WO2020137144A1 - Photosensitive transfer material, laminate, touch panel, method for producing patterned substrate, method for producing circuit board, and method for producing touch panel - Google Patents

Photosensitive transfer material, laminate, touch panel, method for producing patterned substrate, method for producing circuit board, and method for producing touch panel Download PDF

Info

Publication number
WO2020137144A1
WO2020137144A1 PCT/JP2019/042577 JP2019042577W WO2020137144A1 WO 2020137144 A1 WO2020137144 A1 WO 2020137144A1 JP 2019042577 W JP2019042577 W JP 2019042577W WO 2020137144 A1 WO2020137144 A1 WO 2020137144A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
group
thermosetting resin
layer
compound
Prior art date
Application number
PCT/JP2019/042577
Other languages
French (fr)
Japanese (ja)
Inventor
児玉 邦彦
山田 悟
知樹 松田
正弥 鈴木
豊岡 健太郎
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201980083606.7A priority Critical patent/CN113196891A/en
Priority to JP2020562868A priority patent/JPWO2020137144A1/en
Publication of WO2020137144A1 publication Critical patent/WO2020137144A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern

Definitions

  • the present disclosure relates to a photosensitive transfer material, a laminate, a touch panel, a patterned substrate manufacturing method, a circuit board manufacturing method, and a touch panel manufacturing method.
  • a device capable of inputting information corresponding to an instruction image by touching the instruction image displayed in the image display area of a liquid crystal device with a finger or a touch pen has been widely used.
  • a conductive film made of a material such as ITO (Indium Tin Oxide) is usually used.
  • various techniques using a conductive film containing conductive fibers such as silver fibers have been studied as a conductive film replacing the ITO film.
  • a photosensitive film including a support film, a conductive layer provided on the support film and containing conductive fibers, and a photosensitive resin layer provided on the conductive layer are provided.
  • Conductive conductive films are disclosed.
  • a conductive layer containing a conductive fiber tends to have low adhesiveness to a substrate (for example, a copper substrate). Therefore, a photosensitive transfer material having a conductive layer containing conductive fibers has a problem that it is difficult to bond it to a substrate.
  • a photosensitive transfer material having a conductive layer containing conductive fibers has a problem that it is difficult to bond it to a substrate.
  • the problem of adhesion to the substrate can be solved by having a configuration in which the photosensitive resin layer is provided on the conductive layer.
  • a second photosensitive resin layer is provided on the surface opposite to the surface of the conductive layer containing the conductive fibers on the side of the photosensitive resin layer.
  • the problem of adhesion to the substrate can be solved by providing the first substrate, the first photosensitive resin layer or the first photosensitive resin layer or the first photosensitive resin layer formed on the surface of the conductive layer containing the conductive fiber is formed in the formation of the conductive pattern after bonding.
  • Means for solving the above problems include the following aspects. ⁇ 1> A temporary support, A photosensitive resin layer, A layer containing silver nanowires, A thermosetting resin layer, A photosensitive transfer material having in this order. ⁇ 2> The photosensitive transfer material according to ⁇ 1>, wherein the thermosetting resin layer contains a blocked isocyanate compound. ⁇ 3> The photosensitive transfer material according to ⁇ 2>, wherein the blocked isocyanate compound has at least one of a hydroxyl group and an acid group. ⁇ 4> The photosensitive transfer material according to ⁇ 2> or ⁇ 3>, wherein the thermosetting resin layer further contains a compound having at least one of a hydroxyl group and an acid group.
  • thermosetting resin layer has a thickness of 1 nm to 300 nm.
  • contact resistance of the thermosetting resin layer is 200 ⁇ or less.
  • the layer containing the thermosetting resin is a layer formed by curing the thermosetting resin layer that is the transfer layer, and the layer containing the silver nanowires is the transfer layer ⁇ 7 The laminated body as described in >.
  • thermosetting resin is a crosslinked resin having a urethane bond.
  • a photosensitive transfer material capable of forming a conductive pattern that is difficult to peel from a substrate. Further, according to another embodiment of the present invention, there are provided a laminate, a touch panel, a patterned substrate manufacturing method, a circuit board manufacturing method, and a touch panel manufacturing method using the above-mentioned photosensitive transfer material.
  • the numerical range indicated by using “to” means a range including the numerical values before and after “to” as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in a certain numerical range may be replaced with the upper limit value or the lower limit value of another stepwise described numerical range.
  • the upper limit value or the lower limit value described in a certain numerical range may be replaced with the values shown in the examples.
  • a combination of two or more preferable aspects is a more preferable aspect.
  • an “alkyl group” includes not only an alkyl group having no substituent (so-called unsubstituted alkyl group) but also an alkyl group having a substituent (so-called substituted alkyl group).
  • the chemical structural formula may be described as a simplified structural formula in which a hydrogen atom is omitted.
  • (meth)acrylic acid is a term used in a concept including both acrylic acid and methacrylic acid
  • (meth)acrylate is used in a concept including both acrylate and methacrylate.
  • the term "(meth)acryloyl” is used in a concept that includes both acryloyl and methacryloyl
  • (meth)acryloxy” is a word that is used in a concept that includes both acryloxy and methacryloxy. is there.
  • the amount of each component in the composition is the total amount of the plurality of substances present in the composition, unless there is a plurality of substances corresponding to each component in the composition, unless otherwise specified.
  • process is included in this term as long as the intended purpose of the process is achieved, not only when it is an independent process but also when it cannot be clearly distinguished from other processes.
  • the molecular weight in the case where there is a molecular weight distribution represents the weight average molecular weight (Mw; hereinafter the same) unless otherwise specified.
  • the ratio of the structural unit in the resin represents a molar ratio unless otherwise specified.
  • “transparent” means that the total light transmittance at a wavelength of 380 nm to 780 nm is 85% or more (preferably 90% or more, more preferably 95% or more).
  • the total light transmittance is measured at a temperature of 23° C. using a spectrophotometer [for example, a spectrophotometer “U-3310 (trade name)” manufactured by Hitachi, Ltd.].
  • “refractive index” refers to a refractive index at a wavelength of 550 nm, unless otherwise specified. Further, the “refractive index” in the present disclosure means a value measured by an ellipsometry method with visible light having a wavelength of 550 nm at a temperature of 23° C., unless otherwise specified.
  • constituent elements indicated by the same reference numeral in each drawing mean the same constituent elements.
  • the photosensitive transfer material of the present disclosure includes a temporary support, a photosensitive resin layer, a layer containing silver nanowires (hereinafter, also referred to as “silver nanowire layer”), and a thermosetting resin layer. Have in order.
  • the photosensitive transfer material of the present disclosure having the above-described configuration can form a conductive pattern that is difficult to peel from the substrate.
  • the photosensitive transfer material of the present disclosure can form a circuit board having excellent durability, in which the sheet resistance value does not easily increase even when exposed to a humid heat environment.
  • FIG. 1 is a schematic cross-sectional view showing an example of the layer structure of the photosensitive transfer material of the present disclosure.
  • the photosensitive transfer material 100 shown in FIG. 1 has a temporary support 10, a photosensitive resin layer 20, a silver nanowire layer 30, and a thermosetting resin layer 40A in this order. It should be noted that the scale of each element shown in the drawings of the present disclosure is not necessarily accurate. Hereinafter, each component of the photosensitive transfer material of the present disclosure will be described.
  • the photosensitive transfer material of the present disclosure has a temporary support.
  • the temporary support is a support that supports at least the photosensitive resin layer, the silver nanowire layer, and the thermosetting resin layer, and that is removable from the adherend.
  • the temporary support preferably has optical transparency from the viewpoint that pattern exposure can be performed via the temporary support.
  • “having optical transparency” means that the transmittance of the dominant wavelength of light used for pattern exposure is 50% or more.
  • the transmittance of the dominant wavelength of light used for pattern exposure is preferably 60% or more, and more preferably 70% or more, from the viewpoint of improving the exposure sensitivity.
  • Examples of the method of measuring the transmittance include a method of using a spectrophotometer [eg, MCPD-6800 manufactured by Otsuka Electronics Co., Ltd.].
  • the temporary support examples include a glass substrate, a resin film, paper and the like.
  • the temporary support is preferably a resin film from the viewpoint of strength and flexibility.
  • the resin film examples include polyethylene terephthalate film, cycloolefin polymer film, cellulose triacetate film, polystyrene film and polycarbonate film. Among these, the polyethylene terephthalate film is preferable as the temporary support from the viewpoint of optical characteristics.
  • the thickness of the temporary support is not particularly limited and can be appropriately selected depending on the material.
  • the thickness of the temporary support is preferably 5 ⁇ m to 200 ⁇ m, and more preferably 10 ⁇ m to 150 ⁇ m, from the viewpoint of easy handling, versatility and the like.
  • the photosensitive transfer material of the present disclosure has a photosensitive resin layer.
  • the photosensitive resin layer is classified into a negative type in which a portion irradiated with an actinic ray remains as an image and a positive type in which a portion not irradiated with an actinic ray remains as an image, depending on the difference in the photosensitive system.
  • the photosensitive resin layer in the photosensitive transfer material of the present disclosure may be a positive type photosensitive resin layer or a negative type photosensitive resin layer.
  • the positive type photosensitive resin layer is not particularly limited, and a known positive type photosensitive resin layer can be applied. From the viewpoint of sensitivity, resolution, and removability, the positive photosensitive resin layer may include a polymer containing a structural unit having an acid group protected by an acid-decomposable group, and a photoacid generator. preferable.
  • the positive type photosensitive resin layer is described in paragraphs [0033] to [0130] of International Publication No. 2018/179640. These descriptions are incorporated herein by reference.
  • the positive photosensitive resin layer is a polymer containing a structural unit having an acid group protected by an acid-decomposable group (hereinafter, also referred to as “structural unit A”) (hereinafter, also referred to as “polymer A”). ) Is preferably included.
  • the acid group protected by the acid-decomposable group in the polymer A becomes an acid group by the action of a catalytic amount of acid generated by exposure (that is, deprotection reaction).
  • the acid group generated by the deprotection reaction enables the positive photosensitive resin layer to be dissolved in the developing solution.
  • the polymer A is preferably an addition polymerization type polymer, and more preferably a polymer containing a structural unit derived from (meth)acrylic acid or its ester.
  • the acid group in the structural unit A is not particularly limited, and a known acid group can be applied.
  • the acid group in the structural unit A is preferably a carboxy group or a phenolic hydroxyl group.
  • the acid-decomposable group in the structural unit A is not particularly limited, and a known acid-decomposable group can be applied.
  • the acid-decomposable group in the structural unit A include a group that is relatively easily decomposed by an acid (for example, an acetal-type functional group such as a 1-alkoxyalkyl group, a tetrahydropyranyl group, and a tetrahydrofuranyl group), and an acid-releasable group.
  • an acid-releasable group for example, an acetal-type functional group such as a 1-alkoxyalkyl group, a tetrahydropyranyl group, and a tetrahydrofuranyl group
  • groups that are difficult to decompose for example, tertiary alkyl groups such as tert-butyl group.
  • the acid-decomposable group in the structural unit A is preferably a group having a structure that protects the acid group in the form of acetal. Further, the acid-decomposable group is preferably an acid-decomposable group having a molecular weight of 300 or less from the viewpoint of suppressing variation in the line width of the conductive wiring when applied to the formation of a conductive pattern.
  • the structural unit A is a structural unit represented by the following formula A1, a structural unit represented by the following formula A2, and a following formula A3 from the viewpoint of suppressing the deformation of the pattern shape, solubility in a developing solution, and transferability. It is preferably at least one type of structural unit selected from the group consisting of structural units represented, more preferably a structural unit represented by the following formula A3, and a structure represented by the following formula A3-3. More preferably, it is a unit.
  • the structural unit represented by the following formula A1 and the structural unit represented by the following formula A2 are structural units having a phenolic hydroxyl group protected by an acid-decomposable group.
  • the structural unit represented by the following formula A3 is a structural unit having a carboxy group protected by an acid-decomposable group.
  • R 11 and R 12 each independently represent a hydrogen atom, an alkyl group, or an aryl group, at least one of R 11 and R 12 is an alkyl group or an aryl group, and R 13 is an alkyl group.
  • R 11 or R 12 and R 13 may be linked to each other to form a cyclic ether
  • R 14 represents a hydrogen atom or a methyl group
  • X 1 represents a single bond or a divalent group.
  • R 15 represents a substituent
  • n represents an integer of 0 to 4.
  • R 21 and R 22 each independently represent a hydrogen atom, an alkyl group, or an aryl group, at least one of R 21 and R 22 is an alkyl group or an aryl group, and R 23 is an alkyl group.
  • R 21 or R 22 and R 23 may be linked to each other to form a cyclic ether
  • R 24 is independently a hydroxy group, a halogen atom, an alkyl group, an alkoxy group, It represents an alkenyl group, an aryl group, an aralkyl group, an alkoxycarbonyl group, a hydroxyalkyl group, an arylcarbonyl group, an aryloxycarbonyl group, or a cycloalkyl group
  • m represents an integer of 0 to 3.
  • R 31 and R 32 each independently represent a hydrogen atom, an alkyl group, or an aryl group, at least one of R 31 and R 32 is an alkyl group or an aryl group, and R 33 is an alkyl group.
  • R 31 or R 32 and R 33 may combine to form a cyclic ether
  • R 34 represents a hydrogen atom or a methyl group
  • X 0 represents a single bond or a divalent group.
  • Y represents a sulfur atom or an oxygen atom.
  • R 31 or R 32 when R 31 or R 32 is an alkyl group, the alkyl group is preferably an alkyl group having 1 to 10 carbon atoms.
  • the aryl group is preferably a phenyl group.
  • R 31 and R 32 are each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and at least one of R 31 and R 32 is preferably an alkyl group having 1 to 4 carbon atoms.
  • R 33 is preferably an alkyl group having 1 to 10 carbon atoms, and more preferably an alkyl group having 1 to 6 carbon atoms.
  • the alkyl group and aryl group for R 31 to R 33 may have a substituent.
  • R 31 or R 32 and R 33 are preferably linked to each other to form a cyclic ether.
  • the number of ring members in the cyclic ether is not particularly limited, but is preferably 5 or 6, and more preferably 5.
  • X 0 is preferably a single bond or an arylene group, and more preferably a single bond.
  • the arylene group may have a substituent.
  • Y is preferably an oxygen atom from the viewpoint of exposure sensitivity.
  • R 34 represents a hydrogen atom or a methyl group, and is preferably a hydrogen atom from the viewpoint that the glass transition temperature (Tg) of the polymer A can be further lowered. More specifically, the content of the structural unit in which R 34 in Formula A3 is a hydrogen atom is preferably 20 mol% or more based on all the structural units represented by Formula A3 contained in the polymer A. .. The content (unit: mol%) of the structural unit represented by Formula A3 in which R 34 in Formula A3 is a hydrogen atom is determined by 13 C-nuclear magnetic resonance spectrum (NMR) measurement in a conventional manner. It can be confirmed by the intensity ratio of the peak intensity calculated by.
  • NMR 13 C-nuclear magnetic resonance spectrum
  • constitutional unit represented by the formula A3 is more preferable from the viewpoint of further increasing the sensitivity during pattern formation.
  • R 34 represents a hydrogen atom or a methyl group
  • R 35 to R 41 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • R 34 is preferably a hydrogen atom.
  • R 35 to R 41 are preferably hydrogen atoms.
  • R 34 in the following structural units represents a hydrogen atom or a methyl group.
  • the polymer A may include only one type of structural unit A or may include two or more types.
  • the content of the structural unit A in the polymer A is preferably 15 mol% or more, and is 15 mol% to 90 mol% with respect to all the structural units of the polymer A. More preferably, it is more preferably 20 mol% to 70 mol %.
  • the content of the structural unit A in the polymer A can be confirmed by the intensity ratio of the peak intensities calculated by the usual method from 13 C-NMR measurement.
  • the polymer A preferably contains a structural unit having an acid group (hereinafter, also referred to as “structural unit B”).
  • structural unit B a structural unit having an acid group
  • the acid group in the structural unit B means a proton dissociative group having a pKa of 12 or less.
  • the pKa of the acid group is preferably 10 or less, more preferably 6 or less.
  • the pKa of the acid group is preferably ⁇ 5 or more.
  • Examples of the acid group in the structural unit B include a carboxy group, a sulfonamide group, a phosphonic acid group, a sulfonic acid group, a phenolic hydroxyl group, and a sulfonylimide group.
  • the acid group in the structural unit B is preferably a carboxy group or a phenolic hydroxyl group.
  • the introduction of the structural unit having an acid group into the polymer A can be carried out by copolymerizing a monomer having an acid group.
  • the constituent unit B is more preferably a constituent unit in which a constituent unit derived from a styrene compound or a constituent unit derived from a vinyl compound is substituted with an acid group, or a constituent unit derived from (meth)acrylic acid.
  • the structural unit B is preferably at least one structural unit selected from the group consisting of a structural unit having a carboxy group and a structural unit having a phenolic hydroxyl group, from the viewpoint of better sensitivity in pattern formation. ..
  • the structural unit B may contain only one kind or two or more kinds.
  • the content of the structural unit B in the polymer A is 0.1 mol% to 20 mol% with respect to all the structural units of the polymer A from the viewpoint of pattern formability.
  • the amount is preferably 0.5 mol% to 15 mol%, more preferably 1 mol% to 10 mol%.
  • the content of the structural unit B in the polymer A can be confirmed by the intensity ratio of the peak intensities calculated by a conventional method from 13 C-NMR measurement.
  • the polymer A contains a structural unit other than the structural unit A and the structural unit B described above (hereinafter, also referred to as “structural unit C”) as long as the effects of the photosensitive transfer material of the present disclosure are not impaired. Good.
  • the monomer forming the structural unit C is not particularly limited.
  • a styrene compound (meth)acrylic acid alkyl ester, (meth)acrylic acid cyclic alkyl ester, (meth)acrylic acid aryl ester, unsaturated dicarboxylic acid diester, bicyclo unsaturated compound, maleimide
  • examples thereof include compounds, unsaturated aromatic compounds, conjugated diene compounds, unsaturated monocarboxylic acids, unsaturated dicarboxylic acids, unsaturated dicarboxylic acid anhydrides, compounds having an aliphatic cyclic skeleton, and other unsaturated compounds.
  • structural unit C specifically, styrene, tert-butoxystyrene, methylstyrene, ⁇ -methylstyrene, acetoxystyrene, methoxystyrene, ethoxystyrene, chlorostyrene, methyl vinylbenzoate, ethyl vinylbenzoate, (meta ) Methyl acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, (meth ) Structural units formed by polymerizing benzyl acrylate, isobornyl (meth)acrylate, acrylonitrile, ethylene glycol monoacetoacetate mono(meth)acrylate and the like. Further, examples of the structural unit C include the compounds described in paragraphs [0021] to [00
  • the structural unit C is at least one selected from the group consisting of a structural unit having an aromatic ring and a structural unit having an aliphatic cyclic skeleton, from the viewpoint of improving the electrical characteristics of the resulting photosensitive transfer material. It is preferably a structural unit.
  • Examples of the monomer forming at least one structural unit selected from the group consisting of a structural unit having an aromatic ring and a structural unit having an aliphatic cyclic skeleton include styrene, tert-butoxystyrene, methylstyrene, ⁇ -methyl.
  • cyclohexyl (meth)acrylate is preferable as the monomer forming at least one structural unit selected from the group consisting of a structural unit having an aromatic ring and a structural unit having an aliphatic cyclic skeleton.
  • the monomer forming the structural unit C is preferably a (meth)acrylic acid alkyl ester, and more preferably a (meth)acrylic acid alkyl ester having an alkyl group having 4 to 12 carbon atoms.
  • the alkyl (meth)acrylate include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, n-butyl (meth)acrylate, and (meth)acrylic acid. 2-ethylhexyl and the like can be mentioned.
  • the structural unit C may include only one type or may include two or more types.
  • the content of the structural unit C in the polymer A is preferably 70 mol% or less, and preferably 60 mol% or less, based on all the structural units of the polymer A. More preferably, it is even more preferably 50 mol% or less.
  • the lower limit of the content of the structural unit C in the polymer A may be 0 mol%, but it is preferably 1 mol% or more, and more preferably 5 mol% or more, based on all the structural units of the polymer A.
  • the weight average molecular weight of the polymer A is preferably 60,000 or less.
  • the weight average molecular weight of the polymer A is 60,000 or less, the melt viscosity of the photosensitive resin layer is suppressed to be low, and at the time of bonding with the substrate, bonding at low temperature (for example, 130° C. or less) is realized. be able to.
  • the weight average molecular weight of the polymer A is more preferably 2,000 to 60,000, further preferably 3,000 to 50,000.
  • the weight average molecular weight of the polymer A is a polystyrene equivalent weight average molecular weight measured by the following method.
  • the weight average molecular weight can be measured by GPC (gel permeation chromatography).
  • GPC gel permeation chromatography
  • Various commercially available devices can be used as the measuring device, and the contents of the device and the measuring technique are known to those skilled in the art.
  • HLC registered trademark
  • GPC gel permeation chromatography
  • TSKgel registered trademark
  • Super HZM-M 4.6 mm ID ⁇ 15 cm, Tosoh Corporation
  • the calibration curve is “standard sample TSK standard, polystyrene” manufactured by Tosoh Corporation: “F-40”, “F-20”, “F-4”, “F-1”, “A-5000”, “A-5000”, It is possible to use those manufactured from 7 samples of "A-2500” and "A-1000".
  • the positive photosensitive resin layer contains the polymer A
  • it may contain only one kind of the polymer A or may contain two or more kinds of the polymer A.
  • the content of the polymer A in the positive-type photosensitive resin layer is such that the positive-type photosensitive resin layer exhibits good adhesion to the substrate.
  • the amount is preferably 50% by mass to 99.9% by mass, more preferably 70% by mass to 99% by mass, and further preferably 80% by mass to 98% by mass with respect to the total mass of the conductive resin layer. More preferable.
  • the method for producing the polymer A (so-called synthesis method) is not particularly limited, and a known method can be applied.
  • a polymerizable monomer for forming the structural unit A, a polymerizable monomer for forming the structural unit B, and a polymerizable monomer for forming the structural unit C are A method of polymerizing using a polymerization initiator in a solvent can be mentioned.
  • the positive photosensitive resin layer preferably contains a photo-acid generator.
  • the photo-acid generator is a compound capable of generating an acid when irradiated with radiation such as ultraviolet rays, far ultraviolet rays, X-rays and charged particle beams.
  • the photoacid generator is preferably a compound which reacts with an actinic ray having a wavelength of 300 nm or more, preferably 300 nm to 450 nm to generate an acid.
  • a photo-acid generator which is not directly sensitive to an actinic ray having a wavelength of 300 nm or more when used in combination with a sensitizer, it is a compound which is sensitive to an actinic ray having a wavelength of 300 nm or more and generates an acid. It can be preferably used in combination.
  • the photoacid generator is preferably a photoacid generator that generates an acid with a pKa of 4 or less, more preferably a photoacid generator that generates an acid with a pKa of 3 or less, and a light that generates an acid with a pKa of 2 or less. Acid generators are more preferred.
  • the lower limit of pKa is not particularly limited, but is preferably -10.0 or more, for example.
  • the photoacid generator examples include an ionic photoacid generator and a nonionic photoacid generator. From the viewpoint of sensitivity and resolution, the photoacid generator preferably contains at least one compound selected from the group consisting of an onium salt compound described later and an oxime sulfonate compound described later, and contains an oxime sulfonate compound. More preferable.
  • the ionic photoacid generator examples include onium salt compounds and quaternary ammonium salt compounds.
  • onium salt compounds include diaryl iodonium salt compounds and triaryl sulfonium salt compounds.
  • the ionic photoacid generator is preferably an onium salt compound, and more preferably at least one selected from the group consisting of a triarylsulfonium salt compound and a diaryliodonium salt compound.
  • the ionic photoacid generators described in paragraphs [0114] to [0133] of JP-A-2014-85643 can also be preferably used.
  • nonionic photoacid generator examples include trichloromethyl-s-triazine compounds, diazomethane compounds, imide sulfonate compounds, oxime sulfonate compounds and the like.
  • the nonionic photoacid generator is preferably an oxime sulfonate compound from the viewpoint of sensitivity, resolution, and adhesiveness.
  • Specific examples of the trichloromethyl-s-triazine compound and the diazomethane compound include the compounds described in paragraphs [0083] to [0088] of JP 2011-221494A.
  • oxime sulfonate compound a compound having an oxime sulfonate structure represented by the following formula (B1) is preferable.
  • R 21 represents an alkyl group or an aryl group
  • * represents a bonding site with another atom or another group.
  • any group may be substituted, and the alkyl group represented by R 21 may be linear and have a branched structure. And may have a ring structure.
  • the permissible substituents are described below.
  • the alkyl group represented by R 21 is preferably a linear or branched alkyl group having 1 to 10 carbon atoms.
  • the alkyl group represented by R 21 may be substituted with an aryl group having 6 to 11 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a cycloalkyl group, or a halogen atom.
  • the aryl group represented by R 21 is preferably an aryl group having 6 to 18 carbon atoms, and more preferably a phenyl group or a naphthyl group.
  • the aryl group represented by R 21 may be substituted with one or more groups selected from the group consisting of an alkyl group having 1 to 4 carbon atoms, an alkoxy group, and a halogen atom.
  • the positive photosensitive resin layer contains a photo-acid generator, it may contain only one photo-acid generator or two or more photo-acid generators.
  • the content of the photoacid generator in the positive photosensitive resin layer is the total mass of the positive photosensitive resin layer from the viewpoint of sensitivity and resolution. On the other hand, it is preferably 0.1% by mass to 10% by mass, and more preferably 0.5% by mass to 5% by mass.
  • the positive photosensitive resin layer may contain a surfactant.
  • the uniformity of the film thickness can be improved.
  • surfactant examples include anionic surfactants, cationic surfactants, nonionic (so-called nonionic) surfactants and amphoteric surfactants.
  • anionic surfactants examples include anionic surfactants, cationic surfactants, nonionic (so-called nonionic) surfactants and amphoteric surfactants.
  • nonionic surfactants examples include anionic surfactants, cationic surfactants, nonionic (so-called nonionic) surfactants and amphoteric surfactants.
  • the surfactant is described in paragraph [0017] of Japanese Patent No. 4502784 and paragraphs [0060] to [0071] of Japanese Patent Laid-Open No. 2009-237362. These descriptions are incorporated herein by reference.
  • the surfactant is preferably a nonionic surfactant.
  • nonionic surfactants include polyoxyethylene higher alkyl ether compounds, polyoxyethylene higher alkyl phenyl ether compounds, higher fatty acid diester compounds of polyoxyethylene glycol, silicone surfactants, and fluorine surfactants. .. Among these, fluorine-based surfactants are preferable as the nonionic surfactant.
  • a commercially available product can be used as the nonionic surfactant.
  • nonionic surfactants include KP [manufactured by Shin-Etsu Chemical Co., Ltd.], Polyflow [manufactured by Kyoeisha Chemical Co., Ltd.], F-Top (manufactured by JEMCO), Megafac (registered trademark) [Product Examples: Megafac F551A, manufactured by DIC Co., Ltd., Florard [manufactured by Sumitomo 3M Co., Ltd.], Asahi Guard (registered trademark) [manufactured by AGC Co., Ltd.], Surflon (registered trademark) [manufactured by AGC Seichemical Co., Ltd.] ], PolyFox (manufactured by OMNOVA), Surfynol [manufactured by Nisshin Chemical Industry Co., Ltd.], DOWSIL (registered trademark) [Product Example: SH 8400, manufactured
  • the positive photosensitive resin layer may contain only one kind or two or more kinds of surfactants.
  • the content of the surfactant in the positive-type photosensitive resin layer is the total mass of the positive-type photosensitive resin layer from the viewpoint of film thickness uniformity. On the other hand, it is preferably 0.05% by mass to 10% by mass, and more preferably 0.05% by mass to 5% by mass.
  • the positive photosensitive resin layer may contain a corrosion inhibitor.
  • the positive photosensitive resin layer contains a corrosion inhibitor, the silver nanowires are prevented from being corroded, so that durability can be improved.
  • the corrosion inhibitor is not particularly limited, and a known corrosion inhibitor can be applied.
  • the corrosion inhibitor include compounds containing at least one of nitrogen atom and sulfur atom.
  • the corrosion inhibitor is preferably a heterocyclic aromatic compound containing at least one of a nitrogen atom and a sulfur atom, a compound having a triazole structure, a compound having a benzimidazole structure, and a thiadiazole structure. More preferably, it is at least one compound selected from the group consisting of compounds having
  • the corrosion inhibitor examples include benzimidazole, 1,2,4-triazole, benzotriazole, tolyltriazole, butylbenzyltriazole, alkyldithiothiadiazole, alkylthiol, 2-aminopyrimidine, 5,6-dimethylbenzimidazole, 2-Amino-5-mercapto-1,3,4-thiadiazole, 2,5-dimercapto-1,3,4-thiadiazole, 2-mercaptopyrimidine, 2-mercaptobenzoxazole, 2-mercaptobenzothiazole, 2-mercapto Examples thereof include benzimidazole. Among these, at least one selected from the group consisting of benzimidazole and 1,2,4-triazole is preferable as the corrosion inhibitor.
  • the positive photosensitive resin layer contains a corrosion inhibitor, it may contain only one kind of corrosion inhibitor or may contain two or more kinds thereof.
  • the content of the corrosion inhibitor in the positive photosensitive resin layer is 0.001% by mass based on the total mass of the positive photosensitive resin layer. It is preferably from 5 to 5 mass %, more preferably from 0.005 to 3 mass %.
  • the positive photosensitive resin layer may contain a component other than the above components (hereinafter, also referred to as “other component”).
  • Other components are not particularly limited and can be appropriately selected depending on the purpose and the like. Examples of other components include an ultraviolet absorber, a development accelerator, a colorant and the like.
  • the negative photosensitive resin layer is not particularly limited, and a known negative photosensitive resin layer can be applied.
  • the negative photosensitive resin layer preferably contains a polymerizable compound, a polymerization initiator, and a binder polymer from the viewpoint of pattern formability.
  • the negative photosensitive resin layer preferably contains a polymerizable compound.
  • the polymerizable compound include polymerizable compounds such as radically polymerizable compounds and cationically polymerizable compounds.
  • the polymerizable compound is preferably a photopolymerizable compound, and more preferably an ethylenically unsaturated compound.
  • An ethylenically unsaturated compound is a compound that has one or more ethylenically unsaturated groups.
  • a (meth)acryloyl group is preferable.
  • As the ethylenically unsaturated compound a (meth)acrylate compound is preferable.
  • the ethylenically unsaturated compound preferably contains a bifunctional or higher functional ethylenically unsaturated compound.
  • bifunctional or higher functional ethylenically unsaturated compound means a compound having two or more ethylenically unsaturated groups in one molecule.
  • bifunctional ethylenically unsaturated compound examples include tricyclodecane dimethanol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, and 1,6-hexanediol di(meth)acrylate.
  • bifunctional ethylenically unsaturated compounds examples include tricyclodecane dimethanol diacrylate [trade name: NK ester A-DCP, Shin Nakamura Chemical Co., Ltd.], tricyclodecane dimethanol dimethacrylate.
  • Examples of the trifunctional or higher functional ethylenically unsaturated compound include dipentaerythritol (tri/tetra/penta/hexa)(meth)acrylate, pentaerythritol (tri/tetra)(meth)acrylate, trimethylolpropane tri(meth)acrylate, Examples thereof include ditrimethylolpropane tetra(meth)acrylate, isocyanuric acid (meth)acrylate, and a (meth)acrylate compound having a glycerin tri(meth)acrylate skeleton.
  • (tri/tetra/penta/hexa)(meth)acrylate is a concept including tri(meth)acrylate, tetra(meth)acrylate, penta(meth)acrylate, and hexa(meth)acrylate. ..
  • (tri/tetra)(meth)acrylate” is a concept including tri(meth)acrylate and tetra(meth)acrylate.
  • the ethylenically unsaturated compound preferably contains an ethylenically unsaturated compound having an acid group.
  • the acid group include a phosphoric acid group, a sulfonic acid group, a carboxy group and the like. Among these, a carboxy group is preferable as the acid group.
  • Examples of the ethylenically unsaturated compound having an acid group include a 3- to 4-functional ethylenically unsaturated compound having an acid group and a 5- to 6-functional ethylenically unsaturated compound having an acid group.
  • the ethylenically unsaturated compound having an acid group is preferably at least one selected from the group consisting of a bifunctional or higher functional ethylenically unsaturated compound having a carboxy group and a carboxylic acid anhydride thereof.
  • Examples of preferable commercial products of a bifunctional or higher-functional ethylenically unsaturated compound having a carboxy group include Aronix (registered trademark) TO-2349 (manufactured by Toagosei Co., Ltd.) and Aronix (registered trademark) M-520 (Toagosei) Co., Ltd.], Aronix (registered trademark) M-510 (manufactured by Toagosei Co., Ltd.) and the like.
  • the negative photosensitive resin layer contains a polymerizable compound
  • it may contain only one kind of the polymerizable compound or may contain two or more kinds thereof.
  • the content of the polymerizable compound in the negative photosensitive resin layer from the viewpoint of photosensitivity, to the total mass of the negative photosensitive resin layer. 1% by mass to 70% by mass, more preferably 10% by mass to 70% by mass, further preferably 20% by mass to 60% by mass, and 20% by mass to 50% by mass. It is particularly preferable that
  • the negative photosensitive resin layer preferably contains a polymerization initiator.
  • a polymerization initiator When the negative photosensitive resin layer contains a polymerization initiator, pattern formability can be improved.
  • the polymerization initiator include a photopolymerization initiator and a thermal polymerization initiator. Among these, the photopolymerization initiator is preferable as the polymerization initiator.
  • the photopolymerization initiator examples include a photopolymerization initiator having an oxime ester structure (hereinafter, also referred to as “oxime-based photopolymerization initiator”) and a photopolymerization initiator having an ⁇ -aminoalkylphenone structure (hereinafter, “ ⁇ - Aminoalkylphenone-based photopolymerization initiator”), a photopolymerization initiator having an ⁇ -hydroxyalkylphenone structure (hereinafter also referred to as " ⁇ -hydroxyalkylphenone-based polymerization initiator”), an acylphosphine oxide structure.
  • oxime-based photopolymerization initiator also referred to as “oxime-based photopolymerization initiator”
  • ⁇ - Aminoalkylphenone-based photopolymerization initiator a photopolymerization initiator having an ⁇ -aminoalkylphenone structure
  • N-phenylglycine-based photopolymerization initiator having N
  • N-phenylglycine-based photopolymerization initiator having an N-phenylglycine structure
  • the photopolymerization initiator is selected from the group consisting of oxime photopolymerization initiators, ⁇ -aminoalkylphenone photopolymerization initiators, ⁇ -hydroxyalkylphenone photopolymerization initiators, and N-phenylglycine photopolymerization initiators. It is preferable to contain at least one kind, and to contain at least one kind selected from the group consisting of an oxime photopolymerization initiator, an ⁇ -aminoalkylphenone photopolymerization initiator, and an N-phenylglycine photopolymerization initiator. More preferable.
  • the photopolymerization initiator is described, for example, in paragraphs [0031] to [0042] of JP2011-95716A and paragraphs [0064] to [0081] of JP2015-014783A. These descriptions are incorporated herein by reference.
  • photopolymerization initiators include 1-[4-(phenylthio)phenyl]-1,2-octanedione-2-(O-benzoyloxime) [trade name: IRGACURE (registered trademark) OXE-01, BASF Co., Ltd.], 1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]ethanone-1-(O-acetyloxime) [Product name: IRGACURE (registered trademark) OXE-02] BASF Corporation], 2-(dimethylamino)-2-[(4-methylphenyl)methyl]-1-[4-(4-morpholinyl)phenyl]-1-butanone [trade name: IRGACURE (registered trademark) 379EG, manufactured by BASF], 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-one [trade name: IRGACURE (registered trademark) 907, manufactured by BASF
  • the negative photosensitive resin layer contains a polymerization initiator
  • it may contain only one type of polymerization initiator or two or more types.
  • the content of the polymerization initiator in the negative photosensitive resin layer is 0.1% by mass based on the total mass of the negative photosensitive resin layer. It is preferably at least the above, more preferably at least 0.2% by mass, further preferably at least 0.3% by mass.
  • the content of the polymerization initiator in the negative photosensitive resin layer is preferably 10% by mass or less, and more preferably 5% by mass or less, based on the total mass of the negative photosensitive resin layer. More preferable.
  • the negative photosensitive resin layer preferably contains a binder polymer.
  • the binder polymer is preferably an alkali-soluble resin from the viewpoint of developability.
  • the alkali-soluble resin is preferably a resin having an acid value of 40 mgKOH/g or more, and is a (meth)acrylic resin having a carboxyl group and having an acid value of 40 mgKOH/g (hereinafter, also referred to as “polymer B”). Is more preferable.
  • polymer B also referred to as “polymer B”. Is more preferable.
  • alkali-soluble refers to being soluble in a 1 mol/L sodium hydroxide solution at 25° C. Further, “soluble” means that 0.1 g or more is dissolved in 100 mL of solvent.
  • the acid value is a value measured according to the method described in JIS K0070:1992.
  • the total content of the structural units derived from (meth)acrylic acid and the structural units derived from (meth)acrylic acid ester in polymer B is 30 mol% or more based on all the structural units of polymer B. Is preferable, and 50 mol% or more is more preferable.
  • the polymer B contains a structural unit having a carboxy group.
  • the constitutional unit having a carboxy group contained in the polymer B may be only one type, or may be two or more types.
  • the content ratio of the structural unit having a carboxy group in the polymer B is preferably 5 mol% to 50 mol% with respect to all the structural units of the (meth)acrylic resin having a carboxy group, It is more preferably from 5 mol% to 40 mol%, further preferably from 10 mol% to 40 mol%, particularly preferably from 10 mol% to 30 mol%.
  • the binder polymer (particularly the polymer B) preferably contains a structural unit having an aromatic ring from the viewpoint of moisture permeability and strength after curing.
  • the monomer that forms the structural unit having an aromatic ring include styrene, tert-butoxystyrene, methylstyrene, styrene compounds such as ⁇ -methylstyrene, and benzyl (meth)acrylate.
  • styrene compounds are preferable as the monomer forming the structural unit having an aromatic ring.
  • the binder polymer (particularly, the (meth)acrylic resin having a carboxy group) preferably contains a structural unit having an ethylenically unsaturated group from the viewpoint of strength after curing, and has an ethylenically unsaturated group in the side chain. It is more preferable to include a structural unit.
  • the “side chain” means an atomic group branched from the main chain
  • the “main chain” means the relatively longest binding chain in the molecules of the polymer compound constituting the resin. means.
  • a (meth)acryl group is preferable, and a (meth)acryloxy group is more preferable.
  • the acid value of the binder polymer is preferably 40 mgKOH/g or more, more preferably 40 mgKOH/g to 200 mgKOH/g, even more preferably 60 mgKOH/g to 150 mgKOH/g, and 60 mgKOH/g to 130 mgKOH. /G is particularly preferable.
  • the weight average molecular weight of the binder polymer is not particularly limited, but it is preferably more than 3,000, more preferably more than 3,000 and 60,000 or less, and 5,000 or more and 50,000 or less. Is more preferable.
  • the weight average molecular weight of the binder polymer is a polystyrene equivalent weight average molecular weight measured by the method described above (that is, GPC).
  • the negative photosensitive resin layer contains a binder polymer
  • it may contain only one kind of binder polymer or two kinds or more.
  • the content of the binder polymer in the negative photosensitive resin layer is 10% by mass to 90% by mass with respect to the total mass of the negative photosensitive resin layer. Is preferable, 20% by mass to 80% by mass is more preferable, and 30% by mass to 70% by mass is further preferable.
  • the negative photosensitive resin layer may contain a sensitizer.
  • the sensitizer has actions such as further improving the sensitivity of the photopolymerization initiator to actinic rays and suppressing polymerization inhibition of the polymerizable compound by oxygen.
  • sensitizer examples include triethanolamine, p-dimethylaminobenzoic acid ethyl ester, p-formyldimethylaniline, p-methylthiodimethylaniline, N-phenylglycine, tributyltin acetate and trithiane.
  • the negative photosensitive resin layer contains a sensitizer, it may contain only one kind of sensitizer or two or more kinds.
  • the content of the sensitizer in the negative photosensitive resin layer is 0.01% by mass to 10% by mass based on the total mass of the photosensitive resin layer. %, more preferably 0.03% by mass to 5% by mass, and further preferably 0.05% by mass to 3% by mass.
  • the negative photosensitive resin layer may contain a corrosion inhibitor.
  • the silver nanowires are prevented from being corroded, so that the durability can be improved.
  • the corrosion inhibitor has the same meaning as the corrosion inhibitor described in “Positive Photosensitive Resin Layer”, and the preferred examples are also the same, so the description thereof is omitted here.
  • the negative photosensitive resin layer contains a corrosion inhibitor, it may contain only one kind or two or more kinds of corrosion inhibitors.
  • the content of the corrosion inhibitor in the negative photosensitive resin layer is 0.001% by mass based on the total mass of the negative photosensitive resin layer. It is preferably from 5 to 5 mass %, more preferably from 0.005 to 3 mass %.
  • the negative photosensitive resin layer may contain a surfactant.
  • the uniformity of the film thickness can be improved.
  • the surfactant has the same meaning as the surfactant described in “Positive-type photosensitive resin layer”, and the preferred examples are also the same, and therefore the description thereof is omitted here.
  • the negative photosensitive resin layer contains a surfactant, it may contain only one kind or two or more kinds of surfactants.
  • the content of the surfactant in the negative photosensitive resin layer is the total mass of the negative photosensitive resin layer from the viewpoint of film thickness uniformity. On the other hand, it is preferably 0.05% by mass to 10% by mass, and more preferably 0.05% by mass to 5% by mass.
  • the negative photosensitive resin layer may contain components other than the above components (hereinafter, also referred to as “other components”).
  • Other components are not particularly limited and can be appropriately selected depending on the purpose and the like. Examples of other components include a heat-crosslinkable compound, a polymerization inhibitor, an ultraviolet absorber, a development accelerator, and a colorant.
  • the thickness of the photosensitive resin layer is not particularly limited and is, for example, preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less, further preferably 12 ⁇ m or less, particularly preferably 10 ⁇ m or less. Most preferably, it is 5 ⁇ m or less. When the thickness of the photosensitive resin layer is 20 ⁇ m or less, it is advantageous in terms of thinning the entire photosensitive transfer material and improving the transmittance of the photosensitive resin layer.
  • the thickness of the photosensitive resin layer is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more, from the viewpoint of manufacturing suitability.
  • the thickness of the photosensitive resin layer is measured by the following method.
  • the arithmetic mean value of the thickness of the photosensitive resin layer measured at five randomly selected points was calculated, and the obtained value was calculated as the thickness of the photosensitive resin layer. Satoshi
  • the cross-sectional observation image in the thickness direction of the photosensitive resin layer can be obtained using a scanning electron microscope (SEM).
  • the minimum transmittance of the photosensitive resin layer at a wavelength of 400 nm to 700 nm is preferably 80% or more, more preferably 90% or more.
  • Examples of the method for measuring the minimum transmittance of the photosensitive resin layer include a method using a spectrophotometer [eg, MCPD-6800 manufactured by Otsuka Electronics Co., Ltd.].
  • the method for forming the photosensitive resin layer is not particularly limited, and a known method can be applied.
  • Examples of the photosensitive resin layer include a method in which a coating solution for forming a photosensitive resin layer containing each of the above-mentioned components is applied onto an object to be coated and dried.
  • the coating method is not particularly limited, and a known coating method can be applied. Examples of the coating method include slit coating, spin coating, curtain coating, inkjet coating and the like.
  • the drying temperature is not particularly limited and can be appropriately set depending on the type of volatile components such as a solvent.
  • the drying temperature can be set to, for example, 60°C to 120°C.
  • the photosensitive resin layer-forming coating liquid can be prepared, for example, by mixing the above-mentioned components and a solvent in an arbitrary ratio.
  • the solvent is not particularly limited, and a known solvent can be applied.
  • the solvent include the ester compounds, ether compounds, and ketone compounds described below.
  • the ester compound include ethyl acetate, propyl acetate, isobutyl acetate, sec-butyl acetate, t-butyl acetate, isopropyl acetate, n-butyl acetate, 1-methoxy-2-propyl acetate and the like.
  • the ether compound include diisopropyl ether, 1,4-dioxane, 1,2-dimethoxyethane, 1,3-dioxolane, propylene glycol dimethyl ether, propylene glycol monoethyl ether and the like.
  • ketone compound examples include methyl n-butyl ketone, methyl ethyl ketone, methyl isobutyl ketone, diethyl ketone, methyl n-propyl ketone, and methyl isopropyl ketone.
  • the solvent contained in the coating liquid for forming the photosensitive resin layer does not need to be completely removed.
  • the photosensitive resin layer preferably contains no solvent, or more than 0% by mass and 1% by mass or less with respect to the total mass of the photosensitive resin layer, and does not contain a solvent or is photosensitive. It is more preferable that it is more than 0% by mass and 0.5% by mass or less with respect to the total mass of the functional resin layer.
  • the solid content concentration of the coating liquid for forming the photosensitive resin layer is not particularly limited.
  • the solid content concentration of the coating liquid for forming the photosensitive resin layer is preferably 1% by mass to 40% by mass, and more preferably 5% by mass to 30% by mass, from the viewpoint of coating suitability.
  • the “solid content concentration of the photosensitive resin layer-forming coating liquid” means a volatile component such as a solvent from the photosensitive resin layer-forming coating liquid with respect to the total mass of the photosensitive resin layer-forming coating liquid. It means the ratio of the removed residue.
  • the photosensitive transfer material of the present disclosure has a layer containing silver nanowires (that is, a silver nanowire layer).
  • the silver nanowire layer can function as a so-called conductive layer after transfer.
  • silver nanowire examples of the shape of the silver nanowire include a columnar shape, a rectangular parallelepiped shape, and a columnar shape having a polygonal cross section.
  • the silver nanowires preferably have at least one of a columnar shape and a columnar shape having a polygonal cross section.
  • the cross-sectional shape of the silver nanowire can be observed using, for example, a transmission electron microscope (TEM).
  • the diameter (so-called minor axis length) of the silver nanowire is not particularly limited, but for example, from the viewpoint of transparency, it is preferably 50 nm or less, more preferably 35 nm or less, and 20 nm or less. More preferable.
  • the lower limit of the diameter of the silver nanowire is preferably 5 nm or more, for example, from the viewpoint of oxidation resistance and durability.
  • the length (so-called major axis length) of the silver nanowire is not particularly limited, but for example, from the viewpoint of conductivity, it is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, and more preferably 30 ⁇ m or more. Is more preferable.
  • the upper limit of the length of the silver nanowire is preferably 1 mm or less, for example, from the viewpoint of suppressing the formation of aggregates in the manufacturing process.
  • the diameter and length of the silver nanowire can be measured using, for example, a transmission electron microscope (TEM) or an optical microscope. Specifically, the diameter and the length of 300 randomly selected silver nanowires are measured from the silver nanowires magnified and observed using a transmission electron microscope (TEM) or an optical microscope. The measured values are arithmetically averaged, and the obtained values are used as the diameter and length of the silver nanowire.
  • TEM transmission electron microscope
  • optical microscope optical microscope
  • the content of the silver nanowires in the silver nanowire layer is not particularly limited, but for example, from the viewpoint of transparency and conductivity, it is 1% by mass to 99% by mass with respect to the total mass of the silver nanowire layer. Is preferred, and more preferably 10% by mass to 95% by mass.
  • the silver nanowire layer may include a binder (also referred to as “matrix”), if necessary.
  • the binder is a solid material in which silver nanowires are dispersed or embedded.
  • the binder can protect the silver nanowires from harmful environmental factors such as corrosion and abrasion.
  • binder examples include polymer materials and inorganic materials.
  • a light transmissive material is preferable.
  • polymer material examples include (meth)acrylic resin [for example, poly(methyl methacrylate)], polyester [for example, polyethylene terephthalate (PET)], polycarbonate, polyimide, polyamide, polyolefin (for example, polypropylene), polynorbornene, and cellulose.
  • a compound, polyvinyl alcohol (PVA), polyvinyl pyrrolidone, etc. are mentioned.
  • the cellulose compound include hydroxypropylmethyl cellulose (HPMC), hydroxyethyl cellulose (HEC), methyl cellulose (MC), hydroxypropyl cellulose (HPC), carboxymethyl cellulose (CMC) and the like.
  • the polymer material may be a conductive polymer material. Examples of the conductive polymer material include polyaniline and polythiophene.
  • inorganic materials examples include silica, mullite and alumina.
  • the silver nanowire layer contains a binder, it may contain only one kind of binder or two or more kinds of binder.
  • the content of the binder in the silver nanowire layer is preferably 1% by mass to 99% by mass, and preferably 5% by mass to 80% by mass, based on the total mass of the silver nanowire layer. More preferably, it is mass %.
  • the thickness of the silver nanowire layer is not particularly limited, but for example, from the viewpoint of transparency and conductivity, it is preferably 1 nm to 400 nm, more preferably 10 nm to 200 nm.
  • the thickness of the silver nanowire layer is measured by the following method.
  • the arithmetic mean value of the thickness of the silver nanowire layer measured at five randomly selected points was calculated, and the obtained value was calculated as the thickness of the silver nanowire layer. Satoshi
  • the cross-sectional observation image in the thickness direction of the silver nanowire layer can be obtained using a scanning electron microscope (SEM).
  • the minimum transmittance of the silver nanowire layer at a wavelength of 400 nm to 700 nm is preferably 80% or more, and more preferably 90% or more.
  • Examples of the method for measuring the minimum transmittance of the silver nanowire layer include a method using a spectrophotometer [eg, MCPD-6800 manufactured by Otsuka Electronics Co., Ltd.].
  • the method for producing the silver nanowire is not particularly limited, and a known method can be applied.
  • a method for producing a silver nanowire for example, in a water-based solvent containing at least a halogen compound and a reducing agent, a step of adding a silver complex solution and heating at a temperature of 150° C. or lower, and, if necessary, Examples thereof include a method including a step of desalting.
  • the halogen compound is not particularly limited as long as it is a compound containing bromine, chlorine or iodine.
  • the halogen compound include alkali halides such as sodium bromide, sodium chloride, sodium iodide, potassium iodide, potassium bromide and potassium chloride.
  • alkali halides such as sodium bromide, sodium chloride, sodium iodide, potassium iodide, potassium bromide and potassium chloride.
  • HTAB hexadecyl-trimethylammonium bromide
  • HTAC hexadecyl-trimethylammonium chloride
  • metal borohydride salts such as sodium borohydride and potassium borohydride; lithium aluminum hydride, potassium aluminum hydride, cesium aluminum hydride, beryllium aluminum hydride, magnesium aluminum hydride, aluminum hydride
  • Aluminum hydride salts such as calcium; sodium sulfite, hydrazine compound, dextrin, hydroquinone, hydroxylamine, citric acid or its salt, succinic acid or its salt, ascorbic acid or its salt, etc.; diethylaminoethanol, ethanolamine, propanolamine, tritium Alkanolamines such as ethanolamine and dimethylaminopropanol; Aliphatic amines such as propylamine, butylamine, dipropyleneamine, ethylenediamine and triethylenepentamine; Heterocyclic amines such as piperidine, pyrrolidine, N-methylpyrrolidine and morpholine; Aniline , N-methylaniline, toluidine
  • Examples of the ligand of the silver complex include CN-, SCN-, SO 3 2- , thiourea, ammonia and the like.
  • a silver ammonia complex is preferable.
  • the heating temperature is preferably 150° C. or lower, more preferably 20° C. to 130° C., further preferably 30° C. to 100° C., particularly preferably 40° C. to 90° C.
  • the desalting treatment can be performed by a method such as ultrafiltration, dialysis, gel filtration, decantation, and centrifugation after forming the silver nanowires.
  • the method for forming the silver nanowire layer is not particularly limited, and a known method can be applied.
  • a method of forming the silver nanowire layer for example, a method of applying a coating solution for forming a silver nanowire layer containing silver nanowires onto an object to be coated and drying the coating solution can be mentioned.
  • the coating liquid for forming the silver nanowire layer can be prepared, for example, by mixing the silver nanowire and the solvent at an arbitrary ratio.
  • Water is mainly used as the solvent, and an organic solvent miscible with water may be used in combination at a ratio of 80% by volume or less with respect to the total amount of the solvent.
  • an alcohol compound having a boiling point of 50° C. to 250° C., more preferably 55° C. to 200° C. is preferable.
  • Alcohol compounds include methanol, ethanol, ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol 200, polyethylene glycol 300, glycerin, propylene glycol, dipropylene glycol, 1,3-propanediol, 1,2-butanediol, 1 1,4-butanediol, 1,5-pentanediol, 1-ethoxy-2-propanol, ethanolamine, diethanolamine, 2-(2-aminoethoxy)ethanol, 2-dimethylaminoisopropanol and the like can be mentioned.
  • the content of silver nanowires in the coating liquid for silver nanowire layer formation is preferably 0.1% by mass to 99% by mass, based on the total mass of the coating liquid for silver nanowire layer formation, and 0.3 It is more preferable that the content is from 95% by mass to 95% by mass.
  • the coating method is not particularly limited, and a known coating method can be applied. Examples of the coating method include slit coating, spin coating, curtain coating, inkjet coating and the like.
  • the drying temperature is not particularly limited and can be appropriately set depending on the type of volatile components such as a solvent.
  • the drying temperature can be set to, for example, 60°C to 120°C.
  • the photosensitive transfer material of the present disclosure has a thermosetting resin layer.
  • the thermosetting resin layer is soluble in a developing solution before the thermosetting and can be patterned by being selectively dissolved, and after the thermosetting, the photosensitive resin layer or a cured product of the photosensitive resin layer. It is difficult to be peeled off even after the step of removing, and has both patterning suitability and peeling resistance.
  • the thermosetting resin layer preferably does not have photocurability.
  • the thermosetting resin layer preferably contains a compound having a functional group that forms a bond by thermal reaction.
  • the functional group that forms a bond by thermal reaction include a (block) isocyanate group, an epoxy group, an oxetane group, a hydroxymethyl group, an alkoxymethyl group, and an oxazoline group.
  • the “(block)isocyanate group” is a concept that includes both an isocyanate group and a blocked isocyanate group.
  • the thermosetting resin layer is preferably a layer that is cured by the reaction of a functional group that forms a bond by a thermal reaction with a functional group having active hydrogen to form a crosslinked structure.
  • the thermosetting resin layer has (1) a functional group that forms a bond by a thermal reaction and active hydrogen. It is preferable to include at least one of a compound having a functional group, and (2) a combination of a compound having a functional group that forms a bond by thermal reaction and a compound having a functional group having active hydrogen.
  • Examples of the functional group having active hydrogen include a hydroxyl group, a carboxy group, a thiol group, an amino group and a phenol group.
  • thermosetting resin layer preferably has the functional groups in the combinations shown in (A) to (D) below.
  • A A combination of a (block) isocyanate group and at least one functional group selected from the group consisting of a hydroxyl group, a carboxy group, and an amino group.
  • B A combination of at least one of an epoxy group and an oxetane group and a carboxy group.
  • C A combination of at least one of a hydroxymethyl group and an alkoxymethyl group and at least one of a hydroxyl group and a carboxy group.
  • D A combination of an oxazoline group and a carboxy group.
  • a combination of a functional group forming a bond by a thermal reaction and a functional group having active hydrogen from the viewpoint of stability over time and curability, a combination of a blocked isocyanate group and at least one of a hydroxyl group and a carboxy group is more preferable. A combination of a blocked isocyanate group and a hydroxyl group is more preferable. The blocked isocyanate group and the hydroxyl group form a urethane bond by a thermal reaction.
  • the temperature of the thermal reaction is preferably 100°C to 180°C, more preferably 110°C to 160°C, and further preferably 120°C to 150°C.
  • the thermosetting resin layer is cured in the step of drying the coating film of the coating liquid for forming the thermosetting resin layer, which is performed when forming the thermosetting resin layer. Without doing so, the thermosetting resin layer can be efficiently thermoset in the thermosetting step after the developing step.
  • the thermosetting resin layer preferably contains a blocked isocyanate compound.
  • the blocked isocyanate compound is a compound having a blocked isocyanate group.
  • the “blocked isocyanate group” is usually protected by blocking the isocyanate group with a blocking agent (so-called mask) to suppress the reactivity of the isocyanate group, but deprotects when heated, By a group is meant an active isocyanate group.
  • the “blocked isocyanate compound” means a compound having a blocked isocyanate group as described above.
  • the blocked isocyanate group has a partial structure represented by the following formula.
  • X represents a structure obtained by removing a hydrogen atom from the blocking agent.
  • the blocking agent include ketoxime compounds, amide compounds, nitrogen-containing heterocyclic compounds, active methylene compounds and the like.
  • the nitrogen-containing heterocyclic compound is preferably a compound having a pyrazole structure, a compound having an imidazole structure, or the like.
  • the blocked isocyanate group in which X is a ketoxime group is preferably a group represented by the following formula.
  • R 101 and R 102 each independently represent an alkyl group or an aryl group. R 101 and R 102 may combine with each other to form a ring structure. R 101 and R 102 are preferably a methyl group or an ethyl group.
  • blocked isocyanate group in which X is an amide group (so-called amide blocked isocyanate group) and the blocked isocyanate group in which X is an imide group (so-called imide blocked isocyanate group)
  • groups represented by the following formulas are preferable.
  • R 103 represents a substituent
  • R 105 represents an alkyl group
  • n1 represents an integer of 0 to 3.
  • the substituent represented by R 103 is preferably an alkyl group, an alkoxy group, or a halogen atom.
  • the blocked isocyanate group in which X is a nitrogen-containing heterocycle (so-called nitrogen-containing heterocycle blocked isocyanate group), a group represented by the following formula is preferable.
  • R 103 represents a substituent
  • n1 represents an integer of 0 to 3.
  • the substituent represented by R 103 is preferably an alkyl group, and more preferably an alkyl group having 1 to 4 carbon atoms.
  • nitrogen-containing heterocyclic blocked isocyanate group a dimethylpyrazole blocked isocyanate group is more preferable.
  • the blocked isocyanate group in which X is an active methylene group is preferably a group represented by the following formula.
  • R 104 and R 106 each independently represent an alkyl group or an alkoxy group. R 104 and R 106 may combine with each other to form a ring structure.
  • the blocked isocyanate compound preferably reacts at the heating temperature in the thermosetting process described below. From this point of view, the dissociation temperature of the blocked isocyanate compound is preferably 100° C. to 180° C., more preferably 110° C. to 160° C., and further preferably 120° C. to 150° C.
  • blocked isocyanate compounds and their dissociation temperatures are shown below.
  • Dimethylpyrazole blocked isocyanate compound (dissociation temperature: 100°C to 120°C)
  • active methylene blocked isocyanate compound (dissociation temperature: 100°C to 120°C)
  • ketoxime blocked isocyanate compound (dissociation temperature: 130°C to 150°C)
  • ⁇ - Caprolactam-blocked isocyanate compound dissociation temperature: 160°C to 180°C.
  • the blocked isocyanate compound from the viewpoint of thermal reactivity and stability, at least one compound selected from the group consisting of a dimethylpyrazole blocked isocyanate compound, an active methylene blocked isocyanate compound, and a ketoxime blocked isocyanate compound. Ketoxime blocked isocyanate compounds are more preferred.
  • the dissociation temperature of the blocked isocyanate compound in the present disclosure means "the temperature of the endothermic peak associated with the deprotection reaction of the blocked isocyanate when measured by DSC (Differential scanning calorimetry) using a differential scanning calorimeter". To do.
  • a differential scanning calorimeter for example, a differential scanning calorimeter (model: DSC6200) manufactured by Seiko Instruments Inc. can be preferably used. However, the differential scanning calorimeter is not limited to this.
  • the number of blocked isocyanate groups in the blocked isocyanate compound is not particularly limited, but for example, from the viewpoint of curability, it is preferable to have two or more blocked isocyanate groups in one molecule, and to have three or more blocked isocyanate groups. Is more preferable.
  • the functional group concentration of the blocked isocyanate group in the blocked isocyanate compound is preferably 0.3 mmol/g or more, more preferably 0.5 mmol or more, further preferably 1 mmol/g or more, 2 mmol/g The above is particularly preferable.
  • the upper limit of the functional group concentration of the blocked isocyanate group in the blocked isocyanate compound is not particularly limited, but is preferably 6 mmol/g or less, for example.
  • the functional group concentration of the blocked isocyanate group in the thermosetting resin layer is preferably 0.1 mmol/g or more, more preferably 0.3 mmol/g or more, further preferably 1 mmol/g or more. , 1.5 mmol/g or more is particularly preferable.
  • the functional group concentration of the blocked isocyanate group in the thermosetting resin layer is 0.1 mmol/g or more, the thermosetting property of the thermosetting resin layer is further improved, and the cured product of the thermosetting resin layer is formed. Since the resistance to peeling from the substrate is further increased, the conductive pattern tends to be more difficult to peel from the substrate.
  • the upper limit of the functional group concentration of the blocked isocyanate group in the thermosetting resin layer is not particularly limited, but is preferably 6 mmol/g or less from the viewpoint of developability and solvent solubility, for example.
  • the functional group concentration of the blocked isocyanate group in the thermosetting resin layer is represented by the product of the functional group concentration of the blocked isocyanate group of the blocked isocyanate compound and the mass content of the blocked isocyanate compound in the thermosetting resin layer.
  • the thermosetting resin layer contains two or more blocked isocyanate compounds, it is represented by the sum of the functional group concentrations in the thermosetting resin layer calculated from the respective blocked isocyanate compounds.
  • the blocked isocyanate compound preferably has at least one of a hydroxyl group and an acid group.
  • thermosetting resin layer contains a blocked isocyanate compound
  • thermosetting resin layer further contains a compound having at least one of a hydroxyl group and an acid group other than the blocked isocyanate compound.
  • thermosetting resin layer has a hydroxyl group
  • thermosetting property of the thermosetting resin layer is further improved, and the resistance to peeling of the cured product of the thermosetting resin layer from the substrate is further increased. Therefore, the conductive pattern tends to be more difficult to peel off.
  • thermosetting resin layer has a hydroxyl group
  • the thermosetting resin layer contains a blocked isocyanate compound having a hydroxyl group, and (2) the thermosetting resin layer does not have a hydroxyl group.
  • thermosetting resin layer contains a blocked isocyanate compound having a hydroxyl group and a compound having a hydroxyl group.
  • thermosetting resin layer has an acid group
  • the developability of the thermosetting resin layer is further improved, so that the development residue tends to be more suppressed.
  • thermosetting resin layer has an acid group
  • the thermosetting resin layer contains a blocked isocyanate compound having an acid group
  • the thermosetting resin layer has an acid group. Examples thereof include a block isocyanate compound not having it and a compound having an acid group, and a case where (3) the thermosetting resin layer contains a block isocyanate compound having an acid group and a compound having an acid group.
  • the acid group examples include a carboxy group, a sulfonamide group, a sulfonimide group, a phenol group and the like. Among these, a carboxy group is preferable as the acid group.
  • the functional group concentration of the hydroxyl group in the thermosetting resin layer is preferably 0.1 mmol/g or more, more preferably 0.3 mmol/g or more, 0 More preferably, it is 0.5 mmol/g or more.
  • the functional group concentration of the hydroxyl group in the thermosetting resin layer is 0.1 mmol/g or more, the thermosetting property of the thermosetting resin layer is further improved, and the cured product of the thermosetting resin layer is formed from the substrate. Since the peeling resistance of 1 is further increased, the conductive pattern tends to be more difficult to peel from the substrate.
  • the upper limit of the functional group concentration of hydroxyl groups in the thermosetting resin layer is not particularly limited, but is preferably 3 mmol/g or less from the viewpoint of developability and solvent solubility, for example.
  • the functional group concentration of the hydroxyl group in the thermosetting resin layer is represented by the product of the functional group concentration of the hydroxyl group of the compound having a hydroxyl group and the mass content of the compound having a hydroxyl group in the thermosetting resin layer.
  • the thermosetting resin layer contains two or more kinds of compounds having a hydroxyl group, it is represented by the sum of the functional group concentrations in the thermosetting resin layer calculated from the respective compounds having a hydroxyl group.
  • the functional group concentration of the acid group in the thermosetting resin layer (also referred to as “acid value”; the same applies below) is 0.05 mmol/g to 5 mmol/g. It is preferably 0.1 mmol/g to 3 mmol/g, more preferably 0.2 mmol/g to 2 mmol/g.
  • the functional group concentration of the acid group in the thermosetting resin layer is within the above range, the developability of the thermosetting resin layer is further improved, so that the development residue tends to be more suppressed.
  • the functional group concentration of the acid group in the thermosetting resin layer is represented by the product of the functional group concentration of the acid group of the compound having an acid group and the mass content of the compound having an acid group in the thermosetting resin layer. Be done.
  • the thermosetting resin layer contains two or more compounds having an acid group, it is represented by the sum of the functional group concentrations in the thermosetting resin layer calculated from the compounds having an acid group.
  • the blocked isocyanate compound may be a low molecular weight compound or a high molecular weight compound, but is preferably a high molecular weight compound from the viewpoint of reaction efficiency and suppression of precipitation.
  • the blocked isocyanate compound is a polymer compound
  • the blocked isocyanate compound is preferably a polymer, more preferably a polymer having a (meth)acrylic monomer as a repeating unit, and is represented by the following formula BR-1.
  • a polymer having a repeating unit represented by the formula: BR-2 is more preferable, and a polymer having a repeating unit represented by the following formula BR-2 is particularly preferable.
  • the “(meth)acrylic monomer” means a monomer having a (meth)acryloyl group.
  • X represents a structure in which a hydrogen atom is removed from the blocking agent
  • Z 1 represents a hydrogen atom or a methyl group.
  • R 101 and R 102 each independently represent an alkyl group or an aryl group. R 101 and R 102 may combine with each other to form a ring structure.
  • Z 1 represents a hydrogen atom or a methyl group.
  • R 101 and R 102 are preferably a methyl group or an ethyl group.
  • the content of the repeating unit represented by BR-1 in the polymer having the repeating unit represented by the formula BR-1 is preferably 10 mol% to 100 mol% with respect to the total repeating units of the polymer, and 20 mol. % To 80 mol% is more preferable, and 30 mol% to 80 mol% is further preferable.
  • the polymer having the repeating unit represented by the formula BR-1 preferably has at least one of a hydroxyl group and an acid group.
  • the polymer has a repeating unit having a hydroxyl group and an acid group (preferably a carboxy group) in addition to the repeating unit represented by the formula BR-1 and the repeating unit represented by the formula BR-1. And at least one repeating unit of the repeating units having.
  • the polymer has a repeating unit having a hydroxyl group and an acid group (preferably a carboxy group) in addition to the repeating unit represented by the formula BR-1 and the repeating unit represented by the formula BR-1. And both repeating units of the repeating unit having.
  • the repeating unit having a hydroxyl group is preferably a repeating unit derived from hydroxyalkyl(meth)acrylate.
  • the repeating unit having an acid group is preferably a repeating unit derived from (meth)acrylic acid.
  • the polymer having the repeating unit represented by the formula BR-1 may further have another repeating unit copolymerizable with the repeating unit represented by the formula BR-1.
  • the other repeating unit is not particularly limited, and examples thereof include a repeating unit derived from an alkyl(meth)acrylate, a repeating unit derived from an aralkyl(meth)acrylate, and a repeating unit derived from styrene.
  • the total content of repeating units derived from acrylic acid and repeating units derived from acrylic acid ester is 30 mol% to 100 mol% based on all repeating units of the polymer. Is preferable, and more preferably 50 mol% to 100 mol %.
  • the weight average molecular weight of the blocked isocyanate compound is not particularly limited, but is preferably 2,000 to 100,000, more preferably 3,000 to 50,000, More preferably, it is 4,000 to 30,000.
  • the weight average molecular weight of the blocked isocyanate compound is a polystyrene equivalent weight average molecular weight measured by the method described above (that is, GPC).
  • the blocked isocyanate compound is a polymer compound
  • the blocked isocyanate compound is preferably a polymer represented by the following formula.
  • Z 1 represents a hydrogen atom or a methyl group.
  • the blocked isocyanate compound is a low molecular weight compound
  • the blocked isocyanate compound is preferably a compound represented by the following formula.
  • X 1 represents a structure obtained by removing a hydrogen atom from the blocking agent.
  • X 1 has a structure obtained by removing a hydrogen atom from the blocking agent, or a hydrophilic group (preferably a polyalkylene glycol group). ), and at least one of a plurality of X 1 s represents a structure in which a hydrogen atom is removed from the blocking agent.
  • the compound having at least one of a hydroxyl group and an acid group may be a low molecular weight compound or a high molecular weight compound, but is preferably a high molecular weight compound.
  • the polymer compound is preferably a polymer.
  • the low molecular weight compound having a hydroxyl group a compound having two or more hydroxyl groups is preferable, and a compound having 3 to 8 hydroxyl groups is more preferable.
  • examples of such compounds include polyols such as trimethylolethane, trimethylolpropane, glycerin, pentaerythritol, dipentaerythritol, and ditrimethylolethane.
  • the polymer has at least one repeating unit having a repeating unit having a hydroxyl group and a repeating unit having an acid group (preferably a carboxy group).
  • the polymer has both a repeating unit having a hydroxyl group and a repeating unit having an acid group (preferably a carboxy group).
  • the repeating unit having a hydroxyl group is preferably a repeating unit derived from hydroxyalkyl(meth)acrylate.
  • the repeating unit having an acid group (preferably a carboxy group) is preferably a repeating unit derived from (meth)acrylic acid.
  • the polymer having at least one of a hydroxyl group and an acid group may further have a repeating unit having a hydroxyl group or another repeating unit copolymerizable with the repeating unit having an acid group (preferably a carboxy group).
  • the other repeating unit is not particularly limited, and examples thereof include a repeating unit derived from an alkyl(meth)acrylate, a repeating unit derived from an aralkyl(meth)acrylate, and a repeating unit derived from styrene.
  • the polymer having at least one of a hydroxyl group and an acid group has a total content of repeating units derived from acrylic acid and repeating units derived from acrylic acid ester of 30 mol% with respect to all repeating units of the polymer. It is preferably ⁇ 100 mol %, and more preferably 50 mol% to 100 mol %.
  • the weight average molecular weight of the polymer having at least one of a hydroxyl group and an acid group is not particularly limited, but is preferably 2,000 to 100,000, more preferably 3,000 to 80,000, and It is more preferably 000 to 50,000.
  • the weight average molecular weight of the polymer having at least one of a hydroxyl group and an acid group is a polystyrene equivalent weight average molecular weight measured by the method described above (that is, GPC).
  • the polymer having at least one of a hydroxyl group and an acid group is preferably a polymer represented by the following formula.
  • Z 1 represents a hydrogen atom or a methyl group.
  • the thermosetting resin layer may have at least one of an epoxy group and an oxetane group as a functional group that forms a bond by thermal reaction.
  • the thermosetting resin layer preferably contains at least one of an epoxy group and an oxetane group in a mode including a compound having at least one of an epoxy group and an oxetane group.
  • Examples of the compound having an epoxy group include low molecular weight compounds such as glycidyl ether compounds and polycarboxylic acid glycidyl ester compounds, and polymers having a repeating unit having an epoxy group in its side chain.
  • the repeating unit having an epoxy group in the side chain is preferably a repeating unit derived from glycidyl (meth)acrylate.
  • thermosetting resin layer contains a polymer having both a repeating unit having an epoxy group and a repeating unit having a carboxy group.
  • the thermosetting resin layer may have at least one of a hydroxymethyl group and an alkoxymethyl group as a functional group that forms a bond by thermal reaction.
  • the thermosetting resin layer preferably contains at least one of a hydroxymethyl group and an alkoxymethyl group in a mode including a compound having at least one of a hydroxymethyl group and an alkoxymethyl group.
  • a compound having at least one of a hydroxymethyl group and an alkoxymethyl group a low-molecular compound such as hydroxymethylmelamine, alkoxymethylmelamine, alkoxymethylglycolurea, alkoxymethylbenzoguanamine, and hydroxymethyl-substituted phenol, derived from N-alkoxymethylacrylamide
  • a polymer having a repeating unit of is preferable from the viewpoint of curability.
  • thermosetting resin layer contains a polymer having a repeating unit derived from N-alkoxymethylacrylamide, a repeating unit having a hydroxyl group, and a repeating unit having a carboxy group.
  • thermosetting resin layer may contain a corrosion inhibitor.
  • the thermosetting resin layer contains a corrosion inhibitor, the silver nanowires are prevented from being corroded, so that durability can be improved.
  • the corrosion inhibitor has the same meaning as the corrosion inhibitor described in “Positive Photosensitive Resin Layer”, and the preferred examples are also the same, so the description thereof is omitted here.
  • thermosetting resin layer When the thermosetting resin layer contains a corrosion inhibitor, it may contain only one type of corrosion inhibitor or may contain two or more types of corrosion inhibitors.
  • the content of the corrosion inhibitor in the thermosetting resin layer is 0.001% by mass to 5% by mass based on the total mass of the thermosetting resin layer. It is preferably 0.005% by mass to 3% by mass.
  • thermosetting resin layer may contain a surfactant.
  • the surfactant has the same meaning as the surfactant described in “Positive-type photosensitive resin layer”, and the preferred examples are also the same, and therefore the description thereof is omitted here.
  • thermosetting resin layer may contain only one type of surfactant, or may contain two or more types of surfactant.
  • the content ratio of the surfactant in the thermosetting resin layer is 0. 0 with respect to the total mass of the thermosetting resin layer from the viewpoint of the film thickness uniformity.
  • the amount is preferably 05% by mass to 10% by mass, and more preferably 0.05% by mass to 5% by mass.
  • thermosetting resin layer may contain components other than the above components (hereinafter, also referred to as “other components”).
  • Other components are not particularly limited and can be appropriately selected depending on the purpose and the like.
  • Other components include a polymerization inhibitor, an ultraviolet absorber, a development accelerator, a coloring agent and the like.
  • the thickness of the thermosetting resin layer is not particularly limited and is, for example, preferably 1 nm to 10,000 nm, more preferably 1 nm to 5,000 nm, further preferably 1 nm to 1,000 nm. It is particularly preferably 1 nm to 300 nm, and most preferably 20 nm to 100 nm.
  • the cured resin layer that is, the thermosetting resin layer
  • the thickness of the thermosetting resin layer is measured by the following method.
  • the arithmetic mean value of the thickness of the thermosetting resin layer measured at five randomly selected points was calculated, and the obtained value was used as the thermosetting resin.
  • the layer thickness is obtained using a scanning electron microscope (SEM).
  • the minimum transmittance of the thermosetting resin layer at a wavelength of 400 nm to 700 nm is preferably 80% or more, more preferably 90% or more.
  • Examples of the method for measuring the minimum transmittance of the thermosetting resin layer include a method using a spectrophotometer [eg, MCPD-6800 manufactured by Otsuka Electronics Co., Ltd.].
  • thermosetting resin layer The contact resistance of the thermosetting resin layer is preferably 200 ⁇ or less, more preferably 1 ⁇ to 200 ⁇ , and more preferably 1 ⁇ to, from the viewpoint of the conductivity of the cured resin layer (that is, the thermosetting resin layer). It is more preferably 100 ⁇ , and particularly preferably 1 ⁇ to 50 ⁇ .
  • the contact resistance of the thermosetting resin layer is measured by the TLM (Transmission Line Model) method.
  • the specific measuring method is as follows. Seven copper electrodes (thickness: 300 nm, width: 500 ⁇ m) arranged on a substrate (for example, a cycloolefin polymer film) in parallel and independently at intervals of 2 mm, 4 mm, 6 mm, 8 mm, 12 mm, and 20 mm. ) Is formed. Next, one photosensitive transfer material was pasted on the seven copper electrodes to produce a test body having a structure in which a silver nanowire layer was laminated on the copper electrodes via a thermosetting resin layer. To do.
  • the silver nanowire layer is arranged so as to cross the seven copper electrodes, and the angle formed by each copper electrode and the silver nanowire layer is 90°.
  • the contact resistance of the thermosetting resin layer is obtained by plotting the relationship between the resistance (vertical axis) and the distance (horizontal axis) between the copper electrodes.
  • a resistivity meter (trade name: Loresta-GP, manufactured by Mitsubishi Chemical Analytech Co., Ltd.) can be used.
  • the measuring device is not limited to this.
  • thermosetting resin layer The glass transition temperature of the thermosetting resin layer is preferably ⁇ 50° C. to 100° C., and more preferably ⁇ 30° C. to 80° C., from the viewpoint of coating properties and adhesiveness when it is bonded to a substrate. , -10°C to 50°C is more preferable.
  • the glass transition temperature of the thermosetting resin layer is the thermosetting resin layer formed by applying the thermosetting resin layer forming coating solution to the substrate and drying the solvent at a temperature at which the thermosetting resin layer does not cure. , DSC (Differential scanning calorimetry) analysis using a differential scanning calorimeter.
  • thermosetting resin layer a compound having a different glass transition temperature is appropriately selected as a compound (block isocyanate compound, compound having a hydroxyl group, compound having an acid group, etc.) contained in the thermosetting resin layer. Can be adjusted.
  • thermosetting resin layer (Method of forming thermosetting resin layer)
  • the method for forming the thermosetting resin layer is not particularly limited, and a known method can be applied.
  • examples of the thermosetting resin layer include a method in which a coating liquid for forming a thermosetting resin layer containing each of the above-mentioned components is applied onto an object to be coated and dried.
  • the coating method is not particularly limited, and a known coating method can be applied. Examples of the coating method include slit coating, spin coating, curtain coating, inkjet coating and the like.
  • the drying temperature is not particularly limited and can be appropriately set depending on the type of volatile components such as a solvent.
  • the drying temperature can be set to, for example, 60°C to 120°C.
  • thermosetting resin layer-forming coating liquid can be prepared, for example, by mixing the above-mentioned components and a solvent in an arbitrary ratio.
  • the solvent is not particularly limited, and a known solvent can be used.
  • the solvent has the same meaning as the solvent described in “Method for forming photosensitive resin layer”, and the preferred examples are also the same, and therefore the description thereof is omitted here.
  • thermosetting resin layer the solvent contained in the coating liquid for forming the thermosetting resin layer does not need to be completely removed.
  • the thermosetting resin layer contains no solvent, or preferably contains more than 0 mass% and 1 mass% or less of the total mass of the thermosetting resin layer and contains no solvent, or More preferably, it is more than 0% by mass and 0.5% by mass or less based on the total mass of the thermosetting resin layer.
  • the solid content concentration of the thermosetting resin layer-forming coating liquid is not particularly limited. From the viewpoint of coating suitability, the solid content concentration of the thermosetting resin layer forming coating liquid is preferably 0.1% by mass to 30% by mass, and 0.5% by mass to 20% by mass. More preferable.
  • the “solid content concentration of the thermosetting resin layer-forming coating liquid” refers to volatilization of a solvent or the like from the thermosetting resin layer-forming coating liquid with respect to the total mass of the thermosetting resin layer-forming coating liquid. It means the ratio of the residue excluding the sex components.
  • the photosensitive transfer material of the present disclosure may have a protective film on the surface of the thermosetting resin layer opposite to the silver nanowire layer side.
  • the protective film include polyethylene terephthalate film, polypropylene film, polystyrene film, polycarbonate film and the like.
  • the protective film is described in paragraphs [0083] to [0087] and [0093] of JP 2006-259138 A, for example. These descriptions are incorporated herein by reference.
  • the method for producing a patterned substrate of the present disclosure is the above-described photosensitive transfer material and the step of attaching the substrate (hereinafter, also referred to as “attaching step”), and the photosensitive resin layer in the photosensitive transfer material.
  • Pattern exposure hereinafter, also referred to as "exposure step”
  • developing step a step of developing the photosensitive transfer material that has undergone the pattern exposure to form a pattern
  • thermally curing the thermosetting resin layer hereinafter, also referred to as “thermosetting step” is included in this order.
  • the method for producing a patterned substrate according to the present disclosure includes a bonding step, an exposure step, a developing step, and a thermosetting step in this order, and therefore, a patterned substrate in which the conductive pattern is difficult to peel off from the substrate is produced.
  • the method for manufacturing a patterned substrate according to the present disclosure includes the above-described photosensitive transfer material and a step of bonding the substrates (that is, a bonding step).
  • the photosensitive transfer material in the method for manufacturing a patterned substrate according to the present disclosure is as described in the above-mentioned “Photosensitive transfer material”, and the preferred embodiment is also the same, and therefore the description thereof is omitted here.
  • the photosensitive resin layer in the photosensitive transfer material is preferably a positive photosensitive resin layer from the viewpoint of resolution.
  • the substrate may be a substrate such as glass, silicon, or a film itself, or may be a substrate provided with an optional layer such as a conductive layer on the substrate such as glass, silicon, or film, if necessary. May be.
  • the substrate further has a conductive layer, the substrate preferably has a conductive layer on the base material.
  • the base material is preferably a glass base material or a film base material, more preferably a film base material, and further preferably a resin film.
  • the base material is preferably transparent.
  • the transparent substrate is described, for example, in JP 2010-86684 A, JP 2010-152809 A and JP 2010-257492 A. These descriptions are incorporated herein by reference.
  • the refractive index of the base material is preferably 1.50 to 1.52.
  • tempered glass represented by Corning's gorilla glass
  • a film base material it is preferable to use a base material having small optical distortion and a base material having high transparency.
  • the material of the resin film includes polyethylene terephthalate (PET), polyethylene naphthalate, polycarbonate, triacetyl cellulose, cycloolefin polymer and the like.
  • Examples of the conductive layer include general circuit wiring and any conductive layer used for touch panel wiring. Examples of the conductive layer include a metal layer and a conductive metal oxide layer. In the present disclosure, “conductive” means that the volume resistivity is less than 1 ⁇ 10 6 ⁇ cm. The volume resistivity is preferably less than 1 ⁇ 10 4 ⁇ cm.
  • the material of the metal layer examples include Al (aluminum), Zn (zinc), Cu (copper), Fe (iron), Ni (nickel), Cr (chrome), Mo (molybdenum), and the like.
  • the metal forming the metal layer may be a single metal consisting of one kind of metal element, a metal mixture containing two or more kinds of metal elements, or an alloy containing at least one kind of metal element. It may be.
  • the conductive metal oxide forming the conductive metal oxide layer examples include ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), and SiO 2 .
  • the conductive layer is preferably at least one kind of layer selected from the group consisting of a metal layer and a conductive metal oxide layer, more preferably a metal layer, from the viewpoint of conductivity and fine wire forming property, and a copper layer. More preferably, it is a layer.
  • the conductive layer is preferably an electrode pattern corresponding to the sensor of the visual recognition part used in the capacitive touch panel or a wiring of the peripheral extraction part.
  • the photosensitive transfer material and the substrate are bonded by bringing the thermosetting resin layer in the photosensitive transfer material into contact with the substrate.
  • the lamination of the photosensitive transfer material and the substrate can be performed using a known laminator such as a vacuum laminator and an auto cut laminator.
  • the laminating temperature is not particularly limited.
  • the laminating temperature is preferably 80° C. to 150° C., more preferably 90° C. to 150° C., and further preferably 100° C. to 150° C.
  • the laminating temperature refers to the temperature of the rubber roller.
  • the substrate temperature during lamination is not particularly limited.
  • the substrate temperature during lamination may be, for example, 10° C. to 150° C., preferably 20° C. to 150° C., and more preferably 30° C. to 150° C.
  • the substrate temperature during lamination is preferably 10°C to 80°C, more preferably 20°C to 60°C, and further preferably 30°C to 50°C. preferable.
  • the linear pressure during lamination is not particularly limited.
  • the linear pressure during lamination is preferably 0.5 N/cm to 20 N/cm, more preferably 1 N/cm to 10 N/cm, and further preferably 1 N/cm to 5 N/cm.
  • the conveying speed during laminating is preferably 0.5 m/min to 5 m/min, more preferably 1.5 m/min to 3 m/min.
  • the method for producing a patterned substrate according to the present disclosure includes a step of pattern-exposing the photosensitive resin layer in the photosensitive transfer material (that is, an exposure step).
  • the photosensitive resin layer in the photosensitive transfer material is pattern-exposed to form an exposed portion and a non-exposed portion on the photosensitive resin layer.
  • the exposed photosensitive resin layer in the photosensitive transfer material when the photosensitive resin layer in the photosensitive transfer material is a positive type, the exposed photosensitive resin layer (so-called exposed portion) has increased solubility in the developing solution due to polarity change.
  • the photosensitive resin layer in the photosensitive transfer material is a negative type, the exposed photosensitive resin layer (so-called unexposed portion) is cured.
  • the pattern exposure method may be exposure through a mask (also called “photomask”) or digital exposure using a laser or the like.
  • the light source for exposure is not particularly limited.
  • the light source for exposure can be appropriately selected depending on the components contained in the photosensitive resin layer.
  • examples of the light source include a light source capable of irradiating light (for example, 365 nm or 405 nm) in a wavelength range in which the exposed portion can be dissolved in the developing solution.
  • examples of the light source include a light source capable of irradiating with light in a wavelength range in which the exposed portion can be cured (for example, 365 nm or 405 nm).
  • Specific examples of the light source include various lasers, light emitting diodes (LEDs), ultrahigh pressure mercury lamps, high pressure mercury lamps, metal halide lamps and the like.
  • Exposure is preferably 5mJ / cm 2 ⁇ 200mJ / cm 2, more preferably 10mJ / cm 2 ⁇ 200mJ / cm 2.
  • the photosensitive resin layer may be pattern-exposed after the temporary support is peeled off from the photosensitive transfer material attached to the substrate, and the photosensitive resin layer may be patterned while leaving the temporary support. You may expose.
  • the method for manufacturing a patterned substrate of the present disclosure includes a step of developing the photosensitive transfer material that has undergone the pattern exposure to form a pattern (that is, a developing step).
  • the developing step when the photosensitive resin layer in the photosensitive transfer material is a positive type, a pattern can be formed by removing the exposed portion of the photosensitive transfer material with a developing solution.
  • the photosensitive resin layer in the photosensitive transfer material is a negative type, the pattern can be formed by removing the non-exposed portion of the photosensitive transfer material with a developing solution.
  • the silver nanowire layer and the thermosetting resin layer are also developed using the pattern of the photosensitive resin layer as a mask, the silver nanowire layer and the thermosetting resin layer can be simultaneously formed with a pattern.
  • the developer is not particularly limited and, for example, a known developer such as the developer described in JP-A-5-72724 can be used.
  • the developer is preferably an alkaline aqueous solution.
  • alkaline compound that can be contained in the alkaline aqueous solution, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, Examples thereof include tetrabutylammonium hydroxide and choline (2-hydroxyethyltrimethylammonium hydroxide).
  • the pH of the alkaline aqueous solution at 25° C. is preferably 8 to 13, more preferably 9 to 12, and even more preferably 10 to 12.
  • the content of the alkaline compound in the alkaline aqueous solution is preferably 0.1% by mass to 5% by mass, and more preferably 0.1% by mass to 3% by mass, based on the total mass of the alkaline aqueous solution.
  • the liquid temperature of the developer is preferably 20°C to 40°C.
  • development methods include paddle development, shower development, shower and spin development, and dip development.
  • JP 2006-23696 A the description in paragraphs [0035] to [0051] of JP 2006-23696 A can be referred to.
  • thermosetting step The method for manufacturing a patterned substrate according to the present disclosure includes a step of thermally curing the thermosetting resin layer in the photosensitive transfer material described above (that is, a thermosetting step).
  • thermosetting resin layer is thermoset.
  • the heating temperature and heating time for thermosetting the thermosetting resin layer are not particularly limited as long as the thermosetting resin layer can be thermoset, and may be appropriately set according to the components contained in the thermosetting resin layer.
  • the heating temperature is preferably 100°C to 180°C, more preferably 110°C to 160°C, and further preferably 120°C to 150°C. When the heating temperature is within the above range, the thermosetting resin layer can be thermoset more efficiently.
  • the heating time is preferably 0.1 minutes to 120 minutes, more preferably 0.5 minutes to 60 minutes, and further preferably 1 minute to 30 minutes. When the heating time is within the above range, discoloration and deformation of the substrate due to heating hardly occur.
  • the heating method is not particularly limited, and a known heating method can be applied.
  • Examples of the heating method include a method of heating by contacting with a heat source such as a hot plate, a method of heating in a heating atmosphere using an oven, and a method of heating with warm air, an infrared heater or the like.
  • the method for manufacturing a circuit board according to the present disclosure includes a step of bonding the above-mentioned photosensitive transfer material and the substrate (bonding step), and a step of pattern-exposing the photosensitive resin layer in the photosensitive transfer material (exposure step). ), a step of developing the photosensitive transfer material that has undergone the pattern exposure to form a pattern (developing step), a step of thermally curing the thermosetting resin layer (thermosetting step), and The step of removing the cured product of the photosensitive resin layer or the photosensitive resin layer (hereinafter, also referred to as "removal step”) is included in this order.
  • the method for manufacturing a circuit board according to the present disclosure includes a bonding step, an exposure step, a developing step, and a thermosetting step in this order, so that the conductive pattern is peeled off from the board even after the removal step. It is possible to manufacture a circuit board that is difficult to manufacture.
  • the bonding step, the exposure step, the development step, and the heat curing step in the circuit board manufacturing method of the present disclosure are the bonding step, the exposure step, the development step, and the heat curing in the above-mentioned “method for manufacturing a patterned substrate”.
  • the steps are synonymous with each other, and the preferred embodiments are also the same, and therefore the description thereof is omitted here.
  • the circuit board manufacturing method of the present disclosure includes a step (removing step) of removing the photosensitive resin layer or the cured product of the photosensitive resin layer in the pattern formed in the developing step.
  • removing step the photosensitive resin layer or a cured product of the photosensitive resin layer in the pattern formed in the developing step
  • the "photosensitive resin layer or a cured product of the photosensitive resin layer in the pattern formed in the developing step” is also referred to as "removed layer”.
  • the photosensitive resin layer or the cured product of the photosensitive resin layer in the pattern is usually formed on the outermost layer of the pattern (that is, among the layers constituting the pattern, the layer arranged at the position farthest from the substrate). It is arranged.
  • a cured product of the photosensitive resin layer for example, a cured product of a negative photosensitive resin layer can be mentioned.
  • the cured product of the negative photosensitive resin layer is formed, for example, by exposing the negative photosensitive resin layer in the exposure step.
  • a method of removing the layer to be removed for example, a method of removing the layer to be removed by chemical treatment can be mentioned, and a method using a removing liquid is preferable.
  • the substrate having the layer to be removed is placed in the removal liquid under stirring at preferably 30° C. to 80° C., more preferably 50° C. to 80° C. for 1 minute to 30 minutes A method of dipping for a minute may be mentioned.
  • the removing liquid is preferably a removing liquid containing 30% by mass or more of water, more preferably a removing liquid containing 50% by mass or more of water, and further preferably a removing liquid containing 70% by mass or more of water.
  • the removing liquid is an inorganic alkali component such as sodium hydroxide, potassium hydroxide or sodium carbonate, or an organic alkali such as a primary amine compound, a secondary amine compound, a tertiary amine compound or a quaternary ammonium salt compound. It is preferable to include components.
  • the content of the alkali component is preferably 0.01% by mass to 20% by mass, and more preferably 0.1% by mass to 10% by mass, based on the total mass of the removing liquid. More preferable.
  • the method for manufacturing a circuit board according to the present disclosure may include steps (so-called other steps) other than the bonding step, the exposure step, the developing step, the thermosetting step, and the removing step.
  • steps other steps
  • a process of exposing the entire surface of the pattern formed through the developing process before the removal process (hereinafter, also referred to as “entire surface exposure process”) can be mentioned.
  • the circuit board manufacturing method of the present disclosure may include a step of exposing the entire surface of the pattern formed through the developing step (entire surface exposing step) before the removing step.
  • the solubility of the photosensitive resin layer in the removal liquid can be further improved.
  • the exposure amount in the overall exposure step is preferably 5mJ / cm 2 ⁇ 1,000mJ / cm 2, more preferably 10mJ / cm 2 ⁇ 800mJ / cm 2, 100mJ / More preferably, it is from cm 2 to 500 mJ/cm 2 .
  • the above-mentioned removal step may be performed after the whole surface exposure step, if necessary.
  • the laminate of the present disclosure includes a substrate, a layer containing a resin obtained by thermosetting (hereinafter, also referred to as “thermosetting resin layer”), and a layer containing silver nanowires (silver nanowire layer).
  • thermosetting resin layer a resin obtained by thermosetting
  • silver nanowire layer a layer containing silver nanowires
  • the laminate of the present disclosure has the substrate, the thermosetting resin layer, and the silver nanowire layer in this order, it is difficult for the conductive pattern formed by the silver nanowire layer to be peeled from the substrate.
  • the laminate of the present disclosure since it has a substrate, a thermosetting resin layer, and a silver nanowire layer in this order, the sheet resistance value increases even when exposed to a humid heat environment. It is possible to realize a circuit board that is difficult to perform and has excellent durability.
  • FIG. 2 is a schematic cross-sectional view showing an example of the layer structure of the laminate of the present disclosure.
  • the laminated body 200 illustrated in FIG. 2 includes the substrate 50, the thermosetting resin layer 40B, and the silver nanowire layer 30 in this order.
  • thermosetting resin layer is a layer obtained by curing the thermosetting resin layer that is the transfer layer, and the silver nanowire layer is the transfer layer.
  • transfer layer means a layer formed by transfer.
  • the laminated body of the present disclosure has a substrate.
  • the substrate in the laminated body of the present disclosure has the same meaning as the substrate described in the above-mentioned “method for manufacturing a patterned substrate”, and the preferred embodiment is also the same, and therefore the description thereof is omitted here.
  • thermosetting resin layer The laminate of the present disclosure has a layer containing a resin obtained by thermosetting (that is, a thermosetting resin layer).
  • the thermosetting resin layer is a layer containing a resin obtained by thermosetting.
  • the heat-cured resin is a cured product of the components described in the above-mentioned "thermosetting resin layer”. Since the thermosetting resin layer is a layer containing a resin that is thermoset, it is difficult to peel from the substrate. The conductive pattern tends to be more difficult to peel from the substrate.
  • the heat-cured resin is preferably a crosslinked resin having a urethane bond. It can be confirmed by a known method [for example, IR (infrared spectroscopy) analysis] that the heat-cured resin has a urethane bond.
  • thermosetting resin layer may contain only one kind of thermosetting resin, or may contain two or more kinds.
  • the content of the thermosetting resin in the thermosetting resin layer is preferably 50% by mass to 100% by mass, and 70% by mass to 100% by mass based on the total mass of the thermosetting resin layer. Is more preferable, and 90% by mass to 100% by mass is further preferable.
  • the content of the thermosetting resin in the thermosetting resin layer is within the above range, it tends to be more difficult to peel from the substrate. Further, even when exposed to a moist heat environment, it is possible to form a circuit board in which the sheet resistance value is less likely to increase and the durability is superior.
  • the thickness of the thermosetting resin layer is not particularly limited and is, for example, preferably 1 nm to 10,000 nm, more preferably 1 nm to 5,000 nm, further preferably 1 nm to 1,000 nm. Particularly preferably, it is 1 nm to 300 nm, and most preferably 20 nm to 100 nm.
  • the thickness of the thermosetting resin layer is within the above range, the thermosetting resin layer tends to be more difficult to peel from the substrate. Further, even when exposed to a moist heat environment, it is possible to form a circuit board in which the sheet resistance value is less likely to increase and the durability is superior.
  • the thickness of the thermosetting resin layer is measured by the following method.
  • the arithmetic mean value of the thickness of the thermosetting resin layer measured at five randomly selected points is calculated, and the obtained value is calculated as the thickness of the thermosetting resin layer. Satoshi
  • the cross-sectional observation image in the thickness direction of the thermosetting resin layer can be obtained using a scanning electron microscope (SEM).
  • the contact resistance of the thermosetting resin layer is preferably 200 ⁇ or less, more preferably 1 ⁇ to 200 ⁇ , more preferably 1 ⁇ to 100 ⁇ , and more preferably 1 ⁇ to 50 ⁇ . More preferable.
  • the contact resistance of the thermosetting resin layer is measured by the TLM (Transmission Line Model) method.
  • the specific method is as follows. Seven copper electrodes (thickness: 300 nm, width: 500 ⁇ m) arranged on a substrate (for example, a cycloolefin polymer film) in parallel and independently at intervals of 2 mm, 4 mm, 6 mm, 8 mm, 12 mm, and 20 mm. ) Is formed. Next, after bonding one photosensitive transfer material on the seven copper electrodes, the thermosetting resin layer is thermally cured by heating, so that the silver nano-particles are formed on the copper electrodes via the thermosetting resin layer. A test body having a structure in which wire layers are laminated is produced.
  • the silver nanowire layer is arranged so as to cross the seven copper electrodes, and the angle formed by each copper electrode and the silver nanowire layer is 90°.
  • the contact resistance of the thermosetting resin layer is obtained by plotting the relationship between the resistance (vertical axis) and the distance (horizontal axis) between the copper electrodes.
  • the laminate of the present disclosure has a layer containing silver nanowires (that is, a silver nanowire layer).
  • the silver nanowire layer in the layered product of the present disclosure has the same meaning as the silver nanowire layer described in the above section “Photosensitive transfer material”, and the preferred embodiment is also the same, and therefore the description thereof is omitted here.
  • Method for manufacturing laminated body The method for producing the laminate of the present disclosure is not particularly limited, and a known method can be applied.
  • the method for manufacturing the laminated body of the present disclosure for example, the methods described in the above-mentioned “method for manufacturing patterned substrate” and “method for manufacturing circuit board” can be applied.
  • the touch panel of the present disclosure has the laminated body of the present disclosure. Since the touch panel of the present disclosure has the laminated body of the present disclosure, the conductive pattern formed by the silver nanowire layer is difficult to peel off from the substrate. Further, since the touch panel of the present disclosure has the laminated body of the present disclosure, the sheet resistance value does not easily increase even when exposed to a humid heat environment, and the durability is excellent.
  • the layered product in the touch panel of the present disclosure has the same meaning as the layered product described in the section “Layered product” described above, and the preferred embodiment is also the same, and thus the description thereof is omitted here.
  • the touch panel of the present disclosure when the laminated body is used as a circuit board, it is preferable that a part of the region including the thermosetting resin layer and the silver nanowire layer in the laminated body be patterned.
  • the detection method in the touch panel of the present disclosure includes a resistance film method, a capacitance method, an ultrasonic method, an electromagnetic induction method, an optical method, and the like.
  • the capacitance method is preferable as the detection method.
  • a so-called in-cell type for example, those described in FIGS. 5, 6, 7, and 8 of JP 2012-517051 A
  • a so-called on-cell type for example, JP2013-168125A
  • OGS One Glass Solution
  • TOL Touch-on-Lens
  • GG Garnier-on-Lens
  • the manufacturing method of the touch panel of the present disclosure includes the manufacturing method of the circuit board of the present disclosure described above. That is, the manufacturing method of the circuit board of the present disclosure can be applied to the manufacturing method of the touch panel of the present disclosure.
  • the method of manufacturing the circuit board in the method of manufacturing the touch panel of the present disclosure has the same meaning as the method of manufacturing the circuit board described in the above-mentioned “method of manufacturing a circuit board”, and preferable aspects are also the same. The description is omitted.
  • FIG. 3 shows an example of a mask pattern used in the touch panel manufacturing method of the present disclosure.
  • the pattern A shown in FIG. 3 can be used when pattern-exposing a positive photosensitive resin layer.
  • the solid line portion SL and the gray portion G are light-shielding portions, and the dotted line portion DL is a virtual alignment alignment frame.
  • the touch panel manufacturing method of the present disclosure for example, the positive photosensitive resin layer is exposed through the mask having the pattern A shown in FIG. 3 to form a pattern corresponding to the solid line portion SL and the gray portion G.
  • a touch panel on which circuit wiring is formed can be manufactured.
  • the weight average molecular weight of the resin is the weight average molecular weight determined in terms of polystyrene by gel permeation chromatography (GPC).
  • the glass transition temperature of the thermosetting resin layer is the glass transition temperature obtained by the method described above.
  • TEM transmission electron microscope
  • An additive solution G was prepared by dissolving 5 g of glucose powder in 1400 mL of pure water.
  • additive solution H was prepared by dissolving 5 g of HTAB (hexadecyl-trimethylammonium bromide) powder in 275 mL of pure water.
  • an ultrafiltration membrane [trade name: Microza (registered trademark) UF module SIP1013, molecular weight cutoff: 6,000, manufactured by Asahi Kasei Co., Ltd.], a magnet pump, and a stainless steel cup were used. Ultrafiltration was performed using an ultrafiltration device connected using a tube. Specifically, the cooled liquid was put into a stainless steel cup, and a magnet pump was operated to perform ultrafiltration. When the filtrate from the ultrafiltration membrane reached 50 mL, 950 mL of pure water was added to the stainless cup for washing. After repeating this washing 10 times, concentration was performed until the amount of the liquid became 50 mL.
  • the concentrated liquid was diluted with a mixed liquid of pure water and methanol (volume ratio of pure water and methanol: 60/40) to obtain a silver nanowire layer forming coating liquid.
  • the coating liquid for forming the silver nanowire layer was applied to the cycloolefin polymer film.
  • the coating amount of the coating liquid for forming the silver nanowire layer was such that the wet film thickness was 20 ⁇ m.
  • the sheet resistance of the silver nanowire layer after drying was 60 ⁇ / ⁇ .
  • a non-contact type eddy current type resistance measuring instrument [trade name: EC-80P, manufactured by Napson Corporation] was used to measure the sheet resistance.
  • the silver nanowire contained in the coating liquid for forming the silver nanowire layer had a diameter of 17 nm and a length of 35 ⁇ m.
  • thermosetting resin layer [Preparation of coating liquid for forming thermosetting resin layer] ⁇ Materials A-1 to A-4> The components were mixed so as to have the composition shown in Table 1 to prepare materials A-1 to A-4 which are coating liquids for forming a thermosetting resin layer.
  • Comparative material B-1 which is a non-thermosetting resin layer forming coating liquid (so-called resin layer forming coating liquid having no thermosetting property) were prepared by mixing the components so as to have the composition shown in Table 1. did.
  • Comparative material B-2 Each component was mixed so as to have the composition shown in Table 2 to prepare Comparative Material B-2 which is a non-thermosetting resin layer forming coating liquid (so-called resin layer forming coating liquid having no thermosetting property). did.
  • the compounds N1 to N5 which are the binder polymers shown in Tables 1 and 2, are the compounds shown below.
  • the numerical value written together with each structural unit in the compounds N1 to N5 represents the content ratio (molar ratio) of each structural unit.
  • Compound N1 a resin having the structure shown below [weight average molecular weight: 21,000, acid value: 0.5 mmol/g, hydroxyl functional group concentration: 2.8 mmol/g, glass transition temperature: -5°C]
  • Compound N2 Resin having the structure shown below [weight average molecular weight: 5,500, acid value: 1.0 mmol/g, functional group concentration of blocked isocyanate group: 4.1 mmol/g, glass transition temperature: 20°C]
  • Compound N3 Resin having a structure shown below [weight average molecular weight: 23,000, acid value: 0.5 mmol/g, functional group concentration of blocked isocyanate group: 2.5 mmol/g, functional group concentration of hydroxyl group: 0.5 mmol /G, glass transition temperature: -1°C]
  • Compound N4 Resin having the structure shown below [weight average molecular weight: 12,000, acid value: 32 mgKOH/g]
  • Compound N5 Resin having the structure shown below [weight average molecular weight: 10,000, acid value: 47 mgKOH/g]
  • thermosetting resin layer The glass transition temperature of the thermosetting resin layer formed by using the materials A-5 to A-8 which are the coating liquid for forming the thermosetting resin layer was measured.
  • the specific method is as follows. Each of the materials A-5 to A-8 was spin-coated on a glass substrate under the conditions of 500 rpm and 20 seconds to form a coating film. Then, the formed coating film was dried at 100° C. for 1 minute using a hot plate to obtain a thermosetting resin layer. When the obtained thermosetting resin layer was scraped and analyzed by DSC (Differential scanning calorimetry), the glass transition temperature of the thermosetting resin layer was in the range of -10°C to 50°C. A differential scanning calorimeter (model: DSC6200) manufactured by Seiko Instruments Inc. was used for the DSC analysis.
  • Compound D which is a polymer shown in Table 3, is a compound shown below.
  • the numerical value written together with each structural unit in the compound D represents the content ratio (molar ratio) of each structural unit.
  • Compound D Resin having the structure shown below [weight average molecular weight: 25,000]
  • Compound E which is a photoacid generator shown in Table 3, is the compound shown below.
  • Compound B which is the binder polymer described in Table 4, is the compound shown below.
  • the numerical value written together with each structural unit in the compound B represents the content ratio (molar ratio) of each structural unit.
  • Compound B Resin having the structure shown below [weight average molecular weight: 20,000, acid value: 95 mgKOH/g]
  • the coating liquid for forming the silver nanowire layer was applied onto the positive photosensitive resin layer using a slit-shaped nozzle at an application amount such that the wet film thickness was 20 ⁇ m to form a coating film.
  • the coating film was dried at a drying temperature of 100° C. to form a silver nanowire layer (that is, a layer containing silver nanowires).
  • the formed silver nanowire layer had a thickness of 100 nm.
  • thermosetting resin layer that is, any of materials A-1 to A-8) or non-thermosetting selected according to the description in Table 5
  • a comparative material that is, comparative material B-1 or B-2 which is a coating liquid for forming a functional resin layer was applied to form a coating film.
  • the coating amounts of the materials A-1 to A-8 and the comparative materials B-1 and B-2 were such that the thickness of the layer after drying was the thickness shown in Table 5.
  • the coating film was dried at a drying temperature of 100° C. to form a thermosetting resin layer or a non-thermosetting resin layer.
  • a protective film [trade name: Lumirror (registered trademark) 16KS40, polyethylene terephthalate film, thickness: 16 ⁇ m, manufactured by Toray Industries, Inc.] was pressure-bonded onto the thermosetting resin layer or the non-thermosetting resin layer. ..
  • the photosensitive transfer materials of Examples 1 to 4 and Examples 9 to 12 and Comparative Examples 1 and 3 were prepared.
  • thermosetting property selected according to the description in Table 5 using a slit nozzle On the protective film [trade name: Lumirror (registered trademark) 16KS40, polyethylene terephthalate film, thickness: 16 ⁇ m, manufactured by Toray Industries, Inc.], a thermosetting property selected according to the description in Table 5 using a slit nozzle.
  • a material that is a coating liquid for forming a resin layer that is, any of materials A-1 to A-8) or a comparative material that is a coating liquid for forming a non-thermosetting resin layer (that is, comparative material B-1 or B- 2) was applied to form a coating film.
  • the coating amounts of the materials A-1 to A-8 and the comparative materials B-1 and B-2 were such that the thickness of the layer after drying was the thickness shown in Table 5.
  • the coating film was dried at a drying temperature of 100° C. to form a thermosetting resin layer or a non-thermosetting resin layer.
  • a coating liquid for forming a silver nanowire layer is applied onto the thermosetting resin layer or the non-thermosetting resin layer using a slit-shaped nozzle in an application amount such that a wet film thickness is 20 ⁇ m, and then applied.
  • a film was formed.
  • the coating film was dried at a drying temperature of 100° C. to form a silver nanowire layer (that is, a layer containing silver nanowires).
  • the formed silver nanowire layer had a thickness of 100 nm.
  • the material BN-1 which is a coating liquid for forming a negative photosensitive resin layer was coated on the silver nanowire layer to form a coating film.
  • the coating amount of the material BN-1 was such that the thickness of the layer after drying was 3 ⁇ m.
  • the coating film was dried at a drying temperature of 100° C. to form a negative photosensitive resin layer.
  • a temporary support [trade name: Lumirror (registered trademark) 16KS40, polyethylene terephthalate film, thickness: 16 ⁇ m, manufactured by Toray Industries, Inc.] was pressure-bonded onto the negative photosensitive resin layer to form Example 5. 8 to Examples 13 to 16 and Comparative Examples 2 and 4 were prepared.
  • a multilayer body was prepared according to the following procedure.
  • the photosensitive transfer material from which the protective film has been peeled off is attached to a transparent film substrate (cycloolefin polymer film, thickness: 38 ⁇ m, refractive index: 1.53) (hereinafter referred to as “laminating” in this paragraph).
  • a multi-layer body was obtained.
  • the lamination process was performed using a vacuum laminator manufactured by MCK Co., Ltd. under the conditions of the transparent film substrate temperature: 40° C., the rubber roller temperature: 100° C., the linear pressure: 3 N/cm, and the conveying speed: 2 m/min. went.
  • the laminating process the surface exposed by peeling the protective film from the photosensitive transfer material was brought into contact with the surface of the transparent film substrate.
  • a transparent electrode pattern film was produced according to the following procedure using the above-mentioned multilayer bodies produced by using the photosensitive transfer materials of Examples 1 to 4 and Examples 9 to 12 and Comparative Examples 1 and 3.
  • a proximity type exposure machine manufactured by Hitachi High-Tech Electronics Engineering Co., Ltd.
  • the exposure mask quartz exposure mask having a transparent electrode forming pattern
  • the temporary support is brought into close contact with each other, and the temporary support is provided.
  • the positive photosensitive resin layer was pattern-exposed through the body with an exposure amount of 100 mJ/cm 2 (i-line). After the temporary support was peeled off, development treatment was carried out at 32° C.
  • thermosetting resin layer or the non-thermosetting resin layer, the silver nanowire layer, and the photosensitive resin layer were patterned.
  • air was blown to the transparent film substrate from which the residue was removed to remove the moisture on the transparent film substrate, and then heat treatment was performed at 145° C. for 10 minutes to obtain a patterned substrate.
  • the exposure amount of 400 mJ/cm 2 (i-line) was applied to the positive type photosensitivity remaining on the patterned substrate.
  • the positive photosensitive resin layer is removed by treatment with a 1% by mass aqueous solution of sodium carbonate at 32° C. for 60 seconds, and a transparent electrode having a patterned silver nanowire layer A pattern film (so-called circuit board) was produced.
  • the change in sheet resistance before and after the wet heat test was evaluated according to the following evaluation criteria. If the evaluation result was "A” or "B", it was judged to be within the practically acceptable range. In the following evaluation criteria, “A” indicates the case where the durability is the best, and “C” indicates the case where the durability is the worst.
  • thermosetting resin layer was measured by the TLM (Transmission Line Model) method.
  • the specific method is as follows. Seven coppers arranged on the substrate (cycloolefin polymer film, thickness: 38 ⁇ m, refractive index: 1.53) at intervals of 2 mm, 4 mm, 6 mm, 8 mm, 12 mm, and 20 mm in parallel and independently of each other. An electrode (thickness: 300 nm, width: 500 ⁇ m) was formed. Next, the photosensitive transfer materials of Examples 1 to 8 from which the protective film was peeled off were adhered to the seven copper electrodes, respectively, to form a silver nanowire layer on the copper electrodes via a thermosetting resin layer.
  • a test body having a laminated structure was prepared.
  • the silver nanowire layer was arranged so as to cross the seven copper electrodes, and the angle formed by each copper electrode and the silver nanowire layer was 90°.
  • the contact resistance of the thermosetting resin layer was obtained by plotting the relationship between the resistance (vertical axis) and the distance (horizontal axis) between the copper electrodes.
  • a resistivity meter [trade name: Loresta GP, manufactured by Mitsubishi Chemical Analytech Co., Ltd.] was used to measure the resistance between the copper electrodes.
  • the contact resistance of the thermosetting resin layer of each of the photosensitive transfer materials of Examples 1 to 8 was 200 ⁇ or less.
  • the sample was subjected to a heat treatment at 145° C. for 10 minutes to cure the thermosetting resin layer, and the contact resistance was measured in the same manner.
  • the contact resistance of each of the layers containing the resin was 200 ⁇ or less.
  • the photosensitive materials of Comparative Examples 1 to 4 having a temporary support, a photosensitive resin layer, a silver nanowire layer, and a non-thermosetting resin layer (that is, a resin layer having no thermosetting property) in this order. It was confirmed that the conductive pattern formed by using the conductive transfer material was more easily peeled from the substrate than the conductive patterns formed by using the photosensitive transfer materials of Examples 1 to 16. In addition, the transparent electrode pattern films produced using the photosensitive transfer materials of Comparative Examples 1 to 4 were more durable than the transparent electrode pattern films produced using the photosensitive transfer materials of Examples 1 to 16. It was confirmed that it was inferior in sex.

Abstract

Provided are: a photosensitive transfer material having a temporary support, a photosensitive resin layer, a silver nanowire-containing silver nanowire layer, and a thermosetting resin layer, in this order; a laminate; a touch panel; a method for producing a patterned substrate; a method for producing a circuit board; and a method for producing a touch panel.

Description

感光性転写材料、積層体、タッチパネル、パターン付き基板の製造方法、回路基板の製造方法、及びタッチパネルの製造方法Photosensitive transfer material, laminate, touch panel, patterned substrate manufacturing method, circuit board manufacturing method, and touch panel manufacturing method
 本開示は、感光性転写材料、積層体、タッチパネル、パターン付き基板の製造方法、回路基板の製造方法、及びタッチパネルの製造方法に関する。 The present disclosure relates to a photosensitive transfer material, a laminate, a touch panel, a patterned substrate manufacturing method, a circuit board manufacturing method, and a touch panel manufacturing method.
 近年、液晶装置の画像表示領域に表示された指示画像を、指又はタッチペンを触れることで、指示画像に対応する情報の入力を行える装置(以下、「タッチパネル」ともいう。)が広く利用されている。
 タッチパネルにおいては、通常、ITO(Indium Tin Oxide)等の材料からなる導電膜が用いられている。近年では、ITO膜に代わる導電膜として、銀繊維等の導電性繊維を含む導電膜を用いた技術が種々検討されている。
2. Description of the Related Art In recent years, a device (hereinafter, also referred to as “touch panel”) capable of inputting information corresponding to an instruction image by touching the instruction image displayed in the image display area of a liquid crystal device with a finger or a touch pen has been widely used. There is.
In the touch panel, a conductive film made of a material such as ITO (Indium Tin Oxide) is usually used. In recent years, various techniques using a conductive film containing conductive fibers such as silver fibers have been studied as a conductive film replacing the ITO film.
 例えば、国際公開第2010/021224号には、支持フィルムと、支持フィルムに設けられ、かつ、導電性繊維を含有する導電層と、導電層上に設けられた感光性樹脂層と、を備える感光性導電フィルムが開示されている。 For example, in WO 2010/021224, a photosensitive film including a support film, a conductive layer provided on the support film and containing conductive fibers, and a photosensitive resin layer provided on the conductive layer are provided. Conductive conductive films are disclosed.
 ところで、導電性繊維を含む導電層は、基板(例えば、銅基板)に対する接着性が低い傾向がある。そのため、導電性繊維を含む導電層を有する感光性転写材料は、基板に貼り合わせ難いという問題がある。
 これに対し、国際公開第2010/021224号に記載の感光性導電フィルムでは、導電層上に感光性樹脂層を備える構成を有することで、基板に対する接着性の問題を解消できるとしている。
By the way, a conductive layer containing a conductive fiber tends to have low adhesiveness to a substrate (for example, a copper substrate). Therefore, a photosensitive transfer material having a conductive layer containing conductive fibers has a problem that it is difficult to bond it to a substrate.
On the other hand, in the photosensitive conductive film described in International Publication No. 2010/021224, it is said that the problem of adhesion to the substrate can be solved by having a configuration in which the photosensitive resin layer is provided on the conductive layer.
 しかし、本発明者らの検討によれば、仮支持体と、第1の感光性樹脂層と、導電性繊維を含む導電層と、をこの順に有する感光性転写材料において、基板に対する接着性を向上させることを目的として、国際公開第2010/021224号の記載のように、導電性繊維を含む導電層の感光性樹脂層側の面とは反対側の面に、第2の感光性樹脂層を設けたところ、基板に対する接着性の問題については解消できるものの、貼り合わせ後の導電パターンの形成において、導電性繊維を含む導電層の表面に形成された第1の感光性樹脂層又は第1の感光性樹脂層の硬化物のパターンを除去する際に、基板と、第2の感光性樹脂層又は第2の感光性樹脂層の硬化膜との間で剥離が生じ、基板から導電パターンが剥がれる場合があることがわかった。 However, according to the study by the present inventors, in a photosensitive transfer material having a temporary support, a first photosensitive resin layer, and a conductive layer containing conductive fibers in this order, the adhesiveness to a substrate is improved. For the purpose of improving, as described in WO 2010/021224, a second photosensitive resin layer is provided on the surface opposite to the surface of the conductive layer containing the conductive fibers on the side of the photosensitive resin layer. Although the problem of adhesion to the substrate can be solved by providing the first substrate, the first photosensitive resin layer or the first photosensitive resin layer or the first photosensitive resin layer formed on the surface of the conductive layer containing the conductive fiber is formed in the formation of the conductive pattern after bonding. When the pattern of the cured product of the photosensitive resin layer is removed, peeling occurs between the substrate and the second photosensitive resin layer or the cured film of the second photosensitive resin layer, and the conductive pattern is removed from the substrate. It turns out that it may come off.
 本発明の一実施形態が解決しようとする課題は、基板から剥離し難い導電パターンを形成できる感光性転写材料を提供することである。
 また、本発明の他の実施形態が解決しようとする課題は、上記感光性転写材料を用いた積層体、タッチパネル、パターン付き基板の製造方法、回路基板の製造方法、及びタッチパネルの製造方法を提供することである。
An object to be solved by one embodiment of the present invention is to provide a photosensitive transfer material capable of forming a conductive pattern that is difficult to peel off from a substrate.
Another object of the present invention is to provide a laminate using the above-mentioned photosensitive transfer material, a touch panel, a method for producing a patterned substrate, a method for producing a circuit board, and a method for producing a touch panel. It is to be.
 上記課題を解決するための手段には、以下の態様が含まれる。
 <1> 仮支持体と、
 感光性樹脂層と、
 銀ナノワイヤーを含む層と、
 熱硬化性樹脂層と、
をこの順に有する感光性転写材料。
 <2> 上記熱硬化性樹脂層が、ブロックイソシアネート化合物を含む<1>に記載の感光性転写材料。
 <3> 上記ブロックイソシアネート化合物が、水酸基及び酸基の少なくとも一方を有する<2>に記載の感光性転写材料。
 <4> 上記熱硬化性樹脂層が、水酸基及び酸基の少なくとも一方を有する化合物を更に含む<2>又は<3>に記載の感光性転写材料。
 <5> 上記熱硬化性樹脂層の厚さが、1nm~300nmである<1>~<4>のいずれか1つに記載の感光性転写材料。
 <6> 上記熱硬化性樹脂層の接触抵抗が、200Ω以下である<1>~<5>のいずれか1つに記載の感光性転写材料。
 <7> 基板と、
 熱硬化されてなる樹脂を含む層と、
 銀ナノワイヤーを含む層と、
をこの順に有する積層体。
 <8> 上記熱硬化されてなる樹脂を含む層は、転写層である熱硬化性樹脂層が硬化されてなる層であり、かつ、上記銀ナノワイヤーを含む層は、転写層である<7>に記載の積層体。
 <9> 上記熱硬化されてなる樹脂が、ウレタン結合を有する架橋樹脂である<7>又は<8>に記載の積層体。
 <10> 上記熱硬化されてなる樹脂を含む層の厚さが、1nm~300nmである<7>~<9>のいずれか1つに記載の積層体。
 <11> 上記熱硬化されてなる樹脂を含む層の接触抵抗が、200Ω以下である<7>~<10>のいずれか1つに記載の積層体。
 <12> <7>~<11>のいずれか1つに記載の積層体を有するタッチパネル。
 <13> <1>~<6>のいずれか1つに記載の感光性転写材料、及び、基板を貼り合わせる工程と、
 上記感光性転写材料における感光性樹脂層をパターン露光する工程と、
 上記パターン露光を経た感光性転写材料を現像してパターンを形成する工程と、
 上記熱硬化性樹脂層を熱硬化させる工程と、
をこの順に含むパターン付き基板の製造方法。
 <14> <1>~<6>のいずれか1つに記載の感光性転写材料、及び、基板を貼り合わせる工程と、
 上記感光性転写材料における感光性樹脂層をパターン露光する工程と、
 上記パターン露光を経た感光性転写材料を現像してパターンを形成する工程と、
 上記熱硬化性樹脂層を熱硬化させる工程と、
 上記パターンにおける、感光性樹脂層又は感光性樹脂層の硬化物を除去する工程と、
をこの順に含む回路基板の製造方法。
 <15> <14>に記載の回路基板の製造方法を含むタッチパネルの製造方法。
Means for solving the above problems include the following aspects.
<1> A temporary support,
A photosensitive resin layer,
A layer containing silver nanowires,
A thermosetting resin layer,
A photosensitive transfer material having in this order.
<2> The photosensitive transfer material according to <1>, wherein the thermosetting resin layer contains a blocked isocyanate compound.
<3> The photosensitive transfer material according to <2>, wherein the blocked isocyanate compound has at least one of a hydroxyl group and an acid group.
<4> The photosensitive transfer material according to <2> or <3>, wherein the thermosetting resin layer further contains a compound having at least one of a hydroxyl group and an acid group.
<5> The photosensitive transfer material according to any one of <1> to <4>, wherein the thermosetting resin layer has a thickness of 1 nm to 300 nm.
<6> The photosensitive transfer material according to any one of <1> to <5>, wherein the contact resistance of the thermosetting resin layer is 200Ω or less.
<7> substrate,
A layer containing a resin that is thermoset,
A layer containing silver nanowires,
A laminated body having in this order.
<8> The layer containing the thermosetting resin is a layer formed by curing the thermosetting resin layer that is the transfer layer, and the layer containing the silver nanowires is the transfer layer <7 The laminated body as described in >.
<9> The laminate according to <7> or <8>, in which the thermosetting resin is a crosslinked resin having a urethane bond.
<10> The laminated body according to any one of <7> to <9>, wherein the layer containing the thermosetting resin has a thickness of 1 nm to 300 nm.
<11> The laminate according to any one of <7> to <10>, in which the layer containing the thermosetting resin has a contact resistance of 200Ω or less.
<12> A touch panel having the laminate according to any one of <7> to <11>.
<13> A step of laminating the photosensitive transfer material according to any one of <1> to <6> and a substrate,
A step of pattern-exposing the photosensitive resin layer in the photosensitive transfer material,
A step of developing the photosensitive transfer material that has undergone the pattern exposure to form a pattern,
A step of thermosetting the thermosetting resin layer,
A method of manufacturing a patterned substrate including:
<14> A step of laminating the photosensitive transfer material according to any one of <1> to <6> and a substrate,
A step of pattern-exposing the photosensitive resin layer in the photosensitive transfer material,
A step of developing the photosensitive transfer material that has undergone the pattern exposure to form a pattern,
A step of thermosetting the thermosetting resin layer,
In the pattern, a step of removing the photosensitive resin layer or a cured product of the photosensitive resin layer,
A method for manufacturing a circuit board including:
<15> A touch panel manufacturing method including the circuit board manufacturing method according to <14>.
 本発明の一実施形態によれば、基板から剥離し難い導電パターンを形成できる感光性転写材料が提供される。
 また、本発明の他の実施形態によれば、上記感光性転写材料を用いた積層体、タッチパネル、パターン付き基板の製造方法、回路基板の製造方法、及びタッチパネルの製造方法が提供される。
According to one embodiment of the present invention, there is provided a photosensitive transfer material capable of forming a conductive pattern that is difficult to peel from a substrate.
Further, according to another embodiment of the present invention, there are provided a laminate, a touch panel, a patterned substrate manufacturing method, a circuit board manufacturing method, and a touch panel manufacturing method using the above-mentioned photosensitive transfer material.
本開示の感光性転写材料の層構成の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the layer structure of the photosensitive transfer material of this indication. 本開示の積層体の層構成の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the laminated constitution of the laminated body of this indication. パターンAを示す概略図である。It is a schematic diagram showing pattern A.
 以下、本開示の内容について詳細に説明する。以下に記載する構成要件の説明は、本開示の代表的な実施態様に基づいてなされることがあるが、本開示は、そのような実施態様に限定されるものではない。 The details of the present disclosure will be described below in detail. The description of the constituent elements described below may be made based on the representative embodiment of the present disclosure, but the present disclosure is not limited to such an embodiment.
 本開示において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を意味する。
 本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
In the present disclosure, the numerical range indicated by using “to” means a range including the numerical values before and after “to” as the minimum value and the maximum value, respectively.
In the numerical range described stepwise in the present disclosure, the upper limit value or the lower limit value described in a certain numerical range may be replaced with the upper limit value or the lower limit value of another stepwise described numerical range. In addition, in the numerical range described in the present disclosure, the upper limit value or the lower limit value described in a certain numerical range may be replaced with the values shown in the examples.
In the present disclosure, a combination of two or more preferable aspects is a more preferable aspect.
 本開示における基(所謂、原子団)の表記について、置換及び無置換を記していない表記は、置換基を有さないもの及び置換基を有するものの両方を包含するものである。例えば、「アルキル基」とは、置換基を有さないアルキル基(所謂、無置換アルキル基)のみならず、置換基を有するアルキル基(所謂、置換アルキル基)も包含するものである。 Regarding the notation of the group (so-called atomic group) in the present disclosure, the notation without substitution and non-substitution includes both those having no substituent and those having a substituent. For example, an “alkyl group” includes not only an alkyl group having no substituent (so-called unsubstituted alkyl group) but also an alkyl group having a substituent (so-called substituted alkyl group).
 本開示では、化学構造式を、水素原子を省略した簡略構造式で記載する場合がある。 In the present disclosure, the chemical structural formula may be described as a simplified structural formula in which a hydrogen atom is omitted.
 本開示において、「(メタ)アクリル酸」は、アクリル酸及びメタクリル酸の両方を包含する概念で用いられる語であり、「(メタ)アクリレート」は、アクリレート及びメタクリレートの両方を包含する概念で用いられる語あり、「(メタ)アクリロイル」は、アクリロイル及びメタクリロイルの両方を包含する概念で用いられる語であり、「(メタ)アクリロキシ」は、アクリロキシ及びメタクリロキシの両方を包含する概念で用いられる語である。 In the present disclosure, “(meth)acrylic acid” is a term used in a concept including both acrylic acid and methacrylic acid, and “(meth)acrylate” is used in a concept including both acrylate and methacrylate. The term "(meth)acryloyl" is used in a concept that includes both acryloyl and methacryloyl, and "(meth)acryloxy" is a word that is used in a concept that includes both acryloxy and methacryloxy. is there.
 本開示において、組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合には、特に断らない限り、組成物中に存在する上記複数の物質の合計量を意味する。 In the present disclosure, the amount of each component in the composition is the total amount of the plurality of substances present in the composition, unless there is a plurality of substances corresponding to each component in the composition, unless otherwise specified. Means
 本開示において、「工程」の用語は、独立した工程だけではなく、他の工程と明確に区別できない場合であっても、その工程の所期の目的が達成されれば本用語に含まれる。 In the present disclosure, the term “process” is included in this term as long as the intended purpose of the process is achieved, not only when it is an independent process but also when it cannot be clearly distinguished from other processes.
 本開示において、分子量分布がある場合の分子量は、特に断りがない限り、重量平均分子量(Mw;以下、同じ。)を表す。
 本開示において、樹脂中の構成単位の割合は、特に断りがない限り、モル割合を表す。
In the present disclosure, the molecular weight in the case where there is a molecular weight distribution represents the weight average molecular weight (Mw; hereinafter the same) unless otherwise specified.
In the present disclosure, the ratio of the structural unit in the resin represents a molar ratio unless otherwise specified.
 本開示において、「透明」とは、波長380nm~780nmにおける全光線透過率が、85%以上(好ましくは90%以上、より好ましくは95%以上)であることを意味する。上記全光線透過率は、温度23℃において、分光光度計〔例えば、(株)日立製作所の分光光度計「U-3310(商品名)」〕を用いて測定される。 In the present disclosure, “transparent” means that the total light transmittance at a wavelength of 380 nm to 780 nm is 85% or more (preferably 90% or more, more preferably 95% or more). The total light transmittance is measured at a temperature of 23° C. using a spectrophotometer [for example, a spectrophotometer “U-3310 (trade name)” manufactured by Hitachi, Ltd.].
 本開示において、「屈折率」は、特に断りがない限り、波長550nmにおける屈折率を指す。また、本開示における「屈折率」は、特に断りがない限り、温度23℃において波長550nmの可視光により、エリプソメトリー法により測定した値を意味する。 In the present disclosure, “refractive index” refers to a refractive index at a wavelength of 550 nm, unless otherwise specified. Further, the “refractive index” in the present disclosure means a value measured by an ellipsometry method with visible light having a wavelength of 550 nm at a temperature of 23° C., unless otherwise specified.
 本開示では、各図面において同一の符号を用いて示される構成要素は、同一の構成要素であることを意味する。 In the present disclosure, constituent elements indicated by the same reference numeral in each drawing mean the same constituent elements.
[感光性転写材料]
 本開示の感光性転写材料は、仮支持体と、感光性樹脂層と、銀ナノワイヤーを含む層(以下、「銀ナノワイヤー層」ともいう。)と、熱硬化性樹脂層と、をこの順に有する。
 本開示の感光性転写材料は、上記のような構成を有することで、基板から剥離し難い導電パターンを形成できる。また、本開示の感光性転写材料は、湿熱環境下に曝された場合であっても、シート抵抗値が上昇し難く、耐久性に優れる回路基板を形成できる。
[Photosensitive transfer material]
The photosensitive transfer material of the present disclosure includes a temporary support, a photosensitive resin layer, a layer containing silver nanowires (hereinafter, also referred to as “silver nanowire layer”), and a thermosetting resin layer. Have in order.
The photosensitive transfer material of the present disclosure having the above-described configuration can form a conductive pattern that is difficult to peel from the substrate. In addition, the photosensitive transfer material of the present disclosure can form a circuit board having excellent durability, in which the sheet resistance value does not easily increase even when exposed to a humid heat environment.
 図1は、本開示の感光性転写材料の層構成の一例を示す概略断面図である。
 図1に示す感光性転写材料100は、仮支持体10と、感光性樹脂層20と、銀ナノワイヤー層30と、熱硬化性樹脂層40Aと、をこの順で有する。なお、本開示の図面において示される各要素の縮尺は、必ずしも正確ではない。
 以下、本開示の感光性転写材料の各構成について説明する。
FIG. 1 is a schematic cross-sectional view showing an example of the layer structure of the photosensitive transfer material of the present disclosure.
The photosensitive transfer material 100 shown in FIG. 1 has a temporary support 10, a photosensitive resin layer 20, a silver nanowire layer 30, and a thermosetting resin layer 40A in this order. It should be noted that the scale of each element shown in the drawings of the present disclosure is not necessarily accurate.
Hereinafter, each component of the photosensitive transfer material of the present disclosure will be described.
<仮支持体>
 本開示の感光性転写材料は、仮支持体を有する。
 仮支持体は、少なくとも、感光性樹脂層と、銀ナノワイヤー層と、熱硬化性樹脂層と、を支持し、かつ、被着体から剥離可能な支持体である。
<Temporary support>
The photosensitive transfer material of the present disclosure has a temporary support.
The temporary support is a support that supports at least the photosensitive resin layer, the silver nanowire layer, and the thermosetting resin layer, and that is removable from the adherend.
 仮支持体は、仮支持体を介してパターン露光できるという観点から、光透過性を有することが好ましい。
 本開示において、「光透過性を有する」とは、パターン露光に使用する光の主波長の透過率が50%以上であることを意味する。パターン露光に使用する光の主波長の透過率は、露光感度向上の観点から、60%以上であることが好ましく、70%以上であることがより好ましい。
 透過率の測定方法としては、分光光度計〔例えば、大塚電子(株)製のMCPD-6800〕を用いて測定する方法が挙げられる。
The temporary support preferably has optical transparency from the viewpoint that pattern exposure can be performed via the temporary support.
In the present disclosure, “having optical transparency” means that the transmittance of the dominant wavelength of light used for pattern exposure is 50% or more. The transmittance of the dominant wavelength of light used for pattern exposure is preferably 60% or more, and more preferably 70% or more, from the viewpoint of improving the exposure sensitivity.
Examples of the method of measuring the transmittance include a method of using a spectrophotometer [eg, MCPD-6800 manufactured by Otsuka Electronics Co., Ltd.].
 仮支持体としては、ガラス基板、樹脂フィルム、紙等が挙げられる。
 仮支持体は、強度及び可撓性の観点から、樹脂フィルムであることが好ましい。
 樹脂フィルムとしては、ポリエチレンテレフタレートフィルム、シクロオレフィンポリマーフィルム、トリ酢酸セルロースフィルム、ポリスチレンフィルム、ポリカーボネートフィルム等が挙げられる。
 これらの中でも、仮支持体としては、光学特性の観点から、ポリエチレンテレフタレートフィルムが好ましい。
Examples of the temporary support include a glass substrate, a resin film, paper and the like.
The temporary support is preferably a resin film from the viewpoint of strength and flexibility.
Examples of the resin film include polyethylene terephthalate film, cycloolefin polymer film, cellulose triacetate film, polystyrene film and polycarbonate film.
Among these, the polyethylene terephthalate film is preferable as the temporary support from the viewpoint of optical characteristics.
 仮支持体の厚さは、特に制限されず、材質に応じて、適宜選択することができる。
 仮支持体の厚さは、取り扱いやすさ、汎用性等の観点から、5μm~200μmであることが好ましく、10μm~150μmであることがより好ましい。
The thickness of the temporary support is not particularly limited and can be appropriately selected depending on the material.
The thickness of the temporary support is preferably 5 μm to 200 μm, and more preferably 10 μm to 150 μm, from the viewpoint of easy handling, versatility and the like.
 仮支持体の好ましい態様については、例えば、特開2014-85643号公報の段落[0017]及び[0018]に記載がある。これらの記載は、参照により本明細書に取り込まれる。 A preferable embodiment of the temporary support is described in paragraphs [0017] and [0018] of JP-A-2014-85643, for example. These descriptions are incorporated herein by reference.
<感光性樹脂層>
 本開示の感光性転写材料は、感光性樹脂層を有する。
 感光性樹脂層は、感光システムの違いから、活性光線を照射した部分が像として残るネガ型と、活性光線を照射していない部分を像として残すポジ型とに分けられる。
 本開示の感光性転写材料における感光性樹脂層は、ポジ型の感光性樹脂層であってもよく、ネガ型の感光性樹脂層であってもよい。
<Photosensitive resin layer>
The photosensitive transfer material of the present disclosure has a photosensitive resin layer.
The photosensitive resin layer is classified into a negative type in which a portion irradiated with an actinic ray remains as an image and a positive type in which a portion not irradiated with an actinic ray remains as an image, depending on the difference in the photosensitive system.
The photosensitive resin layer in the photosensitive transfer material of the present disclosure may be a positive type photosensitive resin layer or a negative type photosensitive resin layer.
(ポジ型の感光性樹脂層)
 ポジ型の感光性樹脂層は、特に制限されず、公知のポジ型の感光性樹脂層を適用することできる。
 ポジ型の感光性樹脂層は、感度、解像度、及び除去性の観点から、酸分解性基で保護された酸基を有する構成単位を含む重合体と、光酸発生剤と、を含むことが好ましい。
(Positive photosensitive resin layer)
The positive type photosensitive resin layer is not particularly limited, and a known positive type photosensitive resin layer can be applied.
From the viewpoint of sensitivity, resolution, and removability, the positive photosensitive resin layer may include a polymer containing a structural unit having an acid group protected by an acid-decomposable group, and a photoacid generator. preferable.
 ポジ型の感光性樹脂層については、国際公開第2018/179640号の段落[0033]~[0130]に記載がある。これらの記載は、参照により本明細書に取り込まれる。 The positive type photosensitive resin layer is described in paragraphs [0033] to [0130] of International Publication No. 2018/179640. These descriptions are incorporated herein by reference.
-酸分解性基で保護された酸基を有する構成単位を含む重合体-
 ポジ型の感光性樹脂層は、酸分解性基で保護された酸基を有する構成単位(以下、「構成単位A」ともいう。)を含む重合体(以下、「重合体A」ともいう。)を含むことが好ましい。
 重合体A中の酸分解性基で保護された酸基は、露光により生じる触媒量の酸の作用(即ち、脱保護反応)により、酸基となる。脱保護反応によって生じた酸基により、ポジ型の感光性樹脂層の現像液への溶解が可能となる。
-Polymer containing a structural unit having an acid group protected by an acid-decomposable group-
The positive photosensitive resin layer is a polymer containing a structural unit having an acid group protected by an acid-decomposable group (hereinafter, also referred to as “structural unit A”) (hereinafter, also referred to as “polymer A”). ) Is preferably included.
The acid group protected by the acid-decomposable group in the polymer A becomes an acid group by the action of a catalytic amount of acid generated by exposure (that is, deprotection reaction). The acid group generated by the deprotection reaction enables the positive photosensitive resin layer to be dissolved in the developing solution.
 重合体Aは、付加重合型の重合体であることが好ましく、(メタ)アクリル酸又はそのエステルに由来する構成単位を含む重合体であることがより好ましい。
 なお、(メタ)アクリル酸又はそのエステルに由来する構成単位以外の構成単位、例えば、スチレン化合物に由来する構成単位、ビニル化合物に由来する構成単位等を含んでいてもよい。
The polymer A is preferably an addition polymerization type polymer, and more preferably a polymer containing a structural unit derived from (meth)acrylic acid or its ester.
In addition, you may contain the structural unit other than the structural unit derived from (meth)acrylic acid or its ester, for example, the structural unit derived from a styrene compound, the structural unit derived from a vinyl compound, etc.
 構成単位Aにおける酸基は、特に制限されず、公知の酸基を適用することができる。
 構成単位Aにおける酸基は、カルボキシ基又はフェノール性水酸基であることが好ましい。
The acid group in the structural unit A is not particularly limited, and a known acid group can be applied.
The acid group in the structural unit A is preferably a carboxy group or a phenolic hydroxyl group.
 構成単位Aにおける酸分解性基は、特に制限されず、公知の酸分解性基を適用することができる。
 構成単位Aにおける酸分解性基としては、例えば、酸により比較的分解し易い基(例えば、1-アルコキシアルキル基、テトラヒドロピラニル基、テトラヒドロフラニル基等のアセタール型官能基)、酸により比較的分解し難い基(例えば、tert-ブチル基等の第三級アルキル基)などが挙げられる。
 これらの中でも、構成単位Aにおける酸分解性基としては、アセタールの形で酸基を保護する構造を有する基が好ましい。また、酸分解性基としては、導電パターンの形成に適用した場合における導電配線の線幅のバラツキが抑制されるという観点から、分子量が300以下の酸分解性基が好ましい。
The acid-decomposable group in the structural unit A is not particularly limited, and a known acid-decomposable group can be applied.
Examples of the acid-decomposable group in the structural unit A include a group that is relatively easily decomposed by an acid (for example, an acetal-type functional group such as a 1-alkoxyalkyl group, a tetrahydropyranyl group, and a tetrahydrofuranyl group), and an acid-releasable group. Examples thereof include groups that are difficult to decompose (for example, tertiary alkyl groups such as tert-butyl group).
Among these, the acid-decomposable group in the structural unit A is preferably a group having a structure that protects the acid group in the form of acetal. Further, the acid-decomposable group is preferably an acid-decomposable group having a molecular weight of 300 or less from the viewpoint of suppressing variation in the line width of the conductive wiring when applied to the formation of a conductive pattern.
 構成単位Aは、パターン形状の変形抑制、現像液への溶解性、及び転写性の観点から、下記式A1により表される構成単位、下記式A2により表される構成単位、及び下記式A3により表される構成単位からなる群より選ばれる少なくとも1種の構成単位であることが好ましく、下記式A3により表される構成単位であることがより好ましく、後述する式A3-3により表される構成単位であることが更に好ましい。
 下記式A1により表される構成単位及び下記式A2により表される構成単位は、酸分解性基で保護されたフェノール性水酸基を有する構成単位である。下記式A3により表される構成単位は、酸分解性基で保護されたカルボキシ基を有する構成単位である。
The structural unit A is a structural unit represented by the following formula A1, a structural unit represented by the following formula A2, and a following formula A3 from the viewpoint of suppressing the deformation of the pattern shape, solubility in a developing solution, and transferability. It is preferably at least one type of structural unit selected from the group consisting of structural units represented, more preferably a structural unit represented by the following formula A3, and a structure represented by the following formula A3-3. More preferably, it is a unit.
The structural unit represented by the following formula A1 and the structural unit represented by the following formula A2 are structural units having a phenolic hydroxyl group protected by an acid-decomposable group. The structural unit represented by the following formula A3 is a structural unit having a carboxy group protected by an acid-decomposable group.
Figure JPOXMLDOC01-appb-C000001

 
Figure JPOXMLDOC01-appb-C000001

 
 式A1中、R11及びR12は、各々独立に、水素原子、アルキル基、又はアリール基を表し、R11及びR12の少なくとも一方が、アルキル基又はアリール基であり、R13は、アルキル基又はアリール基を表し、R11又はR12と、R13とが連結して環状エーテルを形成してもよく、R14は、水素原子又はメチル基を表し、Xは、単結合又は二価の連結基を表し、R15は、置換基を表し、nは、0~4の整数を表す。 In formula A1, R 11 and R 12 each independently represent a hydrogen atom, an alkyl group, or an aryl group, at least one of R 11 and R 12 is an alkyl group or an aryl group, and R 13 is an alkyl group. Represents a group or an aryl group, R 11 or R 12 and R 13 may be linked to each other to form a cyclic ether, R 14 represents a hydrogen atom or a methyl group, and X 1 represents a single bond or a divalent group. Represents a valent linking group, R 15 represents a substituent, and n represents an integer of 0 to 4.
 式A2中、R21及びR22は、各々独立に、水素原子、アルキル基、又はアリール基を表し、R21及びR22の少なくとも一方が、アルキル基又はアリール基であり、R23は、アルキル基又はアリール基を表し、R21又はR22と、R23とが連結して環状エーテルを形成してもよく、R24は、各々独立に、ヒドロキシ基、ハロゲン原子、アルキル基、アルコキシ基、アルケニル基、アリール基、アラルキル基、アルコキシカルボニル基、ヒドロキシアルキル基、アリールカルボニル基、アリールオキシカルボニル基、又はシクロアルキル基を表し、mは、0~3の整数を表す。 In formula A2, R 21 and R 22 each independently represent a hydrogen atom, an alkyl group, or an aryl group, at least one of R 21 and R 22 is an alkyl group or an aryl group, and R 23 is an alkyl group. Represents a group or an aryl group, and R 21 or R 22 and R 23 may be linked to each other to form a cyclic ether, and R 24 is independently a hydroxy group, a halogen atom, an alkyl group, an alkoxy group, It represents an alkenyl group, an aryl group, an aralkyl group, an alkoxycarbonyl group, a hydroxyalkyl group, an arylcarbonyl group, an aryloxycarbonyl group, or a cycloalkyl group, and m represents an integer of 0 to 3.
 式A3中、R31及びR32は、各々独立に、水素原子、アルキル基、又はアリール基を表し、R31及びR32の少なくとも一方が、アルキル基又はアリール基であり、R33は、アルキル基又はアリール基を表し、R31又はR32と、R33とが連結して環状エーテルを形成してもよく、R34は、水素原子又はメチル基を表し、Xは、単結合又は二価の連結基を表し、Yは、硫黄原子又は酸素原子を表す。 In formula A3, R 31 and R 32 each independently represent a hydrogen atom, an alkyl group, or an aryl group, at least one of R 31 and R 32 is an alkyl group or an aryl group, and R 33 is an alkyl group. Represents a group or an aryl group, R 31 or R 32 and R 33 may combine to form a cyclic ether, R 34 represents a hydrogen atom or a methyl group, and X 0 represents a single bond or a divalent group. Represents a valent linking group, and Y represents a sulfur atom or an oxygen atom.
 式A3中、R31又はR32がアルキル基の場合、アルキル基は、炭素数1~10のアルキル基であることが好ましい。R31又はR32がアリール基の場合、アリール基は、フェニル基であることが好ましい。R31及びR32は、各々独立に、水素原子、又は炭素数1~4のアルキル基であり、R31及びR32の少なくとも一方が、炭素数1~4のアルキル基であることが好ましい。 In formula A3, when R 31 or R 32 is an alkyl group, the alkyl group is preferably an alkyl group having 1 to 10 carbon atoms. When R 31 or R 32 is an aryl group, the aryl group is preferably a phenyl group. R 31 and R 32 are each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and at least one of R 31 and R 32 is preferably an alkyl group having 1 to 4 carbon atoms.
 式A3中、R33は、炭素数1~10のアルキル基であることが好ましく、炭素数1~6のアルキル基であることがより好ましい。 In formula A3, R 33 is preferably an alkyl group having 1 to 10 carbon atoms, and more preferably an alkyl group having 1 to 6 carbon atoms.
 式A3中、R31~R33におけるアルキル基及びアリール基は、置換基を有していてもよい。 In formula A3, the alkyl group and aryl group for R 31 to R 33 may have a substituent.
 式A3中、R31又はR32と、R33とが連結して環状エーテルを形成することが好ましい。環状エーテルの環員数は、特に制限されないが、5又は6であることが好ましく、5であることがより好ましい。 In formula A3, R 31 or R 32 and R 33 are preferably linked to each other to form a cyclic ether. The number of ring members in the cyclic ether is not particularly limited, but is preferably 5 or 6, and more preferably 5.
 式A3中、Xは、単結合又はアリーレン基であることが好ましく、単結合がより好ましい。アリーレン基は、置換基を有していてもよい。 In formula A3, X 0 is preferably a single bond or an arylene group, and more preferably a single bond. The arylene group may have a substituent.
 式A3中、Yは、露光感度の観点から、酸素原子であることが好ましい。 In the formula A3, Y is preferably an oxygen atom from the viewpoint of exposure sensitivity.
 式A3中、R34は、水素原子又はメチル基を表し、重合体Aのガラス転移温度(Tg)をより低くし得るという観点から、水素原子であることが好ましい。より具体的には、式A3におけるR34が水素原子である構成単位の含有率は、重合体Aに含まれる式A3で表される全構成単位に対して、20mol%以上であることが好ましい。
 なお、式A3で表される構成単位中の、式A3におけるR34が水素原子である構成単位の含有率(単位:mol%)は、13C-核磁気共鳴スペクトル(NMR)測定から常法により算出されるピーク強度の強度比により確認することができる。
In formula A3, R 34 represents a hydrogen atom or a methyl group, and is preferably a hydrogen atom from the viewpoint that the glass transition temperature (Tg) of the polymer A can be further lowered. More specifically, the content of the structural unit in which R 34 in Formula A3 is a hydrogen atom is preferably 20 mol% or more based on all the structural units represented by Formula A3 contained in the polymer A. ..
The content (unit: mol%) of the structural unit represented by Formula A3 in which R 34 in Formula A3 is a hydrogen atom is determined by 13 C-nuclear magnetic resonance spectrum (NMR) measurement in a conventional manner. It can be confirmed by the intensity ratio of the peak intensity calculated by.
 式A3で表される構成単位の中でも、下記式A3-3で表される構成単位が、パターン形成時の感度が更に高まるという観点から、より好ましい。 Among the constitutional units represented by the formula A3, the constitutional unit represented by the following formula A3-3 is more preferable from the viewpoint of further increasing the sensitivity during pattern formation.
Figure JPOXMLDOC01-appb-C000002

 
Figure JPOXMLDOC01-appb-C000002

 
 式A3-3中、R34は、水素原子又はメチル基を表し、R35~R41は、各々独立に、水素原子、又は炭素数1~4のアルキル基を表す。
 式A3-3中、R34は、水素原子であることが好ましい。
 式A3-3中、R35~R41は、水素原子であることが好ましい。
In formula A3-3, R 34 represents a hydrogen atom or a methyl group, and R 35 to R 41 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
In formula A3-3, R 34 is preferably a hydrogen atom.
In formula A3-3, R 35 to R 41 are preferably hydrogen atoms.
 式A3で表される構成単位の好ましい具体例としては、下記の構成単位を例示することができる。なお、下記の構成単位におけるR34は、水素原子又はメチル基を表す。 Specific preferred examples of the structural unit represented by formula A3 include the structural units below. In addition, R 34 in the following structural units represents a hydrogen atom or a methyl group.
Figure JPOXMLDOC01-appb-C000003

 
Figure JPOXMLDOC01-appb-C000003

 
 重合体Aは、構成単位Aを含む場合、構成単位Aを1種のみ含んでいてもよく、2種以上含んでいてもよい。 When the polymer A contains the structural unit A, the polymer A may include only one type of structural unit A or may include two or more types.
 重合体Aが構成単位Aを含む場合、重合体Aにおける構成単位Aの含有率は、重合体Aの全構成単位に対して、15mol%以上であることが好ましく、15mol%~90mol%であることがより好ましく、20mol%~70mol%であることが更に好ましい。
 重合体Aにおける構成単位Aの含有率は、13C-NMR測定から常法により算出されるピーク強度の強度比により確認することができる。
When the polymer A contains the structural unit A, the content of the structural unit A in the polymer A is preferably 15 mol% or more, and is 15 mol% to 90 mol% with respect to all the structural units of the polymer A. More preferably, it is more preferably 20 mol% to 70 mol %.
The content of the structural unit A in the polymer A can be confirmed by the intensity ratio of the peak intensities calculated by the usual method from 13 C-NMR measurement.
 重合体Aは、酸基を有する構成単位(以下、「構成単位B」ともいう。)を含むことが好ましい。
 重合体Aが構成単位Bを含むことで、パターン形成時の感度が良好となり、パターン露光後の現像工程においてアルカリ性の現像液に溶けやすくなり、現像時間の短縮化を図ることができる。
The polymer A preferably contains a structural unit having an acid group (hereinafter, also referred to as “structural unit B”).
When the polymer A contains the structural unit B, the sensitivity during pattern formation is improved, the polymer A is easily dissolved in an alkaline developing solution in the developing step after pattern exposure, and the development time can be shortened.
 構成単位Bにおける酸基とは、pKaが12以下のプロトン解離性基を意味する。
 酸基のpKaは、感度向上の観点から、10以下であることが好ましく、6以下であることがより好ましい。また、酸基のpKaは、-5以上であることが好ましい。
The acid group in the structural unit B means a proton dissociative group having a pKa of 12 or less.
From the viewpoint of improving sensitivity, the pKa of the acid group is preferably 10 or less, more preferably 6 or less. The pKa of the acid group is preferably −5 or more.
 構成単位Bにおける酸基としては、カルボキシ基、スルホンアミド基、ホスホン酸基、スルホン酸基、フェノール性水酸基、スルホニルイミド基等が挙げられる。
 これらの中でも、構成単位Bにおける酸基としては、カルボキシ基又はフェノール性水酸基が好ましい。
Examples of the acid group in the structural unit B include a carboxy group, a sulfonamide group, a phosphonic acid group, a sulfonic acid group, a phenolic hydroxyl group, and a sulfonylimide group.
Among these, the acid group in the structural unit B is preferably a carboxy group or a phenolic hydroxyl group.
 重合体Aへの酸基を有する構成単位の導入は、酸基を有するモノマーを共重合させることで行うことができる。 The introduction of the structural unit having an acid group into the polymer A can be carried out by copolymerizing a monomer having an acid group.
 構成単位Bは、スチレン化合物に由来する構成単位若しくはビニル化合物に由来する構成単位に対して酸基が置換した構成単位、又は、(メタ)アクリル酸に由来する構成単位であることがより好ましい。 The constituent unit B is more preferably a constituent unit in which a constituent unit derived from a styrene compound or a constituent unit derived from a vinyl compound is substituted with an acid group, or a constituent unit derived from (meth)acrylic acid.
 構成単位Bは、パターン形成時の感度がより良好となるという観点から、カルボキシ基を有する構成単位及びフェノール性水酸基を有する構成単位からなる群より選ばれる少なくとも1種の構成単位であることが好ましい。 The structural unit B is preferably at least one structural unit selected from the group consisting of a structural unit having a carboxy group and a structural unit having a phenolic hydroxyl group, from the viewpoint of better sensitivity in pattern formation. ..
 重合体Aは、構成単位Bを含む場合、構成単位Bを1種のみ含んでいてもよく、2種以上含んでいてもよい。 When the polymer A contains the structural unit B, the structural unit B may contain only one kind or two or more kinds.
 重合体Aが構成単位Bを含む場合、重合体Aにおける構成単位Bの含有率は、パターン形成性の観点から、重合体Aの全構成単位に対して、0.1mol%~20mol%であることが好ましく、0.5mol%~15mol%であることがより好ましく、1mol%~10mol%であることが更に好ましい。
 重合体Aにおける構成単位Bの含有率は、13C-NMR測定から常法により算出されるピーク強度の強度比により確認することができる。
When the polymer A contains the structural unit B, the content of the structural unit B in the polymer A is 0.1 mol% to 20 mol% with respect to all the structural units of the polymer A from the viewpoint of pattern formability. The amount is preferably 0.5 mol% to 15 mol%, more preferably 1 mol% to 10 mol%.
The content of the structural unit B in the polymer A can be confirmed by the intensity ratio of the peak intensities calculated by a conventional method from 13 C-NMR measurement.
 重合体Aは、本開示の感光性転写材料の効果を損なわない範囲で、既述の構成単位A及び構成単位B以外の構成単位(以下、「構成単位C」ともいう。)を含んでいてもよい。 The polymer A contains a structural unit other than the structural unit A and the structural unit B described above (hereinafter, also referred to as “structural unit C”) as long as the effects of the photosensitive transfer material of the present disclosure are not impaired. Good.
 構成単位Cを形成するモノマーとしては、特に制限はない。
 構成単位Cを形成するモノマーとしては、スチレン化合物、(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸環状アルキルエステル、(メタ)アクリル酸アリールエステル、不飽和ジカルボン酸ジエステル、ビシクロ不飽和化合物、マレイミド化合物、不飽和芳香族化合物、共役ジエン系化合物、不飽和モノカルボン酸、不飽和ジカルボン酸、不飽和ジカルボン酸無水物、脂肪族環式骨格を有する化合物、その他の不飽和化合物等が挙げられる。
The monomer forming the structural unit C is not particularly limited.
As the monomer forming the structural unit C, a styrene compound, (meth)acrylic acid alkyl ester, (meth)acrylic acid cyclic alkyl ester, (meth)acrylic acid aryl ester, unsaturated dicarboxylic acid diester, bicyclo unsaturated compound, maleimide Examples thereof include compounds, unsaturated aromatic compounds, conjugated diene compounds, unsaturated monocarboxylic acids, unsaturated dicarboxylic acids, unsaturated dicarboxylic acid anhydrides, compounds having an aliphatic cyclic skeleton, and other unsaturated compounds.
 構成単位Cとしては、具体的には、スチレン、tert-ブトキシスチレン、メチルスチレン、α-メチルスチレン、アセトキシスチレン、メトキシスチレン、エトキシスチレン、クロロスチレン、ビニル安息香酸メチル、ビニル安息香酸エチル、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸イソボルニル、アクリロニトリル、エチレングリコールモノアセトアセテートモノ(メタ)アクリレート等を重合して形成される構成単位が挙げられる。また、構成単位Cとしては、特開2004-264623号公報の段落[0021]~[0024]に記載の化合物が挙げられる。 As the structural unit C, specifically, styrene, tert-butoxystyrene, methylstyrene, α-methylstyrene, acetoxystyrene, methoxystyrene, ethoxystyrene, chlorostyrene, methyl vinylbenzoate, ethyl vinylbenzoate, (meta ) Methyl acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, (meth ) Structural units formed by polymerizing benzyl acrylate, isobornyl (meth)acrylate, acrylonitrile, ethylene glycol monoacetoacetate mono(meth)acrylate and the like. Further, examples of the structural unit C include the compounds described in paragraphs [0021] to [0024] of JP-A 2004-264623.
 構成単位Cとしては、得られる感光性転写材料の電気特性を向上させるという観点から、芳香環を有する構成単位、及び、脂肪族環式骨格を有する構成単位からなる群より選ばれる少なくとも1種の構成単位であることが好ましい。
 芳香環を有する構成単位、及び、脂肪族環式骨格を有する構成単位からなる群より選ばれる少なくとも1種の構成単位を形成するモノマーとしては、スチレン、tert-ブトキシスチレン、メチルスチレン、α-メチルスチレン、ジシクロペンタニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ベンジル(メタ)アクリレート等が挙げられる。
 これらの中でも、芳香環を有する構成単位、及び、脂肪族環式骨格を有する構成単位からなる群より選ばれる少なくとも1種の構成単位を形成するモノマーとしては、シクロヘキシル(メタ)アクリレートが好ましい。
The structural unit C is at least one selected from the group consisting of a structural unit having an aromatic ring and a structural unit having an aliphatic cyclic skeleton, from the viewpoint of improving the electrical characteristics of the resulting photosensitive transfer material. It is preferably a structural unit.
Examples of the monomer forming at least one structural unit selected from the group consisting of a structural unit having an aromatic ring and a structural unit having an aliphatic cyclic skeleton include styrene, tert-butoxystyrene, methylstyrene, α-methyl. Examples thereof include styrene, dicyclopentanyl (meth)acrylate, cyclohexyl (meth)acrylate, isobornyl (meth)acrylate, and benzyl (meth)acrylate.
Among these, cyclohexyl (meth)acrylate is preferable as the monomer forming at least one structural unit selected from the group consisting of a structural unit having an aromatic ring and a structural unit having an aliphatic cyclic skeleton.
 また、構成単位Cを形成するモノマーとしては、密着性の観点から、(メタ)アクリル酸アルキルエステルが好ましく、炭素数4~12のアルキル基を有する(メタ)アクリル酸アルキルエステルがより好ましい。
 (メタ)アクリル酸アルキルエステルとしては、具体的には、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸2-エチルヘキシル等が挙げられる。
From the viewpoint of adhesiveness, the monomer forming the structural unit C is preferably a (meth)acrylic acid alkyl ester, and more preferably a (meth)acrylic acid alkyl ester having an alkyl group having 4 to 12 carbon atoms.
Specific examples of the alkyl (meth)acrylate include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, n-butyl (meth)acrylate, and (meth)acrylic acid. 2-ethylhexyl and the like can be mentioned.
 重合体Aは、構成単位Cを含む場合、構成単位Cを1種のみ含んでいてもよく、2種以上含んでいてもよい。 When the polymer A includes the structural unit C, the structural unit C may include only one type or may include two or more types.
 重合体Aが構成単位Cを含む場合、重合体Aにおける構成単位Cの含有率は、重合体Aの全構成単位に対して、70mol%以下であることが好ましく、60mol%以下であることがより好ましく、50mol%以下であることが更に好ましい。
 重合体Aにおける構成単位Cの含有率の下限は、0mol%でもよいが、重合体Aの全構成単位に対して、1mol%以上であることが好ましく、5mol%以上であることがより好ましい。
 重合体Aにおける構成単位Cの含有率が上記範囲内であると、解像度及び密着性がより向上する傾向がある。
When the polymer A contains the structural unit C, the content of the structural unit C in the polymer A is preferably 70 mol% or less, and preferably 60 mol% or less, based on all the structural units of the polymer A. More preferably, it is even more preferably 50 mol% or less.
The lower limit of the content of the structural unit C in the polymer A may be 0 mol%, but it is preferably 1 mol% or more, and more preferably 5 mol% or more, based on all the structural units of the polymer A.
When the content of the structural unit C in the polymer A is within the above range, the resolution and the adhesiveness tend to be further improved.
 重合体Aの重量平均分子量は、60,000以下であることが好ましい。
 重合体Aの重量平均分子量が60,000以下であると、感光性樹脂層の溶融粘度を低く抑え、上記基板と貼り合わせる際に、低温(例えば、130℃以下)での貼り合わせを実現することができる。
 また、重合体Aの重量平均分子量は、2,000~60,000であることがより好ましく、3,000~50,000であることが更に好ましい。
 重合体Aの重量平均分子量は、以下の方法によって測定されるポリスチレン換算の重量平均分子量である。
The weight average molecular weight of the polymer A is preferably 60,000 or less.
When the weight average molecular weight of the polymer A is 60,000 or less, the melt viscosity of the photosensitive resin layer is suppressed to be low, and at the time of bonding with the substrate, bonding at low temperature (for example, 130° C. or less) is realized. be able to.
Further, the weight average molecular weight of the polymer A is more preferably 2,000 to 60,000, further preferably 3,000 to 50,000.
The weight average molecular weight of the polymer A is a polystyrene equivalent weight average molecular weight measured by the following method.
 重量平均分子量は、GPC(ゲルパーミエーションクロマトグラフィー)によって測定することができる。測定装置としては、様々な市販の装置を用いることができ、装置の内容及び測定技術は、同当業者に公知である。
 GPCによる重量平均分子量の測定は、測定装置として、HLC(登録商標)-8220GPC(東ソー(株)製)を用い、カラムとして、TSKgel(登録商標)Super HZM-M(4.6mmID×15cm、東ソー(株)製)、Super HZ4000(4.6mmID×15cm、東ソー(株)製)、Super HZ3000(4.6mmID×15cm、東ソー(株)製)、及びSuper HZ2000(4.6mmID×15cm、東ソー(株)製)をそれぞれ1本、直列に連結したものを用い、溶離液として、THF(テトラヒドロフラン)を用いることができる。また、測定条件としては、試料濃度を0.2質量%、流速を0.35ml/min、サンプル注入量を10μL、及び測定温度を40℃とし、示差屈折率(RI)検出器を用いて行うことができる。検量線は、東ソー(株)製の「標準試料TSK standard,polystyrene」:「F-40」、「F-20」、「F-4」、「F-1」、「A-5000」、「A-2500」、及び「A-1000」の7サンプルから作製されたものを用いることができる。
The weight average molecular weight can be measured by GPC (gel permeation chromatography). Various commercially available devices can be used as the measuring device, and the contents of the device and the measuring technique are known to those skilled in the art.
To measure the weight average molecular weight by GPC, HLC (registered trademark)-8220 GPC (manufactured by Tosoh Corporation) was used as a measuring device, and TSKgel (registered trademark) Super HZM-M (4.6 mm ID×15 cm, Tosoh Corporation) was used as a column. Co., Ltd.), Super HZ4000 (4.6 mmID×15 cm, Tosoh Corporation), Super HZ3000 (4.6 mmID×15 cm, Tosoh Corporation), and Super HZ2000 (4.6 mmID×15 cm, Tosoh Corporation). (Manufactured by K.K.), each of which is connected in series, and THF (tetrahydrofuran) can be used as an eluent. The measurement conditions are as follows: a sample concentration of 0.2 mass %, a flow rate of 0.35 ml/min, a sample injection amount of 10 μL, and a measurement temperature of 40° C., using a differential refractive index (RI) detector. be able to. The calibration curve is “standard sample TSK standard, polystyrene” manufactured by Tosoh Corporation: “F-40”, “F-20”, “F-4”, “F-1”, “A-5000”, “A-5000”, It is possible to use those manufactured from 7 samples of "A-2500" and "A-1000".
 ポジ型の感光性樹脂層は、重合体Aを含む場合、重合体Aを1種のみ含んでいてもよく、2種以上含んでいてもよい。 When the positive photosensitive resin layer contains the polymer A, it may contain only one kind of the polymer A or may contain two or more kinds of the polymer A.
 ポジ型の感光性樹脂層が重合体Aを含む場合、ポジ型の感光性樹脂層における重合体Aの含有率は、基板に対して良好な密着性を発現させるという観点から、ポジ型の感光性樹脂層の全質量に対して、50質量%~99.9質量%であることが好ましく、70質量%~99質量%であることがより好ましく、80質量%~98質量%であることが更に好ましい。 When the positive-type photosensitive resin layer contains the polymer A, the content of the polymer A in the positive-type photosensitive resin layer is such that the positive-type photosensitive resin layer exhibits good adhesion to the substrate. The amount is preferably 50% by mass to 99.9% by mass, more preferably 70% by mass to 99% by mass, and further preferably 80% by mass to 98% by mass with respect to the total mass of the conductive resin layer. More preferable.
 重合体Aの製造方法(所謂、合成法)は、特に制限されず、公知の方法を適用することができる。重合体Aの製造方法としては、例えば、構成単位Aを形成するための重合性モノマー、構成単位Bを形成するための重合性モノマー、及び構成単位Cを形成するための重合性モノマーを、有機溶剤中、重合開始剤を用いて重合する方法が挙げられる。 The method for producing the polymer A (so-called synthesis method) is not particularly limited, and a known method can be applied. As the method for producing the polymer A, for example, a polymerizable monomer for forming the structural unit A, a polymerizable monomer for forming the structural unit B, and a polymerizable monomer for forming the structural unit C are A method of polymerizing using a polymerization initiator in a solvent can be mentioned.
-光酸発生剤-
 ポジ型の感光性樹脂層は、光酸発生剤を含むことが好ましい。
-Photo acid generator-
The positive photosensitive resin layer preferably contains a photo-acid generator.
 光酸発生剤は、紫外線、遠紫外線、X線、荷電粒子線等の放射線を照射されることにより酸を発生することができる化合物である。
 光酸発生剤としては、波長300nm以上、好ましくは波長300nm~450nmの活性光線に感応し、酸を発生する化合物が好ましい。
 また、波長300nm以上の活性光線に直接感応しない光酸発生剤についても、増感剤と併用することによって波長300nm以上の活性光線に感応し、酸を発生する化合物であれば、増感剤と組み合わせて好ましく用いることができる。
The photo-acid generator is a compound capable of generating an acid when irradiated with radiation such as ultraviolet rays, far ultraviolet rays, X-rays and charged particle beams.
The photoacid generator is preferably a compound which reacts with an actinic ray having a wavelength of 300 nm or more, preferably 300 nm to 450 nm to generate an acid.
Further, regarding a photo-acid generator which is not directly sensitive to an actinic ray having a wavelength of 300 nm or more, when used in combination with a sensitizer, it is a compound which is sensitive to an actinic ray having a wavelength of 300 nm or more and generates an acid. It can be preferably used in combination.
 光酸発生剤としては、pKaが4以下の酸を発生する光酸発生剤が好ましく、pKaが3以下の酸を発生する光酸発生剤がより好ましく、pKaが2以下の酸を発生する光酸発生剤が更に好ましい。pKaの下限は、特に制限されないが、例えば、-10.0以上であることが好ましい。 The photoacid generator is preferably a photoacid generator that generates an acid with a pKa of 4 or less, more preferably a photoacid generator that generates an acid with a pKa of 3 or less, and a light that generates an acid with a pKa of 2 or less. Acid generators are more preferred. The lower limit of pKa is not particularly limited, but is preferably -10.0 or more, for example.
 光酸発生剤としては、例えば、イオン性光酸発生剤及び非イオン性光酸発生剤が挙げられる。
 光酸発生剤は、感度及び解像度の観点から、後述するオニウム塩化合物、及び、後述するオキシムスルホネート化合物からなる群より選ばれる少なくとも1種の化合物を含むことが好ましく、オキシムスルホネート化合物を含むことがより好ましい。
Examples of the photoacid generator include an ionic photoacid generator and a nonionic photoacid generator.
From the viewpoint of sensitivity and resolution, the photoacid generator preferably contains at least one compound selected from the group consisting of an onium salt compound described later and an oxime sulfonate compound described later, and contains an oxime sulfonate compound. More preferable.
 イオン性光酸発生剤としては、オニウム塩化合物、第四級アンモニウム塩化合物等が挙げられる。また、オニウム塩化合物としては、ジアリールヨードニウム塩化合物、トリアリールスルホニウム塩化合物等が挙げられる。
 これらの中でも、イオン性光酸発生剤としては、オニウム塩化合物が好ましく、トリアリールスルホニウム塩化合物及びジアリールヨードニウム塩化合物からなる群より選ばれる少なくとも1種がより好ましい。
Examples of the ionic photoacid generator include onium salt compounds and quaternary ammonium salt compounds. Examples of onium salt compounds include diaryl iodonium salt compounds and triaryl sulfonium salt compounds.
Among these, the ionic photoacid generator is preferably an onium salt compound, and more preferably at least one selected from the group consisting of a triarylsulfonium salt compound and a diaryliodonium salt compound.
 イオン性光酸発生剤としては、特開2014-85643号公報の段落[0114]~[0133]に記載のイオン性光酸発生剤も好ましく用いることができる。 As the ionic photoacid generator, the ionic photoacid generators described in paragraphs [0114] to [0133] of JP-A-2014-85643 can also be preferably used.
 非イオン性光酸発生剤としては、トリクロロメチル-s-トリアジン化合物、ジアゾメタン化合物、イミドスルホネート化合物、オキシムスルホネート化合物等が挙げられる。
 これらの中でも、非イオン性光酸発生剤としては、感度、解像度、及び密着性の観点から、オキシムスルホネート化合物であることが好ましい。
 トリクロロメチル-s-トリアジン化合物及びジアゾメタン化合物の具体例としては、特開2011-221494号公報の段落[0083]~[0088]に記載の化合物が挙げられる。
Examples of the nonionic photoacid generator include trichloromethyl-s-triazine compounds, diazomethane compounds, imide sulfonate compounds, oxime sulfonate compounds and the like.
Among these, the nonionic photoacid generator is preferably an oxime sulfonate compound from the viewpoint of sensitivity, resolution, and adhesiveness.
Specific examples of the trichloromethyl-s-triazine compound and the diazomethane compound include the compounds described in paragraphs [0083] to [0088] of JP 2011-221494A.
 オキシムスルホネート化合物としては、下記式(B1)で表されるオキシムスルホネート構造を有する化合物が好ましい。 As the oxime sulfonate compound, a compound having an oxime sulfonate structure represented by the following formula (B1) is preferable.
Figure JPOXMLDOC01-appb-C000004

 
Figure JPOXMLDOC01-appb-C000004

 
 式(B1)中、R21は、アルキル基又はアリール基を表し、*は、他の原子又は他の基との結合部位を表す。 In formula (B1), R 21 represents an alkyl group or an aryl group, and * represents a bonding site with another atom or another group.
 式(B1)で表されるオキシムスルホネート構造を有する化合物は、いずれの基も置換されていてもよく、R21で表されるアルキル基は、直鎖状であってもよく、分岐構造を有していてもよく、環構造を有していてもよい。許容される置換基は、以下に説明する。 In the compound having an oxime sulfonate structure represented by the formula (B1), any group may be substituted, and the alkyl group represented by R 21 may be linear and have a branched structure. And may have a ring structure. The permissible substituents are described below.
 R21で表されるアルキル基としては、炭素数1~10の、直鎖状又は分岐状アルキル基が好ましい。R21で表されるアルキル基は、炭素数6~11のアリール基、炭素数1~10のアルコキシ基、シクロアルキル基、又はハロゲン原子で置換されてもよい。 The alkyl group represented by R 21 is preferably a linear or branched alkyl group having 1 to 10 carbon atoms. The alkyl group represented by R 21 may be substituted with an aryl group having 6 to 11 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a cycloalkyl group, or a halogen atom.
 R21で表されるアリール基としては、炭素数6~18のアリール基が好ましく、フェニル基又はナフチル基がより好ましい。R21で表されるアリール基は、炭素数1~4のアルキル基、アルコキシ基、及びハロゲン原子からなる群より選ばれる1つ以上の基で置換されてもよい。 The aryl group represented by R 21 is preferably an aryl group having 6 to 18 carbon atoms, and more preferably a phenyl group or a naphthyl group. The aryl group represented by R 21 may be substituted with one or more groups selected from the group consisting of an alkyl group having 1 to 4 carbon atoms, an alkoxy group, and a halogen atom.
 ポジ型の感光性樹脂層は、光酸発生剤を含む場合、光酸発生剤を1種のみ含んでいてもよく、2種以上含んでいてもよい。 When the positive photosensitive resin layer contains a photo-acid generator, it may contain only one photo-acid generator or two or more photo-acid generators.
 ポジ型の感光性樹脂層が光酸発生剤を含む場合、ポジ型の感光性樹脂層における光酸発生剤の含有率は、感度及び解像度の観点から、ポジ型の感光性樹脂層の全質量に対して、0.1質量%~10質量%であることが好ましく、0.5質量%~5質量%であることがより好ましい。 When the positive photosensitive resin layer contains a photoacid generator, the content of the photoacid generator in the positive photosensitive resin layer is the total mass of the positive photosensitive resin layer from the viewpoint of sensitivity and resolution. On the other hand, it is preferably 0.1% by mass to 10% by mass, and more preferably 0.5% by mass to 5% by mass.
-界面活性剤-
 ポジ型の感光性樹脂層は、界面活性剤を含んでいてもよい。
 ポジ型の感光性樹脂層が界面活性剤を含むと、膜厚の均一性が向上し得る。
-Surfactant-
The positive photosensitive resin layer may contain a surfactant.
When the positive photosensitive resin layer contains a surfactant, the uniformity of the film thickness can be improved.
 界面活性剤としては、アニオン系界面活性剤、カチオン系界面活性剤、ノニオン系(所謂、非イオン系)界面活性剤、両性界面活性剤等が挙げられる。
 界面活性剤については、特許第4502784号公報の段落[0017]及び特開2009-237362号公報の段落[0060]~[0071]に記載がある。これらの記載は、参照により本明細書に取り込まれる。
Examples of the surfactant include anionic surfactants, cationic surfactants, nonionic (so-called nonionic) surfactants and amphoteric surfactants.
The surfactant is described in paragraph [0017] of Japanese Patent No. 4502784 and paragraphs [0060] to [0071] of Japanese Patent Laid-Open No. 2009-237362. These descriptions are incorporated herein by reference.
 界面活性剤としては、ノニオン系界面活性剤が好ましい。
 ノニオン系界面活性剤としては、ポリオキシエチレン高級アルキルエーテル化合物、ポリオキシエチレン高級アルキルフェニルエーテル化合物、ポリオキシエチレングリコールの高級脂肪酸ジエステル化合物、シリコーン系界面活性剤、フッ素系界面活性剤等が挙げられる。
 これらの中でも、ノニオン系界面活性剤としては、フッ素系界面活性剤が好ましい。
The surfactant is preferably a nonionic surfactant.
Examples of nonionic surfactants include polyoxyethylene higher alkyl ether compounds, polyoxyethylene higher alkyl phenyl ether compounds, higher fatty acid diester compounds of polyoxyethylene glycol, silicone surfactants, and fluorine surfactants. ..
Among these, fluorine-based surfactants are preferable as the nonionic surfactant.
 ノニオン系界面活性剤としては、市販品を用いることができる。
 ノニオン系界面活性剤の市販品の例としては、KP〔信越化学工業(株)製〕、ポリフロー〔共栄社化学(株)製〕、エフトップ(JEMCO社製)、メガファック(登録商標)〔商品例:メガファック F551A、DIC(株)製〕、フロラード〔住友スリーエム(株)製〕、アサヒガード(登録商標)〔AGC(株)製〕、サーフロン(登録商標)〔AGCセイケミカル(株)製〕、PolyFox(OMNOVA社製)、サーフィノール〔日信化学工業(株)製〕、DOWSIL(登録商標)〔商品例:SH 8400、東レ・ダウコーニング(株)製〕等の各シリーズが挙げられる。
A commercially available product can be used as the nonionic surfactant.
Examples of commercially available nonionic surfactants include KP [manufactured by Shin-Etsu Chemical Co., Ltd.], Polyflow [manufactured by Kyoeisha Chemical Co., Ltd.], F-Top (manufactured by JEMCO), Megafac (registered trademark) [Product Examples: Megafac F551A, manufactured by DIC Co., Ltd., Florard [manufactured by Sumitomo 3M Co., Ltd.], Asahi Guard (registered trademark) [manufactured by AGC Co., Ltd.], Surflon (registered trademark) [manufactured by AGC Seichemical Co., Ltd.] ], PolyFox (manufactured by OMNOVA), Surfynol [manufactured by Nisshin Chemical Industry Co., Ltd.], DOWSIL (registered trademark) [Product Example: SH 8400, manufactured by Toray Dow Corning Co., Ltd.] and the like. ..
 ポジ型の感光性樹脂層は、界面活性剤を含む場合、界面活性剤を1種のみ含んでいてもよく、2種以上含んでいてもよい。 When the positive photosensitive resin layer contains a surfactant, the positive photosensitive resin layer may contain only one kind or two or more kinds of surfactants.
 ポジ型の感光性樹脂層が界面活性剤を含む場合、ポジ型の感光性樹脂層における界面活性剤の含有率は、膜厚の均一性の観点から、ポジ型の感光性樹脂層の全質量に対して、0.05質量%~10質量%であることが好ましく、0.05質量%~5質量%であることが好ましい。 When the positive-type photosensitive resin layer contains a surfactant, the content of the surfactant in the positive-type photosensitive resin layer is the total mass of the positive-type photosensitive resin layer from the viewpoint of film thickness uniformity. On the other hand, it is preferably 0.05% by mass to 10% by mass, and more preferably 0.05% by mass to 5% by mass.
-腐食防止剤-
 ポジ型の感光性樹脂層は、腐食防止剤を含んでいてもよい。
 ポジ型の感光性樹脂層が腐食防止剤を含むと、銀ナノワイヤーの腐食が防止されるため、耐久性が向上し得る。
-Corrosion inhibitor-
The positive photosensitive resin layer may contain a corrosion inhibitor.
When the positive photosensitive resin layer contains a corrosion inhibitor, the silver nanowires are prevented from being corroded, so that durability can be improved.
 腐食防止剤は、特に制限されず、公知の腐食防止剤を適用することができる。
 腐食防止剤としては、例えば、窒素原子及び硫黄原子の少なくとも1つを含む化合物が挙げられる。
 腐食防止剤は、耐久性の観点から、窒素原子及び硫黄原子の少なくとも1つを含む複素環式芳香族化合物であることが好ましく、トリアゾール構造を有する化合物、ベンゾイミダゾール構造を有する化合物、及びチアジアゾール構造を有する化合物からなる群より選ばれる少なくとも1種の化合物であることがより好ましい。
The corrosion inhibitor is not particularly limited, and a known corrosion inhibitor can be applied.
Examples of the corrosion inhibitor include compounds containing at least one of nitrogen atom and sulfur atom.
From the viewpoint of durability, the corrosion inhibitor is preferably a heterocyclic aromatic compound containing at least one of a nitrogen atom and a sulfur atom, a compound having a triazole structure, a compound having a benzimidazole structure, and a thiadiazole structure. More preferably, it is at least one compound selected from the group consisting of compounds having
 腐食防止剤の具体例としては、ベンゾイミダゾール、1,2,4-トリアゾール、ベンゾトリアゾール、トリルトリアゾール、ブチルベンジルトリアゾール、アルキルジチオチアジアゾール、アルキルチオール、2-アミノピリミジン、5,6-ジメチルベンゾイミダゾール、2-アミノ-5-メルカプト-1,3,4-チアジアゾール、2,5-ジメルカプト-1,3,4-チアジアゾール、2-メルカプトピリミジン、2-メルカプトベンゾオキサゾール、2-メルカプトベンゾチアゾール、2-メルカプトベンゾイミダゾール等が挙げられる。
 これらの中でも、腐食防止剤としては、ベンゾイミダゾール及び1,2,4-トリアゾールからなる群より選ばれる少なくとも1種が好ましい。
Specific examples of the corrosion inhibitor include benzimidazole, 1,2,4-triazole, benzotriazole, tolyltriazole, butylbenzyltriazole, alkyldithiothiadiazole, alkylthiol, 2-aminopyrimidine, 5,6-dimethylbenzimidazole, 2-Amino-5-mercapto-1,3,4-thiadiazole, 2,5-dimercapto-1,3,4-thiadiazole, 2-mercaptopyrimidine, 2-mercaptobenzoxazole, 2-mercaptobenzothiazole, 2-mercapto Examples thereof include benzimidazole.
Among these, at least one selected from the group consisting of benzimidazole and 1,2,4-triazole is preferable as the corrosion inhibitor.
 ポジ型の感光性樹脂層は、腐食防止剤を含む場合、腐食防止剤を1種のみ含んでいてもよく、2種以上含んでいてもよい。 When the positive photosensitive resin layer contains a corrosion inhibitor, it may contain only one kind of corrosion inhibitor or may contain two or more kinds thereof.
 ポジ型の感光性樹脂層が腐食防止剤を含む場合、ポジ型の感光性樹脂層における腐食防止剤の含有率は、ポジ型の感光性樹脂層の全質量に対して、0.001質量%~5質量%であることが好ましく、0.005質量%~3質量%であることが好ましい。 When the positive photosensitive resin layer contains a corrosion inhibitor, the content of the corrosion inhibitor in the positive photosensitive resin layer is 0.001% by mass based on the total mass of the positive photosensitive resin layer. It is preferably from 5 to 5 mass %, more preferably from 0.005 to 3 mass %.
-他の成分-
 ポジ型の感光性樹脂層は、上記成分以外の成分(以下、「他の成分」ともいう。)を含んでいてもよい。
 他の成分は、特に制限されず、目的等に応じて、適宜選択することができる。
 他の成分としては、紫外線吸収剤、現像促進剤、着色剤等が挙げられる。
-Other ingredients-
The positive photosensitive resin layer may contain a component other than the above components (hereinafter, also referred to as “other component”).
Other components are not particularly limited and can be appropriately selected depending on the purpose and the like.
Examples of other components include an ultraviolet absorber, a development accelerator, a colorant and the like.
(ネガ型の感光性樹脂層)
 ネガ型の感光性樹脂層は、特に制限されず、公知のネガ型の感光性樹脂層を適用することできる。
 ネガ型の感光性樹脂層は、パターン形成性の観点から、重合性化合物、重合開始剤、及びバインダーポリマーを含むことが好ましい。
(Negative type photosensitive resin layer)
The negative photosensitive resin layer is not particularly limited, and a known negative photosensitive resin layer can be applied.
The negative photosensitive resin layer preferably contains a polymerizable compound, a polymerization initiator, and a binder polymer from the viewpoint of pattern formability.
-重合性化合物-
 ネガ型の感光性樹脂層は、重合性化合物を含むことが好ましい。
 ネガ型の感光性樹脂層が重合性化合物を含むと、パターン形成性が向上し得る。
 重合性化合物としては、重合可能な化合物、例えば、ラジカル重合性化合物、カチオン重合性化合物等の化合物が挙げられる。
 重合性化合物は、光重合性化合物であることが好ましく、エチレン性不飽和化合物であることがより好ましい。
 エチレン性不飽和化合物は、1つ以上のエチレン性不飽和基を有する化合物である。
 エチレン性不飽和基としては、(メタ)アクリロイル基が好ましい。
 エチレン性不飽和化合物としては、(メタ)アクリレート化合物が好ましい。
-Polymerizable compound-
The negative photosensitive resin layer preferably contains a polymerizable compound.
When the negative photosensitive resin layer contains a polymerizable compound, pattern formability can be improved.
Examples of the polymerizable compound include polymerizable compounds such as radically polymerizable compounds and cationically polymerizable compounds.
The polymerizable compound is preferably a photopolymerizable compound, and more preferably an ethylenically unsaturated compound.
An ethylenically unsaturated compound is a compound that has one or more ethylenically unsaturated groups.
As the ethylenically unsaturated group, a (meth)acryloyl group is preferable.
As the ethylenically unsaturated compound, a (meth)acrylate compound is preferable.
 エチレン性不飽和化合物としては、2官能以上のエチレン性不飽和化合物を含むことが好ましい。
 本開示において、「2官能以上のエチレン性不飽和化合物」とは、一分子中にエチレン性不飽和基を2つ以上有する化合物を意味する。
The ethylenically unsaturated compound preferably contains a bifunctional or higher functional ethylenically unsaturated compound.
In the present disclosure, “bifunctional or higher functional ethylenically unsaturated compound” means a compound having two or more ethylenically unsaturated groups in one molecule.
 2官能のエチレン性不飽和化合物としては、トリシクロデカンジメタノールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート等が挙げられる。 Examples of the bifunctional ethylenically unsaturated compound include tricyclodecane dimethanol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, and 1,6-hexanediol di(meth)acrylate.
 2官能のエチレン性不飽和化合物の市販品の例としては、トリシクロデカンジメタノールジアクリレート〔商品名:NKエステル A-DCP、新中村化学工業(株)製〕、トリシクロデカンジメタノールジメタクリレート〔商品名:NKエステル DCP、新中村化学工業(株)製〕、1,9-ノナンジオールジアクリレート〔商品名:NKエステル A-NOD-N、新中村化学工業(株)製〕、1,6-ヘキサンジオールジアクリレート〔商品名:NKエステル A-HD-N、新中村化学工業(株)製〕、エトキシ化ビスフェノールAジメタクリレート〔商品名:BPE-500、新中村化学工業(株)製〕等が挙げられる。 Examples of commercially available bifunctional ethylenically unsaturated compounds include tricyclodecane dimethanol diacrylate [trade name: NK ester A-DCP, Shin Nakamura Chemical Co., Ltd.], tricyclodecane dimethanol dimethacrylate. [Product name: NK ester DCP, manufactured by Shin-Nakamura Chemical Co., Ltd.], 1,9-nonanediol diacrylate [Product name: NK ester A-NOD-N, manufactured by Shin-Nakamura Chemical Co., Ltd.], 1, 6-hexanediol diacrylate [trade name: NK ester A-HD-N, manufactured by Shin Nakamura Chemical Co., Ltd.], ethoxylated bisphenol A dimethacrylate [trade name: BPE-500, manufactured by Shin Nakamura Chemical Co., Ltd.] ] Etc. are mentioned.
 3官能以上のエチレン性不飽和化合物としては、ジペンタエリスリトール(トリ/テトラ/ペンタ/ヘキサ)(メタ)アクリレート、ペンタエリスリトール(トリ/テトラ)(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、イソシアヌル酸(メタ)アクリレート、グリセリントリ(メタ)アクリレート骨格の(メタ)アクリレート化合物等が挙げられる。 Examples of the trifunctional or higher functional ethylenically unsaturated compound include dipentaerythritol (tri/tetra/penta/hexa)(meth)acrylate, pentaerythritol (tri/tetra)(meth)acrylate, trimethylolpropane tri(meth)acrylate, Examples thereof include ditrimethylolpropane tetra(meth)acrylate, isocyanuric acid (meth)acrylate, and a (meth)acrylate compound having a glycerin tri(meth)acrylate skeleton.
 ここで、「(トリ/テトラ/ペンタ/ヘキサ)(メタ)アクリレート」は、トリ(メタ)アクリレート、テトラ(メタ)アクリレート、ペンタ(メタ)アクリレート、及びヘキサ(メタ)アクリレートを包含する概念である。また、「(トリ/テトラ)(メタ)アクリレート」は、トリ(メタ)アクリレート及びテトラ(メタ)アクリレートを包含する概念である。 Here, "(tri/tetra/penta/hexa)(meth)acrylate" is a concept including tri(meth)acrylate, tetra(meth)acrylate, penta(meth)acrylate, and hexa(meth)acrylate. .. Moreover, "(tri/tetra)(meth)acrylate" is a concept including tri(meth)acrylate and tetra(meth)acrylate.
 エチレン性不飽和化合物は、現像性向上の観点から、酸基を有するエチレン性不飽和化合物を含むことが好ましい。
 酸基としては、リン酸基、スルホン酸基、カルボキシ基等が挙げられる。
 これらの中でも、酸基としては、カルボキシ基が好ましい。
From the viewpoint of improving developability, the ethylenically unsaturated compound preferably contains an ethylenically unsaturated compound having an acid group.
Examples of the acid group include a phosphoric acid group, a sulfonic acid group, a carboxy group and the like.
Among these, a carboxy group is preferable as the acid group.
 酸基を有するエチレン性不飽和化合物としては、酸基を有する3~4官能のエチレン性不飽和化合物、酸基を有する5~6官能のエチレン性不飽和化合物等が挙げられる。 Examples of the ethylenically unsaturated compound having an acid group include a 3- to 4-functional ethylenically unsaturated compound having an acid group and a 5- to 6-functional ethylenically unsaturated compound having an acid group.
 酸基を有するエチレン性不飽和化合物としては、カルボキシ基を有する2官能以上のエチレン性不飽和化合物及びそのカルボン酸無水物からなる群より選ばれる少なくとも1種が好ましい。 The ethylenically unsaturated compound having an acid group is preferably at least one selected from the group consisting of a bifunctional or higher functional ethylenically unsaturated compound having a carboxy group and a carboxylic acid anhydride thereof.
 カルボキシ基を有する2官能以上のエチレン性不飽和化合物の好ましい市販品の例としては、アロニックス(登録商標) TO-2349〔東亞合成(株)製〕、アロニックス(登録商標) M-520〔東亞合成(株)製〕、アロニックス(登録商標) M-510〔東亞合成(株)製〕等が挙げられる。 Examples of preferable commercial products of a bifunctional or higher-functional ethylenically unsaturated compound having a carboxy group include Aronix (registered trademark) TO-2349 (manufactured by Toagosei Co., Ltd.) and Aronix (registered trademark) M-520 (Toagosei) Co., Ltd.], Aronix (registered trademark) M-510 (manufactured by Toagosei Co., Ltd.) and the like.
 酸基を有するエチレン性不飽和化合物について、特開2004-239942号公報の段落[0025]~[0030]に記載がある。これらの記載は、参照により本明細書に取り込まれる。 The ethylenically unsaturated compound having an acid group is described in paragraphs [0025] to [0030] of JP-A-2004-239942. These descriptions are incorporated herein by reference.
 ネガ型の感光性樹脂層は、重合性化合物を含む場合、重合性化合物を1種のみ含んでいてもよく、2種以上含んでいてもよい。 When the negative photosensitive resin layer contains a polymerizable compound, it may contain only one kind of the polymerizable compound or may contain two or more kinds thereof.
 ネガ型の感光性樹脂層が重合性化合物を含む場合、ネガ型の感光性樹脂層における重合性化合物の含有率は、感光性の観点から、ネガ型の感光性樹脂層の全質量に対して、1質量%~70質量%であることが好ましく、10質量%~70質量%であることがより好ましく、20質量%~60質量%であることが更に好ましく、20質量%~50質量%であることが特に好ましい。 When the negative photosensitive resin layer contains a polymerizable compound, the content of the polymerizable compound in the negative photosensitive resin layer, from the viewpoint of photosensitivity, to the total mass of the negative photosensitive resin layer. 1% by mass to 70% by mass, more preferably 10% by mass to 70% by mass, further preferably 20% by mass to 60% by mass, and 20% by mass to 50% by mass. It is particularly preferable that
-重合開始剤-
 ネガ型の感光性樹脂層は、重合開始剤を含むことが好ましい。
 ネガ型の感光性樹脂層が重合開始剤を含むと、パターン形成性が向上し得る。
 重合開始剤としては、光重合開始剤、熱重合開始剤等が挙げられる。
 これらの中でも、重合開始剤としては、光重合開始剤が好ましい。
-Polymerization initiator-
The negative photosensitive resin layer preferably contains a polymerization initiator.
When the negative photosensitive resin layer contains a polymerization initiator, pattern formability can be improved.
Examples of the polymerization initiator include a photopolymerization initiator and a thermal polymerization initiator.
Among these, the photopolymerization initiator is preferable as the polymerization initiator.
 光重合開始剤としては、オキシムエステル構造を有する光重合開始剤(以下、「オキシム系光重合開始剤」ともいう。)、α-アミノアルキルフェノン構造を有する光重合開始剤(以下、「α-アミノアルキルフェノン系光重合開始剤」ともいう。)、α-ヒドロキシアルキルフェノン構造を有する光重合開始剤(以下、「α-ヒドロキシアルキルフェノン系重合開始剤」ともいう。)、アシルフォスフィンオキサイド構造を有する光重合開始剤(以下、「アシルフォスフィンオキサイド系光重合開始剤」ともいう。)、N-フェニルグリシン構造を有する光重合開始剤(以下、「N-フェニルグリシン系光重合開始剤」ともいう。)等が挙げられる。 Examples of the photopolymerization initiator include a photopolymerization initiator having an oxime ester structure (hereinafter, also referred to as “oxime-based photopolymerization initiator”) and a photopolymerization initiator having an α-aminoalkylphenone structure (hereinafter, “α- Aminoalkylphenone-based photopolymerization initiator"), a photopolymerization initiator having an α-hydroxyalkylphenone structure (hereinafter also referred to as "α-hydroxyalkylphenone-based polymerization initiator"), an acylphosphine oxide structure. (Hereinafter, also referred to as “acylphosphine oxide-based photopolymerization initiator”) having N, and a photopolymerization initiator having an N-phenylglycine structure (hereinafter, “N-phenylglycine-based photopolymerization initiator”) Also referred to as).
 光重合開始剤は、オキシム系光重合開始剤、α-アミノアルキルフェノン系光重合開始剤、α-ヒドロキシアルキルフェノン系重合開始剤、及びN-フェニルグリシン系光重合開始剤からなる群より選ばれる少なくとも1種を含むことが好ましく、オキシム系光重合開始剤、α-アミノアルキルフェノン系光重合開始剤、及びN-フェニルグリシン系光重合開始剤からなる群より選ばれる少なくとも1種を含むことがより好ましい。 The photopolymerization initiator is selected from the group consisting of oxime photopolymerization initiators, α-aminoalkylphenone photopolymerization initiators, α-hydroxyalkylphenone photopolymerization initiators, and N-phenylglycine photopolymerization initiators. It is preferable to contain at least one kind, and to contain at least one kind selected from the group consisting of an oxime photopolymerization initiator, an α-aminoalkylphenone photopolymerization initiator, and an N-phenylglycine photopolymerization initiator. More preferable.
 光重合開始剤については、例えば、特開2011-95716号公報の段落[0031]~[0042]、及び、特開2015-014783号公報の段落[0064]~[0081]に記載がある。これらの記載は、参照により本明細書に取り込まれる。 The photopolymerization initiator is described, for example, in paragraphs [0031] to [0042] of JP2011-95716A and paragraphs [0064] to [0081] of JP2015-014783A. These descriptions are incorporated herein by reference.
 光重合開始剤の市販品としては、1-[4-(フェニルチオ)フェニル]-1,2-オクタンジオン-2-(O-ベンゾイルオキシム)〔商品名:IRGACURE(登録商標) OXE-01、BASF社製〕、1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]エタノン-1-(O-アセチルオキシム)〔商品名:IRGACURE(登録商標) OXE-02、BASF社製〕、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン〔商品名:IRGACURE(登録商標) 379EG、BASF社製〕、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン〔商品名:IRGACURE(登録商標) 907、BASF社製〕、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)ベンジル]フェニル}-2-メチルプロパン-1-オン〔商品名:IRGACURE(登録商標) 127、BASF社製〕、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1〔商品名:IRGACURE(登録商標) 369、BASF社製〕、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン〔商品名:IRGACURE(登録商標) 1173、BASF社製〕、1-ヒドロキシシクロヘキシルフェニルケトン〔商品名:IRGACURE(登録商標) 184、BASF社製〕、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン〔商品名:IRGACURE 651、BASF社製〕等が挙げられる。 Commercially available photopolymerization initiators include 1-[4-(phenylthio)phenyl]-1,2-octanedione-2-(O-benzoyloxime) [trade name: IRGACURE (registered trademark) OXE-01, BASF Co., Ltd.], 1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]ethanone-1-(O-acetyloxime) [Product name: IRGACURE (registered trademark) OXE-02] BASF Corporation], 2-(dimethylamino)-2-[(4-methylphenyl)methyl]-1-[4-(4-morpholinyl)phenyl]-1-butanone [trade name: IRGACURE (registered trademark) 379EG, manufactured by BASF], 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-one [trade name: IRGACURE (registered trademark) 907, manufactured by BASF], 2-hydroxy-1 -{4-[4-(2-hydroxy-2-methyl-propionyl)benzyl]phenyl}-2-methylpropan-1-one [trade name: IRGACURE (registered trademark) 127, manufactured by BASF], 2-benzyl -2-Dimethylamino-1-(4-morpholinophenyl)-butanone-1 [trade name: IRGACURE (registered trademark) 369, manufactured by BASF], 2-hydroxy-2-methyl-1-phenyl-propane-1 -ON [trade name: IRGACURE (registered trademark) 1173, manufactured by BASF], 1-hydroxycyclohexyl phenyl ketone [trade name: IRGACURE (registered trademark) 184, manufactured by BASF], 2,2-dimethoxy-1,2- Examples include diphenylethane-1-one [trade name: IRGACURE 651, manufactured by BASF].
 ネガ型の感光性樹脂層は、重合開始剤を含む場合、重合開始剤を1種のみ含んでいてもよく、2種以上含んでいてもよい。 When the negative photosensitive resin layer contains a polymerization initiator, it may contain only one type of polymerization initiator or two or more types.
 ネガ型の感光性樹脂層が重合開始剤を含む場合、ネガ型の感光性樹脂層における重合開始剤の含有率は、ネガ型の感光性樹脂層の全質量に対して、0.1質量%以上であることが好ましく、0.2質量%以上であることがより好ましく、0.3質量%以上であることが更に好ましい。
 また、ネガ型の感光性樹脂層における重合開始剤の含有率は、ネガ型の感光性樹脂層の全質量に対して、10質量%以下であることが好ましく、5質量%以下であることがより好ましい。
When the negative photosensitive resin layer contains a polymerization initiator, the content of the polymerization initiator in the negative photosensitive resin layer is 0.1% by mass based on the total mass of the negative photosensitive resin layer. It is preferably at least the above, more preferably at least 0.2% by mass, further preferably at least 0.3% by mass.
The content of the polymerization initiator in the negative photosensitive resin layer is preferably 10% by mass or less, and more preferably 5% by mass or less, based on the total mass of the negative photosensitive resin layer. More preferable.
-バインダーポリマー-
 ネガ型感光性樹脂層は、バインダーポリマーを含むことが好ましい。
 バインダーポリマーは、現像性の観点から、アルカリ可溶性樹脂であることが好ましい。アルカリ可溶性樹脂は、酸価40mgKOH/g以上の樹脂であることが好ましく、酸価40mgKOH/g以上の、カルボキシ基を有する(メタ)アクリル樹脂(以下、「重合体B」ともいう。)であることがより好ましい。
 本開示において、「アルカリ可溶性」とは、25℃の1mol/Lの水酸化ナトリウム溶液に可溶であることをいう。また、「可溶である」とは、100mLの溶媒に0.1g以上溶解することをいう。
 本開示において、酸価は、JIS K0070:1992に記載の方法に従って、測定される値である。
-Binder polymer-
The negative photosensitive resin layer preferably contains a binder polymer.
The binder polymer is preferably an alkali-soluble resin from the viewpoint of developability. The alkali-soluble resin is preferably a resin having an acid value of 40 mgKOH/g or more, and is a (meth)acrylic resin having a carboxyl group and having an acid value of 40 mgKOH/g (hereinafter, also referred to as “polymer B”). Is more preferable.
In the present disclosure, “alkali-soluble” refers to being soluble in a 1 mol/L sodium hydroxide solution at 25° C. Further, “soluble” means that 0.1 g or more is dissolved in 100 mL of solvent.
In the present disclosure, the acid value is a value measured according to the method described in JIS K0070:1992.
 重合体Bにおける、(メタ)アクリル酸に由来する構成単位及び(メタ)アクリル酸エステルに由来する構成単位の合計含有率は、重合体Bの全構成単位に対して、30mol%以上であることが好ましく、50mol%以上であることがより好ましい。 The total content of the structural units derived from (meth)acrylic acid and the structural units derived from (meth)acrylic acid ester in polymer B is 30 mol% or more based on all the structural units of polymer B. Is preferable, and 50 mol% or more is more preferable.
 重合体Bは、カルボキシ基を有する構成単位を含む。
 重合体Bに含まれるカルボキシ基を有する構成単位は、1種のみであってもよく、2種以上であってもよい。
The polymer B contains a structural unit having a carboxy group.
The constitutional unit having a carboxy group contained in the polymer B may be only one type, or may be two or more types.
 重合体Bにおける、カルボキシ基を有する構成単位の含有率は、現像性の観点から、カルボキシ基を有する(メタ)アクリル樹脂の全構成単位に対して、5mol%~50mol%であることが好ましく、5mol%~40mol%であることがより好ましく、10mol%~40mol%であることが更に好ましく、10mol%~30mol%であることが特に好ましい。 From the viewpoint of developability, the content ratio of the structural unit having a carboxy group in the polymer B is preferably 5 mol% to 50 mol% with respect to all the structural units of the (meth)acrylic resin having a carboxy group, It is more preferably from 5 mol% to 40 mol%, further preferably from 10 mol% to 40 mol%, particularly preferably from 10 mol% to 30 mol%.
 バインダーポリマー(特に、重合体B)は、硬化後の透湿度及び強度の観点から、芳香環を有する構成単位を含むことが好ましい。
 芳香環を有する構成単位を形成するモノマーとしては、スチレン、tert-ブトキシスチレン、メチルスチレン、α-メチルスチレン等のスチレン化合物、ベンジル(メタ)アクリレートなどが挙げられる。
 これらの中でも、芳香環を有する構成単位を形成するモノマーとしては、スチレン化合が好ましい。
The binder polymer (particularly the polymer B) preferably contains a structural unit having an aromatic ring from the viewpoint of moisture permeability and strength after curing.
Examples of the monomer that forms the structural unit having an aromatic ring include styrene, tert-butoxystyrene, methylstyrene, styrene compounds such as α-methylstyrene, and benzyl (meth)acrylate.
Among these, styrene compounds are preferable as the monomer forming the structural unit having an aromatic ring.
 バインダーポリマー(特に、カルボキシ基を有する(メタ)アクリル樹脂)は、硬化後の強度の観点から、エチレン性不飽和基を有する構成単位を含むことが好ましく、側鎖にエチレン性不飽和基を有する構成単位を含むことがより好ましい。
 本開示において、「側鎖」とは、主鎖から枝分かれしている原子団を意味し、「主鎖」とは、樹脂を構成する高分子化合物の分子中で相対的に最も長い結合鎖を意味する。
 エチレン性不飽和基としては、(メタ)アクリル基が好ましく、(メタ)アクリロキシ基がより好ましい。
The binder polymer (particularly, the (meth)acrylic resin having a carboxy group) preferably contains a structural unit having an ethylenically unsaturated group from the viewpoint of strength after curing, and has an ethylenically unsaturated group in the side chain. It is more preferable to include a structural unit.
In the present disclosure, the “side chain” means an atomic group branched from the main chain, and the “main chain” means the relatively longest binding chain in the molecules of the polymer compound constituting the resin. means.
As the ethylenically unsaturated group, a (meth)acryl group is preferable, and a (meth)acryloxy group is more preferable.
 バインダーポリマーの酸価は、40mgKOH/g以上であることが好ましく、40mgKOH/g~200mgKOH/gであることがより好ましく、60mgKOH/g~150mgKOH/gであることが更に好ましく、60mgKOH/g~130mgKOH/gであることが特に好ましい。 The acid value of the binder polymer is preferably 40 mgKOH/g or more, more preferably 40 mgKOH/g to 200 mgKOH/g, even more preferably 60 mgKOH/g to 150 mgKOH/g, and 60 mgKOH/g to 130 mgKOH. /G is particularly preferable.
 バインダーポリマーの重量平均分子量は、特に制限されないが、3,000を超えることが好ましく、3,000を超えて60,000以下であることがより好ましく、5,000以上50,000以下であることが更に好ましい。
 バインダーポリマーの重量平均分子量は、既述の方法(即ち、GPC)によって測定されるポリスチレン換算の重量平均分子量である。
The weight average molecular weight of the binder polymer is not particularly limited, but it is preferably more than 3,000, more preferably more than 3,000 and 60,000 or less, and 5,000 or more and 50,000 or less. Is more preferable.
The weight average molecular weight of the binder polymer is a polystyrene equivalent weight average molecular weight measured by the method described above (that is, GPC).
 ネガ型の感光性樹脂層は、バインダーポリマーを含む場合、バインダーポリマーを1種のみ含んでいてもよく、2種以上含んでいてもよい。 When the negative photosensitive resin layer contains a binder polymer, it may contain only one kind of binder polymer or two kinds or more.
 ネガ型の感光性樹脂層がバインダーポリマーを含む場合、ネガ型の感光性樹脂層におけるバインダーポリマーの含有率は、ネガ型の感光性樹脂層の全質量に対して、10質量%~90質量%であることが好ましく、20質量%~80質量%であることがより好ましく、30質量%~70質量%であることが更に好ましい。 When the negative photosensitive resin layer contains a binder polymer, the content of the binder polymer in the negative photosensitive resin layer is 10% by mass to 90% by mass with respect to the total mass of the negative photosensitive resin layer. Is preferable, 20% by mass to 80% by mass is more preferable, and 30% by mass to 70% by mass is further preferable.
-増感剤-
 ネガ型の感光性樹脂層は、増感剤を含んでいてもよい。
 増感剤は、光重合開始剤の活性光線に対する感度をより向上させる、酸素による重合性化合物の重合阻害を抑制する等の作用を有する。
-Sensitizer-
The negative photosensitive resin layer may contain a sensitizer.
The sensitizer has actions such as further improving the sensitivity of the photopolymerization initiator to actinic rays and suppressing polymerization inhibition of the polymerizable compound by oxygen.
 増感剤としては、トリエタノールアミン、p-ジメチルアミノ安息香酸エチルエステル、p-ホルミルジメチルアニリン、p-メチルチオジメチルアニリン、N-フェニルグリシン、トリブチル錫アセテート、トリチアン等が挙げられる。 Examples of the sensitizer include triethanolamine, p-dimethylaminobenzoic acid ethyl ester, p-formyldimethylaniline, p-methylthiodimethylaniline, N-phenylglycine, tributyltin acetate and trithiane.
 ネガ型の感光性樹脂層は、増感剤を含む場合、増感剤を1種のみ含んでいてもよく、2種以上含んでいてもよい。 When the negative photosensitive resin layer contains a sensitizer, it may contain only one kind of sensitizer or two or more kinds.
 ネガ型の感光性樹脂層が増感剤を含む場合、ネガ型の感光性樹脂層における増感剤の含有率は、感光性樹脂層の全質量に対して、0.01質量%~10質量%であることが好ましく、0.03質量%~5質量%であることがより好ましく、0.05質量%~3質量%であることが更に好ましい。 When the negative photosensitive resin layer contains a sensitizer, the content of the sensitizer in the negative photosensitive resin layer is 0.01% by mass to 10% by mass based on the total mass of the photosensitive resin layer. %, more preferably 0.03% by mass to 5% by mass, and further preferably 0.05% by mass to 3% by mass.
-腐食防止剤-
 ネガ型の感光性樹脂層は、腐食防止剤を含んでいてもよい。
 ネガ型の感光性樹脂層が腐食防止剤を含むと、銀ナノワイヤーの腐食が防止されるため、耐久性が向上し得る。
-Corrosion inhibitor-
The negative photosensitive resin layer may contain a corrosion inhibitor.
When the negative photosensitive resin layer contains a corrosion inhibitor, the silver nanowires are prevented from being corroded, so that the durability can be improved.
 腐食防止剤としては、「ポジ型の感光性樹脂層」において説明した腐食防止剤と同義であり、好ましい例も同様であるため、ここでは説明を省略する。 The corrosion inhibitor has the same meaning as the corrosion inhibitor described in “Positive Photosensitive Resin Layer”, and the preferred examples are also the same, so the description thereof is omitted here.
 ネガ型の感光性樹脂層は、腐食防止剤を含む場合、腐食防止剤を1種のみ含んでいてもよく、2種以上含んでいてもよい。 When the negative photosensitive resin layer contains a corrosion inhibitor, it may contain only one kind or two or more kinds of corrosion inhibitors.
 ネガ型の感光性樹脂層が腐食防止剤を含む場合、ネガ型の感光性樹脂層における腐食防止剤の含有率は、ネガ型の感光性樹脂層の全質量に対して、0.001質量%~5質量%であることが好ましく、0.005質量%~3質量%であることが好ましい。 When the negative photosensitive resin layer contains a corrosion inhibitor, the content of the corrosion inhibitor in the negative photosensitive resin layer is 0.001% by mass based on the total mass of the negative photosensitive resin layer. It is preferably from 5 to 5 mass %, more preferably from 0.005 to 3 mass %.
-界面活性剤-
 ネガ型の感光性樹脂層は、界面活性剤を含んでいてもよい。
 ネガ型の感光性樹脂層が界面活性剤を含むと、膜厚の均一性が向上し得る。
 界面活性剤としては、「ポジ型の感光性樹脂層」において説明した界面活性剤と同義であり、好ましい例も同様であるため、ここでは説明を省略する。
-Surfactant-
The negative photosensitive resin layer may contain a surfactant.
When the negative photosensitive resin layer contains a surfactant, the uniformity of the film thickness can be improved.
The surfactant has the same meaning as the surfactant described in “Positive-type photosensitive resin layer”, and the preferred examples are also the same, and therefore the description thereof is omitted here.
 ネガ型の感光性樹脂層は、界面活性剤を含む場合、界面活性剤を1種のみ含んでいてもよく、2種以上含んでいてもよい。 When the negative photosensitive resin layer contains a surfactant, it may contain only one kind or two or more kinds of surfactants.
 ネガ型の感光性樹脂層が界面活性剤を含む場合、ネガ型の感光性樹脂層における界面活性剤の含有率は、膜厚の均一性の観点から、ネガ型の感光性樹脂層の全質量に対して、0.05質量%~10質量%であることが好ましく、0.05質量%~5質量%であることが好ましい。 When the negative photosensitive resin layer contains a surfactant, the content of the surfactant in the negative photosensitive resin layer is the total mass of the negative photosensitive resin layer from the viewpoint of film thickness uniformity. On the other hand, it is preferably 0.05% by mass to 10% by mass, and more preferably 0.05% by mass to 5% by mass.
-他の成分-
 ネガ型の感光性樹脂層は、上記成分以外の成分(以下、「他の成分」ともいう。)を含んでいてもよい。
 他の成分は、特に制限されず、目的等に応じて、適宜選択することができる。
 他の成分としては、熱架橋性化合物、重合禁止剤、紫外線吸収剤、現像促進剤、着色剤等が挙げられる。
-Other ingredients-
The negative photosensitive resin layer may contain components other than the above components (hereinafter, also referred to as “other components”).
Other components are not particularly limited and can be appropriately selected depending on the purpose and the like.
Examples of other components include a heat-crosslinkable compound, a polymerization inhibitor, an ultraviolet absorber, a development accelerator, and a colorant.
-感光性樹脂層の厚さ-
 感光性樹脂層の厚さは、特に制限されず、例えば、20μm以下であることが好ましく、15μm以下であることがより好ましく、12μm以下であることが更に好ましく、10μm以下であることが特に好ましく、5μm以下であることが最も好ましい。
 感光性樹脂層の厚さが20μm以下であると、感光性転写材料全体の薄膜化、感光性樹脂層の透過率の向上等の面で有利である。
 また、感光性樹脂層の厚さは、製造適性の観点から、1μm以上であることが好ましく、2μm以上であることがより好ましい。
-Thickness of photosensitive resin layer-
The thickness of the photosensitive resin layer is not particularly limited and is, for example, preferably 20 μm or less, more preferably 15 μm or less, further preferably 12 μm or less, particularly preferably 10 μm or less. Most preferably, it is 5 μm or less.
When the thickness of the photosensitive resin layer is 20 μm or less, it is advantageous in terms of thinning the entire photosensitive transfer material and improving the transmittance of the photosensitive resin layer.
The thickness of the photosensitive resin layer is preferably 1 μm or more, more preferably 2 μm or more, from the viewpoint of manufacturing suitability.
 感光性樹脂層の厚さは、以下の方法により測定される。
 感光性樹脂層の厚さ方向の断面観察像において、無作為に選択した5箇所で測定される感光性樹脂層の厚さの算術平均値を求め、得られた値を感光性樹脂層の厚さとする。
 感光性樹脂層の厚さ方向の断面観察像は、走査型電子顕微鏡(SEM)を用いて得ることができる。
The thickness of the photosensitive resin layer is measured by the following method.
In the cross-sectional observation image in the thickness direction of the photosensitive resin layer, the arithmetic mean value of the thickness of the photosensitive resin layer measured at five randomly selected points was calculated, and the obtained value was calculated as the thickness of the photosensitive resin layer. Satoshi
The cross-sectional observation image in the thickness direction of the photosensitive resin layer can be obtained using a scanning electron microscope (SEM).
-感光性樹脂層の最低透過率-
 波長400nm~700nmにおける感光性樹脂層の最低透過率は、80%以上であることが好ましく、90%以上であることがより好ましい。
 上記感光性樹脂層の最低透過率の測定方法としては、分光光度計〔例えば、大塚電子(株)製のMCPD-6800〕を用いて測定する方法が挙げられる。
-Minimum transmittance of photosensitive resin layer-
The minimum transmittance of the photosensitive resin layer at a wavelength of 400 nm to 700 nm is preferably 80% or more, more preferably 90% or more.
Examples of the method for measuring the minimum transmittance of the photosensitive resin layer include a method using a spectrophotometer [eg, MCPD-6800 manufactured by Otsuka Electronics Co., Ltd.].
(感光性樹脂層の形成方法)
 感光性樹脂層の形成方法は、特に制限されず、公知の方法を適用することができる。
 感光性樹脂層としては、例えば、既述の各成分を含む感光性樹脂層形成用塗布液を、被塗布物上に塗布し、乾燥させる方法が挙げられる。
(Method of forming photosensitive resin layer)
The method for forming the photosensitive resin layer is not particularly limited, and a known method can be applied.
Examples of the photosensitive resin layer include a method in which a coating solution for forming a photosensitive resin layer containing each of the above-mentioned components is applied onto an object to be coated and dried.
 塗布方法は、特に制限されず、公知の塗布方法を適用することができる。
 塗布方法としては、スリット塗布、スピン塗布、カーテン塗布、インクジェット塗布等が挙げられる。
The coating method is not particularly limited, and a known coating method can be applied.
Examples of the coating method include slit coating, spin coating, curtain coating, inkjet coating and the like.
 乾燥温度は、特に制限されず、溶剤等の揮発性成分の種類に応じて、適宜設定することができる。
 乾燥温度は、例えば、60℃~120℃に設定することができる。
The drying temperature is not particularly limited and can be appropriately set depending on the type of volatile components such as a solvent.
The drying temperature can be set to, for example, 60°C to 120°C.
 感光性樹脂層形成用塗布液は、例えば、既述の各成分、及び溶剤を任意の割合で混合することによって調製することができる。 The photosensitive resin layer-forming coating liquid can be prepared, for example, by mixing the above-mentioned components and a solvent in an arbitrary ratio.
 溶剤は、特に制限されず、公知の溶剤を適用することができる。
 溶剤としては、エチレングリコールモノアルキルエーテル化合物、エチレングリコールジアルキルエーテル化合物、エチレングリコールモノアルキルエーテルアセテート化合物、プロピレングリコールモノアルキルエーテル化合物、プロピレングリコールジアルキルエーテル化合物、プロピレングリコールモノアルキルエーテルアセテート化合物、ジエチレングリコールジアルキルエーテル化合物、ジエチレングリコールモノアルキルエーテルアセテート化合物、ジプロピレングリコールモノアルキルエーテル化合物、ジプロピレングリコールジアルキルエーテル化合物、ジプロピレングリコールモノアルキルエーテルアセテート化合物、エステル化合物、ケトン化合物、アミド化合物、ラクトン化合物等が挙げられる。
The solvent is not particularly limited, and a known solvent can be applied.
As the solvent, ethylene glycol monoalkyl ether compound, ethylene glycol dialkyl ether compound, ethylene glycol monoalkyl ether acetate compound, propylene glycol monoalkyl ether compound, propylene glycol dialkyl ether compound, propylene glycol monoalkyl ether acetate compound, diethylene glycol dialkyl ether compound , Diethylene glycol monoalkyl ether acetate compounds, dipropylene glycol monoalkyl ether compounds, dipropylene glycol dialkyl ether compounds, dipropylene glycol monoalkyl ether acetate compounds, ester compounds, ketone compounds, amide compounds, lactone compounds and the like.
 また、溶剤の好ましい例としては、以下に記載のエステル化合物、エーテル化合物、ケトン化合物等が挙げられる。
 エステル化合物としては、酢酸エチル、酢酸プロピル、酢酸イソブチル、酢酸sec-ブチル、酢酸t-ブチル、酢酸イソプロピル、酢酸n-ブチル、1-メトキシ-2-プロピルアセテート等が挙げられる。
 エーテル化合物としては、ジイソプロピルエーテル、1,4-ジオキサン、1,2-ジメトキシエタン、1,3-ジオキソラン、プロピレングリコールジメチルエーテル、プロピレングリコールモノエチルエーテル等が挙げられる。
 ケトン化合物としては、メチルn-ブチルケトン、メチルエチルケトン、メチルイソブチルケトン、ジエチルケトン、メチルn-プロピルケトン、メチルイソプロピルケトン等が挙げられる。
In addition, preferred examples of the solvent include the ester compounds, ether compounds, and ketone compounds described below.
Examples of the ester compound include ethyl acetate, propyl acetate, isobutyl acetate, sec-butyl acetate, t-butyl acetate, isopropyl acetate, n-butyl acetate, 1-methoxy-2-propyl acetate and the like.
Examples of the ether compound include diisopropyl ether, 1,4-dioxane, 1,2-dimethoxyethane, 1,3-dioxolane, propylene glycol dimethyl ether, propylene glycol monoethyl ether and the like.
Examples of the ketone compound include methyl n-butyl ketone, methyl ethyl ketone, methyl isobutyl ketone, diethyl ketone, methyl n-propyl ketone, and methyl isopropyl ketone.
 感光性樹脂層において、感光性樹脂層形成用塗布液に含まれる溶剤は、完全に除去されている必要はない。
 感光性樹脂層は、溶剤を含まないか、又は、感光性樹脂層の全質量に対して、0質量%を超えて1質量%以下であることが好ましく、溶剤を含まないか、又は、感光性樹脂層の全質量に対して、0質量%を超えて0.5質量%以下であることがより好ましい。
In the photosensitive resin layer, the solvent contained in the coating liquid for forming the photosensitive resin layer does not need to be completely removed.
The photosensitive resin layer preferably contains no solvent, or more than 0% by mass and 1% by mass or less with respect to the total mass of the photosensitive resin layer, and does not contain a solvent or is photosensitive. It is more preferable that it is more than 0% by mass and 0.5% by mass or less with respect to the total mass of the functional resin layer.
 感光性樹脂層形成用塗布液の固形分濃度は、特に制限されない。
 感光性樹脂層形成用塗布液の固形分濃度としては、塗布適性の観点から、1質量%~40質量%であることが好ましく、5質量%~30質量%であることがより好ましい。
The solid content concentration of the coating liquid for forming the photosensitive resin layer is not particularly limited.
The solid content concentration of the coating liquid for forming the photosensitive resin layer is preferably 1% by mass to 40% by mass, and more preferably 5% by mass to 30% by mass, from the viewpoint of coating suitability.
 本開示において、「感光性樹脂層形成用塗布液の固形分濃度」とは、感光性樹脂層形成用塗布液の全質量に対する、感光性樹脂層形成用塗布液から溶剤等の揮発性成分を除いた残渣の割合を意味する。 In the present disclosure, the “solid content concentration of the photosensitive resin layer-forming coating liquid” means a volatile component such as a solvent from the photosensitive resin layer-forming coating liquid with respect to the total mass of the photosensitive resin layer-forming coating liquid. It means the ratio of the removed residue.
<銀ナノワイヤー層>
 本開示の感光性転写材料は、銀ナノワイヤーを含む層(即ち、銀ナノワイヤー層)を有する。
 銀ナノワイヤー層は、転写後において、所謂、導電層として機能し得る。
<Silver nanowire layer>
The photosensitive transfer material of the present disclosure has a layer containing silver nanowires (that is, a silver nanowire layer).
The silver nanowire layer can function as a so-called conductive layer after transfer.
(銀ナノワイヤー)
 銀ナノワイヤーの形状としては、円柱状、直方体状、断面が多角形となる柱状等が挙げられる。銀ナノワイヤーは、高い透明性が必要とされる用途では、円柱状、及び、断面が多角形となる柱状の少なくとも一方の形状を有することが好ましい。
 銀ナノワイヤーの断面形状は、例えば、透過型電子顕微鏡(TEM)を用いて観察することができる。
(Silver nanowire)
Examples of the shape of the silver nanowire include a columnar shape, a rectangular parallelepiped shape, and a columnar shape having a polygonal cross section. In applications where high transparency is required, the silver nanowires preferably have at least one of a columnar shape and a columnar shape having a polygonal cross section.
The cross-sectional shape of the silver nanowire can be observed using, for example, a transmission electron microscope (TEM).
 銀ナノワイヤーの直径(所謂、短軸長)は、特に制限されないが、例えば、透明性の観点から、50nm以下であることが好ましく、35nm以下であることがより好ましく、20nm以下であることが更に好ましい。
 銀ナノワイヤーの直径の下限は、例えば、耐酸化性及び耐久性の観点から、5nm以上であることが好ましい。
The diameter (so-called minor axis length) of the silver nanowire is not particularly limited, but for example, from the viewpoint of transparency, it is preferably 50 nm or less, more preferably 35 nm or less, and 20 nm or less. More preferable.
The lower limit of the diameter of the silver nanowire is preferably 5 nm or more, for example, from the viewpoint of oxidation resistance and durability.
 銀ナノワイヤーの長さ(所謂、長軸長)は、特に制限されないが、例えば、導電性の観点から、5μm以上であることが好ましく、10μm以上であることがより好ましく、30μm以上であることが更に好ましい。
 銀ナノワイヤーの長さの上限は、例えば、製造過程における凝集物の生成抑制の観点から、1mm以下であることが好ましい。
The length (so-called major axis length) of the silver nanowire is not particularly limited, but for example, from the viewpoint of conductivity, it is preferably 5 μm or more, more preferably 10 μm or more, and more preferably 30 μm or more. Is more preferable.
The upper limit of the length of the silver nanowire is preferably 1 mm or less, for example, from the viewpoint of suppressing the formation of aggregates in the manufacturing process.
 銀ナノワイヤーの直径及び長さは、例えば、透過型電子顕微鏡(TEM)又は光学顕微鏡を用いて、測定することができる。
 具体的には、透過型電子顕微鏡(TEM)又は光学顕微鏡を用いて拡大観察される銀ナノワイヤーから、無作為に選択した300個の銀ナノワイヤーの直径と長さを測定する。測定された値を算術平均し、得られた値を銀ナノワイヤーの直径及び長さとする。
The diameter and length of the silver nanowire can be measured using, for example, a transmission electron microscope (TEM) or an optical microscope.
Specifically, the diameter and the length of 300 randomly selected silver nanowires are measured from the silver nanowires magnified and observed using a transmission electron microscope (TEM) or an optical microscope. The measured values are arithmetically averaged, and the obtained values are used as the diameter and length of the silver nanowire.
 銀ナノワイヤー層における銀ナノワイヤーの含有率は、特に制限されないが、例えば、透明性及び導電性の観点から、銀ナノワイヤー層の全質量に対して、1質量%~99質量%であることが好ましく、10質量%~95質量%であることがより好ましい。 The content of the silver nanowires in the silver nanowire layer is not particularly limited, but for example, from the viewpoint of transparency and conductivity, it is 1% by mass to 99% by mass with respect to the total mass of the silver nanowire layer. Is preferred, and more preferably 10% by mass to 95% by mass.
(バインダー)
 銀ナノワイヤー層は、必要に応じて、バインダー(「マトリクス」ともいう。)を含んでいてもよい。
 バインダーは、銀ナノワイヤーが分散又は埋め込まれる固体材料である。
 バインダーによれば、腐食、磨耗等の有害環境要因から銀ナノワイヤーを保護することができる。
(binder)
The silver nanowire layer may include a binder (also referred to as “matrix”), if necessary.
The binder is a solid material in which silver nanowires are dispersed or embedded.
The binder can protect the silver nanowires from harmful environmental factors such as corrosion and abrasion.
 バインダーとしては、高分子材料、無機材料等が挙げられる。
 バインダーとしては、光透過性を有する材料が好ましい。
Examples of the binder include polymer materials and inorganic materials.
As the binder, a light transmissive material is preferable.
 高分子材料としては、(メタ)アクリル樹脂〔例えば、ポリ(メタクリル酸メチル)〕、ポリエステル〔例えば、ポリエチレンテレフタレート(PET)〕、ポリカーボネート、ポリイミド、ポリアミド、ポリオレフィン(例えば、ポリプロピレン)、ポリノルボルネン、セルロース化合物、ポリビニルアルコール(PVA)、ポリビニルピロリドン等が挙げられる。
 セルロース化合物としては、ヒドロキシプロピルメチルセルロース(HPMC)、ヒドロキシエチルセルロース(HEC)、メチルセルロース(MC)、ヒドロキシプロピルセルロース(HPC)、カルボキシメチルセルロース(CMC)等が挙げられる。
 また、高分子材料は、導電性の高分子材料であってもよい。
 導電性の高分子材料としては、ポリアニリン、ポリチオフェン等が挙げられる。
Examples of the polymer material include (meth)acrylic resin [for example, poly(methyl methacrylate)], polyester [for example, polyethylene terephthalate (PET)], polycarbonate, polyimide, polyamide, polyolefin (for example, polypropylene), polynorbornene, and cellulose. A compound, polyvinyl alcohol (PVA), polyvinyl pyrrolidone, etc. are mentioned.
Examples of the cellulose compound include hydroxypropylmethyl cellulose (HPMC), hydroxyethyl cellulose (HEC), methyl cellulose (MC), hydroxypropyl cellulose (HPC), carboxymethyl cellulose (CMC) and the like.
Further, the polymer material may be a conductive polymer material.
Examples of the conductive polymer material include polyaniline and polythiophene.
 無機材料としては、シリカ、ムライト、アルミナ等が挙げられる。 Examples of inorganic materials include silica, mullite and alumina.
 また、バインダーについては、特開2014-212117号公報の段落[0051]~[0052]に記載がある。これらの記載は、参照により本明細書に取り込まれる。 Further, the binder is described in paragraphs [0051] to [0052] of JP-A-2014-212117. These descriptions are incorporated herein by reference.
 銀ナノワイヤー層は、バインダーを含む場合、バインダーを1種のみ含んでいてもよく、2種以上含んでいてもよい。 When the silver nanowire layer contains a binder, it may contain only one kind of binder or two or more kinds of binder.
 銀ナノワイヤー層がバインダーを含む場合、銀ナノワイヤー層におけるバインダーの含有率は、銀ナノワイヤー層の全質量に対して、1質量%~99質量%であることが好ましく、5質量%~80質量%であることがより好ましい。 When the silver nanowire layer contains a binder, the content of the binder in the silver nanowire layer is preferably 1% by mass to 99% by mass, and preferably 5% by mass to 80% by mass, based on the total mass of the silver nanowire layer. More preferably, it is mass %.
-銀ナノワイヤー層の厚さ-
 銀ナノワイヤー層の厚さは、特に制限されないが、例えば、透明性及び導電性の観点から、1nm~400nmであることが好ましく、10nm~200nmであることがより好ましい。
-Thickness of silver nanowire layer-
The thickness of the silver nanowire layer is not particularly limited, but for example, from the viewpoint of transparency and conductivity, it is preferably 1 nm to 400 nm, more preferably 10 nm to 200 nm.
 銀ナノワイヤー層の厚さは、以下の方法により測定される。
 銀ナノワイヤー層の厚さ方向の断面観察像において、無作為に選択した5箇所で測定される銀ナノワイヤー層の厚さの算術平均値を求め、得られた値を銀ナノワイヤー層の厚さとする。銀ナノワイヤー層の厚さ方向の断面観察像は、走査型電子顕微鏡(SEM)を用いて得ることができる。
The thickness of the silver nanowire layer is measured by the following method.
In the cross-sectional observation image in the thickness direction of the silver nanowire layer, the arithmetic mean value of the thickness of the silver nanowire layer measured at five randomly selected points was calculated, and the obtained value was calculated as the thickness of the silver nanowire layer. Satoshi The cross-sectional observation image in the thickness direction of the silver nanowire layer can be obtained using a scanning electron microscope (SEM).
-銀ナノワイヤー層の最低透過率-
 波長400nm~700nmにおける銀ナノワイヤー層の最低透過率は、80%以上であることが好ましく、90%以上であることがより好ましい。
 上記銀ナノワイヤー層の最低透過率の測定方法としては、分光光度計〔例えば、大塚電子(株)製のMCPD-6800〕を用いて測定する方法が挙げられる。
-Minimum transmittance of silver nanowire layer-
The minimum transmittance of the silver nanowire layer at a wavelength of 400 nm to 700 nm is preferably 80% or more, and more preferably 90% or more.
Examples of the method for measuring the minimum transmittance of the silver nanowire layer include a method using a spectrophotometer [eg, MCPD-6800 manufactured by Otsuka Electronics Co., Ltd.].
(銀ナノワイヤーの製造方法)
 銀ナノワイヤーの製造方法は、特に制限されず、公知の方法を適用することができる。
 銀ナノワイヤーの製造方法としては、例えば、少なくとも、ハロゲン化合物及び還元剤を含む水系溶媒中に、銀錯体溶液を添加して、150℃以下の温度で加熱する工程、及び、必要に応じて、脱塩処理する工程を含む方法が挙げられる。
(Method of manufacturing silver nanowire)
The method for producing the silver nanowire is not particularly limited, and a known method can be applied.
As a method for producing a silver nanowire, for example, in a water-based solvent containing at least a halogen compound and a reducing agent, a step of adding a silver complex solution and heating at a temperature of 150° C. or lower, and, if necessary, Examples thereof include a method including a step of desalting.
 ハロゲン化合物は、臭素、塩素、又はヨウ素を含む化合物であれば、特に制限されない。
 ハロゲン化合物としては、臭化ナトリウム、塩化ナトリウム、ヨウ化ナトリウム、ヨウ化カリウム、臭化カリウム、塩化カリウム等のアルカリハライドなどが挙げられる。また、ハロゲン化合物としては、HTAB(ヘキサデシル-トリメチルアンモニウムブロミド)、HTAC(ヘキサデシル-トリメチルアンモニウムクロライド)等を用いてもよい。
The halogen compound is not particularly limited as long as it is a compound containing bromine, chlorine or iodine.
Examples of the halogen compound include alkali halides such as sodium bromide, sodium chloride, sodium iodide, potassium iodide, potassium bromide and potassium chloride. As the halogen compound, HTAB (hexadecyl-trimethylammonium bromide), HTAC (hexadecyl-trimethylammonium chloride) or the like may be used.
 還元剤としては、水素化ホウ素ナトリウム、水素化ホウ素カリウム等の水素化ホウ素金属塩;水素化アルミニウムリチウム、水素化アルミニウムカリウム、水素化アルミニウムセシウム、水素化アルミニウムベリリウム、水素化アルミニウムマグネシウム、水素化アルミニウムカルシウム等の水素化アルミニウム塩;亜硫酸ナトリウム、ヒドラジン化合物、デキストリン、ハイドロキノン、ヒドロキシルアミン、クエン酸又はその塩、コハク酸又はその塩、アスコルビン酸又はその塩等;ジエチルアミノエタノール、エタノールアミン、プロパノールアミン、トリエタノールアミン、ジメチルアミノプロパノール等のアルカノールアミン;プロピルアミン、ブチルアミン、ジプロピレンアミン、エチレンジアミン、トリエチレンペンタミン等の脂肪族アミン;ピペリジン、ピロリジン、N-メチルピロリジン、モルホリン等のヘテロ環式アミン;アニリン、N-メチルアニリン、トルイジン、アニシジン、フェネチジン等の芳香族アミン;ベンジルアミン、キシレンジアミン、N-メチルベンジルアミン等のアラルキルアミン;メタノール、エタノール、2-プロパノール等のアルコール;エチレングリコール、グルタチオン、有機酸類(クエン酸、リンゴ酸、酒石酸等)、還元糖類(グルコース、ガラクトース、マンノース、フルクトース、スクロース、マルトース、ラフィノース、スタキオース等)、糖アルコール類(ソルビトール等)などが挙げられる。 As the reducing agent, metal borohydride salts such as sodium borohydride and potassium borohydride; lithium aluminum hydride, potassium aluminum hydride, cesium aluminum hydride, beryllium aluminum hydride, magnesium aluminum hydride, aluminum hydride Aluminum hydride salts such as calcium; sodium sulfite, hydrazine compound, dextrin, hydroquinone, hydroxylamine, citric acid or its salt, succinic acid or its salt, ascorbic acid or its salt, etc.; diethylaminoethanol, ethanolamine, propanolamine, tritium Alkanolamines such as ethanolamine and dimethylaminopropanol; Aliphatic amines such as propylamine, butylamine, dipropyleneamine, ethylenediamine and triethylenepentamine; Heterocyclic amines such as piperidine, pyrrolidine, N-methylpyrrolidine and morpholine; Aniline , N-methylaniline, toluidine, anisidine, phenetidine and other aromatic amines; benzylamine, xylenediamine, N-methylbenzylamine and other aralkylamines; methanol, ethanol, 2-propanol and other alcohols; ethylene glycol, glutathione, organic Examples thereof include acids (citric acid, malic acid, tartaric acid, etc.), reducing sugars (glucose, galactose, mannose, fructose, sucrose, maltose, raffinose, stachyose, etc.), sugar alcohols (sorbitol, etc.) and the like.
 銀錯体の配位子としては、CN-、SCN-、SO 2-、チオウレア、アンモニア等が挙げられる。
 銀錯体としては、銀アンモニア錯体が好ましい。
Examples of the ligand of the silver complex include CN-, SCN-, SO 3 2- , thiourea, ammonia and the like.
As the silver complex, a silver ammonia complex is preferable.
 加熱温度は、150℃以下であることが好ましく、20℃~130℃であることがより好ましく、30℃~100℃であることが更に好ましく、40℃~90℃であることが特に好ましい。 The heating temperature is preferably 150° C. or lower, more preferably 20° C. to 130° C., further preferably 30° C. to 100° C., particularly preferably 40° C. to 90° C.
 脱塩処理は、銀ナノワイヤーを形成した後、限外ろ過、透析、ゲルろ過、デカンテーション、遠心分離等の手法により行うことができる。 The desalting treatment can be performed by a method such as ultrafiltration, dialysis, gel filtration, decantation, and centrifugation after forming the silver nanowires.
 銀ナノワイヤーの製造方法については、特開2013-167021号公報の段落[0020]~[0031]に記載がある。これらの記載は、参照により本明細書に取り込まれる。 The method for producing silver nanowires is described in paragraphs [0020] to [0031] of JP2013-167021A. These descriptions are incorporated herein by reference.
(銀ナノワイヤー層の形成方法)
 銀ナノワイヤー層の形成方法は、特に制限されず、公知の方法を適用することができる。
 銀ナノワイヤー層の形成方法としては、例えば、銀ナノワイヤーを含む銀ナノワイヤー層形成用塗布液を、被塗布物上に塗布し、乾燥させる方法が挙げられる。
(Method of forming silver nanowire layer)
The method for forming the silver nanowire layer is not particularly limited, and a known method can be applied.
As a method of forming the silver nanowire layer, for example, a method of applying a coating solution for forming a silver nanowire layer containing silver nanowires onto an object to be coated and drying the coating solution can be mentioned.
 銀ナノワイヤー層形成用塗布液は、例えば、銀ナノワイヤー及び溶剤を任意の割合で混合することによって調製することができる。
 溶剤としては、主として水が用いられ、水と混和する有機溶剤を、溶剤の全量に対して80体積%以下の割合で併用してもよい。
The coating liquid for forming the silver nanowire layer can be prepared, for example, by mixing the silver nanowire and the solvent at an arbitrary ratio.
Water is mainly used as the solvent, and an organic solvent miscible with water may be used in combination at a ratio of 80% by volume or less with respect to the total amount of the solvent.
 有機溶剤としては、例えば、沸点が50℃~250℃、より好ましくは55℃~200℃のアルコール化合物が好ましい。
 アルコール化合物としては、メタノール、エタノール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール200、ポリエチレングリコール300、グリセリン、プロピレングリコール、ジプロピレングリコール、1,3-プロパンジオール、1,2-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1-エトキシ-2-プロパノール、エタノールアミン、ジエタノールアミン、2-(2-アミノエトキシ)エタノール、2-ジメチルアミノイソプロパノール等が挙げられる。
As the organic solvent, for example, an alcohol compound having a boiling point of 50° C. to 250° C., more preferably 55° C. to 200° C. is preferable.
Alcohol compounds include methanol, ethanol, ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol 200, polyethylene glycol 300, glycerin, propylene glycol, dipropylene glycol, 1,3-propanediol, 1,2-butanediol, 1 1,4-butanediol, 1,5-pentanediol, 1-ethoxy-2-propanol, ethanolamine, diethanolamine, 2-(2-aminoethoxy)ethanol, 2-dimethylaminoisopropanol and the like can be mentioned.
 銀ナノワイヤー層形成用塗布液における銀ナノワイヤーの含有率は、銀ナノワイヤー層形成用塗布液の全質量に対して、0.1質量%~99質量%であることが好ましく、0.3質量%~95質量%であることがより好ましい。 The content of silver nanowires in the coating liquid for silver nanowire layer formation is preferably 0.1% by mass to 99% by mass, based on the total mass of the coating liquid for silver nanowire layer formation, and 0.3 It is more preferable that the content is from 95% by mass to 95% by mass.
 塗布方法は、特に制限されず、公知の塗布方法を適用することができる。
 塗布方法としては、スリット塗布、スピン塗布、カーテン塗布、インクジェット塗布等が挙げられる。
The coating method is not particularly limited, and a known coating method can be applied.
Examples of the coating method include slit coating, spin coating, curtain coating, inkjet coating and the like.
 乾燥温度は、特に制限されず、溶剤等の揮発性成分の種類に応じて、適宜設定することができる。
 乾燥温度は、例えば、60℃~120℃に設定することができる。
The drying temperature is not particularly limited and can be appropriately set depending on the type of volatile components such as a solvent.
The drying temperature can be set to, for example, 60°C to 120°C.
<熱硬化性樹脂層>
 本開示の感光性転写材料は、熱硬化性樹脂層を有する。
 熱硬化性樹脂層は、熱硬化前には、現像液に可溶で、選択的に溶解させることでパターニングが可能であり、熱硬化後には、感光性樹脂層又は感光性樹脂層の硬化物を除去する工程を経ても剥がれ難く、パターニング適性と剥離耐性とを兼ね備えている。
 熱硬化性樹脂層は、光硬化性を有さないことが好ましい。
<Thermosetting resin layer>
The photosensitive transfer material of the present disclosure has a thermosetting resin layer.
The thermosetting resin layer is soluble in a developing solution before the thermosetting and can be patterned by being selectively dissolved, and after the thermosetting, the photosensitive resin layer or a cured product of the photosensitive resin layer. It is difficult to be peeled off even after the step of removing, and has both patterning suitability and peeling resistance.
The thermosetting resin layer preferably does not have photocurability.
 熱硬化性樹脂層は、熱反応により結合を形成する官能基を有する化合物を含むことが好ましい。
 熱反応により結合を形成する官能基としては、(ブロック)イソシアネート基、エポキシ基、オキセタン基、ヒドロキシメチル基、アルコキシメチル基、オキサゾリン基等が挙げられる。
 本開示において、「(ブロック)イソシアネート基」とは、イソシアネート基及びブロックイソシアネート基の両方を包含する概念である。
The thermosetting resin layer preferably contains a compound having a functional group that forms a bond by thermal reaction.
Examples of the functional group that forms a bond by thermal reaction include a (block) isocyanate group, an epoxy group, an oxetane group, a hydroxymethyl group, an alkoxymethyl group, and an oxazoline group.
In the present disclosure, the “(block)isocyanate group” is a concept that includes both an isocyanate group and a blocked isocyanate group.
 熱硬化性樹脂層は、熱反応により結合を形成する官能基と、活性水素を有する官能基とが反応し、架橋構造が形成されることによって、硬化する層であることが好ましい。
 熱反応により結合を形成する官能基は、単体でも反応するものが多いが、硬化効率の観点から、熱硬化性樹脂層は、(1)熱反応により結合を形成する官能基と活性水素を有する官能基とを有する化合物、及び(2)熱反応により結合を形成する官能基を有する化合物と活性水素を有する官能基を有する化合物との組み合わせ、の少なくとも一方を含むことが好ましい。
The thermosetting resin layer is preferably a layer that is cured by the reaction of a functional group that forms a bond by a thermal reaction with a functional group having active hydrogen to form a crosslinked structure.
Many of the functional groups that form a bond by a thermal reaction react with each other, but from the viewpoint of curing efficiency, the thermosetting resin layer has (1) a functional group that forms a bond by a thermal reaction and active hydrogen. It is preferable to include at least one of a compound having a functional group, and (2) a combination of a compound having a functional group that forms a bond by thermal reaction and a compound having a functional group having active hydrogen.
 活性水素を有する官能基としては、水酸基、カルボキシ基、チオール基、アミノ基、フェノール基等が挙げられる。 Examples of the functional group having active hydrogen include a hydroxyl group, a carboxy group, a thiol group, an amino group and a phenol group.
 熱反応により結合を形成する官能基と、活性水素を有する官能基との組み合わせとしては、下記(A)~(D)に示す組み合わせが好ましい。換言すると、熱硬化性樹脂層は、下記(A)~(D)に示す組み合わせの官能基を有していることが好ましい。 As the combination of the functional group forming a bond by thermal reaction and the functional group having active hydrogen, the combinations shown in (A) to (D) below are preferable. In other words, the thermosetting resin layer preferably has the functional groups in the combinations shown in (A) to (D) below.
 (A)(ブロック)イソシアネート基と、水酸基、カルボキシ基、及びアミノ基からなる群より選ばれる少なくとも1種の官能基との組み合わせ。
 (B)エポキシ基及びオキセタン基の少なくとも一方と、カルボキシ基との組み合わせ。
 (C)ヒドロキシメチル基及びアルコキシメチル基の少なくとも一方と、水酸基及びカルボキシ基の少なくとも一方との組み合わせ。
 (D)オキサゾリン基とカルボキシ基との組み合わせ。
(A) A combination of a (block) isocyanate group and at least one functional group selected from the group consisting of a hydroxyl group, a carboxy group, and an amino group.
(B) A combination of at least one of an epoxy group and an oxetane group and a carboxy group.
(C) A combination of at least one of a hydroxymethyl group and an alkoxymethyl group and at least one of a hydroxyl group and a carboxy group.
(D) A combination of an oxazoline group and a carboxy group.
 熱反応により結合を形成する官能基と、活性水素を有する官能基との組み合わせとしては、経時安定性及び硬化性の観点から、ブロックイソシアネート基と、水酸基及びカルボキシ基の少なくとも一方との組み合わせがより好ましく、ブロックイソシアネート基と水酸基との組み合わせが更に好ましい。
 ブロックイソシアネート基と水酸基とは、熱反応によって、ウレタン結合を形成する。
As a combination of a functional group forming a bond by a thermal reaction and a functional group having active hydrogen, from the viewpoint of stability over time and curability, a combination of a blocked isocyanate group and at least one of a hydroxyl group and a carboxy group is more preferable. A combination of a blocked isocyanate group and a hydroxyl group is more preferable.
The blocked isocyanate group and the hydroxyl group form a urethane bond by a thermal reaction.
 熱反応の温度は、100℃~180℃であることが好ましく、110℃~160℃であることがより好ましく、120℃~150℃であることが更に好ましい。
 熱反応の温度が上記範囲内であると、熱硬化性樹脂層を形成する際に行われる、熱硬化性樹脂層形成用塗布液の塗布膜を乾燥させる工程において、熱硬化性樹脂層を硬化させずに、現像工程後の熱硬化工程において、熱硬化性樹脂層を効率良く熱硬化させることができる。
The temperature of the thermal reaction is preferably 100°C to 180°C, more preferably 110°C to 160°C, and further preferably 120°C to 150°C.
When the temperature of the thermal reaction is within the above range, the thermosetting resin layer is cured in the step of drying the coating film of the coating liquid for forming the thermosetting resin layer, which is performed when forming the thermosetting resin layer. Without doing so, the thermosetting resin layer can be efficiently thermoset in the thermosetting step after the developing step.
 熱硬化性樹脂層は、ブロックイソシアネート化合物を含むことが好ましい。
 ブロックイソシアネート化合物は、ブロックイソシアネート基を有する化合物である。
 本開示において、「ブロックイソシアネート基」とは、通常は、イソシアネート基をブロック剤で保護(所謂、マスク)することによって、イソシアネート基の反応性を抑えているが、加熱されると脱保護し、活性なイソシアネート基を生成することができる基を意味する。また、本開示において、「ブロックイソシアネート化合物」とは、既述のブロックイソシアネート基を有する化合物を意味する。
The thermosetting resin layer preferably contains a blocked isocyanate compound.
The blocked isocyanate compound is a compound having a blocked isocyanate group.
In the present disclosure, the “blocked isocyanate group” is usually protected by blocking the isocyanate group with a blocking agent (so-called mask) to suppress the reactivity of the isocyanate group, but deprotects when heated, By a group is meant an active isocyanate group. Further, in the present disclosure, the “blocked isocyanate compound” means a compound having a blocked isocyanate group as described above.
 ブロックイソシアネート基は、下記式で表わされる部分構造を有する。 The blocked isocyanate group has a partial structure represented by the following formula.
Figure JPOXMLDOC01-appb-C000005

 
Figure JPOXMLDOC01-appb-C000005

 
 上記式中、Xは、ブロック剤から水素原子を除いた構造を表す。
 ブロック剤としては、ケトオキシム化合物、アミド化合物、含窒素複素環式化合物、活性メチレン化合物等が挙げられる。
 含窒素複素環式化合物は、ピラゾール構造を有する化合物、イミダゾール構造を有する化合物等であることが好ましい。
In the above formula, X represents a structure obtained by removing a hydrogen atom from the blocking agent.
Examples of the blocking agent include ketoxime compounds, amide compounds, nitrogen-containing heterocyclic compounds, active methylene compounds and the like.
The nitrogen-containing heterocyclic compound is preferably a compound having a pyrazole structure, a compound having an imidazole structure, or the like.
 Xがケトオキシム基であるブロックイソシアネート基(所謂、ケトオキシムブロックイソシアネート基)としては、下記式で表わされる基が好ましい。 The blocked isocyanate group in which X is a ketoxime group (so-called ketoxime blocked isocyanate group) is preferably a group represented by the following formula.
Figure JPOXMLDOC01-appb-C000006

 
Figure JPOXMLDOC01-appb-C000006

 
 上記式中、R101及びR102は、各々独立に、アルキル基又はアリール基を表す。R101とR102とは、結合して環構造を形成していてもよい。
 R101及びR102は、メチル基又はエチル基であることが好ましい。
In the above formula, R 101 and R 102 each independently represent an alkyl group or an aryl group. R 101 and R 102 may combine with each other to form a ring structure.
R 101 and R 102 are preferably a methyl group or an ethyl group.
 Xがアミド基であるブロックイソシアネート基(所謂、アミドブロックイソシアネート基)、及び、Xがイミド基であるブロックイソシアネート基(所謂、イミドブロックイソシアネート基)としては、下記式で表わされる基が好ましい。 As the blocked isocyanate group in which X is an amide group (so-called amide blocked isocyanate group) and the blocked isocyanate group in which X is an imide group (so-called imide blocked isocyanate group), groups represented by the following formulas are preferable.
Figure JPOXMLDOC01-appb-C000007

 
Figure JPOXMLDOC01-appb-C000007

 
 上記式中、R103は、置換基を表し、R105は、アルキル基を表し、n1は、0~3の整数を表す。 In the above formula, R 103 represents a substituent, R 105 represents an alkyl group, and n1 represents an integer of 0 to 3.
 上記式中、R103で表される置換基は、アルキル基、アルコキシ基、又はハロゲン原子であることが好ましい。 In the above formula, the substituent represented by R 103 is preferably an alkyl group, an alkoxy group, or a halogen atom.
 Xが含窒素複素環であるブロックイソシアネート基(所謂、含窒素複素環ブロックイソシアネート基)としては、下記式で表わされる基が好ましい。 As the blocked isocyanate group in which X is a nitrogen-containing heterocycle (so-called nitrogen-containing heterocycle blocked isocyanate group), a group represented by the following formula is preferable.
Figure JPOXMLDOC01-appb-C000008

 
Figure JPOXMLDOC01-appb-C000008

 
 上記式中、R103は、置換基を表し、n1は、0~3の整数を表す。 In the above formula, R 103 represents a substituent, and n1 represents an integer of 0 to 3.
 上記式中、R103で表される置換基は、アルキル基であることが好ましく、炭素数1~4のアルキル基であることが更に好ましい。 In the above formula, the substituent represented by R 103 is preferably an alkyl group, and more preferably an alkyl group having 1 to 4 carbon atoms.
 含窒素複素環ブロックイソシアネート基としては、ジメチルピラゾールブロックイソシアネート基がより好ましい。 As the nitrogen-containing heterocyclic blocked isocyanate group, a dimethylpyrazole blocked isocyanate group is more preferable.
 Xが活性メチレン基であるブロックイソシアネート基(所謂、活性メチレンブロックイソシアネート基)としては、下記式で表わされる基が好ましい。 The blocked isocyanate group in which X is an active methylene group (so-called active methylene blocked isocyanate group) is preferably a group represented by the following formula.
Figure JPOXMLDOC01-appb-C000009

 
Figure JPOXMLDOC01-appb-C000009

 
 上記式中、R104及びR106は、各々独立に、アルキル基又はアルコキシ基を表す。R104とR106とは、結合して環構造を形成していてもよい。 In the above formula, R 104 and R 106 each independently represent an alkyl group or an alkoxy group. R 104 and R 106 may combine with each other to form a ring structure.
 ブロックイソシアネート化合物は、後述の熱硬化工程における加熱温度にて反応することが好ましい。このような観点から、ブロックイソシアネート化合物の解離温度は、100℃~180℃であることが好ましく、110℃~160℃であることがより好ましく、120℃~150℃であることが更に好ましい。 The blocked isocyanate compound preferably reacts at the heating temperature in the thermosetting process described below. From this point of view, the dissociation temperature of the blocked isocyanate compound is preferably 100° C. to 180° C., more preferably 110° C. to 160° C., and further preferably 120° C. to 150° C.
 代表的なブロックイソシアネート化合物及びその解離温度を、以下に示す。
 ジメチルピラゾールブロックイソシアネート化合物(解離温度:100℃~120℃)、活性メチレンブロックイソシアネート化合物(解離温度:100℃~120℃)、ケトオキシムブロックイソシアネート化合物(解離温度:130℃~150℃)、ε-カプロラクタムブロックイソシアネート化合物(解離温度:160℃~180℃)。
 これらの中でも、ブロックイソシアネート化合物としては、熱反応性及び安定性の観点から、ジメチルピラゾールブロックイソシアネート化合物、活性メチレンブロックイソシアネート化合物、及びケトオキシムブロックイソシアネート化合物からなる群より選ばれる少なくとも1種の化合物が好ましく、ケトオキシムブロックイソシアネート化合物がより好ましい。
Representative blocked isocyanate compounds and their dissociation temperatures are shown below.
Dimethylpyrazole blocked isocyanate compound (dissociation temperature: 100°C to 120°C), active methylene blocked isocyanate compound (dissociation temperature: 100°C to 120°C), ketoxime blocked isocyanate compound (dissociation temperature: 130°C to 150°C), ε- Caprolactam-blocked isocyanate compound (dissociation temperature: 160°C to 180°C).
Among these, as the blocked isocyanate compound, from the viewpoint of thermal reactivity and stability, at least one compound selected from the group consisting of a dimethylpyrazole blocked isocyanate compound, an active methylene blocked isocyanate compound, and a ketoxime blocked isocyanate compound. Ketoxime blocked isocyanate compounds are more preferred.
 本開示におけるブロックイソシアネート化合物の解離温度とは、「示差走査熱量計を用いて、DSC(Differential scanning calorimetry)分析にて測定した場合における、ブロックイソシアネートの脱保護反応に伴う吸熱ピークの温度」を意味する。
 示差走査熱量計としては、例えば、セイコーインスツルメンツ(株)製の示差走査熱量計(型式:DSC6200)を好適に用いることができる。但し、示差走査熱量計は、これに限定されない。
The dissociation temperature of the blocked isocyanate compound in the present disclosure means "the temperature of the endothermic peak associated with the deprotection reaction of the blocked isocyanate when measured by DSC (Differential scanning calorimetry) using a differential scanning calorimeter". To do.
As the differential scanning calorimeter, for example, a differential scanning calorimeter (model: DSC6200) manufactured by Seiko Instruments Inc. can be preferably used. However, the differential scanning calorimeter is not limited to this.
 ブロックイソシアネート化合物中のブロックイソシアネート基の数は、特に制限されないが、例えば、硬化性の観点から、1分子中にブロックイソシアネート基を、2個以上有していることが好ましく、3個以上有していることがより好ましい。 The number of blocked isocyanate groups in the blocked isocyanate compound is not particularly limited, but for example, from the viewpoint of curability, it is preferable to have two or more blocked isocyanate groups in one molecule, and to have three or more blocked isocyanate groups. Is more preferable.
 ブロックイソシアネート化合物におけるブロックイソシアネート基の官能基濃度は、0.3mmol/g以上であることが好ましく、0.5mmol以上であることがより好ましく、1mmol/g以上であることが更に好ましく、2mmol/g以上であることが特に好ましい。
 ブロックイソシアネート化合物におけるブロックイソシアネート基の官能基濃度の上限は、特に制限されないが、例えば、6mmol/g以下であることが好ましい。
The functional group concentration of the blocked isocyanate group in the blocked isocyanate compound is preferably 0.3 mmol/g or more, more preferably 0.5 mmol or more, further preferably 1 mmol/g or more, 2 mmol/g The above is particularly preferable.
The upper limit of the functional group concentration of the blocked isocyanate group in the blocked isocyanate compound is not particularly limited, but is preferably 6 mmol/g or less, for example.
 熱硬化性樹脂層におけるブロックイソシアネート基の官能基濃度は、0.1mmol/g以上であることが好ましく、0.3mmol/g以上であることがより好ましく、1mmol/g以上であることが更に好ましく、1.5mmol/g以上であることが特に好ましい。
 熱硬化性樹脂層におけるブロックイソシアネート基の官能基濃度が0.1mmol/g以上であると、熱硬化性樹脂層の熱硬化性がより向上し、形成される熱硬化性樹脂層の硬化物の基板からの剥離耐性がより高まるため、基板から導電パターンがより剥離し難くなる傾向がある。
 熱硬化性樹脂層におけるブロックイソシアネート基の官能基濃度の上限は、特に制限されないが、例えば、現像性及び溶剤溶解性の観点から、6mmol/g以下であることが好ましい。
The functional group concentration of the blocked isocyanate group in the thermosetting resin layer is preferably 0.1 mmol/g or more, more preferably 0.3 mmol/g or more, further preferably 1 mmol/g or more. , 1.5 mmol/g or more is particularly preferable.
When the functional group concentration of the blocked isocyanate group in the thermosetting resin layer is 0.1 mmol/g or more, the thermosetting property of the thermosetting resin layer is further improved, and the cured product of the thermosetting resin layer is formed. Since the resistance to peeling from the substrate is further increased, the conductive pattern tends to be more difficult to peel from the substrate.
The upper limit of the functional group concentration of the blocked isocyanate group in the thermosetting resin layer is not particularly limited, but is preferably 6 mmol/g or less from the viewpoint of developability and solvent solubility, for example.
 熱硬化性樹脂層におけるブロックイソシアネート基の官能基濃度は、ブロックイソシアネート化合物のブロックイソシアネート基の官能基濃度と、ブロックイソシアネート化合物の熱硬化性樹脂層中の質量含有率と、の積で表わされる。熱硬化性樹脂層がブロックイソシアネート化合物を2種以上含む場合は、それぞれのブロックイソシアネート化合物から算出された熱硬化性樹脂層中の官能基濃度の和で表わされる。 The functional group concentration of the blocked isocyanate group in the thermosetting resin layer is represented by the product of the functional group concentration of the blocked isocyanate group of the blocked isocyanate compound and the mass content of the blocked isocyanate compound in the thermosetting resin layer. When the thermosetting resin layer contains two or more blocked isocyanate compounds, it is represented by the sum of the functional group concentrations in the thermosetting resin layer calculated from the respective blocked isocyanate compounds.
 熱硬化性樹脂層がブロックイソシアネート化合物を含む場合、ブロックイソシアネート化合物は、水酸基及び酸基の少なくとも一方を有することが好ましい。 When the thermosetting resin layer contains a blocked isocyanate compound, the blocked isocyanate compound preferably has at least one of a hydroxyl group and an acid group.
 また、熱硬化性樹脂層がブロックイソシアネート化合物を含む場合、熱硬化性樹脂層は、ブロックイソシアネート化合物以外の、水酸基及び酸基の少なくとも一方を有する化合物を更に含むことが好ましい。 When the thermosetting resin layer contains a blocked isocyanate compound, it is preferable that the thermosetting resin layer further contains a compound having at least one of a hydroxyl group and an acid group other than the blocked isocyanate compound.
 熱硬化性樹脂層が水酸基を有する場合には、熱硬化性樹脂層の熱硬化性がより向上し、形成される熱硬化性樹脂層の硬化物の基板からの剥離耐性がより高まるため、基板から導電パターンがより剥離し難くなる傾向がある。
 「熱硬化性樹脂層が水酸基を有する場合」としては、(1)熱硬化性樹脂層が、水酸基を有するブロックイソシアネート化合物を含む場合、(2)熱硬化性樹脂層が、水酸基を有さないブロックイソシアネート化合物と水酸基を有する化合物とを含む場合、及び(3)熱硬化性樹脂層が、水酸基を有するブロックイソシアネート化合物と水酸基を有する化合物とを含む場合が挙げられる。
When the thermosetting resin layer has a hydroxyl group, the thermosetting property of the thermosetting resin layer is further improved, and the resistance to peeling of the cured product of the thermosetting resin layer from the substrate is further increased. Therefore, the conductive pattern tends to be more difficult to peel off.
“When the thermosetting resin layer has a hydroxyl group” means that (1) the thermosetting resin layer contains a blocked isocyanate compound having a hydroxyl group, and (2) the thermosetting resin layer does not have a hydroxyl group. Examples thereof include a case where it contains a blocked isocyanate compound and a compound having a hydroxyl group, and a case where (3) the thermosetting resin layer contains a blocked isocyanate compound having a hydroxyl group and a compound having a hydroxyl group.
 熱硬化性樹脂層が酸基を有する場合には、熱硬化性樹脂層の現像性がより向上するため、現像残渣をより抑制できる傾向がある。
 「熱硬化性樹脂層が酸基を有する場合」としては、(1)熱硬化性樹脂層が、酸基を有するブロックイソシアネート化合物を含む場合、(2)熱硬化性樹脂層が、酸基を有さないブロックイソシアネート化合物と酸基を有する化合物とを含む場合、及び(3)熱硬化性樹脂層が、酸基を有するブロックイソシアネート化合物と酸基を有する化合物とを含む場合が挙げられる。
When the thermosetting resin layer has an acid group, the developability of the thermosetting resin layer is further improved, so that the development residue tends to be more suppressed.
"When the thermosetting resin layer has an acid group" means that (1) the thermosetting resin layer contains a blocked isocyanate compound having an acid group, and (2) the thermosetting resin layer has an acid group. Examples thereof include a block isocyanate compound not having it and a compound having an acid group, and a case where (3) the thermosetting resin layer contains a block isocyanate compound having an acid group and a compound having an acid group.
 酸基としては、カルボキシ基、スルホンアミド基、スルホンイミド基、フェノール基等が挙げられる。
 これらの中でも、酸基としては、カルボキシ基が好ましい。
Examples of the acid group include a carboxy group, a sulfonamide group, a sulfonimide group, a phenol group and the like.
Among these, a carboxy group is preferable as the acid group.
 熱硬化性樹脂層が水酸基を有する場合、熱硬化性樹脂層における水酸基の官能基濃度は、0.1mmol/g以上であることが好ましく、0.3mmol/g以上であることがより好ましく、0.5mmol/g以上であることが更に好ましい。
 熱硬化性樹脂層における水酸基の官能基濃度が0.1mmol/g以上であると、熱硬化性樹脂層の熱硬化性がより向上し、形成される熱硬化性樹脂層の硬化物の基板からの剥離耐性がより高まるため、基板から導電パターンがより剥離し難くなる傾向がある。
 熱硬化性樹脂層における水酸基の官能基濃度の上限は、特に制限されないが、例えば、現像性及び溶剤溶解性の観点から、3mmol/g以下であることが好ましい。
When the thermosetting resin layer has a hydroxyl group, the functional group concentration of the hydroxyl group in the thermosetting resin layer is preferably 0.1 mmol/g or more, more preferably 0.3 mmol/g or more, 0 More preferably, it is 0.5 mmol/g or more.
When the functional group concentration of the hydroxyl group in the thermosetting resin layer is 0.1 mmol/g or more, the thermosetting property of the thermosetting resin layer is further improved, and the cured product of the thermosetting resin layer is formed from the substrate. Since the peeling resistance of 1 is further increased, the conductive pattern tends to be more difficult to peel from the substrate.
The upper limit of the functional group concentration of hydroxyl groups in the thermosetting resin layer is not particularly limited, but is preferably 3 mmol/g or less from the viewpoint of developability and solvent solubility, for example.
 熱硬化性樹脂層における水酸基の官能基濃度は、水酸基を有する化合物の水酸基の官能基濃度と、水酸基を有する化合物の熱硬化性樹脂層中の質量含有率と、の積で表わされる。熱硬化性樹脂層が水酸基を有する化合物を2種以上含有する場合は、それぞれの水酸基を有する化合物から算出された熱硬化性樹脂層中の官能基濃度の和で表わされる。 The functional group concentration of the hydroxyl group in the thermosetting resin layer is represented by the product of the functional group concentration of the hydroxyl group of the compound having a hydroxyl group and the mass content of the compound having a hydroxyl group in the thermosetting resin layer. When the thermosetting resin layer contains two or more kinds of compounds having a hydroxyl group, it is represented by the sum of the functional group concentrations in the thermosetting resin layer calculated from the respective compounds having a hydroxyl group.
 熱硬化性樹脂層が酸基を有する場合、熱硬化性樹脂層における酸基の官能基濃度(「酸価」ともいう。以下、同じ。)は、0.05mmol/g~5mmol/gであることが好ましく、0.1mmol/g~3mmol/gであることがより好ましく、0.2mmol/g~2mmol/gであることが更に好ましい。
 熱硬化性樹脂層における酸基の官能基濃度が、上記範囲内であると、熱硬化性樹脂層の現像性がより向上するため、現像残渣をより抑制できる傾向がある。
When the thermosetting resin layer has an acid group, the functional group concentration of the acid group in the thermosetting resin layer (also referred to as “acid value”; the same applies below) is 0.05 mmol/g to 5 mmol/g. It is preferably 0.1 mmol/g to 3 mmol/g, more preferably 0.2 mmol/g to 2 mmol/g.
When the functional group concentration of the acid group in the thermosetting resin layer is within the above range, the developability of the thermosetting resin layer is further improved, so that the development residue tends to be more suppressed.
 熱硬化性樹脂層における酸基の官能基濃度は、酸基を有する化合物の酸基の官能基濃度と、酸基を有する化合物の熱硬化性樹脂層中の質量含有率と、の積で表わされる。熱硬化性樹脂層が酸基を有する化合物を2種以上含有する場合は、それぞれの酸基を有する化合物から算出された熱硬化性樹脂層中の官能基濃度の和で表わされる。 The functional group concentration of the acid group in the thermosetting resin layer is represented by the product of the functional group concentration of the acid group of the compound having an acid group and the mass content of the compound having an acid group in the thermosetting resin layer. Be done. When the thermosetting resin layer contains two or more compounds having an acid group, it is represented by the sum of the functional group concentrations in the thermosetting resin layer calculated from the compounds having an acid group.
 ブロックイソシアネート化合物は、低分子化合物であってもよく、高分子化合物であってもよいが、反応効率及び析出抑制の観点から、高分子化合物であることが好ましい。 The blocked isocyanate compound may be a low molecular weight compound or a high molecular weight compound, but is preferably a high molecular weight compound from the viewpoint of reaction efficiency and suppression of precipitation.
 ブロックイソシアネート化合物が高分子化合物である場合、ブロックイソシアネート化合物は、ポリマーであることが好ましく、繰り返し単位として(メタ)アクリル系モノマーを有するポリマーであることがより好ましく、下記式BR-1で表される繰り返し単位を有するポリマーであることが更に好ましく、下記式BR-2で表される繰り返し単位を有するポリマーであることが特に好ましい。
 本開示において、「(メタ)アクリル系モノマー」とは、(メタ)アクリロイル基を有するモノマーを意味する。
When the blocked isocyanate compound is a polymer compound, the blocked isocyanate compound is preferably a polymer, more preferably a polymer having a (meth)acrylic monomer as a repeating unit, and is represented by the following formula BR-1. A polymer having a repeating unit represented by the formula: BR-2 is more preferable, and a polymer having a repeating unit represented by the following formula BR-2 is particularly preferable.
In the present disclosure, the “(meth)acrylic monomer” means a monomer having a (meth)acryloyl group.
Figure JPOXMLDOC01-appb-C000010

 
Figure JPOXMLDOC01-appb-C000010

 
 式BR-1中、Xは、ブロック剤から水素原子を除いた構造を表し、Zは、水素原子又はメチル基を表す。 In Formula BR-1, X represents a structure in which a hydrogen atom is removed from the blocking agent, and Z 1 represents a hydrogen atom or a methyl group.
 式BR-2中、R101及びR102は、各々独立に、アルキル基又はアリール基を表す。R101とR102とは、結合して環構造を形成していてもよい。Zは、水素原子又はメチル基を表す。
 R101及びR102は、メチル基又はエチル基であることが好ましい。
In formula BR-2, R 101 and R 102 each independently represent an alkyl group or an aryl group. R 101 and R 102 may combine with each other to form a ring structure. Z 1 represents a hydrogen atom or a methyl group.
R 101 and R 102 are preferably a methyl group or an ethyl group.
 式BR-1で表される繰り返し単位を有するポリマーにおける、BR-1で表される繰り返し単位の含有率は、ポリマーの全繰り返し単位に対して、10mol%~100mol%であることが好ましく、20mol%~80mol%であることがより好ましく、30mol%~80mol%であることが更に好ましい。 The content of the repeating unit represented by BR-1 in the polymer having the repeating unit represented by the formula BR-1 is preferably 10 mol% to 100 mol% with respect to the total repeating units of the polymer, and 20 mol. % To 80 mol% is more preferable, and 30 mol% to 80 mol% is further preferable.
 式BR-1で表される繰り返し単位を有するポリマーは、水酸基及び酸基の少なくとも一方を有していることが好ましい。
 より好ましい態様は、ポリマーが、式BR-1で表される繰り返し単位と、式BR-1で表される繰り返し単位とは別に、水酸基を有する繰り返し単位及び酸基(好ましくは、カルボキシ基)を有する繰り返し単位の少なくとも一方の繰り返し単位と、を有する態様である。
 更に好ましい態様は、ポリマーが、式BR-1で表される繰り返し単位と、式BR-1で表される繰り返し単位とは別に、水酸基を有する繰り返し単位及び酸基(好ましくは、カルボキシ基)を有する繰り返し単位の両方の繰り返し単位と、を有する態様である。
 上記のより好ましい態様及び更に好ましい態様において、水酸基を有する繰り返し単位は、ヒドロキシアルキル(メタ)アクリレートに由来の繰り返し単位であることが好ましい。
 上記のより好ましい態様及び更に好ましい態様において、酸基(好ましくは、カルボキシ基)を有する繰り返し単位は、(メタ)アクリル酸に由来の繰り返し単位であることが好ましい。
The polymer having the repeating unit represented by the formula BR-1 preferably has at least one of a hydroxyl group and an acid group.
In a more preferred embodiment, the polymer has a repeating unit having a hydroxyl group and an acid group (preferably a carboxy group) in addition to the repeating unit represented by the formula BR-1 and the repeating unit represented by the formula BR-1. And at least one repeating unit of the repeating units having.
In a further preferred embodiment, the polymer has a repeating unit having a hydroxyl group and an acid group (preferably a carboxy group) in addition to the repeating unit represented by the formula BR-1 and the repeating unit represented by the formula BR-1. And both repeating units of the repeating unit having.
In the above more preferable and still more preferable embodiments, the repeating unit having a hydroxyl group is preferably a repeating unit derived from hydroxyalkyl(meth)acrylate.
In the above more preferable and further preferable aspects, the repeating unit having an acid group (preferably a carboxy group) is preferably a repeating unit derived from (meth)acrylic acid.
 式BR-1で表される繰り返し単位を有するポリマーは、式BR-1で表される繰り返し単位と共重合可能な他の繰り返し単位を更に有していてもよい。
 他の繰り返し単位としては、特に制限されず、アルキル(メタ)アクリレートに由来の繰り返し単位、アラルキル(メタ)アクリレートに由来の繰り返し単位、スチレンに由来の繰り返し単位等が挙げられる。
The polymer having the repeating unit represented by the formula BR-1 may further have another repeating unit copolymerizable with the repeating unit represented by the formula BR-1.
The other repeating unit is not particularly limited, and examples thereof include a repeating unit derived from an alkyl(meth)acrylate, a repeating unit derived from an aralkyl(meth)acrylate, and a repeating unit derived from styrene.
 ブロックイソシアネート化合物がポリマーである場合、転写性の観点から、アクリル酸に由来の繰り返し単位及びアクリル酸エステル由来の繰り返し単位の合計含有量は、ポリマーの全繰り返し単位に対して、30mol%~100mol%であることが好ましく、50mol%~100mol%であることがより好ましい。 When the blocked isocyanate compound is a polymer, from the viewpoint of transferability, the total content of repeating units derived from acrylic acid and repeating units derived from acrylic acid ester is 30 mol% to 100 mol% based on all repeating units of the polymer. Is preferable, and more preferably 50 mol% to 100 mol %.
 ブロックイソシアネート化合物がポリマーである場合、ブロックイソシアネート化合物の重量平均分子量は、特に制限されないが、2,000~100,000であることが好ましく、3,000~50,000であることがより好ましく、4,000~30,000であることが更に好ましい。
 ブロックイソシアネート化合物の重量平均分子量は、既述の方法(即ち、GPC)によって測定されるポリスチレン換算の重量平均分子量である。
When the blocked isocyanate compound is a polymer, the weight average molecular weight of the blocked isocyanate compound is not particularly limited, but is preferably 2,000 to 100,000, more preferably 3,000 to 50,000, More preferably, it is 4,000 to 30,000.
The weight average molecular weight of the blocked isocyanate compound is a polystyrene equivalent weight average molecular weight measured by the method described above (that is, GPC).
 ブロックイソシアネート化合物が高分子化合物である場合、ブロックイソシアネート化合物は、下記の式で表されるポリマーであることが好ましい。 When the blocked isocyanate compound is a polymer compound, the blocked isocyanate compound is preferably a polymer represented by the following formula.
Figure JPOXMLDOC01-appb-C000011

 
Figure JPOXMLDOC01-appb-C000011

 
 上記式において、Zは、水素原子又はメチル基を表す。 In the above formula, Z 1 represents a hydrogen atom or a methyl group.
 ブロックイソシアネート化合物が低分子化合物である場合、ブロックイソシアネート化合物は、下記の式で表される化合物であることが好ましい。 When the blocked isocyanate compound is a low molecular weight compound, the blocked isocyanate compound is preferably a compound represented by the following formula.
Figure JPOXMLDOC01-appb-C000012

 
Figure JPOXMLDOC01-appb-C000012

 
 上記式で表される化合物のうち、化合物中のXが1つである場合には、Xは、ブロック剤から水素原子を除いた構造を表す。
 上記式で表される化合物のうち、化合物中のXが複数存在する場合には、Xは、ブロック剤から水素原子を除いた構造、又は、親水性基(好ましくは、ポリアルキレングリコール基)を表し、複数存在するXの少なくとも1つは、ブロック剤から水素原子を除いた構造を表す。
When the number of X 1 in the compound represented by the above formula is one, X 1 represents a structure obtained by removing a hydrogen atom from the blocking agent.
When a plurality of X 1 's in the compound represented by the above formula are present, X 1 has a structure obtained by removing a hydrogen atom from the blocking agent, or a hydrophilic group (preferably a polyalkylene glycol group). ), and at least one of a plurality of X 1 s represents a structure in which a hydrogen atom is removed from the blocking agent.
 水酸基及び酸基の少なくとも一方を有する化合物は、低分子化合物であってもよく、高分子化合物であってもよいが、高分子化合物であることが好ましい。
 高分子化合物は、ポリマーであることが好ましい。
The compound having at least one of a hydroxyl group and an acid group may be a low molecular weight compound or a high molecular weight compound, but is preferably a high molecular weight compound.
The polymer compound is preferably a polymer.
 水酸基を有する低分子化合物としては、水酸基を2個以上有する化合物が好ましく、水酸基を3個~8個有する化合物がより好ましい。
 このような化合物としては、トリメチロールエタン、トリメチロールプロパン、グリセリン、ペンタエリスリトール、ジペンタエリスリトール、ジトリメチロールエタン等のポリオールが挙げられる。
As the low molecular weight compound having a hydroxyl group, a compound having two or more hydroxyl groups is preferable, and a compound having 3 to 8 hydroxyl groups is more preferable.
Examples of such compounds include polyols such as trimethylolethane, trimethylolpropane, glycerin, pentaerythritol, dipentaerythritol, and ditrimethylolethane.
 水酸基及び酸基の少なくとも一方を有する化合物がポリマーの場合、好ましい態様は、ポリマーが、水酸基を有する繰り返し単位及び酸基(好ましくは、カルボキシ基)を有する繰り返し単位の少なくとも一方の繰り返し単位を有する態様である。
 より好ましい態様は、ポリマーが、水酸基を有する繰り返し単位及び酸基(好ましくは、カルボキシ基)を有する繰り返し単位の両方の繰り返し単位を有する態様である。
 上記の好ましい態様及びより好ましい態様において、水酸基を有する繰り返し単位は、ヒドロキシアルキル(メタ)アクリレートに由来の繰り返し単位であることが好ましい。
 上記の好ましい態様及びより好ましい態様において、酸基(好ましくは、カルボキシ基)を有する繰り返し単位は、(メタ)アクリル酸に由来の繰り返し単位であることが好ましい。
When the compound having at least one of a hydroxyl group and an acid group is a polymer, a preferable embodiment is that the polymer has at least one repeating unit having a repeating unit having a hydroxyl group and a repeating unit having an acid group (preferably a carboxy group). Is.
In a more preferred embodiment, the polymer has both a repeating unit having a hydroxyl group and a repeating unit having an acid group (preferably a carboxy group).
In the preferred and more preferred embodiments described above, the repeating unit having a hydroxyl group is preferably a repeating unit derived from hydroxyalkyl(meth)acrylate.
In the above preferred and more preferred embodiments, the repeating unit having an acid group (preferably a carboxy group) is preferably a repeating unit derived from (meth)acrylic acid.
 水酸基及び酸基の少なくとも一方を有するポリマーは、水酸基を有する繰り返し単位又は酸基(好ましくは、カルボキシ基)を有する繰り返し単位と共重合可能な他の繰り返し単位を更に有していてもよい。
 他の繰り返し単位としては、特に制限されず、アルキル(メタ)アクリレートに由来の繰り返し単位、アラルキル(メタ)アクリレートに由来の繰り返し単位、スチレンに由来の繰り返し単位等が挙げられる。
The polymer having at least one of a hydroxyl group and an acid group may further have a repeating unit having a hydroxyl group or another repeating unit copolymerizable with the repeating unit having an acid group (preferably a carboxy group).
The other repeating unit is not particularly limited, and examples thereof include a repeating unit derived from an alkyl(meth)acrylate, a repeating unit derived from an aralkyl(meth)acrylate, and a repeating unit derived from styrene.
 水酸基及び酸基の少なくとも一方を有するポリマーは、転写性の観点から、アクリル酸に由来の繰り返し単位及びアクリル酸エステル由来の繰り返し単位の合計含有量が、ポリマーの全繰り返し単位に対して、30mol%~100mol%であることが好ましく、50mol%~100mol%であることがより好ましい。 From the viewpoint of transferability, the polymer having at least one of a hydroxyl group and an acid group has a total content of repeating units derived from acrylic acid and repeating units derived from acrylic acid ester of 30 mol% with respect to all repeating units of the polymer. It is preferably ˜100 mol %, and more preferably 50 mol% to 100 mol %.
 水酸基及び酸基の少なくとも一方を有するポリマーの重量平均分子量は、特に制限されないが、2,000~100,000であることが好ましく、3,000~80,000であることがより好ましく、4,000~50,000であることが更に好ましい。
 水酸基及び酸基の少なくとも一方を有するポリマーの重量平均分子量は、既述の方法(即ち、GPC)によって測定されるポリスチレン換算の重量平均分子量である。
The weight average molecular weight of the polymer having at least one of a hydroxyl group and an acid group is not particularly limited, but is preferably 2,000 to 100,000, more preferably 3,000 to 80,000, and It is more preferably 000 to 50,000.
The weight average molecular weight of the polymer having at least one of a hydroxyl group and an acid group is a polystyrene equivalent weight average molecular weight measured by the method described above (that is, GPC).
 水酸基及び酸基の少なくとも一方を有するポリマーは、下記の式で表されるポリマーであることが好ましい。 The polymer having at least one of a hydroxyl group and an acid group is preferably a polymer represented by the following formula.
Figure JPOXMLDOC01-appb-C000013

 
Figure JPOXMLDOC01-appb-C000013

 
 上記式において、Zは、水素原子又はメチル基を表す。 In the above formula, Z 1 represents a hydrogen atom or a methyl group.
 熱硬化性樹脂層は、熱反応により結合を形成する官能基として、エポキシ基及びオキセタン基の少なくとも一方を有していてもよい。
 熱硬化性樹脂層は、エポキシ基及びオキセタン基の少なくとも一方を有する化合物を含む態様で、エポキシ基及びオキセタン基の少なくとも一方を有することが好ましい。
The thermosetting resin layer may have at least one of an epoxy group and an oxetane group as a functional group that forms a bond by thermal reaction.
The thermosetting resin layer preferably contains at least one of an epoxy group and an oxetane group in a mode including a compound having at least one of an epoxy group and an oxetane group.
 エポキシ基を有する化合物としては、グリシジルエーテル化合物、ポリカルボン酸グリシジルエステル化合物等の低分子化合物、側鎖にエポキシ基を有する繰り返し単位を有するポリマーなどが挙げられる。
 側鎖にエポキシ基を有する繰り返し単位としては、グリシジル(メタ)アクリレートに由来の繰り返し単位が好ましい。
Examples of the compound having an epoxy group include low molecular weight compounds such as glycidyl ether compounds and polycarboxylic acid glycidyl ester compounds, and polymers having a repeating unit having an epoxy group in its side chain.
The repeating unit having an epoxy group in the side chain is preferably a repeating unit derived from glycidyl (meth)acrylate.
 エポキシ基及びオキセタン基は、いずれも単独で熱反応するが、カルボキシ基と反応させることが好ましい。
 より好ましい態様としては、熱硬化性樹脂層が、エポキシ基を有する繰り返し単位及びカルボキシ基を有する繰り返し単位の両方を有するポリマーを含む態様である。
Both the epoxy group and the oxetane group are thermally reacted alone, but it is preferable to react with the carboxy group.
In a more preferred embodiment, the thermosetting resin layer contains a polymer having both a repeating unit having an epoxy group and a repeating unit having a carboxy group.
 熱硬化性樹脂層は、熱反応により結合を形成する官能基として、ヒドロキシメチル基及びアルコキシメチル基の少なくとも一方を有していてもよい。
 熱硬化性樹脂層は、ヒドロキシメチル基及びアルコキシメチル基の少なくとも一方を有する化合物を含む態様で、ヒドロキシメチル基及びアルコキシメチル基の少なくとも一方を有することが好ましい。
 ヒドロキシメチル基及びアルコキシメチル基の少なくとも一方を有する化合物としては、ヒドロキシメチルメラミン、アルコキシメチルメラミン、アルコキシメチルグリコールウレア、アルコキシメチルベンゾグアナミン、ヒドロキシメチル置換フェノール等の低分子化合物、N-アルコキシメチルアクリルアミドに由来の繰り返し単位を有するポリマーなどが挙げられる。
 これらの中でも、ヒドロキシメチル基及びアルコキシメチル基の少なくとも一方を有する化合物としては、硬化性の観点から、N-アルコキシメチルアクリルアミドに由来の繰り返し単位を有するポリマーが好ましい。
The thermosetting resin layer may have at least one of a hydroxymethyl group and an alkoxymethyl group as a functional group that forms a bond by thermal reaction.
The thermosetting resin layer preferably contains at least one of a hydroxymethyl group and an alkoxymethyl group in a mode including a compound having at least one of a hydroxymethyl group and an alkoxymethyl group.
As the compound having at least one of a hydroxymethyl group and an alkoxymethyl group, a low-molecular compound such as hydroxymethylmelamine, alkoxymethylmelamine, alkoxymethylglycolurea, alkoxymethylbenzoguanamine, and hydroxymethyl-substituted phenol, derived from N-alkoxymethylacrylamide And a polymer having a repeating unit of.
Among these, as the compound having at least one of a hydroxymethyl group and an alkoxymethyl group, a polymer having a repeating unit derived from N-alkoxymethylacrylamide is preferable from the viewpoint of curability.
 ヒドロキシメチル基及びアルコキシメチル基は、いずれも単独で熱反応するが、水酸基及びカルボキシ基の少なくとも一方と反応させることが好ましい。
 より好ましい態様としては、熱硬化性樹脂層が、N-アルコキシメチルアクリルアミドに由来の繰り返し単位、水酸基を有する繰り返し単位、及びカルボキシ基を有する繰り返し単位を有するポリマーを含む態様である。
Both the hydroxymethyl group and the alkoxymethyl group are thermally reacted independently, but it is preferable to react with at least one of the hydroxyl group and the carboxy group.
In a more preferred embodiment, the thermosetting resin layer contains a polymer having a repeating unit derived from N-alkoxymethylacrylamide, a repeating unit having a hydroxyl group, and a repeating unit having a carboxy group.
-腐食防止剤-
 熱硬化性樹脂層は、腐食防止剤を含んでいてもよい。
 熱硬化性樹脂層が腐食防止剤を含むと、銀ナノワイヤーの腐食が防止されるため、耐久性が向上し得る。
-Corrosion inhibitor-
The thermosetting resin layer may contain a corrosion inhibitor.
When the thermosetting resin layer contains a corrosion inhibitor, the silver nanowires are prevented from being corroded, so that durability can be improved.
 腐食防止剤としては、「ポジ型の感光性樹脂層」において説明した腐食防止剤と同義であり、好ましい例も同様であるため、ここでは説明を省略する。 The corrosion inhibitor has the same meaning as the corrosion inhibitor described in “Positive Photosensitive Resin Layer”, and the preferred examples are also the same, so the description thereof is omitted here.
 熱硬化性樹脂層は、腐食防止剤を含む場合、腐食防止剤を1種のみ含んでいてもよく、2種以上含んでいてもよい。 When the thermosetting resin layer contains a corrosion inhibitor, it may contain only one type of corrosion inhibitor or may contain two or more types of corrosion inhibitors.
 熱硬化性樹脂層が腐食防止剤を含む場合、熱硬化性樹脂層における腐食防止剤の含有率は、熱硬化性樹脂層の全質量に対して、0.001質量%~5質量%であることが好ましく、0.005質量%~3質量%であることが好ましい。 When the thermosetting resin layer contains a corrosion inhibitor, the content of the corrosion inhibitor in the thermosetting resin layer is 0.001% by mass to 5% by mass based on the total mass of the thermosetting resin layer. It is preferably 0.005% by mass to 3% by mass.
-界面活性剤-
 熱硬化性樹脂層は、界面活性剤を含んでいてもよい。
 熱硬化性樹脂層が界面活性剤を含むと、膜厚の均一性が向上し得る。
 界面活性剤としては、「ポジ型の感光性樹脂層」において説明した界面活性剤と同義であり、好ましい例も同様であるため、ここでは説明を省略する。
-Surfactant-
The thermosetting resin layer may contain a surfactant.
When the thermosetting resin layer contains a surfactant, the uniformity of the film thickness can be improved.
The surfactant has the same meaning as the surfactant described in “Positive-type photosensitive resin layer”, and the preferred examples are also the same, and therefore the description thereof is omitted here.
 熱硬化性樹脂層は、界面活性剤を含む場合、界面活性剤を1種のみ含んでいてもよく、2種以上含んでいてもよい。 When the thermosetting resin layer contains a surfactant, the thermosetting resin layer may contain only one type of surfactant, or may contain two or more types of surfactant.
 熱硬化性樹脂層が界面活性剤を含む場合、熱硬化性樹脂層における界面活性剤の含有率は、膜厚の均一性の観点から、熱硬化性樹脂層の全質量に対して、0.05質量%~10質量%であることが好ましく、0.05質量%~5質量%であることが好ましい。 When the thermosetting resin layer contains a surfactant, the content ratio of the surfactant in the thermosetting resin layer is 0. 0 with respect to the total mass of the thermosetting resin layer from the viewpoint of the film thickness uniformity. The amount is preferably 05% by mass to 10% by mass, and more preferably 0.05% by mass to 5% by mass.
-他の成分-
 熱硬化性樹脂層は、上記成分以外の成分(以下、「他の成分」ともいう。)を含んでいてもよい。
 他の成分は、特に制限されず、目的等に応じて、適宜選択することができる。
 他の成分としては、重合禁止剤、紫外線吸収剤、現像促進剤、着色剤等が挙げられる。
-Other ingredients-
The thermosetting resin layer may contain components other than the above components (hereinafter, also referred to as “other components”).
Other components are not particularly limited and can be appropriately selected depending on the purpose and the like.
Other components include a polymerization inhibitor, an ultraviolet absorber, a development accelerator, a coloring agent and the like.
-熱硬化性樹脂層の厚さ-
 熱硬化性樹脂層の厚さは、特に制限されず、例えば、1nm~10,000nmであることが好ましく、1nm~5,000nmであることがより好ましく、1nm~1,000nmであることが更に好ましく、1nm~300nmであることが特に好ましく、20nm~100nmであることが最も好ましい。
 熱硬化性樹脂層の厚さが、上記範囲内であると、硬化後の樹脂層(即ち、熱硬化樹脂層)が基板からより剥離し難くなる傾向がある。また、湿熱環境下に曝された場合であっても、シート抵抗値がより上昇し難く、耐久性により優れる回路基板を形成し得る。
-Thickness of thermosetting resin layer-
The thickness of the thermosetting resin layer is not particularly limited and is, for example, preferably 1 nm to 10,000 nm, more preferably 1 nm to 5,000 nm, further preferably 1 nm to 1,000 nm. It is particularly preferably 1 nm to 300 nm, and most preferably 20 nm to 100 nm.
When the thickness of the thermosetting resin layer is within the above range, the cured resin layer (that is, the thermosetting resin layer) tends to be more difficult to peel from the substrate. Further, even when exposed to a moist heat environment, it is possible to form a circuit board in which the sheet resistance value is less likely to increase and the durability is superior.
 熱硬化性樹脂層の厚さは、以下の方法により測定される。
 熱硬化性樹脂層の厚さ方向の断面観察像において、無作為に選択した5箇所で測定される熱硬化性樹脂層の厚さの算術平均値を求め、得られた値を熱硬化性樹脂層の厚さとする。
 熱硬化性樹脂層の厚さ方向の断面観察像は、走査型電子顕微鏡(SEM)を用いて得ることができる。
The thickness of the thermosetting resin layer is measured by the following method.
In the cross-sectional observation image in the thickness direction of the thermosetting resin layer, the arithmetic mean value of the thickness of the thermosetting resin layer measured at five randomly selected points was calculated, and the obtained value was used as the thermosetting resin. The layer thickness.
The cross-sectional observation image of the thermosetting resin layer in the thickness direction can be obtained using a scanning electron microscope (SEM).
-熱硬化性樹脂層の最低透過率-
 波長400nm~700nmにおける熱硬化性樹脂層の最低透過率は、80%以上であることが好ましく、90%以上であることがより好ましい。
 上記熱硬化性樹脂層の最低透過率の測定方法としては、分光光度計〔例えば、大塚電子(株)製のMCPD-6800〕を用いて測定する方法が挙げられる。
-Minimum transmittance of thermosetting resin layer-
The minimum transmittance of the thermosetting resin layer at a wavelength of 400 nm to 700 nm is preferably 80% or more, more preferably 90% or more.
Examples of the method for measuring the minimum transmittance of the thermosetting resin layer include a method using a spectrophotometer [eg, MCPD-6800 manufactured by Otsuka Electronics Co., Ltd.].
-熱硬化性樹脂層の接触抵抗-
 熱硬化性樹脂層の接触抵抗は、硬化後の樹脂層(即ち、熱硬化樹脂層)の導電性の観点から、200Ω以下であることが好ましく、1Ω~200Ωであることがより好ましく、1Ω~100Ωであることが更に好ましく、1Ω~50Ωであることが特に好ましい。
-Contact resistance of thermosetting resin layer-
The contact resistance of the thermosetting resin layer is preferably 200 Ω or less, more preferably 1 Ω to 200 Ω, and more preferably 1 Ω to, from the viewpoint of the conductivity of the cured resin layer (that is, the thermosetting resin layer). It is more preferably 100Ω, and particularly preferably 1Ω to 50Ω.
 熱硬化性樹脂層の接触抵抗は、TLM(Transmission Line Model)法によって測定される。具体的な測定方法は、以下のとおりである。
 基材(例えば、シクロオレフィンポリマーフィルム)上に、2mm、4mm、6mm、8mm、12mm、及び20mmの間隔で、互いに平行かつ独立に配置された7つの銅電極(厚さ:300nm、幅:500μm)を形成する。次に、7つの銅電極上に、1つの感光性転写材料を貼り合わせることによって、銅電極上に、熱硬化性樹脂層を介して銀ナノワイヤー層が積層された構造を有する試験体を作製する。上記試験体の平面視において、銀ナノワイヤー層は、7つの銅電極を横断するように配置されており、各銅電極と銀ナノワイヤー層とのなす角度は、90°である。隣り合う銅電極間の抵抗を測定した後、銅電極間の抵抗(縦軸)及び距離(横軸)の関係をプロットすることによって、熱硬化性樹脂層の接触抵抗を求める。
 銅電極間の抵抗の測定装置としては、例えば、抵抗率計(商品名:ロレスタ-GP、(株)三菱ケミカルアナリテック製)を用いることができる。但し、測定装置は、これに限定されない。
The contact resistance of the thermosetting resin layer is measured by the TLM (Transmission Line Model) method. The specific measuring method is as follows.
Seven copper electrodes (thickness: 300 nm, width: 500 μm) arranged on a substrate (for example, a cycloolefin polymer film) in parallel and independently at intervals of 2 mm, 4 mm, 6 mm, 8 mm, 12 mm, and 20 mm. ) Is formed. Next, one photosensitive transfer material was pasted on the seven copper electrodes to produce a test body having a structure in which a silver nanowire layer was laminated on the copper electrodes via a thermosetting resin layer. To do. In a plan view of the test body, the silver nanowire layer is arranged so as to cross the seven copper electrodes, and the angle formed by each copper electrode and the silver nanowire layer is 90°. After measuring the resistance between adjacent copper electrodes, the contact resistance of the thermosetting resin layer is obtained by plotting the relationship between the resistance (vertical axis) and the distance (horizontal axis) between the copper electrodes.
As a device for measuring the resistance between the copper electrodes, for example, a resistivity meter (trade name: Loresta-GP, manufactured by Mitsubishi Chemical Analytech Co., Ltd.) can be used. However, the measuring device is not limited to this.
-熱硬化性樹脂層のガラス転移温度-
 熱硬化性樹脂層のガラス転移温度は、塗布性及び基板へ貼り合わせる際の密着性の観点から、-50℃~100℃であることが好ましく、-30℃~80℃であることがより好ましく、-10℃~50℃であることが更に好ましい。
 熱硬化性樹脂層のガラス転移温度は、熱硬化性樹脂層形成用塗布液を基材に塗布し、熱硬化性樹脂層が硬化しない温度で溶剤を乾燥して形成された熱硬化樹脂層を、示差走査熱量計を用いて、DSC(Differential scanning calorimetry)分析を行うことによって求める。
 熱硬化性樹脂層のガラス転移温度は、熱硬化性樹脂層に含まれる化合物(ブロックイソシアネート化合物、水酸基を有する化合物、酸基を有する化合物等)として、ガラス転移温度の異なる化合物を適宜選択することで、調整することができる。
-Glass transition temperature of thermosetting resin layer-
The glass transition temperature of the thermosetting resin layer is preferably −50° C. to 100° C., and more preferably −30° C. to 80° C., from the viewpoint of coating properties and adhesiveness when it is bonded to a substrate. , -10°C to 50°C is more preferable.
The glass transition temperature of the thermosetting resin layer is the thermosetting resin layer formed by applying the thermosetting resin layer forming coating solution to the substrate and drying the solvent at a temperature at which the thermosetting resin layer does not cure. , DSC (Differential scanning calorimetry) analysis using a differential scanning calorimeter.
Regarding the glass transition temperature of the thermosetting resin layer, a compound having a different glass transition temperature is appropriately selected as a compound (block isocyanate compound, compound having a hydroxyl group, compound having an acid group, etc.) contained in the thermosetting resin layer. Can be adjusted.
(熱硬化性樹脂層の形成方法)
 熱硬化性樹脂層の形成方法は、特に制限されず、公知の方法を適用することができる。
 熱硬化性樹脂層としては、例えば、既述の各成分を含む熱硬化性樹脂層形成用塗布液を、被塗布物上に塗布し、乾燥させる方法が挙げられる。
(Method of forming thermosetting resin layer)
The method for forming the thermosetting resin layer is not particularly limited, and a known method can be applied.
Examples of the thermosetting resin layer include a method in which a coating liquid for forming a thermosetting resin layer containing each of the above-mentioned components is applied onto an object to be coated and dried.
 塗布方法は、特に制限されず、公知の塗布方法を適用することができる。
 塗布方法としては、スリット塗布、スピン塗布、カーテン塗布、インクジェット塗布等が挙げられる。
The coating method is not particularly limited, and a known coating method can be applied.
Examples of the coating method include slit coating, spin coating, curtain coating, inkjet coating and the like.
 乾燥温度は、特に制限されず、溶剤等の揮発性成分の種類に応じて、適宜設定することができる。
 乾燥温度は、例えば、60℃~120℃に設定することができる。
The drying temperature is not particularly limited and can be appropriately set depending on the type of volatile components such as a solvent.
The drying temperature can be set to, for example, 60°C to 120°C.
 熱硬化性樹脂層形成用塗布液は、例えば、既述の各成分、及び溶剤を任意の割合で混合することによって調製することができる。 The thermosetting resin layer-forming coating liquid can be prepared, for example, by mixing the above-mentioned components and a solvent in an arbitrary ratio.
 溶剤は、特に制限されず、公知の溶剤を用いることができる。
 溶剤としては、「感光性樹脂層の形成方法」において説明した溶剤と同義であり、好ましい例も同様であるため、ここでは説明を省略する。
The solvent is not particularly limited, and a known solvent can be used.
The solvent has the same meaning as the solvent described in “Method for forming photosensitive resin layer”, and the preferred examples are also the same, and therefore the description thereof is omitted here.
 熱硬化性樹脂層において、熱硬化性樹脂層形成用塗布液に含まれる溶剤は、完全に除去されている必要はない。
 熱硬化性樹脂層は、溶剤を含まないか、又は、熱硬化性樹脂層の全質量に対して、0質量%を超えて1質量%以下であることが好ましく、溶剤を含まないか、又は、熱硬化性樹脂層の全質量に対して、0質量%を超えて0.5質量%以下であることがより好ましい。
In the thermosetting resin layer, the solvent contained in the coating liquid for forming the thermosetting resin layer does not need to be completely removed.
The thermosetting resin layer contains no solvent, or preferably contains more than 0 mass% and 1 mass% or less of the total mass of the thermosetting resin layer and contains no solvent, or More preferably, it is more than 0% by mass and 0.5% by mass or less based on the total mass of the thermosetting resin layer.
 熱硬化性樹脂層形成用塗布液の固形分濃度は、特に制限されない。
 熱硬化性樹脂層形成用塗布液の固形分濃度としては、塗布適性の観点から、0.1質量%~30質量%であることが好ましく、0.5質量%~20質量%であることがより好ましい。
The solid content concentration of the thermosetting resin layer-forming coating liquid is not particularly limited.
From the viewpoint of coating suitability, the solid content concentration of the thermosetting resin layer forming coating liquid is preferably 0.1% by mass to 30% by mass, and 0.5% by mass to 20% by mass. More preferable.
 本開示において、「熱硬化性樹脂層形成用塗布液の固形分濃度」とは、熱硬化性樹脂層形成用塗布液の全質量に対する、熱硬化性樹脂層形成用塗布液から溶剤等の揮発性成分を除いた残渣の割合を意味する。 In the present disclosure, the “solid content concentration of the thermosetting resin layer-forming coating liquid” refers to volatilization of a solvent or the like from the thermosetting resin layer-forming coating liquid with respect to the total mass of the thermosetting resin layer-forming coating liquid. It means the ratio of the residue excluding the sex components.
<保護フィルム>
 本開示の感光性転写材料は、熱硬化性樹脂層の銀ナノワイヤー層側とは反対側の面に、保護フィルムを有していてもよい。
 保護フィルムとしては、ポリエチレンテレフタレートフィルム、ポリプロピレンフィルム、ポリスチレンフィルム、ポリカーボネートフィルム等が挙げられる。
 保護フィルムについては、例えば、特開2006-259138号公報の段落[0083]~[0087]、及び[0093]に記載がある。これらの記載は、参照により本明細書に取り込まれる。
<Protective film>
The photosensitive transfer material of the present disclosure may have a protective film on the surface of the thermosetting resin layer opposite to the silver nanowire layer side.
Examples of the protective film include polyethylene terephthalate film, polypropylene film, polystyrene film, polycarbonate film and the like.
The protective film is described in paragraphs [0083] to [0087] and [0093] of JP 2006-259138 A, for example. These descriptions are incorporated herein by reference.
[パターン付き基板の製造方法]
 本開示のパターン付き基板の製造方法は、既述の感光性転写材料、及び、基板を貼り合わせる工程(以下、「貼り合わせ工程」ともいう。)と、上記感光性転写材料における感光性樹脂層をパターン露光する工程(以下、「露光工程」ともいう。)と、上記パターン露光を経た感光性転写材料を現像してパターンを形成する工程(以下、「現像工程」ともいう。)と、上記熱硬化性樹脂層を熱硬化させる工程(以下、「熱硬化工程」ともいう。)と、をこの順に含む。
 本開示のパターン付き基板の製造方法は、貼り合わせ工程と、露光工程と、現像工程と、熱硬化工程と、をこの順に含むため、導電パターンが基板から剥離し難いパターン付き基板を製造することができる。
[Method of manufacturing patterned substrate]
The method for producing a patterned substrate of the present disclosure is the above-described photosensitive transfer material and the step of attaching the substrate (hereinafter, also referred to as “attaching step”), and the photosensitive resin layer in the photosensitive transfer material. Pattern exposure (hereinafter, also referred to as "exposure step"), a step of developing the photosensitive transfer material that has undergone the pattern exposure to form a pattern (hereinafter also referred to as "developing step"), The step of thermally curing the thermosetting resin layer (hereinafter, also referred to as “thermosetting step”) is included in this order.
The method for producing a patterned substrate according to the present disclosure includes a bonding step, an exposure step, a developing step, and a thermosetting step in this order, and therefore, a patterned substrate in which the conductive pattern is difficult to peel off from the substrate is produced. You can
<貼り合わせ工程>
 本開示のパターン付き基板の製造方法は、既述の感光性転写材料、及び、基板を貼り合わせる工程(即ち、貼り合わせ工程)を含む。
<Laminating process>
The method for manufacturing a patterned substrate according to the present disclosure includes the above-described photosensitive transfer material and a step of bonding the substrates (that is, a bonding step).
(感光性転写材料)
 本開示のパターン付き基板の製造方法における感光性転写材料は、既述の「感光性転写材料」の項において説明したとおりであり、好ましい態様も同様であるため、ここでは説明を省略する。
 感光性転写材料における感光性樹脂層は、解像性の観点から、ポジ型の感光性樹脂層であることが好ましい。
(Photosensitive transfer material)
The photosensitive transfer material in the method for manufacturing a patterned substrate according to the present disclosure is as described in the above-mentioned “Photosensitive transfer material”, and the preferred embodiment is also the same, and therefore the description thereof is omitted here.
The photosensitive resin layer in the photosensitive transfer material is preferably a positive photosensitive resin layer from the viewpoint of resolution.
(基板)
 基板は、ガラス、シリコン、フィルム等の基材自体が基板であってもよく、ガラス、シリコン、フィルム等の基材上に、必要により、導電層等の任意の層が設けられた基板であってもよい。基板が導電層を更に有する場合には、基板は、基材上に導電層を有することが好ましい。
(substrate)
The substrate may be a substrate such as glass, silicon, or a film itself, or may be a substrate provided with an optional layer such as a conductive layer on the substrate such as glass, silicon, or film, if necessary. May be. When the substrate further has a conductive layer, the substrate preferably has a conductive layer on the base material.
 基材は、ガラス基材又はフィルム基材であることが好ましく、フィルム基材であることがより好ましく、樹脂フィルムであることが更に好ましい。 The base material is preferably a glass base material or a film base material, more preferably a film base material, and further preferably a resin film.
 基材は、透明であることが好ましい。
 透明の基材については、例えば、特開2010-86684号公報、特開2010-152809号公報、及び特開2010-257492号公報に記載がある。これらの記載は、参照により本明細書に取り込まれる。
 基材の屈折率は、1.50~1.52であることが好ましい。
The base material is preferably transparent.
The transparent substrate is described, for example, in JP 2010-86684 A, JP 2010-152809 A and JP 2010-257492 A. These descriptions are incorporated herein by reference.
The refractive index of the base material is preferably 1.50 to 1.52.
 ガラス基材としては、例えば、コーニング社のゴリラガラスに代表される強化ガラスを適用できる。
 基材としてフィルム基材を用いる場合には、光学的に歪みが小さい基材、及び、透明度が高い基材を用いることが好ましい。
As the glass substrate, for example, tempered glass represented by Corning's gorilla glass can be used.
When a film base material is used as the base material, it is preferable to use a base material having small optical distortion and a base material having high transparency.
 樹脂フィルムの材料としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート、ポリカーボネート、トリアセチルセルロース、シクロオレフィンポリマー等が挙げられる。 The material of the resin film includes polyethylene terephthalate (PET), polyethylene naphthalate, polycarbonate, triacetyl cellulose, cycloolefin polymer and the like.
 導電層としては、一般的な回路配線、タッチパネル配線に用いられる任意の導電層等が挙げられる。
 導電層としては、金属層、導電性金属酸化物層等が挙げられる。
 本開示において、「導電性」とは、体積抵抗率が1×10Ωcm未満であることを意味する。体積抵抗率は、1×10Ωcm未満であることが好ましい。
Examples of the conductive layer include general circuit wiring and any conductive layer used for touch panel wiring.
Examples of the conductive layer include a metal layer and a conductive metal oxide layer.
In the present disclosure, “conductive” means that the volume resistivity is less than 1×10 6 Ωcm. The volume resistivity is preferably less than 1×10 4 Ωcm.
 金属層の材料としては、Al(アルミニウム)、Zn(亜鉛)、Cu(銅)、Fe(鉄)、Ni(ニッケル)、Cr(クロム)、Mo(モリブデン)等が挙げられる。
 金属層を形成する金属は、1種の金属元素からなる単体の金属であってもよく、2種以上の金属元素を含む金属混合物であってもよく、少なくとも1種の金属元素を含む合金であってもよい。
 導電性金属酸化物層を形成する導電性金属酸化物としては、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、SiO等が挙げられる。
Examples of the material of the metal layer include Al (aluminum), Zn (zinc), Cu (copper), Fe (iron), Ni (nickel), Cr (chrome), Mo (molybdenum), and the like.
The metal forming the metal layer may be a single metal consisting of one kind of metal element, a metal mixture containing two or more kinds of metal elements, or an alloy containing at least one kind of metal element. It may be.
Examples of the conductive metal oxide forming the conductive metal oxide layer include ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), and SiO 2 .
 導電層は、導電性及び細線形成性の観点から、金属層及び導電性金属酸化物層からなる群より選ばれる少なくとも1種の層であることが好ましく、金属層であることがより好ましく、銅層であることが更に好ましい。 The conductive layer is preferably at least one kind of layer selected from the group consisting of a metal layer and a conductive metal oxide layer, more preferably a metal layer, from the viewpoint of conductivity and fine wire forming property, and a copper layer. More preferably, it is a layer.
 導電層は、静電容量型タッチパネルに用いられる視認部のセンサーに相当する電極パターン又は周辺取り出し部の配線であることが好ましい。 The conductive layer is preferably an electrode pattern corresponding to the sensor of the visual recognition part used in the capacitive touch panel or a wiring of the peripheral extraction part.
 貼り合わせ工程においては、感光性転写材料及び基板を、感光性転写材料における熱硬化性樹脂層と基板とを接触させることによって、貼り合わせる。
 感光性転写材料及び基板の貼り合わせは、真空ラミネーター、オートカットラミネーター等の公知のラミネーターを用いて行うことができる。
In the bonding step, the photosensitive transfer material and the substrate are bonded by bringing the thermosetting resin layer in the photosensitive transfer material into contact with the substrate.
The lamination of the photosensitive transfer material and the substrate can be performed using a known laminator such as a vacuum laminator and an auto cut laminator.
 ラミネート温度としては、特に制限はない。
 ラミネート温度は、80℃~150℃であることが好ましく、90℃~150℃であることがより好ましく、100℃~150℃であることが更に好ましい。
 ゴムローラーを備えたラミネーターを用いる場合、ラミネート温度とは、ゴムローラーの温度を指す。
The laminating temperature is not particularly limited.
The laminating temperature is preferably 80° C. to 150° C., more preferably 90° C. to 150° C., and further preferably 100° C. to 150° C.
When using a laminator equipped with a rubber roller, the laminating temperature refers to the temperature of the rubber roller.
 ラミネート時の基板温度としては、特に制限はない。
 ラミネート時の基板温度は、例えば、10℃~150℃とすることができ、20℃~150℃であることが好ましく、30℃~150℃であることがより好ましい。
 基板として樹脂基板を用いる場合には、ラミネート時の基板温度は、10℃~80℃であることが好ましく、20℃~60℃であることがより好ましく、30℃~50℃であることが更に好ましい。
The substrate temperature during lamination is not particularly limited.
The substrate temperature during lamination may be, for example, 10° C. to 150° C., preferably 20° C. to 150° C., and more preferably 30° C. to 150° C.
When a resin substrate is used as the substrate, the substrate temperature during lamination is preferably 10°C to 80°C, more preferably 20°C to 60°C, and further preferably 30°C to 50°C. preferable.
 ラミネート時の線圧としては、特に制限はない。
 ラミネート時の線圧は、0.5N/cm~20N/cmであることが好ましく、1N/cm~10N/cmであることがより好ましく、1N/cm~5N/cmであることが更に好ましい。
The linear pressure during lamination is not particularly limited.
The linear pressure during lamination is preferably 0.5 N/cm to 20 N/cm, more preferably 1 N/cm to 10 N/cm, and further preferably 1 N/cm to 5 N/cm.
 ラミネート時の搬送速度(所謂、ラミネート速度)としては、特に制限はない。
 ラミネート時の搬送速度は、0.5m/分~5m/分であることが好ましく、1.5m/分~3m/分であることがより好ましい。
There is no particular limitation on the conveying speed during laminating (so-called laminating speed).
The conveying speed during lamination is preferably 0.5 m/min to 5 m/min, more preferably 1.5 m/min to 3 m/min.
<露光工程>
 本開示のパターン付き基板の製造方法は、上記感光性転写材料における感光性樹脂層をパターン露光する工程(即ち、露光工程)を含む。
 露光工程においては、感光性転写材料における感光性樹脂層をパターン露光することによって、感光性樹脂層に露光部と非露光部とを形成する。
<Exposure process>
The method for producing a patterned substrate according to the present disclosure includes a step of pattern-exposing the photosensitive resin layer in the photosensitive transfer material (that is, an exposure step).
In the exposure step, the photosensitive resin layer in the photosensitive transfer material is pattern-exposed to form an exposed portion and a non-exposed portion on the photosensitive resin layer.
 露光工程においては、感光性転写材料における感光性樹脂層がポジ型である場合、露光された感光性樹脂層(所謂、露光部)は、極性変化によって現像液への溶解性が増大する。感光性転写材料における感光性樹脂層がネガ型である場合、露光された感光性樹脂層(所謂、非露光部)は、硬化する。 In the exposure step, when the photosensitive resin layer in the photosensitive transfer material is a positive type, the exposed photosensitive resin layer (so-called exposed portion) has increased solubility in the developing solution due to polarity change. When the photosensitive resin layer in the photosensitive transfer material is a negative type, the exposed photosensitive resin layer (so-called unexposed portion) is cured.
 パターン露光の方法は、マスク(「フォトマスク」ともいう。)を介した露光であってもよく、レーザー等を用いたデジタル露光であってもよい。 The pattern exposure method may be exposure through a mask (also called “photomask”) or digital exposure using a laser or the like.
 露光の光源としては、特に制限はない。
 露光の光源は、感光性樹脂層に含まれる成分に応じて、適宜選択することができる。
 感光性樹脂層がポジ型である場合、光源としては、露光部が現像液に溶解し得る波長域の光(例えば、365nm又は405nm)を照射できる光源が挙げられる。
 また、感光性樹脂層がネガ型である場合、光源としては、露光部が硬化し得る波長域の光(例えば、365nm又は405nm)を照射できる光源が挙げられる。
 光源の具体例としては、各種レーザー、発光ダイオード(LED)、超高圧水銀灯、高圧水銀灯、メタルハライドランプ等が挙げられる。
The light source for exposure is not particularly limited.
The light source for exposure can be appropriately selected depending on the components contained in the photosensitive resin layer.
When the photosensitive resin layer is of a positive type, examples of the light source include a light source capable of irradiating light (for example, 365 nm or 405 nm) in a wavelength range in which the exposed portion can be dissolved in the developing solution.
When the photosensitive resin layer is a negative type, examples of the light source include a light source capable of irradiating with light in a wavelength range in which the exposed portion can be cured (for example, 365 nm or 405 nm).
Specific examples of the light source include various lasers, light emitting diodes (LEDs), ultrahigh pressure mercury lamps, high pressure mercury lamps, metal halide lamps and the like.
 露光量は、5mJ/cm~200mJ/cmであることが好ましく、10mJ/cm~200mJ/cmであることがより好ましい。 Exposure is preferably 5mJ / cm 2 ~ 200mJ / cm 2, more preferably 10mJ / cm 2 ~ 200mJ / cm 2.
 露光工程においては、基材に貼り合わされた感光性転写材料から仮支持体を剥離した後、感光性樹脂層をパターン露光してもよく、仮支持体を残したまま、感光性樹脂層をパターン露光してもよい。 In the exposure step, the photosensitive resin layer may be pattern-exposed after the temporary support is peeled off from the photosensitive transfer material attached to the substrate, and the photosensitive resin layer may be patterned while leaving the temporary support. You may expose.
<現像工程>
 本開示のパターン付き基板の製造方法は、上記パターン露光を経た感光性転写材料を現像してパターンを形成する工程(即ち、現像工程)を含む。
<Developing process>
The method for manufacturing a patterned substrate of the present disclosure includes a step of developing the photosensitive transfer material that has undergone the pattern exposure to form a pattern (that is, a developing step).
 現像工程においては、感光性転写材料における感光性樹脂層がポジ型である場合、感光性転写材料の露光部を現像液によって除去することで、パターンを形成できる。
 また、感光性転写材料における感光性樹脂層がネガ型である場合、感光性転写材料の非露光部を現像液によって除去することで、パターンを形成できる。
 現像工程においては、銀ナノワイヤー層及び熱硬化性樹脂層についても、感光性樹脂層のパターンをマスクとして現像されるため、銀ナノワイヤー層及び熱硬化性樹脂層についても同時にパターンを形成できる。
In the developing step, when the photosensitive resin layer in the photosensitive transfer material is a positive type, a pattern can be formed by removing the exposed portion of the photosensitive transfer material with a developing solution.
When the photosensitive resin layer in the photosensitive transfer material is a negative type, the pattern can be formed by removing the non-exposed portion of the photosensitive transfer material with a developing solution.
In the developing step, since the silver nanowire layer and the thermosetting resin layer are also developed using the pattern of the photosensitive resin layer as a mask, the silver nanowire layer and the thermosetting resin layer can be simultaneously formed with a pattern.
 現像液としては、特に制限はなく、例えば、特開平5-72724号公報に記載の現像液等の公知の現像液を用いることができる。 The developer is not particularly limited and, for example, a known developer such as the developer described in JP-A-5-72724 can be used.
 現像液は、アルカリ性水溶液であることが好ましい。
 アルカリ性水溶液に含まれ得るアルカリ性化合物としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、コリン(2-ヒドロキシエチルトリメチルアンモニウムヒドロキシド)等が挙げられる。
The developer is preferably an alkaline aqueous solution.
As the alkaline compound that can be contained in the alkaline aqueous solution, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, Examples thereof include tetrabutylammonium hydroxide and choline (2-hydroxyethyltrimethylammonium hydroxide).
 アルカリ性水溶液の25℃におけるpHは、8~13であることが好ましく、9~12であることがより好ましく、10~12であることが更に好ましい。 The pH of the alkaline aqueous solution at 25° C. is preferably 8 to 13, more preferably 9 to 12, and even more preferably 10 to 12.
 アルカリ性水溶液におけるアルカリ性化合物の含有率は、アルカリ性水溶液の全質量に対して、0.1質量%~5質量%であることが好ましく、0.1質量%~3質量%であることがより好ましい。 The content of the alkaline compound in the alkaline aqueous solution is preferably 0.1% by mass to 5% by mass, and more preferably 0.1% by mass to 3% by mass, based on the total mass of the alkaline aqueous solution.
 現像液の液温度は、20℃~40℃であることが好ましい。 The liquid temperature of the developer is preferably 20°C to 40°C.
 現像の方式としては、例えば、パドル現像、シャワー現像、シャワー及びスピン現像、ディップ現像等の方式が挙げられる。 Examples of development methods include paddle development, shower development, shower and spin development, and dip development.
 パターン露光、現像等については、例えば、特開2006-23696号公報の段落[0035]~[0051]の記載を参照することもできる。 Regarding pattern exposure, development, etc., for example, the description in paragraphs [0035] to [0051] of JP 2006-23696 A can be referred to.
<熱硬化工程>
 本開示のパターン付き基板の製造方法は、既述の感光性転写材料における熱硬化性樹脂層を熱硬化させる工程(即ち、熱硬化工程)を含む。
<Thermosetting step>
The method for manufacturing a patterned substrate according to the present disclosure includes a step of thermally curing the thermosetting resin layer in the photosensitive transfer material described above (that is, a thermosetting step).
 熱硬化工程においては、熱硬化性樹脂層が熱硬化される。 In the thermosetting process, the thermosetting resin layer is thermoset.
 熱硬化性樹脂層を熱硬化させるための加熱温度及び加熱時間は、熱硬化性樹脂層を熱硬化できれば、特に制限はなく、熱硬化性樹脂層に含まれる成分に応じて、適宜設定することができる。
 加熱温度は、100℃~180℃であることが好ましく、110℃~160℃であることがより好ましく、120℃~150℃であることが更に好ましい。
 加熱温度が上記範囲内であると、熱硬化性樹脂層を、より効率良く熱硬化させることができる。
 加熱時間は、0.1分間~120分間であることが好ましく、0.5分間~60分間であることがより好ましく、1分間~30分間であることが更に好ましい。
 加熱時間が上記範囲内であると、加熱による基板の変色及び変形が生じ難い。
The heating temperature and heating time for thermosetting the thermosetting resin layer are not particularly limited as long as the thermosetting resin layer can be thermoset, and may be appropriately set according to the components contained in the thermosetting resin layer. You can
The heating temperature is preferably 100°C to 180°C, more preferably 110°C to 160°C, and further preferably 120°C to 150°C.
When the heating temperature is within the above range, the thermosetting resin layer can be thermoset more efficiently.
The heating time is preferably 0.1 minutes to 120 minutes, more preferably 0.5 minutes to 60 minutes, and further preferably 1 minute to 30 minutes.
When the heating time is within the above range, discoloration and deformation of the substrate due to heating hardly occur.
 加熱方法は、特に制限されず、公知の加熱方法を適用することができる。
 加熱方法としては、例えば、ホットプレート等の熱源に接触させて加熱する方法、オーブン等を用いて加熱雰囲気下で加熱する方法、及び、温風、赤外線ヒーター等により加熱する方法が挙げられる。
The heating method is not particularly limited, and a known heating method can be applied.
Examples of the heating method include a method of heating by contacting with a heat source such as a hot plate, a method of heating in a heating atmosphere using an oven, and a method of heating with warm air, an infrared heater or the like.
[回路基板の製造方法]
 本開示の回路基板の製造方法は、既述の感光性転写材料、及び、基板を貼り合わせる工程(貼り合わせ工程)と、上記感光性転写材料における感光性樹脂層をパターン露光する工程(露光工程)と、上記パターン露光を経た感光性転写材料を現像してパターンを形成する工程(現像工程)と、上記熱硬化性樹脂層を熱硬化させる工程(熱硬化工程)と、上記パターンにおける、感光性樹脂層又は感光性樹脂層の硬化物を除去する工程(以下、「除去工程」ともいう。)と、をこの順に含む。
 本開示の回路基板の製造方法は、貼り合わせ工程と、露光工程と、現像工程と、熱硬化工程と、をこの順に含むため、除去工程を経た場合であっても、導電パターンが基板から剥離し難い回路基板を製造することができる。
[Circuit board manufacturing method]
The method for manufacturing a circuit board according to the present disclosure includes a step of bonding the above-mentioned photosensitive transfer material and the substrate (bonding step), and a step of pattern-exposing the photosensitive resin layer in the photosensitive transfer material (exposure step). ), a step of developing the photosensitive transfer material that has undergone the pattern exposure to form a pattern (developing step), a step of thermally curing the thermosetting resin layer (thermosetting step), and The step of removing the cured product of the photosensitive resin layer or the photosensitive resin layer (hereinafter, also referred to as "removal step") is included in this order.
The method for manufacturing a circuit board according to the present disclosure includes a bonding step, an exposure step, a developing step, and a thermosetting step in this order, so that the conductive pattern is peeled off from the board even after the removal step. It is possible to manufacture a circuit board that is difficult to manufacture.
 本開示の回路基板の製造方法における貼り合わせ工程、露光工程、現像工程、及び熱硬化工程は、既述の「パターン付き基板の製造方法」における貼り合わせ工程、露光工程、現像工程、及び熱硬化工程とそれぞれ同義であり、好ましい態様も同様であるため、ここでは説明を省略する。 The bonding step, the exposure step, the development step, and the heat curing step in the circuit board manufacturing method of the present disclosure are the bonding step, the exposure step, the development step, and the heat curing in the above-mentioned “method for manufacturing a patterned substrate”. The steps are synonymous with each other, and the preferred embodiments are also the same, and therefore the description thereof is omitted here.
<除去工程>
 本開示の回路基板の製造方法は、現像工程において形成したパターンにおける、感光性樹脂層又は感光性樹脂層の硬化物を除去する工程(除去工程)を含む。
 以下、「現像工程において形成したパターンにおける、感光性樹脂層又は感光性樹脂層の硬化物」を「被除去層」ともいう。
<Removal process>
The circuit board manufacturing method of the present disclosure includes a step (removing step) of removing the photosensitive resin layer or the cured product of the photosensitive resin layer in the pattern formed in the developing step.
Hereinafter, the "photosensitive resin layer or a cured product of the photosensitive resin layer in the pattern formed in the developing step" is also referred to as "removed layer".
 現像工程において、パターンにおける、感光性樹脂層又は感光性樹脂層の硬化物は、通常、パターンの最外層(即ち、パターンを構成する各層のうち、基板から最も遠い位置に配置された層)に配置されている。 In the development step, the photosensitive resin layer or the cured product of the photosensitive resin layer in the pattern is usually formed on the outermost layer of the pattern (that is, among the layers constituting the pattern, the layer arranged at the position farthest from the substrate). It is arranged.
 感光性樹脂層の硬化物としては、例えば、ネガ型の感光性樹脂層の硬化物が挙げられる。ネガ型の感光性樹脂層の硬化物は、例えば、露光工程において、ネガ型の感光性樹脂層が露光されることによって形成される。 As the cured product of the photosensitive resin layer, for example, a cured product of a negative photosensitive resin layer can be mentioned. The cured product of the negative photosensitive resin layer is formed, for example, by exposing the negative photosensitive resin layer in the exposure step.
 被除去層を除去する方法としては、例えば、薬品処理により被除去層を除去する方法が挙げられ、除去液を用いる方法が好ましい。 As a method of removing the layer to be removed, for example, a method of removing the layer to be removed by chemical treatment can be mentioned, and a method using a removing liquid is preferable.
 被除去層を除去する方法の具体例としては、好ましくは30℃~80℃、より好ましくは50℃~80℃にて撹拌中の除去液中に、被除去層を有する基板を1分間~30分間浸漬する方法が挙げられる。 As a specific example of the method for removing the layer to be removed, the substrate having the layer to be removed is placed in the removal liquid under stirring at preferably 30° C. to 80° C., more preferably 50° C. to 80° C. for 1 minute to 30 minutes A method of dipping for a minute may be mentioned.
 除去液としては、除去性の観点から、水を30質量%以上含む除去液が好ましく、水を50質量%以上含む除去液がより好ましく、水を70質量%以上含む除去液が更に好ましい。 From the viewpoint of removability, the removing liquid is preferably a removing liquid containing 30% by mass or more of water, more preferably a removing liquid containing 50% by mass or more of water, and further preferably a removing liquid containing 70% by mass or more of water.
 除去液は、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム等の無機アルカリ成分、又は、第1級アミン化合物、第2級アミン化合物、第3級アミン化合物、第4級アンモニウム塩化合物等の有機アルカリ成分を含むことが好ましい。 The removing liquid is an inorganic alkali component such as sodium hydroxide, potassium hydroxide or sodium carbonate, or an organic alkali such as a primary amine compound, a secondary amine compound, a tertiary amine compound or a quaternary ammonium salt compound. It is preferable to include components.
 アルカリ成分の含有率は、除去性の観点から、除去液の全質量に対して、0.01質量%~20質量%であることが好ましく、0.1質量%~10質量%であることがより好ましい。 From the viewpoint of removability, the content of the alkali component is preferably 0.01% by mass to 20% by mass, and more preferably 0.1% by mass to 10% by mass, based on the total mass of the removing liquid. More preferable.
 本開示の回路基板の製造方法は、貼り合わせ工程、露光工程、現像工程、熱硬化工程、及び除去工程以外の工程(所謂、他の工程)を含んでいてもよい。
 他の工程としては、除去工程の前に、現像工程を経て形成されたパターンを全面露光する工程(以下、「全面露光工程」ともいう。)が挙げられる。
The method for manufacturing a circuit board according to the present disclosure may include steps (so-called other steps) other than the bonding step, the exposure step, the developing step, the thermosetting step, and the removing step.
As another process, a process of exposing the entire surface of the pattern formed through the developing process before the removal process (hereinafter, also referred to as “entire surface exposure process”) can be mentioned.
<全面露光工程>
 本開示の回路基板の製造方法は、除去工程の前に、現像工程を経て形成されたパターンを全面露光する工程(全面露光工程)を含んでいてもよい。
<Overall exposure process>
The circuit board manufacturing method of the present disclosure may include a step of exposing the entire surface of the pattern formed through the developing step (entire surface exposing step) before the removing step.
 例えば、パターンにおける感光性樹脂層がポジ型である場合、感光性樹脂層の除去液への溶解性をより向上することができる。 For example, when the photosensitive resin layer in the pattern is a positive type, the solubility of the photosensitive resin layer in the removal liquid can be further improved.
 全面露光工程においては、除去性の観点から、既述の露光工程と同じ波長の光を含む光源を用いることが好ましい。 In the whole surface exposure process, from the viewpoint of removability, it is preferable to use a light source containing light of the same wavelength as in the above-described exposure process.
 全面露光工程における露光量としては、除去性の観点から、5mJ/cm~1,000mJ/cmであることが好ましく、10mJ/cm~800mJ/cmであることがより好ましく、100mJ/cm~500mJ/cmであることが更に好ましい。 The exposure amount in the overall exposure step, from the viewpoint of removability is preferably 5mJ / cm 2 ~ 1,000mJ / cm 2, more preferably 10mJ / cm 2 ~ 800mJ / cm 2, 100mJ / More preferably, it is from cm 2 to 500 mJ/cm 2 .
 既述の除去工程は、必要に応じて、全面露光工程の後に行われてもよい。 The above-mentioned removal step may be performed after the whole surface exposure step, if necessary.
[積層体]
 本開示の積層体は、基板と、熱硬化されてなる樹脂を含む層(以下、「熱硬化樹脂層」ともいう。)と、銀ナノワイヤーを含む層(銀ナノワイヤー層)と、をこの順に有する。
 本開示の積層体は、基板と、熱硬化樹脂層と、銀ナノワイヤー層と、をこの順に有するため、銀ナノワイヤー層により形成される導電パターンが基板から剥離し難い。また、本開示の積層体によれば、基板と、熱硬化樹脂層と、銀ナノワイヤー層と、をこの順に有するため、湿熱環境下に曝された場合であっても、シート抵抗値が上昇し難く、耐久性に優れる回路基板を実現し得る。
[Laminate]
The laminate of the present disclosure includes a substrate, a layer containing a resin obtained by thermosetting (hereinafter, also referred to as “thermosetting resin layer”), and a layer containing silver nanowires (silver nanowire layer). Have in order.
Since the laminate of the present disclosure has the substrate, the thermosetting resin layer, and the silver nanowire layer in this order, it is difficult for the conductive pattern formed by the silver nanowire layer to be peeled from the substrate. Further, according to the laminate of the present disclosure, since it has a substrate, a thermosetting resin layer, and a silver nanowire layer in this order, the sheet resistance value increases even when exposed to a humid heat environment. It is possible to realize a circuit board that is difficult to perform and has excellent durability.
 図2は、本開示の積層体の層構成の一例を示す概略断面図である。
 図2に示す積層体200は、基板50と、熱硬化樹脂層40Bと、銀ナノワイヤー層30と、をこの順で有する。
FIG. 2 is a schematic cross-sectional view showing an example of the layer structure of the laminate of the present disclosure.
The laminated body 200 illustrated in FIG. 2 includes the substrate 50, the thermosetting resin layer 40B, and the silver nanowire layer 30 in this order.
 本開示の積層体において、熱硬化樹脂層は、転写層である熱硬化性樹脂層が硬化されてなる層であり、かつ、銀ナノワイヤー層は、転写層であることが好ましい。
 本開示において、「転写層」とは、転写により形成された層を意味する。
In the laminate of the present disclosure, it is preferable that the thermosetting resin layer is a layer obtained by curing the thermosetting resin layer that is the transfer layer, and the silver nanowire layer is the transfer layer.
In the present disclosure, the “transfer layer” means a layer formed by transfer.
 以下、本開示の積層体の各構成について説明する。 Hereinafter, each configuration of the laminated body of the present disclosure will be described.
<基板>
 本開示の積層体は、基板を有する。
 本開示の積層体における基板は、既述の「パターン付き基板の製造方法」の項において説明した基板と同義であり、好ましい態様も同様であるため、ここでは説明を省略する。
<Substrate>
The laminated body of the present disclosure has a substrate.
The substrate in the laminated body of the present disclosure has the same meaning as the substrate described in the above-mentioned “method for manufacturing a patterned substrate”, and the preferred embodiment is also the same, and therefore the description thereof is omitted here.
<熱硬化樹脂層>
 本開示の積層体は、熱硬化されてなる樹脂を含む層(即ち、熱硬化樹脂層)を有する。
 熱硬化樹脂層は、熱硬化されてなる樹脂を含む層である。
 熱硬化されてなる樹脂は、既述の「熱硬化性樹脂層」の項において説明した成分の硬化物である。熱硬化樹脂層は、熱硬化されてなる樹脂を含む層であるため、基板から剥離し難い。基板から導電パターンがより剥離し難くなる傾向がある。
<Thermosetting resin layer>
The laminate of the present disclosure has a layer containing a resin obtained by thermosetting (that is, a thermosetting resin layer).
The thermosetting resin layer is a layer containing a resin obtained by thermosetting.
The heat-cured resin is a cured product of the components described in the above-mentioned "thermosetting resin layer". Since the thermosetting resin layer is a layer containing a resin that is thermoset, it is difficult to peel from the substrate. The conductive pattern tends to be more difficult to peel from the substrate.
 熱硬化されてなる樹脂は、ウレタン結合を有する架橋樹脂であることが好ましい。
 熱硬化されてなる樹脂がウレタン結合を有していることは、公知の方法〔例えば、IR(infrared spectroscopy)分析〕によって確認することができる。
The heat-cured resin is preferably a crosslinked resin having a urethane bond.
It can be confirmed by a known method [for example, IR (infrared spectroscopy) analysis] that the heat-cured resin has a urethane bond.
 熱硬化樹脂層は、熱硬化されてなる樹脂を1種のみ含んでいてもよく、2種以上含んでいてもよい。 The thermosetting resin layer may contain only one kind of thermosetting resin, or may contain two or more kinds.
 熱硬化樹脂層における熱硬化されてなる樹脂の含有率は、熱硬化樹脂層の全質量に対して、50質量%~100質量%であることが好ましく、70質量%~100質量%であることがより好ましく、90質量%~100質量%であることが更に好ましい。
 熱硬化樹脂層における熱硬化されてなる樹脂の含有率が、上記範囲内であると、基板からより剥離し難くなる傾向がある。また、湿熱環境下に曝された場合であっても、シート抵抗値がより上昇し難く、耐久性により優れる回路基板を形成し得る。
The content of the thermosetting resin in the thermosetting resin layer is preferably 50% by mass to 100% by mass, and 70% by mass to 100% by mass based on the total mass of the thermosetting resin layer. Is more preferable, and 90% by mass to 100% by mass is further preferable.
When the content of the thermosetting resin in the thermosetting resin layer is within the above range, it tends to be more difficult to peel from the substrate. Further, even when exposed to a moist heat environment, it is possible to form a circuit board in which the sheet resistance value is less likely to increase and the durability is superior.
-熱硬化樹脂層の厚さ-
 熱硬化樹脂層の厚さは、特に制限されず、例えば、1nm~10,000nmであることが好ましく、1nm~5,000nmであることがより好ましく、1nm~1,000nmであることが更に好ましく、1nm~300nmであることが特に好ましく、20nm~100nmであることが最も好ましい。
 熱硬化樹脂層の厚さが、上記範囲内であると、熱硬化樹脂層が基板からより剥離し難くなる傾向がある。また、湿熱環境下に曝された場合であっても、シート抵抗値がより上昇し難く、耐久性により優れる回路基板を形成し得る。
-Thickness of thermosetting resin layer-
The thickness of the thermosetting resin layer is not particularly limited and is, for example, preferably 1 nm to 10,000 nm, more preferably 1 nm to 5,000 nm, further preferably 1 nm to 1,000 nm. Particularly preferably, it is 1 nm to 300 nm, and most preferably 20 nm to 100 nm.
When the thickness of the thermosetting resin layer is within the above range, the thermosetting resin layer tends to be more difficult to peel from the substrate. Further, even when exposed to a moist heat environment, it is possible to form a circuit board in which the sheet resistance value is less likely to increase and the durability is superior.
 熱硬化樹脂層の厚さは、以下の方法により測定される。
 熱硬化樹脂層の厚さ方向の断面観察像において、無作為に選択した5箇所で測定される熱硬化樹脂層の厚さの算術平均値を求め、得られた値を熱硬化樹脂層の厚さとする。
 熱硬化樹脂層の厚さ方向の断面観察像は、走査型電子顕微鏡(SEM)を用いて得ることができる。
The thickness of the thermosetting resin layer is measured by the following method.
In the cross-section observation image in the thickness direction of the thermosetting resin layer, the arithmetic mean value of the thickness of the thermosetting resin layer measured at five randomly selected points is calculated, and the obtained value is calculated as the thickness of the thermosetting resin layer. Satoshi
The cross-sectional observation image in the thickness direction of the thermosetting resin layer can be obtained using a scanning electron microscope (SEM).
 熱硬化樹脂層の接触抵抗は、導電性の観点から、200Ω以下であることが好ましく、1Ω~200Ωであることがより好ましく、1Ω~100Ωであることがより好ましく、1Ω~50Ωであることが更に好ましい。 From the viewpoint of conductivity, the contact resistance of the thermosetting resin layer is preferably 200Ω or less, more preferably 1Ω to 200Ω, more preferably 1Ω to 100Ω, and more preferably 1Ω to 50Ω. More preferable.
 熱硬化樹脂層の接触抵抗は、TLM(Transmission Line Model)法によって測定される。具体的な方法は、以下のとおりである。
 基材(例えば、シクロオレフィンポリマーフィルム)上に、2mm、4mm、6mm、8mm、12mm、及び20mmの間隔で、互いに平行かつ独立に配置された7つの銅電極(厚さ:300nm、幅:500μm)を形成する。次に、7つの銅電極上に、1つの感光性転写材料を貼り合わせた後、加熱により、熱硬化樹脂層を熱硬化させることによって、銅電極上に、熱硬化樹脂層を介して銀ナノワイヤー層が積層された構造を有する試験体を作製する。上記試験体の平面視において、銀ナノワイヤー層は、7つの銅電極を横断するように配置されており、各銅電極と銀ナノワイヤー層とのなす角度は、90°である。隣り合う銅電極間の抵抗を測定した後、銅電極間の抵抗(縦軸)及び距離(横軸)の関係をプロットすることによって、熱硬化樹脂層の接触抵抗を求める。
The contact resistance of the thermosetting resin layer is measured by the TLM (Transmission Line Model) method. The specific method is as follows.
Seven copper electrodes (thickness: 300 nm, width: 500 μm) arranged on a substrate (for example, a cycloolefin polymer film) in parallel and independently at intervals of 2 mm, 4 mm, 6 mm, 8 mm, 12 mm, and 20 mm. ) Is formed. Next, after bonding one photosensitive transfer material on the seven copper electrodes, the thermosetting resin layer is thermally cured by heating, so that the silver nano-particles are formed on the copper electrodes via the thermosetting resin layer. A test body having a structure in which wire layers are laminated is produced. In a plan view of the test body, the silver nanowire layer is arranged so as to cross the seven copper electrodes, and the angle formed by each copper electrode and the silver nanowire layer is 90°. After measuring the resistance between adjacent copper electrodes, the contact resistance of the thermosetting resin layer is obtained by plotting the relationship between the resistance (vertical axis) and the distance (horizontal axis) between the copper electrodes.
<銀ナノワイヤー層>
 本開示の積層体は、銀ナノワイヤーを含む層(即ち、銀ナノワイヤー層)を有する。
 本開示の積層体における銀ナノワイヤー層は、既述の「感光性転写材料」の項において説明した銀ナノワイヤー層と同義であり、好ましい態様も同様であるため、ここでは説明を省略する。
<Silver nanowire layer>
The laminate of the present disclosure has a layer containing silver nanowires (that is, a silver nanowire layer).
The silver nanowire layer in the layered product of the present disclosure has the same meaning as the silver nanowire layer described in the above section “Photosensitive transfer material”, and the preferred embodiment is also the same, and therefore the description thereof is omitted here.
[積層体の製造方法]
 本開示の積層体の製造方法は、特に制限されず、公知の方法を適用することができる。
 本開示の積層体の製造方法としては、例えば、既述の「パターン付き基板の製造方法」及び「回路基板の製造方法」の項において説明した方法を適用できる。
[Method for manufacturing laminated body]
The method for producing the laminate of the present disclosure is not particularly limited, and a known method can be applied.
As the method for manufacturing the laminated body of the present disclosure, for example, the methods described in the above-mentioned “method for manufacturing patterned substrate” and “method for manufacturing circuit board” can be applied.
[タッチパネル]
 本開示のタッチパネルは、本開示の積層体を有する。
 本開示のタッチパネルは、本開示の積層体を有するため、銀ナノワイヤー層により形成される導電パターンが基板から剥離し難い。また、本開示のタッチパネルは、本開示の積層体を有するため、湿熱環境下に曝された場合であっても、シート抵抗値が上昇し難く、耐久性に優れる。
[Touch panel]
The touch panel of the present disclosure has the laminated body of the present disclosure.
Since the touch panel of the present disclosure has the laminated body of the present disclosure, the conductive pattern formed by the silver nanowire layer is difficult to peel off from the substrate. Further, since the touch panel of the present disclosure has the laminated body of the present disclosure, the sheet resistance value does not easily increase even when exposed to a humid heat environment, and the durability is excellent.
 本開示のタッチパネルにおける積層体は、既述の「積層体」に項において説明した積層体と同義であり、好ましい態様も同様であるため、ここでは説明を省略する。
 本開示のタッチパネルにおいて、積層体が回路基板として用いられる場合、積層体における熱硬化樹脂層及び銀ナノワイヤー層を含む領域の一部は、パターン状であることが好ましい。
The layered product in the touch panel of the present disclosure has the same meaning as the layered product described in the section “Layered product” described above, and the preferred embodiment is also the same, and thus the description thereof is omitted here.
In the touch panel of the present disclosure, when the laminated body is used as a circuit board, it is preferable that a part of the region including the thermosetting resin layer and the silver nanowire layer in the laminated body be patterned.
 本開示のタッチパネルにおける検出方法としては、抵抗膜方式、静電容量方式、超音波方式、電磁誘導方式、光学方式等が挙げられる。
 これらの中でも、検出方法としては、静電容量方式が好ましい。
The detection method in the touch panel of the present disclosure includes a resistance film method, a capacitance method, an ultrasonic method, an electromagnetic induction method, an optical method, and the like.
Among these, the capacitance method is preferable as the detection method.
 タッチパネル型としては、所謂、インセル型(例えば、特表2012-517051号公報の図5、図6、図7、及び図8に記載のもの)、所謂、オンセル型(例えば、特開2013-168125号公報の図19に記載のもの、並びに、特開2012-89102号公報の図1及び図5に記載のもの)、OGS(One Glass Solution)型、TOL(Touch-on-Lens)型(例えば、特開2013-54727号公報の図2に記載のもの)、その他の構成(例えば、特開2013-164871号公報の図6に記載のもの)、各種アウトセル型(所謂、GG、G1・G2、GFF、GF2、GF1、G1F等)が挙げられる。
 本開示のタッチパネルとしては、『最新タッチパネル技術』〔2009年7月6日、(株)テクノタイムズ社発行〕、三谷雄二監修、“タッチパネルの技術と開発”、シーエムシー出版(2004,12)、FPD International 2009 Forum T-11講演テキストブック、Cypress Semiconductor Corporation アプリケーションノートAN2292等に開示されている構成を適用することができる。
As the touch panel type, a so-called in-cell type (for example, those described in FIGS. 5, 6, 7, and 8 of JP 2012-517051 A), a so-called on-cell type (for example, JP2013-168125A). 19 of Japanese Patent Laid-Open No. 2012-89102, and those of FIGS. 1 and 5 of Japanese Patent Laid-Open No. 2012-89102), OGS (One Glass Solution) type, TOL (Touch-on-Lens) type (for example, 2 of Japanese Patent Application Laid-Open No. 2013-54727), other configurations (for example, the one shown in FIG. 6 of Japanese Patent Application Laid-Open No. 2013-164871), various out-cell types (so-called GG, G1 and G2). , GFF, GF2, GF1, G1F, etc.).
As the touch panel of the present disclosure, "Latest touch panel technology" [July 6, 2009, published by Techno Times Co., Ltd.], supervised by Yuji Mitani, "Touch Panel Technology and Development", CMC Publishing (2004, 12), The configurations disclosed in FPD International 2009 Forum T-11 Lecture Textbook, Cypress Semiconductor Corporation Application Note AN2292, and the like can be applied.
[タッチパネルの製造方法]
 本開示のタッチパネルの製造方法は、既述の本開示の回路基板の製造方法を含む。すなわち、本開示のタッチパネルの製造方法は、本開示の回路基板の製造方法を適用することができる。
[Method of manufacturing touch panel]
The manufacturing method of the touch panel of the present disclosure includes the manufacturing method of the circuit board of the present disclosure described above. That is, the manufacturing method of the circuit board of the present disclosure can be applied to the manufacturing method of the touch panel of the present disclosure.
 本開示のタッチパネルの製造方法における回路基板の製造方法は、既述の「回路基板の製造方法」に項において説明した回路基板の製造方法と同義であり、好ましい態様も同様であるため、ここでは説明を省略する。 The method of manufacturing the circuit board in the method of manufacturing the touch panel of the present disclosure has the same meaning as the method of manufacturing the circuit board described in the above-mentioned “method of manufacturing a circuit board”, and preferable aspects are also the same. The description is omitted.
 本開示のタッチパネルの製造方法において用いられるマスクパターンの一例を、図3に示す。
 図3に示されるパターンAは、ポジ型の感光性樹脂層をパターン露光する際に用いることができる。図3に示されるパターンAにおいて、実線部SL及びグレー部Gは、遮光部であり、点線部DLは、アライメント合わせの枠を仮想的に示したものである。
 本開示のタッチパネルの製造方法では、例えば、図3で示されるパターンAを有するマスクを介してポジ型の感光性樹脂層を露光することで、実線部SL及びグレー部Gに対応するパターンを有する回路配線が形成されたタッチパネルを製造することができる。
FIG. 3 shows an example of a mask pattern used in the touch panel manufacturing method of the present disclosure.
The pattern A shown in FIG. 3 can be used when pattern-exposing a positive photosensitive resin layer. In the pattern A shown in FIG. 3, the solid line portion SL and the gray portion G are light-shielding portions, and the dotted line portion DL is a virtual alignment alignment frame.
In the touch panel manufacturing method of the present disclosure, for example, the positive photosensitive resin layer is exposed through the mask having the pattern A shown in FIG. 3 to form a pattern corresponding to the solid line portion SL and the gray portion G. A touch panel on which circuit wiring is formed can be manufactured.
 以下、本開示を実施例により更に具体的に説明する。
 以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本開示の趣旨を逸脱しない限り、適宜、変更することができる。したがって、本開示の範囲は、以下に示す具体例に限定されるものではない。
Hereinafter, the present disclosure will be described more specifically by way of examples.
Materials, usage amounts, ratios, processing contents, processing procedures, and the like shown in the following examples can be appropriately changed without departing from the gist of the present disclosure. Therefore, the scope of the present disclosure is not limited to the specific examples shown below.
 以下の実施例において、樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算で求めた重量平均分子量である。
 また、以下の実施例において、熱硬化性樹脂層のガラス転移温度は、既述の方法によって求めたガラス転移温度である。
In the following examples, the weight average molecular weight of the resin is the weight average molecular weight determined in terms of polystyrene by gel permeation chromatography (GPC).
Further, in the following examples, the glass transition temperature of the thermosetting resin layer is the glass transition temperature obtained by the method described above.
<銀ナノワイヤーの直径及び長さの測定>
 透過型電子顕微鏡(TEM)〔商品名:JEM-2000FX、日本電子(株)製〕を用いて拡大観察される銀ナノワイヤーから、無作為に選択した300個の銀ナノワイヤーの直径と長さを測定した。測定値を算術平均することで、銀ナノワイヤーの直径及び長さを求めた。
<Measurement of diameter and length of silver nanowire>
Diameter and length of 300 silver nanowires randomly selected from silver nanowires magnified and observed using a transmission electron microscope (TEM) [trade name: JEM-2000FX, manufactured by JEOL Ltd.] Was measured. The diameter and length of the silver nanowire were obtained by arithmetically averaging the measured values.
<添加液Aの調製>
 硝酸銀粉末5.1gを純水500mLに溶解させた。得られた液に、1mol/Lのアンモニア水を液が透明になるまで添加した。次いで、得られた液に、液の全量が1000mLになるように純水を添加して、添加液Aを調製した。
<Preparation of additive liquid A>
5.1 g of silver nitrate powder was dissolved in 500 mL of pure water. 1 mol/L ammonia water was added to the obtained liquid until the liquid became transparent. Next, pure water was added to the obtained liquid so that the total amount of the liquid would be 1000 mL, to prepare an additive liquid A.
<添加液Gの調製>
 グルコース粉末5gを純水1400mLに溶解させて、添加液Gを調製した。
<Preparation of additive liquid G>
An additive solution G was prepared by dissolving 5 g of glucose powder in 1400 mL of pure water.
<添加液Hの調製>
 HTAB(ヘキサデシル-トリメチルアンモニウムブロミド)粉末5gを純水275mLに溶解させて、添加液Hを調製した。
<Preparation of additive liquid H>
An additive solution H was prepared by dissolving 5 g of HTAB (hexadecyl-trimethylammonium bromide) powder in 275 mL of pure water.
<銀ナノワイヤー層形成用塗布液の調製>
 三口フラスコ内に純水410mLを添加した後、三口フラスコ内の純水を20℃にて撹拌しながら、添加液G(206mL)及び添加液H(82.5mL)を、ロートを用いて添加した。次いで、得られた液を撹拌回転数800rpm(round per minute;以下、同じ。)で撹拌し、撹拌中の液に、添加液A(206mL)を、添加速度2.0mL/分で添加した。添加終了から10分後、得られた液に、添加液H(82.5mL)を添加した。次いで、フラスコ内の温度を、昇温速度3℃/分で75℃まで昇温した。フラスコ内の温度が75℃になった後、撹拌回転数を200rpmに変更し、更に加熱撹拌を5時間続けた。加熱撹拌の終了後、得られた液を冷却した。
<Preparation of coating liquid for silver nanowire layer formation>
After adding 410 mL of pure water in the three-necked flask, the additive solution G (206 mL) and the additional solution H (82.5 mL) were added using a funnel while stirring the pure water in the three-necked flask at 20°C. .. Then, the obtained liquid was stirred at a stirring rotation speed of 800 rpm (round per minute; the same applies hereinafter), and the additive liquid A (206 mL) was added to the stirring liquid at an addition rate of 2.0 mL/min. Ten minutes after the addition was completed, the addition liquid H (82.5 mL) was added to the obtained liquid. Next, the temperature inside the flask was raised to 75° C. at a temperature raising rate of 3° C./min. After the temperature in the flask reached 75° C., the stirring rotation speed was changed to 200 rpm, and heating and stirring were continued for 5 hours. After completion of heating and stirring, the obtained liquid was cooled.
 次いで、冷却した液に対し、限外濾過膜〔商品名:マイクローザ(登録商標)UFモジュール SIP1013、分画分子量:6,000、旭化成(株)製〕、マグネットポンプ、及びステンレスカップを、シリコンチューブを用いて接続した限外濾過装置を用いて、限外濾過を行った。具体的には、冷却した液をステンレスカップに入れ、マグネットポンプを稼動させることにより、限外濾過を行った。限外濾過膜からの濾液が50mLになった時点で、ステンレスカップに950mLの純水を加え、洗浄を行った。この洗浄を10回繰り返した後、液の量が50mLになるまで濃縮を行った。 Then, for the cooled liquid, an ultrafiltration membrane [trade name: Microza (registered trademark) UF module SIP1013, molecular weight cutoff: 6,000, manufactured by Asahi Kasei Co., Ltd.], a magnet pump, and a stainless steel cup were used. Ultrafiltration was performed using an ultrafiltration device connected using a tube. Specifically, the cooled liquid was put into a stainless steel cup, and a magnet pump was operated to perform ultrafiltration. When the filtrate from the ultrafiltration membrane reached 50 mL, 950 mL of pure water was added to the stainless cup for washing. After repeating this washing 10 times, concentration was performed until the amount of the liquid became 50 mL.
 濃縮した液を、純水及びメタノールの混合液(純水及びメタノールの体積比率:60/40)を用いて希釈することによって、銀ナノワイヤー層形成用塗布液を得た。
 次に、銀ナノワイヤー層形成用塗布液を、シクロオレフィンポリマーフィルムに塗布した。銀ナノワイヤー層形成用塗布液の塗布量は、ウェット膜厚が20μmとなる量とした。
 乾燥後の銀ナノワイヤー層のシート抵抗は、60Ω/□であった。シート抵抗の測定には、非接触型の渦電流方式の抵抗測定器〔商品名:EC-80P、ナプソン(株)製〕を用いた。
 また、銀ナノワイヤー層形成用塗布液に含まれる銀ナノワイヤーは、直径が17nmであり、長さが35μmであった。
The concentrated liquid was diluted with a mixed liquid of pure water and methanol (volume ratio of pure water and methanol: 60/40) to obtain a silver nanowire layer forming coating liquid.
Next, the coating liquid for forming the silver nanowire layer was applied to the cycloolefin polymer film. The coating amount of the coating liquid for forming the silver nanowire layer was such that the wet film thickness was 20 μm.
The sheet resistance of the silver nanowire layer after drying was 60 Ω/□. A non-contact type eddy current type resistance measuring instrument [trade name: EC-80P, manufactured by Napson Corporation] was used to measure the sheet resistance.
The silver nanowire contained in the coating liquid for forming the silver nanowire layer had a diameter of 17 nm and a length of 35 μm.
[熱硬化性樹脂層形成用塗布液の調製]
<材料A-1~A-4>
 表1に示す組成となるように各成分を混合し、熱硬化性樹脂層形成用塗布液である材料A-1~A-4を調製した。
[Preparation of coating liquid for forming thermosetting resin layer]
<Materials A-1 to A-4>
The components were mixed so as to have the composition shown in Table 1 to prepare materials A-1 to A-4 which are coating liquids for forming a thermosetting resin layer.
<材料A-5~A-8>
 表2に示す組成となるように各成分を混合し、熱硬化性樹脂層形成用塗布液である材料A-5~A-8を調製した。
<Materials A-5 to A-8>
The components were mixed so as to have the composition shown in Table 2 to prepare materials A-5 to A-8 which are coating solutions for forming a thermosetting resin layer.
[非熱硬化性樹脂層形成用塗布液の調製]
<比較材料B-1>
 表1に示す組成となるように各成分を混合し、非熱硬化性樹脂層形成用塗布液(所謂、熱硬化性を有しない樹脂層形成用塗布液)である比較材料B-1を調製した。
[Preparation of coating liquid for forming non-thermosetting resin layer]
<Comparative material B-1>
Comparative components B-1 which is a non-thermosetting resin layer forming coating liquid (so-called resin layer forming coating liquid having no thermosetting property) were prepared by mixing the components so as to have the composition shown in Table 1. did.
<比較材料B-2>
 表2に示す組成となるように各成分を混合し、非熱硬化性樹脂層形成用塗布液(所謂、熱硬化性を有しない樹脂層形成用塗布液)である比較材料B-2を調製した。
<Comparative material B-2>
Each component was mixed so as to have the composition shown in Table 2 to prepare Comparative Material B-2 which is a non-thermosetting resin layer forming coating liquid (so-called resin layer forming coating liquid having no thermosetting property). did.
Figure JPOXMLDOC01-appb-T000014

 
Figure JPOXMLDOC01-appb-T000014

 
Figure JPOXMLDOC01-appb-T000015

 
Figure JPOXMLDOC01-appb-T000015

 
 表1及び2中、「-」は、該当する成分を含まないことを意味する。 “-” in Tables 1 and 2 means that the corresponding component is not included.
 表1及び2に記載のバインダーポリマーである化合物N1~N5は、それぞれ以下に示す化合物である。
 なお、化合物N1~N5における各構成単位に併記された数値は、各構成単位の含有比(モル比)を表す。
The compounds N1 to N5, which are the binder polymers shown in Tables 1 and 2, are the compounds shown below.
In addition, the numerical value written together with each structural unit in the compounds N1 to N5 represents the content ratio (molar ratio) of each structural unit.
 化合物N1:下記に示す構造の樹脂〔重量平均分子量:21,000、酸価:0.5mmol/g、水酸基の官能基濃度:2.8mmol/g、ガラス転移温度:-5℃〕 Compound N1: a resin having the structure shown below [weight average molecular weight: 21,000, acid value: 0.5 mmol/g, hydroxyl functional group concentration: 2.8 mmol/g, glass transition temperature: -5°C]
Figure JPOXMLDOC01-appb-C000016

 
Figure JPOXMLDOC01-appb-C000016

 
 化合物N2:下記に示す構造の樹脂〔重量平均分子量:5,500、酸価:1.0mmol/g、ブロックイソシアネート基の官能基濃度:4.1mmol/g、ガラス転移温度:20℃〕 Compound N2: Resin having the structure shown below [weight average molecular weight: 5,500, acid value: 1.0 mmol/g, functional group concentration of blocked isocyanate group: 4.1 mmol/g, glass transition temperature: 20°C]
Figure JPOXMLDOC01-appb-C000017

 
Figure JPOXMLDOC01-appb-C000017

 
 化合物N3:下記に示す構造の樹脂〔重量平均分子量:23,000、酸価:0.5mmol/g、ブロックイソシアネート基の官能基濃度:2.5mmol/g、水酸基の官能基濃度:0.5mmol/g、ガラス転移温度:-1℃〕 Compound N3: Resin having a structure shown below [weight average molecular weight: 23,000, acid value: 0.5 mmol/g, functional group concentration of blocked isocyanate group: 2.5 mmol/g, functional group concentration of hydroxyl group: 0.5 mmol /G, glass transition temperature: -1°C]
Figure JPOXMLDOC01-appb-C000018

 
Figure JPOXMLDOC01-appb-C000018

 
 化合物N4:下記に示す構造の樹脂〔重量平均分子量:12,000、酸価:32mgKOH/g〕 Compound N4: Resin having the structure shown below [weight average molecular weight: 12,000, acid value: 32 mgKOH/g]
Figure JPOXMLDOC01-appb-C000019

 
Figure JPOXMLDOC01-appb-C000019

 
 化合物N5:下記に示す構造の樹脂〔重量平均分子量:10,000、酸価:47mgKOH/g〕 Compound N5: Resin having the structure shown below [weight average molecular weight: 10,000, acid value: 47 mgKOH/g]
Figure JPOXMLDOC01-appb-C000020

 
Figure JPOXMLDOC01-appb-C000020

 
[熱硬化性樹脂層のガラス転移温度の測定]
 熱硬化性樹脂層形成用塗布液である材料A-5~A-8を用いて形成される熱硬化性樹脂層のガラス転移温度を測定した。具体的な方法は、以下のとおりである。
 材料A-5~A-8の各材料をガラス基板に、500rpm及び20秒間の条件でスピン塗布して、塗布膜を形成した。次いで、形成した塗布膜を、ホットプレートを用いて、100℃で1分間乾燥させて、熱硬化性樹脂層を得た。得られた熱硬化性樹脂層をかきとり、DSC(Differential scanning calorimetry)分析したところ、熱硬化性樹脂層のガラス転移温度は、いずれも-10℃~50℃の範囲内であった。なお、DSC分析には、セイコーインスツルメンツ(株)製の示差走査熱量計(型式:DSC6200)を用いた。
[Measurement of glass transition temperature of thermosetting resin layer]
The glass transition temperature of the thermosetting resin layer formed by using the materials A-5 to A-8 which are the coating liquid for forming the thermosetting resin layer was measured. The specific method is as follows.
Each of the materials A-5 to A-8 was spin-coated on a glass substrate under the conditions of 500 rpm and 20 seconds to form a coating film. Then, the formed coating film was dried at 100° C. for 1 minute using a hot plate to obtain a thermosetting resin layer. When the obtained thermosetting resin layer was scraped and analyzed by DSC (Differential scanning calorimetry), the glass transition temperature of the thermosetting resin layer was in the range of -10°C to 50°C. A differential scanning calorimeter (model: DSC6200) manufactured by Seiko Instruments Inc. was used for the DSC analysis.
[ポジ型感光性樹脂層形成用塗布液の調製]
<材料BP-1>
 表3に示す組成となるように各成分を混合し、ポジ型感光性樹脂層形成用塗布液である材料BP-1を調製した。
[Preparation of coating liquid for forming positive photosensitive resin layer]
<Material BP-1>
Each component was mixed so as to have the composition shown in Table 3 to prepare a material BP-1 which is a coating liquid for forming a positive photosensitive resin layer.
Figure JPOXMLDOC01-appb-T000021

 
Figure JPOXMLDOC01-appb-T000021

 
 表3に記載の重合体である化合物Dは、以下に示す化合物である。
 なお、化合物Dにおける各構成単位に併記された数値は、各構成単位の含有比(モル比)を表す。
Compound D, which is a polymer shown in Table 3, is a compound shown below.
In addition, the numerical value written together with each structural unit in the compound D represents the content ratio (molar ratio) of each structural unit.
 化合物D:下記に示す構造の樹脂〔重量平均分子量:25,000〕 Compound D: Resin having the structure shown below [weight average molecular weight: 25,000]
Figure JPOXMLDOC01-appb-C000022

 
Figure JPOXMLDOC01-appb-C000022

 
 表3に記載の光酸発生剤である化合物Eは、以下に示す化合物である。 Compound E, which is a photoacid generator shown in Table 3, is the compound shown below.
Figure JPOXMLDOC01-appb-C000023

 
Figure JPOXMLDOC01-appb-C000023

 
[ネガ型感光性樹脂層形成用塗布液の調製]
<材料BN-1>
 表4に示す組成となるように各成分を混合し、ネガ型感光性樹脂層形成用塗布液である材料BN-1を調製した。
[Preparation of coating liquid for forming negative photosensitive resin layer]
<Material BN-1>
Each component was mixed so as to have the composition shown in Table 4 to prepare a material BN-1 which is a coating liquid for forming a negative photosensitive resin layer.
Figure JPOXMLDOC01-appb-T000024

 
Figure JPOXMLDOC01-appb-T000024

 
 表4に記載のバインダーポリマーである化合物Bは、以下に示す化合物である。
 なお、化合物Bにおける各構成単位に併記された数値は、各構成単位の含有比(モル比)を表す。
Compound B, which is the binder polymer described in Table 4, is the compound shown below.
In addition, the numerical value written together with each structural unit in the compound B represents the content ratio (molar ratio) of each structural unit.
 化合物B:下記に示す構造の樹脂〔重量平均分子量:20,000、酸価:95mgKOH/g〕 Compound B: Resin having the structure shown below [weight average molecular weight: 20,000, acid value: 95 mgKOH/g]
Figure JPOXMLDOC01-appb-C000025

 
Figure JPOXMLDOC01-appb-C000025

 
 表4に記載の下記成分の詳細は、以下に示すとおりである。
 「カルボキシ基を有するモノマー」〔商品名:アロニックス(登録商標) TO-2349、東亞合成(株)製〕:5官能エチレン性不飽和化合物と6官能エチレン性不飽和化合物との混合物
 「メガファック F551A」〔商品名:メガファック(登録商標) F551A、DIC(株)製〕:フッ素系界面活性剤
The details of the following components shown in Table 4 are as shown below.
"Carboxyl group-containing monomer" [trade name: Aronix (registered trademark) TO-2349, manufactured by Toagosei Co., Ltd.]: mixture of pentafunctional ethylenically unsaturated compound and hexafunctional ethylenically unsaturated compound "Megafuck F551A [Product name: Megafac (registered trademark) F551A, manufactured by DIC Corporation]: Fluorine-based surfactant
[感光性転写材料の作製]
<実施例1~4及び実施例9~12、並びに、比較例1及び3>
 仮支持体〔商品名:ルミラー(登録商標)16KS40、ポリエチレンテレフタレートフィルム、厚さ:16μm、東レ(株)製〕の上に、スリット状ノズルを用いて、ポジ型感光性樹脂層形成用塗布液である材料BP-1を塗布し、塗布膜を形成した。材料BP-1の塗布量は、乾燥後の層の厚さが3μmとなる量とした。塗布膜を100℃の乾燥温度で乾燥させて、ポジ型の感光性樹脂層を形成した。
 次に、ポジ型の感光性樹脂層の上に、スリット状ノズルを用いて、銀ナノワイヤー層形成用塗布液を、ウェット膜厚が20μmとなる塗布量で塗布し、塗布膜を形成した。塗布膜を100℃の乾燥温度で乾燥させて、銀ナノワイヤー層(即ち、銀ナノワイヤーを含む層)を形成した。形成された銀ナノワイヤー層の厚さは、100nmであった。
 次に、銀ナノワイヤー層の上に、表5の記載に従って選択した、熱硬化性樹脂層形成用塗布液である材料(即ち、材料A-1~A-8のいずれか)又は非熱硬化性樹脂層形成用塗布液である比較材料(即ち、比較材料B-1又はB-2)を塗布し、塗布膜を形成した。材料A-1~A-8、並びに、比較材料B-1及びB-2の各塗布量は、乾燥後の層の厚さが表5に示す厚さとなる量とした。塗布膜を100℃の乾燥温度で乾燥させて、熱硬化性樹脂層又は非熱硬化性樹脂層を形成した。
 次に、熱硬化性樹脂層又は非熱硬化性樹脂層の上に、保護フィルム〔商品名:ルミラー(登録商標)16KS40、ポリエチレンテレフタレートフィルム、厚さ:16μm、東レ(株)製〕を圧着した。
 以上のようにして、実施例1~4及び実施例9~12、並びに、比較例1及び3の感光性転写材料をそれぞれ作製した。
[Preparation of photosensitive transfer material]
<Examples 1 to 4 and Examples 9 to 12, and Comparative Examples 1 and 3>
Coating liquid for forming a positive photosensitive resin layer using a slit-shaped nozzle on a temporary support (trade name: Lumirror (registered trademark) 16KS40, polyethylene terephthalate film, thickness: 16 μm, manufactured by Toray Industries, Inc.) Then, the material BP-1 was applied to form a coating film. The coating amount of the material BP-1 was such that the thickness of the layer after drying was 3 μm. The coating film was dried at a drying temperature of 100° C. to form a positive photosensitive resin layer.
Next, the coating liquid for forming the silver nanowire layer was applied onto the positive photosensitive resin layer using a slit-shaped nozzle at an application amount such that the wet film thickness was 20 μm to form a coating film. The coating film was dried at a drying temperature of 100° C. to form a silver nanowire layer (that is, a layer containing silver nanowires). The formed silver nanowire layer had a thickness of 100 nm.
Next, on the silver nanowire layer, a material which is a coating liquid for forming a thermosetting resin layer (that is, any of materials A-1 to A-8) or non-thermosetting selected according to the description in Table 5 A comparative material (that is, comparative material B-1 or B-2) which is a coating liquid for forming a functional resin layer was applied to form a coating film. The coating amounts of the materials A-1 to A-8 and the comparative materials B-1 and B-2 were such that the thickness of the layer after drying was the thickness shown in Table 5. The coating film was dried at a drying temperature of 100° C. to form a thermosetting resin layer or a non-thermosetting resin layer.
Next, a protective film [trade name: Lumirror (registered trademark) 16KS40, polyethylene terephthalate film, thickness: 16 μm, manufactured by Toray Industries, Inc.] was pressure-bonded onto the thermosetting resin layer or the non-thermosetting resin layer. ..
As described above, the photosensitive transfer materials of Examples 1 to 4 and Examples 9 to 12 and Comparative Examples 1 and 3 were prepared.
<実施例5~8及び実施例13~16、並びに、比較例2及び4>
 保護フィルム〔商品名:ルミラー(登録商標)16KS40、ポリエチレンテレフタレートフィルム、厚さ:16μm、東レ(株)製〕の上に、スリット状ノズルを用いて、表5の記載に従って選択した、熱硬化性樹脂層形成用塗布液である材料(即ち、材料A-1~A-8のいずれか)又は非熱硬化性樹脂層形成用塗布液である比較材料(即ち、比較材料B-1又はB-2)を塗布し、塗布膜を形成した。材料A-1~A-8、並びに、比較材料B-1及びB-2の各塗布量は、乾燥後の層の厚さが表5に示す厚さとなる量とした。塗布膜を100℃の乾燥温度で乾燥させて、熱硬化性樹脂層又は非熱硬化性樹脂層を形成した。
 次に、熱硬化性樹脂層又は非熱硬化性樹脂層の上に、スリット状ノズルを用いて、銀ナノワイヤー層形成用塗布液を、ウェット膜厚が20μmとなる塗布量で塗布し、塗布膜を形成した。塗布膜を100℃の乾燥温度で乾燥させて、銀ナノワイヤー層(即ち、銀ナノワイヤーを含む層)を形成した。形成された銀ナノワイヤー層の厚さは、100nmであった。
 次に、銀ナノワイヤー層の上に、ネガ型感光性樹脂層形成用塗布液である材料BN-1を塗布し、塗布膜を形成した。材料BN-1の塗布量は、乾燥後の層の厚さが3μmとなる量とした。塗布膜を100℃の乾燥温度で乾燥させて、ネガ型の感光性樹脂層を形成した。
 次に、ネガ型の感光性樹脂層の上に、仮支持体〔商品名:ルミラー(登録商標)16KS40、ポリエチレンテレフタレートフィルム、厚さ:16μm、東レ(株)製〕を圧着し、実施例5~8及び実施例13~16、並びに、比較例2及び4の感光性転写材料をそれぞれ作製した。
<Examples 5 to 8 and Examples 13 to 16 and Comparative Examples 2 and 4>
On the protective film [trade name: Lumirror (registered trademark) 16KS40, polyethylene terephthalate film, thickness: 16 μm, manufactured by Toray Industries, Inc.], a thermosetting property selected according to the description in Table 5 using a slit nozzle. A material that is a coating liquid for forming a resin layer (that is, any of materials A-1 to A-8) or a comparative material that is a coating liquid for forming a non-thermosetting resin layer (that is, comparative material B-1 or B- 2) was applied to form a coating film. The coating amounts of the materials A-1 to A-8 and the comparative materials B-1 and B-2 were such that the thickness of the layer after drying was the thickness shown in Table 5. The coating film was dried at a drying temperature of 100° C. to form a thermosetting resin layer or a non-thermosetting resin layer.
Next, a coating liquid for forming a silver nanowire layer is applied onto the thermosetting resin layer or the non-thermosetting resin layer using a slit-shaped nozzle in an application amount such that a wet film thickness is 20 μm, and then applied. A film was formed. The coating film was dried at a drying temperature of 100° C. to form a silver nanowire layer (that is, a layer containing silver nanowires). The formed silver nanowire layer had a thickness of 100 nm.
Next, the material BN-1 which is a coating liquid for forming a negative photosensitive resin layer was coated on the silver nanowire layer to form a coating film. The coating amount of the material BN-1 was such that the thickness of the layer after drying was 3 μm. The coating film was dried at a drying temperature of 100° C. to form a negative photosensitive resin layer.
Next, a temporary support [trade name: Lumirror (registered trademark) 16KS40, polyethylene terephthalate film, thickness: 16 μm, manufactured by Toray Industries, Inc.] was pressure-bonded onto the negative photosensitive resin layer to form Example 5. 8 to Examples 13 to 16 and Comparative Examples 2 and 4 were prepared.
[多層体の作製]
 実施例1~16及び比較例1~4の感光性転写材料を用いて、以下の手順に従って、多層体を作製した。
 保護フィルムを剥離した感光性転写材料を、透明フィルム基板(シクロオレフィンポリマーフィルム、厚さ:38μm、屈折率:1.53)上に貼り合わせること(以下、本段落において「ラミネート加工」という。)によって、多層体を得た。
 ラミネート加工は、(株)MCK製の真空ラミネーターを用いて、透明フィルム基板の温度:40℃、ゴムローラーの温度:100℃、線圧:3N/cm、及び搬送速度:2m/分の条件で行った。また、ラミネート加工においては、感光性転写材料から保護フィルムを剥離することによって露出する面を、透明フィルム基板の表面に接触させた。
[Preparation of multilayer body]
Using the photosensitive transfer materials of Examples 1 to 16 and Comparative Examples 1 to 4, a multilayer body was prepared according to the following procedure.
The photosensitive transfer material from which the protective film has been peeled off is attached to a transparent film substrate (cycloolefin polymer film, thickness: 38 μm, refractive index: 1.53) (hereinafter referred to as “laminating” in this paragraph). A multi-layer body was obtained.
The lamination process was performed using a vacuum laminator manufactured by MCK Co., Ltd. under the conditions of the transparent film substrate temperature: 40° C., the rubber roller temperature: 100° C., the linear pressure: 3 N/cm, and the conveying speed: 2 m/min. went. In the laminating process, the surface exposed by peeling the protective film from the photosensitive transfer material was brought into contact with the surface of the transparent film substrate.
[透明電極パターンフィルムの作製(1)]
 実施例1~4及び実施例9~12、並びに、比較例1及び3の感光性転写材料を用いて作製した上記多層体を用いて、以下の手順に従って、透明電極パターンフィルムを作製した。
 超高圧水銀灯を有するプロキシミティー型露光機〔日立ハイテク電子エンジニアリング(株)製〕を用いて、露光マスク(透明電極形成用パターンを有する石英露光マスク)面と仮支持体とを密着させ、仮支持体を介して露光量100mJ/cm(i線)で、ポジ型の感光性樹脂層をパターン露光した。
 仮支持体を剥離後、炭酸ソーダ1質量%水溶液を用いて、32℃で60秒間現像処理を行った。現像処理後、パターンが形成された透明フィルム基板に、超高圧洗浄ノズルから超純水を噴射することで、透明フィルム基板上の残渣を除去した。
 以上の操作により、熱硬化性樹脂層又は非熱硬化性樹脂層、銀ナノワイヤー層、及び感光性樹脂層をパターンニングした。
 次に、残渣を除去した透明フィルム基板に、エアを吹きかけて透明フィルム基板上の水分を除去した後、145℃で10分間の加熱処理を行い、パターン付き基板を得た。
 次に、高圧水銀灯を有するプロキシミティー型露光機〔日立ハイテク電子エンジニアリング(株)製〕を用いて、露光量400mJ/cm(i線)で、パターン付き基板上に残存するポジ型の感光性樹脂層を露光した後、炭酸ソーダ1質量%水溶液を用いて、32℃で60秒間処理することで、ポジ型の感光性樹脂層を除去し、パターン化された銀ナノワイヤー層を有する透明電極パターンフィルム(所謂、回路基板)を作製した。
[Preparation of transparent electrode pattern film (1)]
A transparent electrode pattern film was produced according to the following procedure using the above-mentioned multilayer bodies produced by using the photosensitive transfer materials of Examples 1 to 4 and Examples 9 to 12 and Comparative Examples 1 and 3.
Using a proximity type exposure machine (manufactured by Hitachi High-Tech Electronics Engineering Co., Ltd.) having an ultra-high pressure mercury lamp, the exposure mask (quartz exposure mask having a transparent electrode forming pattern) surface and the temporary support are brought into close contact with each other, and the temporary support is provided. The positive photosensitive resin layer was pattern-exposed through the body with an exposure amount of 100 mJ/cm 2 (i-line).
After the temporary support was peeled off, development treatment was carried out at 32° C. for 60 seconds using a 1% by mass aqueous solution of sodium carbonate. After the development treatment, ultrapure water was sprayed from the ultrahigh pressure cleaning nozzle onto the transparent film substrate on which the pattern was formed to remove the residue on the transparent film substrate.
By the above operation, the thermosetting resin layer or the non-thermosetting resin layer, the silver nanowire layer, and the photosensitive resin layer were patterned.
Next, air was blown to the transparent film substrate from which the residue was removed to remove the moisture on the transparent film substrate, and then heat treatment was performed at 145° C. for 10 minutes to obtain a patterned substrate.
Next, using a proximity type exposure machine (manufactured by Hitachi High-Tech Electronics Engineering Co., Ltd.) having a high pressure mercury lamp, the exposure amount of 400 mJ/cm 2 (i-line) was applied to the positive type photosensitivity remaining on the patterned substrate. After exposing the resin layer, the positive photosensitive resin layer is removed by treatment with a 1% by mass aqueous solution of sodium carbonate at 32° C. for 60 seconds, and a transparent electrode having a patterned silver nanowire layer A pattern film (so-called circuit board) was produced.
[透明電極パターンフィルムの作製(2)]
 実施例5~8及び実施例13~16、並びに、比較例2及び4の各感光性転写材料を用いて作製した上記多層体を用いた透明電極パターンフィルムの作製においては、加熱処理後に、露光を行わず、ネガ型レジスト用除去液〔商品名:SH-303、関東化学(株)製〕を用いて、30℃で60秒間処理することで、ネガ型の感光性樹脂層の硬化物を除去したこと以外は、実施例1と同様の手順により、パターン化された銀ナノワイヤー層を有する透明電極パターンフィルム(所謂、回路基板)を作製した。
[Preparation of transparent electrode pattern film (2)]
In the production of a transparent electrode pattern film using the above-mentioned multilayer body produced by using each of the photosensitive transfer materials of Examples 5 to 8 and Examples 13 to 16 and Comparative Examples 2 and 4, exposure was performed after heat treatment. Without using the negative resist removing solution [trade name: SH-303, manufactured by Kanto Kagaku Co., Ltd.], the cured product of the negative photosensitive resin layer is treated at 30° C. for 60 seconds. A transparent electrode pattern film (so-called circuit board) having a patterned silver nanowire layer was produced by the same procedure as in Example 1 except that the film was removed.
<評価>
1.剥離耐性
 ポジ型の感光性樹脂層、又は、ネガ型の感光性樹脂層の硬化物を除去した後のラインアンドスペースパターンを、光学顕微鏡を用いて観察し、パターンの剥がれの有無を確認した。評価基準を以下に示す。
 評価結果が「A」又は「B」であれば、実用上許容される範囲内であると判断した。
 下記評価基準において、「A」は、パターンの剥離耐性が最も優れる場合を示し、「C」は、パターンの剥離耐性が最も劣る場合を示す。
<Evaluation>
1. Peeling resistance The line and space pattern after removing the cured product of the positive type photosensitive resin layer or the negative type photosensitive resin layer was observed using an optical microscope to confirm the presence or absence of peeling of the pattern. The evaluation criteria are shown below.
If the evaluation result was "A" or "B", it was judged to be within the practically acceptable range.
In the following evaluation criteria, “A” indicates the case where the peel resistance of the pattern is the best, and “C” indicates the case where the peel resistance of the pattern is the poorest.
~評価基準~
 A:50μmのラインアンドスペースパターンが解像しており、かつ、パターンの剥がれが確認されなかった。
 B:50μmのラインアンドスペースパターンは解像しているが、一部のパターンにおいて剥がれが確認された。
 C:50μmのラインアンドスペースパターンの大部分が剥がれていた。
-Evaluation criteria-
A: A line and space pattern of 50 μm was resolved, and no peeling of the pattern was confirmed.
B: A line and space pattern of 50 μm was resolved, but peeling was confirmed in some patterns.
C: Most of the 50 μm line-and-space pattern was peeled off.
2.湿熱試験前後におけるシート抵抗値の変化
 上記にて作製した透明電極パターンフィルムのシート抵抗を、非接触型の渦電流方式の抵抗測定器〔商品名:EC-80P、ナプソン(株)製〕を用いて測定した。得られた測定値を「湿熱試験前のシート抵抗値」とした。
 次いで、シート抵抗値を測定した透明電極パターンフィルムを、雰囲気温度65℃、90%RHの環境下に300時間放置した。そして、放置後の透明電極パターンフィルムについて、シート抵抗を上記と同様に測定した。得られた測定値を「湿熱試験後のシート抵抗値」とした。
 「湿熱試験前のシート抵抗値」及び「湿熱試験後のシート抵抗値」を用いて、下記計算式に基づき、湿熱試験前後のシート抵抗値の上昇率を算出した。
 湿熱試験前後のシート抵抗値の上昇率(単位:%) = [〔湿熱試験後のシート抵抗値(単位:Ω/□)〕-〔湿熱試験前のシート抵抗値(単位:Ω/□)〕]/〔湿熱試験前のシート抵抗値(単位:Ω/□)〕×100
2. Change in sheet resistance value before and after the wet heat test The sheet resistance of the transparent electrode pattern film prepared above was measured using a non-contact type eddy current resistance measuring instrument [trade name: EC-80P, manufactured by Napson Corporation]. Was measured. The obtained measured value was defined as "sheet resistance value before wet heat test".
Next, the transparent electrode pattern film whose sheet resistance value was measured was allowed to stand for 300 hours in an environment of an atmospheric temperature of 65° C. and 90% RH. Then, the sheet resistance of the transparent electrode pattern film after standing was measured in the same manner as above. The obtained measured value was defined as "sheet resistance value after wet heat test".
Using the “sheet resistance value before the wet heat test” and the “sheet resistance value after the wet heat test”, the rate of increase in the sheet resistance value before and after the wet heat test was calculated based on the following calculation formula.
Increase rate of sheet resistance before and after the wet heat test (unit: %) = [[Sheet resistance value after wet heat test (unit: Ω/□)]-[Sheet resistance value before wet heat test (unit: Ω/□)] ]/[Sheet resistance value before wet heat test (unit: Ω/□)]×100
 そして、シート抵抗値の上昇率に基づき、下記評価基準に従い、湿熱試験前後におけるシート抵抗値の変化を評価した。
 評価結果が「A」又は「B」であれば、実用上許容される範囲内であると判断した。
 下記評価基準において、「A」は、耐久性が最も優れる場合を示し、「C」は、耐久性が最も劣る場合を示す。
Then, based on the rate of increase in sheet resistance, the change in sheet resistance before and after the wet heat test was evaluated according to the following evaluation criteria.
If the evaluation result was "A" or "B", it was judged to be within the practically acceptable range.
In the following evaluation criteria, “A” indicates the case where the durability is the best, and “C” indicates the case where the durability is the worst.
~評価基準~
 A:上昇率が20%未満である。
 B:上昇率が20%以上50%未満である。
 C:上昇率が50%以上である。
-Evaluation criteria-
A: The rate of increase is less than 20%.
B: The rate of increase is 20% or more and less than 50%.
C: The rate of increase is 50% or more.
3.熱硬化性樹脂層の接触抵抗
 TLM(Transmission Line Model)法によって、熱硬化性樹脂層の接触抵抗を測定した。具体的な方法は、以下のとおりである。
 基材(シクロオレフィンポリマーフィルム、厚さ:38μm、屈折率:1.53)上に、2mm、4mm、6mm、8mm、12mm、及び20mmの間隔で、互いに平行かつ独立に配置された7つの銅電極(厚さ:300nm、幅:500μm)を形成した。
 次に、7つの銅電極上に、保護フィルムを剥離した実施例1~8の感光性転写材料を、それぞれ貼り合わせることによって、銅電極上に、熱硬化性樹脂層を介して銀ナノワイヤー層が積層された構造を有する試験体を作製した。
 上記各試験体の平面視において、銀ナノワイヤー層は、7つの銅電極を横断するように配置されており、各銅電極と銀ナノワイヤー層とのなす角度は、90°であった。
 隣り合う銅電極間の抵抗を測定した後、銅電極間の抵抗(縦軸)及び距離(横軸)の関係をプロットすることによって、熱硬化性樹脂層の接触抵抗を求めた。銅電極間の抵抗の測定には、抵抗率計〔商品名:ロレスタ-GP、(株)三菱ケミカルアナリテック製〕を用いた。
 その結果、実施例1~8の各感光性転写材料が有する熱硬化性樹脂層の接触抵抗は、いずれも200Ω以下であった。
 同サンプルを145℃で10分間の加熱処理を行い、熱硬化性樹脂層を硬化させた後、同様に接触抵抗を測定したところ、実施例1~8の各感光性転写材料が有する熱硬化されてなる樹脂を含む層の接触抵抗は、いずれも200Ω以下であった。
3. Contact Resistance of Thermosetting Resin Layer The contact resistance of the thermosetting resin layer was measured by the TLM (Transmission Line Model) method. The specific method is as follows.
Seven coppers arranged on the substrate (cycloolefin polymer film, thickness: 38 μm, refractive index: 1.53) at intervals of 2 mm, 4 mm, 6 mm, 8 mm, 12 mm, and 20 mm in parallel and independently of each other. An electrode (thickness: 300 nm, width: 500 μm) was formed.
Next, the photosensitive transfer materials of Examples 1 to 8 from which the protective film was peeled off were adhered to the seven copper electrodes, respectively, to form a silver nanowire layer on the copper electrodes via a thermosetting resin layer. A test body having a laminated structure was prepared.
In a plan view of each of the test bodies, the silver nanowire layer was arranged so as to cross the seven copper electrodes, and the angle formed by each copper electrode and the silver nanowire layer was 90°.
After measuring the resistance between adjacent copper electrodes, the contact resistance of the thermosetting resin layer was obtained by plotting the relationship between the resistance (vertical axis) and the distance (horizontal axis) between the copper electrodes. A resistivity meter [trade name: Loresta GP, manufactured by Mitsubishi Chemical Analytech Co., Ltd.] was used to measure the resistance between the copper electrodes.
As a result, the contact resistance of the thermosetting resin layer of each of the photosensitive transfer materials of Examples 1 to 8 was 200Ω or less.
The sample was subjected to a heat treatment at 145° C. for 10 minutes to cure the thermosetting resin layer, and the contact resistance was measured in the same manner. The contact resistance of each of the layers containing the resin was 200 Ω or less.
4.センサー動作確認
 取り出し配線として銅電極を表面に有するシクロオレフィンポリマーフィルム(厚さ:38μm、屈折率:1.53)上に、実施例1~16の感光性転写材料を用いて、既述の方法に従って、透明電極パターンを形成することで、静電容量方式のタッチセンサーを作製した。タッチセンサーは、特許第6173831号公報に記載の方法と類似の方法により作製した。作製したタッチセンサーについて、センサー動作を確認したところ、いずれも正常に動作した。
4. Sensor operation confirmation Using the photosensitive transfer materials of Examples 1 to 16 on the cycloolefin polymer film (thickness: 38 μm, refractive index: 1.53) having a copper electrode on the surface as a takeout wiring, the method described above According to the procedure, a transparent electrode pattern was formed to manufacture a capacitance type touch sensor. The touch sensor was manufactured by a method similar to the method described in Japanese Patent No. 6173831. When the sensor operation was confirmed for the manufactured touch sensors, they all operated normally.
Figure JPOXMLDOC01-appb-T000026

 
Figure JPOXMLDOC01-appb-T000026

 
 表5に示すように、仮支持体と、感光性樹脂層と、銀ナノワイヤー層と、熱硬化性樹脂層と、をこの順に有する実施例1~16の感光性転写材料によれば、基板から剥離し難い導電パターンを形成できることが明らかとなった。また、実施例1~16の感光性転写材料によれば、湿熱環境下に曝されてもシート抵抗値が上昇し難く、耐久性に優れる透明電極パターンフィルムを作製できることが確認された。 As shown in Table 5, according to the photosensitive transfer materials of Examples 1 to 16 having a temporary support, a photosensitive resin layer, a silver nanowire layer, and a thermosetting resin layer in this order, It was revealed from the above that a conductive pattern that is difficult to peel off can be formed. It was also confirmed that the photosensitive transfer materials of Examples 1 to 16 were capable of producing transparent electrode pattern films having excellent durability, in which the sheet resistance value did not easily increase even when exposed to a humid heat environment.
 一方、仮支持体と、感光性樹脂層と、銀ナノワイヤー層と、非熱硬化性樹脂層(即ち、熱硬化性を有しない樹脂層)と、をこの順に有する比較例1~4の感光性転写材料を用いて形成された導電パターンは、実施例1~16の感光性転写材料を用いて形成された導電パターンと比較して、基板から剥離しやすいことが確認された。また、比較例1~4の感光性転写材料を用いて作製された透明電極パターンフィルムは、実施例1~16の感光性転写材料を用いて作製された透明電極パターンフィルムと比較して、耐久性に劣ることが確認された。 On the other hand, the photosensitive materials of Comparative Examples 1 to 4 having a temporary support, a photosensitive resin layer, a silver nanowire layer, and a non-thermosetting resin layer (that is, a resin layer having no thermosetting property) in this order. It was confirmed that the conductive pattern formed by using the conductive transfer material was more easily peeled from the substrate than the conductive patterns formed by using the photosensitive transfer materials of Examples 1 to 16. In addition, the transparent electrode pattern films produced using the photosensitive transfer materials of Comparative Examples 1 to 4 were more durable than the transparent electrode pattern films produced using the photosensitive transfer materials of Examples 1 to 16. It was confirmed that it was inferior in sex.
 2018年12月27日に出願された日本国特許出願2018-246221号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的に、かつ、個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2018-246221 filed on Dec. 27, 2018 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards mentioned in this specification are specifically and individually referred to as if each individual document, patent application, and technical standard were incorporated by reference. To the extent, incorporated herein by reference.

Claims (15)

  1.  仮支持体と、
     感光性樹脂層と、
     銀ナノワイヤーを含む層と、
     熱硬化性樹脂層と、
    をこの順に有する感光性転写材料。
    A temporary support,
    A photosensitive resin layer,
    A layer containing silver nanowires,
    A thermosetting resin layer,
    A photosensitive transfer material having in this order.
  2.  前記熱硬化性樹脂層が、ブロックイソシアネート化合物を含む請求項1に記載の感光性転写材料。 The photosensitive transfer material according to claim 1, wherein the thermosetting resin layer contains a blocked isocyanate compound.
  3.  前記ブロックイソシアネート化合物が、水酸基及び酸基の少なくとも一方を有する請求項2に記載の感光性転写材料。 The photosensitive transfer material according to claim 2, wherein the blocked isocyanate compound has at least one of a hydroxyl group and an acid group.
  4.  前記熱硬化性樹脂層が、水酸基及び酸基の少なくとも一方を有する化合物を更に含む請求項2又は請求項3に記載の感光性転写材料。 The photosensitive transfer material according to claim 2 or 3, wherein the thermosetting resin layer further contains a compound having at least one of a hydroxyl group and an acid group.
  5.  前記熱硬化性樹脂層の厚さが、1nm~300nmである請求項1~請求項4のいずれか1項に記載の感光性転写材料。 The photosensitive transfer material according to any one of claims 1 to 4, wherein the thickness of the thermosetting resin layer is 1 nm to 300 nm.
  6.  前記熱硬化性樹脂層の接触抵抗が、200Ω以下である請求項1~請求項5のいずれか1項に記載の感光性転写材料。 The photosensitive transfer material according to any one of claims 1 to 5, wherein the thermosetting resin layer has a contact resistance of 200Ω or less.
  7.  基板と、
     熱硬化されてなる樹脂を含む層と、
     銀ナノワイヤーを含む層と、
    をこの順に有する積層体。
    Board,
    A layer containing a resin that is thermoset,
    A layer containing silver nanowires,
    A laminated body having in this order.
  8.  前記熱硬化されてなる樹脂を含む層は、転写層である熱硬化性樹脂層が硬化されてなる層であり、かつ、前記銀ナノワイヤーを含む層は、転写層である請求項7に記載の積層体。 The layer containing the thermosetting resin is a layer formed by curing a thermosetting resin layer that is a transfer layer, and the layer containing the silver nanowires is a transfer layer. Stack of.
  9.  前記熱硬化されてなる樹脂が、ウレタン結合を有する架橋樹脂である請求項7又は請求項8に記載の積層体。 The laminate according to claim 7 or 8, wherein the thermosetting resin is a crosslinked resin having a urethane bond.
  10.  前記熱硬化されてなる樹脂を含む層の厚さが、1nm~300nmである請求項7~請求項9のいずれか1項に記載の積層体。 The layered product according to any one of claims 7 to 9, wherein a thickness of the layer containing the thermosetting resin is 1 nm to 300 nm.
  11.  前記熱硬化されてなる樹脂を含む層の接触抵抗が、200Ω以下である請求項7~請求項10のいずれか1項に記載の積層体。 The layered product according to any one of claims 7 to 10, wherein the layer containing the thermosetting resin has a contact resistance of 200Ω or less.
  12.  請求項7~請求項11のいずれか1項に記載の積層体を有するタッチパネル。 A touch panel having the laminate according to any one of claims 7 to 11.
  13.  請求項1~請求項6のいずれか1項に記載の感光性転写材料、及び、基板を貼り合わせる工程と、
     前記感光性転写材料における感光性樹脂層をパターン露光する工程と、
     前記パターン露光を経た感光性転写材料を現像してパターンを形成する工程と、
     前記熱硬化性樹脂層を熱硬化させる工程と、
    をこの順に含むパターン付き基板の製造方法。
    A step of bonding the photosensitive transfer material according to any one of claims 1 to 6 and a substrate;
    Pattern-exposing a photosensitive resin layer in the photosensitive transfer material,
    Developing the photosensitive transfer material that has undergone the pattern exposure to form a pattern,
    A step of thermosetting the thermosetting resin layer,
    A method of manufacturing a patterned substrate including:
  14.  請求項1~請求項6のいずれか1項に記載の感光性転写材料、及び、基板を貼り合わせる工程と、
     前記感光性転写材料における感光性樹脂層をパターン露光する工程と、
     前記パターン露光を経た感光性転写材料を現像してパターンを形成する工程と、
     前記熱硬化性樹脂層を熱硬化させる工程と、
     前記パターンにおける、感光性樹脂層又は感光性樹脂層の硬化物を除去する工程と、
    をこの順に含む回路基板の製造方法。
    A step of bonding the photosensitive transfer material according to any one of claims 1 to 6 and a substrate;
    Pattern-exposing a photosensitive resin layer in the photosensitive transfer material,
    Developing the photosensitive transfer material that has undergone the pattern exposure to form a pattern,
    A step of thermosetting the thermosetting resin layer,
    In the pattern, a step of removing the photosensitive resin layer or a cured product of the photosensitive resin layer,
    A method for manufacturing a circuit board including:
  15.  請求項14に記載の回路基板の製造方法を含むタッチパネルの製造方法。 A method for manufacturing a touch panel including the method for manufacturing a circuit board according to claim 14.
PCT/JP2019/042577 2018-12-27 2019-10-30 Photosensitive transfer material, laminate, touch panel, method for producing patterned substrate, method for producing circuit board, and method for producing touch panel WO2020137144A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980083606.7A CN113196891A (en) 2018-12-27 2019-10-30 Photosensitive transfer material, laminate, touch panel, method for manufacturing substrate with pattern, method for manufacturing circuit substrate, and method for manufacturing touch panel
JP2020562868A JPWO2020137144A1 (en) 2018-12-27 2019-10-30 Photosensitive transfer material, laminate, touch panel, patterned substrate manufacturing method, circuit board manufacturing method, and touch panel manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018246221 2018-12-27
JP2018-246221 2018-12-27

Publications (1)

Publication Number Publication Date
WO2020137144A1 true WO2020137144A1 (en) 2020-07-02

Family

ID=71126061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042577 WO2020137144A1 (en) 2018-12-27 2019-10-30 Photosensitive transfer material, laminate, touch panel, method for producing patterned substrate, method for producing circuit board, and method for producing touch panel

Country Status (4)

Country Link
JP (1) JPWO2020137144A1 (en)
CN (1) CN113196891A (en)
TW (1) TW202027983A (en)
WO (1) WO2020137144A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009210972A (en) * 2008-03-06 2009-09-17 Jsr Corp Transfer film and pattern forming method
JP2010251186A (en) * 2009-04-17 2010-11-04 Hitachi Chem Co Ltd Conductive transcription film, and forming method of conductive pattern using it
WO2011155412A1 (en) * 2010-06-07 2011-12-15 日立化成工業株式会社 Photosensitive resin composition, photosensitive element comprising the composition, method for formation of septum for image display device, process for production of image display device, and image display device
JP2013140329A (en) * 2011-12-08 2013-07-18 Jnc Corp Photosensitive composition for transparent conductive film
JP2016156968A (en) * 2015-02-25 2016-09-01 富士フイルム株式会社 Positive lithographic printing plate precursor and method for manufacturing lithographic printing plate
WO2017018427A1 (en) * 2015-07-30 2017-02-02 昭和電工株式会社 Method for producing conductive film, and conductive film
WO2017038278A1 (en) * 2015-08-28 2017-03-09 富士フイルム株式会社 Transfer film, electrode protection film for capacitance-type input device, laminated body, method for manufacturing laminated body, and capacitance-type input device
WO2017208842A1 (en) * 2016-06-02 2017-12-07 東レ株式会社 Method for producing multilayer pattern formed base and method for producing touch panel

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107132731B (en) * 2016-02-26 2021-10-15 富士胶片株式会社 Photosensitive transfer material and method for manufacturing circuit wiring

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009210972A (en) * 2008-03-06 2009-09-17 Jsr Corp Transfer film and pattern forming method
JP2010251186A (en) * 2009-04-17 2010-11-04 Hitachi Chem Co Ltd Conductive transcription film, and forming method of conductive pattern using it
WO2011155412A1 (en) * 2010-06-07 2011-12-15 日立化成工業株式会社 Photosensitive resin composition, photosensitive element comprising the composition, method for formation of septum for image display device, process for production of image display device, and image display device
JP2013140329A (en) * 2011-12-08 2013-07-18 Jnc Corp Photosensitive composition for transparent conductive film
JP2016156968A (en) * 2015-02-25 2016-09-01 富士フイルム株式会社 Positive lithographic printing plate precursor and method for manufacturing lithographic printing plate
WO2017018427A1 (en) * 2015-07-30 2017-02-02 昭和電工株式会社 Method for producing conductive film, and conductive film
WO2017038278A1 (en) * 2015-08-28 2017-03-09 富士フイルム株式会社 Transfer film, electrode protection film for capacitance-type input device, laminated body, method for manufacturing laminated body, and capacitance-type input device
WO2017208842A1 (en) * 2016-06-02 2017-12-07 東レ株式会社 Method for producing multilayer pattern formed base and method for producing touch panel

Also Published As

Publication number Publication date
JPWO2020137144A1 (en) 2021-10-21
TW202027983A (en) 2020-08-01
CN113196891A (en) 2021-07-30

Similar Documents

Publication Publication Date Title
TWI685776B (en) Method of fabricating touch panel
TWI550349B (en) Method of forming resin cured film pattern, photosensitive resin composition, photosensitive element, method of fabricating touch panel, and rein cured film
TWI525491B (en) Method of forming protective film of electrode for touch panel, photosensitive resin composition and photosensitive element, and method of fabricating touch panel
KR102058349B1 (en) Photosensitive resin composition, conductive wire protection film, and touch panel member
TWI621671B (en) Usage of cured product
WO2019102771A1 (en) Photosensitive transfer material, method for producing resin pattern, and method for producing wiring line
WO2020137284A1 (en) Conductive transfer material, patterned board manufacturing method, circuit board manufacturing method, laminated body, and touch panel
WO2020137797A1 (en) Conductive transfer material, method for manufacturing patterned substrate, laminate and touch panel
JP5304973B1 (en) Method for forming protective film of electrode for touch panel, photosensitive resin composition and photosensitive element, and method for manufacturing touch panel
TW201601935A (en) Transfer type photosensitive refractive index-regulating film
JP7317102B2 (en) Conductive transfer material and method for producing conductive pattern
JP2017009702A (en) Photosensitive resin composition and photosensitive element
WO2020137144A1 (en) Photosensitive transfer material, laminate, touch panel, method for producing patterned substrate, method for producing circuit board, and method for producing touch panel
JP7152593B2 (en) Transfer film and patterned substrate manufacturing method
JP6236885B2 (en) Method for producing substrate for touch panel with protective film, photosensitive resin composition, photosensitive element, and touch panel
JP2021144723A (en) Production method of touch panel substrate with cured film, photosensitive resin composition used for the method, photosensitive element, and touch panel
WO2020174767A1 (en) Pattern-added substrate manufacturing method, circuit board manufacturing method, touch panel manufacturing method, and laminate
TW201830143A (en) Photosensitive resin composition, photosensitive element, protective film, and touch panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19906240

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020562868

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19906240

Country of ref document: EP

Kind code of ref document: A1