resin composition contains a diallyl phthalate resin and an acrylate monomer (the second functional group is an allyl group).
  • the first functional group is an allyl group
  • the second resin composition contains a diallyl phthalate resin and an acrylate monomer (the second functional group is an allyl group).
  • it undergoes addition polymerization and co-curing by light irradiation.
  • the substrate 10, the first resin layer 12, the conductive pattern 14, and the second resin layer 16 are transparent. Thereby, it can apply to transparent elements, such as a touch panel.
  • transparent means that the total light transmittance is 80% or more.
  • the total light transmittance of the conductive film of the present invention having such a constitution is preferably 70% or more, more preferably 75% or more, and further preferably 80% or more.
  • the molecular weight and acid value of the resin, the total light transmittance and the surface resistance of the conductive pattern were measured as follows.
  • GPC gel permeation chromatography
  • ⁇ Acid value> About 0.2 g of a sample is precisely weighed in a 100 ml Erlenmeyer flask with a precision balance, and 10 ml of a mixed solvent of ethanol / toluene 1/2 (mass ratio) is added and dissolved therein. Furthermore, add 1 to 3 drops of phenolphthalein ethanol solution as an indicator to this container and stir well until the sample is uniform. This is titrated with a 0.1N potassium hydroxide-ethanol solution, and the end point of neutralization is defined as the time when the indicator is slightly red for 30 seconds. The value obtained from the result using the following calculation formula is defined as the acid value of the resin.
  • Acid value (mg-KOH / g) [B ⁇ f ⁇ 5.611] / S B: Amount of 0.1N potassium hydroxide-ethanol solution used (ml) f: Factor of 0.1N potassium hydroxide-ethanol solution S: Amount of sample collected (g)
  • ⁇ Total light transmittance> It is the value measured using a turbidimeter (NDH2000, manufactured by Nippon Denshoku Industries Co., Ltd.) after cutting the conductive pattern formed on the substrate with a 50 mm square.
  • Diol 15: 85, molecular weight 964) 143.6 g, 2,2-dimethylolbutanoic acid (made by Nippon Kasei Co., Ltd.) 27.32 g as a dihydroxyl compound having a carboxy group, and propylene glycol monomethyl ether acetate (product) (Name: methoxypropyl acetate, manufactured by Daicel Corporation) 259 g was charged, and the 2,2-dimethylolbutanoic acid was dissolved at 90 ° C.
  • the temperature of the reaction solution was lowered to 70 ° C., and 87.5 g of Desmodur (registered trademark) -W (methylenebis (4-cyclohexylisocyanate), manufactured by Sumika Bayer Urethane Co., Ltd.) was added as polyisocyanate over 30 minutes with a dropping funnel. It was dripped. After completion of the dropwise addition, the temperature was raised to 120 ° C., and the reaction was carried out at 120 ° C. for 6 hours. After confirming that the isocyanate almost disappeared by IR, 0.5 g of isobutanol was added, and the reaction was further carried out at 120 ° C. for 6 hours. went.
  • the weight average molecular weight of the obtained carboxy group-containing polyurethane was 32300, and the acid value of the resin was 40 mgKOH / g.
  • Example 1 As shown in Table 1, on the PET (polyethylene terephthalate) substrate (Lumilar (registered trademark) 125T60 manufactured by Toray Industries, Inc.), the carboxy group-containing polyurethane resin synthesized in Synthesis Example 1 and cure azole (registered) Trademark) 2P4MHZ-PW (2-phenyl-4-methyl-5-hydroxymethylimidazole, 1 part by mass added to 100 parts by mass of the resin), and the resin content concentration including the curing accelerator is 30% by mass. Ink diluted with propylene glycol monomethyl ether acetate (corresponding to the first resin composition) was printed with a bar coater, dried at 100 ° C.
  • Over coat layer (corresponding to the first resin layer) was formed.
  • the thickness of the undercoat layer was determined by measuring the thickness including the substrate after formation of the undercoat layer and drying, and subtracting the thickness of the substrate.
  • a silver nanowire dispersion (0.125 g of silver nanowire (average diameter of wire: about 40 nm, average length: about 10 ⁇ m, 100 silver nanowires that were arbitrarily observed by SEM) Is dispersed in 50 g of ethanol (preparing a 0.25% by mass silver nanowire dispersion)), and 0.05 g of the dispersion is used so that it does not protrude from the undercoat layer with a bar coater. did.
  • the silver nanowire dispersion was successfully coated. After the silver nanowire dispersion was applied, it was baked at 100 ° C. for 1 hour to form a solid conductive pattern. The surface resistance after firing was 80 ⁇ / ⁇ , and the total light transmittance was 89%.
  • an overcoat layer (corresponding to the second resin layer), 10 g of the carboxy group-containing polyurethane resin synthesized in Synthesis Example 1 and 0.69 g of an epoxy compound (jER (registered trademark) 828 manufactured by Mitsubishi Chemical) were added to a curing accelerator. (Shikoku Kasei Co., Ltd.
  • Adhesion evaluation (peeling test) A cross-cut test JIS K5600 was performed on the cured film as an adhesion evaluation. The results are shown in Tables 1 and 2 as “Peel Test”. In addition, it means that adhesiveness (peeling resistance) is so high that the numerical value of a test result is small (0 is the best). In Table 1, the peel test result of Example 1 is 0, indicating that the adhesion (peel resistance) is high.
  • scratch resistance test As a scratch resistance test, scratch resistance was simply determined by paper friction. The used paper was reciprocated five times on the overcoat layer using a JK wiper. The presence or absence of scratches or scratches was confirmed visually and under a microscope. The results are shown in Tables 1 and 2 as “scratch resistance test”. A: There are no scratches or scratches visually or under a microscope. ⁇ : Scratches are not visible with visual inspection, but slight scratch marks are visible with a microscope. ⁇ : Scratches are not visible with the naked eye, but scratches / scratches are visible with a microscope. X: Scratches and scuff marks can be identified visually.
  • HAZE haze
  • light transmittance measurement of the obtained conductive film were measured using Haze meter NDH 2000 (manufactured by Nippon Denshoku). The results are listed as “optical properties” in Tables 1 and 2.
  • Total light transmittance 80% or more and HAZE 20% or less
  • Total light transmittance 80% or more and HAZE 20% or more
  • Example 2 to 6 An undercoat layer, a conductive pattern, and an overcoat layer were formed by the same thickness configuration and the same steps using the ink prepared in the same manner as in Example 1 except that the material configuration shown in Table 1 was changed.
  • Table 1 shows the results of the same adhesion evaluation (peeling test), scratch resistance test, and optical property evaluation as in Example 1.
  • JER registered trademark 828 manufactured by Mitsubishi Chemical
  • the carboxy group of the carboxy group-containing polyurethane resin synthesized in Example 2 is equivalent to the epoxy group of the epoxy compound (jER (registered trademark) 828 manufactured by Mitsubishi Chemical).
  • the overcoat layer of Example 2 (corresponding to the second resin layer) was composed of the carboxy group-containing polyurethane resin synthesized in Synthesis Example 2 and an epoxy compound (jER (registered trademark) 828 manufactured by Mitsubishi Chemical). ))
  • the epoxy compound (Mitsubishi) with respect to the carboxy group of the carboxy group-containing polyurethane resin synthesized in Synthesis Example 2
  • the composition has a small excess of epoxy group of chemical jER (registered trademark) 828).
  • the undercoat layer of Example 6 (corresponding to the first resin layer) was a carboxy group-containing polyurethane resin synthesized in Synthesis Example 1 and an epoxy compound (JER (registered trademark) manufactured by Mitsubishi Chemical Corporation). ) 828) is 100 to 3 (described as 100/3 in Table 1), so that the carboxy group of the carboxy group-containing polyurethane resin synthesized in Synthesis Example 1 remains in a half amount. It has become.
  • the overcoat layer (corresponding to the second resin layer) of Example 6 is the same as that of Example 1.
  • Example 7 An undercoat layer, a conductive pattern, and an overcoat layer were formed by the same thickness configuration and the same steps using the ink prepared in the same manner as in Example 1 except that the material configuration shown in Table 1 was changed.
  • IRGACURE registered trademark
  • 184 manufactured by BASF
  • Curesol registered trademark
  • 2P4MHZ-PW manufactured by Shikoku Kasei
  • Comparative Example 1 It changed into the material structure shown in Table 2, and formed the undercoat layer.
  • the undercoat layer was in a liquid state and was very sticky, and silver nanowire ink could not be printed by other printing methods such as inkjet.
  • the molecular weight is 10,000 or more, whereas the resin of Comparative Example 1 is considered to be caused by the low molecular weight of 4100.
  • Example 5 different resin components are used for the undercoat layer and the overcoat layer, but since they have a co-curable functional group, there is no separation between the undercoat layer and the overcoat layer after curing.
  • Comparative Examples 4 and 5 resins having different curing mechanisms are used for the undercoat layer and the overcoat layer.
  • Comparative Example 4 when UV curing is performed, and in Comparative Example 5, heat curing is performed, the undercoat is used. The layer and the overcoat layer were not co-cured, and peeling occurred between the undercoat layer and the overcoat layer.
  • Example 6 as an undercoat layer, an epoxy compound (jER (registered trademark) 828 manufactured by Mitsubishi Chemical) was added at a ratio in which a half amount of the functional group (carboxy group) remained in the carboxy group-containing polyurethane. Under the condition of time drying, it should be in a semi-cured state, and the residual functional group adheres to the overcoat layer by chemical bonding, so there is no peeling between the undercoat layer and the overcoat layer. On the other hand, in Comparative Examples 2 and 3, the resin used for the undercoat layer and the overcoat layer is in a condition that can be completely cured, and the undercoat layer is formed when the undercoat layer is formed (dried at 100 ° C. for 1 hour). Since the residual functional group that reacts with the overcoat layer disappears in the coat layer, peeling occurred between the undercoat layer and the overcoat layer (peeling test result is 5).
  • jER registered trademark 828 manufactured by Mitsubishi Chemical
  • Example 6 The configuration is the same as that of Example 1 except that no undercoat layer is provided.
  • Table 2 shows the results of the same adhesion evaluation (peeling test), scratch resistance test, and optical property evaluation as in Example 1. Although the peel test and scratch resistance test were good, but there was no undercoat layer, when the PET substrate after the silver nanowire dispersion was applied was heated, the total light transmittance decreased by 5% or more, but was 80% or more. However, HAZE, which was 2% before heating, exceeds 50% after heating, and the optical properties are greatly impaired. Due to heating, oligomers are precipitated from the PET substrate and the surface roughness is increased, so that the optical properties are impaired.
  • Example 7 This is a comparative example in which no overcoat layer is provided.
  • Table 2 shows the results of the same adhesion evaluation (peeling test), scratch resistance test, and optical property evaluation as in Example 1. Since there is no overcoat layer, scratches occur in the metal part by the scratch resistance test, and from the result of environmental resistance similar to Example 1 shown in FIG. 3, after about 700 hours, the resistance starts to increase significantly, It turns out that environmental tolerance is low.

Abstract

[Problem] To provide: a method for producing a conductive film that exhibits good adhesion to a substrate, high environmental resistance and high scratch resistance; and a conductive film. [Solution] A first resin layer is formed on a substrate using a first resin composition containing a first functional group (S1); after drying the first resin layer to such an extent that a conductive material does not sink into the layer (S2), a conductive pattern that has an opening when viewed in plan is formed on the first resin layer (S3, S4); and a second resin layer is formed so as to cover at least a part of the conductive pattern using a second resin composition containing a second functional group that is co-curable with the first functional group in the first resin layer, and the first resin layer and the second resin layer are co-cured (S5).

Description

導電フィルムの製造方法及び導電フィルムConductive film manufacturing method and conductive film
 本発明は、導電フィルムの製造方法及び導電フィルムに関する。 The present invention relates to a method for producing a conductive film and a conductive film.
 導電フィルムは、様々な電子部品への用途に応じて種々開発、生産されている。例えば、透明導電フィルムは、液晶ディスプレイ(LCD)、プラズマディスプレイパネル(PDP)、有機エレクトロルミネッセンス型ディスプレイ、太陽電池(PV)およびタッチパネル(TP)の透明電極、帯電防止(ESD)フィルムならびに電磁波遮蔽(EMI)フィルム等の種々の分野で使用されている。これらの透明導電フィルムとしては、従来、ITO(酸化インジウム錫)を用いたものが使われてきたが、インジウムの供給安定性が低い、製造コストが高い、柔軟性に欠ける、および成膜時に高温が必要であるという問題があった。そのため、ITOに代わる透明導電フィルムの探索が活発に進められている。それらの中でも、金属ナノワイヤを含有する透明導電フィルムは、導電性、光学特性、および柔軟性に優れること、ウェットプロセスで成膜が可能であること、製造コストが低いこと、成膜時に高温を必要としないことなどから、ITO代替透明導電フィルムとして好適である。 Conductive films have been developed and produced in various ways for various electronic parts. For example, the transparent conductive film may be a liquid crystal display (LCD), a plasma display panel (PDP), an organic electroluminescence display, a transparent electrode of a solar cell (PV) and a touch panel (TP), an antistatic (ESD) film, and an electromagnetic shielding ( It is used in various fields such as EMI) film. Conventionally, those using ITO (indium tin oxide) have been used as these transparent conductive films. However, the supply stability of indium is low, the manufacturing cost is high, the flexibility is not high, and the temperature is high during film formation. There was a problem that was necessary. Therefore, a search for a transparent conductive film that replaces ITO has been actively pursued. Among them, transparent conductive films containing metal nanowires have excellent conductivity, optical properties, and flexibility, can be formed by wet processes, have low manufacturing costs, and require high temperatures during film formation Therefore, it is suitable as an ITO alternative transparent conductive film.
 例えば、銀ナノワイヤを含み、高い導電性、光学特性、柔軟性を有する透明導電膜が知られている(特許文献1参照)。また、下記特許文献2には、透明基材上に金属ナノワイヤを含有する透明導電層を有する透明導電フィルムの製造方法が開示されている。 For example, a transparent conductive film containing silver nanowires and having high conductivity, optical characteristics, and flexibility is known (see Patent Document 1). Patent Document 2 below discloses a method for producing a transparent conductive film having a transparent conductive layer containing metal nanowires on a transparent substrate.
 このような透明導電フィルムにおいては、導電層と基板との密着性が高いことが必要であり、これに加えて、特に金属ナノワイヤを含有する透明導電フィルムは、銀等の金属の質量当たりの表面積が大きく、種々の化合物と反応し易いために環境耐性に欠けるという問題がある。このため、工程中に使用される種々の薬剤や洗浄液の影響や、長期保管によってさらされる空気中の酸素や水分の影響等により、ナノ構造体が腐食し、導電性が低下しやすい。また、特に電子材料などの用途では、基板の表面への微粒子状の不純物やちりやホコリなどの付着や混入を防ぐために、ブラシ等を用いた物理的洗浄工程が用いられる場合が多いが、この工程によっても表面が傷つけられることが問題になる。 In such a transparent conductive film, it is necessary that the adhesion between the conductive layer and the substrate is high, and in addition, the transparent conductive film containing metal nanowires in particular has a surface area per mass of metal such as silver. However, since it reacts with various compounds easily, there is a problem that it lacks environmental resistance. For this reason, nanostructures corrode due to the influence of various chemicals and cleaning liquids used in the process, the influence of oxygen and moisture in the air exposed by long-term storage, etc., and the conductivity tends to decrease. In particular, in applications such as electronic materials, a physical cleaning process using a brush or the like is often used in order to prevent adhesion of fine impurities, dust, and dust to the surface of the substrate. The problem is that the surface is also damaged by the process.
 これを解決するため、銀ナノワイヤを含む透明導電フィルムの表面に保護膜を積層し、該透明導電フィルムに環境耐性および耐擦傷性を付与する試みが多く行われている。(特許文献3~4参照)。 In order to solve this problem, many attempts have been made to laminate a protective film on the surface of a transparent conductive film containing silver nanowires to impart environmental resistance and scratch resistance to the transparent conductive film. (See Patent Documents 3 to 4).
 このように、透明導電フィルムには、導電層と基板との密着性、環境耐性および耐擦傷性が高いことが要求される。 Thus, the transparent conductive film is required to have high adhesion between the conductive layer and the substrate, environmental resistance, and scratch resistance.
特表2010-507199号公報Special table 2010-507199 特許第5609008号公報Japanese Patent No. 5609008 特開2014-191894号公報JP 2014-191894 A 特開2013-200943号公報JP 2013-200903 A
 本発明の目的は、導電層と基板との密着性、環境耐性および耐擦傷性が高い導電フィルムの製造方法及び導電フィルムを提供することにある。 An object of the present invention is to provide a method for producing a conductive film and a conductive film having high adhesion between the conductive layer and the substrate, environmental resistance, and scratch resistance.
 上記目的を達成するために、本発明の一実施形態は、導電フィルムの製造方法であって、基板上に第1の官能基を含む第1の樹脂組成物を用いて第1の樹脂層を形成する工程と、前記第1の樹脂層上に平面視において開口部を有する導電パターンを形成する工程と、前記導電パターンの少なくとも一部を被覆するように前記第1の樹脂層の第1の官能基と共硬化可能な第2の官能基を含む第2の樹脂組成物を用いて第2の樹脂層を形成する工程と、前記第1の樹脂層と第2の樹脂層とを共硬化させる工程と、を含むことを特徴とする。 In order to achieve the above object, an embodiment of the present invention is a method for producing a conductive film, wherein a first resin layer is formed using a first resin composition containing a first functional group on a substrate. Forming a conductive pattern having an opening in plan view on the first resin layer, and forming the first resin layer so as to cover at least part of the conductive pattern. Forming a second resin layer using a second resin composition containing a second functional group co-curable with a functional group; and co-curing the first resin layer and the second resin layer And a step of allowing
  上記導電パターンは、前記第1の樹脂層の表面に粘性がなくなった後に形成するのが好適である。 The conductive pattern is preferably formed after the surface of the first resin layer is no longer viscous.
 また、上記第1の官能基は、カルボキシ基、ヒドロキシ基、エポキシ基、(メタ)アクリロイル基、ビニル基、アリル基など後工程による反応性を有する部位を含んでいればよく、第1の樹脂組成物はカルボキシ含有ポリウレタン、フェノールノボラック型エポキシ樹脂、フェノキシ樹脂、カルボキシ含有ポリウレタンとカルボキシ基基準で当量未満のエポキシ化合物との混合物、ジアリルフタレート樹脂のいずれかを含むのが好適である。 In addition, the first functional group only needs to include a site having reactivity in a subsequent process such as a carboxy group, a hydroxy group, an epoxy group, a (meth) acryloyl group, a vinyl group, or an allyl group. The composition preferably contains any of a carboxy-containing polyurethane, a phenol novolac-type epoxy resin, a phenoxy resin, a mixture of a carboxy-containing polyurethane and an epoxy compound having less than an equivalent amount based on a carboxy group, and a diallyl phthalate resin.
 また、上記第2の樹脂組成物は、カルボキシ含有ポリウレタンとエポキシ化合物との混合物、フェノールノボラック型エポキシ樹脂、フェノキシ樹脂、カルボキシ含有ポリウレタンとカルボキシ基基準で当量以上のエポキシ化合物との混合物、ジアリルフタレート樹脂とアクリレートモノマーとの混合物のいずれかを含むのが好適である。 The second resin composition includes a mixture of a carboxy-containing polyurethane and an epoxy compound, a phenol novolac type epoxy resin, a phenoxy resin, a mixture of a carboxy-containing polyurethane and an epoxy compound having an equivalent amount or more based on a carboxy group, and a diallyl phthalate resin. It is preferred to include any mixture of acrylate monomers.
 また、上記基板、第1の樹脂層、導電パターン及び第2の樹脂層はそれぞれ透明であるのが好適である。 Further, it is preferable that the substrate, the first resin layer, the conductive pattern, and the second resin layer are each transparent.
 また、本発明の他の実施形態は、導電フィルムであって、基板上に、第1の官能基を含む第1の樹脂層を有し、該第1の樹脂層上に平面視において開口部を有する導電パターンを有し、該導電パターンの少なくとも一部を被覆するように第2の官能基を含む第2の樹脂層が形成されており、かつ、前記導電パターン開口部において第1の樹脂層の第1の官能基と第2の樹脂層の第2の官能基との硬化反応部分を有することを特徴とする。 Another embodiment of the present invention is a conductive film having a first resin layer containing a first functional group on a substrate, and an opening in the plan view on the first resin layer. A second resin layer including a second functional group is formed so as to cover at least a part of the conductive pattern, and the first resin is formed in the opening of the conductive pattern. It has a curing reaction portion between the first functional group of the layer and the second functional group of the second resin layer.
 上記導電フィルムの全光線透過率は、70%以上であるのが好適である。 The total light transmittance of the conductive film is preferably 70% or more.
 上記導電パターンは無秩序に交差接触部を有する金属ナノワイヤを含むものでもよい。 The conductive pattern may include metal nanowires that randomly have cross contact portions.
 上記導電パターンは規則的または不規則的に形成された金属細線パターンを含むものであってもよい。 The conductive pattern may include a fine metal line pattern formed regularly or irregularly.
 本発明によれば、基板との密着性、環境耐性、耐擦傷性および光学特性が良好な導電フィルムを提供できる。 According to the present invention, it is possible to provide a conductive film having good adhesion to a substrate, environmental resistance, scratch resistance and optical properties.
実施形態にかかる導電フィルムの製造方法の工程図である。It is process drawing of the manufacturing method of the electrically conductive film concerning embodiment. 実施形態にかかる導電パターンを部分的に拡大した概念図である。It is the conceptual diagram which expanded the electrically conductive pattern concerning embodiment partially. 実施例1および比較例7の導電フィルムの環境耐性評価結果を示す図である。It is a figure which shows the environmental tolerance evaluation result of the conductive film of Example 1 and Comparative Example 7.
 以下、本発明を実施するための形態(以下、実施形態という)を説明する。 Hereinafter, modes for carrying out the present invention (hereinafter referred to as embodiments) will be described.
 実施形態にかかる導電フィルムの製造方法は、基板上に第1の官能基を含む第1の樹脂組成物を用いて第1の樹脂層を形成する工程と、第1の樹脂層上に平面視において開口部を有する導電パターンを形成する工程と、導電パターンの少なくとも一部を被覆するように上記第1の樹脂層の第1の官能基と共硬化可能な第2の官能基を含む第2の樹脂組成物を用いて第2の樹脂層を形成する工程と、第1の樹脂層と第2の樹脂層とを共硬化させる工程と、を含むことを特徴とする。 The method for producing a conductive film according to the embodiment includes a step of forming a first resin layer using a first resin composition containing a first functional group on a substrate, and a plan view on the first resin layer. A step of forming a conductive pattern having an opening, and a second functional group co-curing with the first functional group of the first resin layer so as to cover at least a part of the conductive pattern. A step of forming a second resin layer using the resin composition, and a step of co-curing the first resin layer and the second resin layer.
 図1には、本実施形態にかかる導電フィルムの製造方法の工程図が示される。図1において、まず基板10上に第1の樹脂層(アンダーコート層)12を形成する(S1:第1樹脂層形成工程)。ここで、第1の樹脂層12は、基板10との密着性の優れた樹脂であれば使用できる。 FIG. 1 shows a process diagram of a method for producing a conductive film according to the present embodiment. In FIG. 1, first, a first resin layer (undercoat layer) 12 is formed on a substrate 10 (S1: first resin layer forming step). Here, the first resin layer 12 can be used as long as it has excellent adhesion to the substrate 10.
 上記S1(第1樹脂層形成工程)を実施する方法は限定されず、例えば、スクリーン印刷、グラビア印刷およびそれらのオフセット印刷、バーコーター、ダイコーター、グラビアコーター等の接触印刷、インクジェット印刷、スプレーコート、ディスペンサー等の非接触印刷が挙げられる。 The method for carrying out the above S1 (first resin layer forming step) is not limited. For example, screen printing, gravure printing and offset printing thereof, contact printing such as bar coater, die coater, gravure coater, ink jet printing, spray coating And non-contact printing such as a dispenser.
 基板10を構成する基材としては、特に限定されないが、ガラス基板や、PET(ポリエチレンテレフタレート)フィルム、PEN(ポリエチレンナフタレート)フィルムなどの樹脂フィルム等を使用できる。 Although it does not specifically limit as a base material which comprises the board | substrate 10, Resin films, such as a glass substrate, a PET (polyethylene terephthalate) film, a PEN (polyethylene naphthalate) film, etc. can be used.
 また、第1の樹脂層12は、基板10の表面上に形成された後に、後述する第2の樹脂層を構成する第2の樹脂組成物が含む第2の官能基と共硬化できる第1の官能基を含む第1の樹脂組成物により構成される。 Moreover, after the 1st resin layer 12 is formed on the surface of the board | substrate 10, it can co-cure with the 2nd functional group which the 2nd resin composition which comprises the 2nd resin layer mentioned later contains. It is comprised by the 1st resin composition containing the functional group of.
 次に、上記第1の樹脂層12は基板10の表面上に第1の樹脂組成物を層状に形成後常温または適宜な温度で加熱することにより、後述する導電パターンを形成するための導電材料が第1の樹脂層12の内部に沈み込まない程度に硬化あるいは乾燥させる(S2:第1の樹脂組成物乾燥工程)ことが好ましい。硬化あるいは乾燥の程度はJIS K 5701によるスプレッドメーターによる試験の結果が0mm、すなわち流動性がない状態となることにより判定することができるが、常温で固体の樹脂層を形成する樹脂組成物を用いれば後述の導電パターン形成工程において導電材料が第1の樹脂層12層内に完全に沈み込むことはないので好ましい。第1の樹脂層12の形成(S1)、硬化あるいは乾燥(S2)後に、第1の樹脂層12上に平面視において開口部を有する導電パターン14を形成する。「導電パターン」は全面ベタ状に形成する場合も含む。後述する図2(a)に示された平面視において開口部を有する導電パターン14は、例えば第1の樹脂層12上に金属ナノワイヤが分散媒に分散されたインク(以下「金属ナノワイヤインク」ということがある)をパターン印刷し(S3:印刷工程)、この金属ナノワイヤインクに光照射しあるいは加熱することにより焼成する(S4:焼成工程)ことで得ることができる。焼成された金属ナノワイヤを含む導電パターンの表面は第1の樹脂層12表面より上に露出された状態となる。 Next, the first resin layer 12 is a conductive material for forming a conductive pattern, which will be described later, by forming the first resin composition on the surface of the substrate 10 in layers and then heating it at room temperature or an appropriate temperature. Is preferably cured or dried to such an extent that it does not sink into the first resin layer 12 (S2: first resin composition drying step). The degree of curing or drying can be determined by the result of a test with a spread meter according to JIS K 5701 being 0 mm, that is, a state where there is no fluidity, but a resin composition that forms a solid resin layer at room temperature is used. For example, it is preferable because the conductive material does not completely sink into the first resin layer 12 in the conductive pattern forming step described later. After the first resin layer 12 is formed (S1), cured or dried (S2), a conductive pattern 14 having an opening in plan view is formed on the first resin layer 12. The “conductive pattern” includes a case where the entire surface is formed in a solid shape. A conductive pattern 14 having an opening in a plan view shown in FIG. 2A to be described later is, for example, an ink in which metal nanowires are dispersed in a dispersion medium on the first resin layer 12 (hereinafter referred to as “metal nanowire ink”). May be obtained by pattern printing (S3: printing step) and firing by irradiating or heating the metal nanowire ink (S4: firing step). The surface of the conductive pattern including the fired metal nanowires is exposed above the surface of the first resin layer 12.
 ここで「開口部」とは、図2(a)、(b)に示されるように、金属ナノワイヤ18や金属細線19間に隙間があり、後述の第2の樹脂組成物が第1の樹脂組成物に接触できるような厚み方向の貫通部を意味する。なお、図2(a)、(b)は、導電パターン14を部分的に拡大した概念図である。 Here, as shown in FIGS. 2A and 2B, the “opening” means that there is a gap between the metal nanowires 18 and the fine metal wires 19, and the second resin composition described later is the first resin. The penetration part of the thickness direction which can contact a composition is meant. 2A and 2B are conceptual views in which the conductive pattern 14 is partially enlarged.
 金属ナノワイヤインクを用いる場合は、印刷することにより金属ナノワイヤ18が基板上に無秩序に交差接触部を有するように堆積し、この交差接触部で金属ナノワイヤ18同士が電気的に接続する(接する場合を含む)ことで導電性を発現する(図2(a))。また、この場合の開口部20は、無秩序に堆積された金属ナノワイヤ18により、不規則的な形状となる。金属ナノワイヤインクを用いてベタ膜を印刷しても厚み方向に貫通する開口部20を有する導電パターンが得られる。ここでいう「金属ナノワイヤ」とは径が数十nm~数百nm、長さが数μm~数十μmの形状を有するものを意味する。 When the metal nanowire ink is used, the metal nanowires 18 are randomly deposited on the substrate to have cross contact portions by printing, and the metal nanowires 18 are electrically connected to each other at the cross contact portions. Conductivity) is exhibited by the inclusion (FIG. 2A). In this case, the opening 20 has an irregular shape due to the metal nanowires 18 deposited randomly. Even when a solid film is printed using metal nanowire ink, a conductive pattern having openings 20 penetrating in the thickness direction can be obtained. The term “metal nanowire” as used herein means one having a shape with a diameter of several tens to several hundreds of nm and a length of several μm to several tens of μm.
 また、図2(b)に示される例では、金属細線19により規則的形状(矩形状)の開口部20が形成されている。金属細線19は金属箔や、後述する金属ナノ粒子インクを使用して形成できる。なお、図2(b)の例では、金属細線19が格子状に並び、交差部を有しているが、例えば一定方向に平行に並び交差部を有さないように形成されてもよい。また、金属細線19が不規則的に配置され、開口部20を不規則的な形状としてもよい。 Further, in the example shown in FIG. 2 (b), regular-shaped (rectangular) openings 20 are formed by the thin metal wires 19. The fine metal wire 19 can be formed using a metal foil or a metal nanoparticle ink described later. In the example of FIG. 2B, the thin metal wires 19 are arranged in a lattice pattern and have intersecting portions, but may be formed so as to be parallel to a certain direction and have no intersecting portions, for example. Further, the fine metal wires 19 may be irregularly arranged, and the openings 20 may be irregularly shaped.
 上記S3(印刷工程)で実施される印刷方法は限定されず、金属ナノワイヤインクをパターン印刷できる印刷方法であればいずれも採用できる。例えば、スクリーン印刷、グラビア印刷およびそれらのオフセット印刷、バーコーター、ダイコーター、グラビアコーター等の接触印刷、インクジェット印刷、スプレーコート、ディスペンサー等の非接触印刷が挙げられる。上記接触印刷を行う場合には、第1の樹脂層12が基板10に例えば第1の樹脂組成物を塗布することにより形成された後、指触乾燥状態(タックフリー)となる、すなわち表面に粘性がない(タックフリー)状態が好適である。これにより、印刷装置が第1の樹脂層12に接触しても、良好な印刷を行うことが可能となる。なお、第1の樹脂層12を構成する第1の樹脂組成物には、第2の樹脂層16を構成する第2の樹脂組成物と共硬化させる際に、硬化時間を短縮させる目的で、硬化促進剤を混合していてもよい。第1の樹脂組成物が後述するエポキシ化合物を含む場合には、硬化促進剤を混合しておくことが望ましい。 The printing method performed in the above S3 (printing step) is not limited, and any printing method capable of pattern printing the metal nanowire ink can be adopted. For example, screen printing, gravure printing and offset printing thereof, contact printing such as bar coater, die coater and gravure coater, non-contact printing such as ink jet printing, spray coating, dispenser and the like can be mentioned. In the case of performing the contact printing, after the first resin layer 12 is formed on the substrate 10 by, for example, applying the first resin composition, the touch-dried state (tack-free) is obtained. A state having no viscosity (tack-free) is preferable. Thereby, even if the printing apparatus contacts the first resin layer 12, good printing can be performed. In addition, in the 1st resin composition which comprises the 1st resin layer 12, when co-curing with the 2nd resin composition which comprises the 2nd resin layer 16, in order to shorten hardening time, A curing accelerator may be mixed. When the 1st resin composition contains the epoxy compound mentioned later, it is desirable to mix a hardening accelerator.
 一方、インクジェット方式のような非接触印刷を行う場合には、第1の樹脂層12を指触乾燥状態とする必要はなく、導電材料が第1の樹脂層12の内部に完全に沈み込まない程度、すなわち、導電材料の表面が第1の樹脂層12表面上に露出する状態となっていればよい。 On the other hand, in the case of performing non-contact printing such as an ink jet method, the first resin layer 12 does not need to be dry to the touch, and the conductive material does not completely sink into the first resin layer 12. It is sufficient that the surface of the conductive material is exposed on the surface of the first resin layer 12.
 なお、導電パターン14の印刷に使用されるインクとしては、上記金属ナノワイヤインクに限定されず、例えば金属ナノ粒子インクを使用することもできる。但し、金属ナノ粒子インクを用いる場合は、導電性を発現するためには導電粒子同士が緻密に接触した状態とならなければならず、ベタ膜として形成する場合には平面視において開口部20は殆ど存在しない。そのため、開口部20を有するパターンを形成するためには、例えば図2(b)に示されるように、開口部20を有する細線パターン(金属細線19のパターン)を形成する必要がある。細線パターンは規則的に形成されていても不規則的に形成されていてもよく、メッシュパターンのように交差部を有するように形成することもできる。ここでいう「金属ナノ粒子」とはnmオーダーの粒径を有する球状、角状、扁平[板]状等、好ましくは球状の形状を有するものを意味する。 Note that the ink used for printing the conductive pattern 14 is not limited to the metal nanowire ink, and for example, metal nanoparticle ink can be used. However, when metal nanoparticle ink is used, the conductive particles must be in close contact with each other in order to exhibit conductivity, and when formed as a solid film, the opening 20 in plan view is There is almost no. Therefore, in order to form a pattern having the opening 20, it is necessary to form a fine line pattern (pattern of the metal fine line 19) having the opening 20 as shown in FIG. 2B, for example. The fine line pattern may be formed regularly or irregularly, and may be formed so as to have an intersection as in a mesh pattern. The term “metal nanoparticles” as used herein means those having a spherical shape, preferably a spherical shape, a square shape, a flat [plate] shape or the like having a particle size of the order of nm.
 印刷後の導電パターン14が形成された基板は、全光線透過率が80%以上であると、第1の樹脂層12と後述する第2の樹脂層16とが接触するための十分な空隙が確保されるので好適である。 When the substrate on which the conductive pattern 14 after printing is formed has a total light transmittance of 80% or more, there is a sufficient gap for the first resin layer 12 and the second resin layer 16 described later to contact each other. It is preferable because it is secured.
 次に、導電パターンの少なくとも一部を被覆するように第2の樹脂層(オーバーコート層)16を形成する(S5:第2樹脂層形成工程)。この工程は前述のS1(第1樹脂層形成工程)と同様の方法により実施することができる。「少なくとも一部」とは全部を含む。例えば、外部との導通を取るための電極部として一部露出させたままとする場合には、その部分は被覆されないことになる。そのような場合は一部が被覆されたことになる。ここで、第2の樹脂層16は、上記第1の樹脂層12を構成する第1の樹脂組成物に含まれる第1の官能基と共硬化可能な第2の官能基を含む第2の樹脂組成物で構成される。第2樹脂層形成工程(S5)後、第1の樹脂層12と第2の樹脂層16とを、上記第1の官能基および第2の官能基に基づき共硬化させる(S6:共硬化工程(図示省略))。すなわち、第1の樹脂層12に含まれる第1の官能基と第2の樹脂層16に含まれる第2の官能基とを硬化反応させる。導電パターン14は厚み方向に開口部20を有しており、この開口部20に第2の樹脂層16を構成する第2の樹脂組成物が入り込み、第1の樹脂層12との界面で硬化反応する。すなわち、導電パターン14の開口部20において第1の樹脂層12の第1の官能基と第2の樹脂層16の第2の官能基との硬化反応部分を有する。その結果、導電パターン14が第1の樹脂層12と第2の樹脂層16によりサンドウィッチされるとともに導電パターン14の開口部20において保持されることになり、基板10と良好な密着性を有する導電パターン14が得られる。第1の樹脂層12の第1の官能基と第2の樹脂層16の第2の官能基の組合せとしては、例えばカルボキシ基/エポキシ基、エポキシ基/カルボキシ基、ヒドロキシ基/カルボキシ基、(メタ)アクリロイル基/ビニル基、ビニル基/(メタ)アクリロイル基、アリル基/(メタ)アクリロイル基等が挙げられるが、これらに限定されない。 Next, a second resin layer (overcoat layer) 16 is formed so as to cover at least a part of the conductive pattern (S5: second resin layer forming step). This step can be performed by the same method as the above-described S1 (first resin layer forming step). “At least a part” includes all. For example, in the case where a part of the electrode part for electrical connection with the outside is left exposed, the part is not covered. In such a case, a part is covered. Here, the second resin layer 16 includes a second functional group that can be co-cured with the first functional group included in the first resin composition constituting the first resin layer 12. It is comprised with a resin composition. After the second resin layer forming step (S5), the first resin layer 12 and the second resin layer 16 are co-cured based on the first functional group and the second functional group (S6: co-curing step). (Not shown)). That is, the first functional group contained in the first resin layer 12 and the second functional group contained in the second resin layer 16 are cured and reacted. The conductive pattern 14 has an opening 20 in the thickness direction, and the second resin composition constituting the second resin layer 16 enters the opening 20 and is cured at the interface with the first resin layer 12. react. That is, the opening 20 of the conductive pattern 14 has a curing reaction portion between the first functional group of the first resin layer 12 and the second functional group of the second resin layer 16. As a result, the conductive pattern 14 is sandwiched between the first resin layer 12 and the second resin layer 16 and held in the opening 20 of the conductive pattern 14, so that the conductive pattern 14 has good adhesion to the substrate 10. A pattern 14 is obtained. Examples of combinations of the first functional group of the first resin layer 12 and the second functional group of the second resin layer 16 include carboxy group / epoxy group, epoxy group / carboxy group, hydroxy group / carboxy group, ( Examples thereof include, but are not limited to, (meth) acryloyl group / vinyl group, vinyl group / (meth) acryloyl group, allyl group / (meth) acryloyl group, and the like.
 上記第1の樹脂層12を構成する第1の樹脂組成物と第2の樹脂層16を構成する第2の樹脂組成物との組み合わせとしては、(第1の樹脂層:第2の樹脂層)の順序で(カルボキシ基含有ポリウレタン(第1の官能基がカルボキシ基):カルボキシ基含有ポリウレタンとエポキシ化合物との混合物(第2の官能基がエポキシ基))、(フェノールノボラック型エポキシ樹脂(第1の官能基がエポキシ基):フェノールノボラック型エポキシ樹脂(第2の官能基がエポキシ基))、(フェノキシ樹脂(第1の官能基がエポキシ基):フェノキシ樹脂(第2の官能基がエポキシ基))、(カルボキシ基含有ポリウレタン(第1の官能基がカルボキシ基):フェノキシ樹脂(第2の官能基がエポキシ基))、(カルボキシ基含有ポリウレタンとカルボキシ基基準で当量未満のエポキシ化合物との混合物(第1の官能基がカルボキシ基):カルボキシ基含有ポリウレタンとカルボキシ基基準で当量以上のエポキシ化合物との混合物(第2の官能基がエポキシ基))、(ジアリルフタレート樹脂(第1の官能基がアリル基):ジアリルフタレート樹脂とアクリレートモノマーとの混合物(第2の官能基がアリル基およびアクリロイル基))等が挙げられる。 As a combination of the first resin composition constituting the first resin layer 12 and the second resin composition constituting the second resin layer 16, (first resin layer: second resin layer) ) (Carboxy group-containing polyurethane (first functional group is carboxy group): mixture of carboxy group-containing polyurethane and epoxy compound (second functional group is epoxy group)), (phenol novolac type epoxy resin (first 1 functional group is an epoxy group): phenol novolac type epoxy resin (second functional group is an epoxy group)), (phenoxy resin (first functional group is an epoxy group): phenoxy resin (second functional group is an epoxy group) Group)), (carboxy group-containing polyurethane (first functional group is carboxy group): phenoxy resin (second functional group is epoxy group)), (carboxy group-containing polyurethane and Mixture with less than equivalent epoxy compound based on ruxoxy group (first functional group is carboxy group): Mixture of carboxy group-containing polyurethane and more than equivalent epoxy compound based on carboxy group (second functional group is epoxy group) ), (Diallyl phthalate resin (first functional group is allyl group): mixture of diallyl phthalate resin and acrylate monomer (second functional group is allyl group and acryloyl group)) and the like.
 上記組み合わせの内、第1の樹脂組成物がカルボキシ基含有ポリウレタンを含み、第2の樹脂組成物がカルボキシ基含有ポリウレタンとエポキシ化合物とを含む組み合わせの場合には、第1の樹脂層12と第2の樹脂層16とを加熱することにより、第1の樹脂層12と第2の樹脂層16とに含まれるカルボキシ基含有ポリウレタンのカルボキシ基(第1の官能基)がエポキシ化合物のエポキシ基(第2の官能基)と結合し、共硬化する。第1の樹脂組成物がカルボキシ基含有ポリウレタンとカルボキシ基基準で当量未満のエポキシ化合物とを含み、第2の樹脂組成物がカルボキシ基含有ポリウレタンとカルボキシ基基準で当量以上のエポキシ化合物とを含む組み合わせの場合も同様に共硬化する。また、フェノールノボラック型エポキシ樹脂組成物同士、フェノキシ樹脂組成物同士の組み合わせの場合には、適宜なエポキシ樹脂用硬化剤を添加して加熱することにより共硬化する。この場合第1の官能基および第2の官能基はともにエポキシ基となる。また、第1の樹脂組成物がカルボキシ基含有ポリウレタンを含み、第2の樹脂組成物がフェノキシ樹脂を含む組み合わせの場合には、第1の樹脂層12と第2の樹脂層16とを加熱することにより、カルボキシ基(第1の官能基)とエポキシ基(第2の官能基)とが結合して共硬化する。さらに、第1の樹脂組成物がジアリルフタレート樹脂(第1の官能基がアリル基)を含み、第2の樹脂組成物がジアリルフタレート樹脂とアクリレートモノマーとを含む(第2の官能基がアリル基およびアクリロイル基)組み合わせの場合には、光照射することにより付加重合して共硬化する。 Among the combinations described above, when the first resin composition includes a carboxy group-containing polyurethane and the second resin composition includes a carboxy group-containing polyurethane and an epoxy compound, the first resin layer 12 and the first resin composition When the second resin layer 16 is heated, the carboxy group (first functional group) of the carboxy group-containing polyurethane contained in the first resin layer 12 and the second resin layer 16 becomes an epoxy group ( 2nd functional group) and co-curing. A combination in which the first resin composition includes a carboxy group-containing polyurethane and an epoxy compound having an equivalent weight on a carboxy group basis, and the second resin composition includes a carboxy group-containing polyurethane and an epoxy compound having an equivalent weight or more on a carboxy group basis. In the case of co-curing in the same way. In the case of a combination of phenol novolac type epoxy resin compositions and phenoxy resin compositions, co-curing is performed by adding an appropriate curing agent for epoxy resin and heating. In this case, both the first functional group and the second functional group are epoxy groups. When the first resin composition includes a carboxy group-containing polyurethane and the second resin composition includes a phenoxy resin, the first resin layer 12 and the second resin layer 16 are heated. As a result, the carboxy group (first functional group) and the epoxy group (second functional group) are bonded and co-cured. Further, the first resin composition contains a diallyl phthalate resin (the first functional group is an allyl group), and the second resin composition contains a diallyl phthalate resin and an acrylate monomer (the second functional group is an allyl group). In the case of a combination of acryloyl group and acryloyl group), it undergoes addition polymerization and co-curing by light irradiation.
 ここで、上記基板10、第1の樹脂層12、導電パターン14及び第2の樹脂層16は、透明であるのが好適である。これにより、タッチパネル等の透明素子に適用することができる。ここで、透明とは、全光線透過率が80%以上であることを意味する。これらを含む構成である本発明の導電フィルムの全光線透過率は70%以上であることが好ましく、75%以上であることがより好ましく、80%以上であることがさらに好ましい。 Here, it is preferable that the substrate 10, the first resin layer 12, the conductive pattern 14, and the second resin layer 16 are transparent. Thereby, it can apply to transparent elements, such as a touch panel. Here, “transparent” means that the total light transmittance is 80% or more. The total light transmittance of the conductive film of the present invention having such a constitution is preferably 70% or more, more preferably 75% or more, and further preferably 80% or more.
 以下、本発明の実施例を具体的に説明する。なお、以下の実施例は、本発明の理解を容易にするためのものであり、本発明はこれらの実施例に制限されるものではない。 Hereinafter, embodiments of the present invention will be specifically described. In addition, the following examples are for facilitating understanding of the present invention, and the present invention is not limited to these examples.
 本実施例において、樹脂の分子量及び酸価並びに導電パターンの全光線透過率及び表面抵抗は以下のように測定した。 In this example, the molecular weight and acid value of the resin, the total light transmittance and the surface resistance of the conductive pattern were measured as follows.
<分子量>
 ゲルパーミエーションクロマトグラフィー(以下GPCと表記)で測定したポリスチレン換算の値である。
<Molecular weight>
It is a value in terms of polystyrene measured by gel permeation chromatography (hereinafter referred to as GPC).
 GPCの測定条件は以下のとおりである。
装置名:日本分光株式会社製HPLCユニット HSS-2000
カラム:ShodexカラムLF-804
移動相:テトラヒドロフラン
流速 :1.0mL/min
検出器:日本分光株式会社製 RI-2031Plus
温度 :40.0℃
試料量:サンプルル-プ 100μリットル
試料濃度:約0.1質量%に調製
The measurement conditions for GPC are as follows.
Device name: HPLC unit HSS-2000 manufactured by JASCO Corporation
Column: Shodex column LF-804
Mobile phase: Tetrahydrofuran flow rate: 1.0 mL / min
Detector: RI-2031Plus manufactured by JASCO Corporation
Temperature: 40.0 ° C
Sample volume: sample loop 100 μl Sample concentration: adjusted to about 0.1% by mass
<酸価>
 100ml三角フラスコに試料約0.2gを精密天秤にて精秤し、これにエタノール/トルエン=1/2(質量比)の混合溶媒10mlを加えて溶解する。更に、この容器に指示薬としてフェノールフタレインエタノール溶液を1~3滴添加し、試料が均一になるまで十分に攪拌する。これを、0.1N水酸化カリウム-エタノール溶液で滴定し、指示薬の微紅色が30秒間続いたときを、中和の終点とする。その結果から下記の計算式を用いて得た値を、樹脂の酸価とする。
酸価(mg-KOH/g)=〔B×f×5.611〕/S
B:0.1N水酸化カリウム-エタノール溶液の使用量(ml)
f:0.1N水酸化カリウム-エタノール溶液のファクター
S:試料の採取量(g)
<Acid value>
About 0.2 g of a sample is precisely weighed in a 100 ml Erlenmeyer flask with a precision balance, and 10 ml of a mixed solvent of ethanol / toluene = 1/2 (mass ratio) is added and dissolved therein. Furthermore, add 1 to 3 drops of phenolphthalein ethanol solution as an indicator to this container and stir well until the sample is uniform. This is titrated with a 0.1N potassium hydroxide-ethanol solution, and the end point of neutralization is defined as the time when the indicator is slightly red for 30 seconds. The value obtained from the result using the following calculation formula is defined as the acid value of the resin.
Acid value (mg-KOH / g) = [B × f × 5.611] / S
B: Amount of 0.1N potassium hydroxide-ethanol solution used (ml)
f: Factor of 0.1N potassium hydroxide-ethanol solution S: Amount of sample collected (g)
<全光線透過率>
 基板上に形成した導電パターンを50mm角でカットし、濁度計(NDH2000、日本電色工業製)を使用して測定した値である。
<Total light transmittance>
It is the value measured using a turbidimeter (NDH2000, manufactured by Nippon Denshoku Industries Co., Ltd.) after cutting the conductive pattern formed on the substrate with a 50 mm square.
<表面抵抗>
 抵抗率計ロレスタ(登録商標)GP MCP-T610型(三菱化学アナリテック製)により4端子法で測定した。測定モードおよび使用端子はESPモードを用いた。
<カルボキシ基含有ポリウレタンの合成例>
<Surface resistance>
The resistivity was measured with a Loresta (registered trademark) GP MCP-T610 type (manufactured by Mitsubishi Chemical Analytech) by the 4-terminal method. The ESP mode was used for the measurement mode and the terminals used.
<Synthesis example of carboxy group-containing polyurethane>
[合成例1]
 攪拌装置、温度計、コンデンサーを備えた2L三口フラスコに、ポリオール化合物としてC-1015N(株式会社クラレ製、ポリカーボネートジオール、原料ジオールモル比が1,9-ノナンジオール:2-メチル-1,8-オクタンジオール=15:85、分子量964)143.6g、カルボキシ基を有するジヒドロキシル化合物として2,2-ジメチロールブタン酸(日本化成株式会社製)27.32g、および溶媒としてプロピレングリコールモノメチルエーテルアセテート(商品名:メトキシプロピルアセテート、ダイセル株式会社製)259gを仕込み、90℃で上記2,2-ジメチロールブタン酸を溶解させた。
[Synthesis Example 1]
C-1015N (manufactured by Kuraray Co., Ltd., polycarbonate diol, raw material diol molar ratio: 1,9-nonanediol: 2-methyl-1,8-octane was added to a 2 L three-necked flask equipped with a stirrer, thermometer and condenser. Diol = 15: 85, molecular weight 964) 143.6 g, 2,2-dimethylolbutanoic acid (made by Nippon Kasei Co., Ltd.) 27.32 g as a dihydroxyl compound having a carboxy group, and propylene glycol monomethyl ether acetate (product) (Name: methoxypropyl acetate, manufactured by Daicel Corporation) 259 g was charged, and the 2,2-dimethylolbutanoic acid was dissolved at 90 ° C.
 反応液の温度を70℃まで下げ、滴下ロートにより、ポリイソシアネートとしてデスモジュール(登録商標)-W(メチレンビス(4-シクロヘキシルイソシアネート)、住化バイエルウレタン株式会社製)87.5gを30分かけて滴下した。滴下終了後、120℃に昇温し、120℃で6時間反応を行い、ほぼイソシアネートが消失したことをIRによって確認した後、イソブタノールを0.5g加え、更に120℃にて6時間反応を行った。得られたカルボキシ基含有ポリウレタンの重量平均分子量は32300、その樹脂の酸価は40mgKOH/gであった。 The temperature of the reaction solution was lowered to 70 ° C., and 87.5 g of Desmodur (registered trademark) -W (methylenebis (4-cyclohexylisocyanate), manufactured by Sumika Bayer Urethane Co., Ltd.) was added as polyisocyanate over 30 minutes with a dropping funnel. It was dripped. After completion of the dropwise addition, the temperature was raised to 120 ° C., and the reaction was carried out at 120 ° C. for 6 hours. After confirming that the isocyanate almost disappeared by IR, 0.5 g of isobutanol was added, and the reaction was further carried out at 120 ° C. for 6 hours. went. The weight average molecular weight of the obtained carboxy group-containing polyurethane was 32300, and the acid value of the resin was 40 mgKOH / g.
[合成例2]
 C-1015N(株式会社クラレ製)44.8g、2,2-ジメチロールブタン酸(日本化成株式会社製)16.1g、および溶媒としてプロピレングリコールモノメチルエーテルアセテート(ダイセル株式会社製)100.3g、デスモジュール(登録商標)-W(住化バイエルウレタン株式会社製)40.7gを用いた以外は、合成例1と同様に操作し、カルボキシ基含有ポリウレタンを得た。得られたカルボキシ基含有ポリウレタンの重量平均分子量は29200、その樹脂の酸価は60mgKOH/gであった。
[Synthesis Example 2]
C-1015N (manufactured by Kuraray Co., Ltd.) 44.8 g, 2,2-dimethylolbutanoic acid (manufactured by Nippon Kasei Co., Ltd.) 16.1 g, and propylene glycol monomethyl ether acetate (manufactured by Daicel Corporation) 100.3 g as a solvent, A carboxy group-containing polyurethane was obtained in the same manner as in Synthesis Example 1 except that 40.7 g of Desmodule (registered trademark) -W (manufactured by Sumika Bayer Urethane Co., Ltd.) was used. The weight average molecular weight of the obtained carboxy group-containing polyurethane was 29200, and the acid value of the resin was 60 mgKOH / g.
[実施例1]
 表1に示されるように、PET(ポリエチレンテレフタレート)基板(東レ(株)製ルミラー(登録商標)125T60)上に、合成例1で合成したカルボキシ基含有ポリウレタン樹脂と硬化促進剤であるキュアゾール(登録商標)2P4MHZ-PW(2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、樹脂100質量部に対して1質量部添加)とを配合し、硬化促進剤を含む樹脂分濃度が30質量%となるようにプロピレングリコールモノメチルエーテルアセテートで希釈したインク(第1の樹脂組成物に相当)をバーコーターにて印刷し、100℃、1時間で乾燥して膜厚10μm(ミツトヨ製 高精度デジマチックマイクロメータ MDH-25M 293-100を用いて任意に5か所測定したその平均値)のアンダーコート層(第1の樹脂層に相当)を形成した。アンダーコート層の厚みはアンダーコート層形成、乾燥後の基板込みの厚みを測定し、基板の厚みを差し引くことにより求めた。
[Example 1]
As shown in Table 1, on the PET (polyethylene terephthalate) substrate (Lumilar (registered trademark) 125T60 manufactured by Toray Industries, Inc.), the carboxy group-containing polyurethane resin synthesized in Synthesis Example 1 and cure azole (registered) Trademark) 2P4MHZ-PW (2-phenyl-4-methyl-5-hydroxymethylimidazole, 1 part by mass added to 100 parts by mass of the resin), and the resin content concentration including the curing accelerator is 30% by mass. Ink diluted with propylene glycol monomethyl ether acetate (corresponding to the first resin composition) was printed with a bar coater, dried at 100 ° C. for 1 hour, and a film thickness of 10 μm (Mitutoyo high precision Digimatic Micro Meter MDH-25M 293-100, measured arbitrarily at 5 points, the average value) under) Over coat layer (corresponding to the first resin layer) was formed. The thickness of the undercoat layer was determined by measuring the thickness including the substrate after formation of the undercoat layer and drying, and subtracting the thickness of the substrate.
 乾燥後、タック性の評価をJIS Z0237に基づき実施した。いずれのボールも停止しないものをタックなしとし、いずれかのボールが停止したものをタックありと表記している。 After drying, the tackiness was evaluated based on JIS Z0237. Any ball that does not stop is indicated as no tack, and any ball that stops is indicated as tacky.
 タックなし(タックフリー)である事を確認した後、銀ナノワイヤ分散液(銀ナノワイヤ0.125g(ワイヤ平均径約40nm、平均長さ約10μm、いずれもSEMにより任意に観察した100個の銀ナノワイヤの数平均値)をエタノール50gに分散(銀ナノワイヤ0.25質量%分散液を調製))し、その分散液を0.05g使用し、バーコーターによりアンダーコート層からはみ出る事の無いように塗布した。良好に銀ナノワイヤ分散液の塗布が行えた。銀ナノワイヤ分散液を塗布した後、100℃1時間で焼成し、ベタ状の導電パターンを形成した。焼成後の表面抵抗は80Ω/□であり、全光線透過率は89%であった。 After confirming that there was no tack (tack-free), a silver nanowire dispersion (0.125 g of silver nanowire (average diameter of wire: about 40 nm, average length: about 10 μm, 100 silver nanowires that were arbitrarily observed by SEM) Is dispersed in 50 g of ethanol (preparing a 0.25% by mass silver nanowire dispersion)), and 0.05 g of the dispersion is used so that it does not protrude from the undercoat layer with a bar coater. did. The silver nanowire dispersion was successfully coated. After the silver nanowire dispersion was applied, it was baked at 100 ° C. for 1 hour to form a solid conductive pattern. The surface resistance after firing was 80Ω / □, and the total light transmittance was 89%.
 その後、オーバーコート層(第2の樹脂層に相当)として、合成例1で合成したカルボキシ基含有ポリウレタン樹脂10gとエポキシ化合物(三菱化学製jER(登録商標)828)0.69gに、硬化促進剤(四国化成製キュアゾール(登録商標)2P4MHZ-PW)をカルボキシ基含有ポリウレタン樹脂とエポキシ化合物(三菱化学製jER(登録商標)828)との総量100質量部に対して1質量部配合したインク(第2の樹脂組成物に相当、硬化促進剤を含む樹脂分濃度が30質量%となるようにプロピレングリコールモノメチルエーテルアセテートで希釈)をバーコーターにて導電パターンのほぼ全面を覆うように印刷し、140℃1時間で共硬化させた。アンダーコート層まで含めた全体の膜厚は20μmであった。合成例1で合成したカルボキシ基含有ポリウレタン樹脂100質量部に対してエポキシ化合物(三菱化学製jER(登録商標)828)6質量部を配合すると、合成例1で合成したカルボキシ基含有ポリウレタン樹脂のカルボキシ基とエポキシ化合物(三菱化学製jER(登録商標)828)のエポキシ基が当量となる。実施例1のオーバーコート層(第2の樹脂層に相当)は、表1に示されるように、合成例1で合成したカルボキシ基含有ポリウレタン樹脂とエポキシ化合物(三菱化学製jER(登録商標)828)との配合比(質量比)が100対7(表1では100/7と記載)とされているので、合成例1で合成したカルボキシ基含有ポリウレタン樹脂のカルボキシ基に対してエポキシ化合物(三菱化学製jER(登録商標)828)のエポキシ基が小過剰存在する組成となっている。 Thereafter, as an overcoat layer (corresponding to the second resin layer), 10 g of the carboxy group-containing polyurethane resin synthesized in Synthesis Example 1 and 0.69 g of an epoxy compound (jER (registered trademark) 828 manufactured by Mitsubishi Chemical) were added to a curing accelerator. (Shikoku Kasei Co., Ltd. (registered trademark) 2P4MHZ-PW) containing 1 part by mass of 100 parts by mass of a total amount of carboxy group-containing polyurethane resin and epoxy compound (Mitsubishi Chemical Corporation jER (registered trademark) 828) 2), diluted with propylene glycol monomethyl ether acetate so that the concentration of the resin component containing a curing accelerator is 30% by mass), and printed with a bar coater so as to cover almost the entire surface of the conductive pattern. Co-curing was performed at 1 ° C. for 1 hour. The total film thickness including the undercoat layer was 20 μm. When 6 parts by mass of an epoxy compound (JER (registered trademark) 828 manufactured by Mitsubishi Chemical Corporation) is blended with 100 parts by mass of the carboxy group-containing polyurethane resin synthesized in Synthesis Example 1, the carboxy of the carboxy group-containing polyurethane resin synthesized in Synthesis Example 1 Group and epoxy group of epoxy compound (jER (registered trademark) 828 manufactured by Mitsubishi Chemical) are equivalent. As shown in Table 1, the overcoat layer of Example 1 (corresponding to the second resin layer) was a carboxy group-containing polyurethane resin synthesized in Synthesis Example 1 and an epoxy compound (jER (registered trademark) 828 manufactured by Mitsubishi Chemical Corporation). )) To 100: 7 (described as 100/7 in Table 1), the epoxy compound (Mitsubishi) with respect to the carboxy group of the carboxy group-containing polyurethane resin synthesized in Synthesis Example 1 The composition has a small excess of epoxy group of chemical jER (registered trademark) 828).
 得られた導電フィルムについて以下の特性評価を行った。結果を表1に示す。 The following characteristics evaluation was performed about the obtained electroconductive film. The results are shown in Table 1.
〔密着性評価(剥離試験)〕
 硬化膜に対し、密着性評価としてクロスカット試験JIS K5600を行った。結果を表1、2に「剥離試験」として記載する。なお、試験結果の数値は小さいほど密着性(耐剥離性)が高い(0が最もよい)ことを意味する。表1において、実施例1の剥離試験結果が0となっており、密着性(耐剥離性)が高いことがわかる。
[Adhesion evaluation (peeling test)]
A cross-cut test JIS K5600 was performed on the cured film as an adhesion evaluation. The results are shown in Tables 1 and 2 as “Peel Test”. In addition, it means that adhesiveness (peeling resistance) is so high that the numerical value of a test result is small (0 is the best). In Table 1, the peel test result of Example 1 is 0, indicating that the adhesion (peel resistance) is high.
〔耐擦傷性試験〕
 耐擦傷性試験として、紙摩擦により簡易的に擦傷性を判定した。使用した紙は、JKワイパーを用い、オーバーコート層上を5回往復させた。目視および顕微鏡により傷・擦り痕の有無を確認した。結果を表1、2に「耐擦傷性試験」として記載する。
◎:目視および顕微鏡にて傷・擦り痕がない。
○:目視では傷が見えないが、顕微鏡でわずかに擦り痕が見える。
△:目視では傷が見えないが、顕微鏡で傷・擦り痕が見える。
×:目視で傷・擦り痕が判別できる。
[Abrasion resistance test]
As a scratch resistance test, scratch resistance was simply determined by paper friction. The used paper was reciprocated five times on the overcoat layer using a JK wiper. The presence or absence of scratches or scratches was confirmed visually and under a microscope. The results are shown in Tables 1 and 2 as “scratch resistance test”.
A: There are no scratches or scratches visually or under a microscope.
○: Scratches are not visible with visual inspection, but slight scratch marks are visible with a microscope.
Δ: Scratches are not visible with the naked eye, but scratches / scratches are visible with a microscope.
X: Scratches and scuff marks can be identified visually.
〔環境耐性〕
 環境耐性として、恒温恒湿器(ETAC製TH402A)にて85℃、85%RH(相対湿度)雰囲気下で保管し、約1100時間後までの表面抵抗変化を初期表面抵抗からの比で測定した。結果を図3に示す。
[Environmental resistance]
As environmental resistance, it was stored in a constant temperature and humidity chamber (TH402A manufactured by ETAC) in an atmosphere of 85 ° C. and 85% RH (relative humidity), and the surface resistance change until after about 1100 hours was measured as a ratio from the initial surface resistance. . The results are shown in FIG.
〔光学特性〕
 光学特性として、得られた導電フィルムのHAZE(ヘーズ)及び光線透過率測定をHaze meter NDH 2000(日本電色製)を用い測定した。結果を表1、2に「光学特性」として記載する。
○:全光線透過率80%以上かつHAZE20%以下
×:全光線透過率80%以上かつHAZE20%を超える
〔optical properties〕
As an optical characteristic, HAZE (haze) and light transmittance measurement of the obtained conductive film were measured using Haze meter NDH 2000 (manufactured by Nippon Denshoku). The results are listed as “optical properties” in Tables 1 and 2.
○: Total light transmittance 80% or more and HAZE 20% or less ×: Total light transmittance 80% or more and HAZE 20% or more
[実施例2~6]
 表1に示す材料構成に変更した以外は実施例1と同様に調製したインクを用い、同様の厚み構成、同様の工程によりアンダーコート層、導電パターン及びオーバーコート層を形成した。実施例1同様の密着性評価(剥離試験)、耐擦傷性試験、光学特性評価を行った結果を表1に示す。実施例2のオーバーコート層に使用している合成例2で合成したカルボキシ基含有ポリウレタン樹脂100質量部に対してエポキシ化合物(三菱化学製jER(登録商標)828)9質量部を配合すると、合成例2で合成したカルボキシ基含有ポリウレタン樹脂のカルボキシ基とエポキシ化合物(三菱化学製jER(登録商標)828)のエポキシ基が当量となる。実施例2のオーバーコート層(第2の樹脂層に相当)は、表1に示されるように、合成例2で合成したカルボキシ基含有ポリウレタン樹脂とエポキシ化合物(三菱化学製jER(登録商標)828)との配合比(質量比)が100対10(表1では100/10と記載)とされているので、合成例2で合成したカルボキシ基含有ポリウレタン樹脂のカルボキシ基に対してエポキシ化合物(三菱化学製jER(登録商標)828)のエポキシ基が小過剰存在する組成となっている。
[Examples 2 to 6]
An undercoat layer, a conductive pattern, and an overcoat layer were formed by the same thickness configuration and the same steps using the ink prepared in the same manner as in Example 1 except that the material configuration shown in Table 1 was changed. Table 1 shows the results of the same adhesion evaluation (peeling test), scratch resistance test, and optical property evaluation as in Example 1. When 9 parts by mass of an epoxy compound (JER (registered trademark) 828 manufactured by Mitsubishi Chemical) was blended with 100 parts by mass of the carboxy group-containing polyurethane resin synthesized in Synthesis Example 2 used in the overcoat layer of Example 2, synthesis was performed. The carboxy group of the carboxy group-containing polyurethane resin synthesized in Example 2 is equivalent to the epoxy group of the epoxy compound (jER (registered trademark) 828 manufactured by Mitsubishi Chemical). As shown in Table 1, the overcoat layer of Example 2 (corresponding to the second resin layer) was composed of the carboxy group-containing polyurethane resin synthesized in Synthesis Example 2 and an epoxy compound (jER (registered trademark) 828 manufactured by Mitsubishi Chemical). )) To 100: 10 (described as 100/10 in Table 1), the epoxy compound (Mitsubishi) with respect to the carboxy group of the carboxy group-containing polyurethane resin synthesized in Synthesis Example 2 The composition has a small excess of epoxy group of chemical jER (registered trademark) 828).
 また、実施例6のアンダーコート層(第1の樹脂層に相当)は、表1に示されるように、合成例1で合成したカルボキシ基含有ポリウレタン樹脂とエポキシ化合物(三菱化学製jER(登録商標)828)との配合比(質量比)を100対3(表1では100/3と記載)とされているので、合成例1で合成したカルボキシ基含有ポリウレタン樹脂のカルボキシ基が半量残る組成となっている。なお、実施例6のオーバーコート層(第2の樹脂層に相当)は実施例1と同様である。 Further, as shown in Table 1, the undercoat layer of Example 6 (corresponding to the first resin layer) was a carboxy group-containing polyurethane resin synthesized in Synthesis Example 1 and an epoxy compound (JER (registered trademark) manufactured by Mitsubishi Chemical Corporation). ) 828) is 100 to 3 (described as 100/3 in Table 1), so that the carboxy group of the carboxy group-containing polyurethane resin synthesized in Synthesis Example 1 remains in a half amount. It has become. The overcoat layer (corresponding to the second resin layer) of Example 6 is the same as that of Example 1.
[実施例7]
 表1に示す材料構成に変更した以外は実施例1と同様に調製したインクを用い、同様の厚み構成、同様の工程によりアンダーコート層、導電パターン及びオーバーコート層を形成した。その際にオーバーコート層の硬化促進剤としてキュアゾール(登録商標)2P4MHZ-PW(四国化成製)に代わりIRGACURE(登録商標)184(BASF社製)を用いた。なお、140℃1時間の硬化に変えて、小型UV照射装置 QRU-2161-Z11-00(株式会社オーク製作所)を用い、約40mW/cmを露光する事により共硬化させた。実施例1同様の密着性評価(剥離試験)、耐擦傷性試験、光学特性評価を行った結果を表1に示す。
[Example 7]
An undercoat layer, a conductive pattern, and an overcoat layer were formed by the same thickness configuration and the same steps using the ink prepared in the same manner as in Example 1 except that the material configuration shown in Table 1 was changed. In this case, IRGACURE (registered trademark) 184 (manufactured by BASF) was used as a curing accelerator for the overcoat layer instead of Curesol (registered trademark) 2P4MHZ-PW (manufactured by Shikoku Kasei). Note that, instead of curing at 140 ° C. for 1 hour, co-curing was performed by exposing about 40 mW / cm 2 using a small UV irradiation apparatus QRU-2161-Z11-00 (Oak Manufacturing Co., Ltd.). Table 1 shows the results of the same adhesion evaluation (peeling test), scratch resistance test, and optical property evaluation as in Example 1.
[比較例1]
 表2に示す材料構成に変更しアンダーコート層を形成した。アンダーコート層が液状状態でベタつきが酷く、インクジェット等の他の印刷法でも銀ナノワイヤインクの印刷ができなかった。他の例では、分子量が1万以上であるのに対し、比較例1の樹脂は分子量が4100と小さい事が原因であると考えられる。
[Comparative Example 1]
It changed into the material structure shown in Table 2, and formed the undercoat layer. The undercoat layer was in a liquid state and was very sticky, and silver nanowire ink could not be printed by other printing methods such as inkjet. In other examples, the molecular weight is 10,000 or more, whereas the resin of Comparative Example 1 is considered to be caused by the low molecular weight of 4100.
[比較例2~5]
 表2に示す材料構成に変更した以外は実施例1と同様に調製したインクを用い、同様の厚み構成、同様の工程によりアンダーコート層、導電パターン及びオーバーコート層を形成した。但し、比較例4は約40mW/cmのUV光を露光させ、共硬化相当の処理をした。実施例1同様の密着性評価(剥離試験)、耐擦傷性試験、光学特性評価を行った結果を表2に示す。
[Comparative Examples 2 to 5]
An undercoat layer, a conductive pattern, and an overcoat layer were formed by the same thickness configuration and the same steps using the ink prepared in the same manner as in Example 1 except that the material configuration shown in Table 2 was changed. However, in Comparative Example 4, UV light of about 40 mW / cm 2 was exposed and a treatment corresponding to co-curing was performed. Table 2 shows the results of the same adhesion evaluation (peeling test), scratch resistance test, and optical property evaluation as in Example 1.
 実施例1~4では、アンダーコート層とオーバーコート層に同じ樹脂成分を用いており、共硬化させた際に、アンダーコート層とオーバーコート層の化学結合により密着し、剥離が発生しない。 In Examples 1 to 4, the same resin component is used for the undercoat layer and the overcoat layer, and when co-cured, the undercoat layer and the overcoat layer are in close contact with each other and peeling does not occur.
 実施例5では、アンダーコート層とオーバーコート層に異なる樹脂成分を用いているが、共硬化可能な官能基を有しているため、硬化後アンダーコート層とオーバーコート層間での剥離がない。これに対して、比較例4、5では、硬化機構の異なる樹脂をアンダーコート層とオーバーコート層に用いており、比較例4ではUV硬化、比較例5では熱硬化を施した場合、アンダーコート層とオーバーコート層が共硬化する事がなく、アンダーコート層とオーバーコート層間で剥離が発生した。 In Example 5, different resin components are used for the undercoat layer and the overcoat layer, but since they have a co-curable functional group, there is no separation between the undercoat layer and the overcoat layer after curing. On the other hand, in Comparative Examples 4 and 5, resins having different curing mechanisms are used for the undercoat layer and the overcoat layer. In Comparative Example 4, when UV curing is performed, and in Comparative Example 5, heat curing is performed, the undercoat is used. The layer and the overcoat layer were not co-cured, and peeling occurred between the undercoat layer and the overcoat layer.
 また、実施例6では、アンダーコート層として、カルボキシ基含有ポリウレタンに官能基(カルボキシ基)が半量残る割合でエポキシ化合物(三菱化学製jER(登録商標)828)を添加しており、100℃1時間の乾燥条件で、半硬化というべき状態となり、残官能基によってオーバーコート層とも化学結合により密着するため、アンダーコート層とオーバーコート層間での剥離がない。対して、比較例2および3は、アンダーコート層及びオーバーコート層に使用した樹脂が完全に硬化しうる条件になっており、アンダーコート層を形成(100℃、1時間乾燥)した時点でアンダーコート層にオーバーコート層と反応する残官能基が消失しているために、アンダーコート層とオーバーコート層の間で剥離が発生した(剥離試験結果が5)。 In Example 6, as an undercoat layer, an epoxy compound (jER (registered trademark) 828 manufactured by Mitsubishi Chemical) was added at a ratio in which a half amount of the functional group (carboxy group) remained in the carboxy group-containing polyurethane. Under the condition of time drying, it should be in a semi-cured state, and the residual functional group adheres to the overcoat layer by chemical bonding, so there is no peeling between the undercoat layer and the overcoat layer. On the other hand, in Comparative Examples 2 and 3, the resin used for the undercoat layer and the overcoat layer is in a condition that can be completely cured, and the undercoat layer is formed when the undercoat layer is formed (dried at 100 ° C. for 1 hour). Since the residual functional group that reacts with the overcoat layer disappears in the coat layer, peeling occurred between the undercoat layer and the overcoat layer (peeling test result is 5).
 実施例1~6および比較例2~5から共硬化させる優位性が分かる。 From Examples 1 to 6 and Comparative Examples 2 to 5, the superiority of co-curing can be seen.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[比較例6]
 アンダーコート層を設けない以外は実施例1と同様の構成である。実施例1同様の密着性評価(剥離試験)、耐擦傷性試験、光学特性評価を行った結果を表2に示す。剥離試験、耐擦傷試験は良好であるもののアンダーコート層が無いため銀ナノワイヤ分散液塗布後のPET基板を加熱すると、全光線透過率が5%以上低下したが、80%以上ではあった。しかしながら、HAZEは、加熱前は、2%であったものが、加熱後50%を超え、光学特性が大幅に損なわれている。加熱により、PET基板からオリゴマーが析出して表面粗さが増大したために、光学特性が損なわれている。
[Comparative Example 6]
The configuration is the same as that of Example 1 except that no undercoat layer is provided. Table 2 shows the results of the same adhesion evaluation (peeling test), scratch resistance test, and optical property evaluation as in Example 1. Although the peel test and scratch resistance test were good, but there was no undercoat layer, when the PET substrate after the silver nanowire dispersion was applied was heated, the total light transmittance decreased by 5% or more, but was 80% or more. However, HAZE, which was 2% before heating, exceeds 50% after heating, and the optical properties are greatly impaired. Due to heating, oligomers are precipitated from the PET substrate and the surface roughness is increased, so that the optical properties are impaired.
[比較例7]
 オーバーコート層を設けない一比較例である。実施例1同様の密着性評価(剥離試験)、耐擦傷性試験、光学特性評価を行った結果を表2に示す。オーバーコート層が無いため、耐擦傷性試験により金属部に傷が生じ、また図3に示した実施例1同様の環境耐性の結果から、約700時間経過後、抵抗が顕著に上昇し始め、環境耐性が低い事が分かる。
[Comparative Example 7]
This is a comparative example in which no overcoat layer is provided. Table 2 shows the results of the same adhesion evaluation (peeling test), scratch resistance test, and optical property evaluation as in Example 1. Since there is no overcoat layer, scratches occur in the metal part by the scratch resistance test, and from the result of environmental resistance similar to Example 1 shown in FIG. 3, after about 700 hours, the resistance starts to increase significantly, It turns out that environmental tolerance is low.
 10 基板、12 第1の樹脂層、14 導電パターン、16 第2の樹脂層、18金属ナノワイヤ、19 金属細線、20 開口部。

 
DESCRIPTION OF SYMBOLS 10 board | substrate, 12 1st resin layer, 14 conductive pattern, 16 2nd resin layer, 18 metal nanowire, 19 metal fine wire, 20 opening part.

Claims (10)

  1.  基板上に第1の官能基を含む第1の樹脂組成物を用いて第1の樹脂層を形成する工程と、
     前記第1の樹脂層上に平面視において開口部を有する導電パターンを形成する工程と、
     前記導電パターンの少なくとも一部を被覆するように前記第1の樹脂層の第1の官能基と共硬化可能な第2の官能基を含む第2の樹脂組成物を用いて第2の樹脂層を形成する工程と、
     前記第1の樹脂層と第2の樹脂層とを共硬化させる工程と、
    を含む導電フィルムの製造方法。
    Forming a first resin layer using a first resin composition containing a first functional group on a substrate;
    Forming a conductive pattern having an opening in a plan view on the first resin layer;
    A second resin layer using a second resin composition containing a second functional group that can be co-cured with the first functional group of the first resin layer so as to cover at least a part of the conductive pattern Forming a step;
    Co-curing the first resin layer and the second resin layer;
    The manufacturing method of the conductive film containing this.
  2.  前記導電パターンは、前記第1の樹脂層の表面に粘性がなくなった後に形成する、請求項1に記載の導電フィルムの製造方法。 The method for producing a conductive film according to claim 1, wherein the conductive pattern is formed after the surface of the first resin layer is no longer viscous.
  3. 前記第1の官能基が、カルボキシ基、ヒドロキシ基、エポキシ基、(メタ)アクリロイル基、ビニル基、アリル基のいずれかを含む、請求項1または2に記載の導電フィルムの製造方法。 The method for producing a conductive film according to claim 1 or 2, wherein the first functional group includes any of a carboxy group, a hydroxy group, an epoxy group, a (meth) acryloyl group, a vinyl group, and an allyl group.
  4.  前記第1の樹脂組成物が、カルボキシ含有ポリウレタン、フェノールノボラック型エポキシ樹脂、フェノキシ樹脂、カルボキシ含有ポリウレタンとカルボキシ基基準で当量未満のエポキシ化合物との混合物、ジアリルフタレート樹脂のいずれかを含む、請求項1から3のいずれか一項に記載の導電フィルムの製造方法。 The first resin composition includes any one of a carboxy-containing polyurethane, a phenol novolac-type epoxy resin, a phenoxy resin, a mixture of a carboxy-containing polyurethane and an epoxy compound having less than an equivalent amount based on a carboxy group, and a diallyl phthalate resin. The manufacturing method of the electrically conductive film as described in any one of 1-3.
  5.  前記第2の樹脂組成物が、カルボキシ含有ポリウレタンとエポキシ化合物との混合物、フェノールノボラック型エポキシ樹脂、フェノキシ樹脂、カルボキシ含有ポリウレタンとカルボキシ基基準で当量以上のエポキシ化合物との混合物、ジアリルフタレート樹脂とアクリレートモノマーとの混合物のいずれを含む、請求項1から4のいずれか一項に記載の導電フィルムの製造方法。 The second resin composition is a mixture of a carboxy-containing polyurethane and an epoxy compound, a phenol novolac type epoxy resin, a phenoxy resin, a mixture of a carboxy-containing polyurethane and an epoxy compound having an equivalent amount or more based on a carboxy group, a diallyl phthalate resin and an acrylate The manufacturing method of the electrically conductive film as described in any one of Claim 1 to 4 containing any of a mixture with a monomer.
  6.  前記基板、第1の樹脂層、導電パターン及び第2の樹脂層が各々透明である、請求項1から5のいずれか一項に記載の導電フィルムの製造方法。 The method for producing a conductive film according to any one of claims 1 to 5, wherein the substrate, the first resin layer, the conductive pattern, and the second resin layer are each transparent.
  7.  基板上に、第1の官能基を含む第1の樹脂層を有し、該第1の樹脂層上に平面視において開口部を有する導電パターンを有し、該導電パターンの少なくとも一部を被覆するように第2の官能基を含む第2の樹脂層が形成されており、かつ、前記導電パターン開口部において前記第1の樹脂層の第1の官能基と第2の樹脂層の第2の官能基との硬化反応部分を有する導電フィルム。 The substrate has a first resin layer containing a first functional group, and has a conductive pattern having an opening in a plan view on the first resin layer, and covers at least a part of the conductive pattern. The second resin layer containing the second functional group is formed, and the first functional group of the first resin layer and the second resin layer of the second resin layer are formed in the opening portion of the conductive pattern. The conductive film which has a hardening reaction part with the functional group of.
  8.  全光線透過率が、70%以上である、請求項7に記載の導電フィルム。 The conductive film according to claim 7, wherein the total light transmittance is 70% or more.
  9.  前記導電パターンが無秩序な交差接触部を有する金属ナノワイヤを含む請求項7または8に記載の導電フィルム。 The conductive film according to claim 7 or 8, wherein the conductive pattern includes metal nanowires having disordered cross contact portions.
  10.  前記導電パターンが規則的または不規則的に形成された金属細線パターンを含む請求項7または8に記載の導電フィルム。

     
    The conductive film according to claim 7 or 8, wherein the conductive pattern includes a fine metal wire pattern formed regularly or irregularly.

PCT/JP2016/071920 2015-07-30 2016-07-26 Method for producing conductive film, and conductive film WO2017018427A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020177031866A KR102000956B1 (en) 2015-07-30 2016-07-26 METHOD FOR PRODUCING TRANSDUCTION FILM
CN201680030108.2A CN107615408B (en) 2015-07-30 2016-07-26 The manufacturing method and conductive film of conductive film
JP2017530888A JP6664396B2 (en) 2015-07-30 2016-07-26 Method for producing conductive film and conductive film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-150490 2015-07-30
JP2015150490 2015-07-30

Publications (1)

Publication Number Publication Date
WO2017018427A1 true WO2017018427A1 (en) 2017-02-02

Family

ID=57884692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071920 WO2017018427A1 (en) 2015-07-30 2016-07-26 Method for producing conductive film, and conductive film

Country Status (5)

Country Link
JP (1) JP6664396B2 (en)
KR (1) KR102000956B1 (en)
CN (1) CN107615408B (en)
TW (1) TWI693160B (en)
WO (1) WO2017018427A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019230633A1 (en) * 2018-05-30 2019-12-05 Dowaエレクトロニクス株式会社 Silver nanowire ink, method for producing transparent conductive film, and transparent conductive film
WO2020137144A1 (en) * 2018-12-27 2020-07-02 富士フイルム株式会社 Photosensitive transfer material, laminate, touch panel, method for producing patterned substrate, method for producing circuit board, and method for producing touch panel

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113316743A (en) * 2018-12-27 2021-08-27 富士胶片株式会社 Conductive transfer material, method for manufacturing substrate having pattern, method for manufacturing circuit substrate, laminate, and touch panel
US11590746B2 (en) * 2019-07-18 2023-02-28 The Boeing Company Elimination of surfacing film and primer from composite substrates

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010082428A1 (en) * 2009-01-19 2010-07-22 コニカミノルタホールディングス株式会社 Transparent electrode, method for producing same, and organic electroluminescent element
JP2015131429A (en) * 2014-01-14 2015-07-23 東レ株式会社 Conductive laminate, and touch panel and electronic paper using the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS569008B2 (en) 1973-06-25 1981-02-26
JP2002164247A (en) * 2000-11-24 2002-06-07 Murata Mfg Co Ltd Dielectric ceramic composition and layered ceramic capacitor
CN102324462B (en) 2006-10-12 2015-07-01 凯博瑞奥斯技术公司 Nanowire-based transparent conductors and applications thereof
KR20110103835A (en) * 2008-12-02 2011-09-21 다이니폰 인사츠 가부시키가이샤 Electromagnetic wave shielding material, and method for manufacturing same
JP2013200943A (en) 2012-03-23 2013-10-03 Toray Advanced Film Co Ltd Transparent conductive film and manufacturing method of the same, and touch panel
JP2014075215A (en) * 2012-10-03 2014-04-24 Sekisui Chem Co Ltd Insulation material, multilayer film, laminate, connection structure, production method of laminate, and production method of connection structure
JP2014191894A (en) 2013-03-26 2014-10-06 Dic Corp Transparent electroconductive film and touch panel
KR101568659B1 (en) * 2013-03-29 2015-11-12 제일모직주식회사 Anisotropic conducting film comprising conductive adhesive layer and a semiconductor device connected by the film
KR20150084689A (en) * 2014-01-14 2015-07-22 주식회사 동진쎄미켐 Transparent conductive electrode and method for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010082428A1 (en) * 2009-01-19 2010-07-22 コニカミノルタホールディングス株式会社 Transparent electrode, method for producing same, and organic electroluminescent element
JP2015131429A (en) * 2014-01-14 2015-07-23 東レ株式会社 Conductive laminate, and touch panel and electronic paper using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019230633A1 (en) * 2018-05-30 2019-12-05 Dowaエレクトロニクス株式会社 Silver nanowire ink, method for producing transparent conductive film, and transparent conductive film
WO2020137144A1 (en) * 2018-12-27 2020-07-02 富士フイルム株式会社 Photosensitive transfer material, laminate, touch panel, method for producing patterned substrate, method for producing circuit board, and method for producing touch panel
JPWO2020137144A1 (en) * 2018-12-27 2021-10-21 富士フイルム株式会社 Photosensitive transfer material, laminate, touch panel, patterned substrate manufacturing method, circuit board manufacturing method, and touch panel manufacturing method

Also Published As

Publication number Publication date
KR102000956B1 (en) 2019-07-17
TW201718247A (en) 2017-06-01
JPWO2017018427A1 (en) 2018-05-24
KR20170133483A (en) 2017-12-05
CN107615408A (en) 2018-01-19
TWI693160B (en) 2020-05-11
JP6664396B2 (en) 2020-03-13
CN107615408B (en) 2019-07-02

Similar Documents

Publication Publication Date Title
US11154902B2 (en) Transparent conductive substrate and method for producing same
JP4702499B1 (en) Conductive ink, laminate with conductive pattern and method for producing the same
TWI648748B (en) Conductive paste, conductive coating film, electrical circuit, conductive laminate, and touch panel
US20110088931A1 (en) Multilayer Coatings and Coated Articles
WO2017018427A1 (en) Method for producing conductive film, and conductive film
TWI596172B (en) Conductive liquid composition
TW201348809A (en) Electrical contacts in layered structures
KR20150109406A (en) Conductive paste, conductive film, electrical circuit and touch panel
KR20120106603A (en) Transparent conductive film and touch panel
US20220139591A1 (en) Transparent conductive film, and touch panel including same
US9777171B1 (en) Graphene compositions
JP2015172103A (en) Conductive ink composition, method of producing conductive pattern, and conductive circuit
TWI780239B (en) Transparent Conductive Film
KR101339618B1 (en) Conductive paste
JP2012253172A (en) Manufacturing method of conductive circuit
JP6303367B2 (en) Conductive paste, conductive film and touch panel
JP6855647B1 (en) Manufacturing method of transparent conductive film
JP2005259605A (en) Conductive sheet and its forming method
WO2021131099A1 (en) Method for manufacturing transparent conductive film
JP7172712B2 (en) Electric conductor and method for manufacturing electric conductor
JP6110579B6 (en) Conductive liquid composition
CN116325027A (en) Transparent conductive film laminate
WO2017213043A1 (en) Transparent conductive film and touch panel
JP2009076449A (en) Transparent conductor
JP2012167164A (en) Conductive photocurable composition with fingerprint resistance, conductive film with fingerprint resistance and display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16830532

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177031866

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017530888

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16830532

Country of ref document: EP

Kind code of ref document: A1