WO2017208842A1 - Method for producing multilayer pattern formed base and method for producing touch panel - Google Patents

Method for producing multilayer pattern formed base and method for producing touch panel Download PDF

Info

Publication number
WO2017208842A1
WO2017208842A1 PCT/JP2017/018670 JP2017018670W WO2017208842A1 WO 2017208842 A1 WO2017208842 A1 WO 2017208842A1 JP 2017018670 W JP2017018670 W JP 2017018670W WO 2017208842 A1 WO2017208842 A1 WO 2017208842A1
Authority
WO
WIPO (PCT)
Prior art keywords
photosensitive
pattern
conductive
transparent electrode
acrylate
Prior art date
Application number
PCT/JP2017/018670
Other languages
French (fr)
Japanese (ja)
Inventor
創 水口
友孝 河野
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2017529112A priority Critical patent/JPWO2017208842A1/en
Publication of WO2017208842A1 publication Critical patent/WO2017208842A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/26Layered products comprising a layer of synthetic resin characterised by the use of special additives using curing agents
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/38Treatment before imagewise removal, e.g. prebaking
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables

Definitions

  • the present invention relates to a conductive (laminated) pattern forming member (base material) and a method for manufacturing a touch panel.
  • the display electrode formed in the display area of the capacitive touch panel is a transparent electrode made of ITO (indium tin oxide) or the like.
  • ITO indium tin oxide
  • a metal thin film such as ITO is formed on the base material by sputtering or the like, and a photoresist, which is a photosensitive resin, is further applied to the surface and exposed through a photomask.
  • etching and resist removal are performed.
  • Patent Documents 1 and 2 disclose Technology has also been devised.
  • peripheral wiring connected to the transparent electrode is formed around the display area.
  • a method of forming this peripheral wiring a method of finely processing a conductive paste having photosensitivity by a photolithography method is known (Patent Documents 3 to 7).
  • this conductive paste is used to form a peripheral wiring connected to a transparent electrode pattern formed from a base material on which the photosensitive resin layer and the transparent electrode layer are laminated, the photosensitivity formed on the base material It is necessary to apply the conductive paste to the surface of the resin layer and the transparent electrode layer before processing.
  • the photosensitive resin layer swells due to the solvent in the conductive paste, and the conductive particles contained in the conductive paste there.
  • the development process after the conductive paste is exposed through the photomask not only residue is generated in the unexposed area, but also the poor adhesion between the formed conductive pattern and the photosensitive resin layer. Further, ion migration between the conductive pattern and the photosensitive resin layer has been regarded as a problem.
  • the present invention can suppress the generation of residues in the dissolution and removal of unexposed portions, and maintains the adhesion between the conductive pattern formed on the substrate and the photosensitive resin layer, and further the conductive pattern and the photosensitive resin. It aims at providing the manufacturing method of a lamination pattern formation base material which is excellent in ion migration tolerance with a layer.
  • the present invention provides a method for manufacturing a laminated pattern forming substrate and a touch panel described in (1) to (7).
  • the photosensitive conductive film D is obtained, the coating process, the photosensitive conductive film D is exposed, the second exposure process, the laminate and the photosensitive conductive film D are collectively developed, and the transparent electrode A development step for obtaining a laminated pattern of a pattern C and a conductive pattern D, wherein the photosensitive layer B contains a photosensitive resin and a photopolymerization initiator, and the photosensitive conductive paste D includes conductive particles, photosensitive layers
  • a method for manufacturing a touch panel comprising a step based on the manufacturing method according to any one of (1) to (6).
  • a laminated pattern forming substrate having excellent ion migration resistance between the photosensitive resin layer and the photosensitive resin layer can be produced.
  • the manufacturing method of the lamination pattern formation base material of the present invention is the 1st exposure process which exposes the layered product laminated in order of substrate A, photosensitive layer B, and transparent electrode layer C, and the surface of the layered product
  • a photosensitive conductive paste D is applied to obtain a photosensitive conductive film D, a coating process, the photosensitive conductive film D is exposed, a second exposure process, the laminate and the photosensitive conductive film Development step of developing D in a lump to obtain a laminated pattern of the transparent electrode pattern C and the conductive pattern D, the photosensitive layer B containing a photosensitive resin and a photopolymerization initiator
  • the conductive conductive paste D is a method for producing a laminated pattern forming substrate containing conductive particles, a photosensitive resin, and a photopolymerization initiator.
  • a polyethylene terephthalate film PET film
  • a polyimide film a polyester film
  • an aramid film an epoxy resin substrate
  • a polyetherimide resin substrate a polyetherketone resin substrate
  • a polysulfone resin substrate a glass substrate
  • examples include, but are not limited to, silicon wafers, alumina substrates, aluminum nitride substrates, and silicon carbide substrates.
  • the photosensitive resin constituting the photosensitive layer B may be any resin having a carboxyl group in the molecular chain, such as an alkali-soluble acrylic copolymer, an epoxycarboxylate compound, a polyamic acid, and an alkali-soluble siloxane.
  • an alkali-soluble acrylic copolymer and an epoxy carboxylate compound from the viewpoint of visible light permeability include an alkali-soluble acrylic copolymer and an epoxy carboxylate compound from the viewpoint of visible light permeability.
  • An acrylic copolymer is obtained by copolymerizing an acrylic monomer having an unsaturated double bond, and an alkali-soluble acrylic copolymer is obtained by using an unsaturated acid such as an unsaturated carboxylic acid as the acrylic monomer. It is done.
  • an unsaturated acid acrylic acid (henceforth "AA"), methacrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid, vinyl acetate, or these acid anhydrides are mentioned, for example.
  • the acid value of the obtained acrylic copolymer can be adjusted by the amount of the unsaturated acid used.
  • acrylic monomer examples include acrylic acid, methyl acrylate, ethyl acrylate (hereinafter “EA”), 2-ethylhexyl acrylate, n-butyl acrylate (hereinafter “BA”), iso-butyl acrylate, and iso-propane acrylate.
  • Examples of the photopolymerization initiator contained in the photosensitive layer B in the present invention include 1,2-octanedione-1- [4- (phenylthio) -2- (O-benzoyloxime)], 2,4,6- Trimethylbenzoyl-diphenyl-phosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, ethanone-1- [9-ethyl-6-2 (2-methylbenzoyl) -9H-carbazol-3-yl ] -1- (O-acetyloxime), benzophenone, methyl O-benzoylbenzoate, 4,4′-bis (dimethylamino) benzophenone, 4,4′-bis (diethylamino) benzophenone, 4,4′-dichlorobenzophenone 4-benzoyl-4′-methyldiphenyl ketone, dibenzyl ketone, fluorenone, , 2′-diethoxy
  • the addition amount of the photopolymerization initiator contained in the photosensitive layer B is preferably 0.01 to 5 parts by mass, more preferably 2.0 to 4 parts by mass with respect to 100 parts by mass of the photosensitive resin.
  • the addition amount with respect to 100 parts by mass of the photosensitive resin is 0.01 parts by mass or more, more preferably 2.0 parts by mass or more, the cured density of the exposed part increases and the remaining film ratio after development can be increased. it can.
  • the addition amount with respect to 100 parts by mass of the photosensitive resin is 5 parts by mass or more, more preferably 4 parts by mass or less, excessive light absorption by the photopolymerization initiator on the photosensitive layer B is suppressed. As a result, a decrease in adhesion with the substrate due to the manufactured transparent electrode pattern having an inversely tapered shape is suppressed.
  • the photosensitive layer B preferably has a total light transmittance of 80% or more, more preferably 90% or more.
  • the total light transmittance of the photosensitive layer B can be measured according to JIS K7361-1 (1997). If the total light transmittance is 80% or more, it can be used for a display product such as a touch panel, and if it is 90% or more, the light emission efficiency of the display can be increased and the power consumption can be suppressed.
  • the transparent electrode layer C in the present invention contains a conductive component, and the conductive component is made of indium, tin, zinc, gallium, antimony, titanium, silicon, zirconium, magnesium, aluminum, gold, silver, copper, palladium, tungsten.
  • a metal oxide of at least one metal selected from the group is used.
  • the metal oxide may further contain a metal atom shown in the above group, if necessary.
  • ITO indium tin oxide
  • ITO indium zinc oxide
  • indium oxide-zinc oxide composite oxide aluminum zinc oxide, gallium zinc oxide, fluorine zinc oxide, fluorine indium oxide, antimony tin oxide, fluorine Tin oxide or the like can be used.
  • metal fibers such as carbon nanotubes, gold, silver, and platinum can be used.
  • ITO and silver metal fibers are preferable from the viewpoint of conductivity, visible light transmittance, price, and the like, and silver metal fibers (nanowires) are more preferable from the viewpoint of connection reliability with the conductive pattern D.
  • the method for forming the transparent electrode layer C is not particularly limited, and a conventionally known method can be employed. Specifically, a method for forming the transparent electrode layer C by a vacuum deposition method, a sputtering method, an ion plating method, a coating method, or the like can be exemplified. In addition, an appropriate method can be adopted depending on the required film thickness.
  • the thickness of the transparent electrode layer C is not particularly limited, but is preferably 0.01 ⁇ m or more for a continuous film having good conductivity, and more preferably 0.2 ⁇ m or more from the viewpoint of scratch resistance. From the viewpoint of visible light transmittance, it is preferably 1.5 ⁇ m or less, more preferably 1.0 ⁇ m or less.
  • the transparent electrode layer C in the present invention preferably has a total light transmittance of 80% or more, more preferably 90% or more. If the visible light transmittance is 80% or more, it can be used for a display product such as a touch panel, and if it is 90% or more, the light emission efficiency of the display can be increased and the power consumption can be suppressed.
  • the conductive particles contained in the photosensitive conductive paste D in the present invention silver (hereinafter “Ag”), gold (hereinafter “Au”), copper, platinum, lead, tin, nickel, aluminum, tungsten, molybdenum , Chromium, titanium, or indium, or an alloy of these metals, Ag, Au, or copper is preferable from the viewpoint of conductivity, and Ag is more preferable from the viewpoint of cost and stability.
  • the aspect ratio which is a value obtained by dividing the major axis length by the minor axis length, is preferably 1.0 to 3.0, and more preferably 1.0 to 2.0. When the aspect ratio of the conductive particles is 1.0 or more, the contact probability between the conductive particles is further increased.
  • the aspect ratio of the conductive particles is determined by observing the conductive particles with a scanning electron microscope (SEM) or a transmission electron microscope (TEM), and randomly selecting primary particles of 100 conductive particles. It can be determined by measuring the major axis length and minor axis length and determining the aspect ratio from the average value of both.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the particle size of the conductive particles is preferably 3.0 ⁇ m or less, and more preferably 2.0 ⁇ m or less. If the particle size is 3.0 ⁇ m or less, the straightness of the conductive pattern can be increased, and if it is 2.0 ⁇ m or less, the straightness can be further increased.
  • the particle size of the conductive particles is determined by observing the conductive particles with an electron microscope (SEM or TEM), randomly selecting the primary particles of 20 conductive particles, measuring the maximum width of each, It can be calculated by obtaining an average value. Further, the proportion of particles having a particle size of 3.0 ⁇ m or less in the conductive particles contained in the photosensitive conductive paste D is determined by observing the conductive particles with an electron microscope (SEM or TEM) and randomly 100 conductive particles. The primary particles of the particles can be selected, their respective maximum widths can be measured, and the maximum width can be determined from the proportion of primary particles that were 3.0 ⁇ m or less.
  • the particle size of the conductive particles contained in the photosensitive conductive paste D is determined by dissolving the collected photosensitive conductive paste D in tetrahydrofuran (hereinafter “THF”), collecting the precipitated conductive particles, It can calculate similarly to the above about what used and dried for 10 minutes at 70 degreeC.
  • THF tetrahydrofuran
  • the proportion of the conductive particles in the solid content of the photosensitive conductive paste D is preferably 60 to 95% by mass, more preferably 70 to 85% by mass.
  • the proportion of the conductive particles is 60% by mass or more, the contact probability between the conductive particles is increased, the resistance value of the resulting photosensitive conductive pattern D is stabilized, and the effect is further increased when the proportion is 70% by mass or more.
  • the proportion of the conductive particles is 95% by mass or less, exposure light is not easily shielded in an exposure process described later, and the development margin is widened.
  • the solid content means all components of the photosensitive conductive paste D excluding the solvent.
  • Examples of the photosensitive resin contained in the photosensitive conductive paste D of the present invention include an acrylic copolymer having a double bond and a carboxyl group, and an epoxy carboxylate compound. From the viewpoint of adhesion, an epoxy carboxylate compound is preferable.
  • An acrylic copolymer having a double bond and a carboxyl group can be obtained by copolymerizing an unsaturated acid having a carboxyl group and an unsaturated double bond as an acrylic monomer.
  • the unsaturated acid include acrylic acid, methacrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid, vinyl acetate, and acid anhydrides thereof.
  • the acid value of the obtained acrylic copolymer can be adjusted by the amount of the unsaturated acid used.
  • acrylic monomers examples include acrylic acid, methyl acrylate, ethyl acrylate, 2-ethylhexyl acrylate, n-butyl acrylate, iso-butyl acrylate, iso-propane acrylate, glycidyl acrylate, butoxytriethylene glycol acrylate, and dicyclopentanyl.
  • a reactive unsaturated double bond is given to the side chain by reacting the carboxyl group of the acrylic copolymer with a compound having an unsaturated double bond such as glycidyl (meth) acrylate. And the amount of unsaturated double bonds can be adjusted.
  • the epoxycarboxylate compound refers to a compound that can be synthesized using an epoxy compound and a carboxyl compound having an unsaturated double bond as starting materials.
  • examples of the epoxy compound that can be a starting material include glycidyl ethers, alicyclic epoxy resins, glycidyl esters, glycidyl amines, or epoxy resins.
  • the acid value of the epoxycarboxylate compound may be adjusted by reacting the epoxycarboxylate compound with the polybasic acid anhydride.
  • the polybasic acid anhydride include succinic anhydride, phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, itaconic anhydride, 3-methyltetrahydrophthalic anhydride, 4-methyl-hexahydrophthalic anhydride, Examples include trimellitic anhydride or maleic anhydride.
  • an epoxy carboxylate compound has by reacting the carboxyl group which the epoxy carboxylate compound made to react with the above-mentioned polybasic acid anhydride has, and the compound which has unsaturated double bonds, such as glycidyl (meth) acrylate, The amount of the unsaturated double bond may be adjusted.
  • the urethanization may be carried out by reacting the hydroxy group of the epoxycarboxylate compound with a diisocyanate compound.
  • a diisocyanate compound examples include hexamethylene diisocyanate, tetramethylxylene diisocyanate, naphthalene-1,5-diisocyanate, tridenic diisocyanate, trimethylhexamethylene diisocyanate, isophorone diisocyanate, allyl cyanide diisocyanate, and norbornane diisocyanate.
  • Examples of the photopolymerization initiator contained in the photosensitive conductive paste D in the present invention include 1,2-octanedione-1- [4- (phenylthio) -2- (O-benzoyloxime)], 2,4, 6-trimethylbenzoyl-diphenyl-phosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, ethanone-1- [9-ethyl-6-2 (2-methylbenzoyl) -9H-carbazole-3 -Yl] -1- (O-acetyloxime), benzophenone, methyl O-benzoylbenzoate, 4,4'-bis (dimethylamino) benzophenone, 4,4'-bis (diethylamino) benzophenone, 4,4'- Dichlorobenzophenone, 4-benzoyl-4'-methyldiphenyl ketone, dibenzyl ketone, Olenone, 2,2′-diethoxy
  • the addition amount of the photopolymerization initiator contained in the photosensitive conductive paste D is preferably 0.05 to 30 parts by mass and more preferably 2 to 10 parts by mass with respect to 100 parts by mass of the photosensitive resin.
  • the addition amount with respect to 100 parts by mass of the photosensitive resin is 0.05 parts by mass or more, the cured density of the exposed part increases, and the residual film ratio after development can be increased. Time can be shortened.
  • the addition amount with respect to 100 parts by mass of the photosensitive resin is 30 parts by mass or less, excessive light absorption by the photopolymerization initiator at the upper part of the coating film obtained by applying the photosensitive conductive paste D is suppressed. Is done. As a result, a decrease in adhesion with the substrate due to the manufactured conductive pattern having an inversely tapered shape is suppressed, and the effect is further enhanced if it is 10 parts by mass or less.
  • the photosensitive conductive paste D in the present invention may contain a sensitizer together with a photopolymerization initiator.
  • sensitizer examples include 2,4-diethylthioxanthone, isopropylthioxanthone, 2,3-bis (4-diethylaminobenzal) cyclopentanone, 2,6-bis (4-dimethylaminobenzal) cyclohexanone, 2,6-bis (4-dimethylaminobenzal) -4-methylcyclohexanone, Michler's ketone, 4,4-bis (diethylamino) benzophenone, 4,4-bis (dimethylamino) chalcone, 4,4-bis (diethylamino) Chalcone, p-dimethylaminocinnamylidene indanone, p-dimethylaminobenzylidene indanone, 2- (p-dimethylaminophenylvinylene) isonaphthothiazole, 1,3-bis (4-dimethylaminophenylvinylene) isonaphthothiazole,
  • the addition amount of the sensitizer is preferably 0.05 to 10 parts by mass with respect to 100 parts by mass of the photosensitive resin.
  • Photosensitivity improves that the addition amount with respect to 100 mass parts of photosensitive resins is 0.05 mass part or more.
  • the addition amount with respect to 100 parts by mass of the photosensitive resin is 10 parts by mass or less, excessive light absorption at the upper part of the coating film obtained by applying the photosensitive conductive paste D is suppressed.
  • the produced conductive pattern tends to have a reverse taper shape, thereby suppressing a decrease in adhesion to the substrate.
  • the photosensitive conductive paste D of the present invention contains an epoxy resin.
  • Epoxy resins include ethylene glycol-modified epoxy resin, bisphenol A type epoxy resin, hydrogenated bisphenol A type epoxy resin, brominated epoxy resin, bisphenol F type epoxy resin, novolac type epoxy resin, alicyclic epoxy resin, glycidylamine type epoxy Resin, glycidyl ether type epoxy resin, heterocyclic epoxy resin, and the like. From the viewpoint of adhesion to the substrate, bisphenol A type epoxy resin and hydrogenated bisphenol A type epoxy resin are preferable, and from the viewpoint of transparency to exposure light To hydrogenated bisphenol A type epoxy resin.
  • the addition amount of the epoxy resin is preferably 0.05 to 50 parts by mass with respect to 100 parts by mass of the photosensitive resin. Adhesiveness with the transparent electrode layer C can be improved as the addition amount with respect to 100 parts by mass of the photosensitive resin is 0.05 parts by mass or more. On the other hand, the solubility with respect to the developing solution of the photosensitive electrically conductive paste D can be kept favorable as the addition amount with respect to 100 mass parts of photosensitive resins is 50 mass parts or less.
  • the first exposure step of exposing the laminate in which the substrate A, the photosensitive layer B, and the transparent electrode layer C are laminated in this order is a step of exposing via a photomask, and without passing through a photomask. This is divided into a process of exposing the entire surface in the presence of oxygen. When exposed in the presence of oxygen, the outermost surface layer of the exposed portion does not proceed with curing due to oxygen inhibition, and tends to be highly soluble in the developer.
  • a light source that emits i-line (365 nm), h-line (405 nm) or g-line (436 nm) such as high-pressure mercury lamp, ultra-high pressure mercury lamp, LED, etc.
  • the exposure dose for exposure in the presence of oxygen is preferably 100 to 1000 mJ / cm 2 .
  • Exposure dose can increase the adhesion to the photosensitive layer B and the conductive pattern C by the 100 mJ / cm 2 or more, more preferably 1000 mJ / cm 2 or less in the photosensitive layer B by below 800 mJ / cm 2 Because the curing reaction does not proceed on the outermost surface and the solubility in the developer is maintained high, the curing reaction proceeds in the deep part of the film and the solubility in the developing solution decreases, so the difference in solubility between the outermost surface and the deep part of the film must be increased. Can do.
  • Examples of the coating process for obtaining the photosensitive conductive film D by applying the photosensitive conductive paste D in the present invention include spin coating using a spinner, spray coating, roll coating, screen printing or blade coater, die coater, and calendar. Examples thereof include a coating method using a coater, a meniscus coater or a bar coater.
  • the film thickness can be measured by using a stylus step meter such as Surfcom (registered trademark) 1400 (manufactured by Tokyo Seimitsu Co., Ltd.). More specifically, the film thickness at three random positions may be measured with a stylus-type step gauge (length measurement: 1 mm, scanning speed: 0.3 mm / sec), and the average value may be defined as the film thickness. it can.
  • i-line (365 nm), h-line (405 nm), or g-line (436 nm) is emitted from a high-pressure mercury lamp, an ultra-high pressure mercury lamp, an LED or the like.
  • Various exposure methods such as vacuum suction exposure, proxy exposure, projection exposure, and direct drawing exposure are performed using a light source.
  • the laminate and the photosensitive conductive film D are collectively developed to obtain a laminated pattern of the transparent electrode pattern C and the conductive pattern D.
  • the development process is performed using an alkaline developer, and the unexposed portion is dissolved. It is a process of removing and obtaining a desired pattern.
  • Examples of the developer used for alkali development include tetramethylammonium hydroxide, diethanolamine, diethylaminoethanol, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, triethylamine, diethylamine, methylamine, dimethylamine, and dimethyl acetate.
  • Aminoethyl, dimethylaminoethanol, dimethylaminoethyl methacrylate, cyclohexylamine, ethylenediamine or hexamethylenediamine aqueous solutions may be mentioned.
  • These aqueous solutions include N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N -Polar solvents such as dimethylacetamide, dimethylsulfoxide or ⁇ -butyrolactone; alcohols such as methanol, ethanol or isopropanol; Esters such as Le or propylene glycol monomethyl ether acetate, may be added to ketones or surfactants such as cyclopentanone, cyclohexanone, isobutyl ketone or methyl isobutyl ketone.
  • Examples of the developer for organic development include N-methyl-2-pyrrolidone, N-acetyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide or hexamethylphosphoryl
  • Examples thereof include polar solvents such as amides or mixed solutions of these polar solvents and methanol, ethanol, isopropyl alcohol, xylene, water, methyl carbitol, or ethyl carbitol.
  • a developing method for example, a method of spraying a developing solution onto the surface of a coating film while leaving or rotating a substrate, a method of passing a developing tank provided with a number of nozzles for discharging the developing solution with a conveyor, And a method of applying ultrasonic waves while immersing the substrate in a developer.
  • the development pressure when discharging the developer is preferably 0.02 to 0.2 MPa.
  • the development pressure is 0.02 MPa or more, it becomes easy to remove unexposed portions of the laminate and the coating film D all at once by striking force, and the generation of residues can be suppressed. If the pressure of the developer is 0.2 MPa or less, the adhesion of the conductive pattern D to the transparent electrode pattern C is not deteriorated.
  • the laminated pattern is connected to the transparent electrode pattern C over the entire surface of the conductive pattern D, high connection stability can be obtained and the contact resistance between the patterns can be kept low.
  • the laminated pattern obtained by batch development may be subjected to a rinsing treatment with a rinsing liquid.
  • a rinsing liquid examples include water or an aqueous solution in which an alcohol such as ethanol or isopropyl alcohol or an ester such as ethyl lactate or propylene glycol monomethyl ether acetate is added to water.
  • the temperature of the curing process for curing the laminated pattern is 100 to 300 ° C.
  • the curing temperature is more preferably 120 to 180 ° C.
  • the curing temperature is less than 100 ° C., the volume shrinkage of the resin component does not increase, and the specific resistance may not be sufficiently low.
  • the conductive pattern may not be manufactured on a material such as a substrate having low heat resistance.
  • thermo drying for example, heat drying with an oven, an inert oven or a hot plate, an electromagnetic wave such as an ultraviolet lamp, an infrared heater, a halogen heater or a xenon flash lamp, or heat drying with microwaves, or And vacuum drying.
  • Heating increases the hardness of the manufactured laminated pattern, can suppress chipping or peeling due to contact with other members, and further improve the adhesion between the transparent electrode pattern C and the conductive pattern D. it can.
  • the laminate pattern forming substrate produced by the method for producing a laminate pattern forming substrate of the present invention is suitably used as a peripheral wiring for a touch panel.
  • the touch panel system include a resistive film type, an optical type, an electromagnetic induction type, and a capacitance type. Since the capacitance type touch panel requires particularly fine wiring, the laminated pattern formation of the present invention is performed.
  • a laminate pattern forming substrate manufactured by the substrate manufacturing method is more preferably used.
  • a laminate pattern manufactured by a touch panel manufacturing method comprising a step based on the method for manufacturing a laminate pattern forming substrate of the present invention, is provided as a peripheral wiring, and the peripheral wiring is 50 ⁇ m pitch (wiring width + wiring)
  • the touch panel which is equal to or smaller than (width)
  • the frame width can be narrowed and the view area can be widened.
  • DMEA diethylene glycol monoethyl ether acetate
  • a mixture of 20 g EA, 40 g 2-EHMA, 20 g BA, 5 g MAA, 15 g AA, 0.8 g 2,2′-azobisisobutyronitrile and 10 g DMEA was added. It was added dropwise over time. After completion of the dropping, a polymerization reaction was further performed for 6 hours. Thereafter, 1 g of hydroquinone monomethyl ether was added to stop the polymerization reaction. The obtained reaction solution was purified with methanol to remove unreacted impurities, and further vacuum-dried for 24 hours to obtain a photosensitive resin (b-1).
  • DMEA diethylene glycol monoethyl ether acetate
  • IRGACURE registered trademark
  • OXE-01 manufactured by Ciba Japan Co., Ltd.
  • IRGACURE registered trademark 369 (hereinafter “IC-369”; manufactured by Ciba Japan Co., Ltd.).
  • MPD-A Light acrylate MPD-A (hereinafter “MPD-A”; manufactured by Kyoeisha Chemical Co., Ltd.)
  • DEG Diethylene glycol
  • JER registered trademark 828 (hereinafter, “828”; manufactured by Mitsubishi Chemical Corporation) JER (registered trademark) YX-8000 (hereinafter, “YX-8000”; manufactured by Mitsubishi Chemical Corporation).
  • Example 1 ⁇ Formation of photosensitive layer B> As the substrate A, a biaxially stretched polyethylene terephthalate film having a thickness of 30 ⁇ m was prepared. On one side of the substrate A, the composition B1 in which the photosensitive resin (b-1), MPD-A and IC-369 are mixed in a ratio of 100: 50: 1 is applied, heat-treated and dried. A photosensitive layer B1 having a thickness of 4 ⁇ m was formed.
  • a transparent electrode layer which is a silver fiber (nanowire) thin film having a thickness of 1.0 ⁇ m, coated with an aqueous dispersion of silver fiber (solid content: 0.2% by mass) on the photosensitive layer B1 and dried at 100 ° C. for 5 minutes. C1 was formed.
  • a photomask is brought into close contact with the transparent electrode layer C1, and the photosensitive layer B and the transparent electrode layer C are exposed at an exposure amount of 200 mJ / cm 2 with an exposure machine having an ultrahigh pressure mercury lamp, and further 200 mJ without passing through the photomask.
  • the entire surface of the photosensitive layer B1 and the transparent electrode layer C1 was exposed with an exposure amount of / cm 2 .
  • ⁇ Preparation of photosensitive conductive paste D> Put 100 g of photosensitive resin (d-1), 2.0 g of IC-369 and 5.0 g of diethylene glycol into a 100 mL clean bottle, and rotate and revolve vacuum mixer “Awatori Rentaro” (registered trademark) ) ARE-310 (manufactured by Shinky Co., Ltd.) to obtain 17.0 g of a resin solution D1 (solid content: 70.1% by mass).
  • a photosensitive conductive paste D1 is applied to the surface of the photosensitive layer B1 and the exposed transparent electrode layer C1 with a screen printer so that the film thickness becomes 5 ⁇ m, and then dried at 70 ° C. for 10 minutes to form the photosensitive conductive film D1. Obtained.
  • ⁇ Second exposure> A photomask was brought into close contact with the photosensitive conductive film D1, and exposure was performed at an exposure amount of 300 mJ / cm 2 using an exposure machine having an ultrahigh pressure mercury lamp.
  • a 1% by weight sodium carbonate aqueous solution is spray-developed at a pressure of 0.1 MPa for 30 seconds on a laminated substrate composed of the transparent electrode layer C1 and the photosensitive conductive film D1, and then cured at 140 ° C. for 60 minutes to obtain the transparent electrode pattern C1 and A laminated pattern forming substrate composed of the conductive pattern D1 was manufactured.
  • the conductive pattern shown in FIG. 2 is formed, the total light transmittance of the unexposed part and the total light transmittance of only the first exposed area are measured, and compared with the total light transmittance before application of the conductive paste D, If the rate of decrease was 10% or less, it was judged as good if it was greater than 10%.
  • the total light transmittance was obtained as a ratio of the transmittance light intensity to the incident light intensity using NDH-7000SP manufactured by Nippon Denshoku Industries Co., Ltd. according to JIS K7361-1 (1997).
  • ⁇ Adhesion evaluation method> The conductive pattern shown in FIG. 2 is formed, and a 1 mm square is set to 100 in the conductive pattern D using a cutter guide and a cutter in a portion where the first exposure region and the second exposure region overlap and only a portion of the second exposure region. Cut the adhesive tape (CT405AP-24, manufactured by Nichiban Co., Ltd.), peel off the adhesive tape at once, and count the number of conductive patterns D peeled off from the transparent electrode layer C. Sex was evaluated.
  • CT405AP-24 manufactured by Nichiban Co., Ltd.
  • Example 2 When the transparent electrode layer C was ITO, a laminated pattern having the conditions shown in Table 1 was produced by the same method as in Example 1 except that the transparent electrode layer C was formed by the following method, and the same evaluation as in Example 1 was performed. The results are shown in Table 2.
  • a transparent electrode layer C2 which is an ITO thin film made of ITO and having a thickness of 22 nm was formed using a sputtering apparatus equipped with an ITO sintered body target.
  • Example 1 A laminated pattern having the conditions shown in Table 1 was manufactured in the same manner as in Example 1 except that the laminated pattern was formed by the following method in the steps after the first exposure, and the same evaluation as in Example 1 was performed. went. The results are shown in Table 2.
  • a photomask is brought into close contact with the transparent electrode layer C1, and the photosensitive layer B and the transparent electrode layer C are exposed at an exposure amount of 200 mJ / cm 2 with an exposure machine having an ultrahigh pressure mercury lamp, and further 200 mJ without passing through the photomask.
  • / cm 2 after exposure of the photosensitive layer B1 and the transparent electrode layer C1 was entirely exposed with an exposure amount, and 30 seconds spray development with a 1 mass% sodium carbonate aqueous solution 30 ° C., to form a transparent electrode pattern C2 on the photosensitive layer B2 .
  • ⁇ Preparation of photosensitive conductive paste D> Put 100 g of photosensitive resin (d-2), 1.0 g of OXE-01 and 5.0 g of diethylene glycol into a 100 mL clean bottle, and rotate and revolve vacuum mixer “Awatori Rentaro” (registered trademark) ARE-310 (manufactured by Shinky Co., Ltd.) to obtain 17.0 g of a resin solution D2 (solid content: 70.1% by mass).
  • the photosensitive conductive paste D2 was applied to the surface of the photosensitive layer B2 and the transparent electrode pattern C2 with a screen printer so that the film thickness became 5 ⁇ m, and then dried at 70 ° C. for 10 minutes to obtain a photosensitive conductive film D2.
  • ⁇ Formation of laminated pattern> It is exposed at an exposure amount of 300 mJ / cm 2 with an exposure machine having an ultra-high pressure mercury lamp through a predetermined photomask, sprayed with a 1% by mass aqueous sodium carbonate solution at a pressure of 0.1 MPa for 30 seconds, and then at 140 ° C. Curing was performed for 60 minutes to produce a laminated pattern forming substrate composed of the transparent electrode pattern C2 and the conductive pattern D2.
  • Example 2 A laminated pattern having the conditions shown in Table 1 was manufactured in the same manner as in Example 1 except that the laminated pattern was formed by the following method in the steps after the first exposure, and the same evaluation as in Example 1 was performed. It was. The results are shown in Table 2.
  • ⁇ Formation of photosensitive conductive film D> A photosensitive conductive paste D3 was applied to the surface of the photosensitive layer B3 and the transparent electrode layer C3 with a screen printer so that the film thickness was 5 ⁇ m, and then dried at 70 ° C. for 10 minutes to obtain a photosensitive conductive film D3.
  • ⁇ Second exposure> A photomask was adhered to the photosensitive conductive film D3, and exposure was performed at an exposure amount of 300 mJ / cm 2 using an exposure machine having an ultrahigh pressure mercury lamp.
  • ⁇ Formation of laminated pattern> A 1% by weight aqueous sodium carbonate solution is spray-developed at a pressure of 0.1 MPa for 30 seconds on a laminated substrate composed of the transparent electrode layer C3 and the photosensitive conductive film D3, and then cured at 140 ° C. for 60 minutes to obtain the transparent electrode pattern C3 and A laminated pattern forming substrate made of the conductive pattern D3 was produced.
  • the present invention can suppress the generation of residues in unexposed areas, and maintains the adhesive force between the conductive pattern formed on the substrate and the photosensitive resin layer. Furthermore, the conductive pattern and the photosensitive resin layer It can be used to manufacture touch panels with excellent ion migration resistance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials For Photolithography (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Conductive Materials (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

A method for producing a multilayer pattern formed base, which comprises a first light exposure step wherein a laminate that is obtained by sequentially laminating a base A, a photosensitive layer B and a transparent electrode layer C is exposed to light, a coating step wherein the surface of the laminate is coated with a photosensitive conductive paste D so as to obtain a photosensitive conductive film D, a second light exposure step wherein the photosensitive conductive film D is exposed to light, and a development step wherein the laminate and the photosensitive conductive film D are collectively developed at the same time, thereby obtaining a multilayer pattern that is composed of a transparent electrode pattern C and a conductive pattern D, and wherein the photosensitive layer B contains a photosensitive resin and a photopolymerization initiator, while the photosensitive conductive paste D contains conductive particles, a photosensitive resin and a photopolymerization initiator. Consequently, the present invention provides a method for producing a multilayer pattern formed base, which is able to suppress the generation of a residue during removal of an unexposed part by dissolution, while maintaining adhesion between a conductive pattern and a photosensitive resin layer formed on a base, and which has excellent ion migration resistance between the conductive pattern and the photosensitive resin layer.

Description

積層パターン形成基材及びタッチパネルの製造方法Laminate pattern forming substrate and touch panel manufacturing method
 本発明は導電(積層)パターン形成部材(基材)及びタッチパネルの製造方法に関する。 The present invention relates to a conductive (laminated) pattern forming member (base material) and a method for manufacturing a touch panel.
 静電容量式タッチパネルの表示領域に形成される表示電極は、ITO(酸化インジウムスズ)等からなる透明電極である。そのパターン加工のプロセスとしては、スパッタ等により基材にITO等の金属薄膜を膜付けして、その表面にさらに感光性を有する樹脂であるフォトレジストを塗布してフォトマスクを介して露光をし、現像でレジストパターンを形成した後にエッチング及びレジスト除去をするのが一般的である。 The display electrode formed in the display area of the capacitive touch panel is a transparent electrode made of ITO (indium tin oxide) or the like. As the pattern processing process, a metal thin film such as ITO is formed on the base material by sputtering or the like, and a photoresist, which is a photosensitive resin, is further applied to the surface and exposed through a photomask. In general, after forming a resist pattern by development, etching and resist removal are performed.
 一方で、基材上に予め感光性樹脂層及び透明電極層を積層したものを用意しておくことで、透明電極のパターンを形成する都度フォトレジストを塗布したり、除去したりすることを省く技術も考案されている(特許文献1及び2)。 On the other hand, by preparing a laminate of a photosensitive resin layer and a transparent electrode layer on a substrate in advance, it is possible to omit applying or removing a photoresist each time a transparent electrode pattern is formed. Technology has also been devised (Patent Documents 1 and 2).
 静電容量式タッチパネルでは表示領域の周辺には、透明電極と接続する周囲配線が形成される。この周囲配線の形成の方法としては、感光性を有する導電ペーストをフォトリソ法で微細加工する方法が知られている(特許文献3~7)。この導電ペーストを用いて、上記の感光性樹脂層及び透明電極層を積層した基材から形成した透明電極パターンに接続する周囲配線を形成しようとした場合、該基材上に形成された感光性樹脂層及び透明電極層の表面に、導電ペーストを塗布してからその加工をする必要がある。 In the capacitive touch panel, peripheral wiring connected to the transparent electrode is formed around the display area. As a method of forming this peripheral wiring, a method of finely processing a conductive paste having photosensitivity by a photolithography method is known (Patent Documents 3 to 7). When this conductive paste is used to form a peripheral wiring connected to a transparent electrode pattern formed from a base material on which the photosensitive resin layer and the transparent electrode layer are laminated, the photosensitivity formed on the base material It is necessary to apply the conductive paste to the surface of the resin layer and the transparent electrode layer before processing.
特開2015-18157号公報Japanese Patent Laying-Open No. 2015-18157 特開2014-199814号公報JP 2014-199814 A 特許第5278632号公報Japanese Patent No. 5278632 国際公開第2013/108696号International Publication No. 2013/108696 特許第5360285号公報Japanese Patent No. 5360285 特許第5403187号公報Japanese Patent No. 5403187 国際公開第2013/146107号International Publication No. 2013/146107
 しかしながら、基材上の感光性樹脂層の表面に導電ペーストの塗布膜が形成された部位においては、導電ペースト中の溶剤により感光性樹脂層が膨潤し、そこに導電ペーストに含まれる導電性粒子が埋没することで、導電ペーストをフォトマスクを介して露光した後の現像工程において、未露光部に残渣が発生するばかりでなく、形成された導電パターンと感光性樹脂層間での密着性不良が生じ、更には導電パターンと感光性樹脂層とのイオンマイグレーションが問題視されていた。 However, in the part where the conductive paste coating film is formed on the surface of the photosensitive resin layer on the substrate, the photosensitive resin layer swells due to the solvent in the conductive paste, and the conductive particles contained in the conductive paste there. In the development process after the conductive paste is exposed through the photomask, not only residue is generated in the unexposed area, but also the poor adhesion between the formed conductive pattern and the photosensitive resin layer. Further, ion migration between the conductive pattern and the photosensitive resin layer has been regarded as a problem.
 そこで本発明は、未露光部の溶解除去における残渣発生を抑制でき、かつ、基材上に形成された導電パターンと感光性樹脂層との密着力を保持し、更には導電パターンと感光性樹脂層とのイオンマイグレーション耐性に優れる、積層パターン形成基材の製造方法を提供することを目的とする。 Therefore, the present invention can suppress the generation of residues in the dissolution and removal of unexposed portions, and maintains the adhesion between the conductive pattern formed on the substrate and the photosensitive resin layer, and further the conductive pattern and the photosensitive resin. It aims at providing the manufacturing method of a lamination pattern formation base material which is excellent in ion migration tolerance with a layer.
 上記課題を解決するため、本発明は、(1)から(7)に記載した積層パターン形成基材及びタッチパネルの製造方法を提供する。 In order to solve the above-mentioned problems, the present invention provides a method for manufacturing a laminated pattern forming substrate and a touch panel described in (1) to (7).
 (1)基材A、感光層B及び透明電極層Cの順に積層がされた積層体を、露光する、第一の露光工程と、前記積層体の表面に、感光性導電ペーストDを塗布して感光性導電膜Dを得る、塗布工程と、前記感光性導電膜Dを露光する、第二の露光工程と、前記積層体及び前記感光性導電膜Dを一括して現像して、透明電極パターンC及び導電パターンDの積層パターンを得る、現像工程と、を備え、前記感光層Bは、感光性樹脂及び光重合開始剤を含有し、前記感光性導電ペーストDは、導電性粒子、感光性樹脂及び光重合開始剤を含有する、積層パターン形成基材の製造方法。 (1) The first and second exposure steps of exposing a laminate in which the substrate A, the photosensitive layer B, and the transparent electrode layer C are laminated in this order, and applying the photosensitive conductive paste D to the surface of the laminate. The photosensitive conductive film D is obtained, the coating process, the photosensitive conductive film D is exposed, the second exposure process, the laminate and the photosensitive conductive film D are collectively developed, and the transparent electrode A development step for obtaining a laminated pattern of a pattern C and a conductive pattern D, wherein the photosensitive layer B contains a photosensitive resin and a photopolymerization initiator, and the photosensitive conductive paste D includes conductive particles, photosensitive layers The manufacturing method of a lamination pattern formation base material containing a functional resin and a photoinitiator.
 (2)前記第一の露光工程が、フォトマスクを介して露光する工程と、フォトマスクを介することなく酸素存在下で露光する工程とを有する上記(1)に記載の積層パターン形成基材の製造方法。 (2) The laminated pattern forming substrate according to (1), wherein the first exposure step includes a step of exposing through a photomask and a step of exposing in the presence of oxygen without going through a photomask. Production method.
 (3)さらに前記積層パターンを100~300℃で加熱する、キュア工程を備える、上記(1)又は(2)に記載の積層パターン形成基材の製造方法。 (3) The method for producing a laminated pattern forming substrate according to (1) or (2), further comprising a curing step in which the laminated pattern is heated at 100 to 300 ° C.
 (4)前記透明電極層が、金属ナノワイヤを含有する、上記(1)~(3)に記載の積層パターン形成基材の製造方法。 (4) The method for producing a laminated pattern forming substrate according to (1) to (3), wherein the transparent electrode layer contains metal nanowires.
 (5)前記金属ナノワイヤとして、銀ナノワイヤを含有する、上記(4)に記載の積層パターン形成基材の製造方法。 (5) The manufacturing method of the lamination pattern formation base material given in the above (4) containing silver nanowire as the metal nanowire.
 (6)前記導電性粒子として、銀粒子を含有する、上記(1)~(5)のいずれかに記載の積層パターン形成基材の製造方法。 (6) The method for producing a laminated pattern forming substrate according to any one of (1) to (5), wherein the conductive particles contain silver particles.
 (7)前記(1)~(6)のいずれかに記載の製造方法に基づく工程を備えることを特徴とするタッチパネルの製造方法。 (7) A method for manufacturing a touch panel, comprising a step based on the manufacturing method according to any one of (1) to (6).
 本発明の製造方法によれば、未露光部の溶解除去における残渣発生を抑制でき、かつ、基材上に形成された導電パターンと感光性樹脂層との密着力を保持し、更には導電パターンと感光性樹脂層とのイオンマイグレーション耐性に優れる、積層パターン形成基材を製造することができる。 According to the production method of the present invention, it is possible to suppress the generation of residues in the dissolution and removal of unexposed portions, and to maintain the adhesion between the conductive pattern formed on the substrate and the photosensitive resin layer. A laminated pattern forming substrate having excellent ion migration resistance between the photosensitive resin layer and the photosensitive resin layer can be produced.
積層パターン形成基材の模式図である。It is a schematic diagram of a lamination pattern formation base material. 残渣評価、密着性評価に用いた導電パターンの模式図である。It is a schematic diagram of the conductive pattern used for residue evaluation and adhesive evaluation. イオンマイグレーション耐性の評価に用いた導電パターンの模式図である。It is a schematic diagram of the conductive pattern used for evaluation of ion migration tolerance.
 以下に具体例を挙げつつ、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail with specific examples.
 本発明の積層パターン形成基材の製造方法は、基材A、感光層B及び透明電極層Cの順に積層がされた積層体を、露光する、第一の露光工程と、前記積層体の表面に、感光性導電ペーストDを塗布して感光性導電膜Dを得る、塗布工程と、前記感光性導電膜Dを、露光する、第二の露光工程と、前記積層体及び前記感光性導電膜Dを一括して現像して、透明電極パターンC及び導電パターンDの積層パターンを得る、現像工程と、を備え、前記感光層Bは、感光性樹脂及び光重合開始剤を含有し、前記感光性導電ペーストDは、導電性粒子、感光性樹脂及び光重合開始剤を含有する、積層パターン形成基材の製造方法である。 The manufacturing method of the lamination pattern formation base material of the present invention is the 1st exposure process which exposes the layered product laminated in order of substrate A, photosensitive layer B, and transparent electrode layer C, and the surface of the layered product A photosensitive conductive paste D is applied to obtain a photosensitive conductive film D, a coating process, the photosensitive conductive film D is exposed, a second exposure process, the laminate and the photosensitive conductive film Development step of developing D in a lump to obtain a laminated pattern of the transparent electrode pattern C and the conductive pattern D, the photosensitive layer B containing a photosensitive resin and a photopolymerization initiator, The conductive conductive paste D is a method for producing a laminated pattern forming substrate containing conductive particles, a photosensitive resin, and a photopolymerization initiator.
 本発明において基材Aとしては、ポリエチレンテレフタレートフィルム(PETフィルム)、ポリイミドフィルム、ポリエステルフィルム、アラミドフィルム、エポキシ樹脂基板、ポリエーテルイミド樹脂基板、ポリエーテルケトン樹脂基板、ポリサルフォン系樹脂基板、ガラス基板、シリコンウエハー、アルミナ基板、窒化アルミニウム基板、炭化ケイ素基板が挙げられるがこれらに限定されない。 In the present invention, as the base material A, a polyethylene terephthalate film (PET film), a polyimide film, a polyester film, an aramid film, an epoxy resin substrate, a polyetherimide resin substrate, a polyetherketone resin substrate, a polysulfone resin substrate, a glass substrate, Examples include, but are not limited to, silicon wafers, alumina substrates, aluminum nitride substrates, and silicon carbide substrates.
 本発明において感光層Bを構成する感光性樹脂としては、分子鎖中にカルボキシル基を有するものであればよく、アルカリ可溶性のアクリル系共重合体、エポキシカルボキシレート化合物、ポリアミック酸、アルカリ可溶性のシロキサンポリマーが挙げられ、可視光透過性の観点からアルカリ可溶性のアクリル系共重合体、エポキシカルボキシレート化合物が好ましい。 In the present invention, the photosensitive resin constituting the photosensitive layer B may be any resin having a carboxyl group in the molecular chain, such as an alkali-soluble acrylic copolymer, an epoxycarboxylate compound, a polyamic acid, and an alkali-soluble siloxane. Examples thereof include an alkali-soluble acrylic copolymer and an epoxy carboxylate compound from the viewpoint of visible light permeability.
 アクリル系共重合体は不飽和二重結合を有するアクリルモノマーを共重合させることで得られ、アルカリ可溶性のアクリル系共重合体はアクリルモノマーに不飽和カルボン酸等の不飽和酸を用いることにより得られる。不飽和酸としては、例えば、アクリル酸(以下、「AA」)、メタクリル酸、イタコン酸、クロトン酸、マレイン酸、フマル酸若しくは酢酸ビニル又はこれらの酸無水物が挙げられる。用いる不飽和酸の多少により、得られるアクリル系共重合体の酸価を調整することができる。 An acrylic copolymer is obtained by copolymerizing an acrylic monomer having an unsaturated double bond, and an alkali-soluble acrylic copolymer is obtained by using an unsaturated acid such as an unsaturated carboxylic acid as the acrylic monomer. It is done. As an unsaturated acid, acrylic acid (henceforth "AA"), methacrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid, vinyl acetate, or these acid anhydrides are mentioned, for example. The acid value of the obtained acrylic copolymer can be adjusted by the amount of the unsaturated acid used.
 アクリル系モノマーとしては、例えば、アクリル酸、メチルアクリレート、エチルアクリレート(以下、「EA」)、2-エチルヘキシルアクリレート、n-ブチルアクリレート(以下、「BA」)、iso-ブチルアクリレート、iso-プロパンアクリレート、グリシジルアクリレート、ブトキシトリエチレングリコールアクリレート、ジシクロペンタニルアクリレート、ジシクロペンテニルアクリレート、2-ヒドロキシエチルアクリレート、イソボルニルアクリレート、2-ヒドロキシプロピルアクリレート、イソデキシルアクリレート、イソオクチルアクリレート、ラウリルアクリレート、2-メトキシエチルアクリレート、メトキシエチレングリコールアクリレート、メトキシジエチレングリコールアクリレート、オクタフロロペンチルアクリレート、フェノキシエチルアクリレート、ステアリルアクリレート、トリフロロエチルアクリレート、アミノエチルアクリレート、フェニルアクリレート、フェノキシエチルアクリレート、1-ナフチルアクリレート、2-ナフチルアクリレート、チオフェノールアクリレート若しくはベンジルメルカプタンアクリレート、アリル化シクロヘキシルジアクリレート、メトキシ化シクロヘキシルジアクリレート、1,4-ブタンジオールジアクリレート、1,3-ブチレングリコールジアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、ポリエチレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、プロピレングリコールジアクリレート、ポリプロピレングリコールジアクリレート若しくはトリグリセロールジアクリレート、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、ジペンタエリスリトールモノヒドロキシペンタアクリレート若しくはジペンタエリスリトールヘキサアクリレート、アクリルアミド、N-メトキシメチルアクリルアミド、N-エトキシメチルアクリルアミド、N-n-ブトキシメチルアクリルアミド若しくはN-イソブトキシメチルアクリルアミド、エポキシ基を不飽和酸で開環させた水酸基を有するエチレングリコールジグリシジルエーテルのアクリル酸付加物、ジエチレングリコールジグリシジルエーテルのアクリル酸付加物、ネオペンチルグリコールジグリシジルエーテルのアクリル酸付加物、グリセリンジグリシジルエーテルのアクリル酸付加物、ビスフェノールAジグリシジルエーテルのアクリル酸付加物、ビスフェノールFのアクリル酸付加物若しくはクレゾールノボラックのアクリル酸付加物等のエポキシアクリレートモノマー又はγ-アクリロキシプロピルトリメトキシシラン、あるいは、それらのアクリル基を、メタクリル基に置換した化合物が挙げられるが、可視光透過性の観点から脂肪鎖もしくは脂環式構造を有するものが好ましい。 Examples of the acrylic monomer include acrylic acid, methyl acrylate, ethyl acrylate (hereinafter “EA”), 2-ethylhexyl acrylate, n-butyl acrylate (hereinafter “BA”), iso-butyl acrylate, and iso-propane acrylate. Glycidyl acrylate, butoxytriethylene glycol acrylate, dicyclopentanyl acrylate, dicyclopentenyl acrylate, 2-hydroxyethyl acrylate, isobornyl acrylate, 2-hydroxypropyl acrylate, isodexyl acrylate, isooctyl acrylate, lauryl acrylate, 2-methoxyethyl acrylate, methoxyethylene glycol acrylate, methoxydiethylene glycol acrylate, octaflo Pentyl acrylate, phenoxyethyl acrylate, stearyl acrylate, trifluoroethyl acrylate, aminoethyl acrylate, phenyl acrylate, phenoxyethyl acrylate, 1-naphthyl acrylate, 2-naphthyl acrylate, thiophenol acrylate or benzyl mercaptan acrylate, allylated cyclohexyl diacrylate, Methoxylated cyclohexyl diacrylate, 1,4-butanediol diacrylate, 1,3-butylene glycol diacrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, triethylene glycol diacrylate, polyethylene glycol diacrylate, neopentyl glycol diacrylate, Propylene glycol Diacrylate, polypropylene glycol diacrylate or triglycerol diacrylate, trimethylolpropane triacrylate, ditrimethylolpropane tetraacrylate, dipentaerythritol monohydroxypentaacrylate or dipentaerythritol hexaacrylate, acrylamide, N-methoxymethylacrylamide, N-ethoxy Methyl acrylamide, Nn-butoxymethyl acrylamide or N-isobutoxymethyl acrylamide, acrylic acid adduct of ethylene glycol diglycidyl ether having a hydroxyl group in which an epoxy group is opened with an unsaturated acid, acrylic acid of diethylene glycol diglycidyl ether Adduct, neopentyl glycol diglycidyl ether acrylic acid Epoxy acrylate monomer or γ-acryloxypropyl such as an adduct, an acrylic acid adduct of glycerin diglycidyl ether, an acrylic acid adduct of bisphenol A diglycidyl ether, an acrylic acid adduct of bisphenol F, or an acrylic acid adduct of cresol novolac Examples include trimethoxysilane or a compound obtained by substituting an acrylic group thereof with a methacryl group, but those having an aliphatic chain or an alicyclic structure are preferable from the viewpoint of visible light transmittance.
 本発明における感光層Bに含まれる光重合開始剤としては、例えば、1,2-オクタンジオン-1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]、2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド、エタノン-1-[9-エチル-6-2(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)、ベンゾフェノン、O-ベンゾイル安息香酸メチル、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、4,4’-ジクロロベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルケトン、ジベンジルケトン、フルオレノン、2,2’-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、p-t-ブチルジクロロアセトフェノン、チオキサントン、2-メチルチオキサントン、2-クロロチオキサントン、2-イソプロピルチオキサントン、ジエチルチオキサントン、ベンジル、ベンジルジメチルケタール、ベンジル-β-メトキシエチルアセタール、ベンゾイン、ベンゾインメチルエーテル、ベンゾインブチルエーテル、アントラキノン、2-t-ブチルアントラキノン、2-アミルアントラキノン、β-クロルアントラキノン、アントロン、ベンズアントロン、ジベンゾスベロン、メチレンアントロン、4-アジドベンザルアセトフェノン、2,6-ビス(p-アジドベンジリデン)シクロヘキサノン、6-ビス(p-アジドベンジリデン)-4-メチルシクロヘキサノン、1-フェニル-1,2-ブタンジオン-2-(O-メトキシカルボニル)オキシム、1-フェニル-プロパンジオン-2-(O-エトキシカルボニル)オキシム、1-フェニル-プロパンジオン-2-(O-ベンゾイル)オキシム、1,3-ジフェニル-プロパントリオン-2-(O-エトキシカルボニル)オキシム、1-フェニル-3-エトキシ-プロパントリオン-2-(O-ベンゾイル)オキシム、ミヒラーケトン、2-メチル-[4-(メチルチオ)フェニル]-2-モルフォリノ-1-プロパノン、ナフタレンスルホニルクロライド、キノリンスルホニルクロライド、N-フェニルチオアクリドン、4,4’-アゾビスイソブチロニトリル、ジフェニルジスルフィド、ベンズチアゾールジスルフィド、トリフェニルホスフィン、カンファーキノン、2,4-ジエチルチオキサントン、イソプロピルチオキサントン、四臭化炭素、トリブロモフェニルスルホン、過酸化ベンゾイン、エオシン又はメチレンブルー等の光還元性色素と、アスコルビン酸若しくはトリエタノールアミン等の還元剤との組み合わせが挙げられる。 Examples of the photopolymerization initiator contained in the photosensitive layer B in the present invention include 1,2-octanedione-1- [4- (phenylthio) -2- (O-benzoyloxime)], 2,4,6- Trimethylbenzoyl-diphenyl-phosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, ethanone-1- [9-ethyl-6-2 (2-methylbenzoyl) -9H-carbazol-3-yl ] -1- (O-acetyloxime), benzophenone, methyl O-benzoylbenzoate, 4,4′-bis (dimethylamino) benzophenone, 4,4′-bis (diethylamino) benzophenone, 4,4′-dichlorobenzophenone 4-benzoyl-4′-methyldiphenyl ketone, dibenzyl ketone, fluorenone, , 2′-diethoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2-hydroxy-2-methylpropiophenone, pt-butyldichloroacetophenone, thioxanthone, 2-methylthioxanthone, 2-chlorothioxanthone, 2-isopropylthioxanthone, diethylthioxanthone, benzyl, benzyldimethyl ketal, benzyl-β-methoxyethyl acetal, benzoin, benzoin methyl ether, benzoin butyl ether, anthraquinone, 2-t-butylanthraquinone, 2-amylanthraquinone, β-chloroanthraquinone, Anthrone, benzanthrone, dibenzosuberone, methyleneanthrone, 4-azidobenzalacetophenone, 2,6-bis (p-azidobenzylidene) Clohexanone, 6-bis (p-azidobenzylidene) -4-methylcyclohexanone, 1-phenyl-1,2-butanedione-2- (O-methoxycarbonyl) oxime, 1-phenyl-propanedione-2- (O— Ethoxycarbonyl) oxime, 1-phenyl-propanedione-2- (O-benzoyl) oxime, 1,3-diphenyl-propanetrione-2- (O-ethoxycarbonyl) oxime, 1-phenyl-3-ethoxy-propanetrione -2- (O-benzoyl) oxime, Michler's ketone, 2-methyl- [4- (methylthio) phenyl] -2-morpholino-1-propanone, naphthalenesulfonyl chloride, quinolinesulfonyl chloride, N-phenylthioacridone, 4, 4'-azobisisobutyronitrile Photoreducing dyes such as diphenyl disulfide, benzthiazole disulfide, triphenylphosphine, camphorquinone, 2,4-diethylthioxanthone, isopropylthioxanthone, carbon tetrabromide, tribromophenylsulfone, benzoin peroxide, eosin or methylene blue, and ascorbine A combination with a reducing agent such as acid or triethanolamine can be mentioned.
 感光層Bに含まれる光重合開始剤の添加量としては、感光性樹脂100質量部に対して0.01~5質量部が好ましく、より好ましくは2.0~4質量部である。感光性樹脂100質量部に対する添加量が0.01質量部以上、より好ましくは2.0質量部以上であると、露光部の硬化密度が増加し、現像後の残膜率を高くすることができる。一方で、感光性樹脂100質量部に対する添加量が5質量部以上、より好ましくは4質量部以下であると、感光層B上での、光重合開始剤による過剰な光吸収が抑制される。その結果、製造された透明電極パターンが逆テーパー形状となることによる、基板との密着性低下が抑制される。 The addition amount of the photopolymerization initiator contained in the photosensitive layer B is preferably 0.01 to 5 parts by mass, more preferably 2.0 to 4 parts by mass with respect to 100 parts by mass of the photosensitive resin. When the addition amount with respect to 100 parts by mass of the photosensitive resin is 0.01 parts by mass or more, more preferably 2.0 parts by mass or more, the cured density of the exposed part increases and the remaining film ratio after development can be increased. it can. On the other hand, when the addition amount with respect to 100 parts by mass of the photosensitive resin is 5 parts by mass or more, more preferably 4 parts by mass or less, excessive light absorption by the photopolymerization initiator on the photosensitive layer B is suppressed. As a result, a decrease in adhesion with the substrate due to the manufactured transparent electrode pattern having an inversely tapered shape is suppressed.
 本発明における感光層Bは全光線透過率が80%以上であることが好ましく、より好ましくは90%以上である。なお感光層Bの全光線透過率は、JIS K7361-1(1997年)に準拠して測定することができる。全光線透過率が80%以上であればタッチパネルのようなディスプレイ製品に使用することができ、90%以上であればディスプレイの発光効率を高め、消費電力を抑えることができる。 In the present invention, the photosensitive layer B preferably has a total light transmittance of 80% or more, more preferably 90% or more. The total light transmittance of the photosensitive layer B can be measured according to JIS K7361-1 (1997). If the total light transmittance is 80% or more, it can be used for a display product such as a touch panel, and if it is 90% or more, the light emission efficiency of the display can be increased and the power consumption can be suppressed.
 本発明における透明電極層Cは導電成分を含み、導電成分としては、インジウム、スズ、亜鉛、ガリウム、アンチモン、チタン、珪素、ジルコニウム、マグネシウム、アルミニウム、金、銀、銅、パラジウム、タングステン、からなる群より選択される少なくとも1種の金属の金属酸化物が用いられる。当該金属酸化物には、必要に応じて、さらに上記郡に示された金属原子を含んでいてもよい。例えば、インジウムスズ酸化物(ITO)、インジウム亜鉛酸化物、酸化インジウム-酸化亜鉛複合酸化物、アルミニウム亜鉛酸化物、ガリウム亜鉛酸化物、フッ素亜鉛酸化物、フッ素インジウム酸化物、アンチモンスズ酸化物、フッ素スズ酸化物等を用いることができる。その他導電成分としては、カーボンナノチューブ、金、銀、白金などの金属繊維(ナノワイヤ)を用いることができる。導電性、可視光透過性、価格などの観点からITO、銀の金属繊維(ナノワイヤ)が好ましく、導電パターンDとの接続信頼性の観点から銀の金属繊維(ナノワイヤ)がより好ましい。 The transparent electrode layer C in the present invention contains a conductive component, and the conductive component is made of indium, tin, zinc, gallium, antimony, titanium, silicon, zirconium, magnesium, aluminum, gold, silver, copper, palladium, tungsten. A metal oxide of at least one metal selected from the group is used. The metal oxide may further contain a metal atom shown in the above group, if necessary. For example, indium tin oxide (ITO), indium zinc oxide, indium oxide-zinc oxide composite oxide, aluminum zinc oxide, gallium zinc oxide, fluorine zinc oxide, fluorine indium oxide, antimony tin oxide, fluorine Tin oxide or the like can be used. As other conductive components, metal fibers (nanowires) such as carbon nanotubes, gold, silver, and platinum can be used. ITO and silver metal fibers (nanowires) are preferable from the viewpoint of conductivity, visible light transmittance, price, and the like, and silver metal fibers (nanowires) are more preferable from the viewpoint of connection reliability with the conductive pattern D.
 透明電極層Cの形成方法としては特に限定されず、従来公知の方法を採用することができる。具体的には、真空蒸着法、スパッタリング法、イオンプレーティング法、コーティング法等による透明電極層Cの形成方法を例示できる。また、必要とする膜厚に応じて適宜の方法を採用することもできる。 The method for forming the transparent electrode layer C is not particularly limited, and a conventionally known method can be employed. Specifically, a method for forming the transparent electrode layer C by a vacuum deposition method, a sputtering method, an ion plating method, a coating method, or the like can be exemplified. In addition, an appropriate method can be adopted depending on the required film thickness.
 透明電極層Cの厚みは特に制限されないが、良好な導電性を有する連続被膜とするには0.01μm以上が好ましく、耐傷性の観点から0.2μm以上がより好ましい。可視光透過性の観点からは1.5μm以下が好ましく、より好ましくは1.0μm以下である。 The thickness of the transparent electrode layer C is not particularly limited, but is preferably 0.01 μm or more for a continuous film having good conductivity, and more preferably 0.2 μm or more from the viewpoint of scratch resistance. From the viewpoint of visible light transmittance, it is preferably 1.5 μm or less, more preferably 1.0 μm or less.
 本発明における透明電極層Cは全光線透過率が80%以上であることが好ましく、より好ましくは90%以上である。可視光透過率が80%以上であればタッチパネルのようなディスプレイ製品に使用することができ、90%以上であればディスプレイの発光効率を高め、消費電力を抑えることができる。 The transparent electrode layer C in the present invention preferably has a total light transmittance of 80% or more, more preferably 90% or more. If the visible light transmittance is 80% or more, it can be used for a display product such as a touch panel, and if it is 90% or more, the light emission efficiency of the display can be increased and the power consumption can be suppressed.
 本発明における感光性導電ペーストDに含まれる導電性粒子としては、銀(以下、「Ag」)、金(以下、「Au」)、銅、白金、鉛、スズ、ニッケル、アルミニウム、タングステン、モリブデン、クロム、チタン若しくはインジウム又はこれら金属の合金が挙げられるが、導電性の観点からAg、Au又は銅が好ましく、コスト及び安定性の観点からAgがより好ましい。また、形状としては、長軸長を短軸長で除した値であるアスペクト比が、1.0~3.0であることが好ましく、1.0~2.0であることがより好ましい。導電性粒子のアスペクト比が1.0以上であると、導電性粒子同士の接触確率が、より高まることになる。一方で、導電性粒子のアスペクト比が2.0以下であると、後述する露光工程において露光光が遮蔽されにくく、現像マージンが広くなる場合がある。導電性粒子のアスペクト比は、走査型電子顕微鏡(SEM)又は透過型電子顕微鏡(TEM)で導電性粒子を観察し、無作為に100個の導電性粒子の一次粒子を選択して、それぞれの長軸長及び短軸長を測定し、両者の平均値からアスペクト比を求めることで決定することができる。 As the conductive particles contained in the photosensitive conductive paste D in the present invention, silver (hereinafter “Ag”), gold (hereinafter “Au”), copper, platinum, lead, tin, nickel, aluminum, tungsten, molybdenum , Chromium, titanium, or indium, or an alloy of these metals, Ag, Au, or copper is preferable from the viewpoint of conductivity, and Ag is more preferable from the viewpoint of cost and stability. As for the shape, the aspect ratio, which is a value obtained by dividing the major axis length by the minor axis length, is preferably 1.0 to 3.0, and more preferably 1.0 to 2.0. When the aspect ratio of the conductive particles is 1.0 or more, the contact probability between the conductive particles is further increased. On the other hand, when the aspect ratio of the conductive particles is 2.0 or less, the exposure light is difficult to be shielded in the exposure process described later, and the development margin may be widened. The aspect ratio of the conductive particles is determined by observing the conductive particles with a scanning electron microscope (SEM) or a transmission electron microscope (TEM), and randomly selecting primary particles of 100 conductive particles. It can be determined by measuring the major axis length and minor axis length and determining the aspect ratio from the average value of both.
 導電性粒子の粒径は、3.0μm以下が好ましく、2.0μm以下がより好ましい。
粒径が3.0μm以下であれば導電パターンの直進性を高くすることができ、2.0μm以下であればより直進性を高くすることができる。導電性粒子の粒径は、電子顕微鏡(SEM又はTEM)で導電性粒子を観察し、無作為に20個の導電性粒子の一次粒子を選択して、それぞれの最大幅を測定し、それらの平均値を求めることで算出することができる。また、感光性導電ペーストDが含有する導電性粒子に占める粒径3.0μm以下の粒子の割合は、電子顕微鏡(SEM又はTEM)で導電性粒子を観察し、無作為に100個の導電性粒子の一次粒子を選択して、それぞれの最大幅を測定し、最大幅が3.0μm以下であった一次粒子の割合から決定することができる。
The particle size of the conductive particles is preferably 3.0 μm or less, and more preferably 2.0 μm or less.
If the particle size is 3.0 μm or less, the straightness of the conductive pattern can be increased, and if it is 2.0 μm or less, the straightness can be further increased. The particle size of the conductive particles is determined by observing the conductive particles with an electron microscope (SEM or TEM), randomly selecting the primary particles of 20 conductive particles, measuring the maximum width of each, It can be calculated by obtaining an average value. Further, the proportion of particles having a particle size of 3.0 μm or less in the conductive particles contained in the photosensitive conductive paste D is determined by observing the conductive particles with an electron microscope (SEM or TEM) and randomly 100 conductive particles. The primary particles of the particles can be selected, their respective maximum widths can be measured, and the maximum width can be determined from the proportion of primary particles that were 3.0 μm or less.
 また、感光性導電ペーストDが含有する導電性粒子の粒径は、採取した感光性導電ペーストDをテトラヒドロフラン(以下、「THF」)に溶解し、沈降した導電性粒子を回収し、ボックスオーブンを用いて70℃で10分間乾燥をしたものについて、上記と同様に算出することができる。 In addition, the particle size of the conductive particles contained in the photosensitive conductive paste D is determined by dissolving the collected photosensitive conductive paste D in tetrahydrofuran (hereinafter “THF”), collecting the precipitated conductive particles, It can calculate similarly to the above about what used and dried for 10 minutes at 70 degreeC.
 感光性導電ペーストDの固形分に占める導電性粒子の割合は、60~95質量%が好ましく、より好ましくは70~85質量%である。導電性粒子の割合が60質量%以上であると、導電性粒子同士の接触確率が高まり、得られる感光性導電パターンDの抵抗値を安定化し、70質量%以上であればその効果がより高まる。一方で、導電性粒子の割合が95質量%以下であると、後述する露光工程において露光光が遮蔽されにくく、現像マージンが広くなり、85質量%以下であればその効果がより高まる。ここで固形分とは、溶剤を除く、感光性導電ペーストDの全成分をいう。 The proportion of the conductive particles in the solid content of the photosensitive conductive paste D is preferably 60 to 95% by mass, more preferably 70 to 85% by mass. When the proportion of the conductive particles is 60% by mass or more, the contact probability between the conductive particles is increased, the resistance value of the resulting photosensitive conductive pattern D is stabilized, and the effect is further increased when the proportion is 70% by mass or more. . On the other hand, when the proportion of the conductive particles is 95% by mass or less, exposure light is not easily shielded in an exposure process described later, and the development margin is widened. Here, the solid content means all components of the photosensitive conductive paste D excluding the solvent.
 本発明の感光性導電ペーストDに含まれる感光性樹脂としては二重結合とカルボキシル基とを有するアクリル系共重合体、エポキシカルボキシレート化合物などが挙げられる。密着性の観点からはエポキシカルボキシレート化合物が好ましい。 Examples of the photosensitive resin contained in the photosensitive conductive paste D of the present invention include an acrylic copolymer having a double bond and a carboxyl group, and an epoxy carboxylate compound. From the viewpoint of adhesion, an epoxy carboxylate compound is preferable.
 二重結合とカルボキシル基を有するアクリル系共重合体はカルボキシル基と不飽和二重結合を有する不飽和酸をアクリルモノマーとして共重合させることで得られる。不飽和酸としては、例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、マレイン酸、フマル酸若しくは酢酸ビニル又はこれらの酸無水物が挙げられる。用いる不飽和酸の多少により、得られるアクリル系共重合体の酸価を調整することができる。 An acrylic copolymer having a double bond and a carboxyl group can be obtained by copolymerizing an unsaturated acid having a carboxyl group and an unsaturated double bond as an acrylic monomer. Examples of the unsaturated acid include acrylic acid, methacrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid, vinyl acetate, and acid anhydrides thereof. The acid value of the obtained acrylic copolymer can be adjusted by the amount of the unsaturated acid used.
 アクリル系モノマーとしては、例えば、アクリル酸、メチルアクリレート、エチルアクリレート、2-エチルヘキシルアクリレート、n-ブチルアクリレート、iso-ブチルアクリレート、iso-プロパンアクリレート、グリシジルアクリレート、ブトキシトリエチレングリコールアクリレート、ジシクロペンタニルアクリレート、ジシクロペンテニルアクリレート、2-ヒドロキシエチルアクリレート、イソボルニルアクリレート、2-ヒドロキシプロピルアクリレート、イソデキシルアクリレート、イソオクチルアクリレート、ラウリルアクリレート、2-メトキシエチルアクリレート、メトキシエチレングリコールアクリレート、メトキシジエチレングリコールアクリレート、オクタフロロペンチルアクリレート、フェノキシエチルアクリレート、ステアリルアクリレート、トリフロロエチルアクリレート、アミノエチルアクリレート、フェニルアクリレート、フェノキシエチルアクリレート、1-ナフチルアクリレート、2-ナフチルアクリレート、チオフェノールアクリレート若しくはベンジルメルカプタンアクリレート、アリル化シクロヘキシルジアクリレート、メトキシ化シクロヘキシルジアクリレート、1,4-ブタンジオールジアクリレート、1,3-ブチレングリコールジアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、ポリエチレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、プロピレングリコールジアクリレート、ポリプロピレングリコールジアクリレート若しくはトリグリセロールジアクリレート、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、ジペンタエリスリトールモノヒドロキシペンタアクリレート若しくはジペンタエリスリトールヘキサアクリレート、アクリルアミド、N-メトキシメチルアクリルアミド、N-エトキシメチルアクリルアミド、N-n-ブトキシメチルアクリルアミド若しくはN-イソブトキシメチルアクリルアミド、エポキシ基を不飽和酸で開環させた水酸基を有するエチレングリコールジグリシジルエーテルのアクリル酸付加物、ジエチレングリコールジグリシジルエーテルのアクリル酸付加物、ネオペンチルグリコールジグリシジルエーテルのアクリル酸付加物、グリセリンジグリシジルエーテルのアクリル酸付加物、ビスフェノールAジグリシジルエーテルのアクリル酸付加物、ビスフェノールFのアクリル酸付加物若しくはクレゾールノボラックのアクリル酸付加物等のエポキシアクリレートモノマー又はγ-アクリロキシプロピルトリメトキシシラン、あるいは、それらのアクリル基を、メタクリル基に置換した化合物が挙げられる。 Examples of acrylic monomers include acrylic acid, methyl acrylate, ethyl acrylate, 2-ethylhexyl acrylate, n-butyl acrylate, iso-butyl acrylate, iso-propane acrylate, glycidyl acrylate, butoxytriethylene glycol acrylate, and dicyclopentanyl. Acrylate, dicyclopentenyl acrylate, 2-hydroxyethyl acrylate, isobornyl acrylate, 2-hydroxypropyl acrylate, isodexyl acrylate, isooctyl acrylate, lauryl acrylate, 2-methoxyethyl acrylate, methoxyethylene glycol acrylate, methoxydiethylene glycol acrylate , Octafluoropentyl acrylate, phenoxye Acrylate, stearyl acrylate, trifluoroethyl acrylate, aminoethyl acrylate, phenyl acrylate, phenoxyethyl acrylate, 1-naphthyl acrylate, 2-naphthyl acrylate, thiophenol acrylate or benzyl mercaptan acrylate, allylated cyclohexyl diacrylate, methoxylated cyclohexyl di Acrylate, 1,4-butanediol diacrylate, 1,3-butylene glycol diacrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, triethylene glycol diacrylate, polyethylene glycol diacrylate, neopentyl glycol diacrylate, propylene glycol diacrylate , Polypropylene grease Diacrylate or triglycerol diacrylate, trimethylolpropane triacrylate, ditrimethylolpropane tetraacrylate, dipentaerythritol monohydroxypentaacrylate or dipentaerythritol hexaacrylate, acrylamide, N-methoxymethylacrylamide, N-ethoxymethylacrylamide, N -N-butoxymethylacrylamide or N-isobutoxymethylacrylamide, acrylic acid adduct of ethylene glycol diglycidyl ether having a hydroxyl group whose epoxy group is opened with an unsaturated acid, acrylic acid adduct of diethylene glycol diglycidyl ether, neo Acrylic acid adduct of pentyl glycol diglycidyl ether, glycerin diglycidyl ether Epoxy acrylate monomer or γ-acryloxypropyltrimethoxysilane such as acrylic acid adduct of bisphenol A, diglycidyl ether of bisphenol A, acrylic acid adduct of bisphenol F or acrylic acid adduct of cresol novolac, or The compound which substituted those acrylic groups by the methacryl group is mentioned.
 また、上記アクリル系共重合体が有するカルボキシル基と、グリシジル(メタ)アクリレート等の不飽和二重結合を有する化合物と、を反応させることにより、側鎖に反応性の不飽和二重結合を付与することができ、不飽和二重結合量を調整することができる。 In addition, a reactive unsaturated double bond is given to the side chain by reacting the carboxyl group of the acrylic copolymer with a compound having an unsaturated double bond such as glycidyl (meth) acrylate. And the amount of unsaturated double bonds can be adjusted.
 エポキシカルボキシレート化合物とは、エポキシ化合物と、不飽和二重結合を有するカルボキシル化合物と、を出発原料として合成することができる化合物をいう。出発原料となり得るエポキシ化合物としては、例えば、グリシジルエーテル類、脂環式エポキシ樹脂、グリシジルエステル類、グリシジルアミン類又はエポキシ樹脂が挙げられるが、より具体的には、メチルグリシジルエーテル、エチルグリシジルエーテル、ブチルグリシジルエーテル、エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、ビスフェノールAジグリシジルエーテル、水添ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、ビスフェノールSジグリシジルエーテル、ビスフェノールフルオレンジグリシジルエーテル、ビフェノールジグリシジルエーテル、テトラメチルビフェノールグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、3’,4’-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート又はtert-ブチルグリシジルアミンが挙げられる。また、不飽和二重結合を有するカルボキシル化合物としては、例えば、(メタ)アクリル酸、クロトン酸、桂皮酸又はα-シアノ桂皮酸が挙げられる。 The epoxycarboxylate compound refers to a compound that can be synthesized using an epoxy compound and a carboxyl compound having an unsaturated double bond as starting materials. Examples of the epoxy compound that can be a starting material include glycidyl ethers, alicyclic epoxy resins, glycidyl esters, glycidyl amines, or epoxy resins. More specifically, methyl glycidyl ether, ethyl glycidyl ether, Butyl glycidyl ether, ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, bisphenol A diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol S diglycidyl ether, bisphenol full orange glycidyl ether Ether, biphenol diglycidyl ether, tetramethyl biphenol glycidyl ether, trimethylolpropane triglycidyl ether, 3 ', 4'-epoxycyclohexylmethyl-3,4-epoxycyclohexane carboxylate or tert- butyl glycidyl amines. Examples of the carboxyl compound having an unsaturated double bond include (meth) acrylic acid, crotonic acid, cinnamic acid, and α-cyanocinnamic acid.
 エポキシカルボキシレート化合物と多塩基酸無水物とを反応させて、エポキシカルボキシレート化合物の酸価を調整しても構わない。多塩基酸無水物としては、例えば、無水コハク酸、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、無水イタコン酸、3-メチルテトラヒドロ無水フタル酸、4-メチルーヘキサヒドロ無水フタル酸、無水トリメリット酸又は無水マレイン酸が挙げられる。 The acid value of the epoxycarboxylate compound may be adjusted by reacting the epoxycarboxylate compound with the polybasic acid anhydride. Examples of the polybasic acid anhydride include succinic anhydride, phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, itaconic anhydride, 3-methyltetrahydrophthalic anhydride, 4-methyl-hexahydrophthalic anhydride, Examples include trimellitic anhydride or maleic anhydride.
 上記多塩基酸無水物と反応させたエポキシカルボキシレート化合物が有するカルボキシル基と、グリシジル(メタ)アクリレート等の不飽和二重結合を有する化合物と、を反応させることにより、エポキシカルボキシレート化合物が有する反応性の不飽和二重結合の量を調整しても構わない。 Reaction which an epoxy carboxylate compound has by reacting the carboxyl group which the epoxy carboxylate compound made to react with the above-mentioned polybasic acid anhydride has, and the compound which has unsaturated double bonds, such as glycidyl (meth) acrylate, The amount of the unsaturated double bond may be adjusted.
 エポキシカルボキシレート化合物が有するヒドロキシ基と、ジイソシアネート化合物を反応させることにより、ウレタン化をさせても構わない。ジイソシアネート化合物としては、例えば、ヘキサメチレンジイソシアネート、テトラメチルキシレンジイソシアネート、ナフタレン-1,5-ジイソシアネート、トリデンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、イソホロンジイソシアネート、アリルシアンジイソシアネート又はノルボルナンジイソシアネートが挙げられる。 The urethanization may be carried out by reacting the hydroxy group of the epoxycarboxylate compound with a diisocyanate compound. Examples of the diisocyanate compound include hexamethylene diisocyanate, tetramethylxylene diisocyanate, naphthalene-1,5-diisocyanate, tridenic diisocyanate, trimethylhexamethylene diisocyanate, isophorone diisocyanate, allyl cyanide diisocyanate, and norbornane diisocyanate.
 本発明における感光性導電ペーストDに含まれる光重合開始剤としては、例えば、1,2-オクタンジオン-1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]、2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド、エタノン-1-[9-エチル-6-2(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)、ベンゾフェノン、O-ベンゾイル安息香酸メチル、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、4,4’-ジクロロベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルケトン、ジベンジルケトン、フルオレノン、2,2’-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、p-t-ブチルジクロロアセトフェノン、チオキサントン、2-メチルチオキサントン、2-クロロチオキサントン、2-イソプロピルチオキサントン、ジエチルチオキサントン、ベンジル、ベンジルジメチルケタール、ベンジル-β-メトキシエチルアセタール、ベンゾイン、ベンゾインメチルエーテル、ベンゾインブチルエーテル、アントラキノン、2-t-ブチルアントラキノン、2-アミルアントラキノン、β-クロルアントラキノン、アントロン、ベンズアントロン、ジベンゾスベロン、メチレンアントロン、4-アジドベンザルアセトフェノン、2,6-ビス(p-アジドベンジリデン)シクロヘキサノン、6-ビス(p-アジドベンジリデン)-4-メチルシクロヘキサノン、1-フェニル-1,2-ブタンジオン-2-(O-メトキシカルボニル)オキシム、1-フェニル-プロパンジオン-2-(O-エトキシカルボニル)オキシム、1-フェニル-プロパンジオン-2-(O-ベンゾイル)オキシム、1,3-ジフェニル-プロパントリオン-2-(O-エトキシカルボニル)オキシム、1-フェニル-3-エトキシ-プロパントリオン-2-(O-ベンゾイル)オキシム、ミヒラーケトン、2-メチル-[4-(メチルチオ)フェニル]-2-モルフォリノ-1-プロパノン、ナフタレンスルホニルクロライド、キノリンスルホニルクロライド、N-フェニルチオアクリドン、4,4’-アゾビスイソブチロニトリル、ジフェニルジスルフィド、ベンズチアゾールジスルフィド、トリフェニルホスフィン、カンファーキノン、2,4-ジエチルチオキサントン、イソプロピルチオキサントン、四臭化炭素、トリブロモフェニルスルホン、過酸化ベンゾイン、エオシン又はメチレンブルー等の光還元性色素と、アスコルビン酸若しくはトリエタノールアミン等の還元剤との組み合わせが挙げられるが、光感度の高い、オキシムエステル系化合物が好ましい。 Examples of the photopolymerization initiator contained in the photosensitive conductive paste D in the present invention include 1,2-octanedione-1- [4- (phenylthio) -2- (O-benzoyloxime)], 2,4, 6-trimethylbenzoyl-diphenyl-phosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, ethanone-1- [9-ethyl-6-2 (2-methylbenzoyl) -9H-carbazole-3 -Yl] -1- (O-acetyloxime), benzophenone, methyl O-benzoylbenzoate, 4,4'-bis (dimethylamino) benzophenone, 4,4'-bis (diethylamino) benzophenone, 4,4'- Dichlorobenzophenone, 4-benzoyl-4'-methyldiphenyl ketone, dibenzyl ketone, Olenone, 2,2′-diethoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2-hydroxy-2-methylpropiophenone, pt-butyldichloroacetophenone, thioxanthone, 2-methylthioxanthone, 2- Chlorothioxanthone, 2-isopropylthioxanthone, diethylthioxanthone, benzyl, benzyldimethyl ketal, benzyl-β-methoxyethyl acetal, benzoin, benzoin methyl ether, benzoin butyl ether, anthraquinone, 2-t-butylanthraquinone, 2-amylanthraquinone, β- Chloranthraquinone, anthrone, benzanthrone, dibenzosuberone, methyleneanthrone, 4-azidobenzalacetophenone, 2,6-bis (p-azidobe) Dilidene) cyclohexanone, 6-bis (p-azidobenzylidene) -4-methylcyclohexanone, 1-phenyl-1,2-butanedione-2- (O-methoxycarbonyl) oxime, 1-phenyl-propanedione-2- (O -Ethoxycarbonyl) oxime, 1-phenyl-propanedione-2- (O-benzoyl) oxime, 1,3-diphenyl-propanetrione-2- (O-ethoxycarbonyl) oxime, 1-phenyl-3-ethoxy-propane Trione-2- (O-benzoyl) oxime, Michler's ketone, 2-methyl- [4- (methylthio) phenyl] -2-morpholino-1-propanone, naphthalenesulfonyl chloride, quinolinesulfonyl chloride, N-phenylthioacridone, 4 , 4'-Azobisisobu Photoreductive dyes such as nitrile, diphenyl disulfide, benzthiazole disulfide, triphenylphosphine, camphorquinone, 2,4-diethylthioxanthone, isopropylthioxanthone, carbon tetrabromide, tribromophenylsulfone, benzoin peroxide, eosin or methylene blue A combination with a reducing agent such as ascorbic acid or triethanolamine can be mentioned, and an oxime ester compound having high photosensitivity is preferable.
 感光性導電ペーストDに含まれる光重合開始剤の添加量は、感光性樹脂100質量部に対して0.05~30質量部が好ましく2~10質量部がより好ましい。感光性樹脂100質量部に対する添加量が0.05質量部以上であると、露光部の硬化密度が増加し、現像後の残膜率を高くすることができ、2質量部以上であれば露光時間を短くすることができる。一方で、感光性樹脂100質量部に対する添加量が30質量部以下であると、感光性導電ペーストDを塗布して得られた塗布膜上部での、光重合開始剤による過剰な光吸収が抑制される。その結果、製造された導電パターンが逆テーパー形状となることによる、基板との密着性低下が抑制され、10質量部以下であればその効果はより高まる。 The addition amount of the photopolymerization initiator contained in the photosensitive conductive paste D is preferably 0.05 to 30 parts by mass and more preferably 2 to 10 parts by mass with respect to 100 parts by mass of the photosensitive resin. When the addition amount with respect to 100 parts by mass of the photosensitive resin is 0.05 parts by mass or more, the cured density of the exposed part increases, and the residual film ratio after development can be increased. Time can be shortened. On the other hand, when the addition amount with respect to 100 parts by mass of the photosensitive resin is 30 parts by mass or less, excessive light absorption by the photopolymerization initiator at the upper part of the coating film obtained by applying the photosensitive conductive paste D is suppressed. Is done. As a result, a decrease in adhesion with the substrate due to the manufactured conductive pattern having an inversely tapered shape is suppressed, and the effect is further enhanced if it is 10 parts by mass or less.
 本発明における感光性導電ペーストDは光重合開始剤と共に、増感剤を含有しても構わない。 The photosensitive conductive paste D in the present invention may contain a sensitizer together with a photopolymerization initiator.
 該増感剤としては、例えば、2,4-ジエチルチオキサントン、イソプロピルチオキサントン、2,3-ビス(4-ジエチルアミノベンザル)シクロペンタノン、2,6-ビス(4-ジメチルアミノベンザル)シクロヘキサノン、2,6-ビス(4-ジメチルアミノベンザル)-4-メチルシクロヘキサノン、ミヒラーケトン、4,4-ビス(ジエチルアミノ)ベンゾフェノン、4,4-ビス(ジメチルアミノ)カルコン、4,4-ビス(ジエチルアミノ)カルコン、p-ジメチルアミノシンナミリデンインダノン、p-ジメチルアミノベンジリデンインダノン、2-(p-ジメチルアミノフェニルビニレン)イソナフトチアゾール、1,3-ビス(4-ジメチルアミノフェニルビニレン)イソナフトチアゾール、1,3-ビス(4-ジメチルアミノベンザル)アセトン、1,3-カルボニルビス(4-ジエチルアミノベンザル)アセトン、3,3-カルボニルビス(7-ジエチルアミノクマリン)、N-フェニル-N-エチルエタノールアミン、N-フェニルエタノールアミン、N-トリルジエタノールアミン、ジメチルアミノ安息香酸イソアミル、ジエチルアミノ安息香酸イソアミル、3-フェニル-5-ベンゾイルチオテトラゾール又は1-フェニル-5-エトキシカルボニルチオテトラゾール等が挙げられる。 Examples of the sensitizer include 2,4-diethylthioxanthone, isopropylthioxanthone, 2,3-bis (4-diethylaminobenzal) cyclopentanone, 2,6-bis (4-dimethylaminobenzal) cyclohexanone, 2,6-bis (4-dimethylaminobenzal) -4-methylcyclohexanone, Michler's ketone, 4,4-bis (diethylamino) benzophenone, 4,4-bis (dimethylamino) chalcone, 4,4-bis (diethylamino) Chalcone, p-dimethylaminocinnamylidene indanone, p-dimethylaminobenzylidene indanone, 2- (p-dimethylaminophenylvinylene) isonaphthothiazole, 1,3-bis (4-dimethylaminophenylvinylene) isonaphthothiazole 1,3-bis (4-dimethyl) Ruaminobenzal) acetone, 1,3-carbonylbis (4-diethylaminobenzal) acetone, 3,3-carbonylbis (7-diethylaminocoumarin), N-phenyl-N-ethylethanolamine, N-phenylethanolamine, N- Examples include tolyldiethanolamine, isoamyl dimethylaminobenzoate, isoamyl diethylaminobenzoate, 3-phenyl-5-benzoylthiotetrazole or 1-phenyl-5-ethoxycarbonylthiotetrazole.
 該増感剤の添加量は、感光性樹脂100質量部に対して0.05~10質量部が好ましい。感光性樹脂100質量部に対する添加量が0.05質量部以上であると、光感度が向上する。一方で、感光性樹脂100質量部に対する添加量が10質量部以下であると、感光性導電ペーストDを塗布して得られた塗布膜上部での、過剰な光吸収が抑制される。その結果、製造された導電パターンが逆テーパー形状となることによる、基板との密着性低下が抑制される傾向にある。 The addition amount of the sensitizer is preferably 0.05 to 10 parts by mass with respect to 100 parts by mass of the photosensitive resin. Photosensitivity improves that the addition amount with respect to 100 mass parts of photosensitive resins is 0.05 mass part or more. On the other hand, when the addition amount with respect to 100 parts by mass of the photosensitive resin is 10 parts by mass or less, excessive light absorption at the upper part of the coating film obtained by applying the photosensitive conductive paste D is suppressed. As a result, the produced conductive pattern tends to have a reverse taper shape, thereby suppressing a decrease in adhesion to the substrate.
 本発明の感光性導電ペーストDはエポキシ樹脂を含有する。エポキシ樹脂としてはエチレングリコール変性エポキシ樹脂、ビスフェノールA型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、臭素化エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、脂環式エポキシ樹脂、グリシジルアミン型エポキシ樹脂、グリシジルエーテル型エポキシ樹脂、複素環式エポキシ樹脂などが挙げられ、基材への密着性の観点からビスフェノールA型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂が好ましく、露光光に対する透過性の観点から水添ビスフェノールA型エポキシ樹脂がより好ましい。 The photosensitive conductive paste D of the present invention contains an epoxy resin. Epoxy resins include ethylene glycol-modified epoxy resin, bisphenol A type epoxy resin, hydrogenated bisphenol A type epoxy resin, brominated epoxy resin, bisphenol F type epoxy resin, novolac type epoxy resin, alicyclic epoxy resin, glycidylamine type epoxy Resin, glycidyl ether type epoxy resin, heterocyclic epoxy resin, and the like. From the viewpoint of adhesion to the substrate, bisphenol A type epoxy resin and hydrogenated bisphenol A type epoxy resin are preferable, and from the viewpoint of transparency to exposure light To hydrogenated bisphenol A type epoxy resin.
 エポキシ樹脂の添加量は、感光性樹脂100質量部に対して0.05~50質量部が好ましい。感光性樹脂100質量部に対する添加量が0.05質量部以上であると、透明電極層Cとの密着性を高めることができる。一方で、感光性樹脂100質量部に対する添加量が50質量部以下であると、感光性導電ペーストDの現像液に対する溶解性を良好に保つことができる。 The addition amount of the epoxy resin is preferably 0.05 to 50 parts by mass with respect to 100 parts by mass of the photosensitive resin. Adhesiveness with the transparent electrode layer C can be improved as the addition amount with respect to 100 parts by mass of the photosensitive resin is 0.05 parts by mass or more. On the other hand, the solubility with respect to the developing solution of the photosensitive electrically conductive paste D can be kept favorable as the addition amount with respect to 100 mass parts of photosensitive resins is 50 mass parts or less.
 本発明において基材A、感光層B及び透明電極層Cの順に積層がされた積層体を、露光する第一の露光工程は、フォトマスクを介して露光する工程と、フォトマスクを介することなく酸素存在下で全面露光する工程とに別れる。酸素存在下で露光すると露光部の最表層は酸素阻害により硬化が進まず、現像液への溶解性が高くなる傾向にある。第一の露光工程では高圧水銀ランプ、超高圧水銀ランプ、LEDなどのi線(365nm)、h線(405nm)又はg線(436nm)を発する光源を使用し、真空吸着露光、プロキシ露光、プロジェクション露光、直描露光などの各種露光方法が行われる。酸素存在下で露光する際の露光量は100~1000mJ/cmが好ましい。露光量を100mJ/cm以上にすることで感光層Bと導電パターンCとの密着性を高めることができ、1000mJ/cm以下より好ましくは800mJ/cm以下にすることで感光層Bの最表面では硬化反応が進まず現像液への溶解性が高く維持され、膜深部は硬化反応が進み現像液への溶解性が低下するため、最表面と膜深部との溶解度差を大きくすることができる。この状態では現像時に最表面だけが現像液に溶解するため、この上に積層された感光性導電膜Dも一緒に現像液に流されるため、後記する感光性導電ペーストDの残渣の発生を抑制することができる。 In the present invention, the first exposure step of exposing the laminate in which the substrate A, the photosensitive layer B, and the transparent electrode layer C are laminated in this order is a step of exposing via a photomask, and without passing through a photomask. This is divided into a process of exposing the entire surface in the presence of oxygen. When exposed in the presence of oxygen, the outermost surface layer of the exposed portion does not proceed with curing due to oxygen inhibition, and tends to be highly soluble in the developer. In the first exposure process, a light source that emits i-line (365 nm), h-line (405 nm) or g-line (436 nm) such as high-pressure mercury lamp, ultra-high pressure mercury lamp, LED, etc. is used, vacuum adsorption exposure, proxy exposure, projection Various exposure methods such as exposure and direct drawing exposure are performed. The exposure dose for exposure in the presence of oxygen is preferably 100 to 1000 mJ / cm 2 . Exposure dose can increase the adhesion to the photosensitive layer B and the conductive pattern C by the 100 mJ / cm 2 or more, more preferably 1000 mJ / cm 2 or less in the photosensitive layer B by below 800 mJ / cm 2 Because the curing reaction does not proceed on the outermost surface and the solubility in the developer is maintained high, the curing reaction proceeds in the deep part of the film and the solubility in the developing solution decreases, so the difference in solubility between the outermost surface and the deep part of the film must be increased. Can do. In this state, only the outermost surface is dissolved in the developing solution during development, and the photosensitive conductive film D laminated thereon is also flowed into the developing solution, so that the generation of residues of the photosensitive conductive paste D described later is suppressed. can do.
 本発明における感光性導電ペーストDを塗布して、感光性導電膜Dを得る塗布工程としては、例えば、スピナーを用いた回転塗布、スプレー塗布、ロールコーティング、スクリーン印刷又はブレードコーター、ダイコーター、カレンダーコーター、メニスカスコーター若しくはバーコーターを用いた塗布方法が挙げられる。なお、膜厚は、例えばサーフコム(登録商標)1400((株)東京精密製)のような触針式段差計を用いて測定することができる。より具体的には、ランダムな3つの位置の膜厚を触針式段差計(測長:1mm、走査速度:0.3mm/sec)でそれぞれ測定し、その平均値を膜厚とすることができる。 Examples of the coating process for obtaining the photosensitive conductive film D by applying the photosensitive conductive paste D in the present invention include spin coating using a spinner, spray coating, roll coating, screen printing or blade coater, die coater, and calendar. Examples thereof include a coating method using a coater, a meniscus coater or a bar coater. The film thickness can be measured by using a stylus step meter such as Surfcom (registered trademark) 1400 (manufactured by Tokyo Seimitsu Co., Ltd.). More specifically, the film thickness at three random positions may be measured with a stylus-type step gauge (length measurement: 1 mm, scanning speed: 0.3 mm / sec), and the average value may be defined as the film thickness. it can.
 本発明において感光性導電膜Dを露光する第二の露光工程としては、高圧水銀ランプ、超高圧水銀ランプ、LEDなどのi線(365nm)、h線(405nm)又はg線(436nm)を発する光源を使用し、真空吸着露光、プロキシ露光、プロジェクション露光、直描露光などの各種露光方法が行われる。 In the present invention, as the second exposure step for exposing the photosensitive conductive film D, i-line (365 nm), h-line (405 nm), or g-line (436 nm) is emitted from a high-pressure mercury lamp, an ultra-high pressure mercury lamp, an LED or the like. Various exposure methods such as vacuum suction exposure, proxy exposure, projection exposure, and direct drawing exposure are performed using a light source.
 本発明における積層体及び感光性導電膜Dを一括して現像して、透明電極パターンC及び導電パターンDの積層パターンを得る現像工程は、アルカリ現像液を用いて現像し、未露光部を溶解除去して、所望のパターンを得る工程である。アルカリ現像を行う場合の現像液としては、例えば、水酸化テトラメチルアンモニウム、ジエタノールアミン、ジエチルアミノエタノール、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、トリエチルアミン、ジエチルアミン、メチルアミン、ジメチルアミン、酢酸ジメチルアミノエチル、ジメチルアミノエタノール、ジメチルアミノエチルメタクリレート、シクロヘキシルアミン、エチレンジアミン又はヘキサメチレンジアミンの水溶液が挙げられるが、これらの水溶液に、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド若しくはγ-ブチロラクトン等の極性溶媒、メタノール、エタノール若しくはイソプロパノール等のアルコール類、乳酸エチル若しくはプロピレングリコールモノメチルエーテルアセテート等のエステル類、シクロペンタノン、シクロヘキサノン、イソブチルケトン若しくはメチルイソブチルケトン等のケトン類又は界面活性剤を添加しても構わない。 In the present invention, the laminate and the photosensitive conductive film D are collectively developed to obtain a laminated pattern of the transparent electrode pattern C and the conductive pattern D. The development process is performed using an alkaline developer, and the unexposed portion is dissolved. It is a process of removing and obtaining a desired pattern. Examples of the developer used for alkali development include tetramethylammonium hydroxide, diethanolamine, diethylaminoethanol, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, triethylamine, diethylamine, methylamine, dimethylamine, and dimethyl acetate. Aminoethyl, dimethylaminoethanol, dimethylaminoethyl methacrylate, cyclohexylamine, ethylenediamine or hexamethylenediamine aqueous solutions may be mentioned. These aqueous solutions include N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N -Polar solvents such as dimethylacetamide, dimethylsulfoxide or γ-butyrolactone; alcohols such as methanol, ethanol or isopropanol; Esters such as Le or propylene glycol monomethyl ether acetate, may be added to ketones or surfactants such as cyclopentanone, cyclohexanone, isobutyl ketone or methyl isobutyl ketone.
 有機現像を行う場合の現像液としては、例えば、N-メチル-2-ピロリドン、N-アセチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ジメチルスルホキシド若しくはヘキサメチルホスホルトリアミド等の極性溶媒又はこれら極性溶媒とメタノール、エタノール、イソプロピルアルコール、キシレン、水、メチルカルビトール若しくはエチルカルビトールとの混合溶液が挙げられる。 Examples of the developer for organic development include N-methyl-2-pyrrolidone, N-acetyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide or hexamethylphosphoryl Examples thereof include polar solvents such as amides or mixed solutions of these polar solvents and methanol, ethanol, isopropyl alcohol, xylene, water, methyl carbitol, or ethyl carbitol.
 現像の方法としては、例えば、基板を静置又は回転させながら現像液を塗布膜面にスプレーする方法、現像液を吐出するノズルが多数配置された現像槽をコンベアで通過する方法、現像液中に浸漬する方法、又は、基板を現像液中に浸漬しながら超音波をかける方法等が挙げられる。大面積を均一に現像するという観点からは現像槽をコンベアで通過する現像が好ましく、現像液を吐出する際の現像圧力は、0.02~0.2MPaが好ましい。現像圧力が0.02MPa以上であれば打力により積層体および塗布膜Dの未露光部を一括して除去しやすくなり、残渣の発生を抑えることができる。現像液の圧力が0.2MPa以下であれば導電パターンDの透明電極パターンCに対する密着性を悪化させない。 As a developing method, for example, a method of spraying a developing solution onto the surface of a coating film while leaving or rotating a substrate, a method of passing a developing tank provided with a number of nozzles for discharging the developing solution with a conveyor, And a method of applying ultrasonic waves while immersing the substrate in a developer. From the viewpoint of uniformly developing a large area, development through a developing tank by a conveyor is preferable, and the development pressure when discharging the developer is preferably 0.02 to 0.2 MPa. When the development pressure is 0.02 MPa or more, it becomes easy to remove unexposed portions of the laminate and the coating film D all at once by striking force, and the generation of residues can be suppressed. If the pressure of the developer is 0.2 MPa or less, the adhesion of the conductive pattern D to the transparent electrode pattern C is not deteriorated.
 一括現像により得られた積層パターンは、未露光部が一括して除去されているため、感光層Bの未露光部が存在せず、感光層Bの未露光部での導電性粒子の残渣をなくすことが出来る。 In the laminated pattern obtained by the batch development, since the unexposed portions are removed all at once, the unexposed portions of the photosensitive layer B do not exist, and the conductive particle residues in the unexposed portions of the photosensitive layer B are removed. Can be eliminated.
 また、前記積層パターンは、導電パターンDの全面で透明電極パターンCと接続するため、高い接続安定性を得ることができ、パターン間の接触抵抗を低く抑えることが出来る。 Further, since the laminated pattern is connected to the transparent electrode pattern C over the entire surface of the conductive pattern D, high connection stability can be obtained and the contact resistance between the patterns can be kept low.
 一括現像により得られた積層パターンは、リンス液によるリンス処理を施しても構わない。ここでリンス液としては、例えば、水あるいは水にエタノール若しくはイソプロピルアルコール等のアルコール類又は乳酸エチル若しくはプロピレングリコールモノメチルエーテルアセテート等のエステル類を加えた水溶液が挙げられる。 The laminated pattern obtained by batch development may be subjected to a rinsing treatment with a rinsing liquid. Examples of the rinsing liquid include water or an aqueous solution in which an alcohol such as ethanol or isopropyl alcohol or an ester such as ethyl lactate or propylene glycol monomethyl ether acetate is added to water.
 本発明において積層パターンをキュアするキュア工程の温度は100~300℃である。キュアの温度は、120~180℃がより好ましい。キュア温度が100℃未満であると、樹脂成分の体積収縮量が大きくならず、比抵抗が十分に低くならない場合がある。一方で、キュア温度が300℃を超えると、耐熱性が低い基板等の材料上に、導電パターンを製造することができない場合がある。 In the present invention, the temperature of the curing process for curing the laminated pattern is 100 to 300 ° C. The curing temperature is more preferably 120 to 180 ° C. When the curing temperature is less than 100 ° C., the volume shrinkage of the resin component does not increase, and the specific resistance may not be sufficiently low. On the other hand, when the curing temperature exceeds 300 ° C., the conductive pattern may not be manufactured on a material such as a substrate having low heat resistance.
 得られた積層パターンをキュアする方法としては、例えば、オーブン、イナートオーブン又はホットプレートによる加熱乾燥、紫外線ランプ、赤外線ヒーター、ハロゲンヒーター若しくはキセノンフラッシュランプ等の電磁波、又は、マイクロ波による加熱乾燥、あるいは、真空乾燥が挙げられる。加熱により、製造される積層パターンの硬度が高まり、他の部材との接触による欠けや剥がれ等を抑制することができ、さらには透明電極パターンCと導電パターンDとの密着性を向上させることができる。 As a method for curing the obtained laminated pattern, for example, heat drying with an oven, an inert oven or a hot plate, an electromagnetic wave such as an ultraviolet lamp, an infrared heater, a halogen heater or a xenon flash lamp, or heat drying with microwaves, or And vacuum drying. Heating increases the hardness of the manufactured laminated pattern, can suppress chipping or peeling due to contact with other members, and further improve the adhesion between the transparent electrode pattern C and the conductive pattern D. it can.
 本発明の積層パターン形成基材の製造方法により製造される積層パターン形成基材は、タッチパネル用の周囲配線として好適に用いられる。タッチパネルの方式としては、例えば、抵抗膜式、光学式、電磁誘導式又は静電容量式が挙げられるが、静電容量式タッチパネルは特に微細な配線が求められることから、本発明の積層パターン形成基材の製造方法により製造される積層パターン形成基材がより好適に用いられる。 The laminate pattern forming substrate produced by the method for producing a laminate pattern forming substrate of the present invention is suitably used as a peripheral wiring for a touch panel. Examples of the touch panel system include a resistive film type, an optical type, an electromagnetic induction type, and a capacitance type. Since the capacitance type touch panel requires particularly fine wiring, the laminated pattern formation of the present invention is performed. A laminate pattern forming substrate manufactured by the substrate manufacturing method is more preferably used.
 本発明の積層パターン形成基材の製造方法に基づく工程を備えることを特徴とするタッチパネルの製造方法により製造された積層パターンをその周囲配線として備え、かつ該周囲配線が50μmピッチ(配線幅+配線間幅)以下であるタッチパネルにおいては、額縁幅を細くでき、ビューエリアを広くすることができる。 A laminate pattern manufactured by a touch panel manufacturing method, comprising a step based on the method for manufacturing a laminate pattern forming substrate of the present invention, is provided as a peripheral wiring, and the peripheral wiring is 50 μm pitch (wiring width + wiring) In the touch panel which is equal to or smaller than (width), the frame width can be narrowed and the view area can be widened.
 以下、実施例及び比較例を挙げて、本発明をさらに詳しく説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
 各実施例及び比較例で用いた材料は、以下のとおりである。 The materials used in each example and comparative example are as follows.
 [感光層Bを形成する感光層樹脂(b)]
 (合成例1)
 共重合比率(質量基準):EA/メタクリル酸2-エチルヘキシル(以下、「2-EHMA」)/BA/N-メチロールアクリルアミド(以下、「MAA」)/AA=20/40/20/5/15。
[Photosensitive layer resin for forming photosensitive layer B (b)]
(Synthesis Example 1)
Copolymerization ratio (mass basis): EA / 2-ethylhexyl methacrylate (hereinafter “2-EHMA”) / BA / N-methylolacrylamide (hereinafter “MAA”) / AA = 20/40/20/5/15 .
 窒素雰囲気の反応容器中に、150gのジエチレングリコールモノエチルエーテルアセテート(以下、「DMEA」)を仕込み、オイルバスを用いて80℃まで昇温した。これに、20gのEA、40gの2-EHMA、20gのBA、5gのMAA、15gのAA、0.8gの2,2’-アゾビスイソブチロニトリル及び10gのDMEAからなる混合物を、1時間かけて滴下した。滴下終了後、さらに6時間重合反応を行った。その後、1gのハイドロキノンモノメチルエーテルを添加して、重合反応を停止した。得られた反応溶液をメタノールで精製することで未反応不純物を除去し、さらに24時間真空乾燥することで、感光性樹脂(b-1)を得た。 In a nitrogen atmosphere reaction vessel, 150 g of diethylene glycol monoethyl ether acetate (hereinafter “DMEA”) was charged, and the temperature was raised to 80 ° C. using an oil bath. To this, a mixture of 20 g EA, 40 g 2-EHMA, 20 g BA, 5 g MAA, 15 g AA, 0.8 g 2,2′-azobisisobutyronitrile and 10 g DMEA was added. It was added dropwise over time. After completion of the dropping, a polymerization reaction was further performed for 6 hours. Thereafter, 1 g of hydroquinone monomethyl ether was added to stop the polymerization reaction. The obtained reaction solution was purified with methanol to remove unreacted impurities, and further vacuum-dried for 24 hours to obtain a photosensitive resin (b-1).
 (合成例2)
 共重合比率(質量基準):EA/2-EHMA/BA/MAA/AA=20/20/20/15/25。
(Synthesis Example 2)
Copolymerization ratio (mass basis): EA / 2-EHMA / BA / MAA / AA = 20/20/20/15/25.
 窒素雰囲気の反応容器中に、150gのDMEAを仕込み、オイルバスを用いて80℃まで昇温した。これに、20gのEA、20gの2-EHMA、20gのBA、5gのMAA、25gのAA、0.8gの2,2’-アゾビスイソブチロニトリル及び10gのDMEAからなる混合物を、1時間かけて滴下した。滴下終了後、さらに6時間重合反応を行った。その後、1gのハイドロキノンモノメチルエーテルを添加して、重合反応を停止した。得られた反応溶液をメタノールで精製することで未反応不純物を除去し、さらに24時間真空乾燥することで、感光性樹脂(b-2)を得た。 In a nitrogen atmosphere reaction vessel, 150 g of DMEA was charged and heated to 80 ° C. using an oil bath. To this, a mixture of 20 g EA, 20 g 2-EHMA, 20 g BA, 5 g MAA, 25 g AA, 0.8 g 2,2′-azobisisobutyronitrile and 10 g DMEA was added. It was added dropwise over time. After completion of the dropping, a polymerization reaction was further performed for 6 hours. Thereafter, 1 g of hydroquinone monomethyl ether was added to stop the polymerization reaction. The obtained reaction solution was purified with methanol to remove unreacted impurities, and further vacuum-dried for 24 hours to obtain a photosensitive resin (b-2).
 (合成例3)
 共重合比率(質量基準):EA/2-EHMA/BA/MAA/AA=30/20/10/25/15。
(Synthesis Example 3)
Copolymerization ratio (mass basis): EA / 2-EHMA / BA / MAA / AA = 30/20/10/25/15.
 窒素雰囲気の反応容器中に、150gのDMEAを仕込み、オイルバスを用いて80℃まで昇温した。これに、30gのEA、20gの2-EHMA、10gのBA、25gのMAA、15gのAA、0.8gの2,2’-アゾビスイソブチロニトリル及び10gのDMEAからなる混合物を、1時間かけて滴下した。滴下終了後、さらに6時間重合反応を行った。その後、1gのハイドロキノンモノメチルエーテルを添加して、重合反応を停止した。得られた反応溶液をメタノールで精製することで未反応不純物を除去し、さらに24時間真空乾燥することで、感光性樹脂(b-3)を得た。 In a nitrogen atmosphere reaction vessel, 150 g of DMEA was charged and heated to 80 ° C. using an oil bath. To this, a mixture consisting of 30 g EA, 20 g 2-EHMA, 10 g BA, 25 g MAA, 15 g AA, 0.8 g 2,2′-azobisisobutyronitrile and 10 g DMEA is 1 It was added dropwise over time. After completion of the dropping, a polymerization reaction was further performed for 6 hours. Thereafter, 1 g of hydroquinone monomethyl ether was added to stop the polymerization reaction. The obtained reaction solution was purified with methanol to remove unreacted impurities, and further vacuum-dried for 24 hours to obtain a photosensitive resin (b-3).
 [感光性導電ペーストDに含まれる感光性樹脂(d)]
 (合成例4)
 共重合比率(質量基準):EA/2-EHMA/スチレン(以下、「St」)/グリシジルメタクリレート(以下、「GMA」)/AA=20/40/25/5/10。
[Photosensitive resin (d) contained in photosensitive conductive paste D]
(Synthesis Example 4)
Copolymerization ratio (mass basis): EA / 2-EHMA / styrene (hereinafter “St”) / glycidyl methacrylate (hereinafter “GMA”) / AA = 20/40/25/5/10.
 窒素雰囲気の反応容器中に、150gのDMEAを仕込み、オイルバスを用いて80℃まで昇温した。これに、20gのEA、40gの2-EHMA、25gのSt、10gのAA、0.8gの2,2’-アゾビスイソブチロニトリル及び10gのDMEAからなる混合物を、1時間かけて滴下した。滴下終了後、さらに6時間重合反応を行った。その後、1gのハイドロキノンモノメチルエーテルを添加して、重合反応を停止した。引き続き、5gのGMA、1gのトリエチルベンジルアンモニウムクロライド及び10gのDMEAからなる混合物を、0.5時間かけて滴下した。滴下終了後、さらに2時間付加反応を行った。得られた反応溶液をメタノールで精製することで未反応不純物を除去し、さらに24時間真空乾燥することで、感光性樹脂(d-1)を得た。 In a nitrogen atmosphere reaction vessel, 150 g of DMEA was charged and heated to 80 ° C. using an oil bath. To this was added a mixture of 20 g EA, 40 g 2-EHMA, 25 g St, 10 g AA, 0.8 g 2,2′-azobisisobutyronitrile and 10 g DMEA dropwise over 1 hour. did. After completion of the dropping, a polymerization reaction was further performed for 6 hours. Thereafter, 1 g of hydroquinone monomethyl ether was added to stop the polymerization reaction. Subsequently, a mixture consisting of 5 g GMA, 1 g triethylbenzylammonium chloride and 10 g DMEA was added dropwise over 0.5 hours. After completion of the dropwise addition, an additional reaction was performed for 2 hours. The obtained reaction solution was purified with methanol to remove unreacted impurities, and further vacuum-dried for 24 hours to obtain a photosensitive resin (d-1).
 (合成例5)
 共重合比率(質量基準):エチレンオキサイド変性ビスフェノールAジアクリレート(FA-324A;日立化成工業(株)製)/EA/GMA/AA=60/20/5/15。
(Synthesis Example 5)
Copolymerization ratio (mass basis): ethylene oxide modified bisphenol A diacrylate (FA-324A; manufactured by Hitachi Chemical Co., Ltd.) / EA / GMA / AA = 60/20/5/15.
 窒素雰囲気の反応容器中に、150gのDMEAを仕込み、オイルバスを用いて80℃まで昇温した。これに、60gのエチレンオキサイド変性ビスフェノールAジアクリレート、20gのEA、15gのAA、0.8gの2,2’-アゾビスイソブチロニトリル及び10gのDMEAからなる混合物を、1時間かけて滴下した。滴下終了後、さらに6時間重合反応を行った。その後、1gのハイドロキノンモノメチルエーテルを添加して、重合反応を停止した。引き続き、5gのGMA、1gのトリエチルベンジルアンモニウムクロライド及び10gのDMEAからなる混合物を、0.5時間かけて滴下した。滴下終了後、さらに2時間付加反応を行った。得られた反応溶液をメタノールで精製することで未反応不純物を除去し、さらに24時間真空乾燥することで、感光性樹脂(d-2)を得た。 In a nitrogen atmosphere reaction vessel, 150 g of DMEA was charged and heated to 80 ° C. using an oil bath. To this was added dropwise a mixture of 60 g ethylene oxide modified bisphenol A diacrylate, 20 g EA, 15 g AA, 0.8 g 2,2′-azobisisobutyronitrile and 10 g DMEA over 1 hour. did. After completion of the dropping, a polymerization reaction was further performed for 6 hours. Thereafter, 1 g of hydroquinone monomethyl ether was added to stop the polymerization reaction. Subsequently, a mixture consisting of 5 g GMA, 1 g triethylbenzylammonium chloride and 10 g DMEA was added dropwise over 0.5 hours. After completion of the dropwise addition, an additional reaction was performed for 2 hours. The obtained reaction solution was purified with methanol to remove unreacted impurities, and further vacuum-dried for 24 hours to obtain a photosensitive resin (d-2).
 (合成例6)
 窒素雰囲気の反応溶液中に、492.1gのカルビトールアセテート、860.0gのEOCN-103S(日本化薬(株)製;クレゾールノボラック型エポキシ樹脂;エポキシ当量:215.0g/当量)、288.3gのAA、4.92gの2,6-ジ-tert-ブチル-p-クレゾール及び4.92gのトリフェニルホスフィンを仕込み、98℃の温度で反応液の酸価が0.5mg・KOH/g以下になるまで反応させ、エポキシカルボキシレート化合物を得た。引き続き、この反応液に169.8gのカルビトールアセテート及び201.6gのテトラヒドロ無水フタル酸を仕込み、95℃で4時間反応させ、感光性樹脂(d-3)を得た。
(Synthesis Example 6)
492.1 g carbitol acetate, 860.0 g EOCN-103S (manufactured by Nippon Kayaku Co., Ltd .; cresol novolac type epoxy resin; epoxy equivalent: 215.0 g / equivalent), 288. 3 g of AA, 4.92 g of 2,6-di-tert-butyl-p-cresol and 4.92 g of triphenylphosphine were charged, and the acid value of the reaction solution at a temperature of 98 ° C. was 0.5 mg · KOH / g. It was made to react until it became the following, and the epoxy carboxylate compound was obtained. Subsequently, 169.8 g of carbitol acetate and 201.6 g of tetrahydrophthalic anhydride were added to this reaction solution and reacted at 95 ° C. for 4 hours to obtain a photosensitive resin (d-3).
 (合成例7)
 窒素雰囲気の反応容器中に、368.0gのRE-310S(日本化薬(株)製;エポキシ当量:184.0g/当量)、141.2gのAA、1.02gのハイドロキノンモノメチルエーテル及び1.53gのトリフェニルホスフィンを仕込み、98℃の温度で反応液の酸価が0.5mgKOH/g以下になるまで反応させ、エポキシカルボキシレート化合物を得た。その後、この反応溶液に755.5gのカルビトールアセテート、268.3gの2,2-ビス(ジメチロール)-プロピオン酸、1.08gの2-メチルハイドロキノン及び140.3gのスピログリコールを加え、45℃に昇温した。この溶液に485.2gのトリメチルヘキサメチレンジイソシアネートを、反応温度が65℃を超えないように徐々に滴下した。滴下終了後、反応温度を80℃に上昇させ、赤外吸収スペクトル測定法により、2250cm-1付近の吸収がなくなるまで6時間反応させ、感光性樹脂(d-4)を得た。
(Synthesis Example 7)
In a reaction vessel under a nitrogen atmosphere, 368.0 g of RE-310S (manufactured by Nippon Kayaku Co., Ltd .; epoxy equivalent: 184.0 g / equivalent), 141.2 g of AA, 1.02 g of hydroquinone monomethyl ether and 1. 53 g of triphenylphosphine was charged and reacted at a temperature of 98 ° C. until the acid value of the reaction solution became 0.5 mgKOH / g or less to obtain an epoxycarboxylate compound. Thereafter, 755.5 g of carbitol acetate, 268.3 g of 2,2-bis (dimethylol) -propionic acid, 1.08 g of 2-methylhydroquinone and 140.3 g of spiroglycol were added to the reaction solution at 45 ° C. The temperature was raised to. To this solution, 485.2 g of trimethylhexamethylene diisocyanate was gradually added dropwise so that the reaction temperature did not exceed 65 ° C. After completion of the dropping, the reaction temperature was raised to 80 ° C., and the mixture was reacted for 6 hours until absorption near 2250 cm −1 disappeared by an infrared absorption spectrum measurement method to obtain a photosensitive resin (d-4).
 [光重合開始剤]
・IRGACURE(登録商標)OXE-01(以下、「OXE-01」;チバジャパン(株)製)
・IRGACURE(登録商標)369(以下、「IC-369」;チバジャパン(株)製)。
[Photopolymerization initiator]
IRGACURE (registered trademark) OXE-01 (hereinafter referred to as “OXE-01”; manufactured by Ciba Japan Co., Ltd.)
IRGACURE (registered trademark) 369 (hereinafter “IC-369”; manufactured by Ciba Japan Co., Ltd.).
 [モノマー]
・ライトアクリレートMPD-A(以下、「MPD-A」;共栄社化学(株)製)。
[monomer]
Light acrylate MPD-A (hereinafter “MPD-A”; manufactured by Kyoeisha Chemical Co., Ltd.)
 [アルコール系溶剤]
・ジエチレングリコール(以下、「DEG」)。
[Alcohol solvent]
Diethylene glycol (hereinafter “DEG”).
 [エポキシ樹脂]
・jER(登録商標)828(以下、「828」;三菱化学(株)製)
・jER(登録商標)YX-8000(以下、「YX-8000」;三菱化学(株)製)。
[Epoxy resin]
JER (registered trademark) 828 (hereinafter, “828”; manufactured by Mitsubishi Chemical Corporation)
JER (registered trademark) YX-8000 (hereinafter, “YX-8000”; manufactured by Mitsubishi Chemical Corporation).
 [透明電極材料]
・銀繊維(線径5nm、線長5μm)
・ITO(酸化インジウム97質量%、酸化スズ3質量%)。
[Transparent electrode material]
・ Silver fiber (wire diameter 5nm, wire length 5μm)
ITO (97% by mass of indium oxide, 3% by mass of tin oxide).
 (実施例1)
 <感光層Bの形成>
 基材Aとして、厚さ30μmの二軸延伸ポリエチレンテレフタレートフィルムを用意した。基材Aの片面に、感光性樹脂(b-1)、MPD-A及びIC-369がそれぞれ100:50:1の割合で混合された組成物B1を塗布し、熱処理及び乾燥をして、厚さが4μmの感光層B1を形成した。
Example 1
<Formation of photosensitive layer B>
As the substrate A, a biaxially stretched polyethylene terephthalate film having a thickness of 30 μm was prepared. On one side of the substrate A, the composition B1 in which the photosensitive resin (b-1), MPD-A and IC-369 are mixed in a ratio of 100: 50: 1 is applied, heat-treated and dried. A photosensitive layer B1 having a thickness of 4 μm was formed.
 <透明電極層Cの形成>
 銀繊維の水分散液(固形分0.2質量%)を感光層B1上に塗布し、100℃で5分間乾燥し、厚さ1.0μmからなる銀繊維(ナノワイヤ)薄膜である透明電極層C1を形成した。
<Formation of transparent electrode layer C>
A transparent electrode layer, which is a silver fiber (nanowire) thin film having a thickness of 1.0 μm, coated with an aqueous dispersion of silver fiber (solid content: 0.2% by mass) on the photosensitive layer B1 and dried at 100 ° C. for 5 minutes. C1 was formed.
 <第1の露光>
 透明電極層C1にフォトマスクを密着させ、超高圧水銀ランプを有する露光機で200mJ/cmの露光量で感光層B及び透明電極層Cを露光し、さらにフォトマスクを介すことなく、200mJ/cmの露光量で感光層B1及び透明電極層C1を全面露光した。
<First exposure>
A photomask is brought into close contact with the transparent electrode layer C1, and the photosensitive layer B and the transparent electrode layer C are exposed at an exposure amount of 200 mJ / cm 2 with an exposure machine having an ultrahigh pressure mercury lamp, and further 200 mJ without passing through the photomask. The entire surface of the photosensitive layer B1 and the transparent electrode layer C1 was exposed with an exposure amount of / cm 2 .
 <感光性導電ペーストDの調製>
 100mLクリーンボトルに、10.0gの感光性樹脂(d-1)、2.0gのIC-369及び5.0gのジエチエングリコールを入れ、自転-公転真空ミキサー“あわとり錬太郎”(登録商標)ARE-310((株)シンキー製)で混合して、17.0gの樹脂溶液D1(固形分70.1質量%)を得た。
<Preparation of photosensitive conductive paste D>
Put 100 g of photosensitive resin (d-1), 2.0 g of IC-369 and 5.0 g of diethylene glycol into a 100 mL clean bottle, and rotate and revolve vacuum mixer “Awatori Rentaro” (registered trademark) ) ARE-310 (manufactured by Shinky Co., Ltd.) to obtain 17.0 g of a resin solution D1 (solid content: 70.1% by mass).
 得られた17.0gの樹脂溶液D1、68.0gの銀粒子を混ぜ合わせ、3本ローラーミル(EXAKT M-50:EXAKT社製)を用いて混練し、85.0gの感光性導電ペーストD1を得た。 17.0 g of the obtained resin solution D1 and 68.0 g of silver particles were mixed and kneaded using a three roller mill (EXAKT M-50: manufactured by EXAKT), and 85.0 g of a photosensitive conductive paste D1. Got.
 <感光性導電膜Dの形成>
 感光層B1及び露光された透明電極層C1の表面に、感光性導電ペーストD1をスクリーン印刷機で膜厚が5μmになるように塗布後、70℃で10分間乾燥し、感光性導電膜D1を得た。
<Formation of photosensitive conductive film D>
A photosensitive conductive paste D1 is applied to the surface of the photosensitive layer B1 and the exposed transparent electrode layer C1 with a screen printer so that the film thickness becomes 5 μm, and then dried at 70 ° C. for 10 minutes to form the photosensitive conductive film D1. Obtained.
 <第2の露光>
 感光性導電膜D1にフォトマスクを密着させ、超高圧水銀ランプを有する露光機で300mJ/cmの露光量で露光した。
<Second exposure>
A photomask was brought into close contact with the photosensitive conductive film D1, and exposure was performed at an exposure amount of 300 mJ / cm 2 using an exposure machine having an ultrahigh pressure mercury lamp.
 <積層パターンの形成>
 透明電極層C1及び感光性導電膜D1から成る積層基材に1質量%炭酸ナトリウム水溶液を0.1MPaの圧力で30秒間スプレー現像した後、140℃で60分間キュアを行い、透明電極パターンC1及び導電パターンD1から成る積層パターン形成基材を製造した。
<Formation of laminated pattern>
A 1% by weight sodium carbonate aqueous solution is spray-developed at a pressure of 0.1 MPa for 30 seconds on a laminated substrate composed of the transparent electrode layer C1 and the photosensitive conductive film D1, and then cured at 140 ° C. for 60 minutes to obtain the transparent electrode pattern C1 and A laminated pattern forming substrate composed of the conductive pattern D1 was manufactured.
 <残渣の評価方法>
 図2に示す導電パターンを形成し、未露光部分の全光線透過率と第1の露光領域のみの部分の全光線透過率を測定し、導電ペーストD塗布前の全光線透過率と比較し、低下率が10%以下であれば良、10%よりも大きいものは不良と判定した。なお、全光線透過率は日本電色工業(株)製NDH-7000SPを用い、JIS K7361-1(1997年)に準じて、入射光強度に対する透過率光強度の割合として求めた。
<Method for evaluating residue>
The conductive pattern shown in FIG. 2 is formed, the total light transmittance of the unexposed part and the total light transmittance of only the first exposed area are measured, and compared with the total light transmittance before application of the conductive paste D, If the rate of decrease was 10% or less, it was judged as good if it was greater than 10%. The total light transmittance was obtained as a ratio of the transmittance light intensity to the incident light intensity using NDH-7000SP manufactured by Nippon Denshoku Industries Co., Ltd. according to JIS K7361-1 (1997).
 <密着性評価方法>
 図2に示す導電パターンを形成し、第1の露光領域と第2の露光領域が重なる部分および第2の露光領域のみの部分に、カッターガイドとカッターを用いて導電パターンDに1mm角が100個できるように切れ込みを入れ、その上に粘着テープ(CT405AP-24、ニチバン株式会社製)を貼り、粘着テープを一気に引き剥がし、透明電極層Cから剥がれた導電パターンDの個数をカウントして密着性を評価した。
<Adhesion evaluation method>
The conductive pattern shown in FIG. 2 is formed, and a 1 mm square is set to 100 in the conductive pattern D using a cutter guide and a cutter in a portion where the first exposure region and the second exposure region overlap and only a portion of the second exposure region. Cut the adhesive tape (CT405AP-24, manufactured by Nichiban Co., Ltd.), peel off the adhesive tape at once, and count the number of conductive patterns D peeled off from the transparent electrode layer C. Sex was evaluated.
 <イオンマイグレーション耐性の評価>
 図3に示す導電パターンD1を形成した積層パターン形成基材1を、85℃、85%RHの高温高湿槽に投入し、端子部からDC5Vの電圧を印加して、急激に抵抗値が3桁低下する短絡時間を確認した。計10個の積層パターン形成基材1で同評価を繰り返し、それらの平均値を、イオンマイグレーション耐性の値とした。結果を表2に示す。
<Evaluation of ion migration resistance>
The laminated pattern forming substrate 1 on which the conductive pattern D1 shown in FIG. 3 is formed is put into a high-temperature and high-humidity tank at 85 ° C. and 85% RH, a voltage of DC 5 V is applied from the terminal portion, and the resistance value suddenly becomes 3 The short-circuiting time with a digit drop was confirmed. The same evaluation was repeated with a total of ten laminated pattern-forming substrates 1, and the average value thereof was taken as the value of ion migration resistance. The results are shown in Table 2.
 (実施例2~18)
 透明電極層CがITOの場合は下記方法により形成したこと以外は、表1に示す条件の積層パターンを実施例1と同様の方法で製造し、実施例1と同様の評価を行った。結果を表2に示す。
(Examples 2 to 18)
When the transparent electrode layer C was ITO, a laminated pattern having the conditions shown in Table 1 was produced by the same method as in Example 1 except that the transparent electrode layer C was formed by the following method, and the same evaluation as in Example 1 was performed. The results are shown in Table 2.
 <透明電極層Cの形成>
 感光層Bの表面に、ITOの焼結体ターゲットを備えたスパッタ装置を用いて、ITOからなる厚さ22nmのITO薄膜である透明電極層C2を形成した。
<Formation of transparent electrode layer C>
On the surface of the photosensitive layer B, a transparent electrode layer C2 which is an ITO thin film made of ITO and having a thickness of 22 nm was formed using a sputtering apparatus equipped with an ITO sintered body target.
 (比較例1)
 第1の露光以降の工程において積層パターンの形成を下記方法により形成したこと以外は、表1に示す条件の積層パターンを実施例1と同様の方法で製造し、実施例1と同様の評価を行った。結果を表2に示す。
(Comparative Example 1)
A laminated pattern having the conditions shown in Table 1 was manufactured in the same manner as in Example 1 except that the laminated pattern was formed by the following method in the steps after the first exposure, and the same evaluation as in Example 1 was performed. went. The results are shown in Table 2.
 <透明電極パターンCの形成>
 透明電極層C1にフォトマスクを密着させ、超高圧水銀ランプを有する露光機で200mJ/cmの露光量で感光層B及び透明電極層Cを露光し、さらにフォトマスクを介すことなく、200mJ/cmの露光量で感光層B1及び透明電極層C1を全面露光した露光後、30℃の1質量%炭酸ナトリウム水溶液で30秒間スプレー現像し、感光層B2上に透明電極パターンC2を形成した。
<Formation of transparent electrode pattern C>
A photomask is brought into close contact with the transparent electrode layer C1, and the photosensitive layer B and the transparent electrode layer C are exposed at an exposure amount of 200 mJ / cm 2 with an exposure machine having an ultrahigh pressure mercury lamp, and further 200 mJ without passing through the photomask. / cm 2 after exposure of the photosensitive layer B1 and the transparent electrode layer C1 was entirely exposed with an exposure amount, and 30 seconds spray development with a 1 mass% sodium carbonate aqueous solution 30 ° C., to form a transparent electrode pattern C2 on the photosensitive layer B2 .
 <感光性導電ペーストDの調製>
 100mLクリーンボトルに、10.0gの感光性樹脂(d-2)、1.0gのOXE-01及び5.0gのジエチエングリコールを入れ、自転-公転真空ミキサー“あわとり錬太郎”(登録商標)ARE-310((株)シンキー製)で混合して、17.0gの樹脂溶液D2(固形分70.1質量%)を得た。
<Preparation of photosensitive conductive paste D>
Put 100 g of photosensitive resin (d-2), 1.0 g of OXE-01 and 5.0 g of diethylene glycol into a 100 mL clean bottle, and rotate and revolve vacuum mixer “Awatori Rentaro” (registered trademark) ARE-310 (manufactured by Shinky Co., Ltd.) to obtain 17.0 g of a resin solution D2 (solid content: 70.1% by mass).
 得られた17.0gの樹脂溶液D2、68.0gの銀粒子を混ぜ合わせ、3本ローラーミル(EXAKT M-50;EXAKT社製)を用いて混練し、85.0gの感光性導電ペーストD2を得た。 The obtained 17.0 g of the resin solution D2 and 68.0 g of silver particles were mixed and kneaded using a three roller mill (EXAKT M-50; manufactured by EXAKT), and 85.0 g of a photosensitive conductive paste D2. Got.
 <感光性導電膜Dの形成>
 感光層B2及び透明電極パターンC2の表面に、感光性導電ペーストD2をスクリーン印刷機で膜厚が5μmになるように塗布後、70℃で10分間乾燥し、感光性導電膜D2を得た。
<Formation of photosensitive conductive film D>
The photosensitive conductive paste D2 was applied to the surface of the photosensitive layer B2 and the transparent electrode pattern C2 with a screen printer so that the film thickness became 5 μm, and then dried at 70 ° C. for 10 minutes to obtain a photosensitive conductive film D2.
 <積層パターンの形成>
 所定のフォトマスクを介して超高圧水銀ランプを有する露光機で300mJ/cmの露光量で露光し、1質量%炭酸ナトリウム水溶液を0.1MPaの圧力で30秒間スプレー現像した後、140℃で60分間キュアを行い、透明電極パターンC2及び導電パターンD2から成る積層パターン形成基材を製造した。
<Formation of laminated pattern>
It is exposed at an exposure amount of 300 mJ / cm 2 with an exposure machine having an ultra-high pressure mercury lamp through a predetermined photomask, sprayed with a 1% by mass aqueous sodium carbonate solution at a pressure of 0.1 MPa for 30 seconds, and then at 140 ° C. Curing was performed for 60 minutes to produce a laminated pattern forming substrate composed of the transparent electrode pattern C2 and the conductive pattern D2.
 (比較例2)
 第1の露光以降の工程において積層パターンの形成を下記方法により形成した以外は、表1に示す条件の積層パターンを実施例1と同様の方法で製造し、実施例1と同様の評価を行った。結果を表2に示す。
(Comparative Example 2)
A laminated pattern having the conditions shown in Table 1 was manufactured in the same manner as in Example 1 except that the laminated pattern was formed by the following method in the steps after the first exposure, and the same evaluation as in Example 1 was performed. It was. The results are shown in Table 2.
 <第1の露光>
 フォトマスクを介すことなく、200mJ/cmの露光量で感光層B3及び透明電極層C3を全面露光した。
<First exposure>
The entire surface of the photosensitive layer B3 and the transparent electrode layer C3 was exposed with an exposure amount of 200 mJ / cm 2 without using a photomask.
 <感光性導電ペーストDの調製>
 100mLクリーンボトルに、10.0gの感光性樹脂(d-3)、2.0gのOXE-01及び5.0gのジエチエングリコールを入れ、自転-公転真空ミキサー“あわとり錬太郎”(登録商標)ARE-310((株)シンキー製)で混合して、17.0gの樹脂溶液D3(固形分70.1質量%)を得た。
<Preparation of photosensitive conductive paste D>
Into a 100 mL clean bottle, put 10.0 g of photosensitive resin (d-3), 2.0 g of OXE-01 and 5.0 g of diethylene glycol, and rotate and revolve vacuum mixer “Awatori Rentaro” (registered trademark) ARE-310 (manufactured by Shinky Co., Ltd.) to obtain 17.0 g of a resin solution D3 (solid content: 70.1% by mass).
 得られた17.0gの樹脂溶液D3、68.0gの銀粒子を混ぜ合わせ、3本ローラーミル(EXAKT M-50;EXAKT社製)を用いて混練し、85.0gの感光性導電ペーストD3を得た。 17.0 g of the obtained resin solution D3 and 68.0 g of silver particles were mixed and kneaded using a three roller mill (EXAKT M-50; manufactured by EXAKT), and 85.0 g of a photosensitive conductive paste D3. Got.
 <感光性導電膜Dの形成>
 感光層B3及び透明電極層C3の表面に、感光性導電ペーストD3をスクリーン印刷機で膜厚が5μmになるように塗布後、70℃で10分間乾燥し、感光性導電膜D3を得た。
<第2の露光>
 感光性導電膜D3にフォトマスクを密着させ、超高圧水銀ランプを有する露光機で300mJ/cmの露光量で露光した。
<Formation of photosensitive conductive film D>
A photosensitive conductive paste D3 was applied to the surface of the photosensitive layer B3 and the transparent electrode layer C3 with a screen printer so that the film thickness was 5 μm, and then dried at 70 ° C. for 10 minutes to obtain a photosensitive conductive film D3.
<Second exposure>
A photomask was adhered to the photosensitive conductive film D3, and exposure was performed at an exposure amount of 300 mJ / cm 2 using an exposure machine having an ultrahigh pressure mercury lamp.
 <積層パターンの形成>
 透明電極層C3及び感光性導電膜D3から成る積層基材に1質量%炭酸ナトリウム水溶液を0.1MPaの圧力で30秒間スプレー現像した後、140℃で60分間キュアを行い、透明電極パターンC3及び導電パターンD3から成る積層パターン形成基材を製造した。
<Formation of laminated pattern>
A 1% by weight aqueous sodium carbonate solution is spray-developed at a pressure of 0.1 MPa for 30 seconds on a laminated substrate composed of the transparent electrode layer C3 and the photosensitive conductive film D3, and then cured at 140 ° C. for 60 minutes to obtain the transparent electrode pattern C3 and A laminated pattern forming substrate made of the conductive pattern D3 was produced.
 表2より、実施例1~18においては、いずれも残渣が十分に抑制され、密着性及びイオンマイグレーション耐性に優れる積層パターン形成基材を製造できていることが判る。 From Table 2, it can be seen that in Examples 1 to 18, the residue was sufficiently suppressed, and a laminated pattern-forming substrate having excellent adhesion and ion migration resistance could be produced.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明は、未露光部での残渣発生を抑制でき、かつ、基材上に形成された導電パターンと感光性樹脂層との密着力を保持し、更には導電パターンと感光性樹脂層とのイオンマイグレーション耐性に優れるタッチパネルの製造に利用できる。 The present invention can suppress the generation of residues in unexposed areas, and maintains the adhesive force between the conductive pattern formed on the substrate and the photosensitive resin layer. Furthermore, the conductive pattern and the photosensitive resin layer It can be used to manufacture touch panels with excellent ion migration resistance.
1 導電パターンD
2 透明電極層C
3 感光層B
4 基材A
5 感光性導電ペーストDの印刷エリア
6 感光性導電膜Dの未露光部エリア
7 感光性導電膜Dの露光エリア
8 端子部
 
1 Conductive pattern D
2 Transparent electrode layer C
3 Photosensitive layer B
4 Substrate A
5 Print area 6 of photosensitive conductive paste D Unexposed area 7 of photosensitive conductive film D Exposed area 8 of photosensitive conductive film D Terminal area

Claims (7)

  1.  基材A、感光層B及び透明電極層Cの順に積層がされた積層体を、露光する、第一の露光工程と、
     前記積層体の表面に、感光性導電ペーストDを塗布して感光性導電膜Dを得る、塗布工程と、
    前記感光性導電膜Dを、露光する、第二の露光工程と、
     前記積層体及び前記感光性導電膜Dを一括して現像して、透明電極パターンC及び導電パターンDの積層パターンを得る、現像工程と、を備え、
     前記感光層Bは、感光性樹脂及び光重合開始剤を含有し、
     前記感光性導電ペーストDは、導電性粒子、感光性樹脂及び光重合開始剤を含有する、積層パターン形成基材の製造方法。
    A first exposure step of exposing the laminate in which the substrate A, the photosensitive layer B, and the transparent electrode layer C are laminated in this order; and
    A coating step of applying a photosensitive conductive paste D to obtain a photosensitive conductive film D on the surface of the laminate, and
    A second exposure step of exposing the photosensitive conductive film D;
    And developing the laminated body and the photosensitive conductive film D at a time to obtain a laminated pattern of the transparent electrode pattern C and the conductive pattern D,
    The photosensitive layer B contains a photosensitive resin and a photopolymerization initiator,
    The said photosensitive conductive paste D is a manufacturing method of the lamination pattern formation base material containing electroconductive particle, photosensitive resin, and a photoinitiator.
  2. 前記第一の露光工程が、フォトマスクを介して露光する工程と、フォトマスクを介することなく酸素存在下で露光する工程とを有する請求項1に記載の積層パターン形成基材の製造方法。 The method for producing a laminated pattern forming substrate according to claim 1, wherein the first exposure step includes a step of exposing through a photomask and a step of exposing in the presence of oxygen without using a photomask.
  3.  さらに前記積層パターンを100~300℃で加熱する、キュア工程を備える、請求項1又は2に記載の積層パターン形成基材の製造方法。 The method for producing a laminated pattern forming substrate according to claim 1 or 2, further comprising a curing step in which the laminated pattern is heated at 100 to 300 ° C.
  4.  前記透明電極層が、金属ナノワイヤを含有する、請求項1~3に記載の積層パターン形成基材の製造方法。 The method for producing a laminated pattern forming substrate according to claims 1 to 3, wherein the transparent electrode layer contains metal nanowires.
  5.  前記金属ナノワイヤとして、銀ナノワイヤを含有する、請求項4に記載の積層パターン形成基材の製造方法。 The manufacturing method of the lamination pattern formation base material of Claim 4 containing silver nanowire as said metal nanowire.
  6.  前記導電性粒子として、銀粒子を含有する、請求項1~5のいずれかに記載の積層パターン形成基材の製造方法。 The method for producing a laminated pattern forming substrate according to any one of claims 1 to 5, wherein the conductive particles contain silver particles.
  7.  請求項1~6のいずれかに記載の製造方法に基づく工程を備えることを特徴とするタッチパネルの製造方法。
     
    A touch panel manufacturing method comprising a step based on the manufacturing method according to any one of claims 1 to 6.
PCT/JP2017/018670 2016-06-02 2017-05-18 Method for producing multilayer pattern formed base and method for producing touch panel WO2017208842A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017529112A JPWO2017208842A1 (en) 2016-06-02 2017-05-18 Laminate pattern forming substrate and touch panel manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016110745 2016-06-02
JP2016-110745 2016-06-02

Publications (1)

Publication Number Publication Date
WO2017208842A1 true WO2017208842A1 (en) 2017-12-07

Family

ID=60477894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018670 WO2017208842A1 (en) 2016-06-02 2017-05-18 Method for producing multilayer pattern formed base and method for producing touch panel

Country Status (3)

Country Link
JP (1) JPWO2017208842A1 (en)
TW (1) TW201804259A (en)
WO (1) WO2017208842A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6717439B1 (en) * 2018-11-30 2020-07-01 東レ株式会社 Laminated material
WO2020137144A1 (en) * 2018-12-27 2020-07-02 富士フイルム株式会社 Photosensitive transfer material, laminate, touch panel, method for producing patterned substrate, method for producing circuit board, and method for producing touch panel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015049939A1 (en) * 2013-10-03 2015-04-09 日立化成株式会社 Photosensitive conductive film, conductive pattern formation method using same, and conductive pattern substrate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015049939A1 (en) * 2013-10-03 2015-04-09 日立化成株式会社 Photosensitive conductive film, conductive pattern formation method using same, and conductive pattern substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6717439B1 (en) * 2018-11-30 2020-07-01 東レ株式会社 Laminated material
WO2020137144A1 (en) * 2018-12-27 2020-07-02 富士フイルム株式会社 Photosensitive transfer material, laminate, touch panel, method for producing patterned substrate, method for producing circuit board, and method for producing touch panel

Also Published As

Publication number Publication date
JPWO2017208842A1 (en) 2019-03-28
TW201804259A (en) 2018-02-01

Similar Documents

Publication Publication Date Title
JP6150021B2 (en) Method for manufacturing conductive pattern forming member
JP5967079B2 (en) Conductive paste and conductive pattern manufacturing method
JP5278632B2 (en) Photosensitive conductive paste and method for producing conductive pattern
US20200278609A1 (en) Photosensitive conductive paste and film for forming conductive pattern
WO2017208842A1 (en) Method for producing multilayer pattern formed base and method for producing touch panel
JP6090537B1 (en) Laminated member and touch panel
JP2018120652A (en) Conductive pattern forming film
CN105531626B (en) Photosensitive light-shielding paste and method for producing laminated pattern for contact sensor
CN111665996A (en) Method for manufacturing contact sensor member and contact sensor member
JP6645186B2 (en) Method for manufacturing conductive paste, touch panel and conductive pattern
JP5403187B1 (en) Photosensitive conductive paste and method for producing conductive pattern
US9846362B2 (en) Conductive paste and method of producing conductive pattern
WO2014069436A1 (en) Photosensitive conductive paste and method for producing conductive pattern
WO2015122345A1 (en) Conductive paste, method for producing pattern, method for producing conductive pattern, and sensor
WO2018029749A1 (en) Production method for conductive pattern-forming member
JP6717439B1 (en) Laminated material
WO2017094693A1 (en) Insulating paste for supporting electrode layer, touchscreen, and touchscreen manufacturing method
TW201800850A (en) Photosensitive conductive paste and method for manufacturing substrate provided with conductive pattern
TW201807498A (en) Conductive patterning forming member and method of manufacturing the same including a coating step, a drying step, an exposure step, a developing step, and a curing step
WO2018029750A1 (en) Laminated member and touch panel

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017529112

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806399

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17806399

Country of ref document: EP

Kind code of ref document: A1